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Abstract— Lactate is an important biomarker with a significant 

diagnostic and prognostic ability in relation to life-threatening 

conditions and diseases such as sepsis, diabetes, cancer, 

pulmonary and kidney diseases, to name a few. The gold 

standard method for the measurement of lactate relies on blood 

sampling, which due to its invasive nature, limits the ability of 

clinicians in frequent monitoring of patients’ lactate levels. 

Evidence suggests that the optical measurement of lactate holds 

promise as an alternative to blood sampling. However, achieving 

this aim requires better understanding of the optical behavior of 

lactate. The present study investigates the potential deviations of 

absorbance from the Beer-Lambert law in high concentrations 

of lactate. To this end, a number of nonlinear models namely 

support vector machines with quadratic, cubic and quartic 

kernels and radial basis function kernel are compared with the 

linear principal component regression and linear support vector 

machine.  Interestingly, it is shown that even in extremely high 

concentrations of lactate (600 mmol/L) in a phosphate buffer 

solution, the linear models surpass the performance of the other 

models. 

I. INTRODUCTION

Lactate is an important fundamental biomarker. It plays an 
important role in the biochemical processes that lead to the 
extraction of Adenosine Triphosphate (ATP) from glycogen, 
namely cellular respiration. ATP is known as the universal 
energy currency of cells and is the primary energy carrier in all 
living organisms. Conditions that cause inefficient supply of 
oxygenated blood to the tissue are some of the common causes 
of imbalances in lactate levels. Moreover, diseases that affect 
lactate processing organs such as, the liver, lung and kidney 
can leave a mark on blood lactate levels. Therefore, not 
surprisingly abnormal lactate levels have been observed in 
patients suffering from ischemic stroke, cancer, cardiogenic, 
septic, obstructive and hypovolemic shock, kidney and lung 
diseases, to name a few [1, 2, 3, 4]. More broadly, lactate levels 
above 4 mmol/L are associated with increased likelihood of 
morbidity and mortality in critically ill patients [5]. Lactate is, 
therefore, an invaluable biomarker for diagnosis and prognosis 
of diseases.  

In spite of the importance of lactate, its accurate 
measurement requires blood sampling. The invasive and 
logistically costly nature of blood sampling, limits the 
clinicians’ ability to frequently monitor lactate levels 
particularly in intensive care units. The optical measurement 
of lactate would be a groundbreaking solution to this problem. 
Previous studies on the subject have shown promising results. 
In particular, it has been shown that lactate can be accurately 
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quantified in plasma and using the mid-IR region of the optical 
spectrum; achieving a coefficient of determination, 𝑅𝑣

2, of 0.94
for a validation set and a Root Mean Square Error of 
Validation (RMSEV) of 0.15 mmol/L [6]. It has also been 
shown that accurate measurement of lactate in mid-IR region 
is achievable with highly parsimonious models, i.e. models 
that that only utilize narrow regions of spectrum and/or small 
number of wavelengths with 𝑅𝐶𝑉

2 = 0.996 [7]. The use of the
mid-IR region although appropriate for in-vitro applications is 
of little use in in-vivo applications due to the superficial 
penetration of mid-IR light into the skin. On the contrary Near 
InfraRed (NIR) light can effectively reach the microvascular 
bed of tissue in dermis and hypodermis [8]. The measurement 
of lactate using NIR spectra has also been successfully 
reported in whole human blood, 𝑅𝑐𝑣

2 = 0.96 [9]. While these
results lay down a promising foundation for the development 
of an accurate, optical lactate sensor, and while a non-invasive, 
continuous lactate sensor would be nothing short of 
groundbreaking, such a sensor does not yet exist. A better 
understanding of the optical behavior of lactate, its 
nonlinearities, interactions and overlaps in optical absorbance 
of lactate with other molecules, and inter-subject baseline 
differences are some of the areas that need further 
investigation. The present study, investigates the significance 
of absorbance nonlinearity in optical measurement of lactate.   

The Beer-Lambert law describes a linear relationship 
between the absorbance of monochromatic light and the 
concentration of absorbing species. This is depicted in (1), 

log10 𝐼0/𝐼 = ϵ 𝑐𝑙. (1) 

where 𝐼𝑜 is the intensity of incident beam, 𝐼 is the intensity of
transmitted beam, 𝜖 is the molar decadic extinction coefficient, 
𝑐 is the concentration of absorbing species and 𝑙 is the path 
length of light.  

The linearity postulated by the Beer-Lambert law along 
with the high-dimensional and multicollinear nature of the 
optical spectra justifies the choice of the widely used Principal 
Component Regression (PCR) and Partial Least Squares (PLS) 
in optical spectroscopy. However, high concentrations of 
analytes, scattering matrices, and non-monochromatic light 
can lead to non-negligible nonlinearities [10]. 

The present study investigates the significance of these 
nonlinear effects in relation to the prediction of lactate 
concentrations from NIR spectra. For this purpose PCR and 
linear Support Vector Machine (SVM) regression are 
compared with four nonlinear models, namely SVM with 
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quadratic, cubic, quartic, and Radial Basis Function (RBF) 
kernels. 

II. MATERIALS AND METHODS

A. The dataset

A dataset consisting of 57 NIR spectra of different
concentrations of lactate in a Phosphate Buffer Solution (PBS) 
was produced. The dataset contains 31 samples with 
concentrations of lactate between 0-10 mmol/L (increments of 
0.25 mmol/L), 20 samples between 10.5-20 mmol/L 
(increments of 0.5 mmol/L) and finally, six samples with 
extremely high concentrations of 100-600 mmol/L 
(increments of 100 mmol/L). The procedure for the 
preparation of the solutions is described below. 

Analytical grade Sodium L-lactate (𝐶3𝐻5𝑁𝑎𝑂3 - 98 + %)
and isotonic PBS were acquired in dry form from Thermo 
Fisher Scientific (Massachussetts, USA). A stock solution of 
600 mmol/L was prepared by dissolving 67.236 g of Na-lactate 
powder in 1 L of deionized water (Deionised Water Company, 
UK). A liter of aqueous PBS (1X) was made by dissolving 9.89 
g of PBS 10x powder in a liter of deionized water. The lactate 
stock solution was then serially diluted with PBS to obtain the 
desired molar concentration of lactate. The concentrations 
were verified with three independent measurements using the 
LM5 lactate analyzer (Analox Instruments Limited, 
Stourbridge, UK). The temperature and the pH of the solutions 
were controlled for and maintained at 24 °𝐶 and 6.5 (± 0.2) 
respectively. The pH of the solutions were verified by Orion 
Star A211 Advanced pH Benchtop Meter (Thermo Fisher 
Scientific, Massachusetts, USA).  

The acquisition of the NIR spectra were carried out using 
the Lambda 1050 dual beam spectrophotometer 
(𝑝𝑒𝑟𝑘𝑖𝑛 𝐸𝑙𝑚𝑒𝑟 𝐶𝑜𝑟𝑝, 𝑀𝑎𝑠𝑠𝑢𝑐ℎ𝑢𝑠𝑒𝑡𝑡𝑠, 𝑈𝑆𝐴). The spectral 
resolution of 1 nm was chosen. The gain for the indium 
gallium arsenide (InGaAs) detector, active between 800-1800 
nm, was set to 5. For the lead sulfide detector, active between 
1800-2600 nm, the gain was 1. The response time of both 
detectors was set 0.2 seconds. The attenuation in the sample 
and reference beams were set to 100% and 1% respectively. 
Background noise baseline correction was performed at 100%  
transmission / 0% absorbance prior to the acquisition of the 
spectra.  

The solutions were randomly selected (to prevent temporal 
bias) and transferred into a macro quartz cuvette (𝜆 : 200 nm -
3500 nm) (Hellma GmbH & Co.KG, Jena, Germany) with a 
light path length of 1 mm and placed in the sample 
compartment of the spectrophotometer. An empty identical 
cuvette was placed in the reference compartment. Three 
spectra were obtained for each solution. These three spectra 
were then averaged to reduce the measurement noise. The 
samples were randomly chosen to prevent any temporal bias.  

Fig. 1. a) demonstrates the raw optical spectra. Fig. 1. b) 
shows the mean-centered spectra with distinguishable 
absorption peaks related to lactate. In particular, the peaks 
between 1660-1780 nm pertain to the first C-H stretching 
overtone and the peaks between 2230-2230 nm pertain to the 
combination of C-H stretch with C-H bend [11].  

Figure 1. The lactate and PBS dataset a) raw spectra b) the 
spectrum of PBS is subtracted from the spectra to emphasize 

variations from the baseline caused by the increasing 

concentration of lactate in solutions. The small boxes show 
these peaks for the six high concentrations of lactate between 

100-600 mmol/L. These six spectra are smoothed using a 

Savitzky–Golay filter for visualisation purposes.

B. Preprocessing of spectra

Two of the water absorption peaks, specifically
wavelengths between 1900-1967 nm and 2450-2600 nm are 
affected by the over saturation of the lead sulfide detector and 
are removed. Subsequently, the spectra were processed using 
Multiplicative Scattering Correction (MSC) and a Savitzky-
Golay filter with the window length of 135, second order 
polynomial and second order derivative.  

C. Dimensionality reduction

Typically, in optical spectroscopy the number of features
are significantly greater than the number of samples. This is 
known as the “large 𝑝,  small 𝑛 problem”. However many 
wavelengths are collinear and many are redundant. Principal 
Component Analysis (PCA) helps effectively deal with the 
former issue by projecting the p-dimensional data with 
correlated axes onto a new orthogonal, c-dimensional space. 
In NIR spectra due to the high degree of multicolinearity often 
𝑐 ≪ 𝑝.  

In the lactate dataset, using 13 Principal Components (PCs) 
99.99% of the variance in the preprocessed spectra can be 
explained. All subsequent operations and regressions are 
carried out on these 13 components.  Figs 2.a and 2.b show the 
spectra (after pre-processing) and the spectra reconstructed 
from the PCs, respectively. The residuals, the portion of the 
spectra that are not explained by the 13 PCs, are shown in Fig 
2.c).



D. Linear and nonlinear models

PLS and PCR are linear models that are commonly used in
optical spectroscopy. In PCR, first PCA is employed to find 
the axes of maximal variation in the input space. 
Subsequently, the application of the multiple linear regression 
on PCs as regressors yields the PCR model. In PLS, however, 
the axes of the new hyperspace are chosen to maximize the 
correlation between the regressors and the regressand. While 
some favor one model over the other for theoretical reasons, in 
practice both models perform very similarly. For instance, in 
the lactate dataset, a PLS model with six components obtains 
the same Root Mean Square Error Cross-Validation 
(RMSECV) as a PCR model with 13 PCs. In the present study, 
in order to achieve a better comparison between the models 
and to isolate the importance of nonlinearity, PCR is selected 
and the same 13 PCs are used in all linear and nonlinear 
models. 

Support vector machines are powerful and 
computationally efficient methods that are widely used in 
classification and regression tasks. The use of the “kernel 
trick” provides a simple, elegant, and computationally 
efficient way of incorporating nonlinearity in SVM models 
without the explicit definition of transfer functions or explicit 
transformation of the data to new hyperdimensional spaces 
which could be computationally intractable.  

With 𝑛 observations in the training set (𝑥𝑖,𝑦𝑖), 𝑖 ∈
{1,2, … , 𝑛}, in the linear case (2), 

𝑓(𝑥) = 𝑤. 𝑥 + 𝑏, (2) 

and with an 𝜖-insensitive loss function (3), 

𝐿𝜖(𝑦) = {
0  𝑖𝑓 |𝑦 − 𝑓(𝑥)| ≤ 𝜖

|𝑦 − 𝑓(𝑥)| − 𝜖  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
  , 

(3) 

the aim is to find the flattest line with minimal deviation 
outside the boundaries set by 𝜖. This is demonstrated by (4),   

min
𝑤

{ 
1

2
‖𝑤‖2 + 𝐶 ∑(𝜁𝑖

𝑛

𝑖=1

+ 𝜁𝑖
∗)}

s.t. {

𝑦𝑖 − 𝑤. 𝑥𝑖 − 𝑏 ≤ 𝜖 + 𝜁𝑖

𝑤. 𝑥𝑖 + 𝑏 − 𝑦𝑖 ≤ 𝜖 + 𝜁𝑖
∗

𝜁𝑖 , 𝜁𝑖
∗ ≥ 0

(4) 

where 𝑤 is the weight vector, ‖. ‖ is the Euclidean norm, 𝜁𝑖 , 𝜁𝑖
∗

are slack variables that take up the excess amount for 
observations that fall outside the 𝜖 boundaries; these slack 
variables are added to make the equation feasible. 𝐶 is the 
capacity control parameter and similar to a regularization 
parameter, helps determine the tradeoff between deviations 
larger than 𝜖 and flatness of 𝑓(𝑥). In the nonlinear case, the 
input data are mapped onto a new hyperdimensional space 
with a nonlinear transformation 𝜙(𝑥). Solving the 
optimization problem requires the calculation of the dot 
product in the feature space 𝜙(𝑥). 𝜙(𝑥′). However, this can be 
avoided by finding the equivalent kernel in the input space, 

𝐾(𝑥, 𝑥′)= 𝜙(𝑥). 𝜙(𝑥′) . (5) 

In the application of these models, the three main 
parameters that need to be selected are the kernel function, 
𝐾(𝑥, 𝑥′), the loss function 𝐿(𝑦), and the capacity control 
parameter, 𝐶 [12].  

In NIR spectroscopy applications, SVM has been shown to 
effectively model nonlinearities and outperform PLS. For 
instance, SVM regression has been shown to outperform PLS 
in quantification of caffeine from spectra of tea [13]. It is also 
shown to outperform PLS in quantification of brix and pol 
from sugarcane spectra [14]. A similar comparison between 
PLS, SVM, and ANN on 14 datasets and a variety of 
regressands concluded that SVM and Artificial Neural 
Network (ANN) outperform PLS [15].  

In the present study, different kernel functions are 
examined, namely linear, quadratic, cubic, quartic and radial 
basis function. Finally, linear 𝜖-insensitive loss function is 
used. The values of 𝜖, the capacity control parameter, C, and 
the kernel scale are optimized using 5-fold cross-validation. 
This 5-fold cross validation is performed internally within 
each iteration of the leave-one-out cross-validation to avoid 
data leakage.  

III. RESULTS

In order to assess the impact of increasing nonlinearity in 
the absorbance behavior of lactate, the performance of the 
models are separately evaluated in three sets, (a). The set 
containing concentrations of lactate between 0-10 mmol/L (31 
spectra), (b). a set containing the concentrations between 0-20 
mmol/L, (51 spectra), and finally (c). a set containing all 
spectra with concentrations of lactate ranging between 0-600 
mmol/L (57) spectra. The hypothesis is that if nonlinearities 
become significant in high concentrations of lactate, nonlinear 
models are expected to produce better fits in the training stage 
and as a result deliver better prediction results. 

Figure2. a) The NIR spectra pertaining to the 57 lactate and PBS 

solutions. The water absorption peaks have been removed, and the 

spectra are processed with a savitzky-golay second derivative filter 
with polynomial order of two, and window length of 135. b) The 

spectra reconstructed from the first 13 principal components. These 

principal components explain 99.99% of the variance of the input data. 
c) The portions of the spectra that are not explained by the first 13

principal components.



Table I, summarizes the results of leave-one-sample-out cross-
validation. For SVM models the hyperparameters, namely the 
loss-insensitive margin, 𝜖, the capacity control parameter, 𝐶, 
and the kernel scale, have been optimized within each fold and 
based on the RMSECV obtained from 5-fold cross-validation 
routine.  

TABLE I. COMPARISON OF PCR AND SVM REGRESSION WITH 

DIFFERENT KERNEL FUNCTIONS 

Model 
RMSECV [mmol/L] 

0-10 mmol/L 0-20 mmol/L 0-600 mmol/L 

PCR 1.19 1.02 1.64 

SVM-linear 1.52 1.42 1.86 

SVM-quadratic 1.83 3.42 15.12 

SVM-cubic 1.68 3.65 19.02 

SVM-quartic 1.93 3.28 22.96 

SVM-RBF 1.35 3.93 114.18 

IV. DISCUSSION AND CONCLUSION

Table I shows that PCR consistently outperforms all 
models. Interestingly the performance of the nonlinear models 
noticeably deteriorates in the set that includes very high 
concentrations of lactate. Clearly, the investigated nonlinear 
models fail to generalize well. Although high concentrations 
of lactate are present in one of the datasets, the results suggest 
that the nonlinear effects have remained marginal in PBS. In 
other words, given the limited number of samples used in the 
study, the flexibility of the nonlinear models is outweighed by 
their increasing susceptibility to overfitting.  

In the introduction section, it was mentioned that another 
contributory factor to the nonlinearity of absorbance lies in the 
scattering properties of solutions. The use of PBS in this study, 
which is a low scattering solution, minimizes this factor. This 
question will be examined further in our future work by using 
high scattering solutions and mediums, namely serum, whole 
blood and in transcutaneous measurements. 

In conclusion, while the results do not reject the 
significance of nonlinearity, they emphasize the importance of 
choosing the simplest possible model. The successful 
application of nonlinear machine learning models that require 
fine-tuning of tens and hundreds of parameters, such as bagged 
and boosted trees models or artificial neural networks, may 
entice their application in areas such as optical spectroscopy. 
However, the large number of variables (wavelengths) in these 
application, in combination with the logistical difficulty of 
sample preparation and the acquisition of spectra, means 
simple, linear models, namely PLS and PCR remain viable 
choices. 
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