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Abstract

In this thesis, we focus on the problem that a stochastic process crossing (or not crossing)
upper and/or lower deterministic boundaries and its application in statistics, inventory
management, finance, risk and ruin theory and queueing. In Chapter 2, we provide
a fast and accurate method based on fast Fourier transform (FFT), to compute the
(complementary) cumulative distribution function (CDF) of the Kolmogorov-Smirnov
(KS) statistic when the CDF under the null hypothesis, F(x), is purely discrete, mixed
or continuous, and thus obtain exact p values of the KS test. Secondly, we developed
a C++ and an R implementation of the proposed method, which fills in the existing
gap in statistical software. The numerical performance of the proposed FFT-based
method, implemented both in C++ and in the R package KSgeneral, available from
https://CRAN.R-project.org/package=KSgeneral, is illustrated when F(x) is mixed,
purely discrete, and continuous. In Chapter 3, we develop an efficient method based
on FFT, for computing the probability that a non-decreasing, pure jump (compound)
stochastic process stays between arbitrary upper and lower boundaries (i.e., determinis-
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Chapter 1

Introduction

This thesis focuses on the problem that a stochastic process crossing (or not crossing)

upper and/or lower deterministic boundaries and its applications in statistics, risk and

ruin theory, finance, queueing and inventory management.

In statistics, the two-sided Kolmogorov-Smirnov (KS) statistic is one of the most

popular goodness-of-fit test statistics that is used to measure how well the distribution

of a random sample (of size n) agrees with a pre-specified theoretical cumulative

distribution function (CDF) under the null hypothesis. When the CDF under the null

hypothesis is continuous, the distribution of the KS statistic is closely related to the

probability that the order statistics of n uni f orm(0,1) random variables all lie within an

n-dimensional rectangle, also referred to as the rectangle probability for uniform order

statistics. The latter probability can be expressed as the probability that the empirical

process lies between two (appropriately defined) parallel straight lines, which can be

re-expressed as a more easily computable probability that a homogeneous Poisson

process stays within the corridor between two (appropriately defined) upper and lower

boundaries. We refer to the latter probability as the double-boundary non-crossing

(DB(non-)C) probability for a Poisson process.

On the other hand, there are many real-life applications, e.g., in biology, physics,

engineering, finance, and insurance, in which fitting discrete or mixed distributions,

i.e., with multiple jumps and continuous segments, to large samples of data is required.
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However, due to inherent difficulties, the distribution of the KS statistic when the CDF

under the null hypothesis has jump discontinuities has been studied to a much lesser

extent and no exact and efficient computational methods have been proposed in the

literature.

For this purpose, we develop a fast and accurate method to compute the (complemen-

tary) CDF of the KS statistic when the CDF under the null hypothesis is discontinuous,

and thus obtain exact p values of the KS test. Our approach is to first express the

complementary CDF through an appropriately defined rectangle probability for uniform

order statistics, which is then re-expressed as the DB(non-)C probability for an empirical

process, with modified non-linear boundaries. The latter probability can be obtained by

considering an equivalent DB(non-)C probability for a homogeneous Poisson process

and hence, an appropriate system of Chapman-Kolmogorov forward equations, which

can then be efficiently computed, based on circular convolution theorem, using fast

Fourier transform (FFT). We further implement the proposed method in C++ and in the

R package KSgeneral, available from https://CRAN.R-project.org/package=KSgeneral,

which fills in the existing gap in statistical software. In fact, the proposed method

is also applicable for computing the distribution of other KS-type statistics that have

higher statistical power when the CDF (possibly with jump discontinuities) under the

alternative hypothesis behaves differently in the tails (e.g., the standardized Smirnov

statistic, the Studentized Smirnov statistic, etc.).

We further generalize the proposed FFT-based method so as to compute the

DB(non-)C probability for a very large class of models (processes and boundaries).

Namely, we consider general boundaries (i.e., arbitrary deterministic functions with

possible jump discontinuities) and assume that the underlying stochastic process may

not necessarily be homogeneous Poisson. The latter can be any process from the wide

class of compound processes in which the process modelling event arrivals belongs to

the large family of point processes with conditional stationary independent increments

(PPCSII). This rather general family includes not only (non-)homogeneous Poisson,

binomial, negative binomial processes, but also processes that may not necessarily be

stationary and have independent increments, such as the doubly stochastic (i.e., Cox)
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and mixed Poisson processes, allowing for dependence/clustering of the event arrivals.

We demonstrate that the proposed general boundary crossing model and FFT-based

method can be very useful in the context of operations research, in formulating and

solving inventory management optimization problems, in finance in pricing barrier

options or computing non-exit probabilities for Brownian motion, in risk theory in

computing ruin probabilities.

As one of the applications of the DB(non-)C problem, we consider a simple single-

item (single-product) single warehouse periodic review inventory model in which

batches of different sizes are shipped (i.e., replenished) from a supplier to the ware-

house, over a fixed time horizon, with certain (fixed) lead times. To the best of our

knowledge, we show for the first time that inventory management optimization problems

can be elegantly formulated (and solved) by incorporating an appropriate DB(non-)C

probability constraint. In the DB(non-)C problem, the demand arrival process is as-

sumed to be from the family of PPCSII (i.e., cumulative demand over time modelled by

a compound PPCSII process), and the fixed lower boundary is viewed as the minimum

demand below which the firm will fail to reach its sales targets and ensure flow of

revenue sufficient to cover its operating costs and sustain its business, whereas the upper

boundary models the aggregate units of the item replenished throughout the finite-time

period. By strategically selecting the upper boundary (i.e., the number of shipments,

batch sizes and future shipment times), the total ordering and holding costs incurred

to the warehouse are minimized, while at the same time the probability that within the

finite-time interval, the demand does not exceed the cumulative amount of replenished

items, and also does not fall below the minimum demand limit, is sufficiently large. In

addition, by considering the above DBC problem involving the overshoot of the demand

process (from the upper boundary), the stockout cost incurred to the warehouse is also

directly taken into account.

Moreover, computing DB(non-)C probabilities for Brownian motion has attracted

considerable attention in the applied probability literature where approximation schemes

have been developed for the case of (piece-wise) linear boundaries (Borovkov and

Novikov, 2005, Wang and Pötzelberger, 2007, Ycart and Drouilhet, 2016), strictly
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continuous boundaries (Fu and Wu, 2010) and a numerical approximation method for

general boundaries based on direct convolution (Khmaladze and Shinjikashvili, 2001).

We demonstrate that the proposed FFT-based method can be viewed as a significant

enhancement of the approach taken by the latter authors, achieving much better ef-

ficiency in computing DB(non-)C probabilities for general, possibly discontinuous

boundaries. Since the DB(non-)C probability for Brownian motion is closely related

to the fair price of a barrier option in the Black-Scholes setting (see e.g., Borovkov

and Novikov, 2005), we further illustrate the applicability of the proposed FFT-based

method in pricing multi-step double-barrier options, with arbitrary number of jumps

(i.e., steps) in the barriers. The latter options, as noted by Guillaume (2010), are popular

in over-the-counter markets.

Furthermore, in insurance risk and ruin theory, computing ruin probability is impor-

tant in modelling liquidity risk, estimating operational risk and assessing risk capital in

insurance and banking, and also in other real-life risk analysis applications among which,

flood risk, systems reliability risk and emerging disease spread risk (see Dimitrova et al.,

2015). Ruin occurs when the compound process modelling aggregate claims exceeds

for the first time the upper boundary (representing the aggregate insurance premium)

within a finite time interval. Interpreting the latter as double-boundary crossing (DBC)

probability (lower boundary equal to zero) allows us to employ the proposed FFT-based

method to efficiently compute ruin probabilities for any claims arrival model from the

PPCSII class and arbitrarily distributed claim sizes. In addition, the joint distribution of

the time to ruin and the deficit at ruin for the very wide class of PPCSII can be obtained

by considering the above DBC problem involving the overshoot of the aggregate claims

process (from the upper boundary). To the best of our knowledge, no such alternative

general method, or one specifically for Cox process arrivals has been considered in the

actuarial literature.

Finally, it has for long been recognized that some important connections exist

between single-server queues and inventory and insurance risk and ruin models (see

e.g., Asmussen and Albrecher, 2010). Frostig (2004) has noted that the time to ruin,

and the deficit at ruin in the classical Cramér-Lundberg (CL) insurance risk process are
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1.1 Chapter summaries

correspondingly equivalent to the busy period and the idle time in the G/M/1 single-

server queueing system, which we refer to as the CL-G/M/1 duality. We consider a

very general single-server queueing model in which customer inter-arrival times may

be dependent, with any joint distribution (which we code as GD), and service times

form a point process from the very rich class of PPCSII, which we refer to as the

GD/PPCSII/1 queue. We further introduce a new DBC-queueing duality which extends

the known CL-G/M/1 duality by generalizing the G/M/1 model to the GD/PPCSII/1 one,

by considering a finite-time horizon, and by introducing a second boundary. This has

allowed us to consider for the first time the joint distribution of the busy period, idle time

and the maximum waiting time in the very general GD/PPCSII/1 model. We also obtain

lower bounds and approximations for the joint distribution of the busy period, idle time

and the maximum waiting time in the general GD/PPCSII/1 and PPCSII/GD/1 models,

as well as exact closed form expressions for the joint distribution of the busy period and

idle time and its marginals, for the GD/OSPP/1 sub-model. Moreover, we extend the

FFT-based method that, based on the DBC-queueing duality, can be used for fast and

accurate computation of the joint distribution of the busy period, idle time and maximum

waiting time. In addition, we formulate and solve, using the FFT-based method, a new

profit optimization problem that focuses on the instantaneous maximization of the

worst-case profit and its related probability. Maximization is carried out with respect to

the parameter(s) of the service intensity (process), directly linked to the service capacity.

As yet another contribution, we establish a novel duality between DBC problem and

queueing and give new results and a closed form expression for the probability that

the virtual waiting time process exceeds a fixed level. The latter process is central

in queueing (see e.g., Cohen, 1982) and the related level crossing probability can be

viewed as an important queue performance measure.

1.1 Chapter summaries

This thesis is organized as a series of papers, each of which is presented in a separate

chapter. Chapter 2 has been accepted for publication by Journal of Statistical Software.
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Chapter 3 has been accepted for publication by European Journal of Operational

Research. Other chapters have been submitted to peer reviewed journals. It is worth

pointing out that all the papers are based on joint work with my PhD supervisors. In

what follows, we summarize the main results of each chapter, and provide a list of

publications arising from this thesis.

In Chapter 2, we study the distribution of the one-sample Kolmogorov-Smirnov (KS)

test statistic, which has been widely studied under the assumption that the underlying

theoretical cumulative distribution function (CDF), F(x), is continuous. However,

there are many real-life applications in which fitting discrete or mixed distributions is

required. Nevertheless, due to inherent difficulties, the distribution of the KS statistic

when F(x) has jump discontinuities has been studied to a much lesser extent and no

exact and efficient computational methods have been proposed in the literature. In this

chapter, we provide a fast and accurate method to compute the (complementary) CDF

of the KS statistic when F(x) is discontinuous, and thus obtain exact p values of the

KS test. Our approach is to express the complementary CDF through the rectangle

probability for uniform order statistics, and to compute it using fast Fourier transform

(FFT). Secondly, we provide a C++ and an R implementation of the proposed method,

which fills in the existing gap in statistical software. We give also a useful extension of

the Schmid’s asymptotic formula for the distribution of the KS statistic, relaxing his

requirement for F(x) to be increasing between jumps and thus allowing for any general

mixed or purely discrete F(x). The numerical performance of the proposed FFT-based

method, implemented both in C++ and in the R package KSgeneral, available from

https://CRAN.R-project.org/package=KSgeneral, is illustrated when F(x) is mixed,

purely discrete, and continuous. The performance of the general asymptotic formula is

also studied.

In Chapter 3, we develop an efficient method for computing the probability that a

non-decreasing, pure jump (compound) stochastic process stays between arbitrary upper

and lower boundaries (i.e., deterministic functions, possibly discontinuous) within a

finite time period. The compound process is composed of a process modelling the

arrivals of certain events (e.g., demands for a product in inventory systems, customers
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in queueing, or claims/capital gains in insurance/dual risk models), and a sequence of

independent and identically distributed random variables modelling the sizes of the

events. The events arrival process is assumed to belong to the wide class of point

processes with conditional stationary independent increments (PPCSII) which includes

(non-)homogeneous Poisson, binomial, negative binomial, mixed Poisson and doubly

stochastic Poisson (i.e., Cox) processes as special cases. The proposed method is based

on expressing the non-exit probability through Chapman-Kolmogorov equations, re-

expressing them in terms of a circular convolution of two vectors which is then computed

applying FFT. We further demonstrate that our FFT-based method is computationally

efficient and can be successfully applied in the context of inventory management (to

determine an optimal replenishment policy), ruin theory (to evaluate ruin probabilities

and related quantities) and double-barrier option pricing or simply computing non-exit

probabilities for Brownian motion with general boundaries.

In Chapter 4, we give explicit formulas and a numerically efficient FFT-based

method for computing the probability that a non-decreasing, pure jump stochastic

process will first exit from above the strip between two deterministic, possibly discon-

tinuous, time-dependent boundaries, within a finite-time interval with an overshoot

(not) exceeding a positive value. The stochastic process is a compound process with

events of interest arriving according to an arbitrary member of the family of PPCSII,

and event severities with any possibly dependent joint distribution. The class of PPCSII

is rather rich covering point processes with independent increments (among which

non-homogeneous Poisson processes and negative binomial processes), doubly stochas-

tic Poisson (i.e., Cox processes) including mixed Poisson processes (among which

processes with the order statistics property) and Markov modulated point processes.

These assumptions make our framework and results generally applicable for a broad

range of models arising in insurance, finance, queueing, economics, physics, astronomy

and many other fields. We present examples of such applications in queueing, ruin and

inventory management optimization, leading to new results in the latter fields, illustrated

also numerically.
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In Chapter 5, we consider the large class of PPCSII and the family GD of random

variables with arbitrary, possibly dependent joint distribution. These families are in-

terchangeably used to model customers arrival and service times in the very general

framework of GD/PPCSII/1 and its inverse PPCSII/GD/1 queueing models. The latter

cover well known models, e.g. the G/M/1 and M/G/1 queues, but also models incor-

porating dependence in the arrival times, service times and across, either by directly

stating their joint distribution, through a copula and appropriate marginals, or through

the PPCSII class. We further introduce a double–boundary crossing (DBC)–queueing

duality that extends the known Cramér–Lundberg – G/M/1 duality. The DBC–queueing

duality is used to establish new results with respect to the joint and marginal distribu-

tions of the busy period, idle time and the maximum waiting time, including bounds,

approximations and closed form formulas. We present a FFT-based method for effi-

cient computation of the latter distributions. We also formulate and solve novel profit

optimization problems, e.g., of determining the optimal capacity of the server so as to

maximize the worse-case profit margin jointly with its related probability. Results are

illustrated numerically.
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1.2 Publications arising from this thesis

Chapter 2: Computing the Kolmogorov-Smirnov Distribution when the Underlying

CDF is Purely Discrete, Mixed or Continuous.

This chapter is based on the paper:

Dimitrova, D.S., Kaishev, V.K., Tan, S. 2019. Computing the Kolmogorov-Smirnov

Distribution when the Underlying CDF is Purely Discrete, Mixed or Continuous. Jour-

nal of Statistical Software, forthcoming.

Chapter 3: On Double-Boundary Non-Crossing Probability for a Class of Compound

Processes with Applications.

This chapter is based on the paper:

Dimitrova, D.S., Ignatov, Z.G., Kaishev, V.K., Tan, S. 2019. On Double-Boundary

Non-Crossing Probability for a Class of Compound Processes with Applications, Euro-

pean Journal of Operational Research, forthcoming.

Chapter 4: On Double Boundary Crossing and the Overshoot: Applications in Queue-

ing, Ruin and Inventory.

This chapter is based on the paper:

Dimitrova, D.S., Ignatov, Z.G., Kaishev, V.K., Tan, S. 2019. On Double Boundary

Crossing and the Overshoot: Applications in Queueing, Ruin and Inventory, submitted

to a peer reviewed journal.

Chapter 5: On a Single Server Queueing Model and Its Double Boundary Crossing

Duality.

This chapter is based on the paper:

Dimitrova, D.S., Kaishev, V.K., Tan, S. 2019. On a Single Server Queueing Model

and Its Double Boundary Crossing Duality, submitted to a peer reviewed journal.
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Chapter 2

Computing the Kolmogorov-Smirnov

Distribution when the Underlying

CDF is Purely Discrete, Mixed or

Continuous

This chapter is based on the paper:

Dimitrova, D.S., Kaishev, V.K., Tan, S. 2019. Computing the Kolmogorov-Smirnov

Distribution when the Underlying CDF is Purely Discrete, Mixed or Continuous. Jour-

nal of Statistical Software, forthcoming.

Abstract

The distribution of the Kolmogorov-Smirnov (KS) test statistic has been widely studied

under the assumption that the underlying theoretical cumulative distribution function

(CDF), F(x), is continuous. However, there are many real-life applications in which

fitting discrete or mixed distributions is required. Nevertheless, due to inherent difficul-

ties, the distribution of the KS statistic when F(x) has jump discontinuities has been
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studied to a much lesser extent and no exact and efficient computational methods have

been proposed in the literature.

In this paper, we provide a fast and accurate method to compute the (complementary)

CDF of the KS statistic when F(x) is discontinuous, and thus obtain exact p values of

the KS test. Our approach is to express the complementary CDF through the rectangle

probability for uniform order statistics, and to compute it using fast Fourier transform

(FFT). Secondly, we provide a C++ and an R implementation of the proposed method,

which fills in the existing gap in statistical software. We give also a useful extension of

the Schmid’s asymptotic formula for the distribution of the KS statistic, relaxing his

requirement for F(x) to be increasing between jumps and thus allowing for any general

mixed or purely discrete F(x). The numerical performance of the proposed FFT-based

method, implemented both in C++ and in the R package KSgeneral, available from

https://CRAN.R-project.org/package=KSgeneral, is illustrated when F(x) is mixed,

purely discrete, and continuous. The performance of the general asymptotic formula is

also studied.

2.1 Introduction

The two-sided Kolmogorov-Smirnov (KS) statistic is one of the most popular goodness-

of-fit test statistics that is used to measure how well the distribution of a random sample

{X1, ...,Xn} agrees with a theoretical distribution. It is defined as

Dn = sup
x
|Fn(x)−F(x)| , (2.1)

where n is the sample size, Fn(x) denotes the empirical (cumulative) distribution function

(EDF) of {X1, ...,Xn}, and F(x) denotes the cumulative distribution function (CDF) of

a pre-specified theoretical distribution under the null hypothesis (H0) that the sample

{X1, ...,Xn} comes from F(x).

Many authors have studied the distribution of Dn, i.e., its CDF P(Dn ≤ q|H0),q ∈

[0,1] under the assumption that F(x) is continuous. Kolmogorov (1933), Smirnov

12
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(1939), Feller (1948), Doob (1949), and Smirnov (1948) considered the limiting distri-

bution of Dn. Massey (1951) showed that the exact distribution of Dn is independent

of F(x) if F(x) is continuous, and provided a table for exact critical levels of the KS

test corresponding to certain significance levels for sample sizes n ≤ 35. Durbin (1968)

studied the probability that the EDF of an ordered sample of n independent observations

from the uniform (0,1) distribution lies between two parallel straight lines. He also

obtained the exact distribution of Dn for F(x) continuous, when the two parallel straight

lines are ny = a+nx and ny =−a+nx. Durbin (1968) also noted the important link

between this probability and the double-boundary non-crossing probability for a Poisson

process that is easier to compute. Epanechnikov (1968), Steck (1971), Noé (1972),

Niederhausen (1981) obtained the exact distribution of Dn when F(x) is continuous, by

studying the probability that the order statistics of n uniform [0,1] random variables all

lie within an n-dimensional rectangle. For brevity, we will further refer to this probabil-

ity as the rectangle probability for uniform order statistics. Numerically computing the

distribution of Dn when F(x) is continuous is not easy and has been recently considered

by Marsaglia et al. (2003), Simard and L’Ecuyer (2011), Carvalho (2015), among others.

Details related to these works and further references are provided in Section 2.3.3.

While performing KS tests when F(x) is continuous is widely applicable, there

are many real-life applications, e.g., in biology, physics, engineering, finance, and

insurance, in which fitting discrete or mixed distributions, i.e., with multiple jumps

and continuous segments, to large samples of data is required. For example, Calabrese

and Zenga (2010) modeled the bank loan recovery rates using mixed random variables,

since empirical data suggest that loans are either not repaid at all (recovery rate = 0),

partially repaid (recovery rate between 0 and 1), or fully repaid (recovery rate = 1). This

leads to considering a mixed CDF F(x) with jumps at 0 and 1 and a continuous segment

in between. It is important to accurately model bank loan recovery rates, because this

is required by the Basel II solvency framework. Mixed distributions with multiple

jumps arise also in reinsurance, in relation to fitting claim amount data in multi-layer

excess-of-loss treaties. We consider such an example in Section 2.3.1. Furthermore,

numerous risk modeling applications in (general) insurance, e.g., car insurance and

13



Computing the Kolmogorov-Smirnov Distribution when the Underlying
CDF is Purely Discrete, Mixed or Continuous

catastrophe insurance, require fitting appropriate discrete distributions to claim numbers

data. The need to fit discrete distributions to data naturally arises also in almost any field

of research in science and economics. In all such cases, the underlying CDF F(x) has

discontinuities at some points and it is important to be able to perform goodness-of-fit

tests, such as the chi-squared test and the KS test. As demonstrated by Pettitt and

Stephens (1977), the KS test for discrete distributions can have greater power than the

chi-squared test. On the other hand, Noether (1963), Slakter (1965), and Walsh (1963)

showed that conducting a discontinuous KS test is more conservative than conducting

a continuous KS test in terms of accepting/rejecting the null hypothesis. Thus, as we

illustrate in Section 2.3.1, a null hypothesis that a sample comes from a discontinuous

distribution will be accepted more often if one uses the continuous KS test, as opposed

to using the discontinuous KS test. It should also be noted that the sample size in many

applications can be substantial. Therefore, it is important to accurately and efficiently

perform KS tests for F(x) with discontinuities, when sample sizes are large. For the

purpose, one needs to be able to efficiently and accurately compute probabilities of the

type, P(Dn ≥ q), known as the complementary CDF, for any values of n and q, q ∈ [0,1].

Addressing this problem is the main objective of this paper.

The distribution of the KS test statistic Dn in this more general case, when F(x)

may have jump discontinuities (including purely discrete F(x)), has been studied to a

much lesser extent. In an early paper, Schmid (1958) found the limiting distribution

of Dn when F(x) has countable number of jumps and is increasing between the jumps.

Carnal (1962) has generalized Schmid (1958)’s formula by allowing constant segments

between jumps. Conover (1972) provided an approach to finding the exact critical level

for the one-sided KS test statistics D−
n = supx(F(x)−Fn(x)) and D+

n = supx(Fn(x)−

F(x)) for discontinuous F(x). Approximated critical levels for the two-sided KS test

statistic Dn were also provided. Gleser (1985) studied the exact power of two-sided

KS tests. He showed that existing algorithms designed for KS tests with continuous

F(x) could be used (after some necessary adjustments) for KS tests when F(x) is

discontinuous. Specifically, Gleser (1985) showed that the power of the KS test when

F(x) has jump discontinuities could still be expressed as a rectangle probability with
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respect to uniform order statistics, but with modified non-linear boundaries. Therefore,

the determinantal and recurrence formulae for the latter rectangle probability due to

Steck (1971), Noé (1972) and Niederhausen (1981) could be applied in order to obtain

the exact distribution of Dn when F(x) is discontinuous. However, implementing these

results is computationally expensive, especially when the sample size is large, and may

lead to numerical instabilities, as noted by some authors and also illustrated in Section

2.3.2.

In summary, computing the distribution of Dn when F(x) is discontinuous is even

harder and much less explored than in the continuous case. To the best of our knowledge,

no methods have been proposed in the literature to compute the exact distribution of Dn

when F(x) is mixed. Looking at the statistical software literature, all major packages

implement the KS test only when F(x) is continuous, see for example, the ks.test

function of the package stats (R Core Team, 2018) and ks.test.imp function of the

package kolmim (Carvalho, 2015) in R (R Core Team, 2018), SPSS (IBM Corp., 2017),

ksmirnov function in Stata (StataCorp., 2017), the kstest function in MATLAB

(The MathWorks Inc., 2018), the KolmogorovSmirnovTest function in Mathematica

(Wolfram Research, Inc., 2018).

There is one exception, Arnold and Emerson (2011) provide the R function ks.test

as part of the package dgof that calculates exact p values of the KS test assuming F(x)

is purely discrete. In ks.test function, a one-sided KS p value is calculated by

combining the approaches of Conover (1972) and Niederhausen (1981), while two-

sided KS p values are calculated by combining the approaches of Gleser (1985) and

Niederhausen (1981). However, the ks.test function due to Arnold and Emerson

(2011) only provides exact p values for sample sizes less than or equal to 30, since as

noted by the authors, when the sample size is large, numerical instabilities may occur.

In the latter case, Arnold and Emerson (2011) suggest using simulation to approximate

p values, which as we show in Section 2.3.2, is rather slow and inaccurate.

Our aim in this paper is two-fold. The first goal is to provide a fast and accurate

method to compute P(Dn ≥ q) when F(x) is discontinuous (i.e., mixed or purely

discrete), and thus obtain exact p values of the KS test for any (small or large) sample
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size n, and any q ∈ [0,1], possibly close to 1. Our second goal is to give the C++

code and an R package KSgeneral, based on the C++ code that implements this

fast and accurate method, which we believe fills in the gap in the existing statistical

software. As we will see, the proposed method is also applicable and highly competitive

when F(x) is continuous. The approach we take, described in Section 2.2.1, is to

express P(Dn ≥ q) as an appropriate rectangle probability for uniform order statistics,

as noted by Gleser (1985), and to compute the latter probability using the fast Fourier

transform (FFT) method. FFT has been recently utilized by Moscovich and Nadler

(2017) to calculate this rectangle probability when F(x) is continuous. Furthermore, in

Section 2.2.2, we provide a useful extension (cf., (2.15) and (2.20)) of Schmid (1958)’s

asymptotic formula, relaxing his requirement for F(x) to be increasing between jumps

and thus allowing for any general mixed or purely discrete F(x). Similar formula has

been obtained by Carnal (1962), but the embedded implicit index structure makes its

numerical implementation prohibitive. In Section 2.3, we illustrate the C++ and the

R implementation as the package KSgeneral of the proposed FFT-based method. In

particular, in Section 2.3.1, we study its numerical properties based on some mixed

(inflated) distributions and also illustrate the performance of the general asymptotic

formula (2.15). We show in Section 2.3.2 that when F(x) is purely discrete, our

approach to computing P(Dn ≥ q), based on FFT and the asymptotic formula (2.22),

outperforms in terms of speed and accuracy the R function of Arnold and Emerson

(2011), especially for large sample sizes. Finally, in Section 2.3.3, we consider the case

of continuous F(x) and compare with the state-of-the-art procedures of Simard and

L’Ecuyer (2011) and Carvalho (2015).
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2.2 Distribution of Dn when F(x) is discontinuous

2.2 Distribution of Dn when F(x) is discontinuous

It is well known that the distribution of Dn does not depend on F(x) when the latter

CDF is continuous. To see this, note that

Dn = sup
−∞<x<∞

|Fn(x)−F(x)|= sup
0≤t≤1

∣∣Fn(F−1(t))−F(F−1(t))
∣∣ ,

= sup
0≤t≤1

∣∣Fn(F−1(t))− t
∣∣= sup

0≤t≤1
|Un(t)− t| ,

(2.2)

where F−1(t)≡ inf{x : F(x)≥ t}, t ∈ [0,1], and Un(t) is the empirical CDF of the uni-

form random sample {Ui = F(Xi), i = 1, ...,n}. In this section, we relax the assumption

of continuity of F(x) and assume that F(x) is non-decreasing and right-continuous, with

countable (possibly infinite) number of jumps. From the right-continuity of F(x), it

follows that F(F−1(t))≥ t and F−1(F(x))≤ x and hence, the distribution-free property,

illustrated by (2.2) is no longer valid. Therefore, it becomes difficult to compute the

exact and asymptotic distributions of Dn. This problem is addressed in the next two

sections.

2.2.1 The exact distribution of Dn

Our approach to computing the exact distribution of Dn is based on the following four

major steps:

Step 1. It is not difficult to show (see Appendix A.1) that the complementary CDF

P(Dn ≥ q),q ∈ [0,1], can be expressed in terms of a rectangle probability for the

vector of n uniform order statistics as

P(Dn ≥ q) = 1−P
(
Ai ≤U(i) ≤ Bi, 1 ≤ i ≤ n

)
, (2.3)
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where
Ai = lim

ε↓0
F
((

F−1( i
n
−q+ ε

))
−
)
,

F(x−) = lim
z↑x

F(z) = P(X < x),

Bi = lim
ε↓0

F
(

F−1( i−1
n

+q− ε
))

, i = 1,2, ...,n,

(2.4)

and where U(i), i = 1, ...,n, are the order statistics of n independent and identically

distributed uniform (0,1) random variables Ui, i = 1,2, ...,n.

Step 2. Express the rectangle probability on the right hand side of (2.3) in terms of the

double-boundary non-crossing probability with respect to the empirical process

ηn(t) = nUn(t) = ∑
n
i=11(Ui ≤ t),0 ≤ t ≤ 1, where Un(t) is the EDF of the sample

{U1, ...,Un}. In particular, it can be directly verified that (2.3) can be rewritten as

P(Dn ≥ q) = 1−P
(
Ai ≤U(i) ≤ Bi, 1 ≤ i ≤ n

)
,

= 1−P(g(t)≤ ηn(t)≤ h(t),∀ 0 ≤ t ≤ 1) ,
(2.5)

where the upper and lower boundary functions h(t), g(t) are defined as

h(t) =
n

∑
i=1
1(Ai<t), g(t) =

n

∑
i=1
1(Bi≤t). (2.6)

Let us note that h(t) and g(t) are correspondingly left and right continuous

functions which equivalently satisfy the following conditions

sup{t ∈ [0,1] : h(t)< i}= Ai, and inf{t ∈ [0,1] : g(t)> i−1}= Bi, (2.7)

with Ai,Bi defined in (2.4)1. The last equality in (2.5) is illustrated in Figure 2.1,

where one can see that considering the rectangle probability with respect to the

uniform order statistics, P
(
Ai ≤U(i) ≤ Bi, 1 ≤ i ≤ n

)
is equivalent to considering

the non-exit probability, P(g(t)≤ ηn(t)≤ h(t),∀ 0 ≤ t ≤ 1).

1An expression similar to (2.5) for the case of P(Dn > q) has been obtained by Gleser (1985) (cf.,
Theorem 2 therein).
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Fig. 2.1 Illustration of the fact that the non-exit probability,
P
(
Ai ≤U(i) ≤ Bi, 1 ≤ i ≤ n

)
is equivalent to the non-exit probability,

P(g(t)≤ ηn(t)≤ h(t),∀ 0 ≤ t ≤ 1), where g(t) and h(t) are defined as in (2.6)
using F(x) given in (2.23) (cf., Example 2.2.8), with n = 5.

Step 3. Use the fact that the process ηn(t), t ∈ [0,1], has the same distribution as

the conditional distribution of a Poisson process with intensity n, denoted by

ξn(t) : [0,1] 7→ {0,1,2...}, given ξn(1) = n, (see e.g., Shorack and Wellner, 1986,

Chapter 8, Proposition 2.2). Therefore, the non-crossing probability in (2.5) can

be re-expressed as

P(g(t)≤ ηn(t)≤ h(t),∀ 0 ≤ t ≤ 1)

= P(g(t)≤ ξn(t)≤ h(t)|ξn(1) = n,∀ 0 ≤ t ≤ 1)

=
P(g(t)≤ ξn(t)≤ h(t) and ξn(1) = n,∀ 0 ≤ t ≤ 1)

P(ξn(1) = n)
=

Q(1,n)
e−nnn/n!

,

(2.8)

where ξn(1) follows a Poisson(n) distribution and Q(1,n) is defined as in (2.9).

It is not difficult to see that in order to compute the non-crossing probability

P(g(t)≤ ξn(t)≤ h(t) and ξn(1) = n,∀ 0 ≤ t ≤ 1) on the right-hand-side of (2.8),

defined on a continuum of times t ∈ [0,1], it suffices to consider the events of

non-crossing only over some fixed times, 0 = t0 < t1 < t2 < ... < tN = 1, which

are the ordered set of all distinct points in {1,Ai,Bi, i = 1, ...,n}, where Ai and Bi
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are specified in (2.4) (and (2.7)). Based on this discretization, similarly as done

by Khmaladze and Shinjikashvili (2001) and Moscovich and Nadler (2017) in the

continuous case, the non-crossing probability in (2.8) can be calculated by solving

recursively an appropriate system of Chapman-Kolmogorov forward equations2.

In order to introduce these equations, for any s ∈ [0,1] and m ∈ {0,1,2, ...,}, let

Q(s,m) = P(g(t)≤ ξn(t)≤ h(t), ∀t ∈ [0,s] and ξn(s) = m), (2.9)

where g(s) ≤ m ≤ h(s) and Q(0,0) = P(g(0) ≤ 0 ≤ h(0)) = 1 by assumption.

For any j ∈ {0,1, ...,N −1} and any m ∈ {0,1,2, ...}, the Chapman-Kolmogorov

equations are

Q(t j+1,m) =


∑

g(t j)≤l≤m
Q(t j, l)P(Yj = m− l), if g(t j+1)≤ m ≤ h(t j+1),

0, otherwise,
(2.10)

where Yj denotes a Poisson random variable with parameter n(t j+1 − t j). The

required non-crossing probability is obtained by computing Q(1,n) following

(2.10). This is illustrated by Figure 2.2, where g(t) and h(t) are obtained based

on (2.6), with F(x) defined in (2.23) as part of Example 2.2.8. The black dots

illustrate the mesh of points (t j+1,m), j = 0,1, ...,6, m = 0,1,2, ...,5, at which

non-crossing of the trajectory of ξn(t) with the boundaries g(t), h(t) may occur

and the corresponding probabilities, Q(t j+1,m) need to be computed, following

(2.10).

As shown by Khmaladze and Shinjikashvili (2001), the recurrent computation

following (2.10) requires total running time of order at most O(n3). In the next

step we employ FFT in order to improve this rate.

2Both Khmaladze and Shinjikashvili (2001) and Moscovich and Nadler (2017) assume F(x) is
continuous and consider strict inequalities in (2.8) i.e., they do not allow the process to touch the
boundaries.
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h(t)

g(t)

ξn(t)

Fig. 2.2 Illustration of a trajectory of the Poisson process ξn(t) staying in the corridor
between the boundaries h(t) and g(t) defined as in (2.6) using F(x) given in (2.23) (cf.,
Example 2.2.8). The black dots illustrate the mesh of points (t j+1,m), j = 0,1, ...,6, m=
0,1,2, ...,5, at which non-crossing of the trajectory of ξn(t) with the boundaries g(t),
h(t) may occur and the corresponding probabilities, Q(t j+1,m) need to be computed,
following (2.10).

Step 4. Apply FFT to compute the truncated linear convolution of the vectors Qt j =

(Q(t j,0),Q(t j,1), ...,Q(t j,n)) and πππn(t j+1−t j) = (P(Y j = 0),P(Y j = 1), ...,P(Y j =

n)) in order to solve (2.10), as proposed by Moscovich and Nadler (2017), see

Section 2 therein. As shown by these authors, the total running time of this

method is of order at most O(n2 logn), which is faster than O(n3) especially for

large n.

In summary, our approach to computing the exact P(Dn ≥ q) when F(x) is discon-

tinuous is outlined in the following procedure (Procedure Exact-KS-FFT).

(i) Specify a discontinuous CDF F(x), a sample size n, and a quantile q.

(ii) As detailed in Step 1, compute Ai and Bi for i = 1, ...,n, based on (2.4), where the

limites are coded using a very small ε , e.g., ε = 10−10.

(iii) As detailed in Step 2, compute the upper and lower boundaries g(t), h(t) using

(2.6).
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(iv) Following Steps 3 and 4, apply FFT to compute Q(1,n) defined in (2.10). Hence,

calculate the double-boundary non-crossing probability with respect to the Pois-

son process on the right-hand-side of (2.8) and respectively obtain the double-

boundary non-crossing probability with respect to ηn(t) on the left-hand-side of

(2.8).

(v) Finally, compute the exact P(Dn ≥ q) using (2.5) (cf., Steps 2 and 3).

Remark 2.2.1. Let us note that P(Dn ≥ q), 0 ≤ q ≤ 1, can directly be computed using

(2.3) and (2.4), applying the determinantal formula for the rectangle probability in (2.3),

due to Steck (1971), or the recurrence formula of Niederhausen (1981). However, such

computations are slow, and may become unstable for sample sizes n ≥ 100, as shown in

Section 2.3.2, Example 2.3.5. We also note that P(Dn ≥ q) is the p value corresponding

to a fixed critical level q ∈ [0,1]. Thus, if q = dn, where dn is the value of the KS test

statistic computed based on a sample {x1, ...,xn}, then the corresponding exact p value,

P(Dn ≥ dn) can be obtained through (2.3) and (2.4).

Remark 2.2.2. We have described the Procedure Exact-KS-FFT for computing the

complementary CDF of the two-sided KS statistic, Dn, defined in (2.1). It should be

noted that by selecting the lower boundary g(t) ≡ 0,∀t, and the upper boundary h(t)

as specified in (2.6) one can compute the complementary CDF for the one-sided KS

statistic D+
n = supx(Fn(x)−F(x)). By selecting the upper boundary h(t)≡ n,∀t, and

the lower boundary g(t) as specified in (2.6), one can compute the complementary CDF

for the one-sided KS statistic D−
n = supx(F(x)−Fn(x)) (see e.g., Gleser, 1985). For the

sake of consistency, in what follows, we illustrate the proposed FFT-based method for

the two-sided version of the KS statistic.

As noted and also demonstrated in Section 2.3, the proposed FFT-based method

for computing exact P(Dn ≥ q) is highly numerically efficient and could be easily

applied to sample sizes n up to hundreds of thousands (see also Moscovich and Nadler,

2017). Nevertheless, it is still beneficial to know the asymptotic distribution of Dn as

n → ∞, since as demonstrated in Section 2.3, it can be efficiently applied to approximate

P(Dn ≥ q) for large and even moderate sample sizes and hypothesized distributions
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with small number of jumps. The asymptotic distribution of Dn will be considered in

the next section.

2.2.2 The asymptotic distribution of Dn

Schmid (1958) has studied the asymptotic distribution of the form

Φ(λ ) = lim
n→∞

P(Dn < λn−
1
2 ) = lim

n→∞
P( sup

−∞<x<∞

|Fn(x)−F(x)|< λn−
1
2 ), (2.11)

where n denotes the sample size, and F(x) is a CDF with countable number of jumps

J, at x = xl , l = 1,2, ...,J and increasing continuous segments between the jumps. Let

F(xl−) = f2l−1,F(xl) = f2l , l = 1,2, ...,J, with f0 = 0, f2J+1 ≡ 1, and f2l < f2l+1,

l = 0, ...,J. Under these assumptions on F(x), Theorem 1 of Schmid (1958) states that

Φ(λ ) =
∞

∑
j1=−∞

· · ·
∞

∑
jJ+1=−∞

(−1) j1+···+ jJ+1

× c
∫

λ

−λ

· · ·
∫

λ

−λ

exp
[
− 1

2

J

∑
l=1

(z2l − z2l−1)
2

f2l − f2l−1
− 1

2

J

∑
l=0

(z2l+1 − (−1) jl+1z2l −2λ jl+1)
2

f2l+1 − f2l

]
dz1 · · ·dz2J,

(2.12)

where

z0 = z2J+1 = 0,and c = (2π)−J
2J+1

∏
j=1

( f j − f j−1)
−1/2.

In view of (2.12), when the sample size n is large, the limiting P(Dn ≥ q) for mixed

F(x) can be calculated as

lim
n→∞

P(Dn ≥ q) = 1−Φ(λ ), (2.13)

where Φ(λ ) is expressed as in (2.12), and λ = qn
1
2 . However, Schmid’s formula cannot

be applied if the condition f2l < f2l+1, l = 0, ...,J is not satisfied, since there will be

division by 0 in the second denominator in (2.12). Therefore, (2.12) is not applicable

if F(x) has constant segments between (some of) the jumps, as is the case when F(x)

is purely discrete, or if F(x) starts (ends) with a jump at 0 (at 1), as is the case for

zero-inflated (mixed) distributions. Carnal (1962) has generalized Schmid (1958)’s
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formula to the case of arbitrary discontinuous F(x) with finite number of jumps (cf.,

expression (5.1) therein). However, there is notational ambiguity (e.g., in the fourth

summation in (5.1)) and because the embedded index structure is rather implicit, it is

not straightforward to implement formula (5.1) numerically. Therefore, in what follows,

we will derive an alternative formula for Φ(λ ), for any discontinuous F(x) with finite

number of jumps (see Proposition 2.2.3). The latter formula may look cumbersome, but

as we will see, it is notationally explicit and therefore easier to implement numerically.

In addition, we believe that the clearer and more intuitive proof of Proposition 2.2.3

will facilitate better understanding of the structure underlying (2.15). However, one

should note that formula (2.15) (respectively (2.20) and (2.22)) is only practically

implementable for small/moderate number of jumps, J, in the null distribution, as

otherwise the multidimensional integration becomes infeasible.

It is not difficult to see that any jump structure in F(x) can be represented through

only two different types of continuous segments of F(x) followed by jumps. The

first one is a segment of F(x) increasing on [xl−1,xl−], i.e., f2l−2 < f2l−1, followed

by a jump at xl , and the second one is a constant segment of F(x) on [xl−1,xl−], i.e.,

f2l−2 = f2l−1, followed by a jump at xl . We will refer to these two types of segments as

increasing-jump segment and flat-jump segment, respectively.

We will use the notation ν1,ν2, ... to denote the sizes of groups of consecutive

increasing-jump segments, i.e., νi denotes the number of consecutive jumps, preceded

by an increasing segment, in the ith group. Similarly, by ωk, k = 1,2, ..., we denote the

number of consecutive jumps preceded by a flat segment, in the kth group. Without

loss of generality, we assume that there are m groups of increasing-jump and flat-jump

segments, i.e., ν1, ...,νm and ω1, ...,ωm, and that these groups of jumps points, xl , appear

in the CDF in the following order:

{
x1, . . . ,xν1,xν1+1, . . . ,xν1+ω1,xν1+ω1+1, . . . ,xν1+ω1+ν2 ,xν1+ω1+ν2+1, . . . ,

xν1+ω1+ν2+ω2, . . . ,xν1+ω1+···+ωm−1+1, . . . ,xν1+ω1+···+ωm−1+νm,

xν1+ω1+···+ωm−1+νm+1, . . . ,xν1+ω1+···+ωm−1+νm+ωm

}
,

(2.14)
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where ν1 +ω1 + · · ·+νm +ωm = J is the total number of jumps in F(x), and

ν1 ≥ 0;ω1 ≥ 0;ν1+ω1 > 0;νl > 0,2≤ l ≤m;ωl > 0,2≤ l ≤m−1;ωm ≥ 0;νm+ωm > 0.

It can be seen that (2.14) covers any possible order of the jumps of different type

in F(x) as illustrated on some examples below (see e.g., Corollary 2.2.6 and Example

2.2.8). Under these general assumptions on F(x), in the following proposition we give

a formula for Φ(λ ) which generalizes (2.12).

Proposition 2.2.3. Assuming that a CDF F(x) has the structure of jumps as in (2.14)

and that f2J = f2J+1 ≡ 1, we have

Φ(λ ) =
∞

∑
j1=−∞

· · ·
∞

∑
jvm=−∞

(
(−1) j1+···+ jvm

)
c
∫

λ

−λ

· · ·
∫

λ

−λ

exp{ψ}dz1 · · ·dz2vm+wm−1,

(2.15)

where

c =
m

∏
i=1

(
νi

∏
l=1

(
f2(vi−1+wi−1+l)−1 − f2(vi−1+wi−1+l)−2

)−1/2

(
f2(vi−1+wi−1+l)− f2(vi−1+wi−1+l)−1

)−1/2
)

×
( ωi

∏
l=1

(
f2(vi+wi−1+l)− f2(vi+wi−1+l)−1

)−1/2
)
(2π)−

2vm+wm−1
2 ,

(2.16)

and

ψ =−1
2

m

∑
i=1

{
νi

∑
l=1

[(
z2(vi−1+l)+wi−1 − z2(vi−1+l)+wi−1−1

)2

f2(vi−1+wi−1+l)− f2(vi−1+wi−1+l)−1

+

(
z2(vi−1+l)+wi−1−1 − (−1) j(vi−1+l)z2(vi−1+l)+wi−1−2 −2λ j(vi−1+l)

)2

f2(vi−1+wi−1+l)−1 − f2(vi−1+wi−1+l)−2

]
+

ωi

∑
l=1

[(
z2vi+wi−1+l − z2vi+wi−1+l−1

)2

f2(vi+wi−1+l)− f2(vi+wi−1+l)−1

]}
,

(2.17)

with ν0 = ω0 = 0;v0 = w0 = 0;vi =
i

∑
k=1

νk;wi =
i

∑
k=1

ωk,vm + wm = J, and z0 =

z2vm+wm = 0.
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Proof: The reasoning in the proof follows that of Schmid (1958) with some necessary

adjustments to account for the fact that f2l ≤ f2l+1 as opposed to f2l < f2l+1, l = 0, ...,J.

So, here we only give details related to those parts of the proof which are affected by

the relaxed assumption on F(x). Thus, following Schmid (1958), page 1014, denote

by I the union of the closed intervals [ f2l, f2l+1], l = 0, ...,J and let Mn be the set of

integers j such that j/n ∈ I,

Mn =
{

k0 = 0, . . . ,k1;k2,k2 +1, . . . ,k3; . . . ;k2J,k2J +1, . . . ,k2J+1 = n
}
,

where ki is such that ki/n → fi, as n → ∞. Note that if f2l = f2l+1 i.e., if we have a

constant segment in the CDF F(x), then k2l ≡ k2l+1 and both are included in the set

Mn. Now, as demonstrated by Schmid (1958) (see expressions (20), (21) therein), the

probability P0n := P(Dn < λn−1/2) in (2.11), can be calculated as

P0n =
n!en

nn R0n,

where

Rik2l+1 = ∑
| j|<λN1/2

R jk2lP[Dik2l+1|Dik2l ], l = 0, . . . ,J, (2.18)

and

Rik2l = ∑
| j|<λN1/2

R jk2l−1

(k2l − k2l−1)
i− j+k2l−k2l−1

(i− j+ k2l − k2l−1)!ek2l−k2l−1
, l = 0, . . . ,J, (2.19)

and R00 = 1,Ri0 = 0 for i ̸= 0. Note that recursion (2.19) is related to the lth jump in

F(x), whereas recursion (2.18) is related to the continuous (increasing or flat) segment

on [xl,xl+1−] in F(x). The events Dik are specified in details in Schmid (1958) (see

page 1016), but what is important here is to observe that when k2l = k2l+1 in Mn,

P[Dik2l+1|Dik2l ] = 1(i= j). Thus, for a constant segment on [xl,xl+1−] in F(x), we have

Rik2l+1 = Rik2l and so, recursion (2.18) is obsolete. Therefore, asymptotically, when

k2l = k2l+1, we only need to consider the convergence of recursion (2.19) for a flat-

jump segment in F(x), whereas for increasing-jump segment, both recursions (2.18)
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and (2.19) generate terms in the resulting expression, in particular (2.16) and (2.17).

Now, applying the asymptotic arguments outlined on page 1018 of Schmid (1958), one

easily obtains formula (2.15). 2

Let us note that Proposition 2.2.3 does not cover the case when f2J < f2J+1 ≡ 1.

This case is addressed in the following proposition, which follows by similar reasoning.

Proposition 2.2.4. Assuming that a CDF F(x) has the structure of jumps as in (2.14)

and that f2J < f2J+1 ≡ 1, vm +wm = J, we have

Φ(λ )=
∞

∑
j1=−∞

· · ·
∞

∑
jvm=−∞

∞

∑
jvm+1=−∞

(
(−1) j1+···+ jvm+ jvm+1

)
c′
∫

λ

−λ

· · ·
∫

λ

−λ

exp{ψ
′}dz1 · · ·dz2vm+wm,

(2.20)

where

c′= c( f2J+1− f2J)
−1/2(2π)−1/2, and ψ

′=ψ+
(−(−1) jvm+1z2vm+wm −2λ jvm+1)

2

f2J+1 − f2J
,

(2.21)

with c and ψ in (2.21) defined in (2.16), (2.17), noting that z2vm+wm ̸= 0.

Remark 2.2.5. Let us note that (2.12) is a special case of (2.20) when m = 1,ω1 ≡

w1 = 0,ν1 ≡ v1 = J.

Corollary 2.2.6. When F(x) is purely discrete with J jumps, the limiting distribution

Φ(λ ) in (2.15) becomes

Φ(λ )= (2π)−
J−1

2

J

∏
l=1

( f2l− f2l−1)
− 1

2

∫
λ

−λ

· · ·
∫

λ

−λ

exp
[
− 1

2

( J

∑
l=1

(zl − zl−1)
2

f2l − f2l−1

)]
dz1 ···dzJ−1,

(2.22)

where z0 = zJ = 0.

Proof: Since the jump structure in this case includes only one group of flat-jump

segments of size J, the first group of increasing-jump segments in (2.14) is empty,

i.e., m = 1,ν1 ≡ v1 = 0, ω1 ≡ w1 = J, and by convention,
ν1=0
∏

l=1
(·) = 1,

ν1=0
∑

l=1
(·) = 0.

Substituting these in (2.15), (2.16), and (2.17), we have

c = (2π)−
J−1

2

J

∏
l=1

( f2l − f2l−1)
− 1

2 , ψ =−1
2

( J

∑
l=1

(zl − zl−1)
2

f2l − f2l−1

)
,
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and (2.15) becomes (2.22). 2

Remark 2.2.7. It should be noted that (2.22) is the formula for the distribution of

an (J − 1) dimensional Brownian bridge between −λ and λ . The Brownian bridge

interpretation has been used by Wood and Altavela (1978) to compute via Monte Carlo

(MC) simulation the asymptotic distribution of Dn, without relating the interpretation to

an explicit expression such as (2.22).

Next, we give an illustrative example on how to use the asymptotic distribution

formula (2.15) given by Proposition 2.2.3, for mixed F(x). Similarly, one can employ

expressions (2.20) and (2.22) on appropriate specific examples.

Example 2.2.8. Consider a random variable X with CDF

F(x) =



0 if x < 0,

0.2+ x if 0 ≤ x < 0.2,

0.5 if 0.2 ≤ x < 0.8,

x−0.1 if 0.8 ≤ x < 1,

1 if x ≥ 1.

(2.23)

Clearly, F(x) is a CDF with four jumps, i.e., J = 4, at x1 = 0, x2 = 0.2, x3 = 0.8,

x4 = 1.0, and f0 = f1 = 0, f2 = 0.2, f3 = 0.4, f4 = f5 = 0.5, f6 = 0.7, f7 = 0.9,

f8 = f9 = 1. Since the jump structure of F(x) in (2.23) is flat-jump, increasing-jump,

flat-jump, increasing-jump segments, the first set of increasing-jump segments and the

last set of flat-jump segments in (2.14) should be omitted. Therefore, m = 3, ν1 = 0,

ω1 = 1, ν2 = 1, ω2 = 1, ν3 = 1, ω3 = 0, and v0 = 0, v1 = 0, v2 = 1, v3 = 2, w0 = 0,

w1 = 1, w2 = 2, w3 = 2. Substituting these in (2.15), (2.16), and (2.17), we obtain

Φ(λ ) =
∞

∑
j1=−∞

∞

∑
j2=−∞

c(−1) j1+ j2
∫

λ

−λ

· · ·
∫

λ

−λ

exp{ψ}dz1 · · ·dz5, (2.24)

where

c=(2π)−
5
2 ( f2− f1)

−1/2( f3− f2)
−1/2( f4− f3)

−1/2( f6− f5)
−1/2( f7− f6)

−1/2( f8− f7)
−1/2,

28



2.3 Software implementation and numerical analysis

and

ψ =−1
2

(
z2

1
f2 − f1

+
(z2 − (−1) j1z1 −2λ j1)2

f3 − f2
+

(z3 − z2)
2

f4 − f3

+
(z4 − z3)

2

f6 − f5
+

(z5 − (−1) j2z4 −2λ j2)2

f7 − f6
+

z2
5

f8 − f7

)
.

2.3 Software implementation and numerical analysis

In this section, we introduce the C++ and the R implementation of the proposed

FFT-based method for computing P(Dn ≥ q), described in Section 2.2.1 and study its

numerical properties. In the sequel, we will refer to it as the Exact-KS-FFT method. The

method is implemented in the R package KSgeneral which can be downloaded from the

Comprehensive R Archive Network (CRAN) at https://CRAN.R-project.org/package=

KSgeneral. In order to build the KSgeneral package from source, a C++ compiler is

required. The latter is contained in the Windows program Rtools (R Core Team, 2018),

or under MacOS in Xcode, downloadable from the App Store. The package KSgeneral

uses Rcpp (Eddelbuettel and François, 2011) in R, and utilizes the C++ code that

efficiently computes P(Dn ≥ q) using the Exact-KS-FFT method (see the replication

material to this paper available online). Since the latter requires computation of FFT,

the FFTW3 library developed by Frigo and Johnson (2005) needs to be installed from

http://www.fftw.org/index.html. It should be noted that both the Rtools and FFTW3

should be installed in the system PATH.

In this section, we also study the asymptotic formulae (2.15) and (2.22) given in

Section 2.2.2, which have been implemented in Mathematica 10. For the purpose, in

the next Sections 2.3.1 and 2.3.2, we compute the complementary CDF, P(Dn ≥ q), for

different values of n and q, and also compute related p values when F(x) is mixed and

discrete, respectively. Then, in Section 2.3.3 we consider P(Dn < q) and P(Dn ≥ q) in

the case of continuous F(x). For the examples given in all three Sections 2.3.1, 2.3.2,

2.3.3 (and in the replication material), we give the lines of code that should be executed

in C++ or R using KSgeneral. Furthermore, in the case when F(x) is mixed (cf.,

Section 2.3.1), we compare the exact probabilities P(Dn ≥ q), q ∈ [0,1], obtained using

the Exact-KS-FFT approach with those obtained using the asymptotic formula (2.15).

29

https://CRAN.R-project.org/package=KSgeneral
https://CRAN.R-project.org/package=KSgeneral
http://www.fftw.org/index.html


Computing the Kolmogorov-Smirnov Distribution when the Underlying
CDF is Purely Discrete, Mixed or Continuous

In addition, when F(x) is purely discrete (cf., Section 2.3.2), we also compare with

the results of the Brownian bridge simulation-based algorithm of Wood and Altavela

(1978). When F(x) is continuous, in Section 2.3.3, Appendix A.2, Appendix A.3, and

Appendix A.4, we compare the accuracy and speed of the Exact-KS-FFT method to

the results obtained from the R program of Carvalho (2015), and the C program due

to Simard and L’Ecuyer (2011). The reported CPU times are obtained running the

related C++ code on a machine with an 2.5GHz Intel Core i5 processor with 4GB

RAM, running Mac OS X Yosemite.

2.3.1 Complementary CDF of Dn when F(x) is mixed

In order to illustrate the performance of the Exact-KS-FFT method of Section 2.2.1, we

consider first the following example from excess-of-loss reinsurance.

Example 2.3.1. Consider an excess-of-loss reinsurance contract with a retention level

M and a limiting level L, where 0 < M < L are positive constants. Under such a contract,

given a loss amount random variable X with a continuous CDF FX(·) on [0,+∞), the

insurer and the reinsurer pay correspondingly the amounts Z and Y , where

Z =


X if X ≤ M,

M if M < X ≤ L,

M+X −L if L < X ,

and Y =


0 if X ≤ M,

X −M if M < X ≤ L,

L−M if L < X .

Clearly, both Z and Y are mixed random variables with correspondingly, one and two

jumps in their CDFs. For illustrative purposes, assume that the CDF of Y , FY (y) is of

the form

FY (y) =


0 if y < 0,

1−0.5e−y if 0 ≤ y < log2.5,

1 if y ≥ log2.5,

(2.25)

where M = log2, L = log5, FX(x) = 1− e−x. Assuming Dn in (2.1) is defined with

respect to FY (y), i.e., F(x) ≡ FY (y) in (2.1), we have computed exact probabilities

P(Dn ≥ q), for different values of n and q, applying the Exact-KS-FFT method and
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also, the asymptotic formula (2.15). In order to apply (2.15), one should note that FY (y)

has two jumps, (i.e., J = 2) at x1 = 0,x2 = log2.5, and f0 = f1 = 0, f2 = 0.5, f3 =

0.8, f4 = f5 = 1. Since the jump structure of FY (·) in (2.25) is flat-jump, increasing-

jump segments, the first set of increasing-jump segments and the last set of flat-jump

segments in (2.14) should be omitted. Therefore, one should apply formula (2.15) with

m= 2,ν1 = 0,ω1 = 1,ν2 = 1,ω2 = 0, and v0 = 0,v1 = 0,v2 = 1,w0 = 0,w1 = 1,w2 = 1.

The results for P(Dn ≥ q) calculated using the proposed FFT-based method and

the asymptotic formula (2.15), for different values of n, q, and respectively λ = qn1/2,

are shown in Tables 2.1 and 2.2. For example, to obtain the probability P(Dn ≥ q)

using C++, for n = 25, q = 0.60 as shown in the column Exact-KS-FFT of Table 2.1,

according to step (i) of the Procedure Exact-KS-FFT, we first define the mixed CDF in

(2.25) in the file “crossprob.cc” using the following code.

vector<double> MixDF (vector<double> obs){
vector<double> observed = obs;
set<double> s;
for (int i = 0; i < obs.size(); ++i){

s.insert(obs[i]);
}
obs.assign(s.begin(), s.end());
vector<double> DF(obs.size());
/* The distribution in the reinsurance example in (25) */

for (int i = 0; i < obs.size(); ++i){
if (obs[i] < 0.0){

DF[i] = 0.0;
}
else if (obs[i] < log(2.5)){

DF[i] = 1 - 0.5 * exp(-1.0 * obs[i]);
}
else
{

DF[i] = 1.0;
}

}
return DF;

}

Also, since the mixed CDF in (2.25) has jumps at y = 0 and y = log2.5, we need to

specify this by inputting vector_input3 = {0.0, log(2.5)}; to the int main()

function in the file “crossprob.cc”.
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Next, we first run make in one of the command line tools (e.g., bash) to build the

program for the Exact-KS-FFT method developed in this paper, based on the code

provided by Moscovich and Nadler (2017). Then, in the command line tool, we run the

following line ./bin/crossprob ecdf 25 Boundary_Crossing_Time.txt, where

25 is the input for the sample size. We will have the following screen prompts.

Please enter the distribution type: 1 for Continuous Distribution,
2 for Discontinuous Distributions:

We enter 2 since the CDF in (2.25) is not continuous.

2

Then, we can choose whether to calculate the KS complementary CDF, P(Dn ≥ q), or

the p value, P(Dn ≥ dn) corresponding to a value dn computed based on a user provided

data sample.

Please enter the objective: 1 for KS Complementary Distribution,
2 for P-Values:

Since we want to obtain the probability P(Dn ≥ q), for n = 25, q = 0.6, we will enter 1.

1

Here, we enter the sample size n and the quantile q.

Please enter the sample size and quantile:

25
0.6

Probability: 0.0000000019082332
Time taken: 0.0000720000000000

Now, steps (ii), (iii), (iv) and (v) of the Procedure Exact-KS-FFT are performed. The

result for P(Dn ≥ q), for n = 25, q = 0.60, is 1.90823×10−9 as shown in the column

Exact-KS-FFT of Table 2.1. The corresponding computation time is also printed.

Remark 2.3.2. Note that the distribution of the KS test statistic Dn depends on the

hypothesized distribution F(x) when F(x) is not continuous. Hence, to obtain P(Dn ≥

q) for different mixed F(x), the users should: 1) define the mixed CDF in the file

“crossprob.cc” each time, and 2) in the file “crossprob.cc”, define the vector containing

points where F(x) has jumps, vector_input3.
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In order to compute P(Dn ≥ q), when F(x) is mixed using the R package KS-

general, one needs to input mixed_ks_c_cdf(q, n, jump_points, Mixed_dist,

..., tol = 1e - 10), where jump_points is a numeric vector of the x coordinates

of the jumps of F(x), Mixed_dist specifies the mixed CDF F(x), possibly followed

by a list of parameters ... specifying F(x), and tol is the value of ε that is used to

compute the values Ai and Bi, i = 1, ...,n, as detailed in equations (2.4) in Step 1 of

Section 2.2.1. By default, tol = 1e - 10. Note that a value NA or 0 will lead to an

error. For instance, if one wants to use the R package KSgeneral to compute P(Dn ≥ q),

when F(x) is the mixed CDF specified in Example 2.3.1 by equation (2.25), with n = 25,

q = 0.1, one needs to run the following code in order to obtain the corresponding result,

as shown in Table 2.2 for n = 25,q = 0.1.

R> Mixed_cdf_example <- function(x)
{
result <- 0
if (x < 0){
result <- 0

}
else if (x == 0){
result <- 0.5

}
else if (x < log(2.5)){
result <- 1 - 0.5 * exp(-x)

}
else{
result <- 1

}
return (result)

}
R> mixed_ks_c_cdf(0.1, 25, c(0, log(2.5)), Mixed_cdf_example)

[1] 0.76768489

From Tables 2.1 and 2.2, one can first see that the Exact-KS-FFT method effectively

computes P(Dn ≥ q) for small, medium and large sample sizes n and various levels

q, and gives exact probabilities in the range of 10−10 to 1. It should be noted though

that the method could become numerically unstable (producing negative values) when

calculating probabilities of 10−11 or smaller. Similar issue has been observed by Simard

and L’Ecuyer (2011) in the case of continuous F(x). The column Rel.err. (%) quantifies
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the relative error of the asymptotic value (for fixed λ ) compared to the exact values in

the column Exact-KS-FFT (for various combinations of n and q resulting in the same λ ).

Furthermore, we see that when the sample size n is large, results using formula (2.15)

approximate closely the exact P(Dn ≥ q), except when P(Dn ≥ q) is nearly zero (when

λ = 2,3 in Table 2.1). Also, asymptotic formula (2.15) gives better approximations to

the exact values of P(Dn ≥ q) as q decreases, or equivalently, as P(Dn ≥ q) increases.

Moreover, as λ decreases, values obtained from asymptotic formula (2.15) become

better approximations to the exact P(Dn ≥ q). Let us recall however that formula (2.15)

(respectively (2.20) and (2.22)) is only practically implementable for small/moderate

number of jumps, J, in the null distribution (which is the case with (2.25) illustrated in

Tables 2.1 and 2.2), as otherwise the multidimensional integration becomes infeasible.

In addition, as mentioned in Section 2.1, a null hypothesis that a sample comes from

a discontinuous distribution will be accepted more often if one uses the continuous

KS test, as opposed to using the discontinuous KS test. To illustrate this, assume that

a random sample of size n = 25 follows F(x) ≡ FY (y) in (2.25) under H0, and that

the KS test statistic for the sample is dn = 0.25. Then, the exact p value of the test

is P(Dn ≥ 0.25|H0) = 0.04496610 and, with a significance level of 5%, one should

reject H0. On the other hand, a p value calculated using the complementary CDF of the

distribution-free continuous KS test statistic Dn (i.e., when F(x) in (2.1) is continuous)

is 0.07360597 > 0.05. Therefore, based on the latter p value, one will not reject H0.

Similar situations are illustrated in Table 2.3 for larger sample sizes and different values

of the test statistic Dn, where one can see that the differences between the values in the

last two columns are higher than 58% (our experience shows that these are typically in

the range 50% - 65%) and do not decrease with n. To the best of our knowledge, the

KS test in softwares such as R, SPSS, Stata, MATLAB, Mathematica is based on the

distribution-free continuous KS test statistic and the discontinuous (mixed and purely

discrete) version is not implemented due to the lack of efficient and robust method such

as the Exact-KS-FFT method we propose here.
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Table 2.1 Exact and asymptotic values of P(Dn ≥ q) obtained via the Exact-KS-FFT
method and the asymptotic formula (2.15),when λ = qn1/2 = 3, 2, 1, respectively,
when the underlying CDF F(x) follows FY (y) in (2.25). Numbers in () are run times in
seconds.

λ n q Exact-KS-FFT Asympt. (15) Rel.err. (%)

3 25 0.60 1.90823×10−9 (0.000) 1.72031×10−8 801.52
100 0.30 9.49583×10−9 (0.000) (5155.54) 81.17
400 0.15 1.41586×10−8 (0.015) 21.50

2500 0.06 1.62830×10−8 (0.202) 5.65
10000 0.03 1.67952×10−8 (2.932) 2.43
40000 0.015 1.69539×10−8 (59.86) 1.49
90000 0.01 1.70076×10−8 (351.9) 1.16

250000 0.006 1.74648×10−8 (3524) 1.43

2 25 0.4 2.13209×10−4 (0.000) 3.98459×10−4 86.89
100 0.2 3.27304×10−4 (0.000) (1.17) 21.74
400 0.1 3.66979×10−4 (0.015) 8.58

2500 0.04 3.86968×10−4 (0.195) 2.97
10000 0.02 3.92912×10−4 (2.707) 1.41
40000 0.01 3.95740×10−4 (57.14) 0.69
90000 1/150 3.96661×10−4 (341.3) 0.45

250000 0.004 3.97390×10−4 (3465) 0.27

1 25 0.2 0.151510006 (0.000) 0.174525238 15.19
100 0.1 0.164499986 (0.000) (0.73) 6.09
400 0.05 0.169049900 (0.015) 3.24

2500 0.02 0.172221536 (0.171) 1.34
10000 0.01 0.173354312 (2.511) 0.68
40000 0.005 0.173934996 (54.94) 0.34
90000 1/300 0.174130680 (330.3) 0.23

250000 0.002 0.174287993 (3423) 0.14
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Table 2.2 Exact and asymptotic values of P(Dn ≥ q) obtained via the Exact-KS-FFT
method and the asymptotic formula (2.15),when λ = qn1/2 = 0.5, 0.2 and 0.15, respec-
tively, when the underlying CDF F(x) follows FY (y) in (2.25). Numbers in () are run
times in seconds.

λ n q Exact-KS-FFT Asympt. (15) Rel.err. (%)

0.5 25 0.1 0.767684886 (0.000) 0.801033877 4.35
100 0.05 0.782681427 (0.000) (5.63) 2.35
400 0.025 0.790339869 (0.015) 1.35

2500 0.01 0.796406211 (0.156) 0.58
10000 0.005 0.798664879 (2.441) 0.30
40000 0.0025 0.799837547 (54.27) 0.15
90000 1/600 0.800234794 (326.5) 0.12

250000 0.001 0.800554870 (3410) 0.06

0.2 25 0.04 0.999798067 (0.000) 0.999961812 0.016
100 0.02 0.999888190 (0.000) (5.03) 0.007
400 0.01 0.999925985 (0.015) 0.004

2500 0.004 0.999948507 (0.156) 0.001
10000 0.002 0.999955380 (2.364) 0.001
40000 0.001 0.999958655 (53.62) 0.000
90000 1/1500 0.999959721 (324.4) 0.000

250000 0.0004 0.999960564 (3383) 0.000

0.15 25 0.03 0.999998692 (0.000) 0.999999978 0.000
100 0.015 0.999999682 (0.000) (0.51) 0.000
400 0.0075 0.999999905 (0.015) 0.000

2500 0.003 0.999999956 (0.156) 0.000
10000 0.0015 0.999999969 (2.355) 0.000
40000 0.00075 0.999999974 (53.45) 0.000
90000 0.0005 0.999999975 (324.7) 0.000

250000 0.0003 0.999999977 (3372) 0.000

Table 2.3 Discontinuous and continuous KS p values under null hypothesis H0 : F(x)≡
FY (y), obtained via the Exact-KS-FFT method.

n Dn = dn Discontinuous KS p values Continuous KS p values

25 0.25 0.04496610 0.07360597
100 0.13 0.03913182 0.06209234
400 0.065 0.04090172 0.06511744

2500 0.026 0.04200207 0.06690821
10000 0.013 0.04237475 0.06750119
40000 0.0065 0.04256212 0.06779695
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Example 2.3.3. Another possible application of KS tests on mixed distributions ap-

pears in testing the goodness-of-fit in zero-inflated or/and one-inflated models. Many

real data contain zeros and ones, i.e., have masses at zero and one, and therefore

zero- and one-inflated distributions need to be applied. For example, Ospina and

Ferrari (2010) have used the zero-and-one-inflated beta distribution to model the pro-

portion of inhabitants living within a 200 kilometer wide costal strip in 232 countries

in the year 2000, denoted as Y . The data for years 1990, 2000 and 2010 are supplied

by the Columbia University Centre for International Earth Science Information Net-

work, see CIESIN (2012), and are available at http://sedac.ciesin.columbia.edu/data/

set/nagdc-population-landscape-climate-estimates-v3. The zero-and-one-inflated beta

distribution considered by Ospina and Ferrari (2010) is of the following form

GY (y;α,γ,µ,φ) = αBernoulli(y;γ)+(1−α)F(y; µ,φ), 0 ≤ y ≤ 1,

where Bernoulli(·;γ) denotes the CDF of a Bernoulli random variable with parameter γ ,

0 < γ < 1, and F(·; µ,φ) denotes the CDF of a beta random variable with parameters

µ , 0 < µ < 1, and φ > 0. Hence, the zero-and-one-inflated distribution can be seen as a

mixture of a (discrete) Bernoulli distribution and a (continuous) beta distribution, with

weights α and (1−α), respectively, 0 < α < 1.

According to Ospina and Ferrari (2010), the random variable Y has the following

distribution

GY (y) =


0 if y < 0,

0.1141+0.4795FY (y; µ,φ) if 0 ≤ y < 1,

1 if y ≥ 1,

where FY (y; µ,φ) has a density function

fY (y; µ,φ) =
Γ(φ)

Γ(µφ)Γ((1−µ)φ)
yµφ−1(1− y)(1−µ)φ−1,
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with µ and φ estimated as µ = 0.6189,φ = 0.6615 based on the population data in

2000, and Γ(·) is the gamma function. Then, we can examine the goodness-of-fit of

the distribution to the population data in 2010, denoted by Ỹ , hypothesizing that Ỹ

has the same distribution as GY (y). Using (2.1) with F(x)≡ GY (y) and Fn(x)≡ Gn(y),

where Gn(y) is the EDF of Ỹ computed from the population data in 2010, we obtain

the KS test statistic dn = 0.09047. Using the Exact-KS-FFT method, we compute a

p value of 0.03403 < 0.05. Alternatively, applying the asymptotic formula (2.15), we

obtain a p value of 0.03641, which is reasonably accurate, given the sample size of 232.

Therefore, the KS test indicates that the zero-and-one-inflated beta distribution estimated

using population data in 2000 does not fit the population data in 2010 at a significance

level of 5%, providing evidence for a change in the proportion of inhabitants in the

decade.

In order to perform the one-sample two-sided KS test, when F(x) is

mixed_ks_test(x, jump_points, Mixed_dist, ..., tol = 1e - 10), where

x is a numeric vector of data sample values, and where other arguments are defined

similarly as in the function mixed_ks_c_cdf(). For instance, if one wants to use

the R package KSgeneral to calculate the p value for the KS test, when F(x) follows

a zero-and-one-inflated beta distribution as in Example 2.3.3, with a sample of size

n = 232, one should run the following R code.

R> data("Population_Data")
R> mu <- 0.6189
R> phi <- 0.6615
R> a <- mu * phi
R> b <- (1 - mu) * phi
R> Mixed_cdf_example <- function(x)
{
result <- 0
if (x < 0){
result <- 0

}
else if (x == 0){
result <- 0.1141

}
else if (x < 1){
result <- 0.1141 + 0.4795 * pbeta(x, a, b)

}
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else{
result <- 1

}
return (result)

}
R> ksgeneral::mixed_ks_test(Population_Data, c(0, 1), Mixed_cdf_example)

One-sample Kolmogorov-Smirnov test

data: Population
D = 0.0904737, p-value = 0.034025
alternative hypothesis: two-sided

In the next section, assuming F(x) is purely discrete, we apply the FFT-based

methodology and the asymptotic formula (2.22) (cf., Corollary 2.2.6) to compute

correspondingly, exact and approximate values of P(Dn ≥ q).

2.3.2 Complementary CDF of Dn when F(x) is purely discrete

There is an abundance of real-life applications in which purely discrete distributions

are used to model count data, such as number of claims to an insurance company,

number of jumps in stock returns, number of trades on the stock exchange, number of

manufacturing defects, number of diseased species and plants in biology and agricultural

research, and many other count data applications. In all such cases, examining the

goodness-of-fit of the model requires computing p values or P(Dn ≥ q) for various of n

and q. As an illustration, using the proposed FFT-based method, we will compute exact

probabilities P(Dn ≥ q) when the underlying F(x) follows Binomial(r,π) distribution

(see Example 2.3.4) and when it follows a discrete uniform distribution (see Example

2.3.5). In Example 2.3.4, we compare these exact probabilities with approximate

ones obtained using the asymptotic distribution of Dn, given by (2.22), and using the

asymptotic MC simulation-based method of Wood and Altavela (1978). In Example

2.3.5, we compare the exact results with those obtained using the R function ks.test

of Arnold and Emerson (2011). The latter is a revised version of the same function

from the recommended package stats.
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Wood and Altavela (1978)’s approach utilizes the connection between the asymptotic

distribution of Dn and a multi-variate Brownian bridge (cf., Remark 2.2.7), and they

directly simulate the latter, thus avoiding the necessity to derive and evaluate an explicit

expression such as (2.22). Following the Wood and Altavela (1978)’s method, one

should simulate from the (J−1)-variate normal random vector (Z1,Z2, ...,ZJ−1), where

E(Zi) = 0, E(Zi,Zk) = min( f2i, f2k)− f2i f2k, i,k = 1, ...,J−1, (2.26)

and estimate the probability in Φ(λ ) in (2.11) as

∑
N
i=11{(Z1,Z2,...,ZJ−1)∈[−λ ,λ ]J−1}

N
,

where N is the number of simulations, 1{·} is an indicator function, and [−λ ,λ ]J−1 is

the (J−1) dimensional hypercube. The authors further suggest a continuity correction

for λ in (2.11), as λ = qn1/2 −0.5n−1/2. In the remainder of this section, we will refer

to this method as W&A(a) method and to its version without the continuity correction,

as W&A(b) method.

Example 2.3.4. Assume that F(x) in (2.1) is Binomial(r,π) with r = 3,7,15 (i.e., with

J = r+1 number of jumps), and π = 0.5. In Tables 2.4, 2.5, and 2.6, for different values

of n, q, and respectively λ = qn1/2, we give the exact P(Dn ≥ q) obtained with the

Exact-KS-FFT method, and compare with the asymptotic probabilities obtained using

(2.22) (combined with (2.13)), and using the Wood and Altavela (1978) simulation-

based approach. We have coded both the W&A(a) and W&A(b) versions in R as part

of the KSgeneral R package and have simulated 1000000 realizations of the random

vector (Z1,Z2, ...,ZJ−1). As before, the numbers in parentheses show the computation

(run) times, in seconds. Let us note that the multidimensional numerical integration in

(2.22) becomes unstable as the number of jumps, J = r+1, in F(x) increases, and so

we only use W&A(a) and W&A(b) to obtain approximate asymptotic probabilities in

the case of r = 15 and π = 0.5 (see Table 2.6).
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In order to compute P(Dn ≥ q), when F(x) is purely discrete using the R package

KSgeneral, one needs to input disc_ks_c_cdf(q, n, y, ..., exact = NULL,

tol = 1e - 08, sim.size = 1e + 06, num.sim = 10), where y specifies the

purely discrete CDF F(x), possibly followed by a list of parameters ... specify-

ing F(x), the input parameter exact is a logical variable specifying whether one wants

to compute exact values for P(Dn ≥ q) using the FFT-based method, exact = TRUE

or wants to compute the approximate values for P(Dn ≥ q) using the simulation-based

algorithm of Wood and Altavela (1978), in which case exact = FALSE. When exact

= NULL and n <= 100000, the exact P(Dn ≥ q) will be computed using the FFT-based

method. The input parameter tol is the value of ε that is used to compute the values Ai

and Bi, i = 1, ...,n, as detailed in equations (2.4) in Step 1 of Section 2.2.1. By default,

tol = 1e - 08. Note that a value of NA or 0 will lead to an error. The input parameter

sim.size is the required number of simulated trajectories in order to produce one MC

estimate (one MC run) of the asymptotic p value using the algorithm of Wood and

Altavela (1978). By default, sim.size = 1e + 06. The input parameter num.sim

is the number of MC runs, each producing one estimate (based on sim.size number

of trajectories), which are then averaged in order to produce the final estimate for the

asymptotic p value. This is done in order to reduce the variance of the final estimate.

By default, num.sim = 10. For instance, if one wants to use the R package KSgen-

eral to compute the exact value for P(Dn ≥ q), when F(x) follows a Binomial(3,0.5)

distribution as in Example 2.3.4, with n = 400, q = 0.05, one should run the following

R code and obtain the corresponding result as shown in the column Exact-KS-FFT of

Table 2.4.

R> binom_3 <- stepfun(c(0 : 3), c(0, pbinom(0 : 3, 3, 0.5)))
R> disc_ks_c_cdf(0.05, 400, binom_3)

[1] 0.05611849

On the other hand, if one wants to use the simulation-based method of Wood and

Altavela (1978) in order to approximate the asymptotic value for P(Dn ≥ q), when F(x)

follows a Binomial(3,0.5) distribution, with n = 400, q = 0.05, one should use the
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W&A(a) method, by running the following R code and obtain the corresponding result

as shown in the column W&A(a) of Table 2.4.

R> binom_3 <- stepfun(c(0 : 3), c(0, pbinom(0 : 3, 3, 0.5)))
R> disc_ks_c_cdf(0.05, 400, binom_3, exact = FALSE, tol = 1e-08,
+ sim.size = 1e+06, num.sim = 10)

[1] 0.0561864

Looking at Tables 2.4, 2.5, and 2.6, one can see that the Exact-KS-FFT method

effectively computes P(Dn ≥ q) for small, medium and large sample sizes n and various

levels q, and gives exact probabilities in the range 10−12 to 1. We also see that when

the sample size n is large, results using formula (2.22) approximate closely the exact

P(Dn ≥ q), except when P(Dn ≥ q) is nearly zero (when λ = 2,3 in Tables 2.4 and 2.5).

Similarly to the mixed F(x) case, asymptotic formula (2.22) gives better approximations

to the exact values of P(Dn ≥ q) as q decreases, or equivalently, as P(Dn ≥ q) increases.

Moreover, as λ decreases, values obtained from asymptotic formula (2.22) become

better approximations to the exact P(Dn ≥ q). One can further observe that asymptotic

formula (2.22) and W&A(b) method provide similar results. In particular, as the number

of jumps in F(x) increases, results obtained from these two methods almost coincide.

In addition, when the number of jumps in F(x) is small (in our case J = 4 or 8), we see

that values obtained from W&A(a) method provide more accurate approximations to

the exact probabilities. On the other hand, when the number of jumps in F(x) is large

(in our case J = 16), values obtained from W&A(b) method give closer approximations.

In comparison with the Exact-KS-FFT method, W&A(a) and W&A(b) deviate stronger

from the exact probabilities for moderate values of λ , e.g., λ = 0.5, 1, and this is more

pronounced for small sample sizes, see n ≤ 400.

With regards to computation time, looking at Tables 2.4, 2.5, and 2.6, for fixed

sample size n and number of jumps J, as λ decreases, the computation time for the

Exact-KS-FFT method, W&A(a) method and W&A(b) method decreases. Furthermore,

when the sample size n and q are fixed, as the number of jumps in F(x), J, increases, the

computation time for the Exact-KS-FFT method decreases, whereas the computation
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time for W&A(a) and W&A(b) methods increases. And, as expected, when the sample

size n increases, the Exact-KS-FFT method becomes more time-consuming.

Table 2.4 Exact and asymptotic values of P(Dn ≥ q) obtained via the Exact-KS-
FFT method, the asymptotic formula (2.22) and W&A(a), W&A(b) methods for
λ = qn1/2 = 3,2,1,0.5,0.2 and 0.1, respectively, when the underlying CDF F(x) fol-
lows Binomial(3,0.5) distribution. Numbers in () are run times in seconds.

λ = 3

n q Exact-KS-FFT Time Asympt.(2.22) Rel.err. (%)

25 0.60 1.15052×10−12 (0.000) 1.97318×10−9

400 0.15 2.04622×10−9 (0.015) (10.55) 3.570

10000 0.03 2.07657×10−9 (3.291) 4.979

90000 0.01 1.89810×10−9 (427.5) -3.955

n q Exact-KS-FFT W&A(a) Time Rel.err. (%)

25 0.60 1.15052×10−12 0 (6.06)

400 0.15 2.04622×10−9 0 (6.14)

10000 0.03 2.07657×10−9 0 (6.14)

90000 0.01 1.89810×10−9 0 (6.13)

n q Exact-KS-FFT W&A(b) Time Rel.err. (%)

25 0.60 1.15052×10−12 0 (6.29)

400 0.15 2.04622×10−9 0 (6.29)

10000 0.03 2.07657×10−9 0 (6.29)

90000 0.01 1.89810×10−9 0 (6.29)

λ = 2

n q Exact-KS-FFT Time Asympt. (2.22) Rel.err. (%)

25 0.40 1.99454×10−5 (0.000) 6.33453×10−5

400 0.10 7.43068×10−5 (0.015) (10.82) 14.752

Continued on next page

43



Computing the Kolmogorov-Smirnov Distribution when the Underlying
CDF is Purely Discrete, Mixed or Continuous

Table 2.4 – continued from previous page

10000 0.02 6.59391×10−5 (3.010) 3.934

90000 1/150 6.42285×10−5 (414.1) 1.375

n q Exact-KS-FFT W&A(a) Time Rel.err. (%)

25 0.40 1.99454×10−5 1.41933×10−4 (6.06)

400 0.10 7.43068×10−5 7.50667×10−5 (6.13) -1.023

10000 0.02 6.59391×10−5 6.33667×10−5 (6.14) 3.901

90000 1/150 6.42285×10−5 6.18333×10−5 (6.16) 3.729

n q Exact-KS-FFT W&A(b) Time Rel.err. (%)

25 0.40 1.99454×10−5 6.11333×10−5 (6.16)

400 0.10 7.43068×10−5 6.11333×10−5 (6.16) 17.728

10000 0.02 6.59391×10−5 6.11333×10−5 (6.16) 7.288

90000 1/150 6.42285×10−5 6.11333×10−5 (6.16) 4.819

λ = 1

n q Exact-KS-FFT Time Asympt. (2.22) Rel.err. (%)

25 0.20 0.046850021 (0.000) 0.049438582

400 0.05 0.056118495 (0.015) (5.30) 11.903

10000 0.01 0.050721030 (2.776) 2.528

90000 1/300 0.049863086 (400.2) 0.851

n q Exact-KS-FFT W&A(a) Time Rel.err. (%)

25 0.20 0.046850021 0.08178503 (5.92)

400 0.05 0.056118495 0.05618643 (6.00) -0.121

10000 0.01 0.050721030 0.05073470 (6.01) -0.027

90000 1/300 0.049863086 0.04986763 (6.02) -0.009

n q Exact-KS-FFT W&A(b) Time Rel.err. (%)

Continued on next page
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Table 2.4 – continued from previous page

25 0.20 0.046850021 0.04944507 (6.04)

400 0.05 0.056118495 0.04944507 (6.04) 11.892

10000 0.01 0.050721030 0.04944507 (6.04) 2.516

90000 1/300 0.049863086 0.04944507 (6.04) 0.838

λ = 0.5

n q Exact-KS-FFT Time Asympt. (2.22) Rel.err. (%)

25 0.10 0.532599669 (0.000) 0.46014460

400 0.025 0.500282800 (0.015) (10.65) 8.023

10000 0.005 0.468139770 (2.574) 1.708

90000 1/600 0.462807932 (392.2) 0.575

n q Exact-KS-FFT W&A(a) Time Rel.err. (%)

25 0.10 0.532599669 0.62989733 (5.15)

400 0.025 0.500282800 0.50094213 (5.38) -0.132

10000 0.005 0.468139770 0.46828113 (5.40) -0.030

90000 1/600 0.462807932 0.46293110 (5.42) -0.027

n q Exact-KS-FFT W&A(b) Time Rel.err. (%)

25 0.10 0.532599669 0.46026040 (5.44)

400 0.025 0.500282800 0.46026040 (5.44) 8.000

10000 0.005 0.468139770 0.46026040 (5.44) 1.683

90000 1/600 0.462807932 0.46026040 (5.44) 0.550

λ = 0.2

n q Exact-KS-FFT Time Asympt. (2.22) Rel.err. (%)

25 0.04 0.935407699 (0.000) 0.92701801

400 0.01 0.949180930 (0.015) (10.84) 2.335

Continued on next page
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10000 0.002 0.931797646 (2.527) 0.513

900001/1500 0.928630334 (389.4) 0.174

n q Exact-KS-FFT W&A(a) Time Rel.err. (%)

25 0.04 0.935407699 0.98963853 (4.13)

400 0.01 0.949180930 0.94915067 (4.33) 0.003

10000 0.002 0.931797646 0.93180017 (4.35) 0.000

900001/1500 0.928630334 0.92863450 (4.39) 0.000

n q Exact-KS-FFT W&A(b) Time Rel.err. (%)

25 0.04 0.935407699 0.92702207 (4.40)

400 0.01 0.949180930 0.92702207 (4.40) 2.335

10000 0.002 0.931797646 0.92702207 (4.40) 0.513

900001/1500 0.928630334 0.92702207 (4.40) 0.173

λ = 0.1

n q Exact-KS-FFT Time Asympt. (2.22) Rel.err. (%)

25 0.020 0.999999999 (0.000) 0.98963108

400 0.005 0.995546700 (0.015) (10.84) 0.594

10000 0.001 0.991072365 (2.480) 0.145

900001/3000 0.990126719 (388.8) 0.050

n q Exact-KS-FFT W&A(a) Time Rel.err. (%)

25 0.020 0.999999999 1 (3.88)

400 0.005 0.995546700 0.99553633 (4.02) 0.001

10000 0.001 0.991072365 0.99106897 (4.10) 0.000

900001/3000 0.990126719 0.99013033 (4.11) 0.000

n q Exact-KS-FFT W&A(b) Time Rel.err. (%)

Continued on next page

46



2.3 Software implementation and numerical analysis

Table 2.4 – continued from previous page

25 0.020 0.999999999 0.98963853 (4.13)

400 0.005 0.995546700 0.98963853 (4.13) 0.593

10000 0.001 0.991072365 0.98963853 (4.13) 0.145

900001/3000 0.990126719 0.98963853 (4.13) 0.049

Table 2.5 Exact and asymptotic values of P(Dn ≥ q) obtained via the Exact-KS-
FFT method, the asymptotic formula (2.22) and W&A(a), W&A(b) methods for
λ = qn1/2 = 3,2,1,0.5,0.2 and 0.1, respectively, when the underlying CDF F(x) fol-
lows Binomial(7,0.5) distribution. Numbers in () are run times in seconds.

λ = 3

n q Exact-KS-FFT Time Asympt.(2.22) Rel.err. (%)

25 0.60 2.74894×10−10 (0.000) 6.90809×10−4

400 0.15 2.06159×10−9 (0.015) (32.43)

10000 0.03 2.08064×10−9 (2.074)

90000 0.01 1.91281×10−9 (259.6)

n q Exact-KS-FFT W&A(a) Time Rel.err. (%)

25 0.60 2.74894×10−10 0 (11.43)

400 0.15 2.06159×10−9 0 (10.92)

10000 0.03 2.08064×10−9 0 (10.99)

90000 0.01 1.91281×10−9 0 (10.94)

n q Exact-KS-FFT W&A(b) Time Rel.err. (%)

25 0.60 2.74894×10−10 0 (10.93)

400 0.15 2.06159×10−9 0 (10.93)

10000 0.03 2.08064×10−9 0 (10.93)

Continued on next page
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90000 0.01 1.91281×10−9 0 (10.93)

λ = 2

n q Exact-KS-FFT Time Asympt. (2.22) Rel.err. (%)

25 0.40 4.20725×10−5 (0.000) −6.69185×10−5

400 0.10 7.91684×10−5 (0.015) (34.01)

10000 0.02 6.93244×10−5 (1.840)

90000 1/150 6.75595×10−5 (244.9)

n q Exact-KS-FFT W&A(a) Time Rel.err. (%)

25 0.40 4.20725×10−5 1.54867×10−4 (10.95)

400 0.10 7.91684×10−5 8.06000×10−5 (10.93) -1.808

10000 0.02 6.93244×10−5 6.81333×10−5 (10.94) 1.718

90000 1/150 6.75595×10−5 6.63333×10−5 (10.98) 1.815

n q Exact-KS-FFT W&A(b) Time Rel.err. (%)

25 0.40 4.20725×10−5 6.51×10−5 (10.98)

400 0.10 7.91684×10−5 6.51×10−5 (10.98) 17.770

10000 0.02 6.93244×10−5 6.51×10−5 (10.98) 6.094

90000 1/150 6.75595×10−5 6.51×10−5 (10.98) 3.640

λ = 1

n q Exact-KS-FFT Time Asympt. (2.22) Rel.err. (%)

25 0.20 0.068266018 (0.000) 0.070168353

400 0.05 0.074899103 (0.015) (35.39) 6.316

10000 0.01 0.070933439 (1.606) 1.079

90000 1/300 0.070290581 (233.2) 0.174

Continued on next page
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Table 2.5 – continued from previous page

n q Exact-KS-FFT W&A(a) Time Rel.err. (%)

25 0.20 0.068266018 0.11542800 (10.58)

400 0.05 0.074899103 0.07965367 (10.65) -6.348

10000 0.01 0.070933439 0.07187410 (10.71) -1.326

90000 1/300 0.070290581 0.07064190 (10.74) -0.500

n q Exact-KS-FFT W&A(b) Time Rel.err. (%)

25 0.20 0.068266018 0.070035433 (10.75)

400 0.05 0.074899103 0.070035433 (10.75) 6.494

10000 0.01 0.070933439 0.070035433 (10.75) 1.266

90000 1/300 0.070290581 0.070035433 (10.75) 0.363

λ = 0.5

n q Exact-KS-FFT Time Asympt. (2.22) Rel.err. (%)

25 0.10 0.619487745 (0.000) 0.56366243

400 0.025 0.583754412 (0.015) (45.96) 3.442

10000 0.005 0.567662656 (1.481) 0.705

90000 1/600 0.564996352 (221.4) 0.236

n q Exact-KS-FFT W&A(a) Time Rel.err. (%)

25 0.10 0.619487745 0.73754833 (8.31)

400 0.025 0.583754412 0.60684037 (8.76) -3.955

10000 0.005 0.567662656 0.57234977 (8.93) -0.826

90000 1/600 0.564996352 0.56664517 (8.95) -0.292

n q Exact-KS-FFT W&A(b) Time Rel.err. (%)

25 0.10 0.619487745 0.56379917 (8.96)

400 0.025 0.583754412 0.56379917 (8.96) 3.418

Continued on next page
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10000 0.005 0.567662656 0.56379917 (8.96) 0.681

90000 1/600 0.564996352 0.56379917 (8.96) 0.212

λ = 0.2

n q Exact-KS-FFT Time Asympt. (2.22) Rel.err. (%)

25 0.04 0.976334785 (0.000) 0.97713513

400 0.01 0.983298737 (0.015) (89.49) 0.627

10000 0.002 0.978475846 (1.404) 0.137

900001/1500 0.977587940 (216.5) 0.046

n q Exact-KS-FFT W&A(a) Time Rel.err. (%)

25 0.04 0.976334785 0.99938833 (6.01)

400 0.01 0.983298737 0.98756200 (6.61) -0.434

10000 0.002 0.978475846 0.97956150 (6.73) -0.111

900001/1500 0.977587940 0.97796337 (6.78) -0.038

n q Exact-KS-FFT W&A(b) Time Rel.err. (%)

25 0.04 0.976334785 0.97713387 (6.80)

400 0.01 0.983298737 0.97713387 (6.80) 0.627

10000 0.002 0.978475846 0.97713387 (6.80) 0.137

900001/1500 0.977587940 0.97713387 (6.80) 0.046

λ = 0.1

n q Exact-KS-FFT Time Asympt. (2.22) Rel.err. (%)

25 0.020 0.999999999 (0.000) 0.99938850

400 0.005 0.999745396 (0.015) (11.75) 0.036

10000 0.001 0.999472182 (1.388) 0.008

900001/3000 0.999417006 (214.6) 0.003

Continued on next page
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Table 2.5 – continued from previous page

n q Exact-KS-FFT W&A(a) Time Rel.err. (%)

25 0.020 0.999999999 1 (4.97)

400 0.005 0.999745396 0.99989767 (5.72) -0.015

10000 0.001 0.999472182 0.99955080 (5.90) -0.008

900001/3000 0.999417006 0.99944667 (5.97) -0.003

n q Exact-KS-FFT W&A(b) Time Rel.err. (%)

25 0.020 0.999999999 0.99938833 (6.00)

400 0.005 0.999745396 0.99938833 (6.00) 0.036

10000 0.001 0.999472182 0.99938833 (6.00) 0.008

900001/3000 0.999417006 0.99938833 (6.00) 0.003

Table 2.6 Exact and asymptotic values of P(Dn ≥ q) obtained via the Exact-KS-FFT
method and W&A(a), W&A(b) methods for λ = qn1/2 = 3,2,1,0.5,0.2 and 0.1, respec-
tively, when the underlying CDF F(x) follows Binomial(15,0.5) distribution. Numbers
in () are run times in seconds.

λ = 3

n q Exact-KS-FFT W&A(a) Rel.err. (%)

25 0.60 4.08521×10−10 (0.000) 0 (21.75)

400 0.15 2.32760×10−9 (0.015) 0 (21.78)

10000 0.03 2.21527×10−9 (1.622) 0 (21.79)

90000 0.01 2.07134×10−9 (186.3) 0 (21.86)

n q Exact-KS-FFT W&A(b) Rel.err. (%)

25 0.60 4.08521×10−10 (0.000) 0 (21.87)

400 0.15 2.32760×10−9 (0.015) 0 (21.87)

Continued on next page
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Table 2.6 – continued from previous page

10000 0.03 2.21527×10−9 (1.622) 0 (21.87)

90000 0.01 2.07134×10−9 (186.3) 0 (21.87)

λ = 2

n q Exact-KS-FFT W&A(a) Rel.err. (%)

25 0.40 6.62012×10−5 (0.000) 2.07367×10−4 (21.60)

400 0.10 9.95661×10−5 (0.015) 1.06900×10−4 (21.63) -7.366

10000 0.02 9.05026×10−5 (1.387) 8.92667×10−5 (21.70) 1.366

90000 1/150 8.88601×10−5 (173.5) 8.66333×10−5 (21.76) 2.506

n q Exact-KS-FFT W&A(b) Rel.err. (%)

25 0.40 6.62012×10−5 (0.000) 8.55×10−5 (21.80)

400 0.10 9.95661×10−5 (0.015) 8.55×10−5 (21.80) 14.13

10000 0.02 9.05026×10−5 (1.387) 8.55×10−5 (21.80) 5.53

90000 1/150 8.88601×10−5 (173.5) 8.55×10−5 (21.80) 3.78

λ = 1

n q Exact-KS-FFT W&A(a) Rel.err. (%)

25 0.20 0.089163050 (0.000) 0.14505810 (20.65)

400 0.05 0.093364526 (0.015) 0.10142243 (21.02) -8.631

10000 0.01 0.090270911 (1.138) 0.09184050 (21.13) -1.739

90000 1/300 0.089721687 (161.2) 0.09031193 (21.10) -0.658

n q Exact-KS-FFT W&A(b) Rel.err. (%)

25 0.20 0.089163050 (0.000) 0.08956207 (21.11)

400 0.05 0.093364526 (0.015) 0.08956207 (21.11) 4.073

10000 0.01 0.090270911 (1.138) 0.08956207 (21.11) 0.785

90000 1/300 0.089721687 (161.2) 0.08956207 (21.11) 0.178

Continued on next page
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Table 2.6 – continued from previous page

λ = 0.5

n q Exact-KS-FFT W&A(a) Rel.err. (%)

25 0.10 0.715781619 (0.000) 0.81817303 (15.09)

400 0.025 0.659784355 (0.015) 0.69382393 (16.38) -5.159

10000 0.005 0.652226764 (1.045) 0.65902720 (16.49) -1.043

90000 1/600 0.650966899 (155.2) 0.65323800 (16.54) -0.349

n q Exact-KS-FFT W&A(b) Rel.err. (%)

25 0.10 0.715781619 (0.000) 0.65034803 (16.57)

400 0.025 0.659784355 (0.015) 0.65034803 (16.57) 1.430

10000 0.005 0.652226764 (1.045) 0.65034803 (16.57) 0.288

90000 1/600 0.650966899 (155.2) 0.65034803 (16.57) 0.095

λ = 0.2

n q Exact-KS-FFT W&A(a) Rel.err. (%)

25 0.04 0.992964654 (0.000) 0.99996560 (11.24)

400 0.01 0.994406641 (0.015) 0.99733230 (12.10) -0.294

10000 0.002 0.993769635 (0.967) 0.99457260 (12.24) -0.081

90000 1/1500 0.993672471 (151.6) 0.99396553 (12.34) -0.029

n q Exact-KS-FFT W&A(b) Rel.err. (%)

25 0.04 0.992964654 (0.000) 0.99363783 (12.35)

400 0.01 0.994406641 (0.015) 0.99363783 (12.35) 0.077

10000 0.002 0.993769635 (0.967) 0.99363783 (12.35) 0.013

90000 1/1500 0.993672471 (151.6) 0.99363783 (12.35) 0.003

λ = 0.1

Continued on next page
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n q Exact-KS-FFT W&A(a) Rel.err. (%)

25 0.020 0.999999999 (0.000) 1 (7.52)

400 0.005 0.999974260 (0.015) 0.99999750 (10.80) -0.002

10000 0.001 0.999966686 (0.951) 0.99997897 (11.04) -0.001

90000 1/3000 0.999965549 (150.1) 0.99997020 (11.14) 0.000

n q Exact-KS-FFT W&A(b) Rel.err. (%)

25 0.020 0.999999999 (0.000) 0.99996560 (11.22)

400 0.005 0.999974260 (0.015) 0.99996560 (11.22) 0.001

10000 0.001 0.999966686 (0.951) 0.99996560 (11.22) 0.000

90000 1/3000 0.999965549 (150.1) 0.99996560 (11.22) 0.000

Example 2.3.5. Next, we consider another illustrative example where we compare the

performance of the proposed Exact-KS-FFT method with the R function ks.test from

the package dgof (Arnold and Emerson, 2011). Hypothesizing that the underlying F(x)

in (2.1) follows a discrete uniform distribution on [1,10], we have simulated random

samples of size n, 25 ≤ n ≤ 100000, from the discrete uniform distribution on [1,10]

and have performed KS tests on the simulated samples. In Table 2.7, we compute

p values corresponding to different values of the test statistic Dn for the simulated

samples of size n.

In order to perform the one-sample two-sided KS test, when F(x) is purely dis-

crete, one needs to input the disc_ks_test(x, y, ..., exact = NULL, tol =

1e - 08, sim.size = 1e + 06, num.sim = 10), where x is a numeric vector of

data sample values, and where other arguments are defined similarly as in the function

disc_ks_c_cdf(). For instance, in order to calculate the p value for the KS test,

when F(x) follows a discrete uniform distribution on [1,10] as in Example 2.3.5, with a

sample size n = 1000, one should run the following R code.
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Table 2.7 p values obtained via the Exact-KS-FFT method, the R function ks.test, and
W&A(a) method, when the underlying CDF F(x) follows a discrete uniform distribution
on [1,10]. Numbers in () are run times in seconds.

n Dn = dn Exact-KS-FFT ks.test ks.test(simulation) W&A(a)

25 0.2 0.1523 (0.0000) 0.1523 (0.007) 0.1465 (0.79) 0.1910 (12.63)
30 0.2 0.1133 (0.0000) 0.1133 (0.007) 0.125 (0.84) 0.1194 (12.73)
50 0.22 0.007164 (0.0000) 0.007167 (0.014) 0.007 (1.10) 0.0078223 (13.36)

100 0.2 0.00021 (0.0000) NU 0.0002 (4.10) 0.0002277 (13.80)
1000 0.02 0.5424 (0.0150) NU 0.5385 (8.35) 0.5429 (11.08)
5000 0.0094 0.4779 (0.2340) NU 0.509 (68.37) 0.4781 (10.92)

10000 0.0065 0.4975 (0.8890) NU 0.4985 (123.98) 0.4977 (11.08)
100000 0.00241 0.3343 (118.85) NU - - 0.3344 (11.80)

R> x4 <- sample(1 : 10, 1000, replace = TRUE)
R> disc_ks_test(x4, ecdf(1 : 10), exact = TRUE)

One-sample Kolmogorov-Smirnov test

data: x4
D = 0.01, p-value = 0.97023
alternative hypothesis: two-sided

As can be seen from Table 2.7, the Exact-KS-FFT method produces exact p values

for all sample sizes 25 ≤ n ≤ 100000, whereas the function ks.test becomes numeri-

cally unstable (NU) for n ≥ 100, as noted also by Arnold and Emerson (2011). To avoid

instability, for large n the function ks.test allows for estimating p values via simula-

tion, which may be insufficiently accurate or prohibitively time consuming, depending

on the choice of the number of simulations (cf., the column ks.test(simulation)

in Table 2.7 where the number of simulations is 2000). In contrast to the ks.test

function, using the Exact-KS-FFT method, one obtains the exact p value 0.3343 for

sample size n = 100000 in less than 2 minutes without any simulation. Moreover,

note that the p values in the column ks.test(simulation) in Table 2.7 are based on

the suggested default number of 2000 replicates (i.e., obtained by implementing the

R code dgof::ks.test(x, ecdf(1 : 10), simulated.p.value = TRUE, B =

2000)). Thus, each estimated p value is likely to be different if we run another simula-

tion and the relative error will also vary substantially, as we demonstrate in Table 2.8.

To reduce the variation of the simulated p values, one may wish to increase the number

of simulations but that will increase even more the computation time and make it pro-
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hibitive even for n > 1000. In addition, mainly due to the way it has been implemented,

for n > 1000 the number of simulations cannot be significantly increased, e.g., go

beyond 4000 replicates.

Table 2.8 Differences between the exact and simulated values of P(Dn ≥ q) obtained
via the Exact-KS-FFT method and the R function ks.test, respectively, for certain
n > 100 and q, when the underlying F(x) follows Binomial(3,0.5) or Binomial(7,0.5)
distribution.

F(x) n, q Exact-KS-FFT ks.test(simulation) Rel.err.

0 100%
Binomial(3,0.5) 10000, 0.02 0.0000659 0.0005 658%

0 100%

0.050 10.9%
Binomial(3,0.5) 400, 0.05 0.05612 0.061 8.7%

0.069 22.9%

0.0760 7.14%
Binomial(7,0.5) 10000, 0.01 0.07093 0.0895 26.2%

0.0745 5.03%

0.0825 10.1%
Binomial(7,0.5) 400, 0.05 0.07490 0.0910 21.5%

0.0885 18.2%

As can be seen from Table 2.8 (which extends Tables 2.4 and 2.5) and as also

supported by many additional calculations we have run, even for n≤ 10000 the accuracy

of the R function dgof::ks.test may vary substantially for p values in the (rather

important) range (0,0.1).

For small, moderate to large sample sizes (e.g., 25 ≤ n ≤ 10000), looking at the

column W&A(a) of Table 2.7, one can see that the alternative MC simulation-based

W&A(a) method produces less accurate results and can be significantly slower than

the Exact-KS-FFT method. W&A(a) performs better in terms of the trade-off between

accuracy and speed for very large sample sizes, e.g., n = 100000.

To conclude, the proposed method outperforms the R function ks.test from the

package dgof in all of the tested cases. When the number of jumps in the underlying

F(x) is small, the asymptotic p value obtained from (2.22) may not be a good estimate
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unless sample sizes are very large (e.g., ≥ 40000). Whereas when the number of jumps

in F(x) is large, one may use the asymptotic p values to approximate the exact ones for

large samples. In the next section, we turn our attention to the case of KS tests with

continuous null distributions, which has been widely studied in the literature and for

which very efficient numerical procedures have been recently developed.

2.3.3 (Complementary)CDF of Dn when F(x) is continuous

Our purpose in this section is to illustrate the numerical performance of the proposed

FFT-based approach of Section 2.2.1 and compare it with the state-of-the-art routines

of Simard and L’Ecuyer (2011) and Carvalho (2015) developed especially for the case

when the underlying CDF, F(x), is strictly continuous. These authors have summa-

rized and enhanced further the most accurate and efficient methods for computing

the distribution of Dn for F(x) continuous, developed earlier in a series of papers

e.g., by Durbin (1968), Durbin (1973), Pomeranz (1974), Ruben and Gambino (1982),

Marsaglia et al. (2003) and Brown and Harvey (2008). For comparison and further

details on the implementations of these methods in various statistical softwares, we

refer to Simard and L’Ecuyer (2011) and Brown and Harvey (2007). In their recent

paper, Simard and L’Ecuyer (2011) have combined into one state-of-the-art program

different exact methods to compute the distribution of Dn for different combinations of

n and q, based on the relative efficiency and accuracy of the methods. Moreover, for

certain combinations of n and q, where the implementations of the exact methods break

down (due to cancellation errors, loss of precision and/or prohibitive running time), e.g.,

for very large n or when the CDF of Dn is close to one, Simard and L’Ecuyer (2011)

incorporate in their program various asymptotic formulae for the limiting distribution

of Dn. We refer the reader to Section 4 in Simard and L’Ecuyer (2011) for further

details. More recently, Carvalho (2015), by avoiding the direct calculation of powers

of matrices as required by the approach of Durbin (1973), developed the R package

kolmim with function pkolmim that produces results with similar accuracy as those

obtained by the routine of Marsaglia et al. (2003), but much faster. However, the related
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R function becomes too slow when n > 10000 as the running time is proportional to n3

on average. We will show this in Appendix A.4.

Let us reemphasize that the proposed FFT-based method developed in Section 2.2.1

is general and thus, applicable also for the case when F(x) is continuous. Hypothesizing

on a continuous distribution F(x) leads to certain simplifications. In particular, (2.3) of

Step 1 simplifies to

P(Dn ≥ q) = 1−P

(
i
n
−q ≤U(i) ≤

i−1
n

+q, 1 ≤ i ≤ n
)
, (2.27)

which confirms that the distribution of Dn no longer depends on F(x). Also, (2.5) of

Step 2 simplifies to (2.27) since the boundaries in (2.6) become g(t) = nt − nq and

h(t) = nt +nq, q ≥ 0 as shown by Durbin (1968). This special case of the proposed

FFT-based method has been considered by Moscovich and Nadler (2017) in the general

context of computing the probability of non-crossing an upper and a lower boundaries

by a Poisson process.

Similarly to Simard and L’Ecuyer (2011) (see Sections 4 and 5 therein), we consider

three regions of n, (i) n ≤ 140, (ii) 140 < n ≤ 105, and (iii) n > 105, forming various

sub-regions with respect to q, as specified in Appendix A.2 and Appendix A.3. Within

these sub-regions Simard and L’Ecuyer (2011) use different methods to compute the

distribution of Dn. We have performed a thorough numerical comparison across these

regions with details given in Appendix A.2 and Appendix A.3, and can report that, with

only a few exceptions, the Exact-KS-FFT method returns values that are of at least the

same precision as those obtained from the R or C program.

2.4 Conclusions

We have provided a fast and accurate method to compute P(Dn ≥ q) when F(x) is

arbitrary, discontinuous (i.e., mixed or purely discrete) or continuous. The approach we

take is to express P(Dn ≥ q) as an appropriate rectangle probability for uniform order

statistics and to compute the latter probability using the FFT method. We demonstrate
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that the proposed Exact-KS-FFT method is numerically efficient and robust when

hypothesizing on either discontinuous or continuous F(x). In particular, when F(x) is

purely discrete the proposed method outperforms in terms of speed and accuracy the R

function of Arnold and Emerson (2011), especially for large sample sizes. Furthermore,

in the case of continuous F(x) the Exact-KS-FFT method represents a viable alternative

to the state-of-the-art methods of Simard and L’Ecuyer (2011) and Carvalho (2015) as it

returns values that are of at least the same precision. In the case when F(x) is mixed, to

the best of our knowledge no alternative methods have been proposed in the literature

to compute the exact distribution of Dn.

In this paper, we have also derived a useful extension of Schmid (1958)’s asymptotic

formula, relaxing his requirement for F(x) to be increasing between jumps and thus

allowing for any general mixed or purely discrete F(x). As demonstrated numerically,

the extended asymptotic formula provides reasonably close approximations to the exact

values of P(Dn ≥ q) and can successfully be used for small to moderate number of

jumps in F(x) and large sample sizes.

As part of a separate ongoing research, we have also demonstrated that the FFT-

based method can be successfully applied to compute the complementary CDF of the

weighted version of the KS test statistic

Kn = sup
x

√
n|Fn(x)−F(x)|

√
ψ[F(x)],

where ψ(t) ≥ 0,∀t ∈ [0,1] is a weight function, first considered by Anderson and

Darling (1952). The result of this additional research will appear elsewhere. Finally,

as noted in Remark A.1.3, the complementary CDFs P(Dn ≥ q) and P(Dn > q) are

non-increasing functions with jumps at some values of q. Characterizing in detail the

distribution of Dn, in particular the points of discontinuity, in relation to F(x) is also a

subject of ongoing research.

59





Appendix A

Appendix for Chapter 2

A.1 Expressing complementary CDFs of Dn

In this appendix, we express P(Dn > q) and P(Dn ≥ q) in terms of a rectangle probability

with respect to the uniform order statistics.

Lemma A.1.1. The following holds true

P(Dn > q) = 1−P(Ãi ≤U(i) ≤ B̃i,1 ≤ i ≤ n),

where Ãi = F
((

F−1( i
n − q)

)
−
)

and B̃i = F
(

F−1(( i−1
n + q)+

))
and F−1(y+) =

limε↓0 F−1(y+ ε).
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Proof: We have

P(Dn > q)

= P( sup
−∞<x<∞

|Fn(x)−F(x)|> q)

= 1−P( sup
−∞<x<∞

|Fn(x)−F(x)| ≤ q)

= 1−P(|Fn(x)−F(x)| ≤ q, for all x)

= 1−P(−q ≤ Fn(x)−F(x)≤ q, for all x)

= 1−P(F(x)−q ≤ Fn(x)≤ F(x)+q, for all x)

= 1−P
(

F(X(i)−)−q ≤ Fn(X(i−1)) and Fn(X(i))≤ F(X(i))+q, for 1 ≤ i ≤ n
)

= 1−P
(

F(X(i)−)≤ i−1
n

+q and
i
n
−q ≤ F(X(i)), for 1 ≤ i ≤ n

)
= P

(
F(X(i)−)>

i−1
n

+q or
i
n
−q > F(X(i)), for some 1 ≤ i ≤ n

)
= P

(
F−1

(( i−1
n

+q
)
+
)
< X(i) or F−1

( i
n
−q
)
> X(i) for some 1 ≤ i ≤ n

)
,

where in the last equality we have applied that u < F(x−) if and only if F−1(u+)< x

and that x < F−1(u) if and only if F(x)< u (see e.g., Lemma 1 (iii) and (v) of Gleser

(1985)). Therefore, we now have

P(Dn > q)

= 1−P

(
F−1

( i
n
−q
)
≤ X(i) ≤ F−1

(( i−1
n

+q
)
+
)

for 1 ≤ i ≤ n

)

= 1−P

(
F
((

F−1
( i

n
−q
))

−
)
≤U(i) ≤ F

(
F−1

(( i−1
n

+q
)
+
))

for 1 ≤ i ≤ n

)
,

(A.1)

where in the last equality we have applied Lemma 1 of Dimitrova et al. (2017). The

statement now follows noting that one can rewrite the last equality in terms of Ãi and B̃i.

2
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Remark A.1.2. The fact that the non-crossing probability

P(F(x)−q ≤ Fn(x)≤ F(x)+q, for all x)

= P

(
F−1

( i
n
−q
)
≤ X(i) ≤ F−1

(( i−1
n

+q
)
+
)

for 1 ≤ i ≤ n

)

shown in the proof of Lemma A.1.1 is illustrated in Figure A.1 with F(x) (the green

piecewise linear function) defined in (2.23) (cf., Example 2.2.8), for n = 5.

Remark A.1.3. The statement of Lemma A.1.1 holds true also for P(Dn ≥ q), as stated

in (2.3), with Ai and Bi defined as in (2.4). The proof is similar but more involved

than that of Lemma A.1.1 and is therefore omitted. It should also be noted that the

complementary CDFs P(Dn ≥ q) and P(Dn > q) are non-increasing functions with

jumps at some values of q. In fact, these two functions coincide, except at the jumps

where P(Dn ≥ q) is left-continuous and P(Dn > q) is right-continuous. This is a

consequence of the fact that the pairs Ai, Bi and Ãi, B̃i coincide except at their points of

discontinuity, where Ai, Bi are correspondingly right- and left- continuous, whereas Ãi,

B̃i are correspondingly left- and right- continuous.

Remark A.1.4. Let us note that the result of Lemma A.1.1 coincides with Theorem 1

of Gleser (1985).

A.2 Computing the CDF of Dn when F(x) is continuous

In this appendix, we compute the values of the CDF P(Dn ≤ q) for different n and q

using the Exact-KS-FFT method and compare the results to those obtained with the C

program due to Simard and L’Ecuyer (2011) and R function pkolmim from the package

kolmim by Carvalho (2015), which is claimed to be highly efficient and precise. Hence,

we calculate an absolute error as the absolute difference between our results and the

R outputs, from which we can infer the number of decimal digits of precision of our

results.
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X(1) X(2) X(3) X(4) X(5)

x

F(0)-q

q

F(0)+q

1/5

2/5

3/5

4/5

1

F(x)

Fn(x)

H(x)=F(x)+q

G(x)=F(x)-q

Fig. A.1 Illustration of the equivalence of P(F(x)−q ≤ Fn(x)≤ F(x)+q, for all x) to
P
(

F−1( i
n −q)≤ X(i) ≤ F−1(( i−1

n +q)+
)

for 1 ≤ i ≤ n
)

(cf., Remark A.1.2), for F(x)
defined as in (2.23) with n = 5.

In order to compute P(Dn ≤ q), when F(x) is continuous using the R package

KSgeneral, one needs to input cont_ks_cdf(q, n). For example, in order to compute

the value for P(Dn ≤ q), when F(x) is continuous, for n = 40, nq2 = 0.76, one should

run the following R code and obtain the corresponding result as shown in Table A.3 for

n = 40 in the column Exact-KS-FFT.

R> cont_ks_cdf(sqrt(0.76/40), 40)

[1] 0.6032371

Simard and L’Ecuyer (2011) consider the following regions: 1) n≤ 140 and q≤ 1/n;

2) n ≤ 140 and q ≥ 1− 1/n; 3) n ≤ 140 and 1/n < nq2 < 0.754693; 4) n ≤ 140 and

0.754693 ≤ nq2 < 4; 5) n ≤ 140 and 4 ≤ nq2 < 18; 6) n ≤ 140 and nq2 ≥ 18; 7)

140 < n ≤ 105 and nq3/2 < 1.4; 8) 140 < n ≤ 105 and nq3/2 ≥ 1.4; and 9) n > 105

where they use different methods to compute the distribution of Dn (cf., Simard and

L’Ecuyer, 2011, Section 4).

Following the segmentation of regions, we have computed the distribution of Dn

with the proposed FFT-based method and can report that for regions 1), 2), 3), 4), 7),

our approach gives results that are of at least the same precision as those obtained from
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the R or C program. In regions 5) and 6), when n ≤ 140 and nq2 > 12, our approach

may be unsuitable due to numerical instabilities which may occur.

More specifically, when 1) n≤ 140 and q≤ 1/n, or when 2) n≤ 140 and q≥ 1−1/n,

Simard and L’Ecuyer (2011) use the Ruben and Gambino (1982) formula to calculate

the distribution of Dn, returning results with at least 13 decimal digits of precision.

As can be seen from Table A.1, in these regions our method gives results that are of

similar accuracy as those from the R function pkolmim or the C program of Simard and

L’Ecuyer (2011).

Table A.1 Values of P(Dn ≤ q) for q = 1/n.

n Exact-KS-FFT Simard & L’Ecuyer Carvalho Abs. err.

20 2.320196159531E-08 2.320196159531E-08 2.320196159531E-08 9.9262E-23
40 6.749093037884E-17 6.749093037884E-17 6.749093037884E-17 1.7010E-30
60 1.702549809333E-25 1.702549809333E-25 1.702549809333E-25 3.0076E-39
80 4.050687717856E-34 4.050687717855E-34 4.050687717855E-34 3.2928E-47

100 9.332621544394E-43 9.332621544394E-43 9.332621544394E-43 3.4092E-56
120 2.106901932614E-51 2.106901932614E-51 2.106901932614E-51 2.5994E-64
140 4.690131222300E-60 4.690131222299E-60 4.690131222299E-60 1.0004E-72

When 3) n ≤ 140 and 1/n < nq2 < 0.754693, Simard and L’Ecuyer (2011) use the

Durbin matrix algorithm to calculate the distribution of Dn, returning results with at

least 13 decimal digits of precision. As can be seen from Table A.2, in this region our

method gives results of at least the same accuracy.

Table A.2 Values of P(Dn ≤ q) for nq2 = 0.75.

n Exact-KS-FFT Simard & L’Ecuyer Carvalho Abs. err.

20 0.6089841201379 0.6089841201379 0.6089841201379 2.9936E-15
40 0.5951497241008 0.5951497241008 0.5951497241008 1.9984E-15
60 0.5888010590107 0.5888010590107 0.5888010590107 1.9984E-15
80 0.5849488429478 0.5849488429478 0.5849488429478 4.7962E-14

100 0.5822897960080 0.5822897960080 0.5822897960080 2.2093E-14
120 0.5803108927579 0.5803108927579 0.5803108927579 7.2053E-14
140 0.5787632928760 0.5787632928760 0.5787632928760 1.0991E-14

When 4) n ≤ 140 and 0.754693 ≤ nq2 < 4, Simard and L’Ecuyer (2011) use the

Pomeranz (1974) method to calculate the distribution of Dn, returning results with at
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least 13 decimal digits of precision. In this region, again our method gives results of at

least the same accuracy as shown in Tables A.3 and A.4 for nq2 = 0.76 and nq2 = 3.9,

respectively.

Table A.3 Values of P(Dn ≤ q) for nq2 = 0.76.

n Exact-KS-FFT Simard & L’Ecuyer Carvalho Abs. err.

20 0.6169412955836 0.6169412955835 0.6169412955835 2.9976E-15
40 0.6032370735674 0.6032370735674 0.6032370735674 7.9936E-15
60 0.5969494784897 0.5969494784898 0.5969494784897 9.9920E-16
80 0.5931349807275 0.5931349807274 0.5931349807274 4.2966E-14

100 0.5905022875562 0.5905022875562 0.5905022875562 3.0087E-14
120 0.5885431553286 0.5885431553286 0.5885431553285 6.0063E-14
140 0.5870111081551 0.5870111081552 0.5870111081551 1.3989E-14

Table A.4 Values of P(Dn ≤ q) for nq2 = 3.9.

n Exact-KS-FFT Simard & L’Ecuyer Carvalho Abs. err.

20 0.9995468293485 0.9995468293485 0.9995468293485 4.9960E-15
40 0.9994205337332 0.9994205337332 0.9994205337332 1.7097E-14
60 0.9993680770022 0.9993680770022 0.9993680770022 1.2990E-14
80 0.9993382289964 0.9993382289964 0.9993382289964 7.4940E-14

100 0.9993185558110 0.9993185558110 0.9993185558110 3.9968E-14
120 0.9993044245859 0.9993044245858 0.9993044245857 1.1902E-13
140 0.9992936831012 0.9992936831013 0.9992936831012 1.9096E-14

When 5) n ≤ 140 and 4 ≤ nq2 < 18, Simard and L’Ecuyer (2011) first use the Miller

(1956) approximation to estimate P(Dn ≥ q), and then calculate the distribution of Dn

by P(Dn ≤ q) = 1−P(Dn ≥ q). The authors claim that the approximated values of

P(Dn ≤ q) have 14 decimal digits of precision. As illustrated in Tables A.5 and A.6 for

nq2 = 4.1 and nq2 = 12, our method gives results of at least the same accuracy when

n ≤ 140 and 4 ≤ nq2 ≤ 12. For n ≤ 140 and 12 < nq2 < 18, since our implementation

uses floating numbers in C++, numerical instabilities may occur.

When 6) n ≤ 140 and nq2 ≥ 18, P(Dn ≥ q) < 5× 10−16. Equivalently, P(Dn ≤

q) = 1−P(Dn ≥ q)> 1−5×10−16. Hence, returning P(Dn ≤ q) = 1 will give results

with 15 decimal digits of precision.
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Table A.5 Values of P(Dn ≤ q) for nq2 = 4.1.

n Exact-KS-FFT Simard & L’Ecuyer Carvalho Abs. err.

20 0.99970981546296 0.99970981546295 0.99970981546295 5.3291E-15
40 0.99962025405236 0.99962025405235 0.99962025405235 1.6209E-14
60 0.99958292108831 0.99958292108830 0.99958292108830 1.6764E-14
80 0.99956168530875 0.99956168530868 0.99956168530868 7.5717E-14

100 0.99954770168480 0.99954770168484 0.99954770168484 4.3188E-14
120 0.99953766763972 0.99953766763961 0.99953766763961 1.1346E-13
140 0.99953004813548 0.99953004813546 0.99953004813546 1.8430E-14

Table A.6 Values of P(Dn ≤ q) for nq2 = 12.

n Exact-KS-FFT Simard & L’Ecuyer Carvalho Abs. err.

20 0.99999999999963 0.99999999999962 0.99999999999962 7.5495E-15
40 0.99999999999135 0.99999999999134 0.99999999999134 1.5210E-14
60 0.99999999998168 0.99999999998167 0.99999999998167 1.3656E-14
80 0.99999999997415 0.99999999997407 0.99999999997407 7.6827E-14

100 0.99999999996823 0.99999999996827 0.99999999996827 3.8192E-14
120 0.99999999996388 0.99999999996376 0.99999999996376 1.1702E-13
140 0.99999999996020 0.99999999996017 0.99999999996017 2.3981E-14

When 7) 140 < n ≤ 105 and nq3/2 < 1.4, Simard and L’Ecuyer (2011) use the

Durbin matrix algorithm to obtain the exact distribution of Dn, returning probabilities

with at least 13 decimal digits of precision. As illustrated in Table A.7, our method

returns values of at least the same accuracy.

Table A.7 Values of P(Dn ≤ q) for nq3/2 = 1.3.

n Exact-KS-FFT Simard & L’Ecuyer Carvalho Abs. err.

140 6.378698330645E-02 6.378698330644E-02 6.378698330644E-02 9,9920E-16
200 3.847020660831E-02 3.847020660831E-02 3.847020660831E-02 4.9960E-16
500 7.365490405433E-03 7.365490405433E-03 7.365490405433E-03 3.9899E-17

1000 1.383862966203E-03 1.383862966202E-03 1.383862966202E-03 3.7015E-16
2000 1.629201120187E-04 1.629201120188E-04 1.629201120188E-04 1.5501E-16
5000 3.811342214264E-06 3.811342214276E-06 3.811342214276E-06 1.1910E-17

10000 8.999089573402E-08 8.999089573401E-08 8.999089573401E-08 1.2308E-20
100000 5.388085736386E-17 5.388085736343E-17 5.388085736345E-17 4.0739E-28

In region 8), when 140 < n ≤ 105, nq3/2 ≥ 1.4, and nq2 ≤ 18, Simard and L’Ecuyer

(2011) apply the Pelz and Good (1976) approximation that gives five decimal digits of
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precision for values of P(Dn ≤ q). In contrast, when 140 < n ≤ 105, nq3/2 ≥ 1.4, and

nq2 ≤ 10, our approach gives results with at least 11 decimal digits of precision even

though it is using floating numbers in calculation. The results when nq3/2 = 1.4 and

when nq2 = 10 are shown in Tables A.8 and A.9, respectively. However, in region 8),

when 140 < n ≤ 105, nq3/2 ≥ 1.4, and nq2 > 10, our approach may be unsuitable due to

numerical instabilities. In particular, it will return results with at least 11 decimal digits

of precision, but the resulting values of P(Dn ≤ q) may not be decreasing in n, due to

the errors in calculations with floating numbers. When 140 < n ≤ 105 and nq2 ≥ 18,

returning P(Dn ≤ q) = 1 will give results with 15 decimal digits of precision.

Table A.8 Values of P(Dn ≤ q) for nq3/2 = 1.4.

n Exact-KS-FFT Simard & L’Ecuyer Carvalho Abs. err.

140 9.0262329475006E-02 9.025921823E-02 9.0262329475004E-02 1.9013E-15
500 1.3024254002106E-02 1.302426466E-02 1.3024254002106E-02 4.0072E-16

1000 2.8949372516988E-03 2.89496818E-03 2.8949372516981E-03 6.7004E-16
5000 1.4235508314598E-05 1.42356151E-05 1.4235508314645E-05 4.7100E-17

10000 4.8334541076751E-07 4.83345438E-08 4.8334541076707E-07 4.3506E-19
50000 3.7148003980197E-12 3.71479094E-12 3.7147909440549E-12 9.4540E-18

100000 2.2123605255202E-15 2.21229903E-15 2.2123605254766E-15 4.3560E-26

Table A.9 Values of P(Dn ≤ q) for nq2 = 10.

n Exact-KS-FFT Simard & L’Ecuyer Carvalho Abs. err.

141 0.99999999743970 0.99999999743965 0.99999999743964 5.6066E-14
500 0.99999999654196 0.99999999654197 0.99999999654196 9.9920E-16

1000 0.99999999629650 0.99999999629831 0.99999999629630 1.9806E-13
5000 0.99999999602730 0.99999999603085 0.99999999603074 3.4379E-12

10000 0.99999999597940 0.99999999597986 0.99999999597981 4.1001E-13
50000 0.99999999592690 0.99999999591965 0.99999999591967 7.2330E-12

100000 0.99999999592133 0.99999999590672 0.99999999590684 1.4486E-11

Finally, in region 9), Simard and L’Ecuyer (2011) apply the Pelz and Good (1976)

approximation to obtain values of P(Dn ≤ q) when nq2 < 18, and set P(Dn ≤ q) = 1

when nq2 ≥ 18. As illustrated in Table A.10 for n = 100001, our approach tends to

be more accurate when P(Dn ≤ q) is very small. However, Pelz and Good (1976)

approximation may provide higher accuracy when P(Dn ≤ q) tends to one.
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Table A.10 Values of P(Dn ≤ q) for n = 100001.

q Exact-KS-FFT Simard & L’Ecuyer Carvalho Abs. err.
1

10
√

n 2.350089150939E-52 2.269812367E-52 2.350089151281E-52 3.4177E-62
1

8
√

n 1.969026572915E-33 1.962478061E-33 1.969026573193E-33 2.7816E-43
1

6
√

n 1.018454527586E-18 1.018350563E-18 1.018454527742E-18 1.5595E-28
1

4
√

n 2.907074248741E-08 2.9070737934E-08 2.907074249157E-08 4.1588E-18
1

2
√

n 3.639199759592E-02 3.639199759592E-02 3.639199760172E-02 5.7979E-12
1√
n 7.305646850557E-01 7.305646847185E-01 7.305646847159E-01 3.3980E-10

2√
n 9.993319331457E-01 9.993319333086E-01 9.993319333086E-01 1.6290E-10

To conclude, apart from the regions where n ≤ 140 and 12 < nq2 < 18; or 140 <

n ≤ 105, nq3/2 ≥ 1.4, and 10 < nq2 < 18; or nq2 ≥ 18, the Exact-KS-FFT method

returns values of P(Dn ≤ q) that are at least as accurate as those obtained by Simard

and L’Ecuyer (2011). This is shown in Figure A.2. Moreover, for n > 105, the proposed

method may be accurate when P(Dn ≤ q) is very small.

Fig. A.2 Approximate regions where the Exact-KS-FFT method returns P(Dn ≤ q)
efficiently and accurately.
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A.3 Computing the complementary CDF when F(x) is

continuous

It is well known that

Dn = sup
x
|Fn(x)−F(x)| −→ 0 a.s.,

as n → ∞. Hence, when n is very large, P(Dn ≤ q) is close to one. Also, it can be seen

that Dn ∈ [0,1], so P(Dn ≤ q) is close to one when q is close to one. In these cases,

cancellation errors may occur when trying to numerically compute the p value

P(Dn ≥ q) = 1−P(Dn ≤ q). (A.2)

Similarly to previous section, we compute the values of P(Dn ≥ q) for different n

and q using the Exact-KS-FFT method and compare the results to those obtained with

the R program of Carvalho (2015), and the C program due to Simard and L’Ecuyer

(2011).

In order to compute P(Dn ≥ q), when F(x) is continuous using the R package

KSgeneral, one needs to input cont_ks_c_cdf(q, n). For instance, in order to

compute the value for P(Dn ≥ q), for n = 141, nq2 = 2.1, one should run the following

R code and obtain the corresponding result as shown in Table A.12 for n = 141 in the

column Exact-KS-FFT.

R> cont_ks_c_cdf(sqrt(2.1/141), 141)

[1] 0.02743689

Simard and L’Ecuyer (2011) consider the following regions: 1) n≤ 140 and nq2 < 4;

2) n ≤ 140 and nq2 ≥ 4; 3) n > 140 and nq2 < 2.2; and 4) n > 140 and nq2 ≥ 2.2 where

they use different methods to compute the complementary CDF of Dn (cf., Simard and

L’Ecuyer, 2011, Section 5).

Following the segmentation of regions, we have computed the complementary CDF

of Dn with the proposed FFT-based method. Consequently, we can report that for region
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1), our approach gives results that are of at least the same accuracy as those obtained

from the R or C program. In region 2), P(Dn ≤ q) is close to one and our method

may be unsuitable due to cancellation errors which may occur when calculating the

complementary CDF via (A.2). A comparison for nq2 = 4 is shown in Table A.11.

Table A.11 Values of P(Dn ≥ q) for nq2 = 4.

n Exact-KS-FFT Simard & L’Ecuyer Carvalho Abs. err.

20 3.627396978E-04 3.627396978E-04 3.627396978E-04 5.0590E-15
40 4.691487961E-04 4.691487961E-04 4.691487961E-04 1.5461E-14
60 5.134182982E-04 5.134182982E-04 5.134182982E-04 1.3937E-14
80 5.386021475E-04 5.386021476E-04 5.386021476E-04 7.4480E-14

100 5.551927328E-04 5.551927328E-04 5.551927328E-04 3.9403E-14
120 5.671032850E-04 5.671032851E-04 5.671032851E-04 1.0974E-13
140 5.761521040E-04 5.761521040E-04 5.761521040E-04 1.0433E-14

In region 3), when 140< n≤ 105 and nq2 < 2.2, Simard and L’Ecuyer (2011) use the

Pelz and Good (1976) approximation and apply (A.2) to calculate the complementary

CDF, returning results with at least five decimal digits of precision. Our approach

also applies (A.2), but returns results with at least nine decimal digits of precision. A

comparison for nq2 = 2.1 is given in Table A.12.

Table A.12 Values of P(Dn ≥ q) for nq2 = 2.1.

n Exact-KS-FFT Simard & L’Ecuyer Carvalho Abs. err.

141 0.02743688914 0.02743688914 0.02743688914 5.0990E-13
500 0.02866250067 0.02866250067 0.02866250073 5.9554E-11

1000 0.02905830855 0.02905830855 0.02905830828 2.6492E-10
5000 0.02957796836 0.02957796836 0.02957796797 3.9119E-10

10000 0.02969964497 0.02969964497 0.02969964418 7.9672E-10
50000 0.02986114255 0.02986114255 0.02986114263 7.2066E-11

100000 0.02989926133 0.02989926162 0.02989926162 2.8962E-10

In region 4), when 140< n≤ 105 and nq2 ≥ 2.2, Simard and L’Ecuyer (2011) use the

Miller (1956) approximation and obtain complementary CDF with at least six decimal

digits of precision. In this region, the proposed FFT-based method may give more

accurate results when 140 < n ≤ 105 and 2.2 ≤ nq2 ≤ 7. For example, for nq2 = 2.2
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and nq2 = 7, Tables A.13 and A.14 show that the Exact-KS-FFT method returns

complementary CDF with at least 10 decimal digits of precision. When 140 < n ≤ 105

and nq2 > 7, our method may be unsuitable due to cancellation errors as previously

discussed.

Table A.13 Values of P(Dn ≥ q) for nq2 = 2.2.

n Exact-KS-FFT Simard & L’Ecuyer Carvalho Abs. err.

141 0.02239633302 0.0223963592 0.02239633302 5.2000E-14
500 0.02343606481 0.0234361007 0.02343606481 2.6201E-14

1000 0.02377033994 0.0237703789 0.02377033994 2.0260E-13
10000 0.02431016270 0.0243102062 0.02431016270 1.3636E-12

100000 0.02447768608 0.0244777310 0.02447768610 1.8812E-11

Table A.14 Values of P(Dn ≥ q) for nq2 = 7.

n Exact-KS-FFT Simard & L’Ecuyer Carvalho Abs. err.

141 1.2484862E-06 1.2484863E-06 1.2484863E-06 5.7535E-14
500 1.4796907E-06 1.4796906E-06 1.4796907E-06 2.1112E-14

1000 1.5434598E-06 1.5434599E-06 1.5434600E-06 1.9722E-13
10000 1.6309268E-06 1.6309265E-06 1.6309266E-06 1.9895E-13

100000 1.6534902E-06 1.6534983E-06 1.6534982E-06 7.9321E-12

Finally, when n > 105 and nq2 < 370, Simard and L’Ecuyer (2011) use the Miller

(1956) approximation and obtain complementary CDF with a few correct decimal

digits. These authors have shown that complementary CDF can be set to be zero when

nq2 ≥ 370. Recall that in Table A.10, we have shown that the Exact-KS-FFT method

tends to be more accurate when P(Dn ≤ q) is very small, or when q is small. In this

case, we can apply (A.2) to calculate the complementary CDF, without incurring large

cancellation errors. More specifically, when n > 105 and nq2 ≤ 3, the Exact-KS-FFT

method returns complementary CDF with at least seven decimal digits of precision as

demonstrated in Table A.15. The accuracy of course deteriorates when n > 105 and

3 < nq2 < 370.

To summarize, apart from the regions where n ≤ 140 and nq2 ≥ 4; or n ≤ 140 and

q ≥ 1−1/n; or 140 < n ≤ 105 and nq2 > 7, the Exact-KS-FFT method returns values of
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Table A.15 Values of P(Dn ≥ q) for nq2 = 3.

n Exact-KS-FFT Simard & L’Ecuyer Carvalho Abs. err.

100001 4.939303411E-03 4.939303336E-03 4.939303263053E-03 1.4795E-10
200000 4.944654927E-03 4.944654662E-03 4.944654584319E-03 3.4268E-10
300000 4.947020044E-03 4.947020013E-03 4.947019946709E-03 9.7291E-11

the probability P(Dn ≥ q) that are at least as accurate as those obtained by Simard and

L’Ecuyer (2011). This is shown in Figure A.3. Moreover, when n > 105 and nq2 ≤ 3,

the proposed approach may be more accurate than Simard and L’Ecuyer (2011) method.

Fig. A.3 Approximate regions where the Exact-KS-FFT method returns P(Dn ≥ q)
efficiently and accurately

A.4 Speed comparison

Tables A.16, A.17 and A.18 report the CPU times to compute P(Dn ≥ q) 100 times, for

selected values of n and λ . Note that Carvalho (2015) procedure cannot be used with the

chosen values of q and n = 100000 as it is prohibitively slow. As expected, Simard and

L’Ecuyer (2011) C program which combines the most efficient methods for computing

the distribution of Dn for F(x) continuous, is the fastest among the three procedures.

However, the Exact-KS-FFT method proves to be a viable alternative especially given

its generality and applicability to the case of discontinuous F(x).
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Table A.16 CPU time (seconds) to compute P(Dn ≥ q) 100 times with the Simard and
L’Ecuyer (2011) C program.

n\λ 0.25 0.5 1 2 3 4

10 0.00034 0.00059 0.00065 0.00069 0.00087 0.00014
100 0.00524 0.01318 0.01835 0.03242 0.04765 0.00107
140 0.00615 0.01915 0.03474 0.06172 0.08618 0.11874
141 0.00673 0.01955 0.03529 0.06657 0.09285 0.11886

1000 0.15040 0.00013 0.00014 0.00019 0.00894 0.00894
10000 0.00013 0.00014 0.00012 0.00015 0.08124 0.08080

100000 0.00014 0.00015 0.00014 0.00019 0.78912 0.75099

Table A.17 CPU time (seconds) to compute P(Dn ≥ q) 100 times with the Exact-KS-
FFT method.

n\λ 0.25 0.5 1 2 3 4

10 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
100 0.0150 0.0150 0.0150 0.0380 0.0380 0.0550
140 0.0150 0.0150 0.0310 0.0620 0.0780 0.1090
141 0.0150 0.0150 0.0310 0.0620 0.0780 0.1090

1000 0.1400 0.2960 0.6550 1.1700 1.9340 2.2990
10000 5.6310 8.5320 19.500 45.100 52.890 94.700

100000 182.29 333.31 672.16 1466.6 2503.3 3211.7
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Table A.18 CPU time (seconds) to compute P(Dn ≥ q) 100 times with the Carvalho
(2015) R program.

n\λ 0.25 0.5 1 2 3 4

10 0.001 0.001 0.001 0.001 0.001 0.001
100 0.003 0.004 0.006 0.009 0.013 0.017
140 0.004 0.006 0.009 0.014 0.020 0.023
141 0.004 0.006 0.009 0.014 0.020 0.024

1000 0.086 0.155 0.268 0.499 0.747 1.066
10000 6.250 13.16 40.22 97.18 145.5 188.4

100000 na na na na na na
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