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Abstract

It has become of key interest in the insurance industry to understand and

extract information from telematics car driving data. Telematics car driv-

ing data of individual car drivers can be summarized in so-called speed-

acceleration heatmaps. The aim of this study is to cluster such speed-

acceleration heatmaps to different categories by analysing similarities and

differences in these heatmaps. Making use of local smoothness properties,

we propose to process these heatmaps as RGB images. Clustering can then

be achieved by involving supervised information via a transfer learning ap-

proach using the pre-trained AlexNet to extract discriminative features. The

K-means algorithm is then applied on these extracted discriminative fea-

tures for clustering. The experiment results in an improvement of heatmap

clustering compared to classical approaches.
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1. Introduction1

Nowadays, telematics car driving data becomes vital to general insurance2

companies. Classical car insurance pricing is typically based on generalised3

linear models using covariate information like age of driver, gender of driver,4

type of car, price of car, power of engine, etc. This conventional covariate5

information is not directly related to driving styles and driving habits, but6

it is rather brought in as proxy information for missing information about7

driving styles and skills. Of course, this raises some issues because these8

proxies only describe typical representatives of covariate characteristics, and9

an individual driver might be quite different from a typical driver. Moreover,10

recently concerns have been raised about discrimination as certain protected11

variables are not allowed to serve as proxies, for instance, gender under Eu-12

ropean law is not allowed to be used as an explanatory variable in regression13

models (European Commission, 2012). In contrast, telematics car driving14

data is much closer to the ground truth of driving style and driving skills15

because it continuously registers driving behaviour and maneouvres.16

However, telematics car driving data poses big challenges itself, one be-17

ing the massive amount of data that it creates and another one being the18

accuracy telematics data typically has. For these reasons, there is a vastly19

growing literature on telematics data that aims at making it useful for un-20

derstanding and pricing car insurance policies. Needless to say that new21

car insurance products should also aim at improving driving styles by con-22

tinuously giving feedback to the customers about their driving. We briefly23

review recent developments on telematics car driving data.24

Some studies aim to identify indicators of driving risk which can help25

insurers to obtain better risk profiles for individual car drivers. Driving26

2



distance is one factor that has been widely explored (Lemaire et al., 2016;27

Boucher et al., 2017; Verbelen et al., 2018), other methods aim at evaluat-28

ing driving risk based on extracting behavior variables from usage-based-29

insurance (UBI) data that goes beyond driving distance (Bian et al., 2018;30

Ayuso et al., 2016a,b; Denuit et al., 2019). Carfora et al. (2019) propose31

an indicator of driver aggressiveness based on cluster analysis results. More32

recently, generalised linear models are built based on the internet of vehicles33

(IoV) data to identify risky drivers, see Sun et al. (2020). Another direc-34

tion of research is to study driving cycles which are usually represented by35

speed-time profiles. By studying such driving patterns in different cities,36

one can evaluate energy and emissions in road transportation (Hung et al.,37

2007; Kamble et al., 2009; Ho et al., 2014).38

Since telematics car driving data and, in particular, GPS location data39

second by second results in a massive amount of data, this data needs to be40

compressed or summarized in a suitable way to make it useful for insurance41

pricing. Of course, this aggregation should be done at a minimal loss of42

information. One way of aggregation is to build so-called speed-acceleration43

(v-a) heatmaps which is a two-dimensional summary statistics of a speed44

versus acceleration pattern, see Wüthrich (2017). This approach can reduce45

the large amount of telematics data while keeping key information of indi-46

vidual driving patterns. The corresponding v-a heatmap is generated from47

the telematics data for each individual driver. Figure 1 shows two examples48

of v-a heatmaps in the (5, 20] (km/h) speed interval. The x axis shows speed49

v in km/h while the y axis shows acceleration a in m/s2 for an individual50

driver. The v-a heatmap then gives the distribution of the time spent by51

a driver at each (v, a) location. From Figure 1 it is obvious that the two52

illustrated drivers have quite different speed-acceleration behaviour.53
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Figure 1: Two examples of v-a heatmaps.

Our goal here is to analyze different driving patterns based on these v-a54

heatmaps. One direction is to study whether there are clusters of similar55

heatmaps, so that we can cluster customers to different categories of driv-56

ing styles. Given that the heatmaps are not labelled, this provides us with57

a cluster analysis problem (Section 10.3 in James et al. 2013). Wüthrich58

(2017) proposes to explore this direction by K-means clustering, that di-59

vides data to K non-overlapping subgroups, and it is assumed that data60

points within each subgroup are similar to each other. Thus, the car drivers61

that are clustered to one subgroup by the K-means algorithm are believed to62

share a similar driving style. In a further study, Gao and Wüthrich (2018)63

extract low-dimensional features from v-a heatmaps that can be used in64

regression models for car insurance pricing. Of course, at this stage, it is65

not clear whether such a clustering provides any predictive power for car66

frequency prediction. Gao et al. (2019) provide evidence on a small data67

set that, indeed, clustering of v-a heatmaps can extract feature informa-68

tion from telematics car driving data that has predictive power for claim69

frequency prediction. However, their analysis is based on less than 200070

drivers, therefore, bigger portfolios and more analysis is needed to receive71
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more support for this approach. Weidner et al. (2017) also cluster driving72

styles to evaluate driving behaviour. Different from the above approaches,73

their study uses a hierachical clustering method based on three variables,74

vehicle velocity, acceleration and deceleration.75

We note that there are two aspects that can be improved in the above76

approaches. First, from the v-a heatmaps in Figure 1, we can observe77

that within a small local area the values in each heatmap are close to each78

other, which suggests a smoothness property or a spatial structure that can79

be explored in the heatmap. This spatial structure has not been consid-80

ered in Wüthrich (2017) and Gao and Wüthrich (2018), because the entire81

heatmap has been stacked into a one-dimensional vector in these two studies.82

Considering this spatial property may improve the clustering results. Sec-83

ond, all heatmaps are unlabelled suggesting that this is a difficult clustering84

task. Involving supervised information from other classification problems85

may improve the clustering results.86

In this paper, we propose to enhance the above two aspects via transfer87

learning with the pre-trained AlexNet on heatmap images to extract dis-88

criminative features that can bring supervised information to our clustering89

task. First, we propose to process heatmaps as two-dimensional RGB images90

rather than treating them as one-dimensional vectors to preserve the local91

geometry. Machine learning algorithms in image processing have been well92

developed by considering the local smoothness property of images. Thus,93

our task becomes to cluster the heatmap RBG images rather than the one-94

dimensional vectors of Wüthrich (2017). Second, the pre-trained models95

in image classification tasks can be utilised to bring supervised informa-96

tion to our clustering task. Here, we select the AlexNet model (Krizhevsky97

et al., 2012) that is trained on the ImageNet database. From the pre-trained98
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AlexNet, we can extract discriminative features from the heatmaps that are99

informative to distinguish between different image classes. More specifi-100

cally, we feed the heatmap images to the pre-trained AlexNet and extract101

discriminative features that can distinguish between different heatmap pat-102

terns. These features are then used in the K-means algorithm for clustering.103

By borrowing the discriminative or supervised information contained in the104

pre-trained AlexNet, which has been trained on a different classification task,105

we still expect that our clustering results are improved, i.e. similar images106

can be clustered together. This is one example of transfer learning within107

the machine learning community, which aims to transfer knowledge learned108

from one specific task to a similar but different task (Pan and Yang, 2009).109

Note that the feature extraction process proposed here is different from that110

in Gao and Wüthrich (2018). This is because our feature extraction process111

involves supervised information from ImageNet classification task while the112

one in Gao and Wüthrich (2018) is purely unsupervised. We recognize that113

there are many different ways to perform such classification tasks. AlexNet114

used here is based on convolutional neural networks. These networks have115

been designed to find common structure at different locations in images. Al-116

ternatively, one may try, for instance, density-based clustering which allows117

to discover clusters of arbitrary shapes.118

The rest of the paper is organized as follows. Section 2 describes v-a119

heatmap. Section 3 shows the details of K-means algorithm and AlexNet.120

Section 4 compares the clustering results of driving styles on our data. Sec-121

tion 5 presents some concluding remarks.122
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2. The v-a heatmap123

To generate v-a heatmaps we follow the steps in (Gao and Wüthrich,124

2018). We select speed range (5, 20]km/h and acceleration range [−2, 2]m/s2.125

We divide both the speed range (5, 20] and the acceleration range [−2, 2] to,126

say, 20 equidistant intervals. Thus, we partition the two-dimensional space127

of (5, 20] × [−2, 2] to 400 congruent subregions Rj , j = 1, 2, . . . , 400. Note128

that we could choose the numbers of equidistant intervals differently, but129

we select the fixed number of 20, here, to fix ideas and also because this130

will be in line with our numerical analysis. Next, we record the relative131

amount of time spent in each subregion Rj , xij , for driver i, i = 1, 2, . . . , N .132

xij satisfies the following probability constraints: xij ≥ 0 for all j and133 ∑400
j=1 xij = 1. This allows us to draw a heatmap based on these data for134

each individual driver. For driver i, the heatmap data is represented by a135

vector xi = [xi1, xi2, . . . , xi400]
T of probability weights, see Figure 1 for its136

two-dimensional illustration.137

3. Methodology138

In this section, we first introduce the K-means clustering algorithm that139

can be applied to cluster heatmaps to subgroups. Then, we discuss two140

feature extraction approaches that can be applied before the K-means al-141

gorithm, the unsupervised principal component analysis (PCA) and the su-142

pervised pre-trained AlexNet. There are two advantages of applying feature143

extraction beforehand. First, we usually extract fewer features from the orig-144

inal data when the dimensionality is large, e.g. 400 variables to describe one145

heatmap in our task, in order to reduce the redundant information contained146

in the data. Second, the extracted features are usually good representations147
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of the original data and can provide the useful information for the clustering148

task.149

3.1. K-means clustering150

K-means clustering (Section 10.3.1 in James et al. 2013) is a clustering151

technique that aims to find non-overlapping K clusters such that the within-152

cluster variation of all K clusters is minimized.153

Given N car drivers {1, 2, . . . , N}, the within-cluster variation Sk of the154

kth cluster, Ck, is defined as155

Sk =
1

Nk

∑
i,i′∈Ck

(xi − xi′)
T (xi − xi′), (1)

where Nk denotes the number of drivers in the kth cluster with
∑K

k=1Nk =156

N . Note that here we use the squared Euclidean distance between drivers157

to measure the within-cluster variation. Hence K-means clustering aims to158

solve the following optimization problem:159

min
C1,C2,...,CK

K∑
k=1

∑
i,i′∈Ck

(xi − xi′)
T (xi − xi′), (2)

such that C1, C2, . . . , CK provides a partition of all drivers {1, 2, . . . , N}.160

Given that there are KN ways to divide N drivers to K subgroups, the161

following algorithm is usually used to find an approximate solution (local162

minimum) of (2) with less computational cost.163

Step 1 Randomly assign each driver to one of the K groups as initialization164

step.165

Step 2 Calculate the cluster mean for each cluster.166

Step 3 Assign each driver to the cluster with the closest cluster mean (w.r.t.167

the squared Euclidean distance).168
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Step 4 Iterate steps 2 and 3 until the assignment does not change.169

Note that this algorithm has monotonically decreasing total within-170

cluster variation, and therefore converges to a local minimum of (2). When171

using K-means clustering, we need to specify the number of clusters K,172

which acts as a hyper-parameter. An optimal selection can be done by var-173

ious methods, such as the elbow method (James et al., 2013) that plots the174

sum of within-cluster variations against K and selects K where an elbow175

appears in the graph.176

3.2. Feature extraction before applying K-means177

In this section, we present feature extraction before applying the K-178

means algorithm. These feature extraction techniques may be understood179

as representation learning techniques, and we apply the K-means algorithm180

only to the learned representations. Interestingly, the K-means algorithm181

does not use any information about the spatial structure of the heatmaps182

because all information is stacked into a one-dimensional vector xi, however,183

the second method presented in this section reflects spatial information in184

the learned representation and, thus, the K-means results will have an im-185

plicit spatial component.186

3.2.1. Principal component analysis187

Principal component analysis (PCA) (Jolliffe, 1986) is a simple, yet,188

effective way to extract features that contain the most variation information189

in data.190

Given N drivers, we have a data matrix X ∈ RN×400 that contains all191

information xi of the drivers i = 1, 2, . . . , N on the rows of X. To obtain the192

first few principal components, we first subtract the column means from X193
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to obtain the mean-centred Xc. We then apply the reduced singular value194

decomposition (SVD) to Xc:195

Xc = UDVT , (3)

where U ∈ RN×q and V ∈ R400×q are two matrices with columns of left and196

right singular vectors, D ∈ Rq×q is a diagonal matrix with singular values197

d1 ≥ d2 ≥ · · · ≥ dq ≥ 0.198

In PCA, the columns of V are known as principal components (PC) and199

the rows of T = UD are known as PC scores. In practice, we usually select200

the first r (r ≤ q) PCs that can explain most of the variation of the data,201

e.g. 75%, to provide a good representation of the original dataset. Note that202

PCA is a purely unsupervised dimension reduction method because we do203

not involve any label information during the whole process. Moreover, it204

does not use the geometric structure of the heatmaps.205

3.2.2. Transfer learning with the pre-trained AlexNet206

From the previous section, we can see that the heatmap for each indi-207

vidual driver is simply treated as a row vector in X. This approach ignores208

the geometric structure of the heatmaps, i.e. that the values of a small local209

area in the heatmap are similar to each other. To make use of this prop-210

erty, we propose to treat the heatmaps as RGB images rather than single211

vectors xi. Another advantage of treating the heatmaps as RGB images is212

that there is a rich literature and many algorithms in well-develped areas of213

image processing, in order to improve the clustering of driving styles.214

Instead of using the purely unsupervised PCA, we propose to extract fea-215

tures with supervised information for better clustering via transfer learning.216

Transfer learning has attracted quite some attention in the machine learning217
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community in recent years (Pan and Yang, 2009; Torrey and Shavlik, 2010;218

Shin et al., 2016). It aims to transfer the knowledge learned from source219

tasks to a similar but different target task. In our task, there is a lack of220

supervised information for the heatmap images, i.e. we do not have labels221

of driving styles for the heatmaps, which makes the clustering task difficult.222

This is the typical problem in common in clustering tasks. We aim to solve223

this problem by borrowing supervised information learned from other im-224

age classification tasks. For example, we can utilise the deep convolutional225

neural network, AlexNet (Krizhevsky et al., 2012), that is trained on the226

ImageNet data (Deng et al., 2009) to classify images to 1000 classes. Hence,227

the features extracted by AlexNet contain supervised information that is228

useful to differentiate images from different classes. If we feed our heatmaps229

to AlexNet, then the features extracted by AlexNet may also be good to230

distinguish between heatmap images with different patterns, i.e. different231

driving styles. More specifically, we transfer the supervised information232

from the source task, classifying ImageNet images, to our target task, clas-233

sifying heatmap images. By using these extracted features, we can expect234

an improvement in the clustering results.235

AlexNet is the most popular deep convolutional neural network devel-236

oped in the past decade. AlexNet has eight learned network layers with five237

convolutional layers and three fully-connected layers. The architecture of238

AlexNet is shown in Figure 2, where the light blue cube shows the input239

RGB image, the orange cubes show the five convolutional layers and the240

black rectangles show the three fully-connected layers. In our task, we un-241

derstand the v-a heatmaps now as RGB images, and we feed these RGB242

images into the pre-trained AlexNet. Note that RGB images are repre-243

sented by three-dimensional arrays representing the red, green or blue color244
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Figure 2: The architecture of AlexNet.

4. Data analysis246

In the following data analysis, we compare the clustering performances247

of (a) K-means, (b) K-means on PCA features and (c) K-means on AlexNet248

features. We have performed this analysis on heatmaps coming from real249

telematics car driving data and on simulated data. Our results did not differ250

on the two data sets. Therefore, we have decided to present the results on251

the simulated data, because this simulated data is publicly available which252

allows one to replicate our results. We remark that the data generator for253

the simulated data is based on bottleneck neural networks that have been254

trained on real telematics car driving data, for more details we refer to Gao255

and Wüthrich (2018).256
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4.1. Simulated data257

The simulated heatmap data is obtained from the heatmap simulation258

machine (Gao and Wüthrich, 2018)1 with default parameter settings and259

seeds. This simulation machine provides heatmaps of 2000 drivers. The260

heatmap data is represented by a matrix X ∈ R2000×400.261

4.2. K-means clustering262
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Figure 3: The scree plot of K-means.

We first show the results of applying K-means clustering to the heatmap263

data directly. Figure 3 shows the scree plot of K-means clustering when we264

use the original heatmap data X as input. From this plot it is not obvious265

which number of clusters we should choose as there is no clear elbow in the266

picture. Based on Figure 3, we may need to set K to a large number, e.g.267

larger than 10. However, we usually do not aim to set K to a very large268

number because this may lead to over-fitting, and because for insurance269

pricing we prefer categorical variables with only a few levels. When K is270

set to the total number of drivers we receive the smallest within-cluster271

1https://people.math.ethz.ch/~wueth/simulation.html
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variation of zero; however, no drivers are clustered in this case. This is why272

we would like to see a scree plot with an elbow where the within-cluster273

variation decreases quickly before the elbow while slowly after the elbow,274

which gives us a natural selection criterion for K.275

4.3. K-means clustering on PCA features276
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Figure 4: The scree plot of K-means on PCA features.

In this section, we show how the clustering results improve when we277

extract features from the original data by PCA. The first two principal278

components (PCs) are used, which explain 74% of the total variation in the279

data. Thus, we represent xi by a two-dimensional vector, and we apply280

K-means clustering on the two extracted PCA features.281

Figure 4 shows the scree plot of K-means clustering on PCA features.282

Compared to Figure 3 on the original data, there is a clear elbow shown283

around K = 4 in Figure 4 (with PCA features). This suggests that K = 4284

is a good choice for the number of clusters. I.e. this result gives us a natural285

candidate for hyper-parameter K. Note that the PCA extraction reduces286

the noise in the data because it focuses only on the most relevant PCs, and287

the learned representations then allow for a more clear clustering picture.288
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(a) Cluster 1. (b) Cluster 2.

(c) Cluster 3. (d) Cluster 4.

Figure 5: The cluster means of the four clusters identified by K-means on PCA features.

The cluster means, i.e. the average heatmap images of each cluster, are289

shown in Figure 5 when setting K = 4 (on PCA features). Figure 5 shows290

that different driving styles are presented in different clusters. For example,291

Cluster 2 shows a non-smooth driving style with a lot of time spent at high292

speeds and low speeds without any acceleration. The drivers in this cluster293

also tend to spend quite some time at low speeds and negative acceleration294

(braking). Cluster 4 shows a different non-smooth driving style where the295

drivers spend a large amount of time at high speeds and zero acceleration.296

Cluster 3 shows a smooth driving style. Cluster 1 seems to be a combination297

of both smooth and non-smooth driving styles, because the middle part298

of the mean image is smooth to an extent but not as smooth as that of299

Cluster 3. We suspect that Cluster 1 contains both driving styles. Figure 6300

shows individual drivers in each of the four clusters. This gives us some301
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evidence that Cluster 1 contains different driving behaviours, i.e. it is not302

as homogeneous as the other clusters. For example, the first one on the303

second column of Figure 6a is very smooth while the third one on the first304

column of Figure 6a is obviously non-smooth. This indicates that there is305

room for improvement of the clustering results of K-means on PCA features,306

e.g. making the clusters purer.

(a) Cluster 1. (b) Cluster 2.

(c) Cluster 3. (d) Cluster 4.

Figure 6: Example heatmap images of the four clusters identified by K-means on PCA

features, cluster means are provided in Figure 5.

307

To have a further investigation of the physical meanings of PCs, we308

visualise the heatmaps via the scatter plot with the first two PCs in Figure 7,309

where the four clusters are labelled with different symbols. It seems that the310

first PC, i.e. PC1 in Figure 7, indicates the smoothness of the driving style.311
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Figure 7: The scatter plot of heatmaps with the first two PCs. The clusters are labelled

by K-means on PCA features.

Clusters 3 with relatively smooth driving style has small values in PC1 while312

Clusters 2 with relatively non-smooth driving style has large values in PC1.313

4.4. K-means clustering on AlexNet features314

Here we show the clustering results of K-means on AlexNet features.315

Different from the previous two experiments where the input is the data316

matrix X, we export the heatmaps as RGB images (in .png format) and317

use these RGB images as input to the pre-trained AlexNet in Matlab2.318

The high-level features from the fully-connected layer ‘fc7’ in Matlab are319

extracted from the pre-trained AlexNet. Because this layer provides a large320

number of 4096 extracted features, we reduce this dimension first by PCA,321

i.e. we apply PCA on the 4096 features extracted by AlexNet, and then322

use these ‘AlexNet+PCA’ features as input to the K-means algorithm. In323

the rest of this paper, we call these ‘AlexNet+PCA’ features as ‘AlexNet’324

features in short. The first two PCs are used which explain 79% of the total325

2https://uk.mathworks.com/help/deeplearning/ref/alexnet.html

17



variation of the AlexNet features.326
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Figure 8: The scree plot of K-means on AlexNet features.

Similarly to the previous analysis, we first show the scree plot of the327

K-means algorithm based on AlexNet features in Figure 8. Compared to328

Figure 3 with the original data and Figure 4 with PCA features, Figure 8329

with AlexNet features shows a much clearer elbow. Here we conclude that330

K = 4 is a good choice for the number of clusters, because the reduction of331

within-cluster variation becomes much smaller when the number of clusters332

is larger than 4.333

The four cluster means are shown in Figure 9. It seems that Clusters 1,334

2 and 3 in Figure 9 with AlexNet features correspond to Clusters 4, 2 and335

3 in Figure 5 with PCA features. The major difference is between Cluster336

4 in Figure 9 with AlexNet features and Cluster 1 in Figure 5 with PCA337

features. The plots show that the smooth driving styles are clustered to338

Cluster 3 by AlexNet features. Cluster 4 in Figure 9d shows non-smooth339

driving styles with a certain degree of smoothness in the middle right part,340

compared with Clusters 1 and 2. We can also observe that the smoothness341

of driving styles decreases in the order of Clusters 2, 1, 4 and 3.342
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(a) Cluster 1. (b) Cluster 2.

(c) Cluster 3. (d) Cluster 4.

Figure 9: The cluster means of the four clusters identified by K-means on AlexNet features.

The improvement in cluster pureness by using AlexNet features is clearer343

in Figure 10 of example heatmap images. Cluster 4 examples in Figure 10d344

show heatmaps with a certain degree of non-smoothness. We cannot observe345

a clear mixture of smooth and non-smooth driving styles as in Cluster 1 with346

PCA features in Figure 6a.347

The visualisation of the heatmap images are also shown as the scatter348

plot with the first two PCs of AlexNet features in Figure 11. We can see349

that PC1 also indicates the smoothness of the driving styles. The values of350

PC1 increase as the driving styles become smoother.351

To have a closer look at the features extracted by AlexNet, we show the352

activation images of two layers for the heatmap image of the first driver.353

Each layer in AlexNet is consisting of many 2-dimensional arrays which are354

called channels. By visualising the channels, we can examine which parts355
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(a) Cluster 1. (b) Cluster 2.

(c) Cluster 3. (d) Cluster 4.

Figure 10: Example heatmap images of the four clusters identified by K-means on AlexNet

features, cluster means are provided in Figure 9.
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Figure 11: The PC plot of K-means on AlexNet features.
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Figure 12: The strongest activation channel in the first convolutional layer, conv1, of

driver 1.

Figure 13: The 14th and 99th channels in the fifth convolutional layer, conv5, of driver 1.

of the image are strongly activated or which features are extracted by the356

channel. Usually, the channels in early layers extract simple features, e.g.357

colour or edge, while those in latter layers extract deep features, e.g. eyes in358

face recognition. For the heatmap image of driver 1, the strongest activation359

channel in the first convolutional layer, conv1, is shown in Figure 12. The360

white part indicates the area that is positively activated while the black361

part indicates the area that is negatively activated. It is clear that this layer362

extracts the features represented by the light blue area in the heatmap.363

Figure 13 shows the 14th and 99th channels in the fifth convolutional layer,364

conv5, for the first driver. These two channels extract features representing365

the non-smoothness of the heatmap image.366

4.5. Quantitative measurement of clustering results367

In previous sections, we have shown the improvement of using AlexNet368

features by visualising the elbow plots, the cluster mean images and the369
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example images of each cluster. Here, we aim to quantitatively measure370

this improvement. Given the fact that we do not have the ground truth371

labels of the heatmaps, it is not possible to compute the purity of the clus-372

tering results. Instead of using purity, we choose the average silhouette373

value (Rousseeuw, 1987) as our metric, which does not require the knowledge374

of ground truth labels. The average silhouette value measures how similar375

the heatmaps are to their own clusters and how dissimilar the heatmaps are376

to other clusters. The higher the average silhouette value, the better the377

clustering results.378

After applying K-means, we assign each heatmap to one of the clusters379

C1, C2, . . . , CK , where K is the predefined number of clusters and in our380

experiments it has chosen to be K = 4. For the ith heatmap that is assigned381

to the sth cluster, we calculate its average distance to all other heatmaps382

assigned to the same cluster:383

ai =
1

|Cs| − 1

∑
j∈Cs,j 6=i

d(i, j), (4)

where |Cs| denotes the number of heatmaps in cluster Cs. Thus, ai measures384

how similar the ith heatmap is to its own cluster. Here we use the Euclidean385

distance between heatmaps i and j to measure the dissimilarity between386

them. We assume that two heatmaps with a small Euclidean distance have387

a high similarity while those with a large Euclidean distance have a high388

dissimilarity. To measure how dissimilar the ith heatmap is to other clusters,389

we calculate390

bi = min
k 6=s

1

|Ck|
∑
l∈Ck

d(i, l), (5)

where k = 1, 2, . . . ,K.391
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The silhouette value of the ith heatmap is now defined as392

si =
bi − ai

max{ai, bi}
. (6)

We can see that si takes values between [−1, 1]. The larger the value of393

si, the higher the dissimilarity between the ith heatmap and other clusters394

while the higher the similarity between the ith heatmap and its own cluster.395

Thus, a large value of si indicates better clustering of the ith heatmap.396

To measure how well the clustering results are for all heatmaps, we can397

simply take the average silhouette value of all heatmaps:398

sall =
1

N

N∑
i=1

si, (7)

where N is the total number of heatmaps and in our experiment it is N =399

2000.400

Table 1: The average silhouette values of all heatmaps when clustering by K-means with

K = 4.

Pure K-means PCA features AlexNet features

sall 0.4432 0.5769 0.7261

We show sall for the clustering results of K-means with K = 4 by using401

the pure K-means, PCA features and AlexNet features in Table 1. This402

silhouette value shows a clear increase from the original K-means to the403

AlexNet extracted K-means method, indicating that we receive much more404

purity when appropriately pre-processing the heatmaps before applying the405

K-means algorithm.406
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5. Conclusion407

Clustering driving styles by analysing speed-acceleration v-a heatmaps408

is one interesting topic in studying telematics car driving data. In this409

study, we propose to process the heatmaps as images and involve supervised410

information via transfer learning in our clustering task. More specifically,411

we propose to extract features with supervised information from the pre-412

trained AlexNet for image classification tasks and conduct clustering based413

on these features. Experiments on both simulated data and real data show414

the improvement of clustering results compared with using original data and415

PCA features. This is verified by comparing the corresponding silhouette416

values that clearly prefer the pre-trained AlexNet features.417
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