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Cuffless and Continuous Blood Pressure Estimation From PPG Signals
Using Recurrent Neural Networks

Chadi El Hajj and Panayiotis A. Kyriacou

Abstract— This paper proposes cuffless and continuous blood
pressure estimation utilising Photoplethysmography (PPG) sig-
nals and state of the art recurrent network models, namely,
Long Short Term Memory and Gated Recurrent Units. The
models were validated on wide range of varying blood pressure
and PPG signals acquired from the Multiparameter Intelligent
Monitoring in Intensive Care database. Many features were
extracted from the PPG waveform and several machine learning
techniques were employed in an attempt to eliminate collinear-
ity and reduce the size of input feature vector. Consequently,
the most effective features for blood pressure estimation were
selected. Experimental results show that the accuracy of the
proposed methods outperform traditional models applied in the
literature. The results satisfy the American National Standards
of the Association for the Advancement of Medical Instrumen-
tation.

I. INTRODUCTION
High blood pressure or hypertension is a key factor for a

number of life threatening diseases, such as cardiovascular
diseases (CVDs), and chronic kidney diseases [1]. Accord-
ing to 2018’s world health statistics report published by
the World Health Organisation, approximately 17.9 million
deaths worldwide were caused by CVDs in 2016 [2].

Blood pressure (BP) is an important physiological parame-
ter providing information about the cardiac output, blood ves-
sel elasticity, and physiological variations which are essential
for physicians for assessing patients’ circulatory system con-
ditions. The normal BP range for adults are considered to be
90-129 mmHg for Systolic BP (SBP), and 60-84 mmHg for
Diastolic BP (DBP). SBP and DBP values higher than this
range indicate hypertension. Hypertension adds more strain
on the blood vessels which can damage the internal organs of
the human body leading to strokes, heart diseases, and kidney
failures in the case of chronic hypertension. Moreover, for
hypertensive patients, BP can fluctuate over time [3], and
the changes in the SBP and DBP may occur rapidly due to a
number of different factors, such as physical activity, stress,
food, and emotions. Therefore, regular and continuous BP
monitoring is desired for early diagnosis and treatment of
hypertension so that further complications maybe be avoided.

The traditional BP measurement techniques in clinical
practice are typically invasive or cuff-based. The invasive
method can only be achieved via arterial catheterization.
This method is considered to be the most accurate and
provides continuous BP measurement values in real time for
every cardiac cycle. Nonetheless, its application is limited to
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hospitals and can be painful. The most commonly used BP
measurement devices are mainly based on oscillometric [4],
and auscultatory [5] methods. These methods provide SBP
and DBP values without any obvious risks. However, BP
measurement using these devices is discontinuous and cuff-
based, which is inconvenient and uncomfortable for patients
due to repeated cuff inflation and deflation.

There has been considerable effort to develop cuffless BP
measurement methods over the past decades, particularly
using PPG sensors due to its simplicity and cuffless nature.
Pulse Transit Time (PTT) has been known to be inversely
correlated to BP [1], and can be measured using two distant
PPG sensors located on the body. PTT is defined as the time
taken by the pressure wave to travel between two arterial
sites. Pulse Arrival Time (PAT) [1] is another approach that
has been investigated. PAT is the time needed for the pulse
wave generated by the heart to travel to a peripheral site e.g.
fingers, toe, earls etc. PAT is measured using one PPG sensor
and one Electrocardiogram (ECG) sensor. These techniques
rely on a complicated arterial wave propagation models and
face several practical challenges, such as the need for two
measurement sensors, and frequent calibration due to varying
physiological parameters between individuals [7].

More recently, with the rise of Machine Learning (ML),
several studies have combined PTT and PAT parameters
with many morphological features extracted from the PPG
signals. These features describe the characteristics of the
PPG waveform and have been found to be correlated to BP
[6]. PTT or PAT parameter combined with PPG features
along with machine learning models are able to provide
better BP estimation accuracy [7], [8], as opposed to PTT or
PAT only models [9], [10].

On the other hand, optical BP measurements using only
PPG signals, has also attracted a lot of attention [11]–[15]
due to its simplicity. This approach is able to provide cuffless
and continuous BP estimation using features extracted from
the waveform and the application of machine learning. Teng
and Zhang [11] investigated the relationship between BP and
PPG features using a linear regression model. Four features
were extracted from the PPG as potential BP indicators.
Their model was validated on a small dataset of 15 healthy
subjects. This study reported promising results for cuffless
SBP and DBP estimation. However, the relationship between
BP and PPG pulse duration is not always linear [12] and this
dataset does not well represent the general population. Non-
linear classical ML models have also been tested including
Support Vector Machine (SVM) and Regression Tree [15].
However, all the aforementioned models share one disadvan-



tage, that is, they require two separate estimation models,
one for each objective i.e. SBP and DBP. However, SBP
and DBP are strongly correlated [3], and therefore, their
estimation accuracy can be improved by learning shared
representation using one model architecture. In Kurylyak
et al [12], 21 temporal PPG features were extracted and
evaluated on a feedforward neural network. The dataset
used in this experiment is the Multiparameter Intelligent
Monitoring in Intensive Care (MIMIC) database [16]. This
database provides a wide representation of possible PPG
signals and their corresponding BP values allowing for
linear and non-linear models to be investigated. Their study
produced acceptable results for cuffless and continuous BP
estimation.

All the previously discussed ML and neural network
models do not take into account the time domain variation
in the extracted PPG features. The BP estimation accuracy
can be further enhanced using recurrent neural networks that
can model relevant PPG features, as well as their variation
with respect to time.

In order to overcome these challenges, this paper proposes
new methods for non-invasive cuffless BP estimation from
PPG signals, using Long Short Term Memory (LSTM) and
Gated Recurrent Units (GRU) networks. In [3], [17], LSTM
networks were employed for estimating BP values using
the PTT approach. Their results were superior to all the
previously published PTT studies, suggesting that modelling
the time domain variation for the input features would
significantly improve BP estimation accuracy. Additionally,
to the best of our knowledge, the GRU model has never been
applied for BP prediction tasks in the literature.

This paper is organised as follows: section II presents a
general overview of the data source, data pre-processing and
feature extraction as well as introducing the models. Section
III presents the results and analysis and section IV concludes
the paper.

II. METHODOLOGY

A. Dataset description

The PPG and BP signals used in this study are derived
from the Multiparameter Intelligent Monitoring in Intensive
Care (MIMIC II) [16]. This database is open source and
widely used in research for BP estimation as it provides a
wide variety of all possible PPG signals and reference to
invasive BP signals from a diverse demographic. It contains
thousands of vital physiological signals such as ECG, PPG,
BP, and respiration etc. All signals are recorded simultane-
ously, and sampled at 125Hz. For this study, PPG and BP
signals were acquired from 500 record files, each record is
a collection of signals recorded from a patient.

B. Data pre-processing

Signal processing is crucial since accurate extraction of the
PPG features from the original signals is essential towards
building a reliable and well generalised model. A large
number of PPG and BP signals provided by the MIMIC II
database contain irregular and distorted segments. In order to

Fig. 1: Temporal PPG feature characteristics

effectively extract PPG features, the following pre-processing
steps were preformed:

• PPG signals were filtered and baseline wandering were
removed

• Irregular, and distorted signal segments were removed
• Segments with abnormal heart rate and BP values were

also removed
• PPG and BP signals were aligned
• PPG signals were normalised to a range of [0,1] using

the min-max normalisation method
Following these steps, all PPG and their corresponding BP

signals were segmented into 3 and 7 seconds frames which
amounted to over 21000 and 9000 segments, respectively.
The resulting datasets are later used as input for multiple
linear regression model and neural network models.

C. Feature extraction

Several PPG features were proposed in the literature as
possible effective indicators for BP estimation. Both time
domain based features [11], [12], [14], [15], as well as
frequency domain based features [13] have been tested.
Time domain based features are the most commonly used
in research. These features are mainly derived from the
PPG and its first two derivatives. The main challenge that
may arise in this procedure is that PPG waveform varies
between individuals and can be affected by drugs, diseases,
age, etc [3]. Consequently, some characteristic points that
are essential for extracting a number of features may not be
visible in all signals, such as dicrotic notch. For this study,
the 21 PPG features presented in Kurylyak et al [12], in
addition to pulse area under the PPG curve, were originally
selected as possible feature pool for BP estimation. These
features or a combination of them, are widely used in the
literature and yield acceptable results. In an effort to further
enhance the model estimation precision whilst at the same
time reducing reducing its input vector dimension, only the
most effective features have been selected. Several machine



learning tools have been employed to investigate the impact
of each feature on the output target:

• Pearson’s Correlation: measures the linearity between
the features and reference BP

• Random forest feature importance: selects features with
the highest influence on the estimation target using a
fitted random forest regression model

• Recursive feature elimination: fits a regression model
and tries to eliminate collinearity, by recursively remov-
ing a small number of features with the weakest impact
on the estimation, until it reaches the specified number
of features

• Sequential forward selection: starts with no features and
sequentially adds only features that effectively improve
the model performance till the addition of new features
do not enhance the model accuracy.

The above mentioned techniques have been applied sepa-
rately on the 22 feature vector. The results were analysed and
only 7 features were selected. These features were common
output of the feature selection methods corresponding to
features with the highest impact on the BP estimation. The
features used in this study are presented in Fig. 1, namely,
CP, DT, DW10/SW10, DW25, SW33+DW33, DW75 and
SW75+DW75. All extracted features were then normalised
together using the min-max normalisation method to scale
down all feature values to a range of [0,1] to suppress the
effect of outliers that may exist in the dataset. The SBP
and DBP values were extracted from the BP signals and
correspond to the peak and far right end-diastole value,
respectively. Two datasets were created afterwards, one con-
taining 3 seconds segments which will constitute the input
vector for the multi-linear regression model, and the other
contains 7 seconds segments which are used as an input
vector to the neural network models.

D. Machine learning models

As mentioned previously, the PPG signals differ between
individuals due to varies factors such as age, gender, medica-
tions, diseases and other influences. Fortunately, the MIMIC
database contains wide range of samples collected from a
diverse population. Therefore, it provides an opportunity
to evaluate the relationship between the PPG features and
BP with linear and non-linear models, as well as study
the effectiveness of modelling the temporal variation in the
extracted PPG features on BP estimation. For validating the
performance of these models, the dataset was partitioned into
60% train, 20% validation and 20% test sets. The evaluation
metrics adopted for this study are the mean absolute error
(MAE) and the standard deviation (STD) of the estimated
error.

The main goal of this paper is to overcome the shortcom-
ings of the traditional ML methods that are not best suited
for time series tasks. Therefore, to take into consideration
the complexity of the problem and the unclear relationship
between the PPG features and BP, this paper proposes two
non-linear recurrent neural network models, namely, LSTM
and GRU. Both models provide competitive performance,

(a) LSTM

(b) GRU

Fig. 2: Histogram of error difference between the reference
and estimated values for (a) LSTM and (b) GRU

and have been proven to be very effective and efficient in
processing time series data. Moreover, in order to allow
comparison to be made between traditional models and the
proposed ones, multi-linear regression (MLR) and multilayer
feedforward neural network were also evaluated on the 7
selected PPG features. The following describes the three
neural network architectures:

• Feedforward neural network (NN): this model is a
simple network with a feedforward (non-recurrent) con-
nections, that is capable of approximating virtually any
non-linear function with a finite number of neurons
using a single layer. A grid search was performed
with varying number of neurons, hidden layers and
learning rate. The final optimised network consists 3
hidden hidden layers; 70, 100 and 150 neuron in each
consecutive layer, respectively.

• Long Short Term Memory (LSTM): is the state of
the art network for processing sequential time domain
data. It was established specifically to overcome the
vanishing gradient problem associated with long term
predictions. The optimised LSTM model consists of two
hidden layers, 64 and 512, in the first and second layer,
respectively.

• Gated Recurrent Units (GRU): is a variation of the
LSTM with competitive performance. This network
is somewhat less computationally expensive then the
LSTM. The best model after a grid search consists of
three hidden layer, 128, 256 and 512 neurons in each
consecutive layer respectively.

The learning algorithm used for training the above men-



tioned neural network models is Adam optimiser with back-
propagation. The objective/cost function to minimise is the
mean squared error. The estimation precision was assessed
by the test set accuracy using MAE and STD.

III. RESULTS

Experimental results for the models discussed in the
previous section are presented in Table I. The evaluation
metric follows the standard requirement set by the American
National Standards of the Association for the Advancement
of Medical Instrumentation (AAMI). According to AAMI
the MAE and STD of non-invasive BP estimation should
not exceed 5 ± 8 mmHg from a reference BP evaluated on
85 subjects [18].

TABLE I: Performance of varies BP estimation methods.
SBP DBP

Models MAE ± STD MAE ± STD
MLR 12.14 7.37 4.54 3.57
NN 4.23 4.78 2.37 2.26
LSTM 3.23 4.74 1.59 1.96
GRU 3.25 4.76 1.43 1.77

Table I shows that the multilinear regression model is inca-
pable of estimating SBP values and produced poor results for
DBP compared to all other non-linear models. Consequently,
it failed to capture the relationship between PPG features and
BP on this diverse dataset. On the other hand, the results for
all the neural network models were very promising and satis-
fied the AAMI standards. It is evident from the performance
results, that the LSTM and GRU outperformed both the linear
model and the non-recurrent feedforward neural network by
a good margin. In particular, Fig. 2 shows the histogram of
error for LSTM and GRU. The error estimation for both SBP
and DBP are normally distributed around the mean with a
relatively small standard deviation. Most of the error values
are below ±10mmHg for the SBP and ±5mmHg for the
DBP. This proves that modelling the time domain variation
in the extracted PPG features is important and can further
enhance the BP estimation accuracy. It also demonstrates
the capability of the proposed models in describing the non-
linear relationship between the extracted features and BP.

IV. CONCLUSION

This paper proposed continuous BP estimation models
based on the PPG approach without ECG signals. Signal
pre-processing steps were preformed followed by several
feature elimination techniques to reduce the collinearity and
improve the estimation accuracy. Seven PPG features were
selected as possible BP estimators. The LSTM and GRU
achieved a higher accuracy compared to traditional models,
while satisfying the AAMI requirement for non-invasive BP
estimation. The results can be further improved by increasing
the size of the dataset, and optimising the input feature set to
include information describing arterial stiffness, age, gender,
height and other influences that affect BP.
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