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Abstract 

Introduction: Deep Inferior Epigastric Perforator (DIEP) free flaps are widely used as a reconstruction 

option following mastectomy in breast cancer. During such cases partial tissue necrosis can occur due 

to the insufficient blood supply to the transplanted tissue site. Therefore, monitoring of flap perfusion 

and early detection of flap failure is a prerequisite to flap survival. There is a need to develop a non-

invasive, easy to use, reproducible and inexpensive monitoring device to assess flap perfusion 

postoperatively. 

Method: A three-wavelength reflective optical sensor and processing system based on the principle 

of photoplethysmography (PPG) has been developed to investigate blood volumetric changes and 

estimate free flap blood oxygen saturation continuously and non-invasively in Deep Inferior Epigastric 

Perforator (DIEP) free flaps in the postoperative period. The system was evaluated in fifteen patients 

undergoing breast reconstructive surgery using DIEP free flap.   

Results: Good quality red, infrared and green PPG signals were obtained in the post-operative period. 

Initial estimation of blood oxygen saturation values estimated from the free flap PPGs seem to be in 

broad agreement with the commercial finger pulse oximeter used in this study. 

Conclusion: This pilot study has demonstrated that Photoplethysmography has the potential to be 

used as a monitoring technique in assessing free flap viability.  

REC Reference number: 10/H0703/39 

 

1. Introduction 

Free flap reconstructive surgery is the movement of tissue (e.g. skin, fat, muscle and bone) along with 

its blood supply from one site of the body to another. Following mastectomy in patients suffering from 

breast cancer, Deep Inferior Epigastric Perforator (DIEP) free flap is one of the options available for 

breast reconstruction. However, free flap failure is of a great concern as its been shown that 

complications such as vessel congestion, fat necrosis, total or partial flap loss, seroma and haematoma 

occur at a rate of 30% in DIEP free flap reconstructive surgery (Gill et al., 2004).  Early detection and 

re-exploration of the flap is a prerequisite in flap survival therefore, continuous post-operative 

monitoring is vital for the successful salvage of the flap. Most clinical centres rely on clinical 

assessment of the flap in the post-operative period following DIEP free flap surgery, as this is 

considered to be the gold standard for perfusion assessment. Such assessment entails the observation 

of the flap skin colour, skin temperature, capillary refill time and occasionally pin prick time. Such 

observations are noted manually and regularly on a paper-based chart. Monitoring of these 

parameters are mainly qualitative and subjective, depending on the clinician or the nurses’ 

experience. Also, these observations can also be inconsistent as the same person does not always 

monitor the patient. In addition to the aforementioned free flap monitoring practices, various 

technologies have also been used for monitoring free flap perfusion and viability such as temperature, 

Laser Doppler Flowmetry, Doppler Ultrasound and pulse oximetry (Machens et al., 1994). However, 

some of these techniques such as Doppler Ultrasound, are intermittent and operator dependant and 



none of them are widely used routinely for free flap monitoring (van Adrichem, 1992, Rudolf F. Buntic, 

2001-2013).  An ideal free flap monitoring technique must be objective, continuous, non-invasive, 

safe, easy to manage and interpret by medical and nursing staff.   

 

In order to overcome the limitations of the current monitoring techniques available and in an attempt 

to develop a practical device for assessing perfusion of free flaps post-operatively, a three wavelength 

photoplethysmography (PPG) sensor was designed and underwent preliminary clinical evaluation. 

 

2. Photoplethysmography 

Photoplethysmography (PPG) is a non-invasive, low cost, simple and easy to use technique that can 

be used to detect changes in arterial blood volume in the microvascular bed of tissue (Allen 2007, 

Kyriacou, 2013, Tamura, 2019). As light interacts with biological tissue it can be transmitted, reflected, 

refracted, scattered, and/or absorbed. Bone, skin pigmentation, arterial and venous blood are the 

primary absorbers of light with haemoglobin being one of the main components of blood which 

absorbs light passing through tissue. The absorbance of haemoglobin depends on its chemical binding 

and the wavelength of the light it is interacting with. Oxygenated and deoxygenated haemoglobin 

absorb most of the light at higher wavelengths in the near infrared region of the optical spectrum 

(Webster, 1997).  

 

As the heart pumps blood to the periphery, the arteries and arterioles change in diameter due to the 

pulsation of the blood and hence the volume of blood is changing in the vessels. This variation of blood 

volume in the arteries is detected by illuminating the tissue under observation using LEDs, and 

detecting the transmitted or reflected light using a photodetector which is sensitive to the emitted 

wavelengths. The resulting information from the photodetector is a time varying signal which is widely 

known as the Photoplethysmograph (PPG) signal (Allen 2007, Kyriacou, 2013, Moyle, 2002, Webster, 

1997).  

 

The detected PPG signal comprises of two components as shown in Figure 1; 

• A DC component, representing absorption by venous blood, bone, tissue and skin 

pigmentation and non-pulsating arterial blood.    

• An AC component which is the pulsatile part of the total absorbance is often attributed to 

the cardiac cycle and the change of volume in the arteries. The shape of the AC PPG signal 

can be used as an indicative of vessel compliance and cardiac performance. Usually the 

amplitude of the AC component usually does not exceed 1-2% of the DC component 

(Webster, 1997, Kyriacou, 2006).     

  

 



Figure 1: Photoplethysmography waveform with AC (variable absorption due to arterial pulsation) and 

DC (absorption due to tissue, bone and venous blood) components.  

 

The depth of penetration of light in the skin varies depending on the wavelength. For example, green 

light (501 nm-543 nm) has a low depth of penetration due to its high absorption by melanin and 

haemoglobin, therefore it only penetrates approximately 0.2 mm, reaching the epidermal layer 

providing information from the capillary vessels, however red (620 nm-740 nm) and infrared (750 nm-

1000 nm) wavelengths penetrate approximately 2-3 mm into the dermal layer (Mateus and Hargens, 

2012, Futran et al., 2000, Asare et al., 2011).  

 

In this study, a three-wavelength PPG sensor and processing system were developed in order to 

investigate free flap (DIEP) PPG signals in the post-operative period. 

 

3. Materials and Methods 

3.1 Free flap PPG sensor 

A reflection photoplethysmography flap sensor was constructed using two infrared LEDs with peak 

emission wavelength at 940 nm and dimensions of 2.0 mm × 1.25 mm (AP2012F3C, Kingbridght), two 

red LEDs with peak emission wavelength at 660 nm and dimensions of 2.0 mm × 1.25 mm (EM20UR, 

EUROLED) and two green LEDs with peak emission wavelength of 520 nm and dimensions of 3.0 mm 

× 1.20 mm (CR60G, CERLED) surface ceramic chip surface mount LEDs. For detecting the reflected light 

from the tissue, a high speed and high sensitivity surface mount silicon PIN photodiode (VBPW34S) 

with an active area of 7.5 mm2 and with dimensions of 6.4 mm × 3.9 mm × 1.2 mm was used. The 

bandwidth of the photodiode is 430 nm-1100 nm therefore enabling the detection of all three 

wavelengths used.  

 

Figure 2 shows photographs of the developed three wavelengths reflective PPG flap sensor with the 

LEDs on and off. In Figure 2b the PPG sensor is covered with a sterile transparent sheath. This 

transparent medical dressing will be used when monitoring signals during the in vivo evaluation in 

order to avoid cross contamination between patients and ease sterilisation and cleaning of the sensor. 

  

  

Figure 2: a) Developed three wavelength PPG flap sensor; b) Illuminated PPG flap sensor covered in 
sterile transparent sheath which will be used during the in vivo evaluation.  
 
One of the requirements in designing a reflection photoplethysmography sensor is to determine the 

optimum separation distance between the light sources and the photodetector. Experimental studies 

by Mendelson and Ochs have shown that a separation distance of 4-5 mm between the light sources 

a b 



and the detector is the optimum distance to enable detection of PPG signals with maximum pulsatile 

components (Mendelson and Ochs, 1988).  

 

The reflection photoplethysmography flap sensor was designed using printed circuit board (PCB) 

technology utilizing the commercial software package Altium Designer (Altium Limited, Sydney, 

Australia) which was used for the PCB artwork. The sensor was coated using medically graded light 

curable clear epoxy (Dymax, OP-29, Ct, USA using a UV light curing system (Electro-lite, ELC-410, Ct, 

USA) for curing the optical adhesive. Coating the sensor with the epoxy provides adequate shielding 

and protection of the sensor for any accidental conduct with any fluids within the clinical environment, 

which can lead to a possible damage of the probe. The OP-29 series adhesive was selected based on 

its advantages of it being optically clear, resilient, resists yellowing and has high light transmission in 

the wavelengths of interest (500 nm-1000 nm).  

 

3.2 Free flap PPG processing system  

A PPG processing system was constructed in order to drive the optical components on the sensor and 

to pre-process the detected PPG signals. A detail block diagram of the three wavelength 

photoplethysmography processing systems is illustrated in Figure 3. The red, infrared and green LEDs 

on the flap probe were designed to be driven by identical variable current sources (25-151 mA) 

allowing the user to vary the output light intensity on demand. The current sources were multiplexed 

using a microcontroller to ensure the LEDs are never on at the same time (each LED was switched on 

every 10 ms for an interval of 1.66 ms). 

 



 
 

  

Figure 3: Block diagram of the three wavelength PPG processing system. 

 

The photodiode on the PPG sensor is the main input in the photoplethysmography system where the 

intensity of the reflected light from the light emitted by the LEDs after their interaction with the tissue 

under observation is detected. The photodiode produces an output current which is linearly 

proportional to the intensity of light detected (Webster, 1997). To pre-process and display the 

detected signal a transimpedance amplifier which works as a current-to-voltage convertor was used. 

As the photodiode cannot distinguish between the different wavelengths, the signal is a mixed 

photoplethysmographic signal of red, infrared and green wavelengths. In order to separate the three 

wavelength PPG signals, the output of the transimpedance amplifier is fed into a demultiplexing circuit 

consisting of the three sample-and-hold circuits as well as the timing signal generated by the 

microcontroller. The timing signal is used to trigger the sample-and-hold circuits to sample the output 

of the transimpedance amplifier signal at appropriate times in order to extract the red, infrared and 

green PPG signals. Once the demultiplexer separates the photodiode signal into its three components 

of red, infrared and green signals, the waveforms representing the light levels are reconstructed from 

the output signal.  



The outputs of the sample-and-hold circuits for red, infrared and green wavelengths are signals 

consisting of both AC and DC PPG components. These components (for all three wavelengths) are 

separated using filters. 

 

To extract the AC component of the PPG signal band pass filters with cut-off frequencies of 0.4 Hz and 

20 Hz were chosen to ensure that the pulsatile component of the PPG signal, which is approximately 

1 Hz, is not distorted while the high pass filter was used to eliminate the DC component of the PPG 

signal and the high frequency switching noise from the demultiplexer was attenuated using the low 

pass filter. Also, in order to extract the DC component of the detected PPG signal a low pass filter with 

cut off frequency of 0.15 Hz was used. After the red, infrared and green photoplethysmography signals 

were separated into their AC and DC components, the AC PPG signals were then amplified, using a 

non-inverting amplifier.  

 

The processing system provides output signals for AC PPG and DC PPG signals for red, infrared and 

green wavelengths. These outputs were then digitised (sampling rate at 200 Hz) using a data 

acquisition card (National Instruments, USA) which was connected to the laptop computer where the 

signals can then be displayed, analysed and stored using the developed Virtual Instrument (VI). The VI 

was implemented in LabVIEW (National Instruments, Austin, Texas, USA) on a laptop computer.  

 

The functionality of the developed photoplethysmography processing system, the reflection three 

wavelength PPG sensor and the VI were successfully evaluated in the laboratory. Since good quality 

PPG signals were acquired from all three wavelengths from volunteer index fingers, it was deemed 

ready for preliminary clinical measurements. 

 

3.3 Clinical methods 

Following ethical approval from the East London Research Ethics Committees (REC reference number: 

10/H0703/39) and patient consent, fifteen adult female patients with average age (±SD) of 54 (±8.9) 

undergoing elective breast reconstructive surgery using a DIEP flap were recruited to the study.  

 

The post-operative PPG measurements were commenced in the post-anaesthesia care unit following 

surgery. In Mid Essex hospital where the clinical trials were carried out, the clinical team routinely uses 

flap chart where the flap is examined at 15-minute intervals for the first two hours, at 30 minute 

intervals for the following four hours and hourly for the next 12 hours. Where there was doubt relating 

to the viability of the flap, a Doppler Ultrasound was used by the medical staff to confirm flap blood 

flow.  

 

PPG post-operative measurements were performed at the same intervals as the clinical observations, 

i.e. at 15 minutes in the first two hours, 30 minutes for the following four hours and then hourly for 

up to 11 hours post-surgery. This monitoring routine ensured that the PPG study did not add any extra 

complication in the procedure and prevented any further disturbance to the patient. Therefore, the 

first set of measurements began in the post-anaesthesia care unit and then the latter parts of the 

measurements were carried out over night by the patients’ bed side in the plastic surgery ward.  

 

To avoid any wound contamination the free flap PPG sensor was covered with a sterile transparent 

adhesive film dressing (3MTM TegadermTM Film). The PPG sensor was placed on the flap and secured 

using surgical tape (3MTM TransporeTM). The position of the sensor on the flap was away from the 

area which was marked as having the main perforator supply in the pre-operative period.  This was to 

avoid the PPG sensor being moved by the medical or nursing staff when they use the Doppler to assess 



blood flow.  To ensure repeatability and consistency of the signals obtained, the position of the sensor 

did not change throughout the post-operative period. 

 

4. Results  

Figure 4 (a and b) depicts typical flap PPGs from two patients in the post-operative period. In this 

figure (especially 4b) it can be observed that the PPG signals from all wavelengths are modulated by a 

spontaneous breathing artifact.   

 

 
  

(a) 



  
(b) 

 

Figure 4: Typical PPG signals during the post-operatively period from all three wavelengths; (a) PPG 

monitoring at a time window of 26 s; (b) PPG monitoring at a time window of 50 s in order to capture 

the respiration modulation.  

 

The acquisition of PPGs at each monitoring period lasted for approximately one minute. Table 1 shows 

the mean PPG amplitude at all wavelengths for all monitoring periods from one patient. In each 

patient using the infrared PPG signals the heart rate was also calculated offline and compared with 

the recorded measurement from the commercial finger pulse oximeter to confirm the capability of 

the developed system in measuring heart rate.  

 

From the results in Table 1 it is noticed that there is an increase in the PPG amplitude one hour 

subsequent to the transferring of the patient to the post anaesthesia recovery room, suggesting that 

this could be an indication of improved blood flow to the flap. At approximately five hours post-

operatively a reduction in the amplitude is seen. The reduction could be due to environmental factors 

such as temperature, since at 8 hours post-operatively the patient warmer blanket was switched on 

(for this particular patient) as this resulted in the increase of the PPG amplitudes in the red and 

infrared wavelength but not so in the green wavelength.  

 
 

 

 

 

 



Table 1: Mean AC PPG amplitudes from all wavelengths in one DIEP patient.  

 
  AC PPG Amplitude (mV) 

Interval (Hr)  IR   Red  Green 

Recovery 120.4 87.3 41.3 

1 Hr 229 108.1 29.9 

2 Hr 182.1 110.1 23.3 

3 Hr 230.7 119.5 29.1 

4 Hr 147.3 87.1 31.4 

5 Hr 97.6 53 35.6 

6 Hr 84.7 45.6 31.1 

7 Hr 69.1 44.9 40.8 

8 Hr 158.6 70.2 35.8 

9 Hr 148 78.3 25.1 

10 Hr 149.8 99.4 33.7 

11 Hr 108.2 54.5 23.3 

12 Hr 139.9 76.5 14.4 

 

In order to analyse and investigate how the PPG amplitude changed during the post-operative period, 

the mean PPG amplitudes (±SD) from all patients from all monitoring periods is presented in Figure 5. 

At times, it was found somewhat challenging to monitor good quality PPGs from the DIEP flaps. Patient 

movement, room temperature, and flap temperature were some of the obvious reasons that 

compromised both the quality and the amplitude of the PPGs. Since the PPG amplitudes were 

inconsistent from patient to patient this has resulted in the high amplitude standard deviations seen 

in Figure 5. This could also be due to the different thickness of the free flap from patient to patient 

and the diameter and number of the blood vessels used in anastomosing the free flap to the recipient 

site.  

 



 
  

Figure 5: Mean amplitude of red, green and infrared ac PPGs acquired from all patients post-

operatively at hourly intervals. 

 

By observing Figure 5, it can be also seen that there is a decrease in the mean PPG amplitude after six 

hours in the post-operative period in all three wavelengths. Many assumptions have been made 

regarding this change in blood volume in the flap. Pereira et al. explains that as free flap reconstructive 

surgery is typically 6-8 hours long, with surgical procedures performed on the abdomen and the chest, 

this results in considerable blood, heat and fluid loss. If gone unnoticed this can bring about 

hypovolaemic vasoconstriction and hypothermia, which causes the blood flow through the flap to 

decrease 50% in the first 6-12 hours following surgery (Pereira et al., 2012). However, the clinical 

collaborators of the study have explained that hypovolaemia and hypothermia did not occur in these 

patients as they were looked after in the specialised surgical HDU area with strict monitoring and quick 

intervention if physiological parameters deviated from a set value. Another explanation offered was 

that during the ischaemic period, metabolism in the flap occurs without oxygen (anaerobic 

metabolism) which leads to production of metabolites (or mediators) which causes dilatation of the 

vessels in the flap. This phenomenon occurs in the body in any anaerobic conditions to allow more 

blood to flow into the oxygen deprived tissues in order to get more oxygen. When the flap anastomosis 

is completed and the vessel clamps are removed, oxygenated blood flows through the flap and starts 

the aerobic metabolism. Simultaneously the blood attempts to flush the metabolites accumulated in 

the flap. Once the metabolites are flushed out of the flap and oxygenated blood is perfusing the flap, 

it is unnecessary for the vessels in the flap to remain dilated. It must also be noted that there is no 

neural autoregulation of blood flow to the flap as the tissue is denervated. It must be considered that 

no study have yet been carried out on the time taken for the vasoconstriction of the vessels once the 

metabolites have been flushed out but it can be hypothesised that this could occur within 6-8 hours 

post-operatively which would explain the reduction in blood flow through the free flap.  
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Utilising the AC and DC PPGs at both red and infrared wavelengths recorded in the post-operative 

period, arterial oxygen saturation levels were successfully estimated from the flap sensor. Blood 

oxygen saturation values were also acquired from a commercial transmission finger pulse oximeter 

and a custom-made finger reflection pulse oximeter with identical optical and electrical specifications 

as the flap sensor. Figure 6 shows the plot of the mean and standard deviation from all patients at all 

post-operatively periods. 

 

 
Figure 6: Mean and standard deviation of flap, finger (custom made) and commercial SpO2 levels from 

all patient studied in the postoperative period. 

 

4. Conclusion 

The developed flap PPG sensor and processing system were successfully evaluated in the fifteen 

patients post-operatively where the free flap was monitored simultaneously with the routine flap 

observations carried out at regular intervals over night for up to 12 hours. Investigation of the post-

operative PPG measurements show that good quality PPG signals with clear morphologies of a typical 

PPG waveform can be detected from all three wavelengths. Depending on the surgical time the length 

of post-operative monitoring period varied between patients as it was only possible to monitor the 

patient until approximately 5-6 am in the morning after the surgery. In patients where the surgery 

time was longer, the initial measurement was performed late in the evening following surgery. 

Therefore, in those cases, 12 hours of post-operative monitoring was not achieved which resulted in 

fewer patients monitored at 11 or 12 hours following surgery compared to the number of patients 

where PPG signals were obtained for in the recovery unit in the post-operative period. 

 

Investigation of the PPG signals show that the amplitude of the green AC PPG signals are lower than 

those from red and infrared, which it might be due to low penetration of green wavelength and its 

high absorption by blood, therefore it is assumed that the PPG signal from the green wavelength is 

the reflected light from haemoglobin in dermal capillary (Futran et al., 2000, Mateus and Hargens, 

2012).   

 

The developed three wavelength reflection optical sensor was unique as it has used three wavelengths 

within the visible and the infrared spectrum to simultaneously investigate PPG signals obtained at all 



operative periods of the surgical procedure. The motivation for the chosen wavelengths is that it 

provides the capability to monitor PPGs from vasculature located at different depths. The initial 

estimation of blood oxygen saturation values estimated from the flap PPG sensor seems to be in broad 

agreement with the commercial finger pulse oximeter used in this study. Such preliminary results 

provide the necessary confidence that a PPG based sensor technology can provide both blood 

volumetric information and blood oxygen saturation of free flaps and hence enhances the justification 

and motivation that photoplethysmography could be used in the assessment of the viability of free 

flaps.  

 

In conclusion, the results from the pilot in vivo study have demonstrated for the first time that a 

custom made non-invasive multiwavelength photoplethysmography system has the capability of 

detecting and monitoring changes in blood volume in free flaps in post-operative patients undergoing 

breast reconstruction using DIEP flaps.   
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