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Fig. 1 An illustration of semantic segmentation. (a) Maya Karabağ is playing with
her soft toy on the carpet. (b) Semantic segmentation of the same image. All pixels
were classified as one of the three possible outcomes - Maya, her toy, and the carpet.

I would like to dedicate this dissertation to my daughter

Maya

who has been giving me joy since her birth.

Lbmcjn!Nbzb(zb





Declaration

I hereby declare that except where specific reference is made to the work of others, the

contents of this dissertation are original and have not been submitted in whole or in part

for consideration for any other degree or qualification in this, or any other university.

This dissertation is my own work and contains nothing which is the outcome of work

done in collaboration with others, except as specified in the text and Acknowledgements.

I hereby grant powers of discretion to the University Librarian to allow this thesis to

be copied in whole or in part without further reference to the author. This permission

covers only single copies made for study purposes, subject to normal conditions of

acknowledgement.

Cefa Karabağ

MMXX





Acknowledgements

First and foremost, I am extremely grateful for the tremendous support from my

supervisor, Dr Constantino Carlos Reyes-Aldasoro, who not only has incredible

foresight and views of the big picture, but also guided me through numerous technical

details throughout my research. I benefited a great deal from his expertise in image

processing and computer programming, his positive approach, and constructive criti-

cisms during my years at City, University of London. It has been a great pleasure

and a privilege to work with him, to learn from him and to be inspired by him. I can

confidently confirm that whatever I know about Image Analysis, I learned it from him.

Secondly, the collaboration with The Francis Crick Institute has given me the

opportunity to interact with interdisciplinary scientists and I am especially thankful

to Martin L. Jones and Lucy M. Collinson for the provision of the data sets and

their invaluable advice and support in a biological context.

Next, I would like to thank José Alonso Solís-Lemus for his invaluable support

throughout my years working at the centre. I would also like to acknowledge the

support from the School of Mathematics, Computer Science and Engineering which

enabled this research through the award of a tuition fee waive. It would not be possible

to finish my work and this dissertation without it.

Finally, from the bottom of my heart, thanks to my wife, Özgü, and my daughter,

Maya, who made the home a happy place to finish my work as their love and generosity

have inspired me. Their daily encouragement and support in all matters make it all

worthwhile.





Abstract

This dissertation investigates the volumetric analysis of a variety of cervical cancer

cells called HeLa cells. HeLa cells were derived from cervical cancer cells taken from

Henrietta Lacks at the Johns Hopkins Hospital and hence the name HeLa remains.

The shape of cells is important as the regular or irregular shape of the cell and its

structures can be related to some conditions of health or disease.

In this dissertation, a traditional image processing algorithm to segment the nuclear

envelope of HeLa cells imaged with Serial Block Face Scanning Electron Microscopy

is proposed. The algorithm is fast, robust and accurate and it was compared against

different deep learning architectures. Three deep learning architectures were deployed

through transfer learning and U-Net was trained from scratch for semantic segmentation

of HeLa cells. The algorithm outperformed all four deep learning architectures and

active contours (snakes) in both accuracy and time as suggested by the similarity metrics.

The segmented nuclear envelope was further investigated through a visualisation

technique to obtain a graphical model. This model provides volume and surface metrics

which can be used to compare different cells. Wild-type of HeLa cells were compared

against Chlamydia trachomatis-infected HeLa cells and geometric differences were

revealed.

The open-source image processing algorithm, developed in programming environ-

ment of Matlab® (The MathworksTM, Natick, USA), provides cell segmentation in

a fraction of manual segmentation time therefore it is an alternative to expensive

commercial software and manual segmentation, which is still widely used despite the

significant disadvantages of time and inter- and intra-user variability.
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Chapter 1

Introduction and background

1.1 Overview

The Biomedical Image Analysis has its four quadrant namely physics, medical imaging,

machine learning and image processing, and graphics [1] and it is a branch of Biomedical

Engineering where computational algorithms are developed to analyse images of different

biological nature and context [2]. Observation of biological processes through microscopy

has allowed for "large-scale, systematic and automated studies", as stated by Rittscher

et al. [3]. For example, experiments where the observation of cellular processes in

genetically modified organisms produces several images per second. Manual assessment

of such experiments is a difficult and time-consuming task, for which an automated or

semi-automated technique could obtain useful information from the data at a faster

rate and ultimately more reliable as the manual assessment is error-prone and inter-

and intra-observer variability. To extract information from an image, a collection

of computational, mathematical and statistical procedures can be performed on the

images, and the information obtained can aid tasks such as cell detection, segmentation,

and classification.

Cell segmentation and classification have been important, and challenging problems

for many years [4–7]. They have attracted considerable attention, both in clinical

practice and computing research [8], as the identification of individual cells, and the
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shape of the cell and its parts, like the nuclear envelope (NE), may reveal some

conditions of health or disease [9].

The study of cells helps us understand how cells work in healthy and diseased states.

Cell biologists working in animal, plant and medical science will be able to develop

new vaccines, more effective medicines, plants with improved qualities and through

increased knowledge a better understanding of how all living things live. Eventually it

will be possible to produce a ’health forecast’ by analysing our database of genetic and

cell information [10]. Using this database we will be able to take more control over our

health in a preventive way.

The work documented in this dissertation contributes towards (i) segmenting the

nuclear envelope (NE) of HeLa cells - Chapter 4, Chapter 6 [11] (ii) modelling the

NE against a spheroid to provide statistical measurements of HeLa cells in relation

to the shape of the cells Chapter 4, Chapter 6 [11] and (iii) automating the task

through computer algorithms Chapter 4, Chapter 5, and Chapter 6 [11, 12]. The novel

computational algorithms described in this dissertation extract information from the

electron microscopy (EM) images and provide statistical analysis of its results.

1.2 Motivation

Cervical cancer is one of the leading causes of death in females [13], and together

with breast cancer, it contributes to 4.2% of the global causes of death [14]. In

the United Kingdom, around 3,000 women are diagnosed with cervical cancer every

year, and around 1,000 of those die annually [15]. The substantial levels of ongoing

morbidity and mortality have led to heightened interest in new methods to identify

cell abnormalities. Consequently, clinicians are interested in early detection of cell

abnormalities to effectively predict and control possible cancer events in the future.

Cancer cell lines and tissue culture studies have been used extensively to understand

tumour biology and facilitate drug discovery processes [16–18]. The availability of cell

lines together with genetic advances has contributed to cancer research, which has



1.2 Motivation 3

grown significantly as a proportion of all research in biomedical areas [19]. Perhaps

the most important cell line has been the cervical cancer HeLa cells, derived in 1951

[20, 21] and widely used as model for thousands of biological experiments [22, 23].

The NE is the membrane that surrounds the chromosomes and partitions them from

the rest of the cell contents, thereby forming a protected environment for the genetic

material. Almost every cell (red blood cells being a notable exception) has a nucleus

bounded by a nuclear envelope, and so it is a primary target for segmentation as a

reference structure for visualising and spatial positioning of other cell organelles. The

NE is an important structure in cervical cancer cells as they undergo mitosis, breaking

down to allow the cell to duplicate and split before reforming around each daughter

nucleus [24, 25]. This importance is also underlined in cancerous cells [21, 20, 22]

where certain components of the nuclear envelope take central roles in cell functions

that affect tumour development and progression. Visualising and investigating the NE

requires its accurate segmentation [4, 7, 26, 27] from a set of serial images of the cell

obtained through electron microscopy (EM).

Segmentation of cells and organelles observed with electron micrographs is in many

cases still a manual process [28–30], despite the significant disadvantages of time

and inter- and intra-user variability and intensifying efforts by the community to

automate the process. Manual segmentation (Figure 2.9), which is still considered

as the gold standard, requires a great amount of expert knowledge and training and

it is very tedious and time consuming [31]. Hence, an automated system is required

to help biomedical researchers in fast and reliable segmentation of the NE. Once the

segmentation is achieved, a 3D reconstruction of the NE can be created and interpreted

to study its biological characteristics and relationships to other structures in the cell.

Problem statement. The HeLa cells imaged with Serial Block Face Scanning

Electron Microscopy (SBF SEM) present additional challenges for automated analysis

that is not necessarily shared with other problems widely studied in computer vision.

For example, (i) the nuclear envelope of HeLa cells might have several disjoint regions

when the cells break down during mitosis, (ii) Visualising and investigating the NE
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requires its accurate segmentation from a set of serial images of the cell obtained

through electron microscopy (EM). The human vision can often overcome some of

these challenges, however, a computational analysis would require complex methods to

analyse each slice. The techniques developed for this purpose would provide robust

and repeatable analysis to image sequences of HeLa cells and Chlamydia trachomatis-

infected HeLa cells, aiding in the confirmation of the hypotheses made from visual

inspection.

1.3 Aims and objectives

The aim of this work is the volumetric analysis of cervical cancer cells or HeLa cells

observed with Electron Microscopy (EM) images. This is important in both biological

and computing research, as the identification of individual cells, and the shape of the

cell and its parts, like the nuclear envelope (NE), may reveal some conditions of health

or disease. This work provides an accurate cell segmentation in a fraction of the manual

segmentation time. The open-source algorithm developed in this work provides an

alternative to expensive commercial software and manual segmentation.

For this purpose, firstly, a semantic segmentation of HeLa cells is performed.

Initially, the NE of HeLa cells is segmented. To achieve this aim, we develop an

automated and unsupervised image processing algorithm for the segmentation of the

NE of Wild-type of HeLa cells imaged with imaged with Serial Block Face Scanning

Electron Microscopy (SBF SEM).

Furthermore, we perform segmentation of different type of cell images such as

Chlamydia trachomatis-infected HeLa cells. We apply the segmentation algorithm

onto Chlamydia trachomatis-infected HeLa cells and compare the results with that

of Wild-type of HeLa cells. Moreover, the geometrical comparison is presented so

differences between nuclear envelopes of Chlamydia trachomatis-infected HeLa cells

and Wild type of HeLa cells can be explained.



1.4 Contributions 5

Finally, deployment of deep learning architectures for semantic segmentation of

HeLa cells is explored. The objective comparison between traditional image processing

algorithm and deep learning architectures is presented.

All algorithms are assessed by using different metrics i.e. Jaccard similarity index,

Hausdorff distance, and accuracy.

The objectives for this dissertation can be defined as follows:

1. To perform semantic segmentation of HeLa cervical cancer cells imaged with

Serial Block Face Scanning Electron Microscopy (SBF SEM). The segmentation

was performed with a proposed algorithm, which was compared against four

other algorithms through Transfer Learning.

2. To obtain a graphical model of the nuclear envelope (NE) of HeLa cells i.e. to

model the NE against a spheroid in order to extract some metrics that may be

relevant to characterise the biological nature of the cells.

3. To provide fast and accurate segmentation of different type of HeLa cells in a

fraction of manual segmentation time so a comparison could be done between

Wild-type of HeLa cells and Chlamydia trachomatis-infected HeLa cells to reveal

their geometrical differences.

1.4 Contributions

The original contributions of this dissertation are:

1. An image processing algorithm for the segmentation of the nuclear envelope (NE)

of cervical cancer cells or HeLa cells including disjoint regions. The algorithm

could work for any electron microscopy (EM) images (Chapter 4 and Chapter

6) such as Chlamydia trachomatis-infected HeLa cells [32]. The tool can be

used to create a 3D volume of the NE and segmentation results can be used

as training data for Deep Learning architectures. Modelling the NE against a
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spheroid provides a graphical model of the NE and some volume and surface

metrics that can be used to compare different types of HeLa cells and to explain

their geometrical differences.

2. Development and testing of an image processing algorithm distributed as a set of

routines under an open source license. Such algorithm would directly address

the aims and objectives described in the previous section.

3. Comparison of the algorithm against four Deep Learning architectures in order

perform semantic segmentation of the nuclear envelope of HeLa cells.

1.5 Organisation of the dissertation

An overview of the dissertation is represented graphically in Figure 1.1, and subdivided

in the chapters described below.

Fig. 1.1 Graphical outline of the dissertation. Chapter 2 provides the context for
HeLa cells from a biological and mathematical point of view. Chapter 3 represents a
thorough exploration of the data. Chapters 4 and 5 provide the major contributions of
this work, the results are presented in Chapter 6.

The initial four chapters address the background and the relevant literature for this

research, whereas Chapter 5 and Chapter 6 explain the implementation details and
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relevant results for this work. Moreover, the limitations and possible future extensions

for this work are discussed in the last chapter. For a greater appreciation of this

dissertation, a brief description for individual chapters is presented below.

Chapter 1 introduces the basic theme of this work with a short introduction

followed by the aims and objectives of the dissertation. Moreover, the importance of

the research problem is highlighted with the help of disease incidence statistics in this

chapter.

Chapter 2 subsequently defines the biological context of this work for the general

audience. Starting with cell biology and mitosis, we explain the cancer diseases with a

specific emphasis on cervical cancer and associated HeLa cells. This is followed by the

importance of HeLa cells and an overview of cross-contamination of HeLa cells.

Chapter 3 deals with electron microscopy, its working principles, and medical

imaging techniques. We conclude this chapter with a focus on Serial Block Face

Scanning Electron Microscopy (SBF SEM) acquisition and Cryo-electron Microscopy.

At the end of this chapter we explain the acquisition of both Wild-type and Chlamydia

trachomatis-infected HeLa cell images through SBF SEM.

Chapter 4 addresses the basic problem of image processing and image segmentation.

We start with an overview of simple edge and region-based methodologies and provide

a literature based detailed review. The basic principles will be explained along with

its mathematical derivation. In the next section we extend our discussion to active

contours segmentation models.

Chapter 5 delves into Artificial Intelligence, Machine Learning and specifically

Deep Learning and Transfer Learning. Convolutional Neural Networks (CNNs) will

be investigated in detail and finally three most accurate pre-trained Deep Learning

architectures will be discussed for the segmentation of the NE of HeLa cells used in

this work.

Chapter 6 presents our results we have obtained so far and discusses the efficiency

of the image processing segmentation algorithm as well as pre-trained Deep Learning ar-

chitectures through an objective comparison. starts with the details of data used in this
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work, followed by the ground truth construction of the NE of HeLa cells for comparative

purposes. In the subsequent section, we explain the automatic segmentation algorithm

developed for this work. In the next section, we present quantitative comparisons

between segmentation of the algorithm and the manual segmentation. Application

of active contours on HeLa cells is given in the following section. This application

of three pre-trained Deep Learning architectures on HeLa cells and performance of

semantic segmentation results are presented. We conclude this chapter with the nuclear

envelope shape modelling of HeLa cells against a spheroid and present quantitative

metrics extracted from this modelling. We present both visual and statistical results

in context of the NE segmentation.

Chapter 7 concludes our work and explains some of the limitations of this work.

Moreover, we discuss some of the future directions in which this work can be extended.

1.6 Summary

The study of cells and their organelles have interested scientists from the early days

of Hooke and van Leeuwenhoek to the formulation of cell theory by Schleiden and

Schwann [33]. Since then, cells and their environment; its presence or absence, shapes,

inner components, interactions, regulation of processes, and many other characteristics

have been thoroughly analysed, especially trying to relate these to conditions of health

and disease [34–39]. To observe cells, it is necessary to use microscopy and one of its

many different techniques like light, fluorescent or differential interference microscopy.

Electron Microscopy (EM) can provide resolving power several orders of magnitude

higher than conventional light and fluorescence microscopes and thus it is ideal to

observe small structures of the cellular environment. Modern EM settings allow the

acquisition of contiguous slices of a sample by slicing very thin sections of the top face

with an ultramicrotome with a diamond knife [40]. Once the sample is sliced, the slice

itself is discarded, the sample is raised and the scanning process continues for a given
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number of slices, thus creating a three-dimensional data set of contiguous slices. This

process is called Serial blockface scanning EM (SBF SEM) [41].

The nuclear envelope (NE) is a bi-layer membrane separates the nucleus with the

chromosomes from the rest of the cellular compartments [42] and contains a large

number of membrane proteins with sophisticated roles and functions [43, 42, 44, 45].

The structure and condition of the NE is of huge importance as it has been related

to viral infections [46–50], Muscular dystrophy [51], Cancer [52–56], Osteoporosis [57],

Cardiovascular diseases [58–60], other diseases [61–63], and ageing [64–66]. Therefore,

algorithms for the segmentation, visualisation and analysis of the NE could provide

parameters to understand the conditions of health and disease of a cell.

The segmentation and classification of cells and their environment through image-

processing tasks have been important for many years and numerous algorithms have

been proposed. Candia et al. summarised the importance of objective analysis

emphatically in the following way: "we need unbiased, mathematically robust, scalable

methods that allow us to identify key parameters that consistently characterise cell

sub-populations ... to build signatures of health and disease" [35]. PubMed [67] contains

more than 33, 000 entries with the words cell and classification or segmentation in the

title and abstract ((classification[Title/Abstract] OR segmentation[Title/Abstract])

AND cell[Title/Abstract]). The number of entries drops considerably to less than 1000

when the keyword "electron" is added to the search. Segmentation and classification

of images acquired with electron microscopy is difficult for several reasons. The

considerable increase of size and resolution as compared with light and fluorescence

microscopy provides complex morphological structures. Whilst fluorescence microscopy

allows several channels that identify structures of interest, EM only provides a grey

scale image and with a reduced contrast between the structures of interest and the

background. Furthermore, when serial sections are obtained, the images are transformed

into a volumetric data set.

Recently, advances in machine learning and artificial intelligence, especially those

related to deep learning algorithms [68], have revolutionised image processing tasks
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[69–74]. Several deep learning algorithms [75–77] have obtained outstanding results in

difficult tasks such as those of the ImageNet Large Scale Visual Recognition Challenge

(ILSVRC) [78]. Not surprisingly, deep learning has become a popular tool for segmenta-

tion and classification. Convolution neural networks (CNN) [79], are versatile and have

been shown to be very effective for a wide range of tasks including object detection

[80, 81] and image classification [82–86] andsegmentation [87]. The U-Net architecture,

proposed by Ronneberger [88] has become a widely used tool for segmentation and

analysis. It recently became the most cited paper presented in the prestigious MIC-

CAI conference. Ciresan [89] et al. applied Deep neural networks (DNN) to detect

membrane neuronal and mitosis detection in breast cancer [90].

Numerous researches have deployed deep learning, that is trained end-to-end and

does not rely on prior knowledge of the data, to study the structure and different

organelles of cells imaged with electron microscopy [91–97].

Deep learning algorithms have two main limitations: 1) they require a large amount

of training data and 2) they require significant computational power. As graphics

processing units (GPUs) become more popular, the main limitation is thus the scarcity

of training data [98, 99, 83, 100, 101].

Deep learning architectures were used to validate or improve analytical results of

segmentation provided by the image processing algorithm. Moreover, in recent times

in computer science community, Artificial Intelligence (AI) inspired technology has

been used to to tackle some of difficult problems in many areas, among them those

related to healthcare and medical imaging [102, 103]. Thus, in this dissertation we

investigate the performance of four different Convolutional Neural Network (CNN)

models to assess the classification of HeLa cells into four classes: nuclear envelope,

nucleus, rest of the cell, and background.

In this work we trained the Deeplab v3+ network [104], one type of convolutional

neural network (CNN) designed for semantic image segmentation, to perform semantic

segmentation of HeLa cells imaged with SBF SEM. U-Net [88] was trained from scratch

perform the semantic segmentation of HeLa cells.
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The algorithms were pre-trained with ImageNet and then fine-tuned with training

data prepared for this work. These were then compared with a traditional image

processing algorithm [11]. The image processing algorithm follows a pipeline of

traditional tasks: low-pass filtering, edge detection, dilation, generation of super-

pixels, distance transforms, mathematical morphology and post-processing to segment

automatically the nuclear envelope and background of HeLa cells. For each architecture,

the results were compared against the ground truth with four classes and then the

following metrics were calculated: accuracy (labels correctly classified) and Jaccard

similarity index.

The results of the four algorithms were objectively compared against a ground

truth that was formed by a manually segmented nuclear envelope and an automati-

cally segmented background. All the programming was performed in Matlab® (The

MathworksTM, Natick, USA) and the codes are freely available through GitHub and

the data sets through EMPIAR and Zenodo repositories:

https://github.com/reyesaldasoro/Hela-Cell-Segmentation,

https://github.com/reyesaldasoro/HeLaSegmentationUNET,

https://github.com/karabagcefa/Hela-Cell-Semantic-Segmentation,

EMPIAR:http://dx.doi.org/10.6019/EMPIAR-10094,

Zenodo:https://doi.org/10.5281/zenodo.3834608.

The key research presented in this work is the investigations done on the HeLa

cell images acquired by the Electron Microscopy Science Technology Platform

(EM STP) at The Francis Crick Institute in London [40], where various results

were found. Later investigations were focused on Chlamydia trachomatis-infected HeLa

cells obtained from The Cell Image Library - CIL50051 and CIL50061.





Chapter 2

Cell and Cancer Biology

2.1 Introduction

The aim of this dissertation is to develop an automatic and unsupervised image-

processing algorithm to segment the nuclear envelope (NE) of cancerous HeLa cells

imaged with Serial Block Face Scanning Electron Microscopy (SBF SEM) and to

compare against deep learning architectures.

This chapter gives the necessary knowledge to understand the biological content of

the project. It starts with cell and its structure, explains cell division called mitosis

and finally presents cancer cells in general and narrows it down to cancerous HeLa

cells. The common usage of HeLa cells around the world and cross-contamination of

HeLa cells will also be discussed. The chapter ends with a summary.

2.2 Cell

All living creatures are made of cells, which are the structural, functional and fun-

damental units of life with the extraordinary ability to create copies of themselves

by subdivision [25, 24]. Most human cells fall within a size range of 2-120 microns

[105] and they show signs of life: particles move around inside them, cells slowly

change their shapes and interact with their environment, and some cells divide into
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Fig. 2.1 Schematic diagram of internal membranes and the cytosol. Fine structure of a
cell illustrates internal membranes such as nucleus, nuclear envelope, mitochondrion,
endoplasmic reticulum, Golgi apparatus or complex, ribosome, and lysosomes. Each
organelle is specialised to perform a different function. The rest of the cell, excluding
all organelles, is called the cytosol, and is the site of many vital cellular activities.
Images adapted from [24].

two. Figure 2.1 illustrates the schematic diagram of fine structure of a cell showing

internal membranes such as nucleus, nuclear envelope, mitochondrion, endoplasmic

reticulum, Golgi apparatus or complex, ribosome, and lyso-somes. Each organelle is

specialised to perform a different function. The rest of the cell, excluding all organelles,

is called the cytosol, and is the site of many vital cellular activities. The presence or

absence of a nucleus is used as the basis for a simple but fundamental classification of

all living organisms. Those whose cells have a nucleus are called eukaryotes and those

whose cells do not have a nucleus are called prokaryotes. The nucleus and nuclear

envelope (NE) of an eukaryotic cell imaged with electron microscope are shown in

Figure 2.3. The magnified version of this structure is illustrated in Figure 2.2.
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Fig. 2.2 Illustration of the nucleus, a large round body in the middle, and enclosed
within two concentric membranes that form the nuclear envelope (NE), contains most of
the DNA of the eukaryotic cell and other organelles. Image credit to Ella Marushchenko
[106].

The cell has a sharply defined boundary, formed by an enclosing plasma membrane -

a fatty film so thin and transparent that it cannot be seen in the light microscope. The

membrane is semi-permeable and it has channels and pumps through which molecules

can cross the membrane. All cell membranes are composed of lipids and proteins.

Millions of lipid molecules are arranged in two closely opposed sheets, forming a lipid

bilayer which has been firmly established as the universal basis of cell-membrane

structure. A large round body called the nucleus, shown in Figure 2.1, Figure 2.2,

Figure 2.3, andFigure 2.4 is the most prominent organelle in a cell. The nucleus

is enclosed within two concentric membranes that form the nuclear envelope (NE),

and it contains molecules of DNA-extremely long polymers that encode the genetic

specification of the organism [24].
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(a) (b)

Fig. 2.3 The electron microscopy (EM) images of HeLa cells. (a) A representative
8192 × 8192 images arranged as 3D stack. The HeLa cells are the darker regions and
the background is a brighter shade of grey. The red box indicates a region of interest
(ROI), that is magnified on the right. (b) An example of EM image of a HeLa cell fixed
in gel in three dimension and region of interest (ROI) with one HeLa cell centred is
shown. At this resolution, it is easy to distinguish the nuclear envelope, borders of the
cell and other structures. The nucleus, a large round body in the middle and enclosed
within two concentric membranes that form the nuclear envelope (NE), contains most
of the DNA of the eukaryotic cell and is seen here a thin section of a mammalian cell
examined in the electron microscope (EM). This HeLa cell image is used throughout
this work and obtained from The Francis Crick Institute [107].
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(a) (b)

Fig. 2.4 Fluorescence Microscopy images of HeLa cells. (a) Multiphoton fluorescence
image of cultured HeLa cells with a fluorescent protein targeted to the Golgi apparatus
(orange), microtubules (green) and counterstained for DNA (cyan). (b) Magnified
version of (a). Fixed and three colour fixed and stained HeLa cells. Mitochondria
identified by a mouse anti-mitofilin primary antibody followed with a Rabbit antimouse
IgG monoclonal antibody labeled with Texas Red (Red). Nuclei and actin filaments
are identified by DAPI (blue) and AlexaFluor® - 488-phalloidin (green) counterstaining
respectively. Scale bar indicates 30 µm. Images adapted from [108].
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Different cellular components or organelles provide different functions for cells [25]

and some of the sub-cellular structures that can be observed with Electron microscope

(EM) in a cell are explained below.

The Nucleus is usually the most prominent organelle in a eukaryotic cell [25, 24]

and contains the genetic material (DNA) of the cell as well as other structures that

have important roles in mitosis or nuclear division. The nucleus is easily identified

visually due to a fairly regular texture and low variance of grey value (Figure 2.3).

The Nuclear envelope (NE) contains the nucleus and characterised by two dark

edges at a regular distance apart, a double lipid bi-layer structure, with the gap between

the edges called the perinuclear space. A lipid bi-layer is a thin membrane made of two

layers of lipids, a general category of molecules which function as signalling molecules,

for passing information between cells, as well as modulators of membrane morphology.

The NE is visually identified by marking the boundary between the different textures

inside and outside the nucleus. It is typically 40 nm thick and encloses the nucleus

separating it from the cytoplasm. The NE is a sub-cellular structure that surrounds

the chromosomes of cells, separating them from the cytoplasm and other structures.

During mitosis, the dividing of a cell into two daughter cells, the NE is broken down

to allow the genetic information to duplicate and separate, and is reformed around the

daughter chromosomes to form the nuclei of the daughter cells [109, 110].

Mitochondria are present in essentially all eukaryotic cells and they have a very

distinctive structure. Each mitochondrion is sausage or worm shaped; it is from one to

many micrometers long; and it is enclosed in two separate membranes. Mitochondria

generate energy from food to power the cell.

Nuclear pores enable the transfer and exchange of materials between the nucleus

and the cytoplasm and are typically 100-125nm in diameter, being roughly circular.

The Endoplasmic reticulum (ER) is similar to the NE, however it is not a

container for the nucleus and is therefore identified as being surrounded by cytoplasm.

The endoplasmic reticulum is one structure with the outer lipid bi-layer of the NE and

often expands to the membrane separating the cell from its outer environment. It is
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also another important compartment that plays a large part in the reformation of the

NE during mitosis.

Golgi apparatus or complex receives and often modifies chemically the molecules

made in the endoplasmic reticulum, and then directs them to the exterior of the cell or

to various other locations.

Lysosomes are small, irregular shaped organelles in which intracellular digestion

occurs, releasing nutrients from food particles and breaking down unwanted molecules

for recycling or excretion.

Cytoplasm is the total content within the cell membrane other than the contents

of the nucleus of the cell and it is a concentrated aqueous gel of large and small

molecules.

Vesicles are small dark circles in the cytoplasm, with a very regular size and

intensity profile.

2.3 Mitosis

Mitosis, or cell division, is the process of division of a nucleus into two daughter nuclei

following the duplication of the genetic material in the parent nucleus [24]. Before

mitosis begins each chromosome is replicated and consists of two identical chromatids

called sister chromatids [24]. Mitosis is traditionally divided into five stages or phases

after inter-phase (Figure 2.5).

Interphase is the state in which the cell is most stable and the NE is completely

formed, during which the cell replicates all its genetic material and structures that

are essential for the daughter cells to subsequently undergo mitosis (Figure 2.5a).

During prophase chromatin, genetic material combining DNA and proteins, begins

to condense to form chromosomes which can then be observed through a microscope

(Figure 2.5b). Prometaphase in which the NE breaks down, the chromosomes are fully

formed in pairs and begin moving towards the middle of the nucleus (Figure 2.5c).

In metaphase, shown in Figure 2.5d, the chromosomes align along the middle of the
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(a) (b) (c)

(d) (e) (f)

Fig. 2.5 Mitosis stages or phases. (a) Interphase is often included in discussions of
mitosis, but interphase is technically not part of mitosis. Mitosis is nuclear division plus
cytokinesis, and produces two identical daughter cells during (b) Prophase; Chromatin,
genetic material combining DNA and proteins, begins to condense to form chromosomes
which can then be observed through a microscope. (c) Prometaphase; The nuclear
envelope breaks down, the chromosomes are fully formed in pairs and begin moving
towards the middle of the nucleus. (d) Metaphase; The chromosomes align along the
middle of the nucleus, ensuring that in the next phase each daughter receives a single
copy of each chromosome. (e) Anaphase; Paired chromosomes separate and move to
opposite sides of the cell. (f) Telophase; New membranes form around the daughter
nuclei as their nuclear envelopes, the chromosomes also disperse and are no longer
visible under a microscope. Images adapted from [24].
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Fig. 2.6 Mitosis stages of a HeLa cell. From left to right: Metaphase, eary anaphase,
late anaphase, telophase, and late cytokinesis. Images adapted from [111].

nucleus, ensuring that in the next phase each daughter receives a single copy of each

chromosome. In anaphase paired chromosomes separate and move to opposite sides of

the cell (Figure 2.5e). In telophase, shown in Figure 2.5f, new membranes form around

the daughter nuclei as their nuclear envelopes, the chromosomes also disperse and are

no longer visible under a microscope.

Figure 2.6 shows some of the stages of mitosis of a HeLa cancer cell [111]. DNA

molecules become individually visible as chromosomes when they become more compact

as a cell prepares to divide into two daughter cells.

2.4 Cancer

Cancer is a condition in which cells do not subdivide correctly during mitosis. There

exist a mutation in a proliferation gene that causes the protein produced by the gene

to be over-expressed or hyperactive results in excessive cell multiplication [110, 25].

Cancer is the product of mutations that set cells free from the usual controls on cell

proliferation and survival [25]. A cell in the body mutates through a series of random

accidents and acquires the ability to proliferate without the normal restrains. Its

progeny inherit the mutations and give rise to a tumour that can grow without limit.

Fault control of cell proliferation is not the only defect in a cancer cell, but it is a

central and essential feature. The mutations that make cancer cells defective in this

respect affect two broad categories of genes: proliferation genes, which encode proteins
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that normally help to promote cell division, and antiproliferation genes, which encode

proteins that normally help to apply the brakes that halt the cell cycle.

A mutation in a proliferation gene that causes the protein produced by the gene to

be over expressed or hyperactive results in excessive cell multiplication. The mutant

gene is then classified as an oncogene or a cancer-promoting gene, while the normal

gene is known as a proto-oncogene. Oncogene is known as a cancer promoting gene

[25, 110, 109], which can lead to the development of cancer. Correct reformation of

the NE is critical to all cells that go through mitosis [24]. Defects in the formation

of the NE have been linked to cancers as well as other human diseases; for example,

increased malleability of the NE is observed in small-cell lung carcinomas. How the

formation of the NE is regulated may give clues as to why it differs in cancerous

cells. The change from a normal cell to a malignant one has multiple characteristics,

sometimes summarised as six hallmarks: self-sufficiency in growth signals, evasion of

apoptosis, insensitivity to anti-growth signals, sustained angiogenesis, tissue invasion

and metastasis and limitless replicative potential [110, 112].

Figure 2.7 illustrates the differences between healthy and cancerous cells and their

nuclear structures. Healthy cells have large cytoplasm, single nucleus, single nucleolus

and fine chromatin while cancerous cells have small cytoplasm, multiple nuclei, multiple

and large nucleoli and coarse chromatin. Nuclei can become irregular but it is important

to note that not all of these changes are observed simultaneously in nuclei of actual

cancer cells - different abnormalities are associated with different cancer types.

2.5 HeLa cells

The HeLa cell line was developed in the 1950s from a particularly aggressive strain

of cervical cancer cells taken during a routine biopsy from a 30-year-old mother of

five, Henrietta Lacks [115]. She was treated for the disease by Dr. George Gey in

the coloured ward of The Johns Hopkins Hospital. As the head of tissue research,

Dr. George Gey was at that time attempting to establish immortal cell lines that
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Fig. 2.7 Scanning electron microscope images of a cancerous (left) and normal cell,
showing the differences in cell "brush". Cells’ surface features, including microridges
and hair-like microvilii, which, perhaps acting like sensors, are one key way that the
cells interact with their environment. Together, these features form a cell’s "brush."
Normal cervical cells tend to have a brush layer consisting of a single average length -
2.4 µm - while the cancerous cells have mostly two typical lengths - 2.6 and 0.45 µm.
Additionally, the long cancer-cell brush is about half as dense as that of the normal-cell
brush while the short cancer-cell brush is more than twice as dense. Scale bars 5 µm.
Image adapted from [113].
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Fig. 2.8 A poster that describes the history of HeLa cells - Henrietta Lacks and HeLa
cells in modern medicine. HeLa cells have been a vital tool in biomedical research and
have been used for decades, leading to an increased understanding of the fundamentals
of human health and disease. Some of the research involving HeLa cells also served as
the underpinning of several Nobel Prize winning discoveries. To honour Ms. Lacks’
and her family’s continued support of biomedical research, NIH analyzed and evaluated
the scientific literature involving HeLa cells and found over 110000 publications that
cited the use of HeLa cells between 1953 to 2018. This analysis further highlights the
persistent impact of HeLa cells in science and medicine, proving that they have been a
consistent, essential tool that has allowed researchers to expand the knowledge base
in fields such as cancer biology, infectious disease, and many others. While Henrietta
Lacks’ story has been known in the research community for some time, it raised further
awareness after the publication of the best-selling book "The Immortal Life of Henrietta
Lacks" [114]. Image adapted from [108].
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could be used in medical research. Taking tissue samples from poor and/or African

American cancer patients being treated in the coloured ward without informed written

consent was not unusual and neither doctors nor their patients were aware of any of

the ethical issues involved. Henrietta Lacks was diagnosed in 1950, and died within a

year at the age of 31. But her cells lived on and became the first human cell line to

be established. The reason why these cells were immortal while several others failed

to grow in culture is not entirely understood. In addition to cervical cancer caused

the Human Papilloma Virus (HPV) (multiple copies of HPV genome were later found

in the HeLa cell line), Henrietta Lacks also had syphilis which probably suppressed

her immune system. In any case, her cells pioneered research that led to a better

understanding of the causes and treatment of human cancers. In 1952, the Tuskegee

Institute set up a laboratory to supply the cell line to other researchers and laboratories

which soon spawned a company named Microbiological Associates that supplied HeLa

cells for profit. The cells were used in laboratories around the world and have been

crucial for the development of vaccines, for instance, the polio vaccine. Although

initially the cells were known by the pseudonym Helen Lane, as a tribute to George

Gey who died of pancreatic cancer in 1970, the cells were correctly identified as having

been sourced from Henrietta Lacks. The Lacks family learnt for the first time that her

cells were still alive when scientists at the Johns Hopkins Hospital approached them

for tissue samples for a genetic analysis. They soon learnt that her cells had also been

commercialised. Henrietta’s children found this upsetting—for one, they wondered how

their mother’s soul could rest in peace if her cells were still around; for another, the

family was poor and could ill afford health insurance, and yet their mother’s cells were

part of a multi-billion-dollar industry. Henrietta Lacks story caught public attention

in 2010 with the publication of an award-winning book, which stayed on the New York

Times best-seller list for 2 years, "The Immortal Life of Henrietta Lacks" by Rebecca

Skloot. The book highlighted the fact that the development of the cell-line, the genetic

and molecular analysis, and the commercial applications developed from the cell line

had all been done without the knowledge or consent of Henrietta Lacks or her family,
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nor had they been the beneficiaries of the developments. The family felt their privacy

had been violated, so much so that her grandchildren contacted the European Molecular

Biology Laboratory and asked them to withdraw a paper that they had published on

the genetic make-up of HeLa cells. The scientists withdrew the paper with apologies to

the family. Meanwhile, Rebecca Skloot set up The Henrietta Lacks Foundation in 2010

by donating a portion of the book’s proceeds and donations from the reading public

and scientists who would like to do something in return for the family. The foundation

provides scholarship funds and health coverage to Henrietta’s descendants (Skloot,

2011). Also, in 2013, Skloot and the Lacks family held meetings with the NIH Director

Francis Collins, and NIH Deputy Director for Science, Outreach, and Policy Kathy

Hudson, along with scientists and ethicists from Johns Hopkins to discuss modalities

for publishing genetic information and future applications using the cells. What was

agreed upon was that Lacks’ genome data will be accessible only to those who apply

for and are granted permission; two representatives of the Lacks family would serve on

the NIH group responsible for reviewing applications for controlled access to the HeLa

cells. Also, researchers who use the data would include an acknowledgement to the

Lacks family in their publication. There was however no legal provision for monetary

compensation to the family. Nevertheless, the agreement is viewed as "a moral and

ethical victory for a family long excluded from any acknowledgement and involvement

in genetic research their matriarch made possible" (Caplan, 2013).

2.5.1 Genome of HeLa cells sequenced for the first time

HeLa is the most widely used model cell line for studying human cellular and molecular

biology. To date, no genomics reference for this cell line has been released, and experi-

ments have relied on the human reference genome. Effective design and interpretation of

molecular genetic studies done using HeLa cells requires accurate genomics information.

Here we present a detailed genomics and transcriptomic characterisation of a HeLa

cell line [116].
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HeLa cells originate from the cervical cancer tumour of a patient named Henrietta

Lacks (hence their name), who later died of her cancer in 1951. They were the first type

of human cells that were successfully cultivated in the laboratory, and have since been

the most widely used human cell line in biology. Cancer cells by definition continuously

replicate themselves, thus making good candidates for experimental biology; HeLa

cells were particularly aggressive at doing so and thus became very popular. There

are lots of different sub types of HeLa cells that are now used – the study by EMBL

researchers has sequenced the genome of one sub-type of HeLa cell.

Scientists deliver the first high-resolution sequence of HeLa cells, a key research

tool for human disease and general biology. Sequence analysis reveals the full extent

to which HeLa cells are different to the Human Genome Project reference. Resource

could enhance the quality of research using HeLa cells [116].

HeLa cells are the world’s most commonly used human cell lines, and have served

as a standard for understanding many fundamental biological processes. In a study

published today in G3: Genes, Genomes and Genetics online, scientists at the European

Molecular Biology Laboratory (EMBL) in Heidelberg, announce they have successfully

sequenced the genome of a HeLa cell line. It provides a high-resolution genomics

reference that reveals the striking differences between the HeLa genome and that of

normal human cells. The study could improve the way HeLa cells are used to model

human biology.

The scientists’ analysis of the HeLa genome revealed widespread abnormalities in

both the number and structure of chromosomes, as well as factors commonly associated

with cancer cells like losing healthy copies of genes. In particular, the researchers found

that countless regions of the chromosomes in each cell were arranged in the wrong order

and had extra or fewer copies of genes. This is a telltale sign of chromosome shattering,

a recently discovered phenomenon associated with 2 − 3% of all cancers. Knowledge of

the genetic landscape of these cells can inform the design of future studies using HeLa

cells, and strengthen the biological conclusions that can be made from them.
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"The results provide the first detailed sequence of a HeLa genome," explain Jonathan

Landry and Paul Pyl from European Molecular Biology Laboratory (EMBL), who

carried out the research. "It demonstrates how genetically complex HeLa is com-

pared to normal human tissue. Yet, possibly because of this complexity, no one had

systematically sequenced the genome, until now."

"Our study underscores the importance of accounting for the abnormal characteris-

tics of HeLa cells in experimental design and analysis, and has the potential to refine

the use of HeLa cells as a model of human biology," adds Lars Steinmetz from EMBL,

who led the project.

For decades HeLa cells have provided effective and easily usable biological models

for researching human biology and disease. They are widely regarded as the ’industry

standard’ tool for studying human biology. Studies using them have led to two Nobel

prizes and a host of advancements in many areas, including cancer, HIV/AIDS and the

development of the polio vaccine. The HeLa genome had never been sequenced before,

and modern molecular genetic studies using HeLa cells are typically designed and

analysed using the Human Genome Project reference. This, however, misrepresents the

sequence chaos that characterises HeLa cells, since they were derived from a cervical

tumour and have since been adapting in laboratories for decades.

The study provides a high-resolution genetic picture of a key research tool for

human biology. It highlights the extensive differences that cell lines can have from the

human reference, indicating that such characterisation is important for all research

involving cell lines and could improve the insights they deliver into human biology.

2.5.2 How have HeLa cells been used in science?

The use of HeLa cells has contributed to scientists’ understanding of a wide range of

fundamental biological processes and more than 60,000 research publications. One

of the earliest uses of HeLa cells was to develop the vaccine against the polio virus.

Recently, two Nobel prizes have been awarded for discoveries where HeLa cells played a

central role: the link between human papillomavirus and cervical cancer (2008, Harald
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zur Hausen) and the role of telomerase in preventing chromosome degradation (2011,

Elizabeth Blackburn, Carol Greider, and Jack Szostak). During the past decade, HeLa

cells have been used to develop large-scale technologies like RNA sequencing, RNA

interference screens, and other ‘omics’ approaches. Studies using these approaches on

HeLa cells have furthered our understanding of important cellular processes, such as

cell division. HeLa cells have also been used in studies of nuclear toxins, and have even

been into space.

2.5.3 Why are HeLa cells so useful?

Biologists tend to use HeLa cells as the ’default’ human cell line because they are

so easy to work with – they reproduce rapidly, easily and cheaply. Despite being

cancerous, HeLa cells still share many basic characteristics with normal cells – they

produce proteins, express and regulate genes, communicate with one another, and are

susceptible to infections. It is thus possible for scientists to use HeLa cells to study

not only cancer, but also basic functions carried out by all human cells. The genome

sequence should make genetic studies using HeLa even more effective. The HeLa cell

line sequenced in this study has spent decades in labs, dividing and thus undergoing

mutations and changes – it is very different from the original cells that started growing

in 1951 [21]. Furthermore, the original cells were taken from Mrs. Lacks’ cervical

cancer – as cancer is a disease of the genome, the DNA of cancer cells is different to that

of the patient. Therefore, the genome we sequenced contains a combination of genetic

variants originating from the donor’s genome, variants that arose during the tumour’s

development, and variants that occurred during the many years of in-lab evolution of

the cell line. Comparisons to common genetic variants in human populations today

allow one to infer variants likely to have been present in the donor’s genome, although

such inferences can only be made with a certain likelihood. Measurements of common

variants in the HeLa genome have been published before (e.g. SNP arrays) and further

variants can also be inferred from HeLa DNA sequencing data already deposited in

the public domain (e.g. ChIP-Seq and RNA-Seq). The data does not change the fact
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that it is possible to make predictions about Mrs. Lacks’ genome, or those of her

descendants. The value of our study is in creating a comprehensive resource of all

variants (common and non-common) present in a cell line that has been of such high

value for biomedical research.

2.5.4 Cross-contamination of HeLa cells

HeLa cells proliferated in cultures around the world and evidently as the years passed

they contaminated other cell lines [23, 117]. Cell lines are expected to provide an

unlimited source of material, free of contaminating cells and often easily cultured. Un-

fortunately, there have been problems with misidentification and cross-contamination

and they compromised research seriously. The most frequent contributor to cross-

contamination of cell lines is the HeLa cell isolated from an aggressive cervical ade-

nocarcinoma [118]. Cross-contamination of cell lines have regularly been brought to

light but have not received many audiences until cell banks such as American Tissue

Culture Collection (ATCC), Deutsche Sammlung von Mikroorganismen und Zellkul-

turen (DSMZ), European Collection of Cell cultures (ECACC), Japanese Collection

of Research Bioresources (JCRB) decided to act by informing their clients or even by

withdrawing the false cell lines from their catalogue [23]. Researchers do not want to

use false cell lines leading to misleading publications, which can potentially have a

very high cost in terms of invalid hypotheses and paradigms and patient treatments

[23]. However, most new cell lines are freely exchanged between laboratories, rarely

having their identities checked. In order to avoid cross-contamination of these lines,

periodic re-authentication of cell lines is advisable. Today all reputable cell banks

employ methods to confirm the identity and origin of the cell lines they distribute.

This is very important since distribution of misidentified or cross-contaminated cell

lines may later be the subject of costly and embarrassing actions. Most cell banks may

also test cell lines provided by their users or originators [23].
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2.6 Literature review

Cervical cancer is one of the leading causes of death in females [13], and together with

breast cancer, it contributes to 4.2% of the global causes of death [14]. In the United

Kingdom, around 3,000 women are diagnosed with cervical cancer every year, and

around 1,000 of those die annually [15]. Cancer cell lines and tissue culture studies

have been used extensively to understand tumour biology and facilitate drug discovery

processes [16–18]. The availability of cell lines together with genetic advances has

contributed to cancer research, which has grown significantly as a proportion of all

research in biomedical areas [19]. Perhaps the most important cell line has been

the cervical cancer HeLa cells, derived in 1951 [20, 21] and widely used as model for

thousands of biological experiments [22, 23]

The NE is the membrane that surrounds the chromosomes and partitions them

from the rest of the cell contents, thereby forming a protected environment for the

genetic material. Almost every cell (red blood cells being a notable exception) has a

nucleus bounded by a nuclear envelope, and so it is a primary target for automated

segmentation as a reference structure for visualising and spatial positioning of other

cell organelles, and as a feature in its own right as its morphology is known to alter in

cancer, infection and in rare genetic disorders such as the laminopathies. As there may

be a single cell of interest, understanding the nuclear formation [119], the arrangement

of the chromosomes [120], the breaching of the nuclear envelope [121] or the molecular

sociology [122, 123] become relevant. The NE is an important structure in cervical

cancer cells as they undergo mitosis, breaking down to allow the cell to duplicate

and split before reforming around each daughter nucleus [24, 25]. This importance

is also underlined in cancerous cells [21, 20, 22] where certain components of the

nuclear envelope take central roles in cell functions that affect tumour development and

progression. Visualising and investigating the NE requires its accurate segmentation

[4, 7, 26, 27] from a set of serial images of the cell obtained through EM. Manual

segmentation (Figure 2.9) requires a great amount of expert knowledge and training

and it is very tedious and time consuming [31] as it takes on average a couple of weeks
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(a) (b)

(c) (d)

Fig. 2.9 HeLa cell imaged with electron microscope and manual segmentation of HeLa
cell. (a) Sample of the Serial Blockface Scanning Electron Microscopy (SBF SEM)
image showing several HeLa cells. Red box denotes a region of interest (ROI), an
individual cell, which is magnified in (b). (b) Individual cells were cropped and hand
located so the algorithm developed for this work can be applied to the image to segment
the nuclear envelope (NE). (c) An expert segments the NE of a HeLa cell manually.
Manual segmentation is very tedious and time consuming but remains widely used and
is still considered as the gold standard despite the significant disadvantages of time
and inter- and intra-user variability. (d) The manual segmentation or the ground truth
(GT) of the nuclear envelope of this particular slice is shown in green.



2.6 Literature review 33

to segment all the structures in a full data set. Once the segmentation is achieved a

3D reconstruction of the nuclear envelope can be created and interpreted to study its

biological characteristics and relationships to other structures in the cell.

Segmentation is often described as a foreground/background separation in an image

[124]. Probably one of the most common shared tasks in image analysis systems is

segmentation. Segmentation aims to partition the image plane into meaningful regions

[125]. The simplest way of thinking of an image is that it is a grid of points or elements

called "matrix" and each of them will contain a certain value called a pixel or a "picture

element" [126]. Segmentation subdivides an image into its constituent regions or objects

and it should stop when the objects or regions of interest in an application have been

detected [127–129]. The aim of segmentation is to find a way how to extract useful

information from the images in automatic or semi-automatic methods [130] and their

algorithms on computer processing.

Cell segmentation and classification has been an important problem for many

years [6] and has attracted considerable attention in clinical practice and research, as

the presence or absence of cells or their characteristics like size or shape, could be

important indicators for presence or severity of a disease [9]. Segmentation of cells

and particularly of nuclei and the NE is highly dependent on the contrast, signal to

noise ratio, complex morphological structures, and the resolution of the imaging. Thus,

techniques that work at lower resolutions (such as those use for immunohistochemistry),

like watersheds, are not immediately applicable at higher resolutions such as those

provided by EM. Furthermore, structures observed with EM display far more complex

morphological structures, and many times with lower contrast than those observed

in light and fluorescence microscopy. Serial section EM provides contiguous images

of a sample [131] that correspond to the volumetric sample, thus the data is 3D and

complicates both storing and transferring data as well as processing and interpreting it

[40].

Segmentation of cells [132] and organelles in electron micrographs is in many

cases still a manual process and considered as the gold standard [28–30], despite the
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significant disadvantages of time and inter- and intra-user variability and intensifying

efforts by the community to automate the process. This is largely due to complexity

and diversity of features within a single image, many of which have similar grey values,

making a clean histogram-based feature extraction unlikely. The success of algorithms

designed for feature extraction is highly dependent on the contrast and signal-to-noise

ratio of the image, as well as the resolution, the crowding and diversity of features,

and the heterogeneity of the appearance of the feature in the image, which is linked

to its morphology and orientation in the 2D slice. These, and other properties of the

sample and image, mean that techniques that work well for imaging techniques like

immunohistochemistry and light microscopy (e.g. watersheds) [133–136] do not usually

port well to EM.

Shallow [137, 138] and deep learning methodologies [71, 69] are becoming popular

for segmentation and classification of image data, however, they require significant

computational power as well as very large training data sets [98, 99], which are rarely

available in biological electron microscopy. There are some commercial environments

with segmentation tools, like Amira™(Thermo Fisher Scientific, Waltham, MA, USA),

IMARIS and, AIVIA [139, 140]. However, the cost of these tools may prevent scientist

to use them [141].

An alternative approach is being developed for cell segmentation by taking advantage

of citizen science where an army of non-experts [142] are recruited to provide non-expert

human annotation, segmentation or classification through web-based interfaces. Whilst

these results are valuable, they take considerable time as they depend on volunteers

(or paid workers like Amazon’s Mechanical Turk) and they do not guarantee a correct

answer.

A project called Etch a Cell [107] was created to provide manual segmentation of

the NE of HeLa cells. Thousands of volunteers segment the NE of HeLa cells and

this approach is producing promising results, but further development is required to

quality control, aggregate and train with these non-expert contributions. Thus, specific

processing algorithm for automated analysis and visualisation of cell features in large
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microscopy data sets are still important [143–147], both for direct analysis of data and

for production of additional training data.

2.7 Summary

In this chapter the structure of cells, different organelles of the eukoryatic cells, and

cell division or Mitosis have been explained. Cancer cells in general and specifically

cervical cancer cells or HeLa cells were explained in detail including its history. Finally,

how HeLa cells have been used in science, why they are useful and cross-contamination

of HeLa cells were explained in the next section of this chapter.

Scientists tried to keep the human cells alive outside the human body, in a test tube

in a laboratory, for very long time in the early twentieth century. Most of the time they

managed to maintain cells alive for a maximum of several weeks [21]. The breakthrough

came on 8th February 1951 when an African-American woman called Henrietta Lacks

(Figure 2.8) was admitted to John Hopkins Hospital in Baltimore, Maryland. She died

on 4th October 1951 and the reason of her death was the cervical cancer. Researchers

led by George Otto Gey, a scientist from Tissue Culture Laboratory at Johns Hopkins

Hospital, took some samples of her cancer cells from her cervix and they developed

the first human cancer continuous cell line in a test tube. Henrietta’s cancer cells were

kept alive in a test tube. Cervical cancer is normally slow growing but this was not

an ordinary cancer as it did not respond to radiotherapy and the cells were thriving

[21]. The abbreviation, HeLa, we use today was devised by using the first two letters

of Henrietta Lacks’ first and last names to keep her real name in a secret. In order to

give a measure of confidentiality the donor was said to be Helen Lane or Helen Larson

[21]. This immortal cell line, derived from the Henrietta Lacks’ cervical cancer cells,

was thus called HeLa.

It is important to highlight that doctors who treated Henrietta did not request any

consent from Henrietta Lacks or her relatives to harvest the cells. However, the ethical

procedures were different at that time in the USA and it was not a requirement. There
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were not any laws to enforce doctors to ask for written permission to get samples for a

research and Henrietta Lacks was not an exception.

HeLa cells became a robust, immortal cell line and they were easily propagated over

generations in culture. George Otto Gey supplied samples very generously to scientists

who were interested in studying the first established human cancer cell line in the

Unites States and across the world. HeLa cells have survived up to the now and are still

used in laboratories as a model for human cells in thousands of biological experiments,

contributing to the understanding of disease processes [22, 23]. Knowledge of almost

every process that occurs in human cells has been obtained using HeLa cells and many

other cell lines that have since been isolated [21]. Figure 2.3b shows a HeLa cell image

taken by serial blockface electron microscope and it was used in this work. Figure 2.3c

shows a fluorescence staining of HeLa cells for cytokeratin-8, (red) cytoskeletal actin

(green), and nuclei (blue).



Chapter 3

Electron Microscopy and Materials

3.1 Introduction

The following chapter delves into microscopy and its fundamentals and then describes

the importance of Electron Microscopy (EM) in cell research. The chapter explains

main types of electron microscopy techniques actively used in current research. Basic

structure and fundamentals of EM will also be presented.

In the last part of this chapter, we also describe the HeLa images analysed in this

work from the point of view of the EM images. It is a continuation of the biological

context described in Chapter 2 and this chapter concludes with the acquisition of images

of cells from Serial Block Face Scanning Electron Microscop (SBF SEM). Different

data sets to be analysed in this work, where a thorough description of the images

acquired is provided and the challenges to analyse the images are presented.

Microscopy

Microscopy refers to the use of microscope to observe objects and areas of objects

that cannot be seen with the naked eye as these objects and areas are not within the

resolution range of the normal eye [148, 149] (Figure 3.1).

Microscopic techniques allow for the visualisation of objects which go beyond the

resolution limit of the human eye and the visible range of light wavelengths [3], which

involve colours ranging from red (700 nm, 428 THz) to violet (420 nm, 714 THz). The
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Fig. 3.1 Resolving power of naked eye, light microscope and the electron microscope
(EM). Different techniques are used to see finer details in sub nanometre resolution.
EM provides images with several hundred times the resolving power of the best light
microscopes. Image adapted from [150].

human eye requires contrast to perceive details of objects [151] and cells are generally

transparent.

Cells are small and the first practical problem in cell biology is how to see them [24].

For this purpose, several methods have been proposed: colour staining for transparent

cells, in which a chemical is added to the sample which absorbs light at a certain

wavelength, thus improving contrast; dark field, which exploits the scattering of light on

small particles that differ from their environment; phase contrast, where light incident

on the sample is split in two spaced beams of light; fluorescence microscopy (Figure 3.3),

in which the reflected light passes through the objective where it is focused onto the

fluorescent specimen. The emissions from the specimen are in turn, passed back up

through the objective – where magnification of the image occurs –and now through

the dichroic mirror. The underlying process of fluorescence involves the absorption

of light energy (a photon) by an indicator followed by the emission of some of this

light energy (as another photon) a few nanoseconds later [152]. Because some energy

is lost in this process, the emitted photon has less energy than the absorbed photon.
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Light with a short wavelength (toward the blue) has higher energy than light with a

long wavelength (toward the red). Therefore, light emitted from an indicator usually

has a longer wavelength than that of the absorbed (excitation) light. This change is

called the Stokes shift. Finally, electron microscopy (EM), which will be described

in detail as it is relevant to this work. The basic principle of the different techniques

to acquire images from a microscope involves an energy source which acts upon a

sample by scanning or transmitting through it. The images in this work were acquired

through Serial Block Face Scanning Electron Microscopy (SBF SEM) which utilises an

ultra-microtome with a diamond knife to cut and discard very thin slices (The knife

can cut 2000 layers of a human hair) or sections from the top face of the sample. The

sample is then raised to the focal plane to be scanned, and this process is repeated

sequentially, resulting in a stack of images through the sample volume.

Before the development of microscopy and its application, the fine structures of cells

and viruses were not accessible to biologists and the invention of the microscope in the

17th century made cells visible for the first time. Traditionally, cell biology has relied

on light and fluorescence microscopy in order to analyse cells and tissues. Although

light microscopes incorporate many sophisticated improvements, the properties of light

itself set a limit to the fineness of detail they can reveal as they allow us to magnify

cells up to a thousand times and to resolve details as small as 0.2µm - a limitation

imposed by the wavelike nature of light [148]. In order to overcome this limitation of

the wavelength, it is possible to use electron beams instead of light and this lead to

the development of electron microscopy (EM).

Equation 3.1 gives the relationship between the wavelength and the frequency of

the electromagnetic waves.

λ = v/f (3.1)

where λ is the wavelength in m (metre), v is the velocity of the electromagnetic waves

in m/s−1, and f is the frequency in Hz or s1.
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Equation 3.2 shows the inverse proportion between the energy and the wavelength.

As electrons have a much shorter wavelength than photons, they have very high energy

therefore high spatial resolution [149].

E = hc/λ (3.2)

where h is the Planck’s constant, c is the speed of light in vacuum and λ is the electron

wavelength.

In 1945 Albert Claude, Keith Porter and Ernest Fullam published the first picture

of an intact cell taken with an EM [148]. The EM image magnified the specimen 1600

times and their first electron micrograph of a cell revealed the mitochondria, the Golgi

apparatus and the endoplasmic reticulum [149].

Figure 3.2 illustrates the resolving power of naked eye, light microscope and the

EM as well as some of the natural and man made materials with their dimensions.

Figure 3.4 shows the EM used to get the images for his work and it is located at the

Francis Crick Institute. The main difference between light microscopy and EM is light

(photon) is used in a traditional microscope to illuminate a specimen, whereas an EM

uses a beam of electrons to see finer details in sub nanometre resolution [148]. High

energy electrons have short wavelengths that allow us to observe nanoscale features

in samples. Nowadays the electron microscope provides images with several hundred

times the resolving power of the best light microscopes.

The main reasons why we use electrons as a probe are;

1. It is easy to produce high brightness electron beams.

2. Electrons are easily manipulated.

3. High energy electrons have a short wavelength and shorter wavelengths means

higher spatial resolution (Rayleigh Criterion).

4. Electrons interact strongly with matter.
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Fig. 3.2 Some of the natural and man made materials with their dimensions. Image
adapted from [150].

(a) (b)

Fig. 3.3 (a) Schematic of a fluorescence microscope and (b) An upright fluorescence
microscope (Olympus BX61) with the fluorescence filter cube turret above the objective
lenses, coupled with a digital camera. Images credit to Masur.
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Fig. 3.4 The Serial Block Face Scanning Electron Microscopy (SBF SEM) from which
the data sets of this work were obtained is located at the lower ground floor of the
Francis Crick Institute. Faraday cage was employed in order to protect the electron
microscope from the magnetic fields and to absorb vibrations the EM was placed on a
20 tonne concrete block. SBF SEM utilises an ultra-microtome with a diamond knife
to cut and discard very thin slices or sections from the top face of the sample. The
sample is then raised to the focal plane to be scanned, and this process is repeated
sequentially, resulting in a stack of images through the sample volume.
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As a beam of electrons is used as the source of illumination and as electrons interact

strongly with matter, EM overcomes the limitation of light microscopes and greatly

extending our ability to see the fine details of cells. Electron microscopy allows imaging

of the cell and the structures relevant to the NE throughout the different stages of

mitosis. It also allows biologists to analyse sub-cellular structures such as mitochondria

and nuclei. For the past half a century cell biologists have scrutinised all types of cells

and tissues with the aid of the electron microscope. It is today impossible to imagine

what biology would be, if this instrument had not been invented.

There are two varieties of electron microscopes: transmission electron microscope

(TEM) and scanning electron microscope (SEM) and they will be explained in the

following sections. It is important to understand how images are formed in each type of

microscope as well as their unique limitations and applications [149]. Both microscopes

operate in a high vacuum in order that molecules in the air do not scatter the beam of

electrons.

3.2 Transmission electron microscopy (TEM)

The transmission electron microscope (TEM) is in principle similar to an inverted light

microscope, and the specimen is placed in vacuum and it must be very thin [149]. The

TEM has a useful magnification of up to a million-fold and a resolution, with biological

specimens, of about 2 nm. In TEM, a beam of electrons is incident upon an ultra thin

sections. The behaviour of the electrons as they hit the sections is dependent upon

its properties; some electrons are absorbed, others are scattered or pass through. The

design of the TEM consists of an electron gun, a series of lenses and a charge-coupled

device (CCD) camera. A condenser lens focuses the electron beam on the specimen.

Three other lenses work to focus the transmitted electrons onto the camera to record

the image. The overall quality of the image is dependent upon the lenses and their

configurations. Magnifications of up to 1000000× are possible with TEM. The ultra

thin sections must withstand a vacuum in the electron microscope. To do so they are
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fixed to an epoxy resin after staining with heavy metals and dehydrating with ethanol.

Sections around 70nm are taken from the specimen such that they are thin enough

for the electron beam to pass through, however for large structures this requires many

serial sections to be taken and imaged. Therefore, to create a full 3D reconstruction

images for each section must be aligned and segmented.

The transmission electron microscope is a very powerful tool and is commonly

used [153]. A high energy beam of electrons is shone through a very thin sample, and

the interactions between the electrons and the atoms can be used to observe features

such as the crystal structure and features in the structure like dislocations and grain

boundaries. Chemical analysis can also be performed. TEM can be used to study the

growth of layers, their composition and defects in semiconductors. High resolution can

be used to analyse the quality, shape, size and density of quantum wells, wires and

dots.

The TEM operates on the same basic principles as the light microscope but uses

electrons instead of light. Because the wavelength of electrons is much smaller than

that of light, the optimal resolution attainable for TEM images is many orders of

magnitude better than that from a light microscope. Thus, TEMs can reveal the finest

details of internal structure - in some cases as small as individual atoms.

Imaging

The beam of electrons from the electron gun is focused into a small, thin, coherent

beam by the use of the condenser lens [154]. This beam is restricted by the condenser

aperture, which excludes high angle electrons. The beam then strikes the specimen and

parts of it are transmitted depending upon the thickness and electron transparency

of the specimen. This transmitted portion is focused by the objective lens into an

image on phosphor screen or charge coupled device (CCD) camera. Optional objective

apertures can be used to enhance the contrast by blocking out high-angle diffracted

electrons. The image then passed down the column through the intermediate and

projector lenses, is enlarged all the way.
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(a) (b)

Fig. 3.5 Schematic view of imaging and diffraction modes in TEM. (a) General layout
of a TEM describing the path of electron beam in a TEM (Taken from JEOL 2000FX
Handbook). (b) A ray diagram for the diffraction mechanism in TEM. Image credit to
Eric Kvaalen.
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The image strikes the phosphor screen and light is generated, allowing the user to

see the image. The darker areas of the image represent those areas of the sample that

fewer electrons are transmitted through while the lighter areas of the image represent

those areas of the sample that more electrons were transmitted through.

Diffraction

Fig 3.5b shows a simple sketch of the path of a beam of electrons in a TEM from

just above the specimen and down the column to the phosphor screen. As the electrons

pass through the sample, they are scattered by the electrostatic potential set up by the

constituent elements in the specimen. After passing through the specimen they pass

through the electromagnetic objective lens which focuses all the electrons scattered

from one point of the specimen into one point in the image plane. Also, shown in

Fig 3.5 Right is a dotted line where the electrons scattered in the same direction by the

sample are collected into a single point. This is the back focal plane of the objective

lens and is where the diffraction pattern is formed.

Specimen preparation

A TEM specimen must be thin enough to transmit sufficient electrons to form an

image with minimum energy loss. Therefore specimen preparation is an important

aspect of the TEM analysis. For most electronic materials, a common sequence of

preparation techniques is ultrasonic disk cutting, dimpling, and ion-milling. Dimpling

is a preparation technique that produces a specimen with a thinned central area

and an outer rim of sufficient thickness to permit ease of handling. Ion milling is

traditionally the final form of specimen preparation. In this process, charged argon

ions are accelerated to the specimen surface by the application of high voltage. The

ion impingement upon the specimen surface removes material as a result of momentum

transfer
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3.3 Scanning electron microscopy (SEM)

The scanning electron microscope (SEM) developed by Max Knoll in 1935 [155] scanned

a focused beam of electrons on a sample surface by magnetic deflection. The contrast

of the image was due to the scattered electrons in various parts of the sample. Manfred

von Ardenne developed an SEM with submicroscopic resolution in 1938 [156]. In the

United States, Vladimir K. Zworykin and his research team developed the first working

SEM . In the SEM, when the primary electron beam is incident on the specimen

several processes can occur: there can be backscattered electron [149], secondary

electrons, Auger electrons, X-rays, unscattered electrons, elastically scattered electrons

and inelastically scattered electrons. SEMs can produce a spot size of the electron

beam on the sample of 5 to 10 nm. The spatial resolution of the SEM is a function of

the size of the electron spot, and that depends on both the wavelength of the electrons

and the optical components that form the electron beam. The magnification in an SEM

can range from 25 × to 250 000 ×. The primary concept of SEM is that of a focused

electron beam being scanned across a specimen in a raster approach (Figure 3.6 and

Figure 3.7) , that is from top left to bottom right in horizontal lines [157, 149, 158].

Image contrast can be obtained from the backscattered electrons, high energy electrons,

from the incident electron beam as heavier atoms (those with higher atomic number)

will backscatter more strongly that lighter atoms, and this provides the contrast in

the image. They are backscattered out of the specimen interaction volume by elastic

scattering due to interaction with the atoms of the specimen [149].

The microscope creates images of a three dimensional objects with a great depth of

focus and a resolution between 3 nm and 20 nm [148]. A couple of variants of SEM

exist [157], namely focused ion beam SEM (FIB/SEM) and serial block face SEM

(SBF/SEM) [131]. The particular advantage to these methods is that the complete

sample is in situ within the chamber of the microscope, as opposed to slices of the

specimen being placed individually into the microscope to be imaged. From a 3D

reconstruction perspective, this means that there are no problems with registration of
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Fig. 3.6 Schematics of Serial Block Face Scanning Electron Microscopy (SBF SEM). In
these microscopes, the cell surface is imaged, and then a thin section is cut away, and
then the cell is imaged again. A diamond knife is used to cut the sections away in the
SBF SEM. These microscopes can cut sections so thin that it would take 2000 − 20000
sections to cut through the width of a single human hair. This process of cutting and
imaging creates a series of 2D images [107].

multiple 2D slices as the specimen is sliced within the microscope itself and is stationary

at all times.

The two methods vary only upon how they incrementally remove slices of the

specimen. In FIB/SEM, a gallium ion beam is used to ’mill’ away material, whereas

SBF/SEM, developed and implemented by Denk and Horstmann [41], enables the

automation of serial imaging of relatively large volumes with nanometer resolution.

SBF SEM utilises an ultramicrotome with a diamond knife to cut and discard very

thin slices or sections from the top face of the sample. The sample is then raised to the

focal plane to be scanned, and this process is repeated sequentially, resulting in a stack

of images through the sample volume [40]. With the advent of SBF SEM and other

volume electron microscopy techniques [40, 159, 160], three-dimensional visualisation

of specimens with unprecedented detail became possible.

Figure 3.4 shows an electron microscope located at the Francis Crick Institute and

this EM acquired HeLa cell images used in this work.
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Fig. 3.7 Illustration of Serial Block Face Scanning Electron Microscopy (SBF SEM).
SBF SEM utilises an ultramicrotome with a diamond knife to cut and discard very
thin slices or sections from the top face of the sample. The sample is then raised to
the focal plane to be scanned, and this process is repeated sequentially, resulting in a
stack of images through the sample volume [40].
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Fig. 3.8 Schematics of a scanning electron microscopy (SEM). In order to increase
the mean free path of electrons, the electron optics and sample are placed into a
vacuum chamber. Thus, samples have to be vacuum-stable. Depending on the
employed detector, SEM provides different image contrasts, which are based on different
penetration depths and sample properties. [107].

In scanning-electron microscopy (SEM), images are generated by raster-scanning a

focused electron beam over a sample and detecting the secondary electrons emitted or

the electrons backscattered by the sample [161]. Because electrons can be focused more

tightly than light, SEM provides access to spatial resolutions in the nanometer range.

In order to increase the mean free path of electrons, the electron optics and sample

are placed into a vacuum chamber. Thus, samples have to be vacuum-stable. Depending

on the employed detector, SEM provides different image contrasts, which are based on

different penetration depths and sample properties.

Secondary electron imaging (SEI) In secondary electron imaging (SEI) the

secondary electrons emitted from the atoms of the sample are detected. As a part of

the excitation energy is consumed for the extraction of electrons from the electron
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clouds (work function), with their relatively low kinetic energy secondary electrons can

only escape from the top few nanometers of the sample to reach the detector. The

image contrast mainly reflects the surface topography of the sample.

Backscattered electron imaging (BEI) The backscattered primary electrons

reaching the detector typically represent the top few 100 nm of a sample. Not primarily

influenced by surface corrugation, BEI mainly visualizes the distribution of different

chemical elements, which is also referred to as material contrast. High-order-number

elements scatter the incoming electrons efficiently and therefore appear bright in BE

images.

Energy-dispersive X-ray spectroscopy (EDX) SEM instruments often also

provide X-ray emission spectroscopy with an energy-dispersive spectrometer (EDX).

Sample atoms that absorb incoming electrons can emit X-ray spectra containing

element-specific emission lines. Typically, X-rays generated within the top 2µm of a

sample can reach the detector. Either single spectra from specific spots or EDX maps

representing spatial distributions of chemical elements can be acquired.

3.4 Cryo-electron microscopy

A major problem of using electron microscopy with biological specimens is their sensitiv-

ity to radiation from the electron beam [162]. This critical problem is counterbalanced

by the high resolution attainable with the electron microscope. In 1981 Dubochet

and McDowall introduced the cryotechnique to improve specimen preservation. In

this technique cryo-electron microscope (cryo-EM) fires beams of electrons at proteins

that have been frozen in solution to deduce the biomolecules’ structure. Jacques

Dubochet, Joachim Frank and Richard Henderson were awarded the Nobel prize on

4th October 2017 for their work in developing cryo-EM [163]. The biological specimen

is embedded in water or a buffer solution by rapidly freezing to the temperature of

liquid nitrogen (90 K). The liquid water is converted to an amorphous state and avoids

cellular damage due to ice crystal formation. This technique permitted biological
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samples to be investigated in their native state without the introduction of artifacts,

thereby simplifying image interpretation [149].

3.5 Acquisition of images of HeLa cells

In this work, imaging will be understood as the process of acquiring images [164], which

will be analysed at a later stage. The acquired data can be single frames (photos) or

time sequences (videos). Imaging allows the acquisition of high spatial resolution and

high temporal resolution, allowing high detail and several frames per second to be

obtained. This section provides an overview of HeLa cell imaging as a way to visualise

the nuclear envelope (NE) of HeLa cells that can produce data in the form of 3D

volumes.

Being so widely used, there are many ways in which HeLa cells have been imaged;

fluorescence, Phase Contrast, Electron Microscope (EM), however HeLa cells which were

used in this research were acquired by Serial Blockface Scanning Electron Microscope

(SBF SEM) at the Francis Crick Institute (Figure 3.2b). Schematic diagram of SBF

SEM is shown in (Figure 3.6).

HeLa cells were prepared and embedded in Durcupan resin for SBf SEM following

the method of the National Centre for Microscopy and Imaging Research (NCMIR)[165].

SBf SEM data was collected using a 3View2XP (Gatan, Pleasanton, CA) attached to a

Sigma VP SEM (Zeiss, Cambridge). In total, 517 images of 8, 192 × 8, 192 pixels were

acquired. Voxel size was 10 × 10 × 50 nm with intensity [0 − 255] (Figure 3.9). Initially,

the data was acquired at higher bit-depth (32 bit or 16 bit) and after contrast/histogram

adjustment it was reduced to 8 bit. For this work, seven individual cells were manually

cropped as volumes of interest. For each cell, the centroid was manually selected as

the centre of a sub-volume of 300 slices with dimensions (nh, nw, nd) = (2000, 2000, 1)

and were saved as single channel TIff files. Figure 2.9a shows one representative slice

of a 3D stack acquired with serial blockface electron microscope containing numerous

HeLa cells fixed in gel in three dimension. In Figure 2.9b region of interest (ROI) with
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(a) (b) (c)

(d) (e) (f)

Fig. 3.9 Three representative slices of a 3D image stack acquired by Serial Block Face
Scanning Electron Microscope (SBF SEM) containing numerous HeLa cells. Boxes
indicate two regions of interest (ROIs), which contain two of the cells that will be
posteriorly segmented. (a) A slice on the lower section of the stack; slice 43 of 300.
(b) A slice on the central section; 118/300. (c) A slice on the higher section; 241/300.
Black box denotes the ROI that is magnified in (d-f). Notice the differences in sizes of
cell and nuclei in the images. In particular, the nuclei are hardly visible in (a), largest
in (b), and in (c) the nucleus in the blue dotted box appears as several disjoint regions
surrounded by a darker nuclear envelope (NE).

one HeLa cell centred is shown. At this resolution, it is easy to distinguish the nuclear

envelope, borders of the cell and other structures.

3.6 Chlamydia trachomatis-infected HeLa cells

Preparation and acquisition

Chlamydia trachomatis is the most common cause of bacterial sexually transmitted

infection. It produces an unusual intracellular infection: within a membrane-bound

compartment called the chlamydial inclusion, the elementary body (EB) converts



54 Electron Microscopy and Materials

into the larger, metabolically-active reticulate body (RB). This RB replicates and

then converts into an EB, which is the infectious form. We used quantitative three-

dimensional electron microscopy to show that C. trachomatis RBs divide by binary

fission and undergo a six-fold reduction in size as the population expands. Conversion

only occurs after at least six rounds of replication, and correlates with smaller RB size.

These results suggest that RBs only convert into EBs below a size threshold, reached

by repeatedly dividing before doubling in size. Our findings support a model in which

RB size controls the timing of RB-to-EB conversion without the need for an external

signal [166].

Description and Technical details

Serial Block-Face Scanning Electron Microscopy (SBF SEM) was performed on

monolayers of C. trachomatis-infected HeLa cells. Stacks of consecutive 60-nm-thick

sections were acquired and subsequently digitally aligned, which allowed individual

bacteria to be observed and analysed in multiple successive sections. Then all the EM

sections were combined computationally into a 3D reconstruction of the inclusion. This

analysis provided detailed quantitative information about the C. trachomatis inclusion

and its developmental forms.

The preparation of the cell has been published previously [166], but briefly, HeLa

cells were grown in Advanced DMEM supplemented with 2% fetal bovine serum and

2 mM GlutaMAX-I in 5% CO2 at 37oC. The cell monolayers were infected with

Chlamydia trachomatis serovar L2, strain L2/434/Bu at a multiplicity of infection of 3

in sucrose-phosphate-glutamic acid (SPG). Infections were carried out by centrifugation

at 700 × g in a Sorvall Legend Mach 1.6 R centrifuge for 1 hour at room temperature.

After centrifugation, the inoculum was replaced by fresh cell culture medium and

monolayers were incubated at 37oC and 5% CO2.

Chlamydia-infected monolayers were fixed in a solution of 2% paraformaldehyde

and 2.5% glutaraldehyde in 0.1 M cacodylate buffer, pH 7.4 for 1 hour. Cells were

washed 5X in cold 0.1 M cacodylate buffer then incubated in solution containing 1.5%

potassium ferrocyanide and 2% osmium tetroxide supplemented with 2 mM calcium
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(a) (b) (c)

(d) (e) (f)

Fig. 3.10 Illustration of the Serial Block Face Scanning Electron Microscope (SBF SEM)
images containing Wild-type and monolayers of Chlamydia trachomatis-infected HeLa
cells. (a) A representative 8192 × 8192 image from a 3D stack. The Wild-type HeLa
cells are the darker regions and the background is a brighter shade of grey. The red
box indicates a region of interest (ROI), that is magnified in (d). (b) A representative
3200 × 3200 image from The Cell Image Library (CIL50051) arranged as 3D stack (413
slices). Cells have 28 hours post infection (hpi) and voxel size 3.6 × 3.6 × 60 nm. The
red box indicates a region of interest (ROI), that is part of a cell which was segmented
and modelled against a spheroid in this work. (c) A representative 2435 × 2489 image
of the Chlamydia trachomatis-infected HeLa cells from a different data set (CIL50061).
Cells in this data set have 12 hpi and voxel size 8.6 × 8.6 × 60 nm. The black box
denotes a cell in this slice from this stack (406 slices) that will be posteriorly segmented.
(d-f) Detail of the ROIs with a single cell in the centre. The size of magnified images
are 2000 × 2000 and 530 × 1000. The nucleus is the large and fairly uniform region in
the centre and it is surrounded by the nuclear envelope (NE) which is darker than the
nucleus.

chloride in 0.1 M cacodylate buffer for 30 min on ice. After 5×2-min washes in doubled

distilled water, cells were incubated in 1% thiocarbohydrazide for 10 min at room
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temperature. Following 5×2-min washes in double distilled water at room temperature,

cells were placed in 2% osmium tetroxide in double distilled water for 10 min at room

temperature. The cells were rinsed 5 × 2 min with double distilled water at room

temperature and subsequently incubated in 2% uranyl acetate at 4oC overnight. The

next day, cells were washed 5×2 min in double distilled water at room temperature and

en bloc Walton’s lead aspartate staining was performed for 10 min at 60oC. Following

5 × 2-min washes in double distilled water at room temperature, cells were dehydrated

using a series of ice-cold graded ethanol solutions and then embedded in Durcupan

ACM resin. The resin was allowed to polymerize in a vacuum oven at 60oC for 48

hours. SBF SEM imaging was completed using a Gatan automated 3View system

(Gatan Inc.) and images were recorded at 60 nm cutting intervals. Two representatives

of Chlamydia trachomatis-infected HeLa cell images showing several cells and two in

boxes, are shown in Figs. 3.10b, c and they are magnified in Figs. 3.10e, f.

3.7 Summary

The observation of the nucleus is a key element in the study of cancerous cells [119]

however, the organisation of the nucleus itself remains an area largely unexplored [123].

One of the reasons behind this lack of research is due to the high resolution required

to reveal cells’ fine structures [148, 149], which in turn requires complex algorithms

and difficult to obtain ground truth segmentation.

Electron Microscopy (EM) is an imaging technique that provides resolving power

several orders of magnitude higher than conventional light and fluorescence microscopes.

Recent developments in semi-automated image acquisition have prompted a revival in

the use of EM, transforming biomedical imaging experiments. Serial blockface scanning

EM (SBF SEM) was developed and implemented by Denk and Horstmann [41] to enable

the automation of serial imaging of relatively large volumes with nanometer resolution.

With the advent of SBF SEM and other volume electron microscopy techniques

[40, 159, 160], three-dimensional visualisation of specimens with unprecedented detail
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became possible. SBF SEM utilises an ultramicrotome with a diamond knife to cut

and discard very thin slices or sections from the top face of the sample. The sample is

then raised to the focal plane to be scanned, and this process is repeated sequentially,

resulting in a stack of images through the sample volume [40].

In the last two sections of this chapter the acquisition of Wild-type of HeLa cells

and Chlamydia trachomatis-infected HeLa cells was explained in detail. These two

type of cells will be segmented and modelled against a spheroid by using the automatic

image processing segmentation algorithm developed in this work and they will be

compared statistically in the following chapters.

All SBF SEM Chlamydia trachomatis-infected HeLa cells image data sets can be

accessed by downloading from the Cell Centered Database and Cell Image Library

under project ID 20099 [32].

The Cell Image Library: http://cellimagelibrary.org/images/50051,

The Cell Image Library: http://cellimagelibrary.org/images/50061.

The Wild-type of HeLa cell images are available from the following repositories:

EMPIAR: http://dx.doi.org/10.6019/EMPIAR-10094.

In the following chapter, an overview of image analysis techniques applied to the

HeLa data will be presented. The information empirically observed from the intensities

of images will be explored and quantified with the objective of finding the nuclear

envelope of HeLa cells to create a 3D volume of each cell. Several algorithms will be

tested with the data sets.





Chapter 4

Exploration of the data through

image analysis

This chapter presents an exploration of the data through image analysis, showing the

processes of image alteration and modification, commonly grouped as pre-processing,

segmentation and post-processing. The mathematical foundations for the representation

of images will be discussed in detail.

The objective of this chapter is to provide an analysis on segmentation methods

through various data sets and evaluate their performance to develop tools for an

automatic analysis of data described in Chapter 2.

The exploration of the data touches on disjoint regions of the nuclear envelope of

HeLa cells, in which traditional segmentation techniques produce good results. All

methods presented in this chapter are evaluated on the HeLa data sets to provide

context for the reader in terms of the design choices when developing the tools to analyse

the data (Chapter 6); same techniques are also applied in some of the Chlamydia

trachomatis-infected HeLa cells data sets.

General notation.

Throughout this work, column vectors will be represented with lowercase bold

letters, e.g. x, v, p, and matrices will be represented either in uppercase letters, like

A, B, C or in blackboard uppercase letters when an image is being referred to, for



60 Exploration of the data through image analysis

example I,K; where each element can be represented symbolically as A = ((ai.j)) where

i represents the ith row and j represents the j th column in the matrix. Values in

images at a certain location, I(x, y), are referred to as pixels, and are represented by a

lowercase p with a lowercase subscript, e.g ps, pr. The plane containing the pixels in

the image will be called the spatial domain.

In the following section, an overview of image processing techniques is presented,

centred in particular around image segmentation. Processes performed prior and after

segmentation are called pre- and post- processing techniques. The section is thus

separated in all three categories.

4.1 Classical image analysis

Image processing is an essential field in many applications, including medical imaging,

astronomy, astrophysics, surveillance, video, image compression and transmission, just

to name a few [127]. In one dimension, images are called signals. In two dimensions we

work with planar images, while in three dimensions we have volumetric images (such

as MR images). These can be grey scale images (single-valued functions), or colour

images (vector-valued functions). Noise, blur and other types of imperfections often

degrade acquired images. Thus such images have to be first pre-processed before any

further analysis and feature extraction.

In this section we will formulate in mathematical terms several image processing

tasks: image de-noising, image de-blurring, image enhancement, image segmentation,

edge detection. We will discuss techniques for image filtering in the spatial domain

(using first- and second order partial derivatives, the gradient, Laplacian, and their

discrete approximations by finite differences, averaging filters, order statistics filters,

convolution), and in the frequency domain (the Fourier transform, low-pass and high-

pass filters), zero-crossings of the Laplacian.

In the last part of the chapter, we will present more advanced methods that can be

formulated as a weighted Laplace equation for image restoration, and curve evolution



4.1 Classical image analysis 61

techniques called snakes for image segmentation (including total variation minimisation

and active contours without edges).

Three main stages in image processing can be recognised, which will be analysed in

the following sections. The stages are pre-processing, which refer to the intensity based

operations performed on an image to aid in the segmentation techniques perform better.

Then, the core process of image segmentation will be discussed; such process involves

the classification of each pixel into one of two categories: background and foreground.

Finally, a post-processing stage follows in which small errors in segmentation are

addressed, this stage usually involves a type of binary operation.

Following sections present the relevant techniques in each category, applied to the

data presented in sections 3.5, and 3.6.

Figure 4.1 displays the test frame which will be used to illustrate many of the

techniques described herein. As the objective is comparison, a region of interest of the

image will be presented, as it showcases the data set’s principal problems.

As the objective is comparison, a region of interest of the image will be presented,

as it showcases the data set’s principal problems.

4.1.1 Representation of images

The objective of this section is to provide a homogeneous representation of digital

images and the operations that can be performed in them; the overview includes the

notation that will be utilised throughout the dissertation.

An image can be seen as a digitalisation of a continuous function in two variables

[127] corresponding to the spatial coordinates in an image. Let f : IX×IY → R, f(X, Y )

represent a function in two continuous variables, (X, Y ), over two intervals, represented

by I ⊂ R, in the Cartesian plane. The intervals can represent a rectangular section of

the plane. For simplicity, and without loss of generality, let IX = [0, a] and IY = [0, b]

where a and b are numbers such that a, b > 0, positioning the rectangle IX × IY in the

first quadrant of the plane. The range of f is assumed to be the range of values [0, g].
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(a) (b)

Fig. 4.1 Presentation of test frame and the cropped images used in testing throughout
this chapter. The frame will be referred to throughout this work. (a) A representative
slice of a 3D image stack acquired by Serial Block Face Scanning Electron Microscope
(SBF SEM) containing numerous HeLa cells. This image represents the full size frame
from Wild-type of HeLa data set. Red box represents the region of interest (ROI) on
which different techniques will be presented and this ROI will be magnified in (b). (b)
Detail of the ROI with a single cell in the centre. The nucleus is the large and fairly
uniform region in the centre and it is surrounded by the nuclear envelope (NE) which
is darker than the nucleus.
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(a) (b)

Fig. 4.2 Representation of the creation of a digital and binary image. (a) A representa-
tion of the continuous function f, the grid represents a sensor array in which the image
will be projected. Continuous function f (X,Y ). (b) A digital image in which a shape
can be observed and others can be appreciated as background. The size of this image is
25 × 26 meaning there are 650 pixels. A binary image in which the pixels corresponding
to the object have been set to 0 (black pixel) and the background pixels have been set
to 1 (white pixel). Digitalised image pixels I(xi, yi) show quantised intensities - 0 and
1 as a binary image in this example. In this image the function f is digitalised as a
matrix I(x, y), given the sensor array.

The digitalisation of f consists of (i) sampling, (ii) discretisation in the (X, Y )

variables; and (iii) quantisation, which is a discretisation of the range of f. Let the

discrete variables (x, y) correspond to the spatial positions in IX × IY where the

samples of f are taken. For simplicity, x = 1, 2, · · · , Nr, where Nr is the number of

rows and y = 1, 2, · · · , Nc, where Nc is the number of columns. The intensities of the

image will be quantised into the finite set I = 1, 2 · · · , L. For example, in 8 -bit images,

the quantisation results in the interval I = 1, 2, · · · , 255. Throughout this work, all

digitised images will be referred to with the symbol I = I(x, y).

Figure 4.2 shows a representation of the digitalisation of an image. In the figure,

the arrangement of the digital coordinates (x, y) would represent the image as a matrix

I of size Nr × Nc

Digital images are generated when an array of light sensitive sensors capture the

light entering them. The number of sensors in the array corresponds to the number of

positions in the resulting image. Each position in the image is called a pixel, and it is
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represented by the symbol px = I(x, y). The number of pixels in an image depends on

the resolution of the sensor array.

Colour images

Colour is perceived by humans by the white sun light which is reflected from the

objects it hits [127]. The spectrum of colours forms the different colours which blend

smoothly into each other, as the frequency of the light wave increases; however, seven

colours can be broadly separated in the visible spectrum: red, orange, yellow, green,

blue and violet.

A colour space is the specification of a coordinate system where each colour is

represented by a single point. The RGB colour space is based on a three dimensional

Cartesian space in which each coordinate represents the intensity of a primary value,

R for red, G for green and B for blue. Each position (pixel) (x, y) on an image will

have three values to it, each one to represent the colour. This implies that an image

will be a 3D matrix I(x, y, c) of size Nr × Nc × 3, each of the three Nr × Nc will be

referred to as layers.

Binary images Levels of intensities in images are created in terms of a given set

I = l1, l2, . . . , lL, in general either each li = i − 1 or they are bounded between zero

and one, li = (i − 1)/L. This section presents the special case where L = 2, without

loss of generality, I = {0, 1}. Binary images can be used to provide context to scenes

in images, where regions of interest can be defined as foreground and the rest can be

defined as background. In Figure 4.2 a representation of a binarised image where some

some pixels are created as foreground and others as background is illustrated.

The connected region in the binarised image will be referred to as detection or

object, and it can be modelled as a set in a 2D plane with a size equal to the number

of pixels in it. Building a binary image can be done either by manually selecting which

pixels will be assigned as 1 or done automatically by a computer algorithm; which

incorporates context to the image by classifying some pixels as positive, or "1", or

negatives, or "0".

A simple image formation model



4.1 Classical image analysis 65

By image, we understand the usual intuitive meaning - an example might be the

image on the human eye retina or the image captured by a camera [128]. The image

can be modelled by a continuous function of two or three variables; in the simple case

arguments are the co-ordinates (x,y) in a plane, while if images change in time a third

variable t might be added.

In the continuous case, a planar image is represented by a two-dimensional function

(x,y) → f(x,y). The value of f at the spatial coordinates (x,y) is positive and it is

determined by the source of the image. If the image is generated from a physical

process, its intensity values are proportional to energy radiated by a physical source.

Therefore, f(x,y) must be nonzero and finite:

0 < f(x,y) < ∞

The image-function f may be characterised by two components:

1. the amount of source illumination incident on the scene (illumination) i(x, y)

2. the amount of illumination reflected by the objects (reflectance) r(x, y)

We have f(x,y) = i(x, y)r(x, y) where 0 < i(x, y) < ∞ and 0 < r(x, y) < 1.

Reflectance is bounded below by 0 (total absorption) and above by 1 (total re-

flectance). i(x, y) depends on the illumination source r(x, y) depends on the character-

istics of the imaged objects. The same expressions are applicable to images formed via

transmission of the illumination through a medium (chest X-ray, etc). Then we deal

with transmissivity instead of reflectivity. From the above construction, we have

Lmin ≤ l = f(x, y) ≤ Lmax

where l = f(x, y) is the gray-level at coordinates (x, y). It is common to shift the

gray-scale (or intensity scale) from the interval [Lmin, Lmax] to the interval [0, L − 1].

Then l = 0 is considered black and l = L − 1 is considered white on the gray scale.

The intermediate values are shades varying from black to white.

An image is a grid of points or elements and each of them will contain a certain

value [126]. The value of the element is related to the colour or intensity of the image
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itself. The grid is called a "matrix", and each point of the grid is called a "pixel", which

is the combination of the words "picture element".

In digital images, the size of the grid will define the resolution of the image. For

example, it may be a square of 128 × 128, 256 × 256 or 512 × 512 pixels or it may

depend on the resolution of the cameras used to capture the image. When data sets

contain volumetric information, like those acquired from magnetic resonance images or

multiphoton microscopes, the elements are related to a volume and thus the "volume

elements" are called "voxels". In the general case an image can be of size m-by-n, ’m’

pixels in the rows or vertical direction and ’n’ pixels in the columns or horizontal

direction.

The simplest possible image representation is a binary image, where each pixel

has a value of either 0 or 1 [126–128, 167]. Binary images require very little storage

space but are usually only the result of some image-processing techniques that aim to

identify salient features.

A grey scale image has values in the range 0 to 255. For a moderate amount of

detail each value can be stored in a byte and can take any integer value between

0 and 255; such an image is an 8-bit grey scale image. More detail is obtained by

increasing each value to be represented by 16-bits, with the drawback of increased image

storage space required. Grey scale images are more commonly found in applications

than binary images and often require more complex processing techniques to aid their

understanding.

Colour images contain important information about the perceptual phenomenon of

colour related to the different wavelengths of visible electromagnetic spectrum [126].

In many cases, the information is divided into three primary components, Red, Green

and Blue (RGB), or psychological qualities such as hue, saturation and intensity (HSI).

Full colour images in the RGB model have three components of colour; red, green and

blue. Each colour component is in the range 0 to 255, giving each pixel value a total of

3 bytes to store. Having colour images available can often simplify the application of

computer vision, however more complex processing techniques may be required.
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An alternative representation of an image is a histogram of pixel intensities. For a

grey scale image, the histogram is a plot of intensity (in the range 0 − 255) against the

frequency of that particular intensity value in the image [128]. The intensity histogram

can be useful as a simple representation of global information in the image, from

which particular values can be extracted, and a visualisation of the effects of image

transformations.

4.2 Ground truth (GT) and labelled images.

The ground truth (GT) is a binary image, which contains the correct labelling of

objects of interest. Normally, an image is labelled manually by an expert in the field.

A ground truth for one cell was provided for the Wild-type of HeLa data set (shown by

the red box in Figure 4.3). During the work, a GT for another cell (shown by the blue

box in Figure 4.3) was segmented by the author of this dissertation with a Wacom

pen-and-tablet. In total, 300 slices were segmented in around 47 hours. The GT

software, which is based on MATLAB® roipoly function, allows the user to manually

label images of cells. Figure 4.3c, d show masks (GT or GT masks) of two different

cells shown in the black box in Figure 4.3a, b.

In order to provide training data for deep learning architectures, another GT was

obtained by the author this time in MATLAB® Image Labeler. In this GT the cell was

labelled with which four classes (nuclear envelope, nucleus, rest of the cell, background)

(Figure 7.1d). The GT was replicated to create an image with three channels to be

consistent with the RGB images commonly used with pre-trained neural networks.

An example of both manually segmented image and labelled image for deep learning

architectures can be seen in Figure 4.4. It is important to notice that the ground truth

was generated from a non-expert’s perspective. in which the shapes of the cells was

easily recognisable. This part of the dissertation development some of the difficulties

of dealing with the data set.

Comparison of binary images.
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(a) (b)

(c) (d)

Fig. 4.3 Manual segmentation or ground truth (GT) of a HeLa cell for two different
slices. A representative slice of a three-dimensional (3D) image stack acquired by Serial
Block Face Scanning Electron Microscope (SBF SEM) containing numerous HeLa cells.
Boxes indicate two regions of interest (ROIs), which contain two of the cells that were
manually segmented by Anne E. Weston at the Francis Crick Institute and the author
of this dissertation in this work. (a) A slice on the central section; 118/300. Black
box denotes the ROI that is magnified in (b) Notice the differences in sizes of cell and
nuclei in the images. In particular slice, the nuclei are the largest. The nucleus in the
blue dotted box has several disjoint regions surrounded by a darker nuclear envelope
(NE). (c) GT for this particular slice showing the nucleus in red box.(d) GT for this
particular slice showing the nucleus in blue dotted box. The NE was obtained as the
boundary of the nucleus.
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(a) (b) (c)

Fig. 4.4 Illustration of the process followed to generate the ground truth. (a) Filtered
HeLa image - slice 118/300. (b) Manually delineated nuclear envelope (NE). (c)
Labelled image, generated in MATLAB® Image Labeler, indicating the four different
classes - nuclear envelope (red), nucleus (green), rest of the cell (blue), and background
(black).

In Section 2.4, the definition of ground truth (GT) was provided both in general

and in the context of the data used in this work. In practical terms, given an image

which contains regions to be automatically segmented, its ground truth will be a binary

image of the same dimensions where all the regions were selected manually by a human,

in some cases, an expert. The output of a detection software is called a segmentation,

the methodologies will be explained in Section 3.1.

Manual annotations are then compared with the output of segmentation algorithms.

There are various ways of comparing the annotated images with segmentation outputs,

which involve looking at images like sets. In simple terms, the analysis can be done

comparing each pixel in both the ground truth and the algorithm’s output image. Four

possibilities, depending on the comparisons: (i) True positive (TP) as the pixels where

both the output and ground truth show a positive or 1; (ii) True negative, (TN) in

pixels where both images show a negative or 0; (iii) False positive, (FP) where the

segmentation shows a 1 but the ground truth shows a 0, and (iv) False negative (FN)

where the segmentation shows a 0, but the ground truth shows a 1.
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Counting the number of pixels that correspond to each category can produce metrics

for the performance of a segmentation, or how close the automatic output is from a

given manual annotation.

The Jaccard similarity index [168], or simply Jaccard index, is defined in terms of

sets and their sizes, as the ratio of the intersection by the size of the union. On the

other hand, in the work by Fawcett [169], two measurements are presented: precision

and recall. Precision measures how many detected pixels are relevant, by computing

the ratio of true positives and the overall number of detected pixels, TP + FP. Recall

computes the ratio of true positives with the sum of the true positives and the false

negatives — or points that should have been detected, but were missed —, this

measurement can be seen as a ratio of the relevant pixels that were detected. Finally,

Randen and Husoy [170] present accuracy which compares the number of correct

detections, whether positives or negatives against the overall number of pixels. All

measurements can be understood from the diagram in Figure 7.6, the mathematical

formulation is given in the following section.

An important part of this work involves the automatic detection of cell structures

in images where the cells have disjoint regions. Therefore detections must be compared

carefully to the ground truth, as these regions could lead to confusions and lower the

similarity indices. The notion of the performance measurements will be extended in

the following sections to address such problem.

4.3 Segmentation performance metrics

Given two input curves that are perimeters of segmentation result and manual segmen-

tation or GT, it is natural to ask how similar they are to each other. In order to assess

the accuracy of the segmentation, two methodologies were followed. first, the Jaccard

similarity index (JI) (Figure 4.5a) of intersection over union was calculated to assess

the area inside the NE and second, the Hausdorff distance (HD) (Figure 4.5b) , a well

known similarity measure, of the maximum of the set of shortest distances between
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two lines was calculated to assess how far the real boundary of the NE was from the

calculated one. The smaller the Hausdorff distance between two shapes the greater is

their degree of resemblance [171].

The JI [168] is defined by Equation (4.1):

Jaccard Similarity Index = TP

TP + FP + FN
(4.1)

where TP, FP, FN stand for true positive, false positive and false negative (Fig-

ure 4.5a) . HD [172, 173] is defined as the maximum distance between a point on one

curve and its nearest neighbour on the other curve [174, 175] (Figure 4.5a). It is such

a metric that enables calculation of how far two subsets of a metric space are from

each other and defined by Equation (4.2):

dH(A, B) = max
{

sup
a∈A

inf
b∈B

d(a, b), sup
b∈B

inf
a∈A

d(a, b)
}

(4.2)

Figure 7.6 shows the possible characterisation of the output of a segmentation

algorithm, given its output and the value of the same pixel in the ground truth. Four

possibilities, depending on the comparisons: (i) True positive (TP) as the pixels where

both the output and ground truth show a positive or 1; (ii) True negative, (TN) in

pixels where both images show a negative or 0; (iii) False positive, (FP) where the

segmentation shows a 1 but the ground truth shows a 0, and (iv) False negative (FN)

where the segmentation shows a 0, but the ground truth shows a 1.

Counting the number of pixels that correspond to each category can produce metrics

for the performance of a segmentation, or how close the automatic output is from a

given manual annotation. In the works by Jaccard [168], Fawcett [169] and Randen

and Husoy [170], such measures are provided. First, the Jaccard similarity index, or

simply Jaccard index, is defined in terms of sets and their sizes, as the ratio of the

intersection by the size of the union. In terms of the statistics described before it can

be computed by the number of true positives divided by the sum of true positives, false

positives and false negatives.
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(a) (b)

Fig. 4.5 Illustration of the pixel-based metrics. Schematics of Jaccard similarity index
[176] and Hausdorff distance [177] used in this work to asses the algorithms. Jaccard
similarity index, or intersection over union in (a) Segmentation overlaid on a slice (slice
184/300 - on a filtered image): ground truth (GT) in cyan, automated segmentation
in purple. True Positives (TP, nuclear pixels segmented as nucleus), true negatives
(TN, background pixels segmented as background), false positives (FP, background
pixels segmented as nucleus) and false negatives (FN, nuclear pixels segmented as
background). These quantities were used to compute accuracy and Jaccard similarity
index for the image-processing algorithm and three pre-trained deep neural networks.
(b) Components of the calculation of the Hausdorff distance (HD) between the green
line X and the blue line Y. The HD is the greatest of all the distances from a point in
one set to the closest point in the other set. Image credit to Rocchini.

Fig. 4.6 Graphical representation of the Jaccard index, Precision and Recall measure-
ments. The diagram shows an abstract representation of the sets of pixels in an image,
and how they can be classified. The ratios described in Equation (4.1), Equation (4.3),
Equation (4.4), and Equation (4.5) is shown, based on this graphical representation.
Images credit to [2].
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On the other hand, in the work by Fawcett, two measurements are presented. First

of all, precision, which measures how many detected pixels are relevant, by computing

the ratio of true positives and the overall number of detected pixels, TP + FP. Second

of all, the work presents the recall measurement, which computes the ratio of true

positives with the sum of the true positives and the false negatives — or points that

should have been detected, but were missed—, this measurement can be seen as a ratio

of the relevant pixels that were detected.

Finally, Randen and Husoy present accuracy or mis-classification which compares

the number of correct detection, whether positives or negatives against the overall

number of pixels. Equation (4.1), Equation (4.3), Equation (4.4), and Equation (4.5)

describe all measurements previously described, and can be observed in Figure 7.6.

Overall Accuracy = TP + TN

TP + FN + TN + FP
(4.3)

Precision = TP

TP + FP
(4.4)

Recall = TP

TP + FN
(4.5)

In the first dataset there were 300 images of a HeLa cell. To train the image process-

ing algorithm, the manual ground truth of the NE were overlaid on the original images

so each ground truth has two classes - NE and background for binary classification

(Figure 4.4b. In order to train deep learning architectures original HeLa images were

labelled in MATLAB® Image Labeler with four different classes - NE, nucleus, rest of

the cell and background (Figure 4.4c. As Equation (4.3) is overall accuracy and there

was only one positive class (NE) for the image processing algorithm segmentation.

On the other hand, if there’s more than one positive class (‘object’), the presented

accuracy metrics do not reflect it, as they are used for binary classification only, i.e. if

the model outputs a multiclass prediction (softmax), then the false positive is not just

low IoU, but also false class prediction with high IoU.
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4.4 Summary

This chapter described image analysis techniques to segment objects from background.

The chapter was utilised as a thorough exploration of the data presented in Chapters 2

and 3, in particular Wild type of HeLa cell images. As shown, HeLa data sets involve

several challenges. Most of them are due to the imaging technique used, which caused

an uneven distribution of the intensities. However, such also allow to observe cellular

structures from a different perspective.

Challenges observed included: disjoint regions due to cell division, uneven segmen-

tation and some holes or incomplete segmentation of the cells and inconsistencies in

the imaging towards the upper right and lower left corners of the images.

A traditional image analysis approach, including pre-processing, thresholding, and

post-processing, was described thoroughly. Various techniques per stage were discussed.

This segmentation approach could overcome some of the challenges in the data set,

such as noise before and after applying a threshold. However, it is not enough to solve

the problem of disjoint regions, since a threshold will categorise intensities into specific

classes. Adaptive thresholds did not prove more useful than hysteresis thresholds and

had the downside of being time consuming.

This chapter presents the materials used in this project. The chapter includes of

four main topics: (i) the mathematical representation of images, (ii) the main data

sets of HeLa cells analysed in this work, and the secondary data sets used (Chlamydia

trachomatis-infected HeLa cells); (iii) the representation of cell boundaries and (iv)

the generation of ground truth.

Understanding the context of acquisition and cellular processes in the previous

chapter enhanced the familiarisation of the analysis with the data. Furthermore, the

presentation of the creation of digital images was of useful to understand the broad

context of digitalisation and introduce some key concepts and notation, such as size

of images or colour space. Segmentation, which will be addressed in the following

chapter, can be defined as the creation of a binary image by classifying certain pixels

from others.
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Two collections of data sets were presented, corresponding to preliminary work and

main focus. Data sets includes the Crick EM Wild type HeLa cell images and the Cell

Image Library mono layers of Chlamydia trachomatis-infected HeLa cells.

In the following chapter, an overview of Deep Learning architectures applied to the

data set will be presented. The information empirically observed from the intensities

of HeLa cells will be explored and quantified with the objective of finding the overall

shape of the cell. Several pre-trained deep learning architectures will be tested with

the data sets.





Chapter 5

Image-processing Segmentation

Algorithm

In this chapter, the image-processing algorithm developed in this work will be described

in detail. The image-processing algorithm followed a pipeline of several traditional

steps like edge detection, dilation and morphological operators and some of these are

explained in Chapter 4 and the rest in appendix B.

The flow chart of the image-processing segmentation algorithm developed in this

work is shown in Figure 5.1.

The chapter is subdivided into two major sections related with (i) the segmentation

of nuclear envelope of HeLa cells through traditional image processing algorithm, (ii)

the modelling of segmented nuclear envelope of HeLa cell against a spheroid and its

analysis and the foremost conclusions in such work.

5.1 Image processing algorithm

The details of the data sets are displayed in Table 5.1. Images were provided by two

different EM sources and were used to segment the nuclear envelope of different type

of HeLa cells.
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Fig. 5.1 Flow chart for the image-processing algorithm developed in this work.

Table 5.1 Summary of the data sets that were used in this work.

Image source No. of images Voxel size No. of classes
Francis Crick Institute 300 10 × 10 × 50 nm 2 and 4

Cell Image Library (CIL50051) 406-28 hours post infection 3.6 × 3.6 × 60 nm 2
Cell Image Library (CIL50061) 413-12 hours post infection 8.6 × 8.6 × 60 nm 2
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(a) (b)

Fig. 5.2 Illustration of the Serial Block face Scanning Electron Microscope (SBF SEM)
images containing cancerous HeLa cells. (a) Five representative 8192 × 8192 images
arranged as 3D stack. The HeLa cells are the darker regions and the background is
a brighter shade of grey. The red box indicates a region of interest (ROI), that is
magnified on the right. (b) Detail of the ROI with a single cell in the centre. This is
slice 118 of 300. The nucleus is the large and fairly uniform region in the centre and it
is surrounded by the nuclear envelope (NE) which is darker than the nucleus.
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(a) (b) (c)

(d) (e)

Fig. 5.3 Illustration of intermediate steps of the proposed segmentation algorithm.
(a) Cropped region around one HeLa cell (red box in Figure 5.2a and Figure 5.2b),
surrounded by resin (background) and edges of other cells. This image was low-pass
filtered. (b) Edges detected by Canny algorithm. The edges were further dilated to
connect those edges that may belong to the nuclear envelope (NE) but were disjoint
due to the variations of the intensity of the envelope itself. (c) Superpixels obtained
with the image-processing algorithm and they were generated by removing dilated
edges. Small superpixels and those in contact with the image boundary were discarded
and the remaining superpixels were smoothed and filled, before discarding those by
size that did not belong to the nucleus. (d) final segmentation of the NE overlaid on
the filtered image shown in purple. The manual segmentation or the ground truth
(GT) is also shown in cyan. (e) A different slice showing final segmentation and GT
overlaid on the filtered image. By using neighbouring segmentation as input parameter
to the current segmentation and taking the regions into account, the segmentation
was considerably improved and was able to identify disjoint regions as part of a single
nucleus. Details of differences can be appreciated and the nuclear area covered by the
GT and segmentation was brightened up for visualisation purposes.
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Images were initially low-pass filtered with a Gaussian kernel with size h = 7 and

standard deviation σ = 2 to remove high frequency noise and to enhance the larger

scale edge features. This was required as the images presented a grainy texture, which

would impact in subsequent steps (Figure 5.4a,b), which relied on the intensity of the

classes.

(a) (b)

Fig. 5.4 Illustration of the effects of low-pass filtering on one representative image of a
HeLa cell. (a) Composite image where the top is a region of interest of the original
(Figure 5.2b) and the bottom is filtered. (b) Closer view of the composite image.

The algorithm exploited the abrupt change in intensity at the NE compared with

the neighbouring cytoplasm and nucleoplasm by Canny edge detection [178]. The

edges were dilated to connect disjoint edges by using the structural element of size 5 or

greater than 5 depending on the standard deviation of the Canny edge detector. These

disjoint edges were part of the NE and were initially missed due to intensity variations

in the envelope itself (Figure 5.3b). The connected pixels not covered by the dilated

edges were labelled by the standard 8-connected objects found in the image to create a

series of superpixels (Figure 5.3c). The superpixel size was not restricted so that large

superpixels covered the background and nucleoplasm. Morphological operators were
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Fig. 5.5 Surface of the nuclear envelope (NE) and partial electron microscopy (EM)
slices to give context. Illustration of the 3D surface of the nuclear envelope (NE) of a
HeLa cell and different slices as shown 2D cross-sections. Planes could be interpreted
as the microtome knife used in serial blockface electron microscope (SBF SEM). The
central slice of the surface of HeLa cell was assumed to be the one in which the nuclear
region would be centrally positioned and have the largest diameter therefore the image
processing algorithm segments this central slice and propagates up and down. Notice
the notch (arrow) on the upper right side of the NE.

used to: remove regions in contact with the borders of the image, remove small regions,

fill holes inside larger regions and close the jagged edges (Figure 5.3d,e).

A preliminary work approach described in [179] assumed that there was only one

nuclear region in each image, which was designated as the nucleus, and the nuclear

islands caused by the 2D plane were ignored.

That approach worked well for cells with a smooth near-spherical nuclear morphology.

However, in cells with an irregular NE, islands were missed. To improve this approach,

the new algorithm exploited the 3D nature of the data by using adjacent images to

check for connectivity of islands to the main nuclear region, as a human operator would.

As illustrated in Figure 5.5a when the segmentation is performed from top to bottom

the algorithm segments only one of the disjoint regions (Figure. 5.5b) in the image. If

the central slice (Figure. 5.5c) of the cell is segmented prior to top or bottom slices then
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Fig. 5.6 Illustration of the propagation regions. Regions of a slice that overlap with
the regions of a previous segmentation are maintained, whilst regions that do not are
discarded. The algorithm propagates up and down starting from central slice (slice
number 150 for all seven cells which were segmented in this work) in the same way as
a human expert to include or discard regions.
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this segmentation can be used as a reference. The algorithm thus began at the central

slice of the cell, which was assumed to be the one in which the nuclear region would be

centrally positioned and have the largest diameter. The algorithm then proceeded in

both directions (up and down through the serial images) and propagated the initial

result to decide if a disjoint nuclear region was connected above or below the current

slice of analysis. By using neighbouring segmentations as input parameters to the

current segmentation and taking the regions into account, the algorithm was able to

identify disjoint nuclear regions as part of a single nucleus (Figure 5.3e). Finally, the

NE was obtained as the boundary of the nucleus. This new approach worked well for

cells with disjoint regions.

To find the boundary, a distance transform from the region to every pixel of

the image was performed. Figure 5.7a illustrates the distance map from the central

superpixel where the black pixels are for the nucleus of the HeLa cell. The average

intensity of every loci with constant distance was calculated (Figure 5.7b), where a

valley clearly indicated the location of the nuclear envelope (where the intensity is

making a dip). It should be noticed how the intensities inside and outside the nuclear

envelope were brighter than the envelope itself.

In order to test the image processing algorithm developed in this work, it was

tested on a different data set obtained from The Cell Image Library [32]. Each cell

was manually cropped from 2489 × 2435 electron microscopy (EM) image before

segmentation algorithm was applied. The algorithm segments each cell (6 cells were

segmented so far) in less than 1 minute (It was 40 minutes for EMPIAR data set)

with good accuracy as it was visually confirmed. There are 222 slices in the cell shown

in (m) and it is important to understand biology of this particular cell as it shows

some interesting characteristics. The cells shown in (h) to (k) are from CIL:50061

and the cell in (m) is from CIL:50051. There were 413 and 406 slices in data sets

respectively. Serial Block-Face Scanning Electron Microscopy (SBF SEM) provides a

comprehensive quantitative analysis of the intracellular chlamydial infection over time.

SBF SEM was performed on monolayers of Chlamydia trachomatis-infected HeLa cells.
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Fig. 5.7 (a) Distance map from the central superpixel. (b) Average intensity from the
central superpixel, the minimum corresponds to the nuclear envelope that appears
dark as compared with the nuclei and its surrounding structures.

Fig. 5.8 (a) Manual segmentation of a different cell showing the nucleus of the cell
as an area and (b) its nuclear envelope showing distinctive disjoint regions. Manual
segmentation was performed with a Wacom pen-and-tablet within the MATLAB®

roipoly function by the author of this dissertation in 47 hours. This image was magnified
so the reader can appreciate the boundary and several disjoint regions.
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(a) (b)

(c) (d)

Fig. 5.9 (a) Region of Interest (ROI) with one HeLa cell centred from a 3D stack
imaged with an Electron Microscopy(EM). The nucleus is the large and fairly uniform
region in the centre and it is surrounded by the nuclear envelope which is darker than
the nucleus. (b) Superpixels obtained with the algorithm. (c) Final segmentation of
the NE shown by the thick black line. (d) Segmentation of a different slice showing
several disjoint nuclear regions.
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EMPIAR data set CIL50061 data set CIL50051 data

(a) (b)

(c) (d)

(e) (f)

(g)

(h) (i)

(j) (k)

(l)

(m)

Fig. 5.10 Final results of the automated segmentation of thirteen Nuclear Envelopes
(NEs) displayed as rendered volumetric surfaces for Wild type and Chlamydia
trachomatis-infected HeLa cells. Surface rendering of thirteen Nuclear Envelopes
(NEs), different colours are used for visualisation purposes. Seven Wild-type HeLa cells
(EMPIAR data set - left column) and six Chlamydia trachomatis-infected HeLa cells
from two data sets (centre and right column). (a-g) Wild-type HeLa cells. In each cell,
notice the notches that travel up-down along the nuclei (grey (d), yellow (e), purple (f),
and cyan (g) cell) and invaginations. Voxel size of Wild-type HeLa cells is 10 × 10 × 50
nm. (h-l) Segmented cells from CIL50061 data set. Cells in this data set are 12 hours
post infection (hpi) and voxel size 8.6 × 8.6 × 60 nm. (m) A cell from CIL50051 with
28 hpi and voxel size is 3.6 × 3.6 × 60 nm. Notice the hole of this particular cell.
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(a) (b)

Fig. 5.11 Image registration result of the nuclear envelope (NE) of a HeLa cell. (a)
An artefact, shown by the arrow, due to a slight shift (vibration) in the acquisition of
Electron Microscope was observed. An image registration algorithm was developed to
measure the shift between two consecutive slices (slice 121 and 122). The latter slice
was shifted by 11 rows and 20 columns. (b) This artefact was resolved (corrected) and
final 3D rendered NE is shown.

Stacks of consecutive 60-nm-thick sections were acquired and subsequently digitally

aligned, which allowed individual bacteria to be observed and analyzed in multiple

successive sections. All the EM sections were then combined computationally into a

3D reconstruction of the inclusion.

In total, the NE of seven different Wild-type and six Chlamydia trachomatis-infected

HeLa cells were analysed. The algorithm was developed and trained on one cell from

which the parameters were derived and for which 300 slices of GT existed, (Figure 7.8b)

and tested on the NEs of the other twelve cells (Figures 7.8d, 7.10) (Left)) of which

only one had a corresponding GT with 300 slices (Figure 7.8d) with accurate results

and good visual assessment of the remaining.

The shapes of the final segmentations show the complexity of the NE with rather

convoluted notches and invaginations. It is speculated that these shapes may have

biological significance which is beyond the scope of this work. Whilst segmenting

the first cell, a displacement artifact, which is assumed to have been caused by an

external vibration to the microscope, was detected (arrow in Figure 5.11). The slices
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were carefully observed by scrolling up and down, and a displacement was found

between slices 121 and 122. A rigid registration algorithm was applied to measure the

shift between slices, which reported a displacement of 11 rows and 20 columns. This

displacement was corrected by shifting slices 122 to 300 and since the displacement

was present on both images and GT, it had no impact on the JI or HD.

The automated segmentations were compared to manual GT segmentations in order

to assess the accuracy of the algorithm. Two different similarity metrics, JI and HD,

were computed. For the cell shown in Figure 7.8b (red cell), all 300 slices were visually

checked and it was noticed that the bottom 26 and top 40 slices did not contain any

cell therefore they were not included in similarity metrics calculations. The algorithm

detected cells in all slices between 42 and 254 and JI and HD were computed as 93%

and 9 pixels respectively. For the slices between 50 and 250, the mean JI is 95% and

the mean HD 8 and for slices between 75 and 225 (interquartile range - IQR) the mean

JI is 98% with the mean HD 4 pixels (Figure 7.8a). Similarly the bottom 40 of 300

slices of the cell shown in Figure 7.8d showed no cell and the algorithm detected the cell

for all slices between 47 and 289 and JI and HD were computed as 90% and 17 pixels

respectively. The mean JI is 93% and the mean HD 13 pixels for slices between 50 and

250 and 94% with the mean HD 13 pixels for slices between 75 and 225 (Figure 7.8c).

JI decreased and HD increased towards the top and bottom of the cells as the structure

was considerably more complex and the areas become much smaller (Figures 7.8a,c).

5.2 Nuclear envelope shape modelling

In order to further study the shape of the segmented NE, this was modelled against

a spheroid. The spheroid was created with the same volume as the nucleus and the

position adjusted to fill the NE as closely as possible, as illustrated in Figure 5.12a,

where NE is displayed as a red rendered volumetric surface and the spheroid as blue

mesh.
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(a) (b)

(c) (d)

Fig. 5.12 Nuclear envelope (NE) surface modelling against a spheroid. (a) Rendering
of the nuclear envelope (NE) (red surface) against the model spheroid (blue mesh).
(b) Illustration of distance calculations by ray tracing in one slice. Yellow regions
correspond to the nucleus outside the spheroid, cyan regions where nucleus inside the
spheroid. (c) Measurements obtained along the boundary. (d) Surface corresponding
to the distance from the NE to a model spheroid. Solid red arrow indicates a notch,
dashed green arrow shows rugged region.
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The surfaces of the spheroid and the nucleus were subsequently compared by tracing

rays (Figure 5.12b) from the centre of the spheroid and the distance between the surfaces

for each ray was calculated (Figure 5.12c). It was designated that when the NE was

further away from the centre, the difference was positive. Figure 5.12d shows the surface

corresponding to the distance from the NE of the first cell (Figure 7.8b) to a model

spheroid. The notch that travels along the cell between slices is visible (red arrow) and

the dashed green arrow highlights a particularly rugged region (Figure 5.12d).

Numerous metrics that characterise the NE can now be extracted, either directly

from the NE: nuclear volume, Jaccard Index (JI) to the spheroid, or from the altitudes

of the modelled surface: (mean value (µ) and standard deviation (σ)), range of altitudes.

Other derived metrics can also be extracted, for instance, the ratio of the number

above or below a certain threshold like the µ ± σ. finally, the correlation between JI

and statistical values were calculated so that some conclusions could be drawn about

biological characteristics of cells that are beyond the scope of this work.

Mercator map projection was used in this modelling against a spheroid and this

could be a limitation of the algorithm. Whilst many interesting characteristics such

a large notch on the NE of the third (grey) cell or large protuberance on the second

(green) cell, at this moment it is only possible to speculate the biological correlation

between the surfaces and the nature of the cell itself.





Chapter 6

Artificial Intelligence, Machine

Learning and Deep Learning

In this chapter artificial intelligence, machine learning and specifically principles of

Deep learning will be explained. The Convolutional Neural Networks (CNNs) and

their structures will be explored and three most accurate CNNs, VGG16, ResNet18

and InceptionResnetv2 will be investigated. They will be used to segment the nuclear

envelope of HeLa cells and the segmentation results will be compared with that of our

classical segmentation algorithm developed in this work.

6.1 Artificial intelligence (AI)

Artificial intelligence (AI) is a thriving field with many practical applications and

active research topics [68]. We look to intelligent software to automate routine labour,

understand speech or images, make diagnoses in medicine and support basic scientific

research.
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6.2 Machine learning (ML)

Computers need to capture this same knowledge in order to behave in an intelligent

way [68]. One of the key challenges in AI is how to get this informal knowledge into a

computer. Several AI projects have sought to hard-code knowledge about the world

in formal languages. A computer can reason automatically about statements in these

formal languages using logical inference rules. This is known as the knowledge base

approach to AI.

The difficulties faced by systems relying on hard-coded knowledge suggest that AI

systems need the ability to acquire their own knowledge, by extracting patterns from

raw data. This capability is known as Machine Learning (ML).

Many AI tasks can be solved by designing the right set of features to extract for

that task, then providing these features to a simple ML algorithm.

For many tasks, however, it is difficult to know what features should be extracted.

Figure 6.1 illustrates a Venn diagram showing how deep learning is a kind of

representation learning, which is in turn a kind of machine learning, which is used for

many but not all approaches to Artificial Intelligence (AI).

6.3 Deep learning (DL)

Deep learning (DL) has had a long and rich history, but has gone by many names,

reflecting different philosophical view points, and has waxed and waned unpopularity

[68]. It has become more useful as the amount of available training data has increased.

DL models have grown in size over time as computer infrastructure (both hardware

and software) for deep learning has improved and have solved increasingly complicated

applications with increasing accuracy over time.

DL models are deep artificial neural networks [70]. Each neural network consists of

an input layer, an output layer, and multiple hidden layers.
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Fig. 6.1 A Venn diagram showing how deep learning is a kind of representation learning,
which is in turn a kind of machine learning, which is used for many but not all
approaches to Artificial Intelligence (AI). Each section of the Venn diagram includes an
example of an AI technology. A multilayer perceptron (MLP) is a class of feed forward
artificial neural network. A MLP consists of at least three layers of nodes: an input
layer, a hidden layer and an output layer. Except for the input nodes, each node is a
neuron that uses a nonlinear activation function. MLP utilises a supervised learning
technique called back-propagation for training. MLP was used to apply in computer
vision, now succeeded by Convolutional Neural Network (CNN). MLP is now deemed
insufficient for modern advanced computer vision tasks. Image adapted from [68].
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A DL system can represent the concept of an image of a person by combining

simpler concepts, such as corners and contours, which are in turn defined in terms of

edges [68].

DL is an approach to AI. Specifically, it is a type of machine learning, a technique

that enables computer systems to improve with experience and data. We contend

that machine learning is the only viable approach to building AI systems that can

operate in complicated real-world environments. DL is a particular kind of machine

learning that achieves great power and flexibility by representing the world as a nested

hierarchy of concepts, with each concept defined in relation to simpler concepts, and

more abstract representations computed in terms of less abstract ones.

We first introduce basic neural network architectures and then briefly introduce

building blocks which are commonly used to boost the ability of the networks to learn

features that are useful for image segmentation.

6.4 Fully convolutional neural networks (FCNs)

The idea of FCN was first introduced by Long et al. [180] for image segmentation

[70]. FCNs are a special type of CNNs that do not have any fully connected layers. In

general, FCNs are designed to have an encoder-decoder structure such that they can

take input of arbitrary size and produce the output with the same size. Given an input

image, the encoder first transforms the input into high-level feature representation

whereas the decoder interprets the feature maps and recovers spatial details back to

the image space for pixel-wise prediction through a series of transposed convolution

and convolution operations. Here, transposed convolutions are used for up-scaling the

feature maps, typically by a factor of 2. These transposed convolutions can also be

replaced by unpooling layers and up-sampling layers. Compared to a patch-based CNN

for segmentation, FCN is trained and applied to the entire images, removing the need

for patch selection (Shelhamer et al., 2017). FCN with the simple encoder-decoder

structure in Figure 6.2 may be limited to capture detailed context information in an
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(a)

(b)

Fig. 6.2 The FCN first takes the whole image as input, learns deep image features
though the encoder, gradually recovers the spatial dimension by a series of transposed
convolution layers in the decoder and finally predicts a pixel-wise image segmentation
for the left ventricle cavity (the blue region), the left ventricular myocardium (the
green region) and the right ventricle (the red region). One use case of this FCN-based
cardiac segmentation can be found in Tran (2016). (b) A schematic drawing of U-net.
On the basis of the basic structure of FCN, U-net employs ’skip connections’ (the
grey arrows) to aggregate feature maps from coarse to fine. Of note, for simplicity, we
reduce the number of down-sampling and up-sampling blocks. For detailed information,
see the original paper [88].
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image for precise segmentation as some features may be eliminated by the pooling

layers in the encoder. Several variants of FCNs [181] have been proposed to propagate

features from the encoder to the decoder, in order to boost the segmentation accuracy.

The most well-known and most popular variant of FCNs for biomedical image

segmentation is the U-net [88]. On the basis of the vanilla FCN ([180]), the U-net

employs skip connections between the encoder and decoder to recover spatial context

loss in the down-sampling path, yielding more precise segmentation (Figure 6.2b).

Several state-of-the-art image segmentation methods have adopted the U-net or its

3D variants, the 3D Unet [182] and the 3D V-net [183], as their backbone networks,

achieving promising segmentation accuracy for a number of segmentation tasks.

6.4.1 Reduce over-fitting

The biggest challenge of training deep networks for medical image analysis is over-

fitting, due to the fact that there is often a limited number of training images in

comparison with the number of learnable parameters in a deep network. A number of

techniques have been developed to alleviate this problem. Some of the techniques are

the following ones:

i) Weight initialization ([184]) and weight regularisation (i.e. L1/L2 regularisation),

ii) Dropout ([85]), iii) Ensemble learning ([185]), iv) Data augmentation by artificially

generating training samples via affine transformations, v) Transfer learning with a

model pre-trained on existing large data sets. In the next sections we will discuss these

techniques in detail.

6.5 Data set augmentation

Data augmentation helps prevent the network from overfitting [85] and memorizing

the exact details of the training images. Data augmentation is used during training to

provide more examples to the network because it helps improve the accuracy of the

network. The best way to make a machine learning model generalise better is to train



6.5 Data set augmentation 99

it on more data [68]. Of course, in practice, the amount of data we have is limited. One

way to get around this problem is to create fake data and add it to the training set.

An example for data augmentation for the HeLa dataset is given in Figure6.3top where

a HeLa cell image is flipped along the y-axis to be fed into a CNN. At the bottom of

the same figure: Three different transformations on a HeLa cell image are shown. (a)

Original HeLa image. (b) Original image is flipped along the x-axis. (c) Rotation after

flipping. (d) Rotated image in (c) is translated by (shifting the image) by 50 pixels in

the x-direction and 75 pixels in the y-direction.

For some machine learning tasks, it is reasonably straight forward to create new

fake data. This approach is easiest for classification. A classifier needs to take a

complicated, high-dimensional input x and summarise it with a single category identity

y. This means that the main task facing a classifier is to be invariant to a wide variety

of transformations. We can generate new (x, y) pairs easily just by transforming the

x inputs in our training set. Data set augmentation has been a particularly effective

technique for a specific classification problem: object recognition. Images are high

dimensional and include n enormous range of factors of variation, many of which can

be easily simulated. Operations like translating the training images a few pixels in each

direction can often greatly improve generalisation, even if the model has already been

designed to be partially translation invariant by using the convolution and pooling

techniques. Many other operations, such as rotating the image or scaling the image,

have also proved quite effective. One must be careful not to apply transformations

that would change the correct class. For example, optical character recognition tasks

require recognising the difference between "b" and "d" and the difference between 6

and 9, so horizontal flips and 180o rotations are not appropriate ways of augmenting

data sets for these tasks.

Data augmentation is essential to teach the network the desired in-variance and

robustness properties, when only few training samples are available [70]. It is easy

to improve the generalisation of a classifier by increasing the size of the training

set by adding extra copies of the training examples that have been modified with
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transformations that do not change the class. Object recognition is a classification

task that is especially amenable to this form of data set augmentation because the

class is invariant to so many transformations and the input can be easily transformed

with many geometric operations. Classifiers can benefit from random translations,

rotations, and in some cases, flips of the input to augment the data set. The value of

data augmentation for learning in-variance has been shown in [186].

When comparing machine learning benchmark results, taking the effect of data set

augmentation into account is important. Often, hand-designed data set augmentation

schemes can dramatically reduce the generalisation error of a machine learning technique.

To compare the performance of one machine learning algorithm to another, it is

necessary to perform controlled experiments. When comparing machine learning

algorithm A and machine learning algorithm B, make sure that both algorithms are

evaluated using the same hand-designed data set augmentation schemes. Suppose that

algorithm A performs poorly with no data set augmentation, and algorithm B performs

well when combined with numerous synthetic transformations of the input. In such a

case the synthetic transformations likely caused the improved performance, rather than

the use of machine learning algorithm B. Sometimes deciding whether an experiment

has been properly controlled requires subjective judgement. For example, machine

learning algorithms that inject noise into the input are performing a form of data

set augmentation. Usually, operations that are generally applicable (such as adding

Gaussian noise to the input) are considered part of the machine learning algorithm,

while operations that are specific to one application domain (such as randomly cropping

an image) are considered to be separate pre-processing steps.

In the following paragraphs, we summarise several major challenges in the field

of cell segmentation and some recently proposed approaches that attempt to address

them. These challenges and related works also provide potential research directions for

future work in this field.

Weakly and semi-supervised learning Weakly and semi-supervised learning

methods aim at improving the learning accuracy by making use of both labelled and
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Fig. 6.3 Illustration of data augmentation with a HeLa cell image for deep neural
networks training. Convolutional Neural Networks (CNNs) can benefit from random
translations, rotations, and in some cases, flips of the input to augment the data
set. Top: A HeLa cell image is flipped along the y-axis to be fed into a CNN. Image
adapted from [187]. Bottom: Three different transformations on a HeLa cell image. (a)
Original HeLa image. (b) Original image is flipped along the x-axis. (c) Rotation after
flipping. (d) Rotated image in (c) is translated by (shifting the image) by 50 pixels in
the x-direction and 75 pixels in the y-direction.
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unlabelled or weakly labelled data (e.g annotations in forms of scribbles or bounding

boxes).

Self-supervised learning. Another approach is self-supervised learning which

aims at utilising labels that are generated automatically without human intervention.

These labels, designed to encode some properties or semantics of the object, can

provide strong supervisory signals to pre-train a network before fine-tuning for a

given task. Compared to a network trained from scratch, networks pre-trained on the

self-supervised task performed better, especially when the training data was extremely

limited.

Unsupervised learning. Unsupervised learning aims at learning without paired

labelled data. Compared to the former three classes, there is limited literature about

unsupervised learning methods for image segmentation, perhaps because of the difficulty

of the task.

Apart from utilising unlabelled images for training neural networks, another inter-

esting direction is active learning, which tries to select the most representative images

from a large-scale data set, reducing redundant labelling workload and training cost.

This technique is also related to incremental learning, which aims to improve the model

performance with new classes added incrementally while avoiding a dramatic decrease

in overall performance. Given the increasing size of the available medical data sets, and

the practical challenges of labelling and storing large amounts of images from various

sources, it is of great interest to develop algorithms capable of distilling a large scale

data set into a small one containing the most representative cases for labelling and

training.

Scarcity of Labels One of the biggest challenges for deep learning approaches is

the scarcity of annotated data [70]. The majority of studies uses a fully supervised

approach to train their networks, which requires a large number of annotated images.

In fact, annotating images is time consuming and often requires significant amounts

of expertise. While data augmentation techniques such as cropping, padding, and

geometric transformations (e.g. affine transformations) can be used to increase the size
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of training samples, their diversity may still be limited, failing to reflect the spectrum

of real world data distributions. Several methods have been proposed to overcome

this challenge. These methods can be categorised into four classes: transfer learning

with fine-tuning, weakly and semi-supervised learning, self-supervised learning, and

unsupervised learning.

6.6 Transfer learning with fine-tuning

In some cases the deep learning models can be trained from scratch on new appli-

cations/data sets (assuming a sufficient quantity of labelled training data), but in

many cases there are not enough labeled data available to train a model from scratch

and one can use transfer learning to tackle this problem [188]. In transfer learning, a

model trained on one task is re-purposed on another (related) task, usually by some

adaptation process toward the new task. For example, one can imagine adapting an

image classification model trained on ImageNet to a different task, such as texture

classification, or face recognition. In image segmentation case, many people use a model

trained on ImageNet (a larger data set than most of image segmentation data sets), as

the encoder part of the network, and re-train their model from those initial weights.

The assumption here is that those pre-trained models should be able to capture the

semantic information of the image required for segmentation, and therefore enabling

them to train the model with less labelled samples.

By using transfer learning, we could replace the last layer(s) of the network by

something that is more dedicated to our use case (different than the 1000 ImageNet

labels). For instance, if we are interested in finding whether our image contains either

nuclear envelope (NE) or a nucleus, we would have only two different labels and our last

layer could be made of only two neurons (compared to the 1000 of the VGG16). If we

assume that the rest of the network should remain unmodified, we would have to learn

only 8194 free parameters (corresponding to 2 bias value and all weight connections

between the 4096 neurons of the one to the last layer with the 2 neurons of the last
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layer). This is a very small number of parameters to learn for such a complex task.

We would, therefore, need a relatively small training data set to train our specialised

VGG16 algorithm.

Transfer learning has become a sizeable sub-field in machine learning [68]. It has

ideological benefits, because it is seen as an important aspect of human learning,

and also practical benefits, because it can make machine learning more efficient. As

computing power increases and researchers apply machine learning to more complex

problems, knowledge transfer can only become more desirable. Transfer learning is

machine learning with an additional source of information apart from the standard

training data: knowledge from one or more related tasks.

6.6.1 Training Neural Networks

Before being able to perform inference, neural networks must be trained [70]. This

training process requires a data set that contains paired images and labels x, y for

training and testing, an optimiser (e.g. stochastic gradient descent, Adam) and a loss

function to update the model parameters. This function accounts for the error of the

network prediction in each iteration during training, providing signals for the optimiser

to update the network parameters through back-propagation. The goal of training is

to find proper values of the network parameters to minimise the loss function.

6.6.2 Dropout

Dropout layers at the end of the contracting path perform further implicit data

augmentation [70]. Dropout, a powerful regularisation strategy, can be seen as a

process of constructing new inputs by multiplying by noise [68].

Dropout [85] provides a computationally inexpensive but powerful method of

regularising a broad family of models. To a first approximation, dropout can be

thought of as a method of making bagging practical for ensembles of very many large

neural networks. Bagging involves training multiple models and evaluating multiple
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Fig. 6.4 Schematic diagram of Dropout used in Convolutional neural networks (CNNs).
Dropout is training a large ensemble of models that share parameters. In each forward
pass, randomly set some neurons to zero. Probability of dropping is a hyper-parameter;
0.5 is common. Dropout forces the network to have a redundant representation and
prevents co-adaptation of features. Image adapted from [85].

models on each test example. This seems impractical when each model is a large neural

network, since training and evaluating such networks is costly in terms of run time

and memory. It is common to use ensembles of five to ten neural networks — [189]

used six to win the [78] — but more than this rapidly becomes unwieldy. Dropout

provides an inexpensive approximation to training and evaluating a bagged ensemble

of exponentially many neural networks. Specifically, dropout trains the ensemble

consisting of all sub-networks that can be formed by removing non output units from

an underlying base network, as illustrated in Figure6.4.

In most modern neural networks, based on a series of affine transformations and

non-linearities, we can effectively remove a unit from a network by multiplying its

output value by zero.

Here, we present the dropout algorithm in terms of multiplication by zero for

simplicity, but it can be trivially modified to work with other operations that remove a

unit from the network. Recall that to learn with bagging, we define k different models,

construct k different data sets by sampling from the training set with replacement,
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and then train model i on data set i. Dropout aims to approximate this process, but

with an exponentially large number of neural networks. Specifically, to train with

dropout, we use a mini-batch-based learning algorithm that makes small steps, such as

stochastic gradient descent (SGD). Each time we load an example into a mini-batch,

we randomly sample a different binary mask to apply to all the input and hidden units

in the network. The mask for each unit is sampled independently from all the others.

The probability of sampling a mask value of one (causing a unit to be included) is a

hyper-parameter fixed before training begins. It is not a function of the current value

of the model parameters or the input example. Typically, an input unit is included

with probability 0.8, and a hidden unit is included with probability 0.5. We then run

forward propagation, back-propagation, and the learning update as usual.

Dropout training is not quite the same as bagging training. In the case of bagging,

the models are all independent. In the case of dropout, the models share parameters,

with each model inheriting a different subset of parameters from the parent neural

network. This parameter sharing makes it possible to represent an exponential number

of models with a tractable amount of memory. In the case of bagging, each model is

trained to convergence on its respective training set. In the case of dropout, typically

most models are not explicitly trained at all — usually, the model is large enough that

it would be infeasible to sample all possible sub-networks within the lifetime of the

universe. Instead, a tiny fraction of the possible sub-networks are each trained for a

single step, and the parameter sharing causes the remaining sub-networks to arrive at

good settings of the parameters. These are the only differences. Beyond these, dropout

follows the bagging algorithm.

6.6.3 Optimisation for training deep models

This section presents optimisation techniques for neural network training. Deep learning

algorithms involve optimisation in many contexts [68]. For example, performing

inference in models involves solving an optimisation problem. We often use analytical

optimisation to write proofs or design algorithms. Of all the many optimisation
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problems involved in deep learning, the most difficult is neural network training. It

is quite common to invest days to months of time on hundreds of machines to solve

even a single instance of the neural network training problem. Because this problem is

so important and so expensive, a specialised set of optimisation techniques have been

developed for solving it.

This section focuses on one particular case of optimisation: finding the parameters

θ of a neural network that significantly reduce a cost function J(θ), which typically

includes a performance measure evaluated on the entire training set as well as additional

regularisation terms.

6.6.4 Batch and mini batch algorithms

We have previously introduced the gradient descent algorithm that follows the gradient

of an entire training set downhill (Figure6.5. This may be accelerated considerably

by using stochastic gradient descent to follow the gradient of randomly selected mini-

batches downhill.

Stochastic Gradient Descent

Stochastic gradient descent (SGD) and its variants are probably the most used

optimisation algorithms for machine learning in general and for deep learning in

particular. It is possible to obtain an unbiased estimate of the gradient by taking the

average gradient on a mini-batch of m examples drawn i.i.d from the data-generating

distribution.

Figure6.5 shows how to follow this estimate of the gradient downhill. A crucial

parameter for the SGD algorithm is the learning rate. Previously, we have described

SGD as using a fixed learning rate. In practice, it is necessary to gradually decrease

the learning rate over time. This is because the SGD gradient estimator introduces a

source of noise (the random sampling of m training examples) that does not vanish

even when we arrive at a minimum. By comparison, the true gradient of the total cost

function becomes small and then 0 when we approach and reach a minimum using

batch gradient descent, so batch gradient descent can use a fixed learning rate. The
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(a)

(b)

Fig. 6.5 First and Second order optimisation in Convolutional neural networks (CNNs).
(a) First-Order Optimisation uses gradient form linear approximation and step to
minimise the approximation. (b) Second-Order Optimisation uses gradient and Hessian
to form quadratic approximation and step to the minima of the approximation. Image
credit to [187].
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learning rate may be chosen by trial and error, but it is usually best to choose it by

monitoring learning curves that plot the objective function as a function of time. This

is more of an art than a science, and most guidance on this subject should be regarded

with some scepticism.

If learning rate is too large, the learning curve will show violent oscillations, with

the cost function often increasing significantly. Gentle oscillations are fine, especially if

training with a stochastic cost function, such as the cost function arising from the use

of dropout. If the learning rate is too low, learning proceeds slowly, and if the initial

learning rate is too low, learning may become stuck with a high cost value. Typically,

the optimal initial learning rate, in terms of total training time and the final cost value,

is higher than the learning rate that yields the best performance after the first 100

iterations or so. Therefore, it is usually best to monitor the first several iterations

and use a learning rate that is higher than the best-performing learning rate at this

time, but not so high that it causes severe instability. The most important property of

SGD and related mini-batch or online gradient-based optimisation is that computation

time per update does not grow with the number of training examples. This allows

convergence even when the number of training examples becomes very large. For a

large enough data set, SGD may converge to within some fixed tolerance of its final

test set error before it has processed the entire training set. Batch gradient descent

enjoys better convergence rates than stochastic gradient descent in theory. One can

also trade off the benefits of both batch and stochastic gradient descent by gradually

increasing the mini-batch size during the course of learning.

6.6.5 AdaGrad

The AdaGrad algorithm individually adapts the learning rates of all model parameters

by scaling them inversely proportional to the square root of the sum of all the historical

squared values of the gradient [190]. The parameters with the largest partial derivative

of the loss have a correspondingly rapid decrease in their learning rate, while parameters

with small partial derivatives have a relatively small decrease in their learning rate.
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The net effect is greater progress in the more gently sloped directions of parameter

space. In the context of convex optimisation, the AdaGrad algorithm enjoys some

desirable theoretical properties. Empirically, however, for training deep neural network

models, the accumulation of squared gradients from the beginning of training can result

in a premature and excessive decrease in the effective learning rate. AdaGrad performs

well for some but not all deep learning models.

6.6.6 RMSProp

The RMSProp algorithm [75] modifies AdaGrad to perform better in the non-convex

setting by changing the gradient accumulation into an exponentially weighted moving

average. AdaGrad is designed to converge rapidly when applied to a convex function

[68]. When applied to a non-convex function to train a neural network the learning

trajectory may pass through many different structures and eventually arrive at a region

that is a locally convex bowl. AdaGrad shrinks the learning rate according to the

entire history of the squared gradient and may have made the learning rate too small

before arriving at such a convex structure. RMSProp uses an exponentially decaying

average to discard history from the extreme past so that it can converge rapidly after

finding a convex bowl, as if it were an instance of the AdaGrad algorithm initialised

within that bowl. Compared to AdaGrad, the use of the moving average introduces a

new hyper-parameter that controls the length scale of the moving average. Empirically,

RMSProp has been shown to be an effective and practical optimisation algorithm for

deep neural networks. It is currently one of the go-to optimisation methods being

employed routinely by deep learning practitioners.

6.6.7 Adam

Adam [191] is yet another adaptive learning rate optimisation algorithm. The name

"Adam" derives from the phrase "adaptive moments" [68]. In the context of the earlier

algorithms, it is perhaps best seen as a variant on the combination of RMSProp
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and momentum with a few important distinctions. First, in Adam, momentum is

incorporated directly as an estimate of the first-order moment (with exponential

weighting) of the gradient. The most straight forward way to add momentum to

RMSProp is to apply momentum to the re-scaled gradients. The use of momentum

in combination with re-scaling does not have a clear theoretical motivation. Second,

Adam includes bias corrections to the estimates of both the first-order moments (the

momentum term) and the (un-centred) second-order moments to account for their

initialisation at the origin. RMSProp also incorporates an estimate of the (un-centred)

second-order moment; however, it lacks the correction factor. Thus, unlike in Adam,

the RMSProp second-order moment estimate may have high bias early in training.

Adam is generally regarded as being fairly robust to the choice of hyper-parameters,

though the learning rate sometimes needs to be changed from the suggested default.

6.6.8 Choosing the right optimisation algorithm

We have discussed a series of related algorithms that each seek to address the challenge

of optimising deep models by adapting the learning rate for each model parameter. At

this point, a natural question is: which algorithm should one choose? Unfortunately,

there is currently no consensus on this point.

[192] (2014) presented a valuable comparison of a large number of optimisation

algorithms across a wide range of learning tasks. While the results suggest that

the family of algorithms with adaptive learning rates (represented by RMSProp and

AdaDelta performed fairly robustly, no single best algorithm has emerged. Currently,

the most popular optimisation algorithms actively in use include SGD, SGD with

momentum, RMSProp, RMSProp with momentum, Ada Delta, and Adam. The choice

of which algorithm to use, at this point, seems to depend largely on the user’s familiarity

with the algorithm (for ease of hyper-parameter tuning). SGD, SGD+Momentum,

Adagrad, RMSProp, Adam all have learning rate as a hyper-parameter.
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6.6.9 Data types

The data used with a convolutional network usually consist of several channels, each

channel being the observation of a different quantity at some point in space or time

[68]. So far we have discussed only the case where every example in the train and

test data has the same spatial dimensions. One advantage to convolutional networks

is that they can also process inputs with varying spatial extents. These kinds of

input simply cannot be represented by traditional, matrix multiplication-based neural

networks. This provides a compelling reason to use convolutional networks even when

computational cost and over-fitting are not significant issues. For example, consider

a collection of images in which each image has a different width and height. It is

unclear how to model such inputs with a weight matrix of fixed size. Convolution

is straightforward to apply; the kernel is simply applied a different number of times

depending on the size of the input, and the output of the convolution operation scales

accordingly. Convolution may be viewed as matrix multiplication; the same convolution

kernel induces a different size of doubly block circulant matrix for each size of input.

Sometimes the output of the network as well as the input is allowed to have variable

size, for example, if we want to assign a class label to each pixel of the input. In this

case, no further design work is necessary. In other cases, the network must produce

some fixed-size output, for example, if we want to assign a single class label to the

entire image. In this case, we must make some additional design steps, like inserting a

pooling layer whose pooling regions scale in size proportional to the size of the input,

to maintain a fixed number of pooled outputs. Note that the use of convolution for

processing variably sized inputs makes sense only for inputs that have variable size

because they contain varying amounts of observation of the same kind of thing-different

lengths of recordings over time, different widths of observations over space, and so

forth. Convolution does not make sense if the input has variable size because it can

optionally include different kinds of observations. For example, if we are processing

college applications, and our features consist of both grades and standardised test

scores, but not every applicant took the standardised test, then it does not make sense
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to convolve the same weights over features corresponding to the grades as well as the

features corresponding to the test scores.

6.7 U-Net segmentation algorithm

U-Net is convolutional network architecture with broad application and has become

a broadly used tool for semantic segmentation. U-Net architecture is a type of

fully convolutional network [194] in which, after the downsampling steps obtained

by convolutions and downsampling, there is a series of upsampling steps through

which the classification is propagated towards higher resolution layers and finally

returns to the original resolution of the input. The shape of the architecture is more

or less symmetric with the shape of the letter "U", hence the name. The U-Net

can be trained end-to-end from relatively few pairs or patches of images and their

corresponding classes. Applications of U-Nets include cell counting, detection, and

morphometry, [195], automatic brain tumour detection and segmentation [196], and

texture segmentation [197].

As thousands of training images are usually beyond reach in biomedical tasks a new

architecture was presented. [88] build upon a more elegant architecture, the so-called

"fully convolutional network" [180] and modified and extended this architecture such

that it works with very few training images and yields more precise segmentation

(Figure6.6). The main idea is in [180] to supplement a usual contracting network

by successive layers, where pooling operators are replaced by up-sampling operators.

Hence, these layers increase the resolution of the output. In order to localise, high

resolution features from the contracting path are combined with the up-sampled output.

A successive convolution layer can then learn to assemble a more precise output based

on this information. One important modification in this architecture is that in the

up-sampling part we have also a large number of feature channels, which allow the

network to propagate context information to higher resolution layers. As a consequence,

the expansive path is more or less symmetric to the contracting path, and yields a
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Fig. 6.6 Illustration of U-net architecture (example for 32 × 32 pixels in the lowest
resolution). Each blue box corresponds to a multi-channel feature map. The number
of channels is denoted on top of the box. The x-y-size is provided at the lower left
edge of the box. White boxes represent copied feature maps. The arrows denote the
different operations. Image adapted from [193].
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U-shaped architecture. The network does not have any fully connected layers and only

uses the valid part of each convolution, i.e., the segmentation map only contains the

pixels, for which the full context is available in the input image. This strategy allows

the seamless segmentation of arbitrarily large images by an overlap-tile strategy. To

predict the pixels in the border region of the image, the missing context is extrapolated

by mirroring the input image. This tiling strategy is important to apply the network

to large images, since otherwise the resolution would be limited by the GPU memory.

As there is very little training data available, we use excessive data augmentation

by applying elastic deformations to the available training images. This allows the

network to learn in-variance to such deformations, without the need to see these

transformations in the annotated image corpus. This is particularly important in

biomedical segmentation, since deformation used to be the most common variation

in tissue and realistic deformations can be simulated efficiently. Another challenge in

many cell segmentation tasks is the separation of touching objects of the same class.

To this end, the use of a weighted loss is proposed, where the separating background

labels between touching cells obtain a large weight in the loss function.

Network architecture

The network architecture is illustrated in Figure 6.6. It consists of a contracting

path (left side) and an expansive path (right side). The contracting path follows the

typical architecture of a convolutional network. It consists of the repeated application

of two 3 × 3 convolutions (un-padded convolutions), each followed by a rectified linear

unit (ReLU) and a 2 × 2 max pooling operation with stride 2 for down-sampling.

At each down-sampling step, the number of feature channels is doubled. Every step

in the expansive path consists of an up-sampling of the feature map followed by a

2 × 2 convolution ("up-convolution") that halves the number of feature channels, a

concatenation with the correspondingly cropped feature map from the contracting path,

and two 3 × 3 convolutions, each followed by a ReLU. The cropping is necessary due

to the loss of border pixels in every convolution. At the final layer a 1 × 1 convolution

is used to map each 64-component feature vector to the desired number of classes.
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In total the network has 23 convolutional layers. To allow a seamless tiling of the

output segmentation map, it is important to select the input tile size such that all

2 × 2 max-pooling operations are applied to a layer with an even x- and y-size.

The Need for Up-sampling

The output of semantic segmentation is not just a class label or some bounding

box parameters. In-fact the output is a complete high resolution image in which all

the pixels are classified. Thus if we use a regular convolutional network with pooling

layers and dense layers, we will lose the “where” information and only retain the “what”

information which is not what we want.

In case of segmentation we need both “what” as well as “where” information. Hence

there is a need to up sample the image, i.e. convert a low resolution image to a high

resolution image to recover the “where” information.

There are various methods to conduct up-sampling operation: Nearest neighbor

interpolation, Bi-linear interpolation, and Bi-cubic interpolation. All these methods

involve some interpolation method which we need to chose when deciding a network

architecture. It is like a manual feature engineering and there is nothing that the

network can learn about.

In the literature, there are many techniques to up sample an image. Some of

them are bi-linear interpolation, cubic interpolation, nearest neighbor interpolation,

unpooling, transposed convolution, etc. However in most state of the art networks,

transposed convolution is the preferred choice for up sampling an image. If we want our

network to learn how to up-sample optimally, we can use the transposed convolution.

It does not use a predefined interpolation method. It has learnable parameters.

Transposed Convolution

Transposed convolution (sometimes also called as deconvolution or fractionally

strided convolution) is a technique to perform up sampling of an image with learnable

parameters.

Transposed Convolution is the most preferred choice to perform up sampling, which

basically learns parameters through back propagation to convert a low resolution image
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to a high resolution image. The transposed convolution operation forms the same

connectivity as the normal convolution but in the backward direction. We can use

it to conduct up-sampling. Moreover, the weights in the transposed convolution are

learnable. So we do not need a predefined interpolation method.

Even though it is called the transposed convolution, it does not mean that we take

some existing convolution matrix and use the transposed version. The main point is

that the association between the input and the output is handled in the backward

fashion compared with a standard convolution matrix (one-to-many rather than many-

to-one association). As such, the transposed convolution is not a convolution. But

we can emulate the transposed convolution using a convolution. We up-sample the

input by adding zeros between the values in the input matrix in a way that the direct

convolution produces the same effect as the transposed convolution.

6.8 Pre-trained deep learning architectures

To illustrate the training procedure, this example trains Deeplab v3+ [1], one type of

convolutional neural network (CNN) designed for semantic image segmentation.

In this work we trained the Deeplab v3+ network, one type of convolutional

neural network (CNN) designed for semantic image segmentation, to perform semantic

segmentation of HeLa cells imaged with SBF SEM.

The basic structures and fundamentals of deep learning architectures were widely

explained in literature, but for completeness, a brief description of each of these three

pre-trained deep learning architecture is given below.

VGG16: VGG16 is a convolution neural network (CNN) [77, 79] and it was created

by Simonyan and Zisserman of the University of Oxford with a basic idea to keep the

architectural design, simple and deeper. The model was runner-up at ILSVRC [198]

2014 with 7.3% error rate. They have created networks with layer weights varying

between 11 to 19. The best result was obtained by 16 weight layers - hence the name

VGG16.
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Fig. 6.7 Schematics of AlexNet, VGG16, and VGG19 layers. AlexNet has five convolu-
tion layers, and two fully connected layers before the final fully connected layer going
to the output classes. It was trained on ImageNet, with inputs at a size 227 × 227 × 3
images. The first layer of AlexNet is a convolution layer and it is 11 × 11 filters, 96
of these applied at stride 4. The second layer is a pooling layer with 3 filters of 3 × 3
applied at stride 2. There are 11 × 11 filters at the beginning, then five by five and
some three by three filters. In the end, there is a couple of fully connected layers of
size 4096 and finally, the last layer is going to the soft-max, which is going to the 1000
ImageNet classes. This architecture is the first use of the ReLU non-linearity. AlexNet
was the winner of the ImageNet Large Scale Visual Recognition Challenge(ILSVRC)
classification the benchmark in 2012. VGG16 is 16 layer architecture with a pair of
convolution layers, poolings layer and at the end fully connected layer. VGG network
is the idea of much deeper networks and with much smaller filters. VGGNet increased
the number of layers from eight layers in AlexNet. It had models with 16 to 19 layers
variant of VGGNet. One key thing is that these models kept very small filters with
3 × 3 convolution all the way, which is basically the smallest convolution filter size
that is looking at a little bit of the neighbouring pixels. And they just kept this very
simple structure of 3 × 3 convolutions with the periodic pooling all the way through
the network. Image credit to [187].
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Figure 6.7 illustrates the basic network architectures of AlexNet, VGG16, and

VGG19. The 16 in VGG16 refers to it has 16 layers that have weights - hence the

name VGG16 [199]. Figure 6.8 shows different layers in VGG16 architecture used for

semantic segmentation of HeLa cells.

ResNet18: ResNet18 is mainly inspired by the philosophy of VGG16 [200], its

total number of weighted layers is 18 and has an image input size of 224-by-224. The

convolutional layers mostly have 3 × 3 filters and follow two simple design rules: (i)

for the same output feature map size, the layers have the same number of filters; and

(ii) if the feature map size is halved, the number of filters is doubled so as to preserve

the time complexity per layer. Shortcut connections which turn the network into its

counterpart residual version are inserted. The identity shortcuts can be directly used

when the input and output are of the same dimensions.

Inception-ResNet-v2:

Inception-ResNet-v2 is the combination of two of residual connections and the latest

revised version of the Inception architecture [202] and it has an image input size of

299-by-299 and 164 layers deep. The basic network architecture of Inception-ResNet-v2

is given in Figure 6.10. In the Inception-ResNet block, multiple sized convolutional

filters are combined by residual connections. The usage of residual connections not

only avoids the degradation problem caused by deep structures but also reduces the

training time [201]. The 35×35, 17×17 and 8×8 grid modules, known as Inception-A,

Inception-B and Inception-C blocks, are used in the Inception-ResNet-v2 network.

Similar to ResNet18, Inception-ResNet-v2 [203] is also a convolutional neural network

that is trained on more than a million images from the ImageNet [198] database. This

network has about 55.9 million (approx) parameters.

The details of the architectures are displayed in Table 6.1.
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Fig. 6.8 VGG16 architecture layers for semantic segmentation of HeLa cell images.
Training took 21.25 hours on a single CPU and the accuracy and loss during VGG16
training was plotted. The optimisation algorithm used for training is stochastic gradient
descent with momentum (SGDM). The hyperparameters used for SGDM were specified.
Data augmentation is used during training to provide more examples to the network
because it helps improve the accuracy of the network. Here, random left/right reflection
and random X/Y translation of +/ − 10 pixels is used for data augmentation. The
training data and data augmentation selections were combined. The deep network
reads batches of training data, applies data augmentation, and sends the augmented
data to the training algorithm. The VGG16 deep network training had 100 epochs with
learning rate 0.001. Iterations per epoch was 45 therefore total number of iterations
for the whole training was 4500.
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Fig. 6.9 Illustration the basic architecture of Residual networks (ResNet18) layers.
ResNet [200] were proposed as a family of multiple deep neural networks with similar
structures but different depths. ResNet introduces a structure called residual learning
unit to alleviate the degradation of deep neural networks. This unit’s structure is a feed
forward network with a shortcut connection which adds new inputs into the network
and generates new outputs. The main merit of this unit [201] is that it produces better
classification accuracy without increasing the complexity of the model. Image credit to
[187].

Table 6.1 Summary of convolutional neural networks (CNNs) that were used in this
work.

No. Network Depth Image Input Size Reference
1 ResNet18 18 224-by-224 [200]
2 VGG16 16 224-by-224 [77]
3 Inception-ResNet-v2 164 299-by-299 [202]
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Fig. 6.10 Basic network architecture of Inception-ResNet-v2 layers. Inception-Resnet-v2
[202] is formulated based on a combination of the Inception structure and the Residual
connection. In the Inception-Resnet block, multiple sized convolutional filters are
combined by residual connections [201]. The usage of residual connections not only
avoids the degradation problem caused by deep structures but also reduces the training
time. Image credit to [203].
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Fig. 6.11 Pre trained deep neural networks comparison. VGG16, ResNet18, and
Inception-ResNet-v2 were selected due to their good balance between accuracy and
computational complexity, especially ResNet and Inception-ResNet-v2, which outper-
form other common configurations and are at the Pareto frontier considering accuracy
and complexity [204–206]. Image credit to [207].
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Fig. 6.12 Illustration of the typical architecture of a Convolutional Neural Network
(CNN) for the analysis of HeLa images imaged with electron microscopy (EM). A CNN
is composed of an input layer, an output layer, and many hidden layers in between.
These layers perform operations that alter the data with the intent of learning features
specific to the data. Three of the most common layers are: convolution, activation or
Rectified linear unit (ReLU), and pooling. The input image is passed through a stack
of convolutional layers, where filters are used with a very small receptive field: 3 × 3.
Every convolutional layer transforms its input to a three-dimensional output volume of
neuron activations. The convolution stride is fixed to 1 pixel; the spatial padding of
convolution layer input is such that the spatial resolution is preserved after convolution,
i.e. the padding is 1 pixel for 3 × 3 convolution layers. ReLU allows for faster and
more effective training by mapping negative values to zero and maintaining positive
values. This is sometimes referred to as activation, because only the activated features
are carried forward into the next layer. Pooling simplifies the output by performing
nonlinear down sampling, reducing the number of parameters that the network needs
to learn. The pooling layer down samples the volume spatially, independently in each
feature map of its input volume. Spatial pooling is carried out by five max-pooling
layers, which follow some of the convolution layers. Max-pooling is performed over a
2 × 2 pixel window, with stride 2. A stack of convolutional layers is followed by three
Fully-Connected (FC) layers: the first two have 4096 channels each, the third, the
soft-max layer, performs 4-way classification and thus contains 4 channels (one for each
class - nucleus, nuclear envelope, rest of the cell, and background). These operations
are repeated over tens or hundreds of layers (VGG16 has approximately 138 million
parameters), with each layer learning to identify different features.
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6.9 Summary

In this chapter, history of Artificial Intelligence, Machine learning and Deep learning

were presented and their fundamentals were explained in detail. Convolutional neural

network (CNN) and its structure were presented so readers could be guided to the

following chapter where CNNs are used for semantic segmentation of HeLa cells. CNNs

are quite large neural networks with hundreds of millions of learnable parameters

that are generally hard to train by individuals with limited computing resources. The

importance of transfer learning was also emphasised here and different techniques for

training and optimisation of deep learning were explained. Transfer learning allows

individuals to recycle pre-trained models for other purposes with minimal (re)training

or even without retraining at all for the case of reverse image search. We have

demonstrated that the convolutional neural networks are capable of extracting the

features associated with an image.

The main property of CNNs is that the weights of the neurons in the convolutional

layers are learnable. They can be seen as a set of learnable filters. Each filter is small

spatially, and extends through the full depth of the input volume. During the forward

pass, the input volume is convolved with each filter producing 2D activation maps, one

per filter. The activation maps are then stacked together to form one output volume

whose depth is equal to the number of convolution filters. During the convolution, the

stride s specifies the number of pixels with which we slide the convolution filter. A

stride of one, i.e. s = 1, means that the filters slide one pixel at a time. s = 2 means

that the filters move two pixels at a time as we slide them around. If s > 1 then this

procedure will produce spatially smaller output volumes.

VGG16 has been widely used in a variety of image classification problems. ResNet

solves the problem of vanishing/exploding gradients and was the winner of ILSVRC

2015 [78]. Inception-ResNet-v2 employs dropout to avoid overfitting and is seen as the

successor of GoogLeNet [202].

These networks were selected due to their good balance between accuracy and com-

putational complexity, especially ResNet and Inception-ResNet-v2, which outperform
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other common configurations and are at the Pareto frontier (Figure 6.11 considering

accuracy and complexity [204–206].

In the last section of this chapter, U-Net, which is considered one of the standard

CNN architectures for image classification tasks [197], was presented. In these tasks

we need not only to define the whole image by its class but also to segment areas of an

image by class, i.e. produce a mask that will separate an image into several classes.

The architecture consists of a contracting path to capture context and a symmetric

expanding path that enables precise localisation.

The network is trained in end-to-end fashion from very few images [88] and out-

performs the prior best method (a sliding-window convolutional network) on the ISBI

challenge for segmentation of neuronal structures in electron microscopic stacks. Using

the same network trained on transmitted light microscopy images, U-Net won the

ISBI cell tracking challenge 2015 in these categories by a large margin. Moreover, the

network is fast. Segmentation of a 512 × 512 image takes less than a second on a

modern GPU.

The U-net architecture achieves outstanding performance on very different biomedi-

cal segmentation applications. It only needs very few annotated images and has a very

reasonable training time of just 10 hours on NVidia Titan GPU (6 GB).



Chapter 7

Experiments and Results

In this chapter, the principal experiments performed in the data sets are explained,

and its corresponding results presented. The experiments presented include all the

contributions by the author, spanning the different analyses made in the different data

sets explained in Chapter 2 and 3.

The chapter is subdivided into three major sections related with (i) the segmentation

of nuclear envelope of HeLa cells through traditional image processing algorithm, (ii)

the modelling of segmented nuclear envelope of HeLa cell against a spheroid and its

analysis and the foremost conclusions in such work and (iii) research in semantic

segmentation by using three pre-trained deep learning architectures. The key research

presented in this chapter is the investigations done on the HeLa cell images acquired

by the Electron Microscopy Science Technology Platform (EM STP) at The

Francis Crick Institute in London [40], where various results were found. Later

investigations were focused on Chlamydia trachomatis-infected HeLa cells obtained

from The Cell Image Library - CIL50051 and CIL50061.

These include detection of background and segmentation the disjoint regions of

nuclear envelope of HeLa cells because of cell division over-viewed in Chapter 4.

From the algorithms described in Chapter 4 and 5, the classification and semantic

segmentation of single HeLa cell is presented; finally, the comparison, based on accuracy
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and Jaccard similarity index, between the traditional image processing algorithm and

three pre-trained deep learning architectures is given.

All contributions, provided both technical and biological insights, were found from

the data sets. All sections describe the experiments referring to the algorithms and

techniques specified in previous chapters. Then, the results are presented, making

the distinction between results previously published and extensions made for this

dissertation or that were not published in due time. Finally, a brief discussion on the

specific experiments is provided.

7.1 Ground truth (GT) and training data

Two cells (i.e. 600 slices) were manually segmented to provide a ground truth to assess

the accuracy of the image processing algorithm. Each cell was segmented by different

persons without knowledge of each other and with different acquisition conditions.

The first cell (Figure 7.8b) was segmented using Amira and a Wacom Cintiq 24HD

interactive pen display by one of the collaborators from [208] and took around 30 hours.

The second cell (Figure 7.8d) was segmented by the author of this dissertation with a

Wacom pen-and-tablet using the MATLAB® roipoly function and took around 47 hours.

In order to determine whether disjoint regions belong to the nucleus, the user scrolled

up and down through neighbouring slices to check connectivity of the regions. In a

few cases, there were discontinuities in the line of the NE, and thus to morphological

dilation was used to ensure a closed contour.

To provide GT for pre-trained deep learning architectures, we also obtained a

separate ground truth. The next part presents the process followed to generate it.

As explained in the previous section, three hundred slices, corresponding to one

cell (red box in Figure 5.2a), were segmented with a combination of manual and

algorithmic steps to provide the first part of a ground truth (GT) for training of deep

learning architectures. The NE was delineated using Amira and a Wacom Cintiq
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(a) (b)

(c) (d)

Fig. 7.1 Illustration of the process followed to generate the ground truth. (a) Manual
delineation of the nuclear envelope (NE). (b) Background segmentation. (c) Combina-
tion of the NE and the background. (d) Labelled image with a colour bar indicating
the four different classes.
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24HD interactive pen display by Anne E. Weston at the Francis Crick Institute in

approximately 30 hours (Figure 7.1(a)).

The background of HeLa cell image was segmented automatically in the following

way. Image-processing algorithm was deployed and HeLa images were low-pass filtered

with a Gaussian kernel with size h = 7 and standard deviation σ = 2 to remove high

frequency noise. Canny edge detection was used to detect abrupt changes of intensity -

edges. In order to to connect disjoint edges, they were further dilated. A blurrier edge

detection was used to create large superpixels and morphological operators discarded

small regions, filled holes inside larger regions to detect the background (Figure 7.1(b)).

Next, the NE and the background were combined (Figure 7.1(c)), exported to

MATLAB® Image Labeler and then four classes - nuclear envelope, nucleus, rest of

the cell, and background were labelled (Figure 7.1(d)). Since the pre-trained neural

networks expect colour images, the GT was replicated to create an RGB image with

three channels.

7.2 Deep learning semantic segmentation of HeLa

cells

A semantic segmentation network classifies every pixel in an image, resulting in an

image that is segmented by class. Applications for semantic segmentation include

road segmentation for autonomous driving and cancer cell segmentation for medical

diagnosis.

7.2.1 Description of Network Training

Data processing

The HeLa Pixel-Labeled Images data set, shown in Figure 7.1d, provides pixel-level

labels for four semantic classes including nucleus, nuclear envelope, rest of the cell

and background. These classes were specified before the training. In order to see the
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(a) (b)

Fig. 7.2 An illustration of semantic segmentation of a HeLa cell. A semantic segmenta-
tion network classifies every pixel in an image, resulting in an image that is segmented
by class. (a) A filtered HeLa image (slice 118/300). (b) Semantic segmentation of the
same image. All pixels were classified as one of the four possible outcomes - nuclear
envelope (NE), nucleus, rest of the cell, and background.

distribution of class labels in the data set, the number of pixels by class label were

counted. Ideally, all classes would have an equal number of observations. However,

the classes in the data set are imbalanced, which is a common issue in biomedical

imaging. HeLa images have more nucleus, rest of the cell and, background pixels than

the nuclear envelope pixels because nucleus, rest of the cell and background cover more

area in the image. If not handled correctly, this imbalance can be detrimental to the

learning process because the learning is biased in favour of the dominant classes. To

improve training, class weighting was used to balance the classes. The pixel label

counts computed earlier was used in order to calculate the median frequency class

weights.

The images and labelled training data in the HeLa data set are 2000 × 2000 × 1. In

order to reduce training time and memory usage, all images and pixel label images

were resized to 360 × 480 × 3. The network was trained using 60% of the images from

the data set. The rest of the images (40%) were used to test the network after training.
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The network randomly splits the image and pixel label data into a training and test set.

The whole data set for each pattern has been divided into two. Sixty percent is kept

for training and its number has been increased artificially by using image augmentation

techniques such as translation and reflections. EM images do not contain any colour

information therefore they have the dimensions (nh, nw, nd) = (2000, 2000, 1).

An image data augmenter in neural network configures a set of pre-processing

options for image augmentation, such as resizing, rotation, and reflection and generates

batches of augmented images. Data augmentation is used during training to provide

more examples to the network because it helps improve the accuracy of the network,

prevent the network from over fitting [85] and memorising the exact details of the

training images.

Training of the networks

The training took 21.25 hours on a single CPU and the training plot was obtained

to check the accuracy and loss during training of the three pre-trained deep neural

networks (VGG16, ResNet18 and Inception-ResNet-v2). The optimisation algorithm

used for training is stochastic gradient descent with momentum (sgdm) and this was

specified in training options. The sgdm algorithm can oscillate along the path of

steepest descent towards the optimum. Adding a momentum term to the parameter

update is one way to reduce this oscillation [209].

Three hundred images were used for training. These were split 60%/40% for training

and testing. Data augmentation was applied with random translations of ±10 pixels

on the horizontal and vertical axes and random reflection on the horizontal axis. The

training data and data augmentation selections were combined. The deep network

reads batches of training data, applies data augmentation, and sends the augmented

data to the training algorithm.

The VGG16 deep network training had 100 epochs with learning rate 0.001. Itera-

tions per epoch was 45 therefore total number of iterations for the whole training was

4500. Similarly, training took approximately 1.5 hours for ResNet18 and 4.7 hours for
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Inception-ResNet-v2 with 30 epochs and 660 iterations and learning rate 0.00009 on a

single CPU.

The U-Net architecture was trained from scratch with 36, 000 training images and

labels constructed from a subset of the data and the ground truth with size 128 × 128.

U-Net: The U-Net [88] architecture was constructed with the following layers:

Input, Convolutional, ReLu, Max Pooling, Transposed Convolutional, Convolutional,

Softmax and Pixel Classification. Several training configurations were tested, number

of layers (10, 15, 20), number of epochs (5, 10, 15), classifiers stochastic gradient descent

(sgdm), Adam (Adam) [191] and Root Mean Square Propagation (RMSprop) and size

of training images (64 × 64, 128 × 128) and the best results were obtained with 36000

training pairs, 15 epochs, 20 layers and RMSprop with 128 × 128 training images. The

downsampling and upsampling blocks had the following configuration:

• Input,

• Convolutional, ReLu, Max Pooling,

• Convolutional, ReLu, Max Pooling,

• Convolutional, ReLu, Max Pooling,

• Convolutional, ReLu,

• Transposed Convolutional, Convolutional,

• Transposed Convolutional, Convolutional,

• Transposed Convolutional, Convolutional,

• Softmax,

• Pixel Classification.
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(a) (b)

Fig. 7.3 Illustration of the image-label pairs created to train the U-Net architecture.
(a) A sample of regions, each 128 × 128 pixels placed next to each other as a montage.
(b) Montage of the labels corresponding to the regions of (a). The labels contain four
classes, from dark to bright: Nuclear Envelope, Nucleus, Cell, Background.

To train the U-Net, the image input layer was configured for the 128 × 128 patches.

The patches were formed from a subset of the images, specifically the odd slices between

slice 101 and slice 180. The images were cropped to regions of 128 × 128 pixels with

an overlap of 50%. An illustration of the data and the labels is shown in Figure 7.3.

Comparison of segmentation results

The semantic segmentation results from image-processing algorithm, and Deeplab

v3+ networks were obtained.

These results were compared with the labelled data shown in (Figure 7.1d) and

accuracy and Jaccard similarity index were calculated to asses the accuracy of the

network. In order to measure accuracy for the data set, deep neural networks were run

on the entire test set.

Visually, the semantic segmentation results overlap well for classes such as nucleus,

rest of the cell, and background. However, smaller objects like the nuclear envelope

are not as accurate. The amount of overlap per class can be measured using the
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Fig. 7.4 A representative HeLa image and semantic segmentation results overlaid on the
filtered image. Top row: Boxes denote two Region of Interests (ROIs) on filtered image
as well as semantic segmentation results. Results were obtained from all algorithms - a
traditional and four deep learning architectures. The ROIs are magnified and shown
in the middle and bottom rows. Middle row: ROI 1 corresponding black box with
solid line. Bottom row: ROI 2 - box with dashed line. Differences in segmentation
results can be seen from these ROIs - the red dot obtained from ResNet18 semantic
segmentation on bottom row and 4th column. Notice the U-Net segmentation in the
last column. The result mixes the nucleus with cell, and background with other things
but it also detects as nucleus the nucleus of the other cells that are in the periphery,
which scores down with the ground truth (GT) but in reality is more precise. Even
the nuclear envelope (NE) is detected in some sections.

intersection-over-union (IoU) metric, also known as the Jaccard index. Accuracy also

was measured for all slices and compared with our algorithm. Although the overall data

set performance is quite high, the class metrics show that underrepresented classes such

as nuclear envelope is not segmented as well as classes such as nucleus, rest of the cell,

and background. Additional data that includes more samples of the underrepresented

classes might help improve the results.

The results provided by the U-Net semantic segmentation were very interesting.

The training of the U-Net provided sufficient samples for the network to distinguish

the nuclei of cells, that is, not only of the cell that is located in the centre, but also of
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Fig. 7.5 Numerical comparison between the image-processing algorithm and deep
learning architectures by using the ratio of true positive and true negative over the
total number of pixels (overall accuracy). The training for the image-processing
algorithm was performed on one cell and tested on all the other six cells. With U-
Net, training was performed on every other slice and three pre-trained deep learning
architectures (VGG16, ResNet18, Inception-ResNet-v2) were trained with 60 % of the
data and tested with the rest (40 %). Equation 4.3 (overall accuracy) was used to
obtain this plot.

other nuclei visible within the slices (Figure 7.7). It should be remembered that one

assumption of the segmentation task was that there was a single cell in the centre of

the volume of interest. This assumption will impact on the results of the U-Net as the

ground truth was constructed with a single nucleus in the region. Therefore, for slices

closer to the centre the accuracy and Jaccard Index were higher, and as the central

nucleus became smaller towards the edges, and other nuclei appeared, these metrics

decreased. The construction of a separate ground truth for U-Net, which would reveal

a more accurate comparison for U-Net, is beyond the scope of this paper.

7.3 Quantitative comparisons

Given two input curves that are perimeters of segmentation result and manual segmen-

tation or GT, it is natural to ask how similar they are to each other. In order to assess

the accuracy of the segmentation, two methodologies were followed. first, the Jaccard

similarity index (JI) of intersection over union was calculated to assess the area inside

the NE and second, the Hausdorff distance (HD) , a well known similarity measure, of
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Fig. 7.6 Numerical comparison between the image-processing algorithm and deep
learning architectures by using Jaccard similarity index as performance metric.
(Top row) Jaccard similarity index, also known as intersection over union, shows the
comparison between the image-processing algorithm and deep learning architectures.
Green box denotes the central slices and corresponding Jaccard similarity index that
is magnified below. (Bottom row) Jaccard similarity index for central slices (slices
between 75/300 and 225/300 - interquartile range (IQR)), for easier comparison.
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Fig. 7.7 Three slices semantically segmented slices with U-Net. (a) Slice 170, towards
the centre of the cell, accuracy = 0.954 , Jaccard Index = 0.854. (b) Slice 220, towards
the top of the cell, accuracy = 0.906, Jaccard Index = 0.435. (c) Slice 260, on the
very top of the cell, accuracy = 0.818 , Jaccard Index = 0.0007. The area of the
nucleus has been highlighted in pink. It should be noticed that in (a) the nuclear area
is well segmented but there are other artefactual segmentations. In (b,c) the nuclei of
contiguous cells are also segmented. These detections will drive down both accuracy
and Jaccard Index.

the maximum of the set of shortest distances between two lines was calculated to assess

how far the real boundary of the NE was from the calculated one. The smaller the

Hausdorff distance between two shapes the greater is their degree of resemblance [171].

HD [172, 173] is defined as the maximum distance between a point on one curve

and its nearest neighbour on the other curve [174, 175]. It is such a metric that enables

calculation of how far two subsets of a metric space are from each other.

Segmentation results were compared against the GT using both metrics. To compute

JI, the manual segmentation for each slice was morphologically closed to generate a

region rather than a line. The HD between the GT and NE was calculated for each

slice by comparing the boundaries of the curves.

In this work, images of HeLa cells observed with SBF SEM were semantically

segmented with an image-processing algorithm and three pre-trained deep learning

architectures (convolutional neural networks - CNNs), VGG16, ResNet18 and Inception-

ResNet-v2. The accuracy and Jaccard similarity index of the segmentations against

a ground truth were calculated. The image-processing algorithm is fully automatic
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(a) (b)

(c) (d)

Fig. 7.8 Similarity metrics and final results of the automated segmentation displayed
as rendered volumetric surfaces. (a) Jaccard Index (JI) (solid line) and Hausdorff
distance (HD) (dotted line) for the segmented nuclear envelope (NE) shown in (b).
Notice that the mean JI is 98% and the mean HD is 4 pixels for central slices. (b) final
result of the segmentation displayed as a rendered volumetric surface. The algorithm
was trained with this cell. (c) JI and HD for the second NE shown in (d). Note the
decrease in JI and increase in HD (arrows) towards the upper and lower edges of the
NE where the structure tends to become more fragmented in 2D cross-sections and
complex regions that may have been missed by the algorithm.
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and processed each slice of the HeLa cells in approximately 8 seconds and a whole cell

containing 300 slices in approximately 40 minutes. On the other hand, the deep neural

network architectures were fine-tuned and trained in 21.25 hours (VGG16), 1.5 hours

(ResNet18), and 4.7 hours (Inception-ResNet-v2) to perform semantic segmentation

on the whole cell with relatively good accuracy and differences can be appreciated in

Figure 7.4 with two ROIs.

Segmentation of the nuclear envelope by all three deep neural networks was out-

performed by the image-processing algorithm as shown in Figure 7.4, Figure 7.5, and

Figure 7.6 . Visually, the semantic segmentation results overlap well for classes such as

nucleus, rest of the cell, and background. However, smaller objects like the nuclear

envelope are not as accurate. Although the overall data set performance is quite high,

the class metrics show that under represented classes such as nuclear envelope is not

segmented as well as classes such as nucleus, rest of the cell, and background.

In this work, a classical and unsupervised image processing algorithm was used to

perform semantic segmentation of cancerous HeLa cell images from SBF SEM and

compared with three pre-trained deep neural network architectures. The pre-trained

deep neural network architectures, VGG16, ResNet18 and Inception-ResNet-v2 were

trained in ImageNet and fine-tuned for semantic segmentation of the HeLa cells. Four

different classes, nucleus, nuclear envelope, rest of the cell, and background were used

in labelling training data for deep neural networks. Two similarity metrics, accuracy

and Jaccard index, were calculated so the image-processing algorithm was compared

with deep neural networks. As the image-processing algorithm was trained and tested

only for the nuclear envelope and nucleus and as the bottom 26 and the top 40 slices

did not contain any cell, the difference in Jaccard index, which can be observed away

from central slices, is in favour of the deep neural networks towards the top and bottom

of the cells (Figure 7.5 and Figure 7.6). Additional data that includes more samples

of the under represented classes, nuclear envelope in this case, might help improve

the results as the sizes of the classes in the HeLa data set were imbalanced. For the

image-processing algorithm this would be expected, as the NE is more irregular on the
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top and bottom slices than on the central ones. The segmentation of each cropped cell

is fully automatic and unsupervised and the image-processing algorithm segments one

slice in approximately 8 seconds and one whole cell in approximately 40 minutes with

good accuracy.

As JI does not count true negative (TN), the values decrease towards the top and

bottom slices of the cells as the structure was considerably more complex and the

areas become much smaller (Figure 7.6 (Middle row) and (Bottom row)). On the

other hand, accuracy includes the TN in both numerator and denominator and this,

especially in cases where the objects of interest are small and there are large areas of

background (e.g. the top and bottom slices of the cell) would render very high accuracy.

Therefore, in contrast to JI, accuracy increases in slices towards both top and bottom

ends. Overall, the best results were obtained by the image processing segmentation

algorithm especially for central slices - slices between 75/300 and 225/300 (Figure 7.6

(Bottom row)).

Deploying deep learning architectures [68] and training to learn patterns and features

directly from EM images and to automatically segment the NE and other parts of a cell

is indeed necessary. Segmentation effort and assessment variability will be reduced and

fast and accurate segmentation will provide a second opinion to support biomedical

researchers’ decisions as it shortens the time required to segment the cell.

The main contributions of this work are: (a) Generating 300 labelled images

of the HeLa cell, shown in (Figure 5.2), defined by four different classes - nuclear

envelope, nucleus, rest of the cell, and background. These images were used to train

deep learning architectures. (b) an objective comparison, supported by accuracy and

Jaccard similarity index, between the image-processing algorithm and three pre-trained

deep neural networks - VGG16, ResNet18 and Inception-ResNet-v2 to perform semantic

segmentation of HeLa cells defined by four different classes - nuclear envelope, nucleus,

rest of the cell, and background.
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7.4 Active contours

In order to compare the algorithm segmentation with an alternative approach, the NE

was segmented with Chan-Vese active contours methodology [210, 211]. The function

changes its parameters based on one of three states: Shrink, Grow, or Normal. One of

the three states and its parameters were chosen empirically through numerous tests.

A small circle was placed in the middle of the HeLa nucleus in one of the 300 images

(Red box in Figure 3.9b) with the help of MATLAB® roipoly function and allowed to

grow until it segmented the nucleus with the highest JI. The active contours were run

once, with a set of parameters, then the Jaccard index was calculated. The parameters

were adjusted (contraction bias = −0.4, smooth factor = 1.5, iterations = 5000) and

the active contours was run again to obtain foreground and background. The number

of iterations were increased in steps of 100 with the objective of determining the

optimum number, i.e. to obtain the highest JI, and to continue until the algorithm had

segmented not just the NE but the whole cell. Practically this consisted of running

the algorithm between 0 and 5,000 iterations.

Shrink and Normal, the other two states of active contours, were also implemented

but the best result was obtained by the state of Grow.

Active contours, on the other hand, provided much lower values of JI with a highest

value of 75% (illustrated on slice 118/300-Figures 7.9c,d), and took considerably

longer as 2200 iterations required 27 minutes for one slice only. On the other hand,

the algorithm described segmented each slice in ∼8 seconds and the whole cell in

approximately 40 minutes, that is, the segmentation of 2 slices with active contours

would take longer than the algorithm for 300 slices.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 7.9 Comparison of the algorithm against ground truth (GT) and Active Contours.
(a) One representative slice from one HeLa cell (red box in Figure 3.9b). Green
dashed-dotted box denotes the region of interest (ROI) that is magnified in (e-h).
(b) Automated segmentation of the nuclear envelope (NE) (purple). For comparison,
the hand segmented GT is shown (cyan). (c) Active contours segmentation with
2200 iterations provided the highest Jaccard index (JI) 75%. (d) Active contours
segmentation with 5000 iterations included large sections of the cell showing the
influence of the iterations on the result.
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Fig. 7.10 Final results of the automated segmentation displayed as rendered volumetric
surfaces and modelling for six cells. Left : Segmentation results displayed as rendered
volumetric surfaces for six different cells. In each cell, note the notches and invagi-
nations, which may be relevant biological characteristics of the cells. Right: Surfaces
corresponding to the distance from the nuclear envelope (NE) to a model spheroid.
Arrows, in the last four rows, show notches that travel along the nuclei (grey, yellow,
purple, and cyan cell).
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(a) (b)

Fig. 7.11 Illustration of the pixel-based metrics. (a) True Positives (TP, nuclear
pixels segmented as nucleus), true negatives (TN, background pixels segmented as
background), false positives (FP, background pixels segmented as nucleus) and false
negatives (FN, nuclear pixels segmented as background). These quantities were used to
compute accuracy and Jaccard similarity index for the image-processing algorithm and
three pre-trained deep neural networks. (b) Segmentation overlaid on the same slice
as (a) (slice 184/300 - on a filtered image): ground truth (GT) in cyan, automated
segmentation in purple.

7.5 Nuclear envelope shape modelling experiment

result

In order to evaluate the accuracy of the proposed segmentation algorithm and deep

neural networks, two different pixel-based metrics, accuracy and Jaccard similarity

index (JI) [168], were calculated. All algorithms were compared with each other by

using these metrics. In order to calculate JI, also known as intersection over union ,the

manual segmentation for each slice was morphologically closed to generate a region

rather than a line. This metric is based on the determination of the true positives (TP,

nuclear pixels segmented as nucleus), true negatives (TN, background pixels segmented

as background), false positives (FP, background pixels segmented as nucleus) and false

negatives (FN, nuclear pixels segmented as background) as illustrated in Figure 7.11

and defined by the following equations:
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The result of the segmentation of the nuclear envelope is a volumetric surface, with

particular shape characteristics, such as notches or invaginations (Figure 5.10). To

assess the particular geometrical characteristics of these surfaces, a model against a

spheroid can be performed. The spheroid was created with the same volume as the

nucleus and the position adjusted to fill the NE as closely as possible, as illustrated

in Figure 7.12a, for one slice and in Figure 7.12b for the whole volume where NE is

displayed as a red rendered volumetric surface and the spheroid as blue mesh. In order

to position the spheroid, the centroid of the segmented cell was calculated, and the

coordinates were used as the centre of the spheroid.

(a) (b)

Fig. 7.12 Nuclear envelope (NE) surface modelling against a spheroid of Chlamydia
trachomatis-infected HeLa cells. (a) One slice of the modelling where the spheroid is
denoted in cyan and the NE in green and the overlap in yellow. (b) Rendering of the
NE (red surface) against the model spheroid (blue mesh).

The surfaces of the spheroid and the nucleus were subsequently compared by tracing

rays from the centre of the spheroid and the distance between the surfaces for each

ray was calculated (Figure 7.13a). It was designated that when the NE was further

away from the centre, the difference was positive. (Figure 7.13b) shows the surface

corresponding to the distance from the NE of the first cell to a model spheroid.

Several metrics that characterise the NE can be extracted. From the volume itself,

the volume of a cell is the first metric to be extracted. To measure the degree similarity

between the inner volume of the spheroid and the nucleus, the Jaccard index can be

calculated in the following way: the regions where the spheroid and the cell overlap
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(a)

(b)

Fig. 7.13 Distances of the NE to the spheroid of Chlamydia trachomatis-infected HeLa
cells. (a) Measurements obtained along the boundary of one slice of the NE. (d) Surface
corresponding to the distance from the NE to a model spheroid. The surface is formed
by placing the lines of each slice as shown in (a).

(yellow in Figure 7.12a) is considered as True Positive, the region of the spheroid not

covered by the cell (blue) is a False Positive and the area of the cell not covered (green)

is False Negative.

From the surface the following measurements can be extracted from the altitudes of

the modelled surface: (1) standard deviation (σ) and (2) range of the altitude (distance

of the highest peak and deepest valleys from the spheroid).

Finally, the statistical distributions of all volume and surface metrics of Wild-

type HeLa cells and Chlamydia trachomatis-infected HeLa cells were combined for

comparison.

Volume metrics comparison between Wild-type HeLa cells and Chlamydia trachomatis-

infected HeLa cells from nuclear envelope (NE) shape modelling reveal that mean

volume value of HeLa cells is much higher than that of Chlamydia trachomatis-infected
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HeLa cells and this might indicate a shrink in HeLa cells when they are infected. Surface

metrics comparison between Wild-type HeLa cells and Chlamydia trachomatis-infected

HeLa cells from nuclear envelope (NE) shape modelling indicate that the Wild-type

cells are far more rugged than the Chlamydia-infected cells.

One further analysis was performed on the cell from the CIL50051 dataset, the one

with hole. Besides the clear hole, the NE has other deep crevices that nearly connect

two opposite sides of the NE. This is shown in Figure7.14 with the NE rendered with

different parameters (no face colour, edges in black and with transparency) and four

different view points. Axis are added for reference. Although this level of invaginations

and holes were found only in one cell, it is interesting to discover this as it may have

significant biological meaning.

The metrics were calculated on a per-slice basis for all algorithms. JI is a strict

measurement as compared with accuracy as it does not include the true negatives.

On the other hand, accuracy includes the TN in both numerator and denominator

and this, especially in cases where the objects of interest are small and there are large

areas of background (e.g. the top and bottom slices of the cell) would render very high

accuracy.

7.6 Summary

Results for all developments described in this dissertation were presented in this chapter.

The chapter was subdivided in three main projects:

• Automatic segmentation by the proposed image processing algorithm,

• Deep learning architectures for semantic segmentation of HeLa cells,

• New EM data sets for testing the proposed image processing algorithm.

In this work, an automated image processing algorithm was compared with four pre-

trained deep learning architectures, VGG16, ResNet18, Inception-ResNet-v2, and U-Net
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(a) (b)

(c) (d)

Fig. 7.14 Illustration of the cell from dataset CIL50051. The surface is displayed as a
mesh with transparency to show the hole of the nuclear envelope (NE) and the crevices
that go deep inside the nucleus. Notice in (c,d) how these invaginations nearly connect
separate sides of the NE.

for semantic segmentation of HeLa cells imaged with EM. Segmentations results were

also compared with the manual segmentations/GT and training data, in order to assess

the accuracy of all the algorithms. For comparison, accuracy and JI were measured.

The image-processing algorithm exploited the 3D nature of the data by using adjacent

images to check for connectivity of islands to the main nuclear region. The algorithm

thus began at the central slice of the cell, which was assumed to be the one in which

the nuclear region would be centrally positioned and have the largest diameter. The

algorithm then proceeded in both directions (up and down through the serial images)
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and propagated the initial result to decide if a disjoint nuclear region was connected

above or below the current slice of analysis. By using neighbouring segmentations as

input parameters to the current segmentation and taking the regions into account,

the segmentation was considerably improved. An example for this improvement is

shown for one particular slice (slice 118/300) in (Figure 5.3d) with Jaccard similarity

index and accuracy are 0.94 and 0.99, respectively. When a segmented nuclear region

overlapped with the previous nuclear segmentations, it was maintained; when there

was no overlap, it was discarded. finally, the NE was obtained as the boundary of the

nucleus. The image-processing algorithm segments the NE of HeLa cervical cancer

cells in approximately 8 seconds and a whole cell contained 300 slices in approximately

40 minutes. Except for the manual selection of the centroid to crop each cell from

bigger EM images, the image processing algorithm is fully automatic.

The deep learning architectures perform semantic segmentation of the whole cell

with relatively good accuracy (Table 7.1 (Top row)) but segmentation of the nuclear

envelope by all three deep neural networks was outperformed by the image processing

algorithm as shown in Figure 5.3d, and Table 7.1. Visually, the semantic segmentation

results overlap well for classes such as nucleus, rest of the cell, and background. However,

smaller objects like the nuclear envelope are not as accurate. Although the overall data

set performance is quite high, the class metrics show that under represented classes

such as nuclear envelope is not segmented as well as classes such as nucleus, rest of

the cell, and background. Additional data that includes more samples of the under

represented classes might help improve the results. The limitations of the deep learning

strategies were the training data. In the case of U-Net, 36000 pairs of images and labels

were used, perhaps with a larger number the results would improve. Similarly, different

configuration of the network, like number of epochs, could impact on the results.

As JI does not count TN, the values decrease towards the top and bottom slices

of the cells as the structure was considerably more complex and the areas become

much smaller. On the other hand, accuracy includes the TN in both numerator and

denominator and this, especially in cases where the objects of interest are small and
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there are large areas of background (e.g. the top and bottom slices of the cell) would

render very high accuracy. Therefore, in contrast to JI, accuracy increases in slices

towards both top and bottom ends. As the image-processing algorithm was trained

and tested only for the nuclear envelope and nucleus and as the bottom 26 and the

top 40 slices did not contain any cell, the difference in Jaccard index is in favour of

the deep learning architectures towards the top and bottom of the cells. Overall, the

best results were obtained by the proposed image processing segmentation algorithm

especially for central slices - slices between 75/300 and 225/300.

The comparison between the model spheroid and the whole nucleus (Figure 7.8b)

reported a JI of 66% (Figure 5.12). In this case JI is measuring how spherical the NE

is, not the accuracy of the segmentation. This value indicates a relative departure from

a spheroid and it is speculated that the JI could be related to biological characteristics

of cells. In addition, the measurements of distance from the nucleus to the spheroid

showed rougher and smoother regions (Figures 5.12a,b,d). The surface corresponding

to the distance from the nuclear envelope to a model spheroid (Figure 5.12d) showed

graphically the hollow and prominent regions of the cell, but more important, elements

such as a notch (solid red arrow) or ruggedness (dashed green arrow) can be an

indication of NE breaking down or remodelling. An advantage of this modelling is

that visually it is easier to assess a single 2D image than a 3D volumetric surface as

can be seen in Figure 7.10 where six cells and their corresponding surfaces are shown.

Mercator map projection was used in this modelling against a spheroid and this could

be a limitation of the algorithm. Whilst many interesting characteristics such a large

notch on the NE of the third (grey) cell or large protuberance on the second (green) cell,

at this moment it is only possible to speculate the biological correlation between the

surfaces and the nature of the cell itself. Table 7.1 illustrates the previously described

metrics that can be extracted from the NE and the surface. Mean (µ), standard

deviation (σ), and range of values, which are related to the height of peaks and depth

of valleys could be related to some biological state of the cells, however, this has not yet

been verified. A strong negative correlation between JI and σ, ( correlation coefficient
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= −0.9139) is due to the similarity between the NE and the spheroid as a NE which

is closer to an spheroid (higher JI) will have a smoother surface (lower σ). This is

also indicated by a weaker negative correlation between JI and range, (correlation

coefficient = −0.7388), and a positive correlation between JI and µ with correlation

coefficient (0.7142).
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Table 7.1 Quantitative metrics extracted from surface modelling of a HeLa cell against
a spheroid. Examples of metrics that can be automatically extracted from the nuclear
envelope (NE) segmentation, including nuclear volume and Jaccard Index (JI) against
the spheroid, and the mean value (µ), standard deviation (σ), range of values for the NE
(distance of the highest peaks and deepest valleys from the spheroid). The last column
shows the ratio of the number of pixels to the total number of pixels in one standard
deviation above and below the mean value as height/depth of a peak/valley may not
indicate if this is a thin spike or more of a plateau. In addition to a strong negative
correlation between JI and σ, with correlation coefficient (−0.9139) which explains the
similarity between the NE and the spheroid, and a weaker negative correlation between
JI and range, with correlation coefficient (−0.7388), a comparatively weaker positive
correlation between JI and µ with correlation coefficient (0.7142) was observed. These
values could be used to draw some conclusions about biological characteristics of cells
and more metrics can be extracted from the algorithm developed for this work.

Cell Volume Metrics Surface Metrics
3D
Shape

Volume
(µm3)

Jaccard
Index

Surface
modelling
against a
spheroid

Mean
(µ)

Standard
dev. (σ)

Range Pixel ratio
for µ±σ

393 0.5538 -23.424 142.47 681 16%&19%

442 0.6610 -17.018 105.11 517 13%&18%

454 0.6989 -11.013 96.968 553 12%&17%

487 0.7084 -16.467 98.528 577 15%&15%

502 0.6643 -27.290 116.11 544 13%&19%

580 0.5991 -27.882 135.57 703 19%&18%

600 0.5801 -29.894 163.80 894 17%&15%





Chapter 8

Conclusions and Future Work

An automated image processing algorithm for the volumetric analysis of different

cervical cancer cells called HeLa cells, with special emphasis on segmentation of nuclear

envelope of HeLa cells has been described. Through a visualisation technique, a

graphical model of the nuclear envelope of HeLa cells, which could be related to

biological characteristics of cells, has been explained. Geometric comparison between

Wild-type and Chlamydia trachomatis-infected HeLa cells has been presented. Semantic

segmentation comparison between the algorithm and deep learning architectures has

been presented.

This chapter presents a summary of the dissertation, which highlights the key

findings; then, the major contributions and conclusions; finally, limitations of the

algorithms are presented, leading to suggestions for further research.

8.1 Summary

The NE of 13 Wild type and Chlamydia trachomatis-infected HeLa cells were success-

fully segmented, with good accuracy for the two cells for which GT was available. When

the NE is modelled against a spheroid, it is possible to extract several quantitative

metrics which may be related to the biological characteristics of the cells. The 2D

maps of the NE surface can provide an easier way to assess the characteristics of a
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3D structure. The metrics obtained from the algorithm provides a statistical and

geometrical comparison between different type of HeLa cells.

The algorithm outperformed active contours as well as four pre-trained deep learning

architectures in both accuracy and time. The segmentation of each cropped cell is

fully automatic and unsupervised and segments one slice in approximately 8 seconds,

one whole cell in approximately 40 minutes. On the other hand, the deep neural

network architectures were fine-tuned and trained in 21.25 hours (VGG16), 1.5 hours

(ResNet18), and 4.7 hours (Inception-ResNet-v2) to perform semantic segmentation on

the whole cell with relatively good accuracy.

Deep learning methods have matched or surpassed the previous state of the art in a

various segmentation applications, mainly benefiting from the increased size of public

data sets, the amount of information scientists acquire is vast, and the emergence of

advanced network architectures as well as powerful hardware for computing. Given

this rapid process, one may wonder if deep learning methods can be directly deployed

to real-world applications to reduce the workload of clinicians as an automated analysis

would highlight patterns in the data not seen before. The current literature suggests

that there is still a long way to go and the results obtained in this dissertation show

that there is still room for traditional algorithms.

8.2 Major contributions

The original contributions of this dissertation are:

• An image processing algorithm for the segmentation of the nuclear envelope of

cervical cancer cells or HeLa cells. The algorithm, specific for but not limited

to the analysis of HeLa cells, could work for any electron microscopy images as

shown in this dissertation (Chlamydia trachomatis-infected HeLa cells). The

segmentation algorithm, which is fast and accurate compared to deep learning

architectures, can be used to create a 3D volume of the nuclear envelope and

biomedical researchers may benefit from it.
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• A graphical model of the nuclear envelope was obtained by modelling the nuclear

envelope against a spheroid, and volume and surface metrics, which could be

related to biological characteristics of HeLa cells, were computed.

• Development and testing of an algorithm which is distributed as a set of routines

under an open source license. The code developed for the segmentation strategies

has been made available through GitHub. The open-source algorithm described in

this paper provides an alternative to expensive commercial software and manual

segmentation, which is still widely used despite the significant disadvantages of

time and inter- and intra-user variability.

• 300 labelled images of the HeLa cell defined by four different classes - nuclear

envelope, nucleus, rest of the cell, and background - were obtained, shown in

(Figure 5.2). These images were used to train deep learning architectures. The

four-class ground truth for 300 slices made available through Zenodo [212].

• An objective comparison, supported by accuracy and Jaccard similarity index,

between the image processing algorithm and four pre-trained deep learning

architectures - VGG16, ResNet18, Inception-ResNet-v2, and U-Net to perform

semantic segmentation of HeLa cells.

8.3 Major conclusions

The following conclusions are considered:

• A classical and unsupervised image processing algorithm has been presented to

perform semantic segmentation of cancerous HeLa cell images from SBF SEM

and the segmentation results have been compared with four pre-trained deep

neural network architectures. The pre-trained deep neural network architectures,

VGG16, ResNet18 and Inception-ResNet-v2 were trained in ImageNet and fine-

tuned for semantic segmentation of the HeLa cells. Two similarity metrics,

accuracy and Jaccard index, were calculated so the image-processing algorithm
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was compared with the deep learning architectures. For central slices, slices

between 75/300 and 225/300, the image-processing algorithm outperformed

active contours (snakes) as proved by the similarity metrics.

• The graphical model of the nuclear envelope against a spheroid has provided

volume and surface metrics, which could be related to biological characteristics

of HeLa cells.

• The open-source algorithm described in this paper provides an alternative to

expensive commercial software and manual segmentation, which is still widely

used despite the significant disadvantages of time and inter- and intra-user

variability.

8.4 Limitations

The limitations presented include all algorithms: the segmentation and semantic

segmentation from Chapter 4 and 5, as well as the modelling of the NE against a

spheroid. These limitations may introduce possible routes moving the research forward.

• The decrease in Jaccard similarity index towards the bottom and top of the

cell can be understood as the shape becomes less regular and more complex

and the nucleus is formed by more than one region. Two sources of error were

thus identified. First, the detected boundary did not match that of the manual

observer. Further examination is required to notice the exact contribution of

these errors to the total index. It should also be noticed that errors of the manual

expert are possible.

• In some slices there were more than one region corresponding to the nucleus and

this was not detected by the segmentation algorithm although for majority of

slices that is not the case. This is still a limitation of the algorithm and further

work can rely on the segmentation of contiguous slices.
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• For the traditional image processing algorithm, it was assumed that there was a

single HeLa cell of interest, which may be surrounded by fragments of other cells,

but the centre of the cell of interest is located at centre of a three-dimensional

(3D) stack of images. In addition, it was assumed that the nuclear envelope was

darker than the nuclei or its surroundings and that the background was brighter

than any cellular structure.

• The limitations of the deep learning strategies were the training data. In the

case of U-Net, 36000 pairs of images and labels were used, perhaps with a

larger number the results would improve. Similarly, different configuration of the

network, like number of epochs, could impact on the results.

8.5 Suggestions for further research

The following suggestions for research do not necessarily address the problems stated

in the previous section, but provide further extensions of the work.

• Future work will consider the analysis of the whole cell and segmentation of other

organelles of HeLa cells such as mitochondria, Golgi apparatus, and endoplasmic

reticulum (ER).

• Finding different data sets acquired by electron microscopy so the traditional

image processing algorithm can be tested with it.

• The results of the deep learning approaches, for all cases, could have been

improved by applying post-processing, e.g. to remove small regions of one class

that were inside a large region of a different class, or by thinning or dilating

the nuclear envelope. However, as the objective was to compare the image

processing algorithm with the deep learning architectures, it was preferred not to

post-process the latter ones. In addition, for the case of U-Net, the ground truth

was restricted to a single nucleus in the volume. A ground truth with several

nuclei could provide better results.
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Closing statement.

Cell segmentation and classification were presented in this work as complex biological

problems involving two complementary approaches to understanding it: image analysis

or mathematical modelling. This work analysed the problem from the perspective of

image analysis especially when it comes to segmentation.

The work presented in this dissertation lays the foundation for automated image

analysis of HeLa cells. Several studies of cell segmentation are still analysed manually,

which is accepted as "gold standard" despite the significant disadvantages of time and

inter- and intra-user variability.

The work presented in this dissertation provides fast and accurate segmentation of

cervical cancer cells called HeLa cells which would allow biomedical scientists to have

consistent measurements of HeLa cells and its nuclear envelope so they could analyse

the cells, thus allowing for re-producibility in studies with more complex questions.

The algorithm could be extended to incorporate a more detailed analysis of HeLa

cells or any other cells imaged with electron microscopy. The project presented in

this dissertation follows a very specific scope, however it provides clear implications in

several fields of research.
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Appendix A

Texture segmentation

As future work could include textures in semantic segmentation of HeLa cells and as

U-Net has been used as one of the alternatives to the image processing algorithm, in this

appendix, a different application of U-net is presented. This work has been published

as shown in the List of publications related to this work - Journal publications 3.

A comparison of a series of traditional and deep learning methodologies for the

segmentation of textures is presented. Six well-known texture composites first published

by Randen and Husøy [170] were used to compare traditional segmentation techniques

(co-occurrence [213], filtering [170], local binary patterns [214, 215], watershed [216],

multiresolution sub-band filtering [217]) against a deep-learning approach based on the

U-Net architecture [88]. For the latter, the effects of depth of the network, number of

epochs and different optimisation algorithms were investigated.

A.1 Introduction

Texture, and more specifically textural characteristics in images, has been widely

studied in the past decades as texture is one of the most important features present

in images and can be used for feature extraction [218–221, 213, 222, 223, 217] and

classification and segmentation [224–229]. The areas of study where texture is present

range from crystallographic texture [230], stratigraphy [231, 232], food science of
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potatoes [233] or apples [234], patterned fabrics [235] to natural stone industry [236].

In medical imaging, there is a large volume of research which exploits the use of texture

for different purposes like segmentation of classification in most acquisition modalities

like magnetic resonance imaging (MRI) [237–241], ultrasound [242, 243], computed

tomography (CT) [244–246], microscopy [247, 248] and histology [249]. There are

numerous approaches to texture: Haralick’s co-occurrence matrix [213, 221] on the

spatial domain, Gabor filters [250–252] and ordered pyramids [217] on the spectral

domain, wavelets [253, 254] or Markov random fields [220, 255].

In recent years, advances in artificial intelligence have been revolutionised image

processing tasks. Several deep learning approaches [75–77] have achieved outstanding

results in difficult tasks such as those of the ImageNet Large Scale Visual Recognition

Challenge (ILSVRC) [78]. Convolutional Neural Networks (CNNs) are well suited to

analyse textures as their repetitive patterns can be learned and identified by filter

banks [256]. The U-Net architecture proposed by Ronneberger [88] has become a

very widely used tool for segmentation and analysis reaching thousands of citations

in few years since it was published. U-Nets have been used widely, for instance, road

extraction [257], singing voice separation [258], automatic brain tumour detection and

segmentation [196] and cell counting, detection, and morphometry [195]. The success

of these deep learning approaches in very different areas invite for its application on

texture analysis.

In this work, a U-Net architecture for the segmentation of textures is implemented

and objectively compared against several popular traditional segmentation strategies.

The traditional algorithms (co-occurrence matrices) [213], watershed [216], local binary

patterns (LBP) [214, 215], filtering [170] and multiresolution sub-band filtering (MSBF)

[217] were selected as these have been previously published using the texture composites

proposed by Randen [259] and thus an objective numerical comparison is possible.

To perform an objective comparison, six well-known texture composites from the

Brodatz [260] album, first published by Randen and Husøy [170], are segmented with

U-Nets of different configurations and parameters and the results compared against
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previously published results. The effects of the configuration of the networks, namely,

number of epochs, depth of the network in the number of layers, and type of optimisation

algorithm are assessed.

A.2 Materials and Methods

A.2.1 Texture composite images

Six composite texture images were segmented in this work (Fig. A.1). The first five

composites are images of 256 × 256 pixels and consist of five different textures whilst

the last one is 512 × 512 pixels and is formed with 16 different textures. The masks

with which these were formed are shown in Fig. A.2. It should be highlighted that

these textures have been histogram equalised prior to the arrangement and thus they

cannot be distinguished by the general intensity of each region. It is frequent that

comparisons are made over textures that are not equalised (e.g. [261] Figure 3, [256]

(Figure 2) and thus the segmentation is not only based on the texture but the average

intensity of the regions. Furthermore, whilst some textures are easy to distinguish,

there are some that are quite challenging, for instance, the difference between the

central and bottom regions in Fig. A.1(c) or the top left corners of Fig. A.1(d,e).

A.2.2 Training data

The training data in [170] is provided separately and is shown in Fig. A.3 for the first

five composites and in Fig. A.4 for the last case. For the purpose of training the U-Nets,

the training images were tessellated into sub-regions of 32 × 32 pixels each.

Pairs of textures and labels were constructed simultaneously in the following way:

two training images were selected. Sub-regions of each image were selected and for

every pair of the sub-regions, half of each was selected and placed together so that a

new 32 × 32 patch with both textures was created with a corresponding 32 × 32 patch

with the classes. The patches were created with diagonal, vertical and horizontal pairs.
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Fig. A.1 Six composite texture images. (a-e) Texture arrangements with five textures.
(f) Texture arrangement with sixteen textures. Notice first, that individual textures
have been histogram equalised and thus each region cannot be distinguished by the
intensity, and second, some textures area easier to distinguish (e.g. (a)) than others
(e.g. (d)).
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Fig. A.2 (a) Mask corresponding to texture arrangements of Figs. A.1(a-e). (b) Mask
corresponding to texture arrangements of Fig. A.1(f).

The training images were traversed horizontally and vertically without overlap creating

numerous training pairs. A montage of the texture pairs and labels corresponding to

Fig. A.1(a) is illustrated in Fig. A.5. All pairs between classes were considered i.e.

1 − 2, 1 − 3, 1 − 4, 1 − 5, 2 − 1, 2 − 3, . . . , 5 − 3, 5 − 4. In total, 2940 patches were created

for the five composites with five textures and 35280 were created for the composite

with sixteen textures.

A.2.3 Traditional texture segmentation algorithms

We compared the results of the following texture segmentation algorithms: co-occurrence

matrices [213], watershed [216], local binary patterns (LBP) [214, 215], filtering [170]

and multiresolution sub-band filtering (MSBF) [217] against a U-Net architecture [88].

The traditional algorithms have been thoroughly described in the literature; however,

for completeness, a short explanation of how features are extracted with each algorithm

will follow. For a review of traditional texture techniques, the reader is referred to any

of the following reviews [262–264].

Co-occurrence matrices are constructed from a quantised version of a grey level

image so that if an image is quantised to 8 levels, the co-occurrence matrix will have 8

rows and columns. The values of each location of the matrix will depend on the number

of times that a pair of grey levels jointly occur at a neighbouring distance (e.g. 1 pixel
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Fig. A.3 Training images corresponding to the texture arrangements of Figs. A.1(a-e).
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Fig. A.4 Training images corresponding to the texture arrangements of Fig. A.1(f).
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Fig. A.5 Montages of the texture pairs created to train the deep learning networks.
Training images shown in Figs. A.3,A.4 were tessellated and arranged in diagonal,
vertical and horizontal pairs. (a) Texture pairs. (b) Labels. (c) Detail of the texture
pairs. (d) Detail of the labels.
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away) with a certain orientation (e.g. horizontally). In this way, a co-occurrence matrix

is able to measure local grey level dependence: textural coarseness and directionality.

For example, in coarse images, the grey level of the pixels change slightly with distance,

while for fine textures the levels change rapidly. From this matrix, different features

like entropy, uniformity, maximum probability, contrast, correlation, difference moment,

inverse difference moment, correlation can be calculated [213]. Once the features

have been calculated, classifiers can be applied directly, or further processing like the

watershed transforms can be applied.

Watershed transforms are based on a topographical analogy of a landscape. Should

water fall in this landscape, it would find the path through which it could reach a

region of minimum altitude, i.e. a basin, sometimes called lake or sea. For each point

in the landscape (or pixel of the image) there is a path towards one and only one basin.

Thus, the landscape can be partitioned into catchment basins or regions of influence of

the regional minima and the boundaries between the basis (e.g. points of inflection) are

called the watershed lines. [265]. The watershed transform can be applied to features

extracted from the co-occurrence matrix[216]. The basins produced can further be

iteratively merged to segment textured regions.

Local binary patterns (LBP) [214], explore the relations between neighbouring

pixels. These methods concentrate in the relative intensity relations between the pixels

in a small neighbourhood and not in their absolute intensity values or the spatial

relationship of the whole data. The underneath assumption is that texture is not

properly described by the Fourier spectrum and traditional frequency filters. The

texture analysis is based on the relationship of the pixels of a 3 × 3 neighbourhood.

A Texture Unit is first calculated by differentiating the grey level of a central pixel

with the grey level of its neighbours. The difference is measured if the neighbour is

greater or lower than the central pixel. Two advantages of LBP is that there is no need

of quantising images and there is a certain immunity to low frequency artefacts. In a

more recent paper, Ojala [215] presented another variation to the LBP by considering

the sign of the difference of the grey-level differences histograms. Under the new
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consideration, LBP is a particular case of the new operator called p8. This operator

is considered as a probability distribution of grey levels, when p(g0, g1) denotes the

co-occurrence probabilities, they use p(g0, g1 − g0) as a joint distribution.

Filtering, in the context of image processing, consists of a process that will modify

the pixel values. There are spatial filters, which are applied directly to the values of the

images (e.g. average neighbouring pixels to blur an image) and filters which are applied

after a transformation of the data has been performed. Thus a filter in the frequency or

Fourier domain will be applied after the image has been converted through the Fourier

transform. The filters in the Fourier domain are sometimes named after the frequencies

that are to be allowed to pass through them: low pass, band pass and high pass filters.

Since textures can vary in their spectral distribution in the frequency domain, a set

of sub-band filters can help in their discrimination. One common frequency filtering

approach is that of Gabor multichannel filter banks [266, 219, 225, 267, 268].

The partitioning of the Fourier space can be achieved in different ways, Gabor being

only one. A multiresolution approach, based on finite prolate spheroidal sequences

is described in [217]. The Fourier space is divided into frequencies and orientations,

which are further subdivided in a multiresolution approach. Each filter then produces

a feature; different textures are captured by different filters. In addition, a feature

selection strategy can improve the texture segmentation.

A.2.4 U-Net configuration

The basic U-Net architecture was formed with the following layers: Input, Convolu-

tional, ReLU, Max Pooling, Transposed Convolutional, Convolutional, Soft-max and

Pixel Classification. Two levels of depth were investigated by repeating the down-

sampling and up-sampling blocks in the following configurations:

15 layers:

Input,

Convolutional, ReLU, Max Pooling,

Convolutional, ReLU, Max Pooling,
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Convolutional, ReLU,

Transposed Convolutional, Convolutional,

Transposed Convolutional, Convolutional,

Soft-max,

Pixel Classification

20 layers:

Input,

Convolutional, ReLU, Max Pooling,

Convolutional, ReLU, Max Pooling,

Convolutional, ReLU, Max Pooling,

Convolutional, ReLU,

Transposed Convolutional, Convolutional,

Transposed Convolutional, Convolutional,

Transposed Convolutional, Convolutional,

Soft-max,

Pixel Classification.

The image input layer was configured for the 32 × 32 patches. The convolutional

layers consisted of 64 filters of size 3 and padding of 1. The pooling size was 2 with

stride of 2. The transposed convolutional had a filter size of 4, stride of 2 and cropping

of 1. The number of epochs evaluated were 10, 20, 50, 100. The following optimisation

algorithms were analysed: stochastic gradient descent (sgdm), Adam (Adam) [191] and

Root Mean Square Propagation (RMSprop). One last investigation was performed by

training the 20 layer network two separate times to investigate the variability of the

process.
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A.2.5 Misclassification

For the purposes of assessing the algorithms, a pixel-based assessment will be considered.

Each pixel whose class is correctly determined by the segmentation algorithm will

be counted as Correct, every pixel which the algorithm assigns a different class will

be considered as Incorrect. Notice that since there is no foreground/background

distinction but rather correct or incorrect, both True Positive (TP) and True

Negative (TN) are included as correct, and False Positive (FP) and False Negative

(FN) are included in the incorrect. Thus, the misclassification in percentage, or

classification error, will be calculated as number of incorrect pixels divided by the total

number of pixels of the image m = 100 ∗ (FP + FN)/(TP + TN + FP + FN). The

accuracy can be calculated as the complement a = 100 ∗ (TP + TN)/(TP + TN +

FP + FN).

A.3 Results

For each image, the networks were trained with the 3 different optimisation algorithms,

3 layer configurations and 4 epoch numbers, for a total of 36 different combinations.

Thus for the 6 composites images there were 216 results. The misclassification of

each segmentation was measured against the ground truth as the percentage of pixels

classified incorrectly. These results are summarised in table A.1.

The best results for each image were selected and compared against traditional

methodologies and are shown in table A.2. The results are illustrated graphically in

two ways. Fig. A.6 shows segmented the classes overlaid as different colours over the

original textured images. Fig. A.7 shows correctly segmented pixels in white and the

misclassified pixels in black.
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Table A.1 Comparative misclassification (%) results of the different U-Net configurations.
(Bold and underline denotes the best result for each image).

Method Figures
Layers Optimisation Algorithm Epochs a b c d e f
15 sgdm 10 6.8 21.5 40.8 31.2 27.2 20.9
20 sgdm 10 33.0 59.0 74.3 79.1 77.3 41.9
20 sgdm 10 71.9 62.9 74.3 78.8 72.1 39.0
15 Adam 10 3.2 10.4 7.9 7.1 17.8 19.3
20 Adam 10 7.4 15.5 46.5 25.0 45.1 94.2
20 Adam 10 6.4 15.5 36.0 21.1 26.7 32.9
15 RMSprop 10 5.1 8.9 14.0 18.3 12.1 17.6
20 RMSprop 10 5.3 42.4 45.3 59.9 56.2 27.7
20 RMSprop 10 20.2 37.4 47.0 43.7 44.2 26.1

15 sgdm 20 3.8 23.1 17.5 15.9 14.1 19.8
20 sgdm 20 27.3 60.5 74.8 69.3 73.9 27.4
20 sgdm 20 23.8 51.0 63.6 66.8 56.5 26.7
15 Adam 20 3.7 11.6 7.5 7.4 9.5 71.7
20 Adam 20 6.1 13.3 28.7 18.5 40.8 32.2
20 Adam 20 5.6 17.9 27.4 22.5 39.3 94.0
15 RMSprop 20 3.8 11.7 14.5 19.2 11.7 17.9
20 RMSprop 20 6.1 42.2 54.7 47.5 42.6 22.3
20 RMSprop 20 19.1 30.3 44.7 51.7 37.1 26.9

15 sgdm 50 3.2 15.3 9.2 7.7 13.8 19.6
20 sgdm 50 18.2 32.2 60.3 42.8 30.2 28.9
20 sgdm 50 9.4 55.2 56.0 16.0 32.4 32.4
15 Adam 50 3.4 10.4 9.8 9.9 39.1 22.6
20 Adam 50 8.3 80.3 19.8 82.3 79.6 34.8
20 Adam 50 7.2 9.6 41.4 10.0 27.6 23.6
15 RMSprop 50 3.4 18.7 10.0 8.3 11.2 17.5
20 RMSprop 50 5.6 33.2 25.7 34.8 34.4 22.4
20 RMSprop 50 5.4 22.8 45.3 20.0 34.7 29.2

15 sgdm 100 3.9 10.6 7.9 7.7 7.7 21.4
20 sgdm 100 9.6 22.1 39.4 39.7 30.3 23.8
20 sgdm 100 13.7 17.1 52.8 26.3 37.1 30.5
15 Adam 100 2.7 16.6 80.3 7.2 18.2 21.9
20 Adam 100 2.6 38.9 79.9 80.1 31.1 25.7
20 Adam 100 3.4 80.0 79.7 80.9 80.3 28.6
15 RMSprop 100 4.8 11.2 7.2 8.1 9.5 18.1
20 RMSprop 100 7.1 66.0 46.0 28.6 30.9 24.0
20 RMSprop 100 5.6 29.5 26.9 18.5 29.3 22.9
Max 71.9 80.3 80.3 82.3 80.3 94.1
Mean 10.4 30.7 39.4 33.7 35.6 30.7
Min 2.6 8.9 7.2 7.1 7.7 17.5

Table A.2 Comparative misclassification (%) results with co-occurrence [213], best
filtering result from Randen [170], p8 and LBP [215], Watershed [216], Multiresolution
sub-band filtering (MSBF) [217] and U-Net [88]. (Bold is the best for each image).

Method Figures
a b c d e f Average

Co-occurrence [213] 9.9 27.0 26.1 51.1 35.7 49.6 33.23
Best in Randen [259] 7.2 18.9 20.6 16.8 17.2 34.7 19.23
p8 [214] 7.4 12.8 15.9 18.4 16.6 27.7 16.46
LBP [214] 6.0 18.0 12.1 9.7 11.4 17.0 12.36
Watershed [216] 7.1 10.7 12.4 11.6 14.9 20.0 12.78
MSBF [217] 2.8 14.8 8.4 7.3 4.3 17.9 9.25
U-Net [88] 2.6 8.9 7.2 7.1 7.7 17.5 8.50
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Fig. A.6 (a-f) Results of the segmentation with U-Nets for the six texture arrangements.
The misclassification (%) is shown in each case. The classes are shown as overlaid
colours.
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Fig. A.7 (a-f) Results of the segmentation with U-Nets for the six texture arrangements.
The misclassification (%) is shown in each case. Pixels that are correctly classified
appear in white.
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A.4 Discussion

The results provided by the U-Net algorithm provided interesting results in terms of

the actual misclassification results against traditional algorithms, and the variability of

the U-Net cases. The segmentation results provided by the U-Nets were better in four

of the six images. In some cases, the results were very close to the second best option

(a: 2.8/2.6, d: 7.3/7.1) and in two cases (e,f) traditional algorithms provided better

results (e: 4.3/7.7, f: 17.0/17.5). The average for all the six composites was best for

U-Nets, however, given the fact that the difference with the second best is relatively

small (0.75), and that traditional algorithms provided better results in 1/3 cases shows

that care should be taken when selecting algorithms. This is similar to the conclusion

of Randen who stated that "No single approach did perform best or very close to the

best for all images" [259].

In terms of the U-Net configuration there are several interesting observations.

First, there was a great variability in the results produced by the different U-Net

configurations. It was surprising that the maximum value of the misclassification in

some cases was extremely high, 80% in the cases of 5 textures and 94% in the case

of 16 textures, those cases are equivalent of selecting a single class for all textures.

Second, three of the best results were obtained with 100 epochs, 2 with 10 epochs,

and 1 with 50, which is counter-intuitive as it would be expected that longer training

times would provide better results. Third, three of the best results were provided by

RMSprop optimisation, two by Adam and one by sgdm. Fourth, and perhaps the most

surprising result was that the results provided by the two 20 layer configurations were

very different. In a few cases the result were equal (e.g. image c, sgdm, 10 epochs;

image b, Adam, 10 epochs) but in others the variation was huge (e.g. image b, Adam,

50 epochs).

In terms of texture, it can be highlighted that not all textures are the same, the

five textures of image (a) are far easier to distinguish and correctly segment than those

of image (b) and image (f). The U-Net was capable of segmenting these textures with

accuracy comparable or better than traditional techniques. As mentioned previously,
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the fact that the textures have been histogram equalised removes the discrimination

of the regions by their average intensities. More complex architectures, e.g. Siamese

Networks [261] could provide better results, but it is important to use a standard

benchmark such as that provided by Randen [259].

There are many other configuration parameters that could be varied; learning

rate, batch size, variations of the training data, different number of layers, but for the

purpose of this work, the results show first, the capability of deep learning architectures

for segmentation of textured images and second, in some cases better results that

traditional methodologies. However, the configuration of the network is not trivial

and variations of some parameters can provide sub-optimal results. The experiments

conducted in this work did not provide conclusive evidence for the selection of any of

the parameters evaluated. Furthermore, training of the networks requires considerable

resources. The training times for the images with 5 textures took around 5 hours

and for the image with 16 textures around 96 hours on a Mac Pro (Late 2013) with

a 3.7GHz Quad-Core and 32 GB Memory with Dual AMD FirePro D300 graphics

processors.

Therefore, it can be concluded that U-Net convolutional neural networks can be

used for texture segmentation and provide results that are comparable or better than

traditional texture algorithms. Furthermore, these results encourage the application of

deep learning to other areas. If we assume that different textures are characterised by

patterns, i.e. repetitions of certain sequences or particular variation of intensities, then

any data which is characterised by patterns could be analysed. For instance, phonemes

in human speech have different patterns, which when combined form words. Thus one

line of an image with different textures would have similar characteristics as a the

intensity variation of a phrase with different phonemes. Moreover, voice signals, which

are one-dimensional can be converted into two-dimensional spectrograms [269] with

time on one axis and frequency in another axis. In these cases, the spectrograms can

be analysed for texture directly.





Appendix B

Preliminaries of image analysis

In this appendix, an overview on the broad field of image analysis is presented. Classical

approaches are overviewed and in some cases tested on generic images. The techniques

discussed here present a thorough explanation of the methods used as exploration of

the data in chapter 4.

B.1 Pre-processing

Pre-processing of an image in this report refers to the operations performed on an

image that allows for a more precise segmentation or analysis of the data. These

operations can highlight some of the images’ features, remove noise, modify dimensions

and should improve the results of posterior operations. One classical classification

of pre-processing techniques is from the work by Sonka et al. [128], which classifies

such techniques into pixel brightness transformations, geometric transformations and

transformations in local neighbourhoods. Pixel brightness transformations refer to

modifications in the image regarding the pixels themselves, which normally address

brightness or grey-scale corrections. Geometric transformations are made to address

different types of distortion an image may present. Finally, local-preprocessing involves

the operation in the neighbourhood of a given pixel in order to produce a new value

for that location.
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Furthermore, another approach in the work by Gonzalez and Woods [127] classifies

the techniques into transformations of intensities and spatial filtering. Transformations

of intensities, refer to transformations to the intensity levels I = 1, 2 · · · , L in

each pixel, which produce modifications of the statistical distribution of the intensities.

Spatial filtering refers to the local neighbourhood operations. Techniques which involve

the convolution of the image with a filter kernel, to produce a new image in which each

pixel is the result of a local operation.

B.1.1 Noise

Real images are often degraded by some random errors - this degradation is usually

called noise [128]. Noise can occur during image capture, transmission, or processing,

and may be dependent on, or independent or, image content. Left side of Figure B.1a,b

show the original image with grainy texture used in this work. When looking at indi-

vidual pixel intensities and their neighbourhoods, noise can be seen as intensity values

that are quite different to those within the pixel’s neighbourhood. Thus techniques for

dealing with noise are commonly associated with smoothing techniques.

Filtering

This section provides an overview of the techniques in which each pixel in the image

is assigned a specific neighbourhood in which a predefined operation is performed.

Filtering can be viewed differently depending on the field of study. Apart from

reducing noise in the images, other filters can be used to enhance some properties or

features of the image, extracting relevant information from it. The term filtering is

taken from the field of digital signal analysis and processing in which properties of a

signal are selected, enhanced or suppressed through convolution with a finite function

with special characteristics.

Filter kernels consist of matrices commonly of small sizes that can have different

parameters that determine the values within them. Throughout this work, it can be

assumed that all kernels, represented with letterK, are square matrices of size n, with

n = 2a + 1, a ∈ N , unless explicitly determined.
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Depending on the type of filter applied, the values will change to highlight certain

features in the image, like edges or corners. The following sections discuss two of

the principal filtering approaches: smoothing and sharpening of image features. The

difference lies in the properties of the kernels chosen to perform the convolution. To

highlight the processes performed in each image, two levels of detail will be provided.

In this section, examples of smoothing filters are presented, as well as its application

on relevant images for this work. The filters are presented in terms of the kernels that

contain them.

Smoothing (also called averaging) spatial filters are used to reduce sharp transitions

in intensity [127]. Because random noise typically consists of sharp transitions in

intensity, an obvious application of smoothing is noise reduction. Smoothing is used to

reduce irrelevant detail in an image, where "irrelevant" refers to pixel regions that are

small with respect to the size of the filter kernel. The kernel is an array whose size

defines the neighboured of operation, and whose coefficients determine the nature of

the filter. Smoothing filters are used in combination with other techniques for image

enhancement. Spatial filtering consists of convolving an image with a filter kernel.

Convolving a smoothing kernel with an image blurs the image, with the degree of

blurring being determined by the size of the kernel and the values of its coefficients.

In general, smoothing filters are useful if the data presents high frequency noise,

and thus serve as low pass filters, in the context of signal analysis. Several filters were

applied to the data exploring their individual parameters.

Averaging kernel

In this type of kernels, the values of the elements in K represents a weight or

proportion, that is, the values are between (0, 1) and the sum of all the values in the

kernel add up to 1.

In the convolution I⊛K = imfilt(I,K), every pixel value is replaced by the weighted

average of the pixels in the n-neighbourhood [2].

The most straightforward implementation of this filter is what is known as a box

filter, which has uniform weights assigned to all the pixels K(i, j) = 1/n2. The only
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parameter is the size of the filter, which at each point in the resulting matrix produces

the mean of the intensity values contained within the scope of the filter. Another

example of the weight distribution in the kernel is the disk filter, an averaging filter

acting upon a circular area. The circle is or radius r and the size of the kernel is 2r + 1.

The filter highlights circular structures which match the size of the radius of the circle.

The principle is the same as the one in the box filter, given the size of the filter, taking

the central element K(r + 1, r + 1), all elements within the radius will contain a value

higher than zero. As it is a discrete filter, the edges of the circle will not coincide with

the finite grid of the kernel.

B.1.2 Gaussian filter

Gaussian filters are another type of smoothing filter in which the values follow a discrete

2D Gaussian of the size of the kernel. The parameters in the filter are zero mean (0)

and variance (σ2), as well as the size of the filter (n). The 2D shape of the Gaussian

resembles a bell, where the width of it is determined by the variance. It is important to

note that the Gaussian kernel must consider a value for n large enough for an adequate

discretisation of K.

Image smoothing is the set of local pre-processing methods whose predominant use

is the suppression of image noise - it uses redundancy in the image data [128]. Noise is

often described by its probabilistic characteristics, and as such can be associated with

the Gaussian distribution as a very good approximation to noise that occurs in many

practical cases [128]. The Gaussian distribution is characterised in one dimension by

a bell-shaped curve, in two by a bell shape and has one parameter, σ, the standard

deviation of the distribution. The 2D Gaussian smoothing operator G(x,y), also called

a Gaussian filter, or simply a Gaussian is given by Equation B.1

G(x, y) = e−(x2+y2)/2σ2 (B.1)
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(a) (b)

Fig. B.1 (a) Illustration of the effects of low-pass filtering on one representative image
of a HeLa cell. Left half: Original image with grainy texture. Right half: image filtered
with a low-pass filter with a Gaussian kernel with size h = 7 and standard deviation
σ = 2 to remove high frequencies. (b) Region of interest of (a).

where x,y are the image co-ordinates and σ is a standard deviation of the associated

probability distribution. Sometimes this is presented with a normalising factor as in

Equation B.2 :

G(x, y) = 1
2πσ

e−(x2+y2)/2σ2 (B.2)

The standard deviation σ is the only parameter of the Gaussian filter - it is

proportional to the size of the neighbourhood on which the filter operates. Pixels more

distant from the centre of the operator have smaller influence, and pixels further than

3σ from the centre have negligible influence. For this distribution to be used as a

smoothing operator we modify the parameter σ to give the approximate neighbourhood

size that we wish to consider. Larger values of σ correspond to wider bell shapes

and thus larger neighbourhoods over which smoothing takes place. Since the image is

discrete but the Gaussian distribution is continuous, the kernel we define is a discrete

approximation to the continuous Gaussian for a particular value of σ.
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Figure B.1 show the effect of low pass filtering on the original image of a HeLa cell.

Image was filtered with a low-pass filter with a Gaussian kernel with size h = 7 and

standard deviation σ = 2. Filtered image improves segmentation as the Gaussian blurs

the original image and to removes high frequencies.

Order statistic filtering.

Most filtering is performed through convolution. As shown in Figure C.1, the

convolution can be interpreted as a moving window of the size of the kernel, which

at every step, selects the pixels in the input image that will contribute to the new

intensities certain position in the output; normally through the sum of the array

multiplication of the elements in the kernel by the elements in the image. Order

statistic filtering, the same idea of a moving window is taken, but at every stage, the

calculation of a percentile is performed in the pixels selected at a certain moment. The

most common calculations are the minimum, maximum and median filters.

Sharpening filters

To analyse a digital image, it is sometimes useful to locate certain geometric objects,

such as lines which could correspond to edges and ridges in the image where certain

key objects are located. Thus, highlighting transitions in intensity, with a sense of the

magnitude of such transitions becomes key to image processing [127]. In calculus, the

operator that describes the rate of change at a certain point is the derivative, or in

multivariate calculus, the gradient. As images were constructed as discretisations of

continuous functions of two variables, applying the numerical concepts of differentiation

to the images would provide an insight to the characterisation of intensity transitions.

On the other hand, as an image can be observed as a signal in the spatial domain,

abrupt transitions could be linked to locations of a high frequency.

B.2 Image segmentation by intensity thresholding

Segmentation is the process of classifying pixels into one of two categories: foreground,

or objects of interest, and background. In a way, segmentation provides context to an
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image selecting the regions which - given an application- are important. In particular

cell segmentation is a widely studied problem which has produced considerable amount

of research output.

Intensity levels on an image are referred to be a finite set of L levels, {1, 2, 3, . . . , L}.

Thus, performing a segmentation by intensity thresholding implies finding a value k

which separates the intensity levels into groups: {1, 2, 3, . . . , k − 1} and {k, k + 1, k +

2, . . . , L}. Let CR be the set of intensities in which the intensities of an image are

categorised, where R refers to the region in which the image will be segmented, and

can be either a subscript or a number depending on the context. It is important to

remember that the segmentation output of a method will be a binary image which

takes the value 1 at the detections of foreground and 0 at the background. The concept

of hysteresis thresholding is a technique for image segmentation that uses two levels to

segment an image, a higher one that determines what will be part of the foreground

and a lower one that will distinguish what will be considered as background.

In the following sections, the description of different techniques to automatically

select the threshold from the image intensities in the image will be given. Two main

approaches are compared: the global threshold, which uses a single level throughout

the image and the adaptive threshold which selects a threshold locally.

B.2.1 Otsu’s threshold

Otsu [270] developed an algorithm for differentiating between classes, i.e. finding a

threshold, by maximising the quotient of between and within variances of the classes.

In simple terms, the algorithm would select a threshold that would distinguish the

classes as much as possible, while at the same time would make the intensity levels

within the class as alike as possible, one advantage is that this procedure can simply

be extended to more than two classes. The derivation of the algorithm is presented for

a single threshold as the extension to multiple thresholds is straightforward.

Given the levels of intensity found in an image I = {1, 2, 3, · · · , L}, the Otsu

method finds a level of intensity k, 1 ≤ k ≤ L, that maximises the quotient σ2
B/σ2

W ,
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(a) (b) (c) (d)

Fig. B.2 Illustration of a HeLa cell image after applying different Otsu thresholds.
Different number of thresholds were applied producing different number of classes Ci.
(a)-(d) show the results of applying 4 thresholds selected by the Otsu method. The
following threshold values were used - 115, 145, 171, and 201 - range of values is 86.
There may seem to be grey levels besides white and black, but this is due to the grainy
textures.

where σ2
B is the variance between the two classes (foreground and background) and σ2

W

is the variance within the classes. Otsu’s method, while very fast, is very sensitive to

outliers on the data. Figure B.2 illustrates the results of applying 4 thresholds selected

by the Otsu method on a HeLa cell image.

B.2.2 Adaptive thresholding

Variations of the thresholding technique are presented in the works by Pappas and

Bradley and Roth [2]. In the work by Pappas the segmentation achieved was different

from the global ones, as the threshold level chosen is dependent on the local pixels

at given positions. Instead of selecting thresholds that take into consideration the

statistical properties of the entire image, the method starts with global estimates of

the levels and adapts them to the local characteristics of each region.

The concept of an adaptive threshold becomes relevant when the objects of interest

in images varies considerably, and a single threshold might not be enough, even a

robust one like a hysteresis threshold. In addition, it is possible that the images suffer

from shading due to a variety of reasons. The work by Pappas can be seen as a

generalisation of the k-means algorithm that include spatial constraints and account for

local variations of intensity. The algorithm works through the estimation of the regions
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of an image (segmentation) and the parameters in an a posteriori density function that

computes the probability of the distribution of regions (x) given the observed image

(y).

On the other hand, the work by Bradley and Roth presents an adaptive threshold

methodology that takes into account spatial variations in illumination. It achieves its

purpose by selecting a threshold value based on local mean intensity in the neighbour-

hood of each pixel. A neighbourhood of 1/8th of the size of the image is used around

each pixel. Each pixel gets assigned a different threshold value in which each pixel is

compared against. A parameter called sensitivity is included, which allows for some

control from the user into the threshold taken by the algorithm.

B.3 Methods based on derivatives

In this section, methods based on derivatives will be described. The derivatives will

be outlined both in terms of the gradient and the filter which can be used to perform

the analysis. The image gradient can be obtained from an estimation of the derivative

through central differences. In this work, the symbol used for partial derivatives

applied to an image is ∂xI(x, y), ∂yI(x, y), will refer to the point-wise estimation of the

derivative. While the symbol for gradient ∇xI will refer to the image which contains

all the partial derivative calculations per position, i.e. ∇xI = (∂xI(i, j)). Consider

a kernels given by the matrices Kx = (1, 0, 1)T and Ky = (1, 0, 1). Centred around

position (x, y), a convolution of certain filters in the image would produce at each pixel

the approximation of the derivative per point.

The image gradient will consist of both images containing all the partial derivatives

per point, and per direction: Gx = ∇xI,Gy = ∇yI, as well as the gradient magnitude

G = |∇I| =
√

∇xI2 + ∇yI2. Different calculations of the gradients can be applied,

commonly, Sobel, Prewitt and Roberts. The difference lies in the kernels used.
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Fig. B.3 List of kernels of common sharpening filters in different directions.

Table 3.2 shows the different kernels to calculate the gradients Gx,Gy for an image.

The Laplacian filter is also presented, which provides the estimation of the Laplacian

operator ∇2f = ∂2
xxf + ∂2

yyf,.

Figure B.3 shows the table of kernels of common sharpening filters in different

directions.

To showcase the different implementations of the derivatives, Figure B.4 includes

the detail of a Wild-type of HeLa cell data set in which the image has been processed

with each of the filters.

B.4 Edge detection

An important problem in image analysis is the detection of contours of objects or

edges. Note that filtering highlights edges and points of abrupt changes, however edge

detection refers to the creation of a binary image where positive values are located

where changes are more abrupt. In particular, the Canny [178] edge detection algorithm

has been a widely referenced image analysis technique with thousands of citations since
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(a) (b)

(c) (d) (e)

Fig. B.4 Representation of different edge detection methods applied on HeLa cell image.
Edge detection is an image processing technique for finding the boundaries of objects
within images. Detail of a slice is presented after applying the different edge detection
methods analysed in this section, each one presenting the gradient’s magnitude. (a)
HeLa raw image with high frequency noise. (b) Raw image was low-pass filtered with a
Gaussian kernel with size h = 7 and standard deviation σ = 2 to remove high frequency
noise. (c) Canny, (d) Sobel, (e) Roberts. (f) Prewitt. The edges were dilated for
visualisation purposes.
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its publication in 1986. As it is relevant to this work, an overview of the algorithm is

provided and some examples of its implementations, while varying its key parameters.

The two main advantages of the algorithm are (i) the ability to modify the Gaussian

kernels, allowing different edges to be visible and (ii) the non-maximum suppression

which allows to select the more relevant ones. The technique would be better classified

as a segmentation of the edges in the image, as the output is a binary image with

two levels, I = 0, 1. It is included in this section to provide context of the application

of sharpening filters and because the term segmentation, in this work, refers to the

distinction of cells from other cells and from the background.

A significant class of algorithms utilise the edges found from an image that are

defined by changes in colour, intensity or texture as a gradient within the image. Among

the most popular methods are edge detecting operators, such as the Laplacian, Prewitt

and Sobel convolution filters. All these operators convolve a small square kernel, often

of dimension 3×3, with the image to compute the gradient or second derivative at each

pixel in the image. The resulting gradient map can then be thresholded to decide which

edges are significant. The results of such operators most often cannot be used directly

for segmentation, instead additional processing is required to form a continuous edge

map from the convolved image. Noise in the original image is also a source of errors in

segmentation; edges can appear where there is no border in the original image, and

vice versa. A popular technique is to smooth the image before edge detection in an

attempt to reduce noise; this is most commonly achieved using a Gaussian filter.

B.4.1 Canny edge detection

Edge detectors are a collection of very important local image pre-processing methods

used to locate changes in the intensity function; edges are pixels where this function

changes abruptly [128]. A significant class of algorithms utilise the edges found from an

image that are defined by changes in colour, intensity or texture as a gradient within

the image. Among the most popular methods are edge detecting operators, such as

the Laplacian, Prewitt [271] and Sobel [272] convolution filters. All these operators
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Fig. B.5 Detail of output of Canny algorithm on HeLa cell image. Different values
of σ2 are presented to showcase the output of the algorithm. Notice that the size of
the variance σ is inversely proportional to the level of detail being analysed by the
algorithm. (a) Canny standard deviation σ = 2, (b) σ = 4, (c) σ = 6 and (d) σ = 10.
Edges were dilated for visualisation purposes.
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convolve a small square kernel, often of dimension 3 × 3, with the image to compute

the gradient or second derivative at each pixel in the image. The resulting gradient

map can then be thresholded to decide which edges are significant.

Introduced by John Canny in 1986 [178], a commonly used algorithm is that of

Canny edge detection [127, 128] and its performance is superior in general to the other

edge detectors mentioned earlier. It is based upon three criteria that Canny aimed to

satisfy to find an optimal edge detector:

(a) Low error rate. Important edges should not be missed - all edges should be

found, and there should be no spurious responses. (b) Edge points should be well

localized. Distance between the actual and located position of the edge should be

minimal. (c) Single edge point response. Any given edge should only be marked once

and noise should not create false edges. If there are two responses to any given edge,

one should be marked false.

The first stage of his algorithm is to perform noise reduction by a convolution with

a Gaussian filter. From here, estimates of the edge normal directions are calculated for

each pixel using an edge detection operator, which are then rounded to one of the four

directions that represent vertical, horizontal and diagonal gradients. This is then used

to perform non-maximum suppression of edges; a pixel is determined to be an edge if

its gradient magnitude is greater than those of both its immediate neighbours in the

same direction as the gradient magnitude.

At this stage we have a binary image consisting of edge points. An important step

is to now go back over the image and compute the magnitude of each edge point such

that thresholding can be applied; edge points with higher gradient magnitude are more

likely to be edges than those with a smaller magnitude. Thresholding with hysteresis,

requiring the definition of two thresholds, is then used to identify the edges. A high

threshold determines those pixels that are definitely an edge whereas a low threshold

determines pixels that are also an edge if they are connected to any pixels above the

high threshold. This is useful as low gradients often correspond to noise in images,

however being connected to a high gradient pixel should increase the likelihood that it is
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(a) (b) (c)

Fig. B.6 Edges obtained by Canny algorithm and superpixels created on HeLa cell. (a)
One representative slice of a 3D stack imaged with Serial Blockface Electron Microscope
(SBF SEM) with region of interest (ROI) of one HeLa cell centred. At this resolution it
is easy to distinguish the nuclear envelope (NE), borders of the cell and other structures.
The image was filtered with 5 × 5 Gaussian low pass filter with the standard deviation
σ = 2. (b) Edges detected by Canny algorithm in order to detect abrupt changes of
intensity. The edges were further dilated to connect those edges that may belong to the
NE but were disjoint due to the variations of the intensity of the envelope itself. (c)The
edges previously detected were dilated, removed from the image and the remaining
regions were labelled to become superpixels.

part of an edge. An optional final step in Canny’s algorithm is to perform the previous

steps at a number of different spatial resolutions by changing the standard deviation

of the Gaussian used to smooth the image, and to then compile the information from

each resolution into the result. Whilst this can produce an improved edge detection, it

is common for an implementation to choose just one value for the standard deviation

based upon the objects in the image and omit this final step.

Figure B.6b shows edges of the same slice of HeLa cell image shown in Figure B.1

detected by Canny algorithm. The edges were further dilated to connect those edges

that may belong to the NE but were disjoint due to the variations of the intensity of

the envelope itself.

Post-processing

Post-processing is the set of operations performed on binary images which aid the

segmentation to reduce noise or over-detection. In the context of segmentation of cells,

some of the operations can aid in reducing noise, smoothing the edges of the shapes
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(a) (b)

Fig. B.7 Illustration of superpixels of a HeLa cell image. (a) The original filtered HeLa
cell image with the size of 2000 × 2000. There are 4000000 pixels in total in this image.
(b) Superpixels obtained from the original image in (a). In order to obtain superpixels,
the standard pixel grid was replaced by grouping pixels into primitive regions that are
more perceptually meaningful than individual pixels.

and help give a more robust segmentation. Measurements can be performed on the

binary images, like area and orientation.

In this section, some techniques of morphology are over-viewed. Morphology in this

work refers to mathematical morphology, the branch of mathematics that deals with

the representation and description of region shapes in a space [127].

As morphological operations are based on sets, in the next section, a description

and basic ideas of set theory are presented. All notations and the operations shown in

this section are used throughout the dissertation.

B.5 Superpixels

The idea behind superpixels is to replace the standard pixel grid by grouping pixels

into primitive regions that are more perceptually meaningful than individual pixels

[273] (Figure B.7. The objectives are to lessen computational load, and to improve the

performance of segmentation algorithms by reducing irrelevant detail. Superpixels are

a computationally efficient representation of the pixels in an image which take into

account and have a better fit to the objects and structures within the image [274]. Pixels
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are grouped into larger regions based on similarity of colour or texture, and savings

come from calculating features for just superpixels and not all the pixels it contains.

Little global information and fine detail is lost by moving to this representation as

boundaries of structures of interest most often correspond to large changes in the

colour or texture feature with which the superpixels were formed. The superpixel

representation can come close to an accurate segmentation, but is most frequently

used as a pre-processing step for a different segmentation algorithm. One technique

for finding a fast superpixel segmentation is simple linear iterative clustering, or SLIC

[275]. Its performance has been shown to be better than many other techniques for

generating superpixels, and has an advantage of only requiring one parameter, the

target number of superpixels in the output.

Figure B.6c shows superpixels created in the following way. The previously de-

tected edges (Figure B.6b) were dilated and removed from the image, the remaining

unconnected regions were labelled and became superpixels. There was no restriction

in size of these superpixels as it was important to allow for large superpixels that

corresponded to the nucleus and the background.

B.6 Set theory

In this section, the concept of a digital image remains, in which the number of levels is

binary, L = 2, and normally the levels are integers [2]. Each pixel will take a value, 0

or 1 where contiguous areas of pixels with the same value will form areas and objects.

In this work, the contiguous areas of pixels with a value of 1 will be considered to be

objects or sets. This section is referred to when exploring the fundamentals of image

segmentation and when discussing post-processing.

In the case of images, the entirety of the ordered pixels within it can be referred to

as the universe as it contains all possible sets of pixels in it. Thus, each pixel p = I(x, y)

will be an element of the universe. A collection of pixels, will be called a set or a region
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Table B.1 Basic set operations. Let A,B be sets within the universe U, this table
summarises the basic set theory operations and their definitions.

Name Symbol Definition
Union A ∪ B p ∈ A OR p ∈ B

Intersection A ∩ B p ∈ A AND p ∈ B
Complement Ac p /∈ A

Difference A − B p ∈ A ∩ Bc

within the image and represented by A ⊂ U. Table B.1 shows a brief description of

the basic set operations.

In the context of images, pixel positions with a particular intensity - commonly

1 - will correspond to elements in the sets. Therefore, the regions in an image that

constitute a set will be described by positions. In turn, this representation of sets

allows for size to be measured in set as the number of elements in the image region.

Connected regions in binary images with a value of 1 can be modelled as sets in

which the elements correspond to the pixel locations and the universe set corresponds

to the entire collection, of pixels, i.e. the image I.

Let the set A be a connected region in the image I, then the set will be defined as

the collection of points (x, y) in where A = {(x, y)|I(x, y) = 1}. Therefore, cardinality

of a set |A|, also referred to as size of the set, is defined by the number of connected

pixels in a given region.

In previous section, the construction of filter kernels and the notion of convolution

was explored in order to modify the intensities by assigning an operation performed on

a neighbourhood of a pixel. To extend the notion into binary images and sets, some

operations must be defined in the context of sets, and then translated into binary

arrays to define each of the operations.

Structuring elements and notation. Sets are represented by connected regions

in an image with the same value. As mentioned in the classic work by Gonzalez and

Woods [[127], Chapter 10], a structuring element is a small set of sub-image used to

probe an image under study for properties of interest. Such objects can be thought of
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Fig. B.8 Representation of different structural elements in abstract terms and as a
binary kernel S. The diagram shows the abstract representation of a structuring
element as a set with a particular shape. The notion of a centre refers to a point
of reference in which the element can pivot and from which it can move in a plane.
(a) Shows the operation of reflection while (b) shows translation. Notice that if the
structural element is symmetric, and the centre is in the midpoint of the element, then
S = S. Image credit to [2].

in abstract as sets with a centre, or reference point, or as a binary kernel, represented

by the symbol S.

B.7 Morphological operations

Mathematical Morphology is a theory which provides a number of useful tools for

image analysis. Morphology is an approach to image analysis which is based on the

assumption that an image consists of structures which may be handled by set theory

[127].

As morphological operations are based on sets and so the fundamental objects are

sets, set notation will be used in this chapter [128]. Sets are simply groups of pixels,

and the terminology is just a convenient way of describing what pixels lie in particular

groups. For morphology of binary images, the sets consist of pixels in an image.

In a binary image the pixels are either labelled 0 (displayed as black) or those labelled

1 (displayed as white) may comprise the sets of interest. Unless stated otherwise, we
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Fig. B.9 Examples of structural elements. Representations of structural elements
in abstract form (top) and represented as discretisation in matrices (bottom). (a)
Diamond. (b) Line. (c) Circle. (d) Rectangle. (e) Square. Image credit to [2].

will take the black pixels to be the sets of interest. When we refer to operations on

the image, we shall be referring to operations on the set of all black pixels. Usually

this will be the union of several separate sets of black pixels — what we think of as

individual objects. The white pixels are the complement (Figure B.10e) of the black

pixels, the complement of a set being the set of elements it does not contain. Any

operation which affects the set of black pixels will also affect the set of white pixels.

For example, removing a pixel from the set of black pixels naturally creates a new

white pixel.

Morphological operations primarily operate on point sets, connectivity and shape

rather than pixel intensity values and distributions [128]. They are typically used

to simplify shapes, filter noise or modify the object structure in a meaningful and

well defined manner. These operations also require a relation that identifies which

pixels in the image are considered as objects and which as background. Morphological

processing deals with tools for extracting image components that are useful in the

representation and description of shape [127]. Morphological operations are defined

in terms of sets, set operations and relationships (Figure B.10). In image processing

morphology is used with two types of sets of pixels: objects and structuring elements
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Table B.2 Description of main morphological operations and equations in the context
mathematical morphology. Let I be a binary image and S a structuring element of size
2n + 1.

Name Mathematical expression Description
Erosion I ⊖ S = {(x, y)|Sx,y ⊆ I} Reduce the area of present regions in I
Dilation I ⊕ S =

{
(x, y)|Ŝx,y ∩ I ̸= ∅

}
Expands the area of present regions in I.

Opening I ⃝ S = (I ⊖ S) ⊕ S Erosion followed by a dilation.
Closing I ⊙ S = (I ⊖ S) ⊕ S Dilation followed by erosion.

(SE’s). Typically, objects are defined as sets of foreground pixels. Structuring elements

can be specified in terms of both foreground and background pixels.

In most cases, morphological operations are performed similarly to convolution, as a

structuring element will be translated along a binary image, performing set operations

as it moves [276]. In this section, the following operations will be defined: (i) erosion,

(ii) dilation, (iii) opening and closing; as well as some algorithms like (iv) boundary

extraction and (v) hole filling. For the coming definitions, let S be an image and S a

structuring element of size 2n+1, with a centre at position (n+1, n+1). For simplicity,

assume that I contains only one set — or detected object — in it. The operations will

result in new sets, described by the elements in it. In terms of images, the positions

that belong to a particular set will have a value of 1 in the resulting image.

Figure B.11 represents the application of the different morphological operations

of a structural element S into a set with disjoint regions A. The structural element

present in the picture will be translated throughout the plane containing the set A,

and the output produced will follow the equations in Table B.2.

Morphological operations transform the image. The morphological transformation

of an image requires the definition of an additional smaller SE expressed with respect

to a local origin. The SE is moved systematically across the entire image with each

pixel placed at the local origin of the element, and the output of the operation is stored

in a separate output image. Typical SE include squares, circles and lines, but can also

be arbitrarily shaped according to the application.
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(a) (b)

(c) (d)

(e) (f)

Fig. B.10 Basic ideas of set theory. (a) The set A. The pixel x is an element of A.
(written x ∈ A); (b) Two overlapping sets, A and B; (c) Subsets: The shaded pixels
(C) are a subset of A. (written C ⊂ A); (d) The union of A and B (written A ∪ B;
(e) The complement of A (written Ac ); (f) The intersection of A and B (written A ∩
B). Top row from left to right (a), (b), (c) and (d). Second row from left to right (e),
(f), (g) and (h). (a) Venn diagrams corresponding to some of the set operations.(a)
The sample space also called the set universe. In image processing Ω is defined to
be the rectangle containing all the pixels in an image. (b) Complement of set A. (c)
Intersection of set A and set B. (d) Union of set A and set B. (e) Difference between
set A and set B. (f) Complement of set B. (g) Intersection of set A and complement
of set B. (h) Intersection of set A and union of set B and set C. The results of the
operations, such as Ac, are shown shaded. Figures (e) and (g) are the same, proving
via Venn diagrams that A-B = A ∩ Bc. Images adapted from [127].
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There are four primary morphological operations that can be defined based on this

notion [128, 127]. The most basic morphological operation is that of erosion. The

dual operator of a dilation is erosion, where an object pixel is only carried over to the

output image if all object pixels in the SE are present as object pixels in the input

image. An erosion can thus be seen as shrinking or reducing the input image according

to the SE while dilation expands the components of a set. A dilation places the SE

over each object pixel in the original image. Each pixel which is then defined as an

object pixel by the SE being placed there is defined as an object pixel in the output

image. Hence this can be seen as an increasing or growing transformation. Schematics

of the erosion and dilation operations are shown in Figure B.11c, and Figure B.11d.

Two further morphological operators are opening and closing; an opening is an

erosion followed by a dilation and a closing is a dilation followed by an erosion [127].

These operations in general are used to eliminate image details that are smaller than

the SE without distorting the overall shape of objects in the input image [128]. The

closing operator is useful for filling small holes, connecting close objects and smoothing

the outline of objects, with the opening operator effectively performing the inverse

by opening holes. Schematics of the opening and closing operations are shown in

Figure B.11e and Figure B.11f.

Morphological operators are useful for refining regions that may have small holes

due to noise, or for general manipulation of object and region shapes. Their extension

from binary to grey scale images is simple using minimum and maximum operations.

Erosion assigns the minimum intensity value found in the neighbourhood of a pixel in

the input image, and dilation the maximum value. The SE in this case simply defines

the neighbourhood over which intensity values are considered.

Combinations of techniques like in morphological opening, could be useful, as the

erosion could reduce granular noise and the subsequent dilation would grow the area

of the detected object and close certain gaps between disjoint sections. An illustration

of opening and closing operations outputs when applying on a HeLa cell superpixels is

shown in Figure B.12b,c.
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(a) (b)

(c) (d)

(e) (f)

Fig. B.11 Illustration of basic morphological operations: (a) Original set, extracted as
a subset from the turbinate image, (b) structuring element: a square of side 3. The
reference pixel is at the centre. (c) erosion, (d) dilation, (e) opening and (f) closing.
Images adapted from [127].



B.8 Active contours (Snakes) 227

(a) (b) (c)

Fig. B.12 Illustration of opening and closing operations outputs when applying on
a HeLa cell superpixels. (a) Original set of superpixels extracted from HeLa image
through image processing algorithm. A diamond-shaped structuring element kernel
S with r = 15 (where r specifies the distance from the structuring element origin to
the points of the diamond) was used to open and close the superpixels of a HeLa cell
image. (b) opening and (c) closing.

B.8 Active contours (Snakes)

Active contours or snakes [277] area completely different approach to feature extraction.

An active contour is a set of points which aims to enclose a target feature [278]. A good

analogy also taken from is that of a balloon placed around a shape so as to enclose

it fully. If enough air is taken out of the balloon it will surround the object that it

encloses; active contours aim to describe a shape by enclosing it in this manner. A

snake is defined as an energy-minimising spline, and its energy is defined by its shape,

location in the image and certain other image properties. The minimisation task is to

find local minima of energy which then correspond to desired image features.

The snake is initialised at some position in the image and is subsequently deformed

to match the nearest contour. The definition of energy depending on the shape of

the snake limits its applicability to recognising shapes that are intrinsically smooth in

their shape. Shapes that have sharp changes of direction in their border may struggle

to be matched exactly by active contours. Further limitations upon general purpose

use arise from requiring user input to position the initial snakes; active contours are

a deformable model of the shape, so some segmentation is already done by a user in
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order for it to be refined using this method. The outcome of the model will therefore

also be sensitive to how it was initialised by the user.

Snakes are actually quite recent compared with many computer vision techniques

and their original formulation was as an interactive extraction process, though they

are now usually deployed for automatic feature extraction.

Active contours are actually expressed as an energy minimisation process. The

target feature is a minimum of a suitably formulated energy functional. This energy

functional includes more than just edge information: it includes properties that control

the way the contour can stretch and curve. In this way, a snake represents a compromise

between its own properties (like its ability to bend and stretch) and image properties

(like the edge magnitude). Accordingly, the energy functional is the addition of a

function of the contour’s internal energy, its constraint energy, and the image energy:

these are denoted Eint, Econ and Eimage, respectively. These are functions of the set of

points which make up a snake, v(s), which is the set of x and y coordinates of the

points in the snake. The energy functional is the integral of these functions of the

snake, given s ∈ [0, 1) is the normalised length around the snake. The energy functional

Esnake is then

Esnake =
∫ 1

s=0
Eint (v(s)) + Eimage(v(s)) + Econ(v(s))ds

In this equation: the internal energy, Eint, controls the natural behaviour of the snake

and hence the arrangement of the snake points; the image energy, Eimage, attracts the

snake to chosen low-level features (such as edge points) and the constraint energy, Econ

allows higher level information to control the snake’s evolution. The aim of the snake

is to evolve by minimising Eq. (6.8). New snake contours are those with lower energy

and are a better match to the target feature (according to the values of Eint, Eimage

and Econ ) than the original set of points from which the active contour has evolved.
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In this manner, we seek to choose a set of points v(s) such that

dEsnake

dv(s) = 0

This can of course select a maximum rather than a minimum, and a second order

derivative can be used to discriminate between a maximum and a minimum. However,

this is not usually necessary as a minimum is usually the only stable solution (on

reaching a maximum, it would then be likely to pass over the top to then minimise the

energy). Prior to investigating how we can minimise Eq. (6.8), let us first consider the

parameters which can control a snake’s behaviour.

The energy functionals are expressed in terms of functions of the snake, and of the

image. These functions contribute to the snake energy according to values chosen for

respective weighting coefficients. In this manner, the internal image energy is defined

to be a weighted summation of first- and second-order derivatives around the contour.

Eint = α(s)
∣∣∣∣∣dv(s)

ds

∣∣∣∣∣
2

+ β(s)
∣∣∣∣∣d2v(s)

ds2

∣∣∣∣∣
2

The first-order differential, dv(s)/ds, measures the energy due to stretching which is

the elastic energy since high values of this differential imply a high rate of change in

that region of the contour. The second-order differential, d2v(s)/ds2, measures the

energy due to bending, the curvature energy. The first-order differential is weighted

by α(s) which controls the contribution of the elastic energy due to point spacing;

the second-order differential is weighted by β(s) which controls the contribution of

the curvature energy due to point variation. Choice of the values of α and β controls

the shape the snake aims to attain. Low values for α imply the points can change

in spacing greatly, whereas higher values imply that the snake aims to attain evenly

spaced contour points. Low values for β imply that curvature is not minimised and the

contour can form corners in its perimeter, whereas high values predispose the snake to

smooth contours. These are the properties of the contour itself, which is just part of a

snake’s compromise between its own properties and measured features in an image.
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The image energy attracts the snake to low-level features, such as brightness or edge

data, aiming to select those with least contribution. The original formulation suggested

that lines, edges and terminations could contribute to the energy function. Their

energy is denoted Eline, Eedge and Eterm, respectively, and are controlled by weighting

coefficients wline, wedge and wterm, respectively. The image energy is then

Eimage = wlineEline + wedgeEedge + wtermEterm

The line energy can be set to the image intensity at a particular point. If black has a

lower value than white, then the snake will be extracted to dark features. Altering

the sign of wline will attract the snake to brighter features. The edge energy can be

that computed by application of an edge detection operator, the magnitude, say, of

the output of the Sobel edge detection operator. The termination energy, Eterm as

measured by Eq. (4.52) can include the curvature of level image contours (as opposed

to the curvature of the snake, controlled by β(s) ), but this is rarely used. It is most

common to use the edge energy, though the line energy can find application.

The technique which many people compare the result of their own new approach

with is a GAC called the active contour without edges, introduced by Chan and Vese

[210], which is based on the Mumford Shah functional. Their model uses regional

statistics for segmentation, and as such is a region-based level set model. The overall

premise is to avoid using gradient (edge) information since this can lead to boundary

leakage and cause the contour to collapse. A further advantage is that it can find

objects when boundary data is weak or diffuse. The main strategy is to minimise energy,

as in an active contour. The active contour without edges model can address problems

with initialisation, noise, and boundary leakage (since it uses regions, not gradients) but

still suffers from computational inefficiency and difficulty in implementation because of

the level set method.

The process is shown in Figure B.13 where the target feature is the perimeter of

the NE. First, an initial contour is placed inside the NE (Figure B.13a). The contour
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(a) (b) (c)

Fig. B.13 Effect of active contours (snakes) to find the nuclear envelope of HeLa cell.
Using a circular snake to find the nuclear envelope (NE) of a HeLa cell in one of the
300 slices. An initial contour (a small circle) is placed inside the target feature which is
the perimeter of the NE and the contour is then evolved so as to enclose the NE. The
contour is then maximized to find a new contour which grows so as to be closer to the
NE. (a) One representative slice from one HeLa cell. (b) Active contours segmentation
with 2200 iterations. The contour points start to match the NE perimeter. (d) Active
contours segmentation with 5000 iterations included large sections of the cell showing
the influence of the iterations on the result.

is then maximised to find a new contour which grows so as to be closer to the NE.

(Figure B.13b) shows active contours segmentation with 2200 iterations. The contour

points start to match the NE perimeter. After five thousand iterations, the contour

points can be seen to match the NE perimeter well (Figure B.13c).





Appendix C

Convolutional Neural Networks

(CNNs)

Convolutional Neural Networks (CNNs), as a part of the deep learning techniques has

become really popular amongst researchers because of the ease of use and relatively

easy implementation therefore in this appendix basics of CNNs will be presented.

C.1 Convolutional neural networks

In this part, we will introduce convolutional neural network (CNN), which is the most

common type of deep neural networks for image analysis. CNN have been successfully

applied to advance the state of-the-art on many image classification, object detection

and segmentation tasks.

We first describe what convolution is. Next, we explain the motivation behind using

convolution in a neural network. We then describe some operations called pooling,

ReLU, and Fully Connected Layers which almost all convolutional networks employ.

The name "convolutional neural network" indicates that the network employs a

mathematical operation called convolution [68]. Convolution is a specialised kind

of linear operation. Convolutional networks are simply neural networks that use

convolution in place of general matrix multiplication in at least one of their layers.
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The convolution operation

A convolution is defined as an operation on two functions. In image analysis, one

function consists of input values (e.g. pixel values) at a position in the image, and the

second function is a filter (or kernel); each can be represented as array of numbers.

Computing the dot product between the two functions gives an output. The filter is

then shifted to the next position in the image as defined by the stride length. The

computation is repeated until the entire image is covered, producing a feature (or

activation) map. Figure C.1.

The convolution operation is defined by the ⊗ symbol. An output (or feature map)

s(t) is defined below when input I(t) is convolved with a filter or kernel K(a).

Let f(x, y) be an image of size Nr × Nc, and let K be a filter kernel, i.e. a small

square matrix of size n2, n << min (Nr, Nc) with n odd (n = 2a + 1). Then the

convolution g(x, y) = f ⊗ K is given by the following equation,

g(x, y) =
a∑

i=−a

a∑
j=−a

K(i, j)f(x + i, y + j)

Notice that convolution can be represented mathematically as in the equation, with

the operator ⊗, or in MATLAB® notation, imfilt(I,K ). Neural networks implement

the cross-correlation function, which is the same as convolution but without flipping

the kernel.

In convolutional network terminology, the first argument to the convolution is often

referred to as the input, and the second argument as the kernel [68]. The output is

sometimes referred to as the feature map. This is a map of where the filter is strongly

activated and ’sees’ a feature such as a straight line, a dot, or a curved edge. If a

photograph of a face was fed into a CNN, initially low-level features such as lines and

edges are discovered by the filters. These build up to progressively higher features in

subsequent layers, such as a nose, eye or ear, as the feature maps become inputs for

the next layer in the CNN architecture.
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Fig. C.1 An example of 2D convolution without kernel flipping. We restrict the
output to only positions where the kernel lies entirely within the image, called "valid"
convolution in some contexts. We draw boxes with arrows to indicate how the upper-left
element of the output tensor is formed by applying the kernel to the corresponding
upper-left region of the input tensor. This is a simplified diagram of a 2D convolution
of an image and a 2 × 2 kernel. In this case, the kernel, K, is represented by a 2 × 2
matrix as it moves onto different parts of the image. The position of the origin in K
will be the position in the resulting image. Images adapted from [68]
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The input is usually a multidimensional array of data, and the kernel is usually

a multidimensional array of parameters that are adapted by the learning algorithm.

Finally, we often use convolutions over more than one axis at a time. For example,

if we use a two-dimensional image as our input, we probably also want to use a

two-dimensional kernel.

In the context of machine learning, the learning algorithm will learn the appropriate

values of the kernel in the appropriate place, so an algorithm based on convolution

with kernel flipping will learn a kernel that is flipped relative to the kernel learned

by an algorithm without the flipping. It is also rare for convolution to be used alone

in machine learning; instead convolution is used simultaneously with other functions,

and the combination of these functions does not commute regardless of whether the

convolution operation flips its kernel or not.

Figure C.1 shows an example of convolution (without kernel flipping) applied to

a 2-D tensor. Discrete convolution can be viewed as multiplication by a matrix, but

the matrix has several entries constrained to be equal to other entries. For example,

for uni-variate discrete convolution, each row of the matrix is constrained to be equal

to the row above shifted by one element. This is known as a Toeplitz matrix. In two

dimensions, a doubly block circulant matrix corresponds to convolution. In addition

to these constraints that several elements be equal to each other, convolution usually

corresponds to a very sparse matrix (a matrix whose entries are mostly equal to zero).

This is because the kernel is usually much smaller than the input image. Any neural

network algorithm that works with matrix multiplication and does not depend on

specific properties of the matrix structure should work with convolution, without

requiring any further changes to the neural network. Typical convolutional neural

networks do make use of further specialisations in order to deal with large inputs

efficiently, but these are not strictly necessary from a theoretical perspective.

Convolution exploits three ideas intrinsic to perform computationally efficient

machine learning: sparse connections, parameter sharing (or weights sharing) and

equi-variant (or invariant) representation. Unlike some neural networks where every
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input neuron is connected to every output neuron in the subsequent layer, CNN neurons

have sparse connections, meaning that only some inputs are connected to the next

layer. By having a small, local receptive field (i.e., the area covered by the filter per

stride), meaningful features can be gradually learnt, and the number of weights to be

calculated can be drastically reduced, increasing the algorithm’s efficiency. In using

each filter with its fixed weights across different positions of the entire image, CNNs

reduce memory storage requirements. This is known as parameter sharing.

Parameter sharing results in the quality of equi-variant representation to arise. This

means that input translations result in a corresponding feature map translation.

By far the most popular and extensive use of parameter sharing occurs in convo-

lutional neural networks (CNNs) applied to computer vision. Natural images have

many statistical properties that are invariant to translation. For example, a photo

of a cat remains a photo of a cat if it is translated one pixel to the right. CNNs

take this property into account by sharing parameters across multiple image locations.

The same feature (a hidden unit with the same weights) is computed over different

locations in the input. This means that we can find a cat with the same cat detector

whether the cat appears at column i or column i + 1 in the image. Parameter sharing

has enabled CNNs to dramatically lower the number of unique model parameters and

to significantly increase network sizes without requiring a corresponding increase in

training data. It remains one of the best examples of how to effectively incorporate

domain knowledge into the network architecture.

Convolutional Neural Networks (CNNs), as a part of the deep learning techniques

has become really popular amongst researchers because of the ease of use and relatively

easy implementation [68]. In general, CNNs require a large amount of data, and

because of the numbers of parameters in all the layers, the processing of each one has

increased significantly. CNNs are a specialised kind of neural network for processing

data that has a known grid-like topology. Examples include time-series data, which

can be thought of as a 1D grid taking samples at regular time intervals, and image

data, which can be thought of as a 2D grid of pixels. Convolutional networks have been
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tremendously successful in practical applications have played an important role in the

history of deep learning [70]. They were some of the first deep models to perform well,

long before arbitrary deep models were considered viable. Convolutional networks were

also some of the first neural networks to solve important commercial applications and

remain at the fore front of commercial applications of deep learning today. For example,

in the 1990s, the neural network research group at AT&T developed a convolutional

network for reading checks [279]. By the end of the 1990s, this system deployed by

NCR was reading over 10% of all the checks in the United States. Later, several

Optical Character Recognition (OCR) and handwriting recognition systems based on

convolutional nets were deployed by Microsoft [280].

Convolutional networks were also used to win many contests. The current intensity

of commercial interest in deep learning began when Krizhevsky et al. won the ImageNet

object recognition challenge, but convolutional networks had been used to win other

machine learning and computer vision contests with less impact for years earlier.

Convolutional networks were some of the first working deep networks trained with

back-propagation. It is not entirely clear why convolutional networks succeeded when

general back-propagation networks were considered to have failed. It may simply be

that convolutional networks were more computationally efficient than fully connected

networks, so it was easier to run multiple experiments with them and tune their

implementation and hyper-parameters. Larger networks also seem to be easier to train.

With modern hardware, large fully connected networks appear to perform reasonably

on many tasks, even when using data sets that were available and activation functions

that were popular during the times when fully connected networks were believed not

to work well. It may be that the primary barriers to the success of neural networks

were psychological (practitioners did not expect neural networks to work, so they did

not make a serious effort to use neural networks). Whatever the case, it is fortunate

that convolutional networks performed well decades ago. In many ways, they carried

the torch for the rest of deep learning and paved the way to the acceptance of neural

networks in general.
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Currently, CNNs are the most researched machine learning algorithms in medical

image analysis [281]. The reason for this is that CNNs preserve spatial relationships

when filtering input images.

An architecture of Convolutional Neural Networks (CNNs) is shown in Figure C.2.

Convolutional Neural Networks (CNNs) preserve spatial structure. The image dimen-

sion is 32 × 32 × 3 and a filter with the same depth of the image is used (5 × 5 × 3).

We convolve the filter with the image - "slide over the image spatially, computing dot

products." Filters always extend the full depth of the input volume. The filter is placed

at the upper left hand corner and centred on top of every pixel in the input volume. At

every position a dot product is obtained and this produces one value in the activation

map. Then the filter is slid around and the next dot product produces another value

in the activation map. At every pixel this operation is done and the corresponding

point in the activation is filled in. Depending on how we choose to slide the filter we

get different size outputs.

A CNN takes an input image of raw pixels, and transforms it via Convolutional

Layers, Rectified Linear Unit (RELU) Layers and Pooling Layers. This feeds into a

final fully Connected Layer which assigns class scores or probabilities, thus classifying

the input into the class with the highest probability. In the next subsections these

layers will be explained in detail.

CNNs are a class of deep feed-forward artificial neural networks for processing data

that has a known grid-like topology [282]. They emerged from the study of the brain’s

visual cortex and benefited from the recent increase in the computational power and

the amount of available training data. A CNN is generally composed of five types of

neuron layers [79]:

The input layer. The neurons in this layer hold the raw pixel values of the input

image. In the case of an RGB image of size w × h, this layer is a 3D volume of size

w × h × 3.

The convolution layer. Each neuron in this layer computes the dot product

between their weights and a small region in the input volume to which they are
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(a)

(b)

Fig. C.2 Architecture of Convolutional Neural Networks (CNNs). Convolutional Neural
Networks (CNNs) preserve spatial structure. a) The image dimension is 32 × 32 × 3
and a filter with the same depth of the image is used (5 × 5 × 3). We convolve the
filter with the image, i.e. "slide over the image spatially, computing dot products."
Filters always extend the full depth of the input volume. b) The filter is placed at
the upper left hand corner and centred on top of every pixel in the input volume. At
every position a dot product is obtained and this produces one value in the activation
map. Then the filter is slid around and the next dot product produces another value
in the activation map. At every pixel this operation is done and the corresponding
point in the activation is filled in. Depending on how we choose to slide the filter we
get different size outputs. Image credit to [187]

.
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connected. This is equivalent to performing a convolution of the input with the filter

whose elements are the weights of the neuron.

The ReLU layer. This applies an element-wise activation function, e.g. the

max(0, x), to its input.

The Pool layer. This layer down-samples the input along the spatial dimensions.

The Fully-Connected (FC) layer. This is a classification layer. It computes

the class scores, i.e. the likelihood that the input to the network belongs to one of the

classes.

C.1.1 Activation Functions in CNN

There are different kind of activation functions used in CNNs. Figure C.3 illustrate

some of these activation functions.

Sigmoid : Squashes numbers to range [0,1], historically popular since they have nice

interpretation as a saturating “firing rate” of a neuron with 3 problems: 1. Saturated

neurons “kill” the gradients, 2. Sigmoid outputs are not zero-centered, 3. exp() is a bit

compute expensive.

tanh: Squashes numbers to range [-1,1] and zero centred but still kills gradients

when saturated.

ReLU: Does not saturate (in +region), very computationally efficient, converges

much faster than sigmoid/tanh in practice. Actually more biologically plausible than

sigmoid but not zero-centred output.

The ReLU layer is an activation function that sets negative input values to zero. This

simplifies and accelerates calculations and training, and helps to avoid the vanishing

gradient problem. Mathematically it is defined as:

Computes f(x) = max(0, x)

where x is the input to the neuron. Other activation functions include the sigmoid,

tanh, leaky RELUs, Randomized RELUs and parametric RELUs.

Leaky ReLU: Does not saturate, computationally efficient, converges much faster

than sigmoid/tanh in practice, and will not "die".
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(a) (b)

Fig. C.3 (a) Different types of activations functions used in Convolutional Neural
Networks (CNNs). (b) The curve of maxout. The maxout model is simply a feed-
forward architecture, such as a multilayer perceptron or deep convolutional neural
network, that uses a new type of activation function: the maxout unit. Maxout
activation functions are very robust and easy to train with dropout, and achieve
excellent performance. Images credit to [187] and [283].

ELU: It has all benefits of ReLU, closer to zero mean outputs, Negative saturation

regime compared with Leaky ReLU, adds some robustness to noise but computation

requires exp().

C.1.2 Pooling layer

A typical layer of a convolutional network consists of three stages [68]. In the first

stage, the layer performs several convolutions in parallel to produce a set of linear

activations. In the second stage, each linear activation is run through a nonlinear

activation function, such as the rectified linear activation function (ReLU). This stage

is sometimes called the detector stage. In the third stage, we use a pooling function to

modify the output of the layer further (Figure C.4a). A pooling function replaces the

output of the net at a certain location with a summary statistic of the nearby outputs.

For example, the max pooling (Figure C.4b) operation reports the maximum output
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within a rectangular neighbourhood. Other popular pooling functions include the

average of a rectangular neighbourhood, the L2 norm of a rectangular neighbourhood,

or a weighted average based on the distance from the central pixel. In all cases, pooling

helps to make the representation approximately invariant to small translations of the

input. Invariance to translation means that if we translate the input by a small amount,

the values of most of the pooled outputs do not change. Invariance to local translation

can be a useful property if we care more about whether some feature is present than

exactly where it is. For example, when determining whether an image contains a face,

we need not know the location of the eyes with pixel-perfect accuracy, we just need to

know that there is an eye on the left side of the face and an eye on the right side of

the face.

In other contexts, it is more important to preserve the location of a feature. For

example, if we want to find a corner defined by two edges meeting at a specific

orientation, we need to preserve the location of the edges well enough to test whether

they meet. The use of pooling can be viewed as adding an infinitely strong prior

that the function the layer learns must be invariant to small translations. When this

assumption is correct, it can greatly improve the statistical efficiency of the network.

Pooling over spatial regions produces invariance to translation, but if we pool over

the outputs of separately parametrised convolutions, the features can learn which

transformations to become invariant to. Because pooling summarises the responses

over a whole neighbourhood, it is possible to use fewer pooling units than detector

units, by reporting summary statistics for pooling regions spaced k pixels apart rather

than 1 pixel apart. This improves the computational efficiency of the network because

the next layer has roughly k times fewer inputs to process. When the number of

parameters in the next layer is a function of its input size (such as when the next layer

is fully connected and based on matrix multiplication), this reduction in the input size

can also result in improved statistical efficiency and reduced memory requirements for

storing the parameters.
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For many tasks, pooling is essential for handling inputs of varying size. For example,

if we want to classify images of variable size, the input to the classification layer must

have a fixed size. This is usually accomplished by varying the size of an offset between

pooling regions so that the classification layer always receives the same number of

summary statistics regardless of the input size. For example, the final pooling layer of

the network may be defined to output four sets of summary statistics, one for each

quadrant of an image, regardless of the image size.

The Pooling layer is inserted between the Convolution and ReLU layers to reduce

the number of parameters to be calculated, as well as the size of the image (width

and height, but not depth). Max-pooling is most commonly used; other pooling layers

include "average pooling" and "L2-normalisation" pooling. Max-pooling simply takes

the largest input value within a filter and discards the other values; effectively it

summarises the strongest activation over a neighbourhood. The rationale is that the

relative location of a strongly activated feature to another is more important than its

exact location.

C.1.3 Fully connected (FC) layer

As shown in Figure C.6, a standard CNN consists of an input layer, an output layer

and a stack of functional layers in between that transform an input into an output in a

specific form (e.g. vectors) [70]. These functional layers often contains convolutional

layers, pooling layers and/or fully-connected layers. In general, each convolution uses

a n × n kernel (for 2D input) or n × n × n kernel (for 3D input) followed by batch

normalisation [202] after which the output is passed through a nonlinear activation

function (e.g. rectified linear unit (ReLU)), which is used to extract feature maps from

an image. These feature maps are then down-sampled by pooling layers, typically by

a factor of 2, which removes redundant features to improve the statistical efficiency

and model generalisation. After that, fully connected layers are applied to reduce the

dimension of features and find the most task-relevant features for inference. The output

of the network is a fix-sized vector where each element can be a probabilistic score for
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(a)

(b)

Fig. C.4 Pooling layer is used in Convolutional Neural Networks (CNNs) to reduce
the number of parameters to be calculated, as well as the size of the image (width
and height, but not depth). (a) Pooling makes the representations smaller and more
manageable and it operates over each activation map independently. (b) Max-pooling
simply takes the largest input value within a filter and discards the other values;
effectively it summarises the strongest activation over a neighbourhood. Image credit
to [187].
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Fig. C.5 Architecture of Fully Connected Layer (FCN) in Convolutional Neural Networks
(CNNs). FCN contains neurons that connect to the entire input volume, as in ordinary
Neural Networks. This layer takes the output from the preceding layer (Convolutional,
ReLU or Pooling) as its input, and computes a probability score for classification into
the different available classes. In essence, this layer looks at the combination of the
most strongly activated features that would indicate the image belongs to a particular
class. Image credit to [187].

each category (for image classification), a real value for a regression task or a set of

values (e.g. the coordinates of a bounding box for object detection and localisation).

The final layer in a CNN is the Fully Connected Layer (FCN), meaning that every

neuron in the preceding layer is connected to every neuron in the fully Connected

Layer [68]. Like the convolution, ReLU and pooling layers, there can be 1 or more fully

connected layers depending on the level of feature abstraction desired. This layer takes

the output from the preceding layer (Convolutional, ReLU or Pooling) as its input,

and computes a probability score for classification into the different available classes.

In essence, this layer looks at the combination of the most strongly activated features

that would indicate the image belongs to a particular class. FCN contains neurons

that connect to the entire input volume, as in ordinary Neural Networks. Figure C.5

shows an input image with dimensions 32 × 32 × 3 is stretched to 3072 × 1.
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Fig. C.6 Architecture of Convolutional Neural Networks (CNNs). A CNN takes a
HeLa image as input, learning hierarchical features through a stack of convolutions
and pooling operations. These spatial feature maps are then flattened and reduced
into a vector through fully connected layers (FCN). This vector can be in many forms,
depending on the specific task. It can be probabilities for a set of classes (image
classification) or coordinates of a bounding box (object localisation) or a predicted
label for the centre pixel of the input (patch-based segmentation) or a real value for
regression tasks. Image adapted from [70].
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The size of convolution kernel n is chosen to be small in general, e.g. n = 3, in

order to reduce computational costs. While the kernels are small, one can increase the

receptive field (the area of the input image that potentially impacts the activation of

a particular convolutional kernel/neuron) by increasing the number of convolutional

layers.

In general, increasing the depth of convolution neural networks (the number of

hidden layers) to enlarge the receptive field can lead to improved model performance,

e.g. classification accuracy [77].

CNNs for image classification can also be employed for image segmentation appli-

cations without major adaptations to the network architecture [89]. However, this

requires to divide each image into patches and then train a CNN to predict the class

label of the centre pixel for every patch. One major disadvantage of this patch-based

approach is that, at inference time, the network has to be deployed for every patch

individually despite the fact that there is a lot of redundancy due to multiple over-

lapping patches in the image. As a result of this inefficiency, the main application of

CNNs with fully connected layers is object localisation, which aims to estimate the

bounding box of the object of interest in an image. This bounding box is then used

to crop the image, forming an image pre-processing step to reduce the computational

cost for segmentation. For efficient, end-to-end pixel-wise segmentation, a variant of

CNNs called fully convolutional neural network (FCN) is more commonly used, which

will be discussed in the next section.
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