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A very popular forecasting tool in the actuarial sciences is the so-called chain

ladder. Mammen et al. (2015) recently introduced in-sample forecasting -

generalizing continuous chain ladder of Mart́ınez-Miranda et al. (2013) - as a

general forecasting technique applicable in many fields. The main aim of this

paper is to develop an extended version of the continuous chain ladder which is

of interest not only for actuaries but which has many potential applications in

economics and other fields. The statistical problem underlying the extended

continuous chain ladder is to estimate and forecast a structured nonparamet-

ric density. In the theoretical part of the paper, we develop methodology

to approach this problem. The usefulness of the methods is illustrated by

empirical examples from economics and the actuarial sciences.

Keywords: nonparametric density estimation, kernel smoothing, backfitting.

JEL classifications: C14, C53.

1 Introduction

One of the main forecasting tools in the actuarial sciences is the so-called chain ladder

methodology. Recently, Mart́ınez-Miranda et al. (2013) and Mammen et al. (2015)

introduced and generalized the continuous chain ladder approach to improve on the

classic technique. In this paper, we develop an extension of the continuous chain

ladder which is not only useful for forecasting problems in the actuarial sciences but

which is of much broader interest with many potential applications in economics.
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The forecasting problem underlying the continuous chain ladder is as follows:

Suppose we observe a data sample {(Xi, Yi) : i = 1, . . . , n}, where (Xi, Yi) are i.i.d.

copies of a two-dimensional random variable (X, Y ). Moreover, assume that (X, Y )

has a multiplicative density of the form f(x, y) = f1(x)f2(y) which is supported

on a proper subset I of the unit square [0, 1]2. To fix ideas, let I be the triangle

I = {(x, y) ∈ [0, 1]2 : x + y ≤ 1}. The aim is to estimate the multiplicative

components f1 and f2 and to forecast the density f to the region Ic := [0, 1]2 \ I
with the help of the produced estimates. As shown in Mammen et al. (2015) and Lee

et al. (2015), the density components fj : [0, 1]→ R can be estimated by an iterative

backfitting algorithm which yields estimates f̂j : [0, 1]→ R for j = 1, 2. This allows

to define an estimator f̂(x, y) = f̂1(x)f̂2(y) of the density f(x, y) for all points

(x, y) ∈ [0, 1]2. Hence, it is possible to estimate the density f(x, y) not only on the

support I but on the whole unit square [0, 1]2. In particular, it is possible to predict

the density f(x, y) at points (x, y) ∈ Ic without any extrapolation. Mart́ınez-

Miranda et al. (2013) introduced the term in-sample forecasting to describe this

phenomenon.

On first sight, the forecasting problem underlying the continuous chain ladder

appears to be rather specific. However, it turns out to be a suitable framework for

a wide range of applications. We give some examples to illustrate this.

Example 1. We first revisit the original application of the chain ladder metho-

dology: claims reserving of outstanding liabilities in non-life insurance. Suppose

we have data on n different insurance claims i = 1, . . . , n. For each claim i, we

observe (Xi, Yi), where Xi is the time point when claim i incurred and Yi is the

time delay with which the claim was reported to the insurance. The value Xi + Yi

specifies the actual time point when claim i was reported and is usually called

calendar time in the literature. For simplicity of exposition, we normalize Xi and

Yi to take values in the unit interval [0, 1], implying that the data points (Xi, Yi)

are supported on the triangle I = {(x, y) ∈ [0, 1]2 : x + y ≤ 1}. The diagonals of

the triangle I correspond to calendar time. In particular, for each t ∈ [0, 1], the

diagonal D(t) = {(x, y) ∈ I : x+y = t} specifies the points (x, y) with calendar time

x+y = t. One of the most important problems in non-life insurance is to forecast the

density f of the observations (Xi, Yi) to the upper triangle Ic := [0, 1]2 \ I. More

precisely speaking, actuaries are mainly interested in approximating the quantity

L =
∫
(x,y)∈Ic f(x, y)dxdy, which gives the outstanding number of insurance claims

and thus represents the future liabilities for the insurance company. We come back

to this example in Section 6.1.

Example 2. The next example is concerned with the analysis of fertility, which is

an important subject in economics; cp. Aaronson et al. (2014), Baudin et al. (2015),
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Momota (2016), Cooley and Henriksen (2018) and Cooley et al. (2019) among many

others for economic studies of fertility. Fertility trends have profound societal and

economic implications. In many developed countries, fertility rates have dropped

dramatically over the last few decades, which has strong impacts on key economic

variables such as growth, tax returns and social security contributions. Paired with

longer life expectancy, the sharp decrease in fertility poses serious problems to social

welfare and health care systems. A better understanding of the dynamics of fertility

and reliable projections into the future are of vital importance to deal with these

problems.

Consider the following forecasting problem: Suppose we observe data (Xi, Yi) on

a large number of births i = 1, . . . , n, where Xi is the birth cohort of the mother (i.e.

her birth date) and Yi is the age of the mother at the time of birth i. For simplicity

of exposition, we normalize Xi and Yi to take values in the unit interval [0, 1]. The

data points (Xi, Yi) are thus supported on the trapezium I = {(x, y) ∈ [0, 1]2 : c ≤
x+ y ≤ 1} for some c > 0, where [c, 1] is the interval of calendar times for which we

have observations. Our aim is to model and forecast the fertility density f of the

observations (Xi, Yi). A simple model is f(x, y) = f1(x)f2(y), where f1 represents

the child-birth density w.r.t. cohort of the mother and f2 the child-birth density

w.r.t. age of the mother. This simple model decomposes the fertility density f into

a cohort effect f1 and an age effect f2. With the help of the continuous chain ladder

approach, we can estimate the density components f1 and f2 and forecast the fertility

density f into the future, i.e., to the upper triangle {(x, y) ∈ [0, 1]2 : x+ y > 1}. In

Section 6.2, we analyze this application example in detail.

Example 3. A further example comes from labour economics and is concerned

with unemployment forecasts. Suppose we observe data (Xi, Yi) for a large number

of unemployment benefit receivers i = 1, . . . , n, where Xi is the time point where

individual i started to receive benefits and Yi is the benefit duration. As in the

previous examples, we normalize Xi and Yi to take values in the unit interval [0, 1],

implying that the data points (Xi, Yi) are supported on the triangle I = {(x, y) ∈
[0, 1]2 : x+y ≤ 1}. Our goal is to model and forecast the density f of the observations

(Xi, Yi). Imposing the simple model f(x, y) = f1(x)f2(y), the density f can be

projected into the future by in-sample forecasting and the resulting density forecast

can be used to make unemployment predictions. For instance, we can compute

forecasts of the quantity L(t) =
∫
(x,y)∈D(t)

f(x, y)dxdy for t > 1 withD(t) = {(x, y) ∈
[0, 1]2 : x+ y = t}, which (roughly speaking) specifies the number of benefit leavers

at the future time point t > 1. This application example has been studied in detail

in Wilke (2018), where the classic chain ladder methodology was compared with

several other forecasting methods.
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The list of application examples could be easily continued. A further interesting

field of application are mortality studies; see e.g. Mammen et al. (2015), Mart́ınez-

Miranda et al. (2015) and Mart́ınez-Miranda et al. (2016) for an application to

asbestos mortality. Even though mortality studies are mainly conducted in epidemi-

ology and public health, they are also relevant for questions in health economics.

We finally mention that the continuous chain ladder methodology can also be used

to analyze obesity rates. Recently, the issue of obesity and its economic implications

have received growing attention in the economics literature; see e.g. the studies in

Baum and Ruhm (2009), An and Xiang (2016) and Fannon et al. (2018).

Even though the density model f(x, y) = f1(x)f2(y) is a good baseline to ap-

proach a number of forecasting problems such as those in Examples 1–3, one may

argue that it is too simplistic. In many applications including those of Examples

1–3, one can expect the density f(x, y) not to be a simple product of two compo-

nents f1(x) and f2(y). The fertility density f(x, y) in Example 2, for instance, is

presumably not only influenced by a cohort-of-mother effect f1(x) and an age-of-

mother effect f2(y). Quite arguably, it is also strongly affected by the societal and

economic conditions of the time, that is, an additional calendar time effect is likely

to be present. A more plausible model for the fertility density f thus has the form

f(x, y) = f1(x)f2(y)f3(x+ y), (1.1)

where f3(x+ y) is an additional density component that depends on calendar time

x+ y. In the sequel, we call (1.1) the extended continuous chain ladder model and

f3 the calendar effect of the model. Similarly, a calendar effect can be expected

to be present in Example 3 since the unemployment density f(x, y) is very likely

to be influenced by the macroeconomic conditions at calendar time x + y, or put

differently, by business cycle fluctuations.

The extended continuous chain ladder model (1.1) is much more difficult to

handle than the simple version f(x, y) = f1(x)f2(y) without a calendar effect. First

of all, the estimation theory for the simple model developed in Mammen et al. (2015)

and Lee et al. (2015) does not carry over to the extended model in a straightforward

way. Moreover, in the extended model, in-sample forecasting is not possible any

more. The problem is that the calendar effect f3(x + y) can only be estimated at

time points x+ y ≤ 1 (given that I is the triangle or trapezium support). Hence, to

predict the density f(x, y) at future time points x+ y > 1, the function f3 needs to

be extrapolated. The main contribution of our paper is twofold: (i) We provide new

methodology and theory for estimating the density components f1, f2 and f3 in the

extended continuous chain ladder model (1.1). (ii) We develop a novel forecasting

strategy to forecast the density f to the region Ic = [0, 1] \ I. Our estimation and
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forecasting methodology is developed in Sections 2–5. The practical relevance of our

methods is demonstrated by an actuarial application (Example 1) and an economic

application (Example 2) in Section 6. Moreover, we investigate the finite sample

performance of our methods by a simulation study in Section 7.

The extended continuous chain ladder model (1.1) is closely related to age-period-

cohort models which have a long tradition in econometrics, biostatistics, actuarial

science and other fields; see e.g. Heckman and Robb (1985), Carstensen (2007) and

Kuang et al. (2011). Specifically, model (1.1) can be regarded as a continuous ver-

sion of the discrete age-period-cohort framework of Kuang et al. (2011). Despite

this close connection, our estimation and forecasting methods are very different

from those used in the context of age-period-cohort models. In particular, our fore-

casting strategy differs strongly from the forecasting methods developed in Kuang

et al. (2011). In Section 4, we discuss these differences in detail. Moreover, in the

supplementary material, we give a new interpretation of the forecasts constructed

in Kuang et al. (2011) in the light of our forecasting strategy. We believe that the

forecasting approach of Kuang et al. (2008a,b, 2011) and its further developments

in Nielsen and Nielsen (2014), Nielsen (2015, 2018), Harnau (2018a,b), Fannon et

al. (2018) and Harnau and Nielsen (2018) could benefit from the new insight of this

paper and the provided supplementary material.

We finally note that while in-sample forecasting originally grew out of actuarial

reserving techniques, only recently, see Bischofberger et al. (2019a), it has been

proved that the methodology generalizes to the case where each future event has a

marker tight to it (the size of a claim in reserving). The only requirement is that

this marker also obeys some structure, which is multiplicativity in the continuous

chain ladder case.

2 The extended continuous chain ladder model

In this section, we describe the extended continuous chain ladder model in detail

which underlies our analysis. Let {(Xi, Yi) : i = 1, . . . , n} be a sample of data, where

(Xi, Yi) are i.i.d. copies of a two-dimensional random variable (X, Y ). The variable

(X, Y ) is assumed to have a multiplicative density of the form

f(x, y) = f1(x)f2(y)f3(x+ y) (2.1)

which is supported on a proper subset I of the unit square [0, 1]2, that is, P ((X, Y ) ∈
I) = 1. In most applications, including those discussed in the examples of the

introduction, I is either a triangle of the form I = {(x, y) ∈ [0, 1]2 : x+ y ≤ 1} or a

trapezium of the form I = {(x, y) ∈ [0, 1]2 : c ≤ x + y ≤ 1} for some 0 < c < 1. In
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what follows, we thus restrict attention to the triangle and the trapezium support.

It is however not difficult to extend our methods and theory to other types of

support I. Note that Lee et al. (2015) also include a calendar component f3 in their

version of the continuous chain ladder model. However, they impose very severe

structural constraints on this component. In particular, they assume that f3 is a

periodic function, which strongly restricts its usefulness in applications. Our model,

in contrast, allows for a general component function f3 which is flexible enough to

capture calendar effects present in the data. The precise conditions on the density

components f1, f2 and f3 in model (2.1) are laid out below. Our aim is to estimate

the density components f1, f2 and f3 from the data sample {(Xi, Yi) : i = 1, . . . , n}
and to forecast the density f to the region Ic := [0, 1]2 \ I with the help of the

estimated components.

Importantly, the model formulated in equation (2.1) is not identified, that is,

the density components f1, f2 and f3 are not uniquely determined. Specifically,

f(x, y) = f1(x)f2(y)f3(x + y) can be rewritten as f(x, y) = g1(x)g2(y)g3(x + y),

where

g1(x) = e−a1e−bxf1(x) (2.2)

g2(y) = e−a2e−byf2(y) (2.3)

g3(x+ y) = ea1+a2eb(x+y)f3(x+ y) (2.4)

with arbitrary real-valued constants a1, a2 and b. For identification, we impose the

following conditions: First of all, we normalize the component functions f1 and f2

to integrate to 1, that is, ∫ 1

0

f1(x)dx = 1 (IC1)∫ 1

0

f2(y)dy = 1. (IC2)

Conditions (IC1) and (IC2) make sure that f1 and f2 can be interpreted as proper

densities. In addition, we assume the following: there exists a constant κ∗ > 0 such

that f3 is a constant function on the interval [1−κ∗, 1]. More formally speaking, we

suppose that

f3(z) = const. for all z ∈ [1− κ∗, 1], (IC3)

where κ∗ > 0 is the largest real number such that (IC3) is satisfied.

The heuristic idea behind the restriction (IC3) is as follows: On a logarithmic

scale, the multiplicative density f(x, y) = f1(x)f2(y)f3(x+ y) becomes log f(x, y) =

log f1(x) + log f2(y) + log f3(x + y). Suppose that the logarithmic calendar effect

log f3 is differentiable. By definition of differentiability, this means that it can locally
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be well approximated by a linear function. Hence, we may in particular assume that

log f3 is approximately linear locally around the present time point z = 1, that is,

log f3(z) = a+ bz + ψ(z) for all z ∈ [1− κ∗, 1], (2.5)

where κ∗ is a small positive constant and the function ψ is approximately equal to

zero. In terms of the multiplicative model (2.1), this means that

f3(z) = ea+bzeψ(z) for all z ∈ [1− κ∗, 1].

As indicated by (2.2)–(2.4), we can renormalize the density components f1, f2 and

f3 such that the exponential ea+bz is eliminated from f3 and shifted to the other

two components f1 and f2. On a logarithmic scale, this means that the linear part

a+ bz is subtracted from f3 and added to the other two component functions. After

renormalization, we obtain that f3(z) = eψ(z), or equivalently, log f3(z) = ψ(z) for

all z ∈ [1 − κ∗, 1]. Assuming that log f3(z) is not only approximately but exactly

linear on [1 − κ∗, 1], i.e., assuming that ψ ≡ 0, we in particular get that log f3(z)

and thus the calendar effect f3(z) itself is constant for z ∈ [1 − κ∗, 1]. This is

exactly the restriction imposed by (IC3). To sum up, our heuristic discussion has

shown the following: (IC3) is heuristically motivated by smoothness considerations.

In particular, it is approximately fulfilled by any smooth calendar effect f3 and

κ∗ sufficiently small. However, it is not satisfied exactly in general. By assuming

it, we impose some shape constraint on the calendar effect f3. From a practical

perspective, however, such a constraint is very natural (provided that f3 is smooth).

As we will see in Section 4, a model with the restriction (IC3) on the calendar effect

is particularly suited to forecasting purposes.

Under (IC1)–(IC3) together with some smoothness and boundedness conditions,

the component functions f1, f2 and f3 are identified in model (2.1). More specifically,

we have the following result:

Proposition 1. Let (IC1)–(IC3) be satisfied and assume the following:

(i) f1, f2 and f3 are bounded away from zero and infinity on their supports I1 =

[0, 1], I2 = [0, 1] and I3 = {z ∈ [0, 1] : z = x + y for some (x, y) ∈ I},
respectively.

(ii) f1 and f2 are differentiable on I1 = I2 = [0, 1].

Then f1, f2 and f3 are identified. More precisely, let g1, g2 and g3 be functions such

that f(x, y) = g1(x)g2(y)g3(x+y) for any (x, y) ∈ I and let them satisfy (IC1)–(IC3)

along with (i) and (ii). Then gj(w) = fj(w) for all w ∈ Ij and j = 1, 2, 3.
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Proof . Consider the region Iκ∗ = {(x, y) ∈ I : 1− κ∗ ≤ x+ y ≤ 1}. In this region,

it holds that f(x, y) = c3f1(x)f2(y) with f3(x + y) = c3 and some constant c3 ∈ R.

Applying Theorem 1 from Lee et al. (2015) to the model f(x, y) = c3f1(x)f2(y) on

the region Iκ∗ , we obtain that the functions f1 and f2 are identified on their support

I1 = I2 = [0, 1]. From this, it trivially follows that f3 is identified on I3 as well.

3 Estimation method

Lee et al. (2015) studied the problem of estimating the density in model (2.1) when

the function f3 is constant (or more generally, when f3 is periodic). They proposed

a backfitting algorithm to estimate the two density components f1 and f2. Among

a number of in-sample forecasting techniques Bischofberger et al. (2019b) found

that projecting the data down on the multiplicative space of interest (equivalent

to the backfitting approach) seems to be the best thing to do in practice. Even

better than the dimensional-reducing time reversion trick exploited by Hiabu et

al. (2016) and Bischofberger (2020). Backfitting methods are not only used for

density estimation. They are also very popular for estimating generalized additive

regression models, see Opsomer and Ruppert (1997), Mammen et al. (1999), Yu et al.

(2008), Mammen et al. (2009), Fengler et al. (2015) among many others. Estimation

procedures closely related to backfitting were for example proposed in Linton et al.

(2001), Linton and Mammen (2008) and Connor et al. (2012). In what follows, we

generalize the backfitting approach of Lee et al. (2015) to the extended model (2.1)

with a general calendar effect f3 that satisfies (IC3). To keep the exposition simple,

we assume throughout the section that the constant κ∗ in (IC3) is known. In Section

4, we discuss a cross-validation approach to choose κ∗.

We estimate the density f(x, y) = f1(x)f2(y)f3(x + y) in a region S ⊆ I where

we have sufficiently many data points. When I is the triangle support I = {(x, y) ∈
[0, 1]2 : x+y ≤ 1} or the trapezium support I = {(x, y) ∈ [0, 1]2 : c ≤ x+y ≤ 1}, the

data tend to be sparse around the two corner points (1, 0) and (0, 1). For this reason,

we exclude small neighbourhoods around these two points from the estimation. More

formally, we estimate f on the subset

S =
{

(x, y) ∈ I : x ≤ 1− δ and y ≤ 1− δ
}

for some small δ > 0.1 For convenience, we impose slightly different identification

1The parameter δ is mainly of theoretical importance. In practice, we may set δ to any small

positive number. As the precise choice of δ has little effect on the estimation procedure in practice,

we suggest to simply set δ equal to 0 when implementing our approach (even though this is not

fully correct in terms of the theory).
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conditions on f1 and f2. In particular, we replace (IC1) and (IC2) by the constraints∫
S1
f1(x)dx = 1 and

∫
S2
f2(y)dy = 1, (3.1)

where

S1 =
{
x ∈ [0, 1] : (x, y) ∈ S for some y ∈ [0, 1]

}
S2 =

{
y ∈ [0, 1] : (x, y) ∈ S for some x ∈ [0, 1]

}
.

Note that S1 = S2 = [0, 1 − δ] both in the triangle and the trapezium sup-

port case. For later reference, we additionally define S3 = {z ∈ [0, 1] : z =

x + y for some (x, y) ∈ S}. Throughout the section, we assume that the functions

f1, f2 and f3 are normalized to satisfy (3.1) and (IC3).

The density components f1, f2 and f3 fulfill the integral equations

f1(x) =
fw,1(x)∫

J2(x) f2(y)f3(x+ y)dy
(3.2)

f2(y) =
fw,2(y)∫

J1(y) f1(x)f3(x+ y)dx
(3.3)

f3(z) =
1[0,1−κ∗)(z)fw,3(z)∫
J3(z) f1(x)f2(z − x)dx

+
1[1−κ∗,1](z)

∫ 1

1−κ∗ fw,3(v)dv∫ 1

1−κ∗
∫
J3(v) f1(x)f2(v − x)dxdv

, (3.4)

where 1A(x) is the indicator function defined by 1A(x) = 1 if x ∈ A and 1A(x) = 0

otherwise and we use the notation

fw,1(x) =

∫
J2(x)

f(x, y)dy

fw,2(y) =

∫
J1(y)

f(x, y)dx

fw,3(z) =

∫
J3(z)

f(x, z − x)dx

together with

J2(x) = {y ∈ [0, 1] : (x, y) ∈ S}
J1(y) = {x ∈ [0, 1] : (x, y) ∈ S}
J3(z) = {x ∈ [0, 1] : (x, z − x) ∈ S}.

To estimate the density components f1, f2 and f3, we construct empirical versions

of the integral equations (3.2)–(3.4). Our estimators of f1, f2 and f3 are defined as

the solution to these empirical integral equations.
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To define empirical versions of (3.2)–(3.4), we let f̂ be a two-dimensional estima-

tor of f (e.g. the local linear estimator of Nielsen (1999) which is introduced below)

and let

f̂w,1(x) =

∫
J2(x)

f̂(x, y)dy

f̂w,2(y) =

∫
J1(y)

f̂(x, y)dx

f̂w,3(z) =

∫
J3(z)

f̂(x, z − x)dx

be estimators of fw,1, fw,2 and fw,3, respectively. With this notation at hand, we

define estimators f̂1, f̂2, f̂3 of the functions f1, f2, f3 as the solutions to the empirical

integral equations

f̂1(x) = φ̂1
f̂w,1(x)∫

J2(x) f̂2(y)f̂3(x+ y) dy
(3.5)

f̂2(y) = φ̂2
f̂w,2(y)∫

J1(y) f̂1(x)f̂3(x+ y) dx
(3.6)

f̂3(z) = φ̂3

1[0,1−κ∗)(z)f̂w,3(z)∫
J3(z) f̂1(x)f̂2(z − x)dx

+ φ̂3

1[1−κ∗,1](z)
∫ 1

1−κ∗ f̂w,3(v)dv∫ 1

1−κ∗
∫
J3(v) f̂1(x)f̂2(v − x)dxdv

(3.7)

under the constraints∫
S
f̂1(x)dx = 1,

∫
S
f̂2(y)dy = 1 and

∫
S
f̂1(x)f̂2(y)f̂3(x+ y)dxdy = ϑ̂, (3.8)

where ϑ̂ = n−1
∑n

i=1 1((Xi, Yi) ∈ S) is an estimator of ϑ =
∫
S f(x, y)dxdy. The

coefficients φ̂j (j = 1, 2, 3) in (3.5)–(3.7) are chosen such that the constraints in

(3.8) are satisfied.

The solutions f̂1, f̂2 and f̂3 to the integral equations (3.5)–(3.7) cannot be com-

puted explicitly in general. They can however be approximated by the following

backfitting algorithm:

Step 0. Let f̂
[0]
1 , f̂

[0]
2 be starting values for estimating f1, f2 which satisfy the first

two constraints in (3.8). Calculate

f̃
[0]
3 (z) =



f̂w,3(z)∫
J3(z) f̂

[0]
1 (x)f̂

[0]
2 (z − x)dx

for z ∈ [0, 1− κ∗)

∫ 1

1−κ∗ f̂w,3(v)dv∫ 1

1−κ∗
∫
J3(v) f̂

[0]
1 (x)f̂

[0]
2 (v − x)dxdv

for z ∈ [1− κ∗, 1]

and set f̂
[0]
3 (z) = φ̂

[0]
3 f̃

[0]
3 (z), where φ̂

[0]
3 is chosen such that the third con-

straint in (3.8) is satisfied.
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Step r. Let f̂
[r−1]
1 , f̂

[r−1]
2 and f̂

[r−1]
3 be the backfitting estimates from the previous

iteration step. Compute updates as follows:

(a) Calculate

f̃
[r]
1 (x) =

f̂w,1(x)∫
J2(x) f̂

[r−1]
2 (y)f̂

[r−1]
3 (x+ y)dy

and set f̂
[r]
1 (x) = φ̂

[r]
1 f̃

[r]
1 (x), where φ̂

[r]
1 is chosen such that the first

constraint of (3.8) is fulfilled.

(b) Calculate

f̃
[r]
2 (y) =

f̂w,2(y)∫
J1(y) f̂

[r]
1 (x)f̂

[r−1]
3 (x+ y)dx

and set f̂
[r]
2 (y) = φ̂

[r]
2 f̃

[r]
2 (y), where φ̂

[r]
2 is chosen such that the second

constraint of (3.8) is satisfied.

(c) Compute f̂
[r]
3 analogous to f̂

[0]
3 in Step 0.

Iterate this procedure until some convergence criterion is satisfied.

To run the backfitting algorithm described above, we require an estimator f̂ of

the two-dimensional density f . Since the standard two-dimensional kernel density

estimator is in general not consistent at the boundary of the support S, we work

with a local linear estimator which does not suffer from boundary problems. In

particular, we let f̂ be the local linear estimator of Nielsen (1999) which is defined

as follows: Let

f̃b1,b2(x, y) =
1

nb1b2

n∑
i=1

K
(Xi − x

b1

)
K
(Yi − y

b2

)
Wi

be a standard kernel density estimator of f , where Wi = 1((Xi, Yi) ∈ S), K is

a kernel function and (b1, b2) is the bandwidth vector. Throughout the paper, we

assume that the kernel K is a symmetric probability density which is Lipschitz

continuous and has bounded support. Moreover, let η̂ = (η̂0, η̂1, η̂2) be the solution

to the minimization problem

η̂(x, y) = arg minη=(η0,η1,η2) lim
b1,b2→0

∫
S

[
f̃b1,b2(v, w)− a(v, w;x, y)>η(x, y)

]2
×K

(v − x
h1

)
K
(w − y

h2

)
dvdw, (3.9)

where a(v, w;x, y) = (1, (v − x)/h1, (w − y)/h2)
>. It can be shown that

η̂(x, y) = A(x, y)−1b(x, y), (3.10)

11



where

A(x, y) =

∫
S
a(v, w;x, y)a(v, w;x, y)>h−11 h−12 K

(v − x
h1

)
K
(w − y

h2

)
dvdw (3.11)

b(x, y) =
1

n

n∑
i=1

a(Xi, Yi;x, y)h−11 h−12 K
(Xi − x

h1

)
K
(Yi − y

h2

)
Wi. (3.12)

We provide some details on the derivation of formula (3.10) in the Appendix. The

local linear estimator f̂ is defined as the first component of the vector η̂ = (η̂0, η̂1, η̂2),

that is, f̂ = η̂0.

4 Forecasting

4.1 The forecasting method

The backfitting algorithm described in Section 3 yields an estimate of the calendar

effect f3(z) up to the present time point z = 1. To obtain an estimate of the two-

dimensional density f on the whole unit square [0, 1]2, we need to extrapolate the

estimate of f3(z) into the future, that is, to time points z ∈ (1, 2]. Our extrapolation

strategy is closely related to the identification constraints (IC1)–(IC3) imposed on

the functions f1, f2 and f3. These constraints normalize the calendar effect in such

a way that it makes sense to simply extrapolate it constantly into the (near) future.

The heuristic reason for this is as follows: As already discussed in Section 2, if the

calendar effect f3 is smooth, it is approximately linear around the present time point

z = 1 on a logarithmic scale, that is,

log f3(z) = a+ bz + ψ(z) for all z ∈ [1− κ∗, 1 + λ],

where κ∗ and λ are small positive constants and the function ψ is approximately

equal to zero. For our heuristic discussion, we neglect the function ψ and assume

that log f3(z) is linear for z ∈ [1− κ∗, 1 + λ], that is,

log f3(z) = a+ bz for all z ∈ [1− κ∗, 1 + λ].

Transforming back to the multiplicative model, this means that

f3(z) = ea+bz for all z ∈ [1− κ∗, 1 + λ]. (4.1)

As discussed in Section 2, our identification strategy normalizes the functions f1, f2

and f3 such that the exponential ea+bz is eliminated from f3 and shifted to the other

components. After this normalization, f3 is constant on the interval [1− κ∗, 1 + λ].

In particular, by imposing the constraints (IC1)–(IC3), we obtain that

f3(z) = c3 for all z ∈ [1− κ∗, 1 + λ]

12



and some constant c3 ∈ R. Under this normalization, it is most natural to extra-

polate the calendar effect constantly into the future, that is, we set f̂ fc(z) = ĉ3

for z ∈ (1, 1 + λ], where ĉ3 is an estimate of c3. More formally, our extrapolation

strategy is as follows:

Step 1. Estimate f1, f2, f3 by the backfitting algorithm from Section 3, where κ∗

is assumed to be known. We discuss a cross-validation procedure to choose

κ∗ below. Denote the resulting estimates by f̂1, f̂2 and f̂3.

Step 2. Extrapolate f̂3 constantly into the future, that is, set f̂ fc
3 (z) = f̂3(1) for

z > 1 and forecast f(x, y) at points x+ y > 1 by

f̂ fc(x, y) = f̂1(x)f̂2(y)f̂ fc
3 (x+ y).

The constant κ∗ in the constraint (IC3) is usually not known in practice. We

propose the following cross-validation procedure for the choice of κ∗: Pick some

small λ > 0 (e.g. corresponding to the forecast horizon (1, 1 + λ]) and define

S<λ = {(x, y) ∈ S : x+ y ≤ 1− λ}
S>λ = {(x, y) ∈ S : x+ y > 1− λ, x ≤ 1− λ, y ≤ 1− λ}.

Let D be the set of data points (Xi, Yi) that lie in S<λ , that is, (Xi, Yi) ∈ S<λ . For

any κ ∈ (λ, 1], compute the backfitting estimators f̂κ1 , f̂κ2 , f̂κ3 from the data sample

D as described in Section 3, where the set S is replaced by S<λ . Next define

f̂κ3 (z) = f̂κ3 (1− λ) for z ∈ (1− λ, 1],

thus constantly extrapolating the estimated calendar effect into the region (1−λ, 1].

Set

f̂κ(x, y) = f̂κ1 (x)f̂κ2 (y)f̂κ3 (x+ y) for (x, y) ∈ S>λ

and consider the MISE criterion

MISE(κ) =

∫
S>λ

{
f̂κ(x, y)− f(x, y)

}2
dxdy.

Minimizing MISE(κ) with respect to κ is equivalent to minimizing∫
S>λ

{f̂κ(x, y)}2dxdy − 2

∫
S>λ

f̂κ(x, y)f(x, y)dxdy,

which can be estimated by

CV(κ) =

∫
S>λ

{f̂κ(x, y)}2dxdy − 2

n

n∑
i=1

1((Xi, Yi) ∈ S>λ )f̂κ(Xi, Yi).

13



We finally define our estimator of κ by

κ̂ = arg minκ∈(λ,1]CV(κ). (4.2)

This cross-validation procedure to choose κ is similar in spirit to methods devel-

oped in Pesaran and Timmermann (2007) in a completely different context. The

econometric problem considered there is to select the optimal estimation window

for prediction in a linear regression model with a structural break. To approach

this problem, Pesaran and Timmermann (2007) propose a cross-validation proce-

dure similar to ours: Pseudo out-of-sample forecasts based on different estimation

windows are evaluated by a cross-validation criterion. The estimation window is

then selected by minimizing this criterion.

4.2 Comparison with other forecasting approaches

As already mentioned in the introduction, the extended continuous chain ladder

model (2.1) can be regarded as a continuous version of the discrete age-period-cohort

model of Kuang et al. (2011). Nevertheless, our forecasting strategy is very different

from standard forecasting procedures employed in the context of age-period-cohort

models. To highlight the main differences, we compare our forecasting strategy to

the procedures developed in Kuang et al. (2011).

In Kuang et al. (2011), three different forecasters are defined which are named

as I(0) (zero-times), I(1) (one-time) and I(2) (two-times) integrators. An overview

over the discrete age-period-cohort model of Kuang et al. (2011) and a precise defini-

tion of the I(0), I(1) and I(2) forecasters is provided in the supplementary material.

All three forecasters extrapolate the (logarithmic) calendar effect linearly into the

future, where the slope for extrapolation is estimated in different ways. In partic-

ular, the three methods use the estimated calendar effect up to today in different

ways to determine the slope for extrapolation. The I(2) method only uses the most

recent past of the estimated calendar effect to determine the slope, while the I(0)

and I(1) approaches use the complete past. Whereas the forecasting methods of

Kuang et al. (2011) focus on estimating the slope of the calendar effect in a suitable

way, we essentially eliminate the calendar effect from the model by our identification

strategy, that is, by normalizing it to have zero slope in the recent past from the

time point 1−κ onwards. This allows us to employ the simplest possible forecasting

strategy: constant extrapolation.

In the supplementary material, we show that the I(0), I(1) and I(2) forecasters

of Kuang et al. (2011) can be re-interpreted in terms of our forecasting strategy.

In particular, we show that the forecasters can be re-produced by imposing specific

normalization constraints on the parameters of the discrete age-period-cohort model
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Method Normalization constraints on f3

I(0)
∫ 1

0
log(f3(z))dz = 0 and

∫ 1

0
z log(f3(z))dz = 0

I(1) f3(0) = f3(1)

I(2) f3(1− η) = f3(1) with some small η > 0

Table 1: Normalization constraints on f3 for the continuous versions of the I(0), I(1) and

I(2) forecasters. Note that unlike κ, η is not a tuning parameter which is selected in a

data-driven way. It is rather chosen adhoc and set to a very small positive value.

and by extrapolating the estimated calendar effect constantly into the future under

these constraints. Continuous versions of the I(0), I(1) and I(2) forecasters can be

obtained by imposing analogous normalization constraints on the densities in our

continuous model f(x, y) = f1(x)f2(y)f3(x + y). Specifically, to obtain continuous

versions of the I(0), I(1) and I(2) forecasts, we re-normalize the calendar effect

f3 according to the constraints listed in Table 1. The main difference between our

approach and the I(0), I(1) and I(2) forecasts thus lies in the way the calendar

effect f3 is normalized before it is extrapolated constantly.

The normalization constraints imposed on f3 by our approach and by the I(0),

I(1) and I(2) forecasts are related as follows to each other:

(i) The constraints of the I(0) and I(1) methods can be interpreted as eliminating

the linear part of the logarithmic calendar effect log f3 in the entire past, that

is, on the interval [0, 1]. To see this, suppose that log f3 is a linear function

on [0, 1] of the form log f3(z) = a + bz. The constraint f3(0) = f3(1) of the

I(1) method obviously implies that b = 0, that is, it normalizes log f3(z) to

be a constant function. Similarly, the two constraints
∫ 1

0
log(f3(z))dz = 0 and∫ 1

0
z log(f3(z))dz = 0 of the I(0) method imply that a = b = 0.

(ii) Analogously, the constraint f3(1 − η) = f3(1) of the I(2) method can be in-

terpreted as eliminating the linear part of log f3 in the most recent past, in

particular, on the interval [1 − η, 1]. Note that unlike κ, the value η is not a

parameter that is chosen in a data-driven way. It is rather a fixed constant

which is set adhoc to a very small positive value.

(iii) Our approach normalizes the logarithmic calendar effect log f3 such that the

linear part on the interval [1 − κ, 1] gets eliminated. Importantly, we do not

pick the parameter κ adhoc. We rather select it in a data-driven way (by our

cross-validation procedure) to estimate the largest interval [1− κ∗, 1] where f3

is (approximately) linear. We then use the estimate of the interval [1 − κ∗, 1]

to normalize f3 appropriately.
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According to the remarks (i)–(iii), the I(0), I(1) and I(2) forecasters can be regarded

as extreme cases of our approach: The I(0) and I(1) forecasters eliminate the linear

part of log f3 in the entire past [0, 1]. However, this only makes sense if log f3 is

indeed approximately linear on [0, 1]. The I(2) method, in contrast, takes into

account only the most recent past [1− η, 1] to eliminate the linear part from log f3.

If log f3 is approximately linear on a much larger interval than [1 − η, 1], this is

suboptimal as the shape constraint of log f3 (its linearity) is only exploited on the

small subinterval [1 − η, 1]. In contrast to the I(0), I(1) and I(2) forecasters, our

method adapts to the unknown form of the calendar effect f3 by approximating the

largest interval [1 − κ∗, 1] where log f3 is (approximately) linear. For this reason,

we expect our method to produce better forecasts than the continuous versions of

the I(0), I(1) and I(2) methods. We demonstrate this in our simulation study in

Section 7.

5 Theoretical results

In this section, we derive some theoretical properties of the estimators f̂1, f̂2 and

f̂3 introduced in Section 3. We use the following notation: L2(Sj) is the space of

square integrable functions q : Sj → R for j = 1, 2 and L2
κ∗(S3) denotes the space of

square integrable functions q : S3 → R which are constant on the interval [1−κ∗, 1].

We let L = L2(S1) × L2(S2) × L2
κ∗(S3) and write g = (g1, g2, g3)

> ∈ L along with

θ = (θ1, θ2, θ3)
> ∈ R3. With this notation at hand, we define the operator

F : R3 × L → R3 × L

by setting F(θ, g)(x, y, z) =
(
F1(θ, g), F2(θ, g), F3(θ, g), F4(θ, g)(x), F5(θ, g)(y),

F6(θ, g)(z)
)>

, where

F1(θ, g) = 1−
∫
S1
g1(x)dx

F2(θ, g) = 1−
∫
S2
g2(y)dy

F3(θ, g) = ϑ−
∫
S
g1(x)g2(y)g3(x+ y)dxdy

with ϑ =
∫
S f(x, y)dxdy and

F4(θ, g)(x) =

∫
J2(x)

{
θ1f(x, y)− g1(x)g2(y)g3(x+ y)

}
dy

F5(θ, g)(y) =

∫
J1(y)

{
θ2f(x, y)− g1(x)g2(y)g3(x+ y)

}
dx
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F6(θ, g)(z) = 1[0,1−κ∗)(z)

∫
J3(z)

{
θ3f(x, z − x)− g1(x)g2(z − x)g3(z)

}
dx

+ 1[1−κ∗,1](z)
1

κ∗

∫ 1

1−κ∗

∫
J3(v)

{
θ3f(x, v − x)− g1(x)g2(v − x)g3(v)

}
dxdv.

The true density components f = (f1, f2, f3)
> are characterized by the equation

F(φ,f) = 0, (5.1)

where φ = (1, 1, 1)>. This is equivalent to saying that the component functions f1,

f2 and f3 satisfy the integral equations (3.2)–(3.4).

The estimator f̂ = (f̂1, f̂2, f̂3)
> of the density components f = (f1, f2, f3)

>

defined in Section 3 can be characterized as the solution to an empirical version of

(5.1): Let F̂j be operators which are defined analogously as Fj for 1 ≤ j ≤ 6 with

the density f and the parameter ϑ replaced by the estimators f̂ and ϑ̂ from Section

3. The estimators f̂ = (f̂1, f̂2, f̂3)
> and φ̂ = (φ̂1, φ̂2, φ̂3)

> are given as the solution

to the equation

F̂(φ̂, f̂) = 0, (5.2)

where F̂(θ, g)(x, y, z) = (F̂1(θ, g), F̂2(θ, g), F̂3(θ, g), F̂4(θ, g)(x), F̂5(θ, g)(y),

F̂6(θ, g)(z))>.

We now construct and examine a theoretical approximation of the estimator f̂ .

To do so, we define the operator

G(θ, g) = F(1 + θ,f ◦ (1 + g)),

where f ◦ (1 + g) with 1 = (1, 1, 1)> denotes the componentwise multiplication of

the two function vectors f and (1 + g). By construction, G(0,0) = 0. The Fréchet

derivative G ′(0,0)(d, δ) of G(θ, g) at (θ, g) = (0,0) in the direction (d, δ) is given

by

G ′(0,0)(d, δ)(x, y, z) =
(
G ′1(0,0)(d, δ),G ′2(0,0)(d, δ),G ′3(0,0)(d, δ),

G ′4(0,0)(d, δ)(x),G ′5(0,0)(d, δ)(y),G ′6(0,0)(d, δ)(z)
)>
,

where

G ′1(0,0)(d, δ) = −
∫
S1
f1(x)δ1(x)dx

G ′2(0,0)(d, δ) = −
∫
S2
f2(y)δ2(y)dy

G ′3(0,0)(d, δ) = −
∫
S
f(x, y)δ+(x, y)dxdy

G ′4(0,0)(d, δ)(x) =

∫
J2(x)

f(x, y)
{
d1 − δ+(x, y)

}
dy
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G ′5(0,0)(d, δ)(y) =

∫
J1(y)

f(x, y)
{
d2 − δ+(x, y)

}
dx

G ′6(0,0)(d, δ)(z) = 1[0,1−κ∗)(z)

∫
J3(z)

f(x, z − x)
{
d3 − δ+(x, z − x)

}
dx

+ 1[1−κ∗,1](z)
1

κ∗

∫ 1

1−κ∗

∫
J3(v)

f(x, v − x)
{
d3 − δ+(x, v − x)

}
dxdv

with δ+(x, y) = δ1(x) + δ2(y) + δ3(x + y). To make the notation more concise, we

write G ′(0,0)(d, δ) = G ′(0,0)(d, δ) in what follows. Analogous to the definition of G,

we let Ĝ(θ, g) = F̂(1 + θ,f ◦ (1 + g)) and note that

Ĝ(0,0) = F̂(φ,f) =


0

0

ϑ̂− ϑ
fw ◦ µ̂

 ,

where

fw(x, y, z) =
(
fw,1(x), fw,2(y), 1[0,1−κ∗)(z) fw,3(z) + 1[1−κ∗,1](z) cw,3

)>
µ̂(x, y, z) =

(
µ̂1(x), µ̂2(y), µ̂3(z)

)>
with cw,3 = (κ∗)−1

∫ 1

1−κ∗ fw,3(v)dv and

µ̂1(x) = f−1w,1(x)

∫
J2(x)

[
f̂(x, y)− f(x, y)

]
dy (5.3)

µ̂2(y) = f−1w,2(y)

∫
J1(y)

[
f̂(x, y)− f(x, y)

]
dx (5.4)

µ̂3(z) = 1[0,1−κ∗)(z) f−1w,3(z)

∫
J3(z)

[
f̂(x, z − x)− f(x, z − x)

]
dx

+ 1[1−κ∗,1](z) c−1w,3
1

κ∗

∫ 1

1−κ∗

∫
J3(v)

[
f̂(x, v − x)− f(x, v − x)

]
dxdv. (5.5)

Letting G ′−1(0,0) be the inverse of G ′(0,0) (which exists by Lemma 1 in the Appendix),

we define f̄ = (f̄1, f̄2, f̄3)
> and φ̄ = (φ̄1, φ̄2, φ̄3)

> by the equation(
φ̄− φ

(f̄ − f)/f

)
= G ′−1(0,0)

(
0

−fw ◦ µ̂

)
. (5.6)

The quantities φ̄− φ and (f̄ − f)/f can be interpreted as follows: Let Ĝ ′(θ,g)(d, δ)

be the derivative of Ĝ(θ, g) in the direction (d, δ) and let Ĝ ′−1(θ,g) be the inverse of

Ĝ ′(θ,g). By Newton’s method, we can approximate the root of the operator Ĝ by the

iteration

(θ, g)`+1 = (θ, g)` − Ĝ ′−1((θ,g)`)
Ĝ
(
(θ, g)`

)
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for ` = 0, 1, 2 . . . with some starting value (θ, g)0. Setting (θ, g)0 = (0,0) and

performing one Newton step, we get that

(θ, g)1 = −Ĝ ′−1(0,0) Ĝ(0,0) ≈ G ′−1(0,0)

(
0

−fw ◦ µ̂

)
.

Hence, we obtain (φ̄− φ, (f̄ − f)/f) by performing one approximate Newton step

from (0,0) into the direction of the root (φ̂− φ, (f̂ − f)/f) of Ĝ.

Our first theoretical result shows that φ̄ and f̄ give a good approximation to the

estimators φ̂ and f̂ .

Theorem 1. Let the conditions of Proposition 1 be satisfied. Moreover, let f̂ be any

estimator with the property that f̂(x, y) = f(x, y) +Op(εn) uniformly for (x, y) ∈ S.

Then with probability tending to 1, there exists a solution (φ̂, f̂) of the equation

F̂(φ̂, f̂) = 0 and it holds that

|φ̂j − φ̄j| = Op(ε
2
n + n−1/2)

sup
w∈Sj
|f̂j(w)− f̄j(w)| = Op(ε

2
n + n−1/2)

for j = 1, 2, 3.

Standard theory for kernel smoothing yields that εn = n−3/10
√

log n for the local

linear estimator f̂ with h1 ∼ h2 ∼ n−1/5. According to Theorem 1, f̂j(w)− f̄j(w) =

Op(n
−1/2) uniformly on Sj in this case. In addition to this, we can show that

f̄j(w) − fj(w) = Op(n
−2/5√log n) uniformly over Sj. As a consequence, the first-

order asymptotic properties of f̂j are identical to those of f̄j. These asymptotic

properties are summarized by the following two theorems. The first result specifies

the uniform convergence rate of f̂j.

Theorem 2. Let the conditions of Proposition 1 be satisfied and suppose that the

density f is twice continuously differentiable on S. Moreover, let the kernel K be

supported on [−1, 1], symmetric and Lipschitz continuous. Finally, let the band-

widths hj for j = 1, 2 be such that n1/5hj → cj for some constants cj > 0. Then it

holds that

sup
w∈Sj
|f̂j(w)− fj(w)| = Op(n

−2/5
√

log n)

for j = 1, 2, 3.

The next result specifies the asymptotic distribution of the estimators f̂j. To formu-

late it, we introduce some additional notation. As in Theorem 2, we suppose that

n1/5hj → cj > 0 for j = 1, 2 and let

f̃B(x, y) =
1

2

∫
u2K(u)du

[
c21
∂2f(x, y)

∂2x
+ c22

∂2f(x, y)

∂2y

]
. (5.7)
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For j = 1, 2, 3, we define µ̃Bj analogously as µ̂j in (5.3)–(5.5) with f̂ − f replaced by

f̃B. Writing µ̃B = (µ̃B1 , µ̃
B
2 , µ̃

B
3 ), we let d = (d1, d2, d3) ∈ R3 and β = (β1, β2, β3) ∈ L

be the solution of the equation(
d

β

)
= G ′−1(0,0)

(
0

−fw ◦ n−2/5µ̃B

)
. (5.8)

Equivalently, d and β can be defined as the solution to the backfitting equation

(A.26) in the Appendix. As we will see, βj plays the role of the asymptotic bias of

f̂j. We finally introduce the terms

σ2
1(x) = c−11 fw,1(x)−1

∫
K2(u)du

σ2
2(y) = c−12 fw,2(y)−1

∫
K2(u)du

σ2
3(z) = c−12 fw,3(z)−11[0,1−κ∗)(z)

∫
[K ∗K(u)][K ∗K(−c1u/c2)]du

with K ∗K(u) =
∫
K(ϕ)K(ϕ−u)dϕ, which turn out to be the asymptotic variances

of f̂j for j = 1, 2, 3. We are now in a position to specify the asymptotic distribution

of the estimators f̂j.

Theorem 3. Let the conditions of Theorem 2 be satisfied. Then for any j = 1, 2, 3

and any fixed point w in the interior of Sj, it holds that

n2/5 f̂j(w)− fj(w)

fj(w)

d−→ N
(
βj(w), σ2

j (w)
)
.

The proofs of Theorems 1–3 are given in the Appendix.

6 Case studies

In this section, we consider two applications of the density forecasting methods de-

scribed above. The first application comes from the actuarial sciences and is on

claims reserving forecasting in non-life insurance (cp. Example 1 from the introduc-

tion). Similar case studies were conducted by Mammen et al. (2015) and Hiabu et

al. (2016) to illustrate a simpler multiplicative density model where f3 is a constant

function. The second application example comes from economics and deals with

forecasting fertility rates in Italy and the US (cp. Example 2 from the introduc-

tion).
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Figure 1: Histogram of the reserving data. The number of reported claims during 10 years

is shown according to the accident time (x) and the reporting delay (y).

6.1 Claims reserving in non-life insurance

In this example, we observe data (Xi, Yi) on n different insurance claims i = 1, . . . , n,

where Xi specifies the time point when claim i incurred and Yi is the time delay

until claim i was reported to the insurance. The data points (Xi, Yi) take values in

the triangle I = {(x, y) : 0 ≤ x, y ≤ T, x + y ≤ T}, where x is the accident time

(i.e. the time when the claim incurs), y is the claims development time (i.e. the time

delay until the claim is reported) and [0, T ] (with T > 0) is the time observation

window.2 Our aim is to estimate and forecast the density f of (Xi, Yi). In particular,

we are interested in forecasting the quantity L =
∫
(x,y)∈Ic f(x, y)dxdy, which gives

the outstanding number of insurance claims in the upper triangle Ic = [0, T ]2 \ I.

This number represents the future liabilities for the company.

Traditionally, actuaries work with the data aggregated in so-called run-off tri-

angles. A run-off triangle can be written as ℵm = {Nst : (s, t) ∈ Im}, where

Im = {(s, t) : s = 1, . . . ,m; t = 1, . . . ,m; s+ t−1 ≤ m} and Nst is the total number

of claims incurred in period (week, month, quarter or year) s and reported in period

s + t − 1, that is, with t − 1 periods delay. The quantities Nst are usually referred

to as frequencies in the literature and can be computed from the individual claims

data (Xi, Yi) as Nst =
∑n

i=1 1st(Xi, Yi), where 1st(Xi, Yi) is the indicator function

which equals 1 iff Xi is a time point in period s and Yi a time point in period t. The

quantities Nst are thus nothing else than the values of the histogram of the indi-

vidual claims data computed with bin width equal to the considered period (which

is usually a week, a month, a quarter or a year). Figure 1 shows the data set we

2When deriving the estimation methods and theory in the previous sections, we have used the

normalization T = 1 for convenience.
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Figure 2: Estimated density components for the reserving data considering different κ

values (given in years). The dashed black lines show the estimated density components

for the cross-validated choice of κ, which is κ = 7.83 years.

analyze in this section. The data consist of monthly frequencies Nst of reported

claims from a motor business in Cyprus. The sample size amounts to n = 55384

claims which were reported between 2004 and 2013. Figure 1 presents the histogram

of the frequencies Nst (with bin width equal to one month).

We derive forecasts on the basis of the multiplicative density model f(x, y) =

f1(x)f2(y)f3(x + y) from (2.1), where f1 and f2 are the density components cor-

responding to accident and reporting (development) time, respectively, and f3 is

a function which describes the calendar effect. In our theoretical framework, the

estimators of the density components are directly computed from the sample of in-

dividual data (Xi, Yi). In particular, we first estimate the two-dimensional density

f by a local linear kernel estimator f̂ from the data sample {(Xi, Yi) : i = 1, . . . , n}
and then estimate the density components f1, f2 and f3 by running the backfitting

procedure from Section 3 with the pilot estimator f̂ . In practice, an estimator of f

can also be computed from the histogram values Nst. (It may even be necessary to

do so as the individual claims data are not always available.) Estimating f from the
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Figure 3: The effect of the parameter κ on the predicted reserves, i.e., on the predicted

number of outstanding liabilities L. The left-hand panel shows the predicted reserves L
for different values of κ, the right-hand panel gives the cross-validation score minimized

to choose κ.

values Nst by our kernel methods essentially amounts to smoothing the histogram

of the individual claims data, where the amount of smoothing is determined by the

chosen bandwidths. In the data example at hand, we compute the local linear ker-

nel estimator of f from the values Nst with the bandwidths ĥ1 and ĥ2 chosen by

cross-validation (ĥ1 = 1.77 years, ĥ2 = 0.08 years).

The estimated density components f1, f2 and f3 produced by our backfitting

algorithm for different values of the parameter κ (given in years) are shown in Figure

2. The biggest value, κ = 10 years, corresponds to a model with constant calendar

effect. In the graphs, we have highlighted the results for the parameter value chosen

by the proposed cross-validation method (with λ = 1 year), which is κ = 7.83 years.

Figure 3 shows the effect of κ on the predicted number of outstanding liabilities

L =
∫
(x,y)∈Ic f(x, y)dxdy as well as the cross-validation score minimized to choose

κ. The predicted number of outstanding liabilities L for the cross-validated choice

of κ is 2324 compared to the bigger number 2344 obtained by using a model with

constant calendar effect.

6.2 Forecasting of fertility rates

Fertility trends have important societal and economic implications. For this reason,

the analysis of fertility has received a lot of attention in economics; see Aaronson et

al. (2014), Baudin et al. (2015), Momota (2016), Cooley and Henriksen (2018) and

Cooley et al. (2019) among many others. As the statistical analysis of fertility data

is quite demanding, the subject is also well-studied in the statistics literature; see

for example Lee (1993), Hyndman and Ullah (2007) and Shang (2019).

In this section, we analyze two samples of fertility rates data from Italy and
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Figure 4: Observed fertility rates for Italy and the US.

the US available on the Human Fertility Database.3 For both countries, the data

sample consists of observations Rst which specify the fertility rate by cohort s (in

years) and age t (in years). More precisely, Rst = Bst/Nst, where Bst is the number

of births for women of age t born in year s and Nst is the total number of women of

age t born in year s. Figure 4 shows the observed fertility rates Rst for both Italy

and the US. For both countries, the age t ranges from 15 to 44 years, while the

cohort s covers the years 1939–1999 for Italy and the years 1918–2002 for the US.

Inspecting Figure 4, the data can be seen to have a trapezium support of the form

Im,m = {(s, t) : s = 1, . . . ,m; t = 1, . . . ,m; m ≤ s + t − 1 ≤ m}, where m and m

take different values for Italy and the US.

The birth counts Bst and the fertility rates Rst can be related as follows to

our statistical model introduced in Section 2. The birth counts Bst are computed

from individual data (Xi, Yi) on a large number of births i = 1, . . . , n (which are

however not available on the Human Fertility Database). For each birth i, we let

Xi denote the birth date of the mother and Yi her age. With these individual data,

the birth counts Bst are given by Bst =
∑n

i=1 1st(Xi, Yi), where 1st(Xi, Yi) is the

indicator function which equals 1 iff Xi ∈ (s − 1, s] and Yi ∈ (t − 1, t]. Letting

fB be the density of the individual birth data (Xi, Yi), the birth counts Bst can be

regarded as histogram values which estimate the quantities
∫ s
s−1

∫ t
t−1 f

B(x, y)dxdy.

Similarly, the rates data Rst can be interpreted as approximations of the quantities∫ s
s−1

∫ t
t−1 f

R(x, y)dxdy, where fR is some underlying intensity function. Note that

unlike fB, the function fR is not a proper density in general which integrates up

to 1. This is however not an issue at all since fR can be easily re-normalized to

integrate to 1.

3The data can be requested on the webpage www.humanfertility.org/cgi-bin/main.php.
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Figure 7: Observed plus projected total fertility rates by cohort for Italy and the US.

In what follows, we analyze the fertility rates Rst rather than the absolute fer-

tility numbers Bst because the rates are the quantities of primary interest both for

research and policy purposes. In particular, we estimate and forecast the density

fR which underlies the fertility rate values Rst rather than the density fB which

underlies the birth counts Bst. We impose the multiplicative structure f(x, y) =

f1(x)f2(y)f3(x+ y) from (2.1) on the fertility rate density f = fR and estimate the

density components f1, f2 and f3 by our methods from Section 3. More precisely

speaking, we first compute a local linear kernel density estimator of f with cross-

validated bandwidths (ĥ1 = 6.8 and ĥ2 = 2.5 years for Italy, ĥ1 = 5.3 and ĥ2 = 2.5

years for the US) from the rates data Rst and then apply our backfitting algorithm

to obtain estimates of the density components f1, f2 and f3. The estimated den-

sity components produced by the backfitting algorithm for different values of the

parameter κ (given in years) are shown in Figures 5 and 6. The biggest value of

κ corresponds to a model with constant calendar effect. In the graphs, we have

highlighted the results for the value of κ chosen by the proposed cross-validation

method, which was implemented with λ = 1 year. As can be clearly seen, our esti-

mation results suggest that there is a strongly decreasing calendar effect present in

the data both for Italy and the US.

Figure 7 shows our estimates of the (observed plus projected) total fertility rate

by cohort (TFRc) for both Italy and the US. More specifically, it reports our esti-

mates of the quantity TFRc(s) =
∫ m
0
{
∫ s
s−1 f(x, y)dx}dy for the cohorts s available

in the two data sets. Roughly speaking, the quantity TFRc(s) gives the average

number of children born to a woman of cohort s who survives until the end of her

reproductive life. As argued in academic studies such as Hvidtfeldt et al. (2010),
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the quantity TFRc which is based on a full age-period-cohort decomposition of the

data is an accurate measure of fertility. Other common measures such as the total

fertility rate by period (TFRp), in contrast, are shown to be less accurate, resulting

in significant underestimation of fertility. Hence, the values of the TFRp measure,

which are for example reported by the World Bank, should be treated with caution.

Our methodology allows to produce predictions of the more accurate TFRc measure.

In the case of Italy and the US, the estimated and predicted TFRc values can be seen

to have a falling tendency in both countries, the tendency being somewhat stronger

in the US. To be more specific, we have a closer look at the graph for the US. The

TFRc values are fairly stable from the 1950s up to the late 1970s but are predicted

to drop strongly from this point onwards. In particular, whereas the cohort of US

women born in 1970 had approximately 2 children on average, the cohort of US

women born in 2000 (that is, the cohort of women who are approx. 19 years old

today) is predicted to have less than 1 child on average. Hence, our new continuous

age-period-cohort model predicts alarmingly low future fertility for the US (as well

as for Italy).

7 Simulations

In what follows, we examine the finite sample properties of our methods by Monte

Carlo experiments.

7.1 Simulation design

We consider a two-dimensional density of the type f(x, y) = f1(x)f2(y)f3(x + y),

supported on the triangle I = {(x, y) ∈ [0, 1]2 : x+y ≤ 1}. The density components

f1, f2 and f3 are normalized to satisfy the identification constraints (IC1)–(IC3).

The density f is extended to the full unit square, [0, 1]2, by defining f3(z) = f3(1)

for 1 < z ≤ 2. The observation region is I and the forecasting region is [0, 1]2 \ I.

We consider two scenarios, one with constant calendar effect and one with non-

constant effect. The first scenario is the correct model for the continuous chain

ladder approach of Mart́ınez-Miranda et al. (2013) and the case of κ∗ = 1 in our

approach. The density components for each scenario are defined below. In all cases,

we simulate pseudo data in the triangle I in an aggregated form (as counts): We

define a two-dimensional grid of 100× 100 equally spaced points in [0, 1]2. At each

grid point (x, y) in the observation region I, we simulate counts from a Binomial

with size n and probability nf(x, y)/1002. We consider the sample sizes n = 104, 105

and 106, and simulate 500 pseudo samples for each case.
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Figure 8: Models 1 to 3 with constant calendar effect. True two-dimensional densities

(first column), CCL forecasts (second column) and our forecasts (third column).

We compare our approach with the following procedures: (i) the continuous

chain ladder (CCL) approach of Mart́ınez-Miranda et al. (2013) which does not take

into account a calendar effect, (ii) a benchmark approach which is identical to our

method with κ∗ assumed to be known, (iii) the continuous versions of the I(0), I(1)

and I(2) forecasters of Kuang et al. (2011) which were introduced in Section 4.2.

Our approach is implemented as follows: In a first step, we compute estimates f̂1,

f̂2 and f̂3 of the density components f1, f2 and f3 by carrying out the backfitting

algorithm described in Section 3 with the same implementation choices as in the two

case studies from Section 6. We in particular compute data-driven bandwidths ĥ1

and ĥ2 by rescaling (by a factor n−1/5/n−1/6) the cross-validated bandwidths of the

unstructured local linear density estimator. To compute the cross-validation choice

of κ defined in (4.2), we set λ = 0.01, which corresponds to the smallest forecast

horizon according to the generation of the data in the triangle (as the bin size of

the generated data is 0.01). In the second step, we compute density forecasts by

constantly extrapolating the estimated calendar effect into the future as described

in Section 4. The CCL and benchmark approaches are implemented in exactly the
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Model n Our CCL I(0) I(1) I(2)

1 1e+04 1.1810 1.1034 1.2968 1.3006 3.1544

1e+05 0.1185 0.1118 0.1303 0.1297 0.3127

1e+06 0.0129 0.0124 0.0142 0.0139 0.0335

2 1e+04 2.5854 2.5433 2.9370 2.6679 2.6765

1e+05 0.8282 0.8247 0.8036 0.8585 0.8954

1e+06 0.1107 0.1101 0.1121 0.1124 0.1165

3 1e+04 0.8369 0.7738 0.8947 0.9245 2.5450

1e+05 0.0826 0.0773 0.0865 0.0884 0.2235

1e+06 0.0088 0.0083 0.0088 0.0091 0.0262

Table 2: MISE values of the estimated density f̂ (averaged over 500 simulation runs and

multiplied by 106) for the models with constant calendar effect.

same way, the only difference being that we set κ = 1 in the CCL case (which means

that there is no calendar effect) and κ = κ∗ in the benchmark case (which means

that the true κ∗ is known). Finally, the continuous versions of the I(0), I(1) and

I(2) forecasts are computed as follows: We estimate the density components f1, f2

and f3 by the backfitting algorithm of Section 3, where the normalization constraint

(IC3) is replaced by those in Table 1 and the same bandwidths ĥ1 and ĥ2 as for our

approach are used. We then produce density forecasts by constantly extrapolating

the estimated calendar effect. The parameter η in the normalization constraint of

the I(2) forecast is set to the smallest possible value, which is η = 0.01 (as the bin

size of the generated data is 0.01).

To evaluate the quality of the density forecasts produced by our approach and

the competing methods, we proceed as follows: We apply each method to estimate

the density f(x, y) on the triangle I and to forecast it to the full unit square [0, 1]2.

For each method, we thus obtain a density forecast f̂(x, y) at all (x, y) ∈ [0, 1]2. The

performance of the density forecast f̂ is measured by the MISE criterion MISE(f̂) =∫ 1

0

∫ 1

0
{f̂(x, y)− f(x, y)}2dxdy.

7.2 Scenario 1: constant calendar effect

To start with, we consider a simulation scenario where there is no calendar effect.

This is the correct model for the CCL method of Mart́ınez-Miranda et al. (2013).

We let f3 be constant and define three theoretical models. Model 1 has f1(x) ≡ 1

and f2(y) = (1 − e−1)e−y. Model 2 has the two underlying density components

estimated from the reserving data in the first case study above (see Figure 2, case

of κ = 10 years). Model 3 has f1(x) = 3/2 − x and f2(y) = 5/4 − 3y2/4 and was

previously considered by Lee et al. (2015). Note that in these three models, the
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Figure 9: Boxplots of the cross-validated choice of κ for the models with constant calendar

effect. The dotted red line shows the true κ∗ = 1.

CCL method is identical to the benchmark approach with the true κ∗ = 1 since

there is no calendar effect. Hence, the CCL approach is the benchmark to beat in

this scenario.

We first give a visual impression of the density forecasts produced by our ap-

proach. Figure 8 compares our density forecasts with the true densities f and the

benchmark forecasts of the CCL approach. Specifically, it shows image plots of

the true density (first column) and averaged density forecasts (second and third

column) for the sample size n = 104, which are computed as follows: We first esti-

mate/forecast the density f on the unit square for each of the 500 pseudo samples

and then compute the average of the 500 density forecasts. The second column cor-

responds to the averaged density forecasts produced by the benchmark CCL method

and the third column to those of our approach. The dotted line divides the obser-

vation region (lower triangle) and the forecast region (upper triangle). Inspecting

the plots of Figure 8, our forecasts can be seen to approximate the true densities

reasonably well for n = 104, that is, for the smallest sample size under consideration.

We next have a closer look at the performance measure MISE(f̂). Table 2

reports the MISE values (averaged over 500 simulation runs) that are produced

by our method, the CCL approach and the continuous versions of the I(0), I(1)

and I(2) forecasters. As expected, the benchmark CCL approach produces slightly

better results than our approach when there is no calendar effect. Moreover, the

MISE values of our approach are overall comparable to those of the I(0) and I(1)

forecasters. Hence, our approach exhibits a similar performance as the I(0) and I(1)

forecasters in the models without a calendar effect. The I(2) method, in contrast,

produces less accurate results.

Figure 9 gives some details on our cross-validation method to choose κ. It shows
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Figure 10: Models 4 to 6 with κ∗ = 0.6 (non-constant calendar effect). True two-

dimensional densities (first column), benchmark forecasts (second column) and our fore-

casts (third column).

boxplots of the cross-validated values of κ for each model and sample size, where

we have considered a range of κ values between 0.4 and 1 when running the cross-

validation method. As can be seen from the boxplots, the cross-validation method

produces values of κ that are highly variable. Moreover, the cross-validated choice

of κ moves rather below the true value κ∗ = 1. This however does not seem to

have a strong effect on the quality of the final forecast, as shown by the resulting

MISE values of our approach in Table 2, which are quite close to those of the CCL

approach.

To summarize, our method appears to be almost as good as the CCL method in

Models 1–3, which is the benchmark to beat when there is no calendar effect. The

simulation results for sample sizes smaller than 104 (not included in this paper) have

shown that in these cases it is better to stick to the standard CCL method. Small

sample sizes seem to be insufficient to estimate a calendar effect properly, due to

the sparsity of data points.
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Figure 11: Models 4 to 6 (non-constant calendar effect) with κ∗ = 0.3. True two-

dimensional densities (first column), benchmark forecasts (second column) and our fore-

casts (third column).

7.3 Scenario 2: non-constant calendar effect

We now analyze some models with a non-constant calendar effect, which are referred

to as Models 4–6. Models 4–6 have the same density components f1 and f2 as Mod-

els 1–3, respectively. The third component is f3(z) = c {0.5Fβ(z/(1− κ∗)) + 0.5},
where Fβ is the cumulative distribution function of a Beta(4,4) random variable and

c is a constant which is chosen such that the identification constraints in (IC1)–

(IC3) are satisfied. We report simulation results for each model and sample size,

considering κ∗ = 0.6 and κ∗ = 0.3.

We first present image plots to visualize the forecasting problems and to check

whether our proposal is able to approximate the true densities reasonably well. Fig-

ures 10 and 11 show the true densities (first column), benchmark forecasts (second

column), and our feasible forecasts (third column) for the sample size n = 104 aver-

aged over 500 simulation runs. Note that the benchmark forecasts are not identical

to the CCL forecasts in Models 4–6 with a calendar effect. As already mentioned in
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Model κ∗ n Benchmark Our CCL I(0) I(1) I(2)

4 0.6 1e+04 1.4101 2.9478 4.9210 31.0265 23.3819 8.7707

1e+05 0.1884 0.5853 3.2857 24.9174 13.2668 1.3072

1e+06 0.0285 0.0853 3.0034 23.5965 11.4839 0.2158

5 1e+04 4.3086 4.6054 5.1073 8.8085 4.8323 4.5381

1e+05 0.4719 0.5846 1.2976 2.7381 0.5820 0.4929

1e+06 0.2073 0.2377 1.0434 2.2727 0.2889 0.2121

6 1e+04 1.2030 2.3488 3.6743 14.6905 10.0212 10.8827

1e+05 0.1486 0.4276 2.4192 11.4448 5.1631 1.0812

1e+06 0.0209 0.0633 2.2354 10.9322 4.5059 0.1972

4 0.3 1e+04 1.9885 3.9444 15.0259 59.9799 20.0552 12.9594

1e+05 0.2300 0.5996 12.6075 52.5815 12.7389 1.3383

1e+06 0.0293 0.0815 12.2357 51.8809 11.8387 0.1991

5 1e+04 4.6628 4.8736 5.1887 10.9491 5.0686 4.7610

1e+05 0.4823 0.5456 1.0943 4.2831 0.5895 0.4950

1e+06 0.1432 0.1762 0.7622 3.7593 0.2256 0.1455

6 1e+04 1.5305 2.6785 9.2230 28.3376 9.6685 12.8880

1e+05 0.1723 0.4047 7.5302 24.2104 5.3424 1.0762

1e+06 0.0208 0.0518 7.2858 23.8338 4.9018 0.1399

Table 3: MISE values of the estimated density f̂ (averaged over 500 simulation runs and

multiplied by 106) for Models 4 to 6 (non-constant calendar effect) with κ∗ = 0.6 and

κ∗ = 0.3.

Section 7.1, the benchmark forecasts are obtained by running our approach with the

true κ∗ parameter. The image plots of Figures 10 and 11 suggest that our density

forecasts give a reasonable approximation to the true densities on the unit square in

Models 4–6, even though the forecasts are somewhat less precise than those of the

benchmark method.

The visual impression given by Figures 10 and 11 is confirmed by the MISE

values reported in Table 3: The best forecast results are produced by the benchmark

procedure. Our approach turns out to be second best, clearly outperforming the

CCL method and the continuous versions of the I(0), I(1) and I(2) forecasters. The

MISE values produced by our approach are notably smaller than those of the CCL

method and the I(0) forecaster for all models and sample sizes under consideration.

Similarly, they are markedly smaller than those of the I(1) and I(2) forecasters in all

simulation scenarios concerning Models 4 and 6. Only in the simulation scenarios

concerning Model 5, the I(1) and I(2) forecasters produce MISE values that are

comparable in size to those of our approach.

Figure 12 shows boxplots of the cross-validated κ parameter that is used to
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Figure 12: Boxplots of the cross-validated κ choice for Models 4 to 6 (non-constant calendar

effect). The dotted red line shows the true κ∗.

derive our forecasts. When running the cross-validation method, we have considered

a range of κ values between 0.1 and 1 for κ∗ = 0.6, and between 0.1 and 0.7 for

κ∗ = 0.3. We notice that the distribution of the cross-validated κ values is highly

variable, the central values in the boxplots hardly representing the true values κ∗.

This has a moderate effect on the quality of the final forecasts, as reflected by the

MISE values in Table 3: Our κ estimates lead to forecasts which are somewhat worse

than the benchmark. Nevertheless, our forecasts are much better than those of the

standard CCL approach and the I(0), I(1) and I(2) methods.

8 Conclusion

In this paper, we have developed an extended version of the continuous chain lad-

der model introduced by Mart́ınez-Miranda et al. (2013) and Mammen et al. (2015).

The statistical problem underlying the model is to estimate and forecast a structured

nonparametric density which decomposes into several multiplicative components.

We have developed backfitting type methods to estimate the structured density and

have derived asymptotic theory for our estimators. Moreover, we have proposed a
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novel forecasting approach which is based on the following idea: By imposing ap-

propriate identification constraints on the model, the component functions of the

structured density can be normalized in a way which allows us to use the simplest

possible forecasting strategy: constant extrapolation. Our estimation and forecast-

ing methods are quite general in nature and are useful in a wide range of application

contexts. In particular, they can be used to approach various empirical problems in

economics. We have illustrated the broad applicability of our methods by two em-

pirical examples. The first is concerned with claims reserving in non-life insurance,

which is the original application of the chain ladder methodology. The second is an

economic application on fertility forecasting.

9 Acknowledgements

The authors acknowledge the support from the Spanish Ministry of Economy and

Competitiveness, through grant number MTM2016-76969P, which includes support

from the European Regional Development Fund (ERDF). The authors also acknowl-

edge the Human Fertility Database for freely providing part of the fertility data used

in this paper, available at www.humanfertility.org (data downloaded on Sep. 2019),

and thank the Centro de Servicios de Informática y Redes de Comunicaciones, Uni-
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A Technical appendix

In this appendix, we prove the main theoretical results of the paper. Throughout

the appendix, we use the symbol C to denote a generic real constant which may

take a different value on each occurrence.

A.1 Proof of Theorem 1

To start with, we derive some theoretical properties of the operator G(θ, g) and its

estimator Ĝ(θ, g). The derivative of G(θ, g) in the direction (d, δ) is given by

G ′(θ,g)(d, δ)(x, y, z) =
(
G ′1,(θ,g)(d, δ),G ′2,(θ,g)(d, δ),G ′3,(θ,g)(d, δ),

G ′4,(θ,g)(d, δ)(x),G ′5,(θ,g)(d, δ)(y),G ′6,(θ,g)(d, δ)(z)
)>
,
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where

G ′1,(θ,g)(d, δ) = −
∫
S1
f1(x)δ1(x)dx

G ′2,(θ,g)(d, δ) = −
∫
S2
f2(y)δ2(y)dy

G ′3,(θ,g)(d, δ) = −
∫
S
f(x, y)κ(x, y, x+ y; g, δ)dxdy

G ′4,(θ,g)(d, δ)(x) =

∫
J2(x)

f(x, y)
{
d1 − κ(x, y, x+ y; g, δ)

}
dy

G ′5,(θ,g)(d, δ)(y) =

∫
J1(y)

f(x, y)
{
d2 − κ(x, y, x+ y; g, δ)

}
dx

G ′6,(θ,g)(d, δ)(z) = 1[0,1−κ∗)(z)

∫
J3(z)

f(x, z − x)
{
d3 − κ(x, z − x, z; g, δ)

}
dx

+ 1[1−κ∗,1](z)
1

κ∗

∫ 1

1−κ∗

∫
J3(v)

f(x, v − x)
{
d3 − κ(x, v − x, v; g, δ)

}
dxdv

with

κ(x, y, z; g, δ) = δ1(x){1 + g2(y)}{1 + g3(z)}+ δ2(y){1 + g1(x)}{1 + g3(z)}
+ δ3(z){1 + g1(x)}{1 + g2(y)}.

Analogously to G ′(θ,g)(d, δ), we define Ĝ ′(θ,g)(d, δ) to be the derivative of Ĝ at (θ, g)

in the direction of (d, δ). Endowing the space R3 × L with the norm

‖(d, δ)‖∞ = max
{
|d1|, |d2|, |d3|, ‖δ1‖∞, ‖δ2‖∞, ‖δ3‖∞

}
,

where ‖δj‖∞ := ess supw∈Sj |δj(w)| with ess sup denoting the essential supremum,

we can derive the following result.

Lemma 1. Let the conditions of Theorem 1 be fulfilled and assume in particular

that f̂(x, y)− f(x, y) = Op(εn) uniformly for (x, y) ∈ S. Then

(i) sup‖(d,δ)‖∞=1

∥∥Ĝ ′(0,0)(d, δ)− G ′(0,0)(d, δ)
∥∥
∞ = Op(εn).

(ii) The operator G ′(0,0) is invertible and has bounded inverse.

(iii) The operator Ĝ ′ is Lipschitz continuous with probability tending to 1, that is,

there exist constants r, C > 0 such that with probability tending to 1,

sup
‖(d,δ)‖∞=1

∥∥Ĝ ′(θ1,g1)(d, δ)− Ĝ ′(θ2,g2)(d, δ)
∥∥
∞ ≤ C

∥∥(θ1, g1)− (θ2, g2)
∥∥
∞

for all (θ1, g1), (θ2, g2) ∈ Br(0,0), where Br(θ, g) is an open ball with radius

r > 0 and center (θ, g) ∈ R3 × L.
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The main part of the proof of Theorem 1 consists in verifying Lemma 1. Given

the result of Lemma 1, the proof of Theorem 1 proceeds analogously as the proof

of Theorem 3 in Lee et al. (2015). For the sake of completeness, we provide the

details in what follows. The proof of Lemma 1 is postponed until the arguments for

Theorem 1 are complete.

With the help of statement (ii) of Lemma 1, we obtain that∥∥∥∥∥
(

φ̄− φ
(f̄ − f)/f

)∥∥∥∥∥
∞

=

∥∥∥∥∥G ′−1(0,0)

(
0

−fw ◦ µ̂

)∥∥∥∥∥
∞

≤ C

∥∥∥∥∥
(

0

−fw ◦ µ̂

)∥∥∥∥∥
∞

≤ C max
{

sup
x∈S1

∫
J2(x)

{
f̂(x, y)− f(x, y)

}
dy,

sup
y∈S2

∫
J1(y)

{
f̂(x, y)− f(x, y)

}
dx,

sup
z∈S3

∫
J3(z)

{
f̂(x, z − x)− f(x, z − x)

}
dx
}
, (A.1)

which immediately implies that∥∥∥∥∥
(

φ̄− φ
(f̄ − f)/f

)∥∥∥∥∥
∞

= Op(εn). (A.2)

This together with statements (i) and (iii) of Lemma 1 yields that

sup
‖(d,δ)‖∞=1

∥∥∥Ĝ ′(φ̄−φ,{f̄−f}/f)(d, δ)− G ′(0,0)(d, δ)
∥∥∥
∞

= Op(εn). (A.3)

From this and Lemma 1(ii), it further follows that Ĝ ′
(φ̄−φ,{f̄−f}/f) is invertible and

sup
‖(d,δ)‖∞=1

∥∥∥Ĝ ′−1
(φ̄−φ,{f̄−f}/f)(d, δ)

∥∥∥
∞
≤ C (A.4)

with probability tending to 1. Finally, it holds that

Ĝ
(
φ̄− φ, f̄ − f

f

)
= Ĝ(0,0) + Ĝ ′(0,0)

(
φ̄− φ, f̄ − f

f

)
+Op(ε

2
n)

= Ĝ(0,0) + G ′(0,0)
(
φ̄− φ, f̄ − f

f

)
+Op(ε

2
n)

= Op(ε
2
n + n−1/2), (A.5)

where the first equality follows with the help of Lemma 1(iii), the second is a con-

sequence of Lemma 1(i) and (A.2), and the third exploits the fact that

Ĝ(0,0) =


0

0

ϑ̂− ϑ
fw ◦ µ̂

 and G ′(0,0)
(
φ̄− φ, f̄ − f

f

)
=


0

0

0

−fw ◦ µ̂

 .
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With (A.2)–(A.5), we can apply the following version of the Newton-Kantorovich

theorem (cp. Theorem 15.6 in Deimling (1985)).

Theorem. Let B1, B2 be Banach spaces and T : Br(x0) ⊆ B1 → B2 a continuously

differentiable mapping, where Br(x0) is the open ball with radius r > 0 and center

x0 ∈ B1. Suppose that the derivative T ′(x0) of T at x0 is bijective and has bounded

inverse, that is, ‖T ′−1(x0)
‖ ≤ β < ∞. Moreover, assume that ‖T ′−1(x0)

T (x0)‖ ≤ α and

‖T ′(x) − T ′(y)‖ ≤ k‖x − y‖ for all x, y ∈ Br(x0), where q := 2kαβ < 1 and 2α < r.

Then the mapping T has a unique root z in the closed ball B̄2α(x0) and the Newton

iterates

xm+1 = xm − T ′−1(xm)T (xm)

satisfy

‖xm − z‖ ≤ α2−(m−1)q2
m−1. (A.6)

We now show that the conditions of this theorem are satisfied for T = Ĝ and

x0 = (φ̄− φ, {f̄ − f}/f) with probability tending to 1: Note that by (A.4),

sup
‖(d,δ)‖∞=1

∥∥∥Ĝ ′−1
(φ̄−φ,{f̄−f}/f)(d, δ)

∥∥∥
∞
≤ β

for some sufficiently large β with probability tending to 1 and define

α = αn := β
∥∥∥Ĝ(φ̄− φ, f̄ − f

f

)∥∥∥
∞
.

Since αn = Op(ε
2
n+n−1/2) by (A.5) and Lemma 1(iii) holds for all (θ1, g1), (θ2, g2) ∈

Br(φ̄ − φ, {f̄ − f}/f) with some r > 2αn for sufficiently large n, the conditions

of the Newton-Kantorovich theorem are fulfilled with probability tending to 1. We

thus obtain that with probability tending to 1, there exists a unique solution of the

equation Ĝ(θ, g) = (0,0) in B̄2αn(φ̄ − φ, {f̄ − f}/f), which by definition is equal

to (φ̂− φ, {f̂ − f}/f). By (A.6), it further holds that∥∥∥∥∥
(

φ̄− φ
(f̄ − f)/f

)
−

(
φ̂− φ

(f̂ − f)/f

)∥∥∥∥∥
∞

=

∥∥∥∥∥
(

φ̄− φ̂
(f̄ − f̂)/f

)∥∥∥∥∥
∞

≤ Cαn

with probability tending to 1, that is,∥∥∥∥∥
(

φ̄− φ̂
(f̄ − f̂)/f

)∥∥∥∥∥
∞

= Op(ε
2
n + n−1/2).

This completes the proof of Theorem 1. It remains to verify Lemma 1.

Proof of Lemma 1. We now prove the three statements of Lemma 1.
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Proof of (i). Inspecting the formulas for G ′(0,0)(d, δ) and Ĝ ′(0,0)(d, δ), (i) can be seen

to follow from the assumption that sup(x,y)∈S |f̂(x, y)− f(x, y)| = Op(εn).

Proof of (ii). We first prove that the mapping G ′(0,0) is injective. Suppose that

G ′(0,0)(d, δ) = 0 for some (d, δ). We show that (d, δ) = 0 must hold, implying that

G ′(0,0) is injective. As a first step, we verify that d1 = d2 = d3 = 0: Inspecting the

third equation of the system G ′(0,0)(d, δ) = 0, we see that∫
S
f(x, y)δ+(x, y)dxdy = 0.

Integrating the fourth equation of G ′(0,0)(d, δ) = 0, we thus obtain that

0 =

∫
S
f(x, y)

[
d1 − δ+(x, y)

]
dxdy = d1

∫
S
f(x, y)dxdy,

which implies that d1 = 0. Proceeding analogously with the fifth and sixth equation,

we get that d2 = d3 = 0 as well. We next prove that δ1 = δ2 = δ3 = 0: As

G ′(0,0)(d, δ) = 0 by assumption, it holds that

0 =

∫
S1×S2×S3

(
0>,

δ1(x)

`2`3
,
δ2(y)

`1`3
,
δ3(z)

`1`2

)
G ′(0,0)(d, δ)(x, y, z)dxdydz

= −
∫
S
f(x, y)

[
δ1(x) + δ2(y) + δ3(x+ y)

]2
dxdy,

where we use the notation `j =
∫ 1

0
1(w ∈ Sj)dw for j = 1, 2, 3. This implies that

δ1(x) + δ2(y) + δ3(x+ y) = 0 a.e. on S.

Exploiting that δ3 is constant on the interval [1 − κ∗, 1] by definition, we can infer

that δj is a constant function on Sj for j = 1, 2. Since
∫
Sj fj(w)δj(w)dw = 0 for

j = 1, 2 by the first two equations of G ′(0,0)(d, δ) = 0, we further get that δ1 = δ2 = 0,

which in turn implies that δ3 = 0.

We next show that G ′(0,0) is surjective. Define 〈(c,η), (c̃, η̃)〉 =
∑3

j=1 cj c̃j +∑3
j=1

∫
Sj ηj(w)η̃j(w)dw for (c,η), (c̃, η̃) ∈ R3×L and suppose that for some (c,η) ∈

R3 × L, it holds that 〈(c
η

)
,G ′(0,0)(d, δ)

〉
= 0 (A.7)

for all (d, δ) ∈ R3×L. We show that (c,η) = (0,0) must hold in this case, implying

that G ′(0,0) is surjective. Choosing dj = 1 for some j ∈ {1, 2, 3} and setting all other

39



components of (d, δ) to zero in (A.7), we get that

0 =

∫
S
η1(x)f(x, y)dxdy (A.8)

0 =

∫
S
η2(y)f(x, y)dxdy (A.9)

0 =

∫
S
η3(x+ y)f(x, y)dxdy. (A.10)

Picking δj ≡ 1 for some j ∈ {1, 2, 3}, setting all other components of (d, δ) to zero

and using the shorthand η+(x, y) = η1(x) + η2(y) + η3(x+ y), we further arrive at

0 = c1

∫
S1
f1(x)dx+ c3

∫
S
f(x, y)dxdy +

∫
S
f(x, y)η+(x, y)dxdy (A.11)

0 = c2

∫
S2
f2(y)dy + c3

∫
S
f(x, y)dxdy +

∫
S
f(x, y)η+(x, y)dxdy (A.12)

0 = c3

∫
S
f(x, y)dxdy +

∫
S
f(x, y)η+(x, y)dxdy. (A.13)

We now combine (A.13) with (A.8)–(A.10) to obtain that c3
∫
S f(x, y)dxdy = 0,

which in turn implies that c3 = 0. Combining (A.11) and (A.12) with (A.8)–

(A.10) in an analogous fashion, we additionally get that c1 = c2 = 0. We next set

d1 = d2 = d3 = 0 and δj = ηj for all j = 1, 2, 3 in (A.7). Taking into account that

c1 = c2 = c3 = 0, we obtain that

0 =

∫
S
f(x, y)η2+(x, y)dxdy,

which implies that

η+(x, y) = η1(x) + η2(y) + η3(x+ y) = 0 a.e. on S.

As in the first part of the proof, we now exploit that η3 is constant on the interval

[1 − κ∗, 1] to get that ηj is a constant function on Sj for j = 1, 2. By (A.8) and

(A.9), we can infer that η1 = η2 = 0, which in turn implies that η3 = 0.

To verify that the inverse G ′−1(0,0) is bounded, it is sufficient to prove that the

bijective linear operator G ′(0,0) is bounded according to the bounded inverse theorem.

Under our conditions, it obviously holds that ‖G ′(0,0)(d, δ)‖∞ ≤ C‖(d, δ)‖∞, which

completes the proof.

Proof of (iii). The function κ defined at the beginning of the proof satisfies the

inequality

sup
(x,y,z)∈S1×S2×S3

∣∣κ(x, y,z; g2, δ)− κ(x, y, z; g1, δ)
∣∣

≤ 3‖δ‖∞(2 + ‖g1‖∞ + ‖g2‖∞)‖g2 − g1‖∞.
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From this and the definition of Ĝ ′(θ,g)(d, δ), it follows that for any given r > 0,∥∥Ĝ ′(θ1,g1)(d, δ)− Ĝ ′(θ2,g2)(d, δ)
∥∥
∞ ≤ 6(1 + r) max

1≤j≤3
sup
v∈Sj

fw,j(v)‖g2 − g1‖∞

for all (θ1, g1), (θ2, g2) ∈ Br(0,0) and all (d, δ) with ‖(d, δ)‖∞ = 1.

A.2 Proof of Theorem 2

The local linear estimator f̂ with h1 ∼ h2 ∼ n−1/5 has the property that

sup
(x,y)∈S

∣∣f̂(x, y)− f(x, y)
∣∣ = Op(εn)

with εn = n−3/10
√

log n. By Theorem 1, it thus holds that

sup
w∈Sj
|f̂j(w)− f̄j(w)| = Op(n

−3/5 log n+ n−1/2) = Op(n
−1/2)

for j = 1, 2, 3. To complete the proof, it remains to show that

sup
w∈Sj
|f̄j(w)− fj(w)| = Op(n

−2/5
√

log n). (A.14)

By (A.1), we know that∥∥∥∥∥
(

φ̄− φ
(f̄ − f)/f

)∥∥∥∥∥
∞

≤ C max
{

sup
x∈S1

∫
J2(x)

{
f̂(x, y)− f(x, y)

}
dy,

sup
y∈S2

∫
J1(y)

{
f̂(x, y)− f(x, y)

}
dx,

sup
z∈S3

∫
J3(z)

{
f̂(x, z − x)− f(x, z − x)

}
dx
}
.

Standard theory for kernel estimators shows that the right-hand side is of the order

Op(n
−2/5√log n), which implies (A.14).

A.3 Proof of Theorem 3

By Theorem 1, we know that

sup
w∈Sj
|f̂j(w)− f̄j(w)| = Op(ε

2
n + n−1/2) = op(n

−2/5)

with εn = n−3/10
√

log n for j = 1, 2, 3. Hence, for any fixed w ∈ Sj,

f̂j(w)− fj(w)

fj(w)
=
f̄j(w)− fj(w)

fj(w)
+ op(n

−2/5),
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which implies that the asymptotic distribution of (f̂j(w)− fj(w))/fj(w) is identical

to that of (f̄j(w) − fj(w))/fj(w). To complete the proof, it thus suffices to derive

the limit distribution of (f̄j(w)− fj(w))/fj(w) for j = 1, 2, 3.

To start with, we decompose the term (f̄j(w) − fj(w))/fj(w) into a variance

and a bias part: Let f̂A(x, y) be the first entry of the vector η̂A(x, y) which is

defined analogous to η̂ in (3.10) with b replaced by b − Eb. Likewise, let f̂B(x, y)

be the first component of η̂B(x, y) which is defined as η̂(x, y) with b(x, y) replaced

by Eb(x, y) − (f(x, y), h1∂f(x, y)/∂x, h2∂f(x, y)/∂y)>. With these definitions, we

can decompose the local linear density estimator f̂ according to

f̂(x, y)− f(x, y) = f̂A(x, y) + f̂B(x, y),

where f̂A and f̂B play the role of the variance and the bias part of f̂ , respectively.

For k = A,B, we define the quantities φ̄
k − φ and f̄

k
/f by the operator equation(

φ̄
k − φ
f̄
k
/f

)
= G ′−1(0,0)

(
0

−fw ◦ µ̂k

)
, (A.15)

where

µ̂k1(x) = f−1w,1(x)

∫
J2(x)

f̂k(x, y)dy

µ̂k2(y) = f−1w,2(y)

∫
J1(y)

f̂k(x, y)dx

µ̂k3(z) = 1[0,1−κ∗)(z) f−1w,3(z)

∫
J3(z)

f̂k(x, z − x)dx

+ 1[1−κ∗,1](z) c−1w,3
1

κ∗

∫ 1

1−κ∗

∫
J3(v)

f̂k(x, v − x)dxdv.

The operator equation (A.15) parallels (5.6) which defines the quantities φ̄ − φ
and (f̄ − f)/f . From (A.15), it follows that φ̄

k − φ and f̄
k
/f satisfy a system of

backfitting equations. Specifically, for k = A,B, the quantities

δ̄
k

= (δ̄k1 , δ̄
k
2 , δ̄

k
3)> =

( f̄k1
f1
,
f̄k2
f2
,
f̄k3
f3

)>
d̄
k

= (d̄k1, d̄
k
2, d̄

k
3)> = (φ̄k1 − φ1, φ̄

k
2 − φ2, φ̄

k
3 − φ3)

>

solve the backfitting equations

δ̄k1(x) = d̄k1 + µ̂k1(x)−
∫
J2(x)

{
δ̄k2(y) + δ̄k3(x+ y)

}f(x, y)

fw,1(x)
dy (A.16)

δ̄k2(y) = d̄k2 + µ̂k2(y)−
∫
J1(y)

{
δ̄k1(x) + δ̄k3(x+ y)

}f(x, y)

fw,2(y)
dx (A.17)
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δ̄k3(z) = d̄k3 + µ̂k3(z)− 1[0,1−κ∗)(z)

∫
J3(z)

{
δ̄k1(x) + δ̄k2(z − x)

}f(x, z − x)

fw,3(z)
dx

− 1[1−κ∗,1](z)
1

κ∗

∫ 1

1−κ∗

∫
J3(v)

{
δ̄k1(x) + δ̄k2(v − x)

}f(x, v − x)

cw,3
dxdv (A.18)

subject to

0 =

∫
S1
f1(x)δ̄k1(x)dx (A.19)

0 =

∫
S2
f2(y)δ̄k2(y)dy (A.20)

0 =

∫
S
f(x, y)

[
δ̄k1(x) + δ̄k2(y) + δ̄k3(x+ y)

]
dxdy. (A.21)

Analogous backfitting equations hold for the quantities φ̄−φ and (f̄−f)/f defined

via (5.6). Inspecting (A.16)–(A.18) and taking into account that µ̂Aj (w) + µ̂Bj (w) =

µ̂j(w) for j = 1, 2, 3, it is easily seen that φ̄ = φ̄
A − φ+ φ̄

B
and

f̄ − f
f

=
f̄
A

f
+
f̄
B

f
,

where f̄
A
/f and f̄

B
/f are the variance and bias part of (f̄ − f)/f , respectively.

For our subsequent analysis, we write the backfitting equations (A.16)–(A.18) as

δ̄
k

= d̄
k

+ µ̂k − T δ̄k, (A.22)

or more explicitly asδ̄k1(x)

δ̄k2(y)

δ̄k3(z)

 =

d̄k1d̄k2
d̄k3

+

µ̂k1(x)

µ̂k2(y)

µ̂k3(z)

−
(T1δ̄

k
)(x)

(T2δ̄
k
)(y)

(T3δ̄
k
)(z)


with an appropriately defined linear operator T = (T1, T2, T3). In the sequel, we

implicitly take for granted that the constraints (A.19)–(A.21) are satisfied whenever

we talk about solutions of the backfitting equations (A.22). We now proceed in two

steps: We first analyze the variance part f̄
A
/f and then investigate the bias term

f̄
B
/f .

To examine f̄
A
/f , we make us of the following lemma whose proof is provided

below.

Lemma 2. Under the conditions of Theorem 3, it holds that T µ̂A = op(n
−2/5)

uniformly on S1 × S2 × S3.

With the help of (A.22) and Lemma 2, we obtain that

f̄
A

f
− µ̂A =

[
φ̄
A − φ

]
− T

( f̄A
f
− µ̂A

)
+ op(n

−2/5)
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uniformly on S1 × S2 × S3, that is,(
φ̄
A − φ

(f̄
A
/f)− µ̂A

)
= G ′−1(0,0)

(
op(n

−2/5)
)

= op(n
−2/5) (A.23)

uniformly on S1 × S2 × S3, where the last equality follows from the fact that the

operator G ′−1(0,0) is bounded by Lemma 1. According to (A.23), it in particular holds

that
f̄
A

f
− µ̂A = op(n

−2/5) (A.24)

uniformly on S1 × S2 × S3, which implies that the asymptotic behaviour of f̄
A
/f

is equivalent (up to first order) to that of µ̂A. Standard calculations show that

n2/5µ̂Aj (w) is asymptotically normal with mean zero and variance σ2
j (w) for any w

in the interior of Sj and j = 1, 2, 3. Hence, we obtain that n2/5f̄Aj (w)/fj(w) is

asymptotically normal with mean zero and variance σ2
j (w) as well.

We next turn to the analysis of f̄
B
/f . To do so, we let µ̃Bj for j = 1, 2, 3 be

defined as in Section 5. The following lemma whose proof is given below specifies

how the terms µ̂B = (µ̂B1 , µ̂
B
2 , µ̂

B
3 ) and µ̃B = (µ̃B1 , µ̃

B
2 , µ̃

B
3 ) are related to each other.

Lemma 3. For j = 1, 2, 3, it holds that

µ̂Bj = n−2/5µ̃Bj + rj,n,

where rj,n = O(n−2/5) uniformly on Sj and rj,n = o(n−2/5) uniformly on S ′j with

S ′j = {w ∈ Sj : w + th ∈ Sj for all t ∈ [−1, 1]} and h = max{h1, h2}.

With the help of Lemma 3, we obtain that T (rn) = o(n−2/5) uniformly on S1 ×
S2 ×S3, where we use the notation rn = (r1,n, r2,n, r3,n). Together with (A.22), this

implies that

f̄
B

f
− rn =

[
φ̄
B − φ

]
+ n−2/5µ̃B − T

( f̄B
f
− rn

)
+ o(n−2/5),

that is, (
φ̄
B − φ

(f̄
B
/f)− rn

)
= G ′−1(0,0)

(
0

−fw ◦ n−2/5µ̃B

)
+ o(n−2/5) (A.25)

uniformly on S1 × S2 × S3. Let (d,β) be the solution to the backfitting equation

β = d+ n−2/5µ̃B − Tβ, (A.26)

that is, (
d

β

)
= G ′−1(0,0)

(
0

−fw ◦ n−2/5µ̃B

)
. (A.27)
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Combining (A.25) and (A.27), we arrive at(
d

β

)
−

(
φ̄
B − φ

(f̄
B
/f)− rn

)
= o(n−2/5) (A.28)

uniformly on S1 × S2 × S3. Together with Lemma 3, this implies that

β(x, y, z)− (f̄
B
/f)(x, y, z) = o(n−2/5)

for any fixed point (x, y, z) ∈ S ′1 × S ′2 × S ′3. Hence, the asymptotic mean of f̄
B
/f ,

that is, the asymptotic bias of (f̄ − f)/f is given by β, which is the solution to the

backfitting equation (A.26). This completes the proof of Theorem 3.

Proof of Lemma 2. Let h = max{h1, h2} and define S ′1 = {x ∈ S1 : x + th ∈
S1 for all t ∈ [−1, 1]} along with J ′2(x) = {y ∈ J2(x) : y + th ∈ J2(x) for all t ∈
[−1, 1]}. Similarly, let S ′2 = {y ∈ S2 : y + th ∈ S2 for all t ∈ [−1, 1]} and J ′1(y) =

{x ∈ J1(y) : x+ th ∈ J1(y) for all t ∈ [−1, 1]}. In addition, define

S ′ = {(x, y) ∈ S : x ∈ S ′1 and y ∈ J ′2(x)}

and set S ′3 = {z ∈ S3 : (x, z − x) ∈ S ′ for some x} together with J ′3(z) = {x ∈
J3(z) : (x, z − x) ∈ S ′}. Finally, set

f̃A(x, y) =
1

n

n∑
i=1

{
Kh1(Xi − x)Kh2(Yi − y)Wi − E

[
Kh1(Xi − x)Kh2(Yi − y)Wi

]}
with Kh(v) = h−1K(v/h) and let µ̃Aj be defined as µ̂Aj for j = 1, 2, 3 with f̂A replaced

by f̃A.

Inspecting the definitions of f̂A and f̃A, it is easy to see that

f̂A(x, y) = f̃A(x, y) for (x, y) ∈ S ′. (A.29)

Moreover, by standard arguments for kernel smoothers, it holds that

sup
(x,y)∈S

|f̂A(x, y)| = Op(n
−3/10

√
log n) (A.30)

sup
(x,y)∈S

|f̃A(x, y)| = Op(n
−3/10

√
log n). (A.31)

With the help of (A.29)–(A.31), we obtain that

µ̂Aj (w) = µ̃Aj (w) + op(n
−3/10

√
log n) uniformly for w ∈ Sj (A.32)

µ̂Aj (w) = µ̃Aj (w) + op(n
−1/2

√
log n) uniformly for w ∈ S ′j (A.33)
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for j = 1, 2, 3. Using (A.32)–(A.33) and noticing that the regions Sj \ S ′j have

Lebesgue measure of order O(h), we can further infer that

T (µ̂A − µ̃A) = op(n
−2/5) uniformly on S1 × S2 × S3. (A.34)

Standard calculations for kernel estimators yield that T µ̃A = op(n
−2/5) uniformly on

S1×S2×S3. This together with (A.34) allows us to conclude that T µ̂A = op(n
−2/5)

uniformly on S1 × S2 × S3 as well.

Proof of Lemma 3. It holds that f̂B(x, y) = n−2/5f̃B(x, y) + o(n−2/5) uniformly

for (x, y) ∈ S ′ and f̂B(x, y) = O(n−2/5) uniformly for (x, y) ∈ S. From this, we

obtain that µ̂Bj (w) = n−2/5µ̃Bj (w) + o(n−2/5) uniformly over w ∈ S ′j and µ̂Bj (w) =

n−2/5µ̃Bj (w) +O(n−2/5) uniformly over w ∈ Sj for j = 1, 2, 3.

A.4 Derivation of equation (3.10)

The first order conditions of the minimization problem (3.9) are

lim
b1,b2→0

∫
S

[
f̃b1,b2(v, w)− a(v, w;x, y)>η(x, y)

]
× a(v, w;x, y)K

(v − x
h1

)
K
(w − y

h2

)
dvdw = 0,

which gives that

lim
b1,b2→0

∫
S
f̃b1,b2(v, w)a(v, w;x, y)h−11 h−12 K

(v − x
h1

)
K
(w − y

h2

)
dvdw

= A(x, y)η(x, y) (A.35)

withA(x, y) defined in (3.11). Plugging the definition of the kernel density estimator

f̃b1,b2(v, w) = (nb1b2)
−1∑n

i=1K(Xi−v
b1

)K(Yi−w
b2

)Wi into (A.35), we further obtain that

1

n

n∑
i=1

Q(Xi, Yi, x, y) = A(x, y)η(x, y) (A.36)

with

Q(Xi, Yi, x, y) = lim
b1,b2→0

∫
S
b−11 b−12 K

(Xi − v
b1

)
K
(Yi − w

b2

)
× a(v, w;x, y)h−11 h−12 K

(v − x
h1

)
K
(w − y

h2

)
Widvdw.

Elementary arguments yield that

Q(Xi, Yi, x, y) = lim
b1,b2→0

∫
S
b−11 b−12 K

(Xi − v
b1

)
K
(Yi − w

b2

)
dvdw

× a(Xi, Yi;x, y)h−11 h−12 K
(Xi − x

h1

)
K
(Yi − y

h2

)
Wi.
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Moreover, since (i) the n observations (Xi, Yi) are interior points of S with probabil-

ity 1 under our technical assumptions and (ii)
∫
S b
−1
1 b−12 K(Xi−v

b1
)K(Yi−w

b2
)dvdw = 1

for b1, b2 small enough and any interior point (Xi, Yi) of S, it follows that

Q(Xi, Yi, x, y) = a(Xi, Yi;x, y)h−11 h−12 K
(Xi − x

h1

)
K
(Yi − y

h2

)
Wi

almost surely. Plugging this into (A.36), we arrive at

A(x, y)η(x, y) =
1

n

n∑
i=1

a(Xi, Yi;x, y)h−11 h−12 K
(Xi − x

h1

)
K
(Yi − y

h2

)
Wi = b(x, y)

almost surely with b(x, y) defined in (3.12), which yields (3.10).
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