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Abstract

The validity of estimation and smoothing parameter selection for the wide class of
generalized additive models for location, scale and shape (GAMLSS) relies on the cor-
rect specification of a likelihood function. Deviations from such assumption are known
to mislead any likelihood-based inference and can hinder penalization schemes meant
to ensure some degree of smoothness for non-linear effects. We propose a general
approach to achieve robustness in fitting GAMLSSs by limiting the contribution of
observations with low log-likelihood values. Robust selection of the smoothing param-
eters can be carried out either by minimizing information criteria that naturally arise
from the robustified likelihood or via an extended Fellner-Schall method. The latter
allows for automatic smoothing parameter selection and is particularly advantageous
in applications with multiple smoothing parameters. We also address the challenge
of tuning robust estimators for models with non-linear effects by proposing a novel
median downweighting proportion criterion. This enables a fair comparison with ex-
isting robust estimators for the special case of generalized additive models, where
our estimator competes favorably. The overall good performance of our proposal is
illustrated by further simulations in the GAMLSS setting and by an application to
functional magnetic resonance brain imaging using bivariate smoothing splines.

Keywords: Bounded influence function; Non-parametric regression; Penalized smoothing
splines; Robust smoothing parameter selection; Robust information criterion.
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1 Introduction

Generalized additive models for location, scale and shape (GAMLSS) are flexible non-

parametric regression models that have been introduced by Rigby & Stasinopoulos (2005);

see also the recent book and tutorial by Stasinopoulos et al. (2017) and Stasinopoulos

et al. (2018) for a review. These models allow the use of explanatory variables not only to

model the location parameter (e.g., the mean) of a response distribution, like in generalized

additive models (GAM; Hastie & Tibshirani 1990), but also the scale and shape parameters.

GAMLSSs also go beyond the exponential family of distributions. In fact, the approach

can be seen more broadly as a way to model any parameter of any given distribution. As

such, some authors refer to it as distributional or multi-parameter regression (e.g., Burke

& MacKenzie 2017, Lang et al. 2014, Pan & Mackenzie 2003, Stasinopoulos et al. 2018).

Software availability for a wide range of families of distributions, such as the R package

gamlss (Stasinopoulos & Rigby 2020), have helped making these models very popular

and widely applied in several fields: we can cite Glasbey & Khondoker (2009) (normalizing

cDNA microarray), Rudge & Gilchrist (2005) (health impact of temperatures in dwellings),

De Castro et al. (2010) (long-term survival models for clinical studies), Beyerlein et al.

(2008) (childhood obesity), and Cole et al. (2009) (charts for child growth curves).

The motivation of this paper comes from challenging applications similar to the real

data presented in Section 5 as an illustration. The study first reported in Landau et al.

(2003) investigates differences in the brain physiological response to controlled stimuli be-

tween anatomically distinct regions. The continuous response variable consists in the brain

activity response measured at voxels in a brain slice (a 2D raster image). The sole explana-

tory variables are the coordinates identifying the location of each voxel. The measurements

are highly noisy but the nonnegative mean response level and its spread are believed to vary

smoothly over the brain slice, thus prompting non-linear effects for both location and scale

parameters of some continuous distribution supported over the positive reals. Wood (2017,

p. 329) identified two voxel responses in these data that were deemed too extreme, and

were then discarded for the subsequent analysis. We believe a robust fitting of a GAMLSS

is hence appropriate here, where throughout the paper we understand the term “robust” as
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implying a bounded maximum bias under arbitrary contamination in the response distribu-

tion (e.g. Hampel et al. 1986, Huber & Ronchetti 2009). Such robustness is important here

for two reasons: to guarantee that estimates and uncertainties are reliable, and to identify

potentially outlying observations in an automated way thanks to robustness weights.

The fitting of GAMLSSs is typically performed by penalized maximum likelihood (ML)

estimation. For datasets like the one above, where extreme observations likely occur, the

ML estimation procedure suffers from a lack of robustness, meaning that the estimated

smooth functions can be distorted by the outliers. Both the nonparametric function es-

timates themselves and the choice of the smoothing parameters associated to them are

affected. To address these issues, we introduce a general robust estimator for GAMLSSs.

Our approach covers special cases where robustness has been previously addressed, in par-

ticular in the (extended) GAM context (Alimadad & Salibian-Barrera 2011, Wong et al.

2014, Croux et al. 2012). These works, however, cannot be extended to the more general

setting of GAMLSS. Specifically, in contrast with the cited literature which acts at the

level of the score equations, we introduce robustness by modifying the objective function

following an idea introduced by Eguchi & Kano (2001). We also propose a novel and gen-

eral procedure to tune the robustness parameter associated with the robust approach. This

problematic issue has been partially ignored in the literature for robust (extended) GAMs.

For the selection of the smoothing parameters, we additionally propose robust versions of

the Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC), that

can be typically minimized in a grid search, and an adaptation of the Fellner-Schall auto-

matic multiple smoothing parameter selection method (Wood & Fasiolo 2017), which has

important practical advantages. The proposed robust models can be easily used via the

newly-revised gamlss function in the R package GJRM (Marra & Radice 2020).

Reviewers pointed out the recent publication of a textbook by Rigby et al. (2019) where

an alternative robust estimation method for GAMLSSs is presented. This method achieves

robustness by winsorizing the observed response through (normalized) quantile residuals,

in the spirit of the general robust estimator of Field & Smith (1994). This alternative

method is not complete at the time of writing: theoretical properties are lacking, such

as the sampling distribution necessary for inference; the correction for Fisher consistency
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cannot be directly extended beyond continuous families of distribution due to the reliance

on quantile residuals; and the challenges of tuning a robust estimator with non-parametric

effects and smoothing parameter selection are not discussed. In addition, to the best of our

knowledge this method is not implemented in any publicly available software package, thus

preventing any meaningful comparison with the method we propose here. Some preliminary

simulations in a simple parametric setting with independent and identically distributed

data are encouraging for this alternative method, but a thorough comparison in the much

broader GAMLSS setting represents future work.

In Section 2 we introduce the GAMLSS framework and the related estimation proce-

dure which is based on penalized maximum likelihood. Our proposal is fully introduced

in Section 3, with subsections devoted to the definition of a penalized robust objective

function, theoretical properties and inference, the practical implementation of the estima-

tion procedure, smoothing parameter selection, and the choice of the robustness tuning

constant. In Section 4 we present two simulation studies to highlight the good behavior

of our proposal: one in the GAMLSS setting with a design mimicking the brain imaging

data example, and one in the special case of a GAM to allow comparison with existing

robust procedure in this context. The brain imaging data illustration is then presented in

Section 5, while conclusions are given in Section 6.

2 GAMLSS Framework and Penalized Estimation

2.1 Framework and Notation

Given a sequence of n independent response random variables Y1, . . . , Yn, the generalized

additive model for location, scale and shape (GAMLSS; Rigby & Stasinopoulos 2005) for

the particular case of a three parameter distribution is defined by

Yi ∼ D(µi, σi, νi), i = 1, . . . , n

η1i = g1 (µi) = β10 + s11(x11i) + . . .+ s1k(x1ki) + . . .+ s1K1(x1K1i),

η2i = g2 (σi) = β20 + s21(x21i) + . . .+ s2k(x2ki) + . . .+ s2K2(x2K2i),

η3i = g3 (νi) = β30 + s31(x31i) + . . .+ s3k(x3ki) + . . .+ s3K3(x3K3i),

(1)
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where D denotes a family of distributions canonically parametrized in terms of location µi,

scale σi and shape νi which are related to the respective predictors ηdi via specified link

functions gd, for d = 1, 2, 3, βd0 ∈ R are overall intercepts, xdki denotes the kth sub-vector

of covariates pertaining to term d and observation i (which includes binary, categorical,

discrete, and continuous variables), and the Kd functions sdk(·) represent generic effects

of covariates (linear or not). The distributional assumption of Yi is understood to be

conditional on all covariates. We approximate each sdk(xdki) by a linear combination of

Jdk basis functions bdkj(xdki) and regression coefficients βdkj ∈ R (e.g., Wood 2017)

sdk(xdki) ≈
Jdk∑
j=1

βdkjbdkj(xdki).

This allows the model summarized by (1) to be written in a compact form for the random

vector Y = (Y1, . . . , Yn)> as Y ∼ D(µ,σ,ν) by some slight abuse of notation, where the

parameter vectors µ = (µ1, . . . , µn)>, σ = (σ1, . . . , σn)> and ν = (ν1, . . . , νn)> are modeled

through

η1 = g1(µ) = 1nβ10 + X11β11 + . . .+ X1K1β1K1
= X1β1,

η2 = g2(σ) = 1nβ20 + X21β21 + . . .+ X2K2β2K2
= X2β2,

η3 = g3(ν) = 1nβ30 + X31β31 + . . .+ X3K3β3K3
= X3β3,

(2)

where the functions gd are applied element-wise, 1n is an n-dimensional vector of ones,

the (n × Jdk) matrix Xdk has (i, j)th element bdkj(xdki), and βdk = (βdk1, . . . , βdkJkd)>.

The predictors can thus be re-written as ηd = Xdβd, where Xd = (1n,Xd1, . . . ,XdKd
) and

βd = (βd0,β
>
d1, . . . ,β

>
dKd

)>. We note that our results and methods here are understood in

a fixed-knot framework, i.e. that the number of basis functions is fixed at a high value so

that any approximation bias in sdk(xdki) is negligible compared to estimation variability

(as in e.g. Vatter & Chavez-Demoulin 2015).

To enforce a certain degree of smoothness for every approximated sdk(·) function, each

βdk has an associated quadratic penalty λdkβ
>
dkDdkβdk, where Ddk only depends on the

choice of basis functions. The smoothing parameter λdk ∈ [0,∞) controls the trade-off

between fit and smoothness and plays a crucial role in determining the shape of the es-

timated ŝdk(·). For d = 1, 2, 3, the overall penalty can be written as β>d Ddβd, where
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Dd = diag(0, λd1Dd1, . . . , λdKd
DdKd

). Following Wood (2017), the approximated sdk(·)

smooth functions are subject to centering constraints to ensure identifiability. Examples

of smooth function specification include one-dimensional, multi-dimensional, random field

and random effect smoothers; see e.g. Wood (2017) for details. Note that we have con-

sidered distributions with up to three parameters (location, scale and shape), hence the

adopted notation with d = 1, 2, 3, yet the proposed framework can be conceptually ex-

tended to distributions with more parameters in a straightforward manner. The families

of distributions implemented in this work are listed in Table S1 in Web Appendix D.

2.2 Penalized Log-likelihood

Let δ = (β>1 ,β
>
2 ,β

>
3 )> ∈∆ ⊆ Rp denote the full model parameter vector. Given a sample

of n realizations y1, . . . , yn, the log-likelihood function corresponding to (2) is given by

`(δ) =
n∑
i=1

`(δ)i =
n∑
i=1

log f (yi|µi, σi, νi) , (3)

where f (yi|·) can either denote the probability density function (pdf) or the probability

mass function (pmf) corresponding to the distribution D. Because of the flexibility of the

smooth terms, the use of an unpenalized optimization algorithm is likely to result in unduly

wiggly estimates (e.g. Wood 2017). Estimation is thus typically performed by maximizing

the penalized version `p(δ) = `(δ)− 1
2
δ>Sδ, where S = diag(D1,D2,D3). The smoothing

parameters contained in the Dd’s make up the vector λ = (λ>1 ,λ
>
2 ,λ

>
3 )>. Estimation of δ

is typically achieved for a given value of λ, while the selection of λ is often performed by

minimizing some prediction error criterion, either as an outer optimization or by alternating

the estimation of δ given λ and the selection of λ given δ (Wood 2017). Examples of such a

criterion include cross-validation (CV; e.g. Hastie & Tibshirani 1990) and generalized cross-

validation (GCV; Craven & Wahba 1979) estimates of prediction error, as well as estimates

of the Kullback-Leibler divergence between a true model and the fitted one such as the

AIC, and the Generalized Information Criterion (GIC) of Konishi & Kitagawa (1996).
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3 Robust Estimation

The estimation procedures mentioned in the previous section rely on strict distributional

assumptions. These methods are known to be highly sensitive to deviations from model

assumptions (e.g. Hampel et al. 1986, Huber & Ronchetti 2009). To this end, we propose

a general robust fitting approach, which is valid for the entire class of GAMLSS and that

directly yields robust criteria for the selection of smoothing parameters.

3.1 Penalized Robustified Log-likelihood

Based on the Ψ-divergence approach of Eguchi & Kano (2001), we introduce the robustified

log-likelihood

˜̀(δ) =
n∑
i=1

ρc
(
`(δ)i

)
− bρ(δ),

where, for a given δ, the user-specified ρc function is designed to reduce low log-likelihood

values `(δ)i while leaving large log-likelihood values essentially unchanged, and

bρ(δ) =
n∑
i=1

bρ(δ)i =
n∑
i=1

∫
ρ?c
(

log f(y|µi, σi, νi)
)

dy (4)

is a correction term ensuring Fisher consistency (see Theorem 1 in Section 3.2), where ρ?c

is directly derived from the specified ρc through

ρ?c(z) =

∫ z

−∞
exp(s)ρ′c(s) ds,

where ρ′c(s) = ∂ρc(s)/∂s, see Eguchi & Kano (2001, Section 2). The ρ function is indexed

by a so-called robustness tuning constant c > 0 which regulates the trade-off between,

on the one hand, the loss of estimation efficiency in the ideal case that the data exactly

come from the assumed GAMLSS, and, on the other hand, the maximum bias induced

by some contamination whenever the data do not come from the assumed GAMLSS. For

any given c, ρc is assumed to be convex, monotonically increasing and twice continuously

differentiable over R and have bounded first derivative ρ′c within [0, 1]. The latter can

be interpreted as a multiplicative robustness weight, as one would do when weighting the

estimating equations in robust M -estimation. The important difference here is that the
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“robustification” happens at the log-likelihood level and not by directly applying weights

at the score level, such as in Wong et al. (2014) for example. An advantage of our approach

is that it leads to a natural definition of robust criteria for the selection of smoothing

parameters (see Section 3.2).

Eguchi & Kano (2001) proposed the following log-logistic ρ function:

ρc(z) = log
1 + exp(z + c)

1 + exp(c)
, c > 0,

with corresponding ρ?c(z) = exp(z)− exp(c) log
(
1 + exp(z+ c)

)
and first derivative ρ′c(z) =

exp(z+ c)/
(
1 + exp(z+ c)

)
. Web Figure S1 in Web Appendix C displays the log-logistic ρc

and its first derivative. It illustrates how a smaller value of c leads to an earlier flattening

of the ρ function applied on log-likelihood contributions, thus limiting earlier their impact.

Note that limc→∞ ρc(z) = z so that an increasingly large c value leads to the (non-robust)

original `(δ). We discuss the choice of c in Section 3.5. We note that the particular form of

ρc matters little beyond the requirements mentioned earlier and summarized in condition

(C1) in Web Appendix A; it is not part of the model or the fit since no assumptions are

being made about the subset of the data that may not conform to the model assumptions.

For a given smoothing parameter λ, we define our robust estimator δ̂ = δ̂(λ) by maxi-

mizing the penalized robustified log-likelihood

δ̂ = arg max
δ

˜̀
p(δ) = arg max

δ

{
˜̀(δ)− 1

2
δ>Sδ

}
, (5)

where the penalty is identical to that of non-robust penalized estimation. Our robustifi-

cation scheme targets only deviations in the response variable, the latter which does not

appear in δ>Sδ so that only contributions to the unpenalized log-likelihood `(δ) need to

be accounted for. The robust estimator is thus the solution in δ to the following estimating

equations (first-order conditions):

0 =
∂ ˜̀(δ)

∂δ
− Sδ =

n∑
i=1

ρ′c
(
`(δ)i

)∂`(δ)i
∂δ

− ∂bρ(δ)

∂δ
− Sδ. (6)

In (6), the response variable Yi only appears through `(δ)i since bρ is an expectation. Thus

ρ′c indeed plays the role of a multiplicative weight within [0, 1] which limits the impact of

potentially deviating observations given some δ. This robustness weight is proved useful
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both for selecting c (see Section 3.5) and as a diagnostic tool (see the data analysis in

Section 5).

3.2 Asymptotic Properties and Inference

The unpenalized robust estimator which maximizes ˜̀(δ) admits a statistical M -functional

representation T (F ), for some generic probability distribution F , which is the solution in

δ to E [ψ(Y, δ)] = 0 where

ψ(Y, δ) = ρ′c
(

log f(Y |µ, σ, ν)
)∂ log f(Y |µ, σ, ν)

∂δ
− ∂

∂δ
E
[
ρ?c
(

log f(Y |µ, σ, ν)
)]

(7)

with expectations taken under F . Thus, the finite-sample solution in δ to

1

n

n∑
i=1

{
ρ′c
(
`(δ)i

)∂`(δ)i
∂δ

− ∂bρ(δ)i
∂δ

}
= 0

can be written as T (Fn), where Fn denotes the empirical distribution putting mass 1/n on

each observation. T (Fn) amounts to an unpenalized robust estimator.

To discuss the asymptotic properties of the proposed (penalized) robust estimator,

we define δ0 as the parameter value to which the unpenalized MLE maximizing `(δ) in

(3) converges, as n→∞. By viewing δ0 as the “true” parameter that generates the data

under distribution D with parameters defined in Equation (2), Theorem 1 below establishes

the Fisher consistency of δ̂ and its asymptotic distribution; the proof is deferred to Web

Appendix A.

Theorem 1. Under conditions (C1)–(C5) in Web Appendix A, as n → ∞ the penal-

ized robust estimator δ̂ admits the same M-functional representation T as the unpenal-

ized robust estimator and we have T (D) = δ0. Moreover,
√
n(δ̂ − δ0)

d−→
n→∞

N(0,V(δ0)),

where the asymptotic covariance matrix is given by the so-called sandwich formula V(δ) =

M(δ)−1Q(δ)M(δ)−T, where

M(δ) = −E

[
∂2 ˜̀(δ)

∂δ∂δ>

]
and Q(δ) = E

(∂ ˜̀(δ)

∂δ

)(
∂ ˜̀(δ)

∂δ

)> , (8)

with expectations taken under the assumed distribution D.
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In Theorem 1, T (D) = δ0 means that δ̂ is Fisher consistent: it returns the true param-

eter when T is evaluated at the assumed distribution D, which implies that δ̂ is asymptot-

ically unbiased for δ0. The influence function (IF; Hampel 1974) of the Fisher consistent

functional T is proportional to the score ψ(Y, δ) given in (7). This score being bounded in

the response variable Y thanks to ρ′c ∈ [0, 1], the IF is itself bounded. This guarantees a

bounded maximum asymptotic bias under arbitrary contamination in Y , which is the main

robustness property of δ̂.

Remark 1. The asymptotic variance V(δ0) in Theorem 1 corresponds to an unpenalized

robust estimation because we assume the usual asymptotically vanishing penalty for consis-

tency (see condition (C5) in Web Appendix A). A better approximation of the finite-sample

covariance matrix with non-zero penalty can be obtained from a Taylor expansion of the

penalized robustified score, as given in Equation (2) in Web Appendix A. It amounts to

Vp(δ0) = Mp(δ0)−1Q(δ0)Mp(δ0)−T, where Mp(δ) = −E
[
∂2 ˜̀

p(δ)

∂δ∂δ>

]
= M(δ) + S. In these

expressions, δ0 being unknown in practice one would typically “plug-in” the estimate δ̂

to compute standard errors. This allows for the computation of approximate (point-wise)

confidence intervals, which can then be interpolated for confidence bands for non-linear

effects. See for instance Croux et al. (2012, p. 39) for the analogue in the extended GAM

setting.

Remark 2. An alternative covariance can be computed following an empirical Bayes ap-

proach, which is often reported to lead to good finite-sample coverage of confidence intervals

in the frequentist sense (see e.g. Marra & Wood 2012, Wood 2017). For a given λ, viewing

the quadratic penalty as an improper Gaussian prior distribution for δ (seen as a random

vector here), with mean zero and covariance S−1, the joint density of (Y , δ) is given, up

to normalization constants, by L(y, δ;λ) = exp
(
˜̀(δ)

)
exp

(
− δ>Sδ/2

)
|S|1/2, with | · | de-

noting matrix determinant. We seek the covariance of the posterior distribution of δ|Y , as

the posterior mode corresponds to the robust estimate δ̂. As in Wood & Fasiolo (2017), a

second-order Taylor expansion of the posterior log-density about its mode reveals that as

n→∞ the posterior distribution approaches a multivariate Gaussian with covariance given

by Mp(δ̂)−1. Our experience is that the observed version of this posterior covariance ma-

trix, M̂p(δ̂)−1 =
(
M̂(δ̂) + S

)−1

, where M̂(δ) = − ∂2 ˜̀(δ)

∂δ∂δ>
, can be used as a computationally
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efficient alternative to Vp(δ̂).

The effective degrees of freedom (edf) of smooth terms are a valuable tool for assessing

the degree of smoothness achieved by a fit. We follow the discussion of Wood (2017, Chap-

ter 6) based on links with generalized linear mixed models and restricted ML estimation to

obtain that the edf of a GAMLSS robust fit is tr
{
M̂p(δ̂)−1Q̂(δ̂)

}
= tr

{
(M̂(δ̂)+S)−1Q̂(δ̂)

}
,

where Q̂(δ) =
(
∂ ˜̀(δ)
∂δ

)(
∂ ˜̀(δ)
∂δ

)>
. This term matches the “penalty term” of our robust AIC

introduced in Section 3.4 below.

3.3 Estimation Approach and Implementation

To maximize (5), we have modified the efficient and stable trust region algorithm of Marra

et al. (2017) to accommodate the robustified objective function and corresponding correc-

tion term bρ(δ). Estimation of δ and λ is carried out as follows. At iteration a, holding λ

fixed and for some tuning constant value c, for a given δ[a] we maximize equation (5) using

a trust region algorithm (Conn et al. 2000):

δ[a+1] = δ[a] + arg min
e:‖e‖≤∆[a]

˘̀̃
p(e; δ[a]), (9)

where ‖ · ‖ denotes the Euclidean norm, ∆[a] is the radius of the trust region which is

adjusted throughout the iterations, ˘̀̃
p(e; δ[a]) = −

(
˜̀
p(δ

[a]) + e>gp(δ
[a]) + 1

2
e>Hp(δ

[a])e
)

,

gp(δ
[a]) = g(δ[a])− Sδ[a] and Hp(δ

[a]) = H(δ[a])− S, and where the vector g(δ[a]) consists

of the stacked gd(δ
[a]) = ∂ ˜̀(δ)/∂βd|βd=β

[a]
d

for d = 1, 2, 3, and the Hessian matrix H has

elements H(δ[a])d,h = ∂2 ˜̀(δ)/∂βd∂β
>
h |βd=β

[a]
d ,βh=β

[a]
h

, for d, h = 1, 2, 3. Equation (9) uses a

quadratic approximation of −˜̀
p about δ[a] (the so-called model function) in order to choose

the best e[a+1] within the ball centered in δ[a] of radius ∆[a], the trust region. Close to the

converged solution, the trust region usually behaves like an unconstrained optimization

algorithm.

Trust region algorithms have several advantages over classical alternatives. For instance,

in line search methods, when an iteration falls in a long plateau region, the search for

step δ[a+1] can occur so far away from δ[a] that the evaluation of the model log-likelihood

may be indefinite or not finite, in which case the user’s intervention is required. Trust
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region methods, on the other hand, always solve the sub-problem (9) before evaluating the

objective function. So, if ˜̀
p is not finite at the proposed δ[a+1] then step e[a+1] is rejected,

the trust region shrunken, and the optimization computed again. The radius is also reduced

if there is no agreement between the model and objective functions (i.e., the proposed point

in the region is not better than the current one). Reversibly, if an agreement occurs, the

trust region is expanded for the next iteration. In summary, δ[a+1] is accepted if it improves

over δ[a] and allows for the evaluation of ˘̀̃
p, whereas the reduction/expansion of ∆[a+1] is

based on the similarity between model and objective functions. Theoretical and practical

details of the method can be found in Nocedal & Wright (2006, Chapter 4) and Geyer

(2015). The latter also discusses the necessary modifications to the sub-problem (9) and

the radius for ill-scaled variables.

The analytical score and Hessian of (the non-robust) `(δ) can be derived in a modular

way. This allows for a direct extension to other families of distributions not included in

Table 1 in Web Appendix D as long as their pdf/pmf are known and their derivatives with

respect to their parameters exist. Regarding the optimization of the robustified ˜̀
p(δ), the

integral defining bρ(δ) in (4), as well as its derivatives, in general have to be approximated.

For discrete distributions over countably infinite supports, this amounts to a straightfor-

ward truncation of a converging infinite sum. For continuous distributions, we rely on a

unidimensional adaptive Gaussian quadrature rule for which we compute data-based finite

bounds for numerical stability and to increased speed.

The procedures are all implemented in the gamlss function in the R package GJRM (Marra

& Radice 2020). In Web Appendix E, we provide some R code and brief explanations on

the usage of this function.

3.4 Robust Selection of Smoothing Parameters

Our robustification scheme with ρc directly applied on log-likelihood contributions has the

advantage of yielding a natural robust AIC (RAIC). Following the construction of the

generalized information criterion (GIC) of Konishi & Kitagawa (1996), we can define the

Kullback-Leibler divergence dKL between the true distribution G that generated the data,
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with density g, and the distribution corresponding to our robustified likelihood (up to

normalization constants) as

dKL = EG
[

log
(
g(Y )/ exp(˜̀(δ, Y ))

)]
= EG[log g(Y )]− EG[˜̀(δ, Y )], (10)

where ˜̀(δ, Y ) = ρc
(

log f(Y |µ, σ, ν)
)
−
∫
ρ?c
(

log f(y|µ, σ, ν)
)

dy. The generic random vari-

able Y here stands for an out-of-sample observation to be predicted, thus dKL repre-

sents a measure of prediction error. Minimizing dKL with respect to δ is equivalent

to maximizing EG[˜̀(δ, Y )] since the first term on the right hand side of (10) is a con-

stant. But because G is unknown, the estimator (1/n)
∑n

i=1
˜̀(δ, Yi) is used, which is

biased for EG[˜̀(δ, Y )]. In the GIC framework, the first-order correction of this bias de-

pends on the estimator used for δ. We consider here the penalized robust estimator δ̂,

so that by Theorem 2.2 of Konishi & Kitagawa (1996) the bias correction amounts to

tr
{
Mp(δ)−1Q(δ)

}
= tr

{
(M(δ) + S)−1Q(δ)

}
. Thus we define the RAIC as

RAIC(λ) = −2˜̀(δ) + 2tr
[
(M̂(δ) + S)−1Q̂(δ)

]
, (11)

where recall that S = S(λ), and the observed matrices M̂(δ) and Q̂(δ) allow for fast

computations. Selecting λ can thus be done by minimizing RAIC(λ). In (11), since all

terms are based on the robustified ˜̀(δ), the RAIC naturally inherits robustness and the

selected λ is thus expected to remain stable in the presence of model deviations.

Minimizing an AIC-type criterion for smoothing parameter selection is known to favor

more complex models, with function estimates more on the wiggly side. As this feature

may carry over to our RAIC, an alternative is to consider a robust version of the Bayesian

Information Criterion where its heavier penalty coefficient (log(n) rather than 2) generally

favors simpler models, with smoother function estimates. Similarly to Wong et al. (2014),

in our setting a robust BIC (RBIC) is naturally given by

RBIC(λ) = −2˜̀(δ) + log(n)tr
[
(M̂(δ) + S)−1Q̂(δ)

]
.

That being said, the proposed RAIC and RBIC procedures involve two nested opti-

mizations: an inner optimization for computing δ̂ given λ, and an outer optimization over

λ. The high computational cost involved makes the selection of λ nearly unfeasible, or
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unbearably slow, whenever more than one or two smoothers are considered. We therefore

propose an alternative robust selection method that can be automated as part of the es-

timation process with little computational overhead. This alternative is a robust version

of the Fellner-Schall method recently introduced in Wood & Fasiolo (2017), which we will

call the extended Fellner-Schall (EFS) method. Web Appendix B provides the detailed

development, the main ideas can be summarized as follows. First, we take the empirical

Bayes viewpoint as in Remark 2 in Section 3.2 to consider the quadratic penalty as an im-

proper Gaussian prior on δ, resulting in the joint (robustified) likelihood L(y, δ;λ). Next,

we approximate the integral defining the marginal likelihood L(y;λ) =
∫
∆
L(y, δ;λ) dδ by

Laplace’s method. By considering the estimate δ̂ = δ̂(λ) as based on a previous iterate

for λ, we obtain a tractable expression for (the Laplace-approximated) ∂ logL(y;λ)/∂λ.

Finally, we follow the heuristic reasoning of Wood & Fasiolo (2017) to derive the following

update from iteration [k] to [k + 1] for all elements of λ:

λ
[k+1]
j = λ

[k]
j ×

tr
{
S(λ[k])−1 ∂S(λ)/∂λj|λ=λ[k]

}
− tr

{
M̂p(δ̂)−1 ∂S(λ)/∂λj|λ=λ[k]

}
δ̂
>(
∂S(λ)/∂λj|λ=λ[k]

)
δ̂

,

where δ̂ = δ̂(λ[k]) here. In this expression, ∂S(λ)/∂λj is straightforward to write down and

implement since S(λ) is block-diagonal and each block is typically linear in the components

of λ and only involves the (known) basis functions. We note that under the conditions of

Theorem 1 the update guarantees by construction that λ remains positive and that the

iterates converge whenever the gradient with respect to λ gets arbitrarily close to zero.

This update rule can thus be alternated with computing δ̂ in an automated and efficient

way since both rely on similar quantities (see Section 3.3).

Remark 3. The proposed EFS method is simple to implement and avoids unfeasible grid

searches. All that is required is a set of explicit formulas, as given above, to update λ

in order to increase the (Laplace-approximated) marginal robustified log-likelihood. Our

derivation also highlights the method’s broader appeal since it can be easily adapted to

modeling situations requiring the use of non-standard models and estimators (i.e. beyond

the robust estimation in this paper) as long as a Laplace-approximated marginal likelihood

is available.
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3.5 Choice of the Robustness Tuning Constant

The robustness tuning constant c regulates how early ρc starts to diminish the contribution

of an observation to the objective function ˜̀. The choice of c is typically made before fitting

the model to data by targeting a certain loss of estimation efficiency of the robust estimator

relative to the MLE at the assumed model. With strictly parametric models, the usual

criterion is the ratio of the traces of the asymptotic covariance matrices of the model

parameters. But with non-parametric models, where basis function coefficients are subject

to some smoothness constraint (as is the case here) the asymptotic covariance matrices of

the penalized MLE and of the robust estimator are not necessarily comparable. The reason

is that robust estimation may achieve a different degree of smoothness, i.e. a different bias-

variance trade-off stemming from different λ values selected by minimizing some prediction

error criterion. If the two estimators achieve different degrees of smoothness, then the

coefficients variances are not necessarily on the same scale and are thus not comparable.

One may constrain the smoothness to be similar between the two estimation methods, but

this would defeat the purpose of robustness: we are indeed interested in potential differences

between the fitted functions and typically suspect that deviating observations may push

classical estimates to be too wiggly. Hence the need for a different criterion for the choice

of c. We note that previous works (Alimadad & Salibian-Barrera 2011, Croux et al. 2012,

Wong et al. 2014) have not discussed this important issue, resorting to somewhat default

values for c taken from strictly parametric cases.

We propose a novel general criterion for the selection of the tuning constant c which

covers both additive models and strictly parametric ones. It is simulation-based and relies

on the heuristic idea of controlling how the robustness weights at the score level (represented

here by ρ′c) behave under data generated from the assumed model. Our procedure is as

follows:

Step 1: For a given tuning constant value c, compute the robust estimator δ̂c on the original

data by maximizing (5), including the optimal smoothing parameter λ̂c.

Step 2: For a large number of Monte Carlo replications B, for b ∈ {1, . . . , B} repeat:
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(a) Generate a response vector yb given the original design and covariates according

to the assumed model in (2) using δ̂c as generating parameter.

(b) Use both δ̂c and λ̂c to compute the vector of robustness weights (wb,1, . . . , wb,n)>,

where wb,i = ρ′c(`(δ̂c)b,i) with `(δ̂c)b,i denoting the log-likelihood value corre-

sponding to the ith entry in yb. Compute the sum of the robustness weights

wb =
∑n

i=1wi,b.

Step 3: The criterion corresponding to c is the median downweighting proportion (MDP) over

the B independent replicates: median{w1/n, . . . , wB/n}.

Step 4: Repeat Steps 1–3 to find the c value matching a target MDP (e.g. MDP = 0.95).

Since ρ′c(`(δ)b,i) ∈ [0, 1] for any δ by construction, the ratio wb/n indeed represents how

much downweighting has occurred on a particular sample yb. The value wb/n = 1 indicates

no downweighting at all, i.e. the corresponding estimate is the penalized MLE. The MDP

criterion essentially quantifies information in the data the user is prepared to lose in order

to gain robustness, where this loss of information (in a loose sense) is represented by the

downweighting of data points in the ideal case of the model being correctly specified. Thus

the target MDP should be based on the suspected magnitude of any contamination in the

response: a harsh contamination can be easily detected thus the target MDP can be set

close to 1, resulting in a relatively large value of the tuning constant c; while a subtle

contamination requires a smaller MDP, resulting in c being correspondingly smaller.

We empirically confirmed over a variety of models (through simulations not presented

here) that the MDP indeed increases monotonically with c until reaching one and remaining

constant beyond that. This implies that our new criterion shares a one-to-one relation

with the traditional criterion of the ratio of the trace of the asymptotic covariance matrices

within the subset of c values that lead to some downweighting under the given design. The

MDP is not asymptotic and is in effect tailored to the model and design of the data under

study. We finally note that no heavy computation is involved in Step 2: we do not estimate

parameters on the simulated yb vectors, we only need to evaluate the log-likelihood at the

true parameter δ̂c that generated the sample. In addition, our experience is that Monte
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Carlo simulation variability is quite small in the MDP so that B = 100 seems sufficient for

most practical purposes.

4 Simulation Studies

To investigate the finite sample properties of the proposed estimator, we carry out two

simulation studies. In the first one, we assess the robustness properties of our methodology

in a GAMLSS setting inspired by the brain imaging data we analyze in Section 5. In the

second simulation study, we compare our proposal to existing alternatives in the simpler

setting of a GAM. All computations are performed in R (R Core Team 2020). Our robust

estimator is available in the R package GJRM (Marra & Radice 2020).

4.1 Simulation under a GAMLSS

The data inspiring the GAMLSS simulation design come from functional magnetic reso-

nance imaging (fMRI) of the human brain. These data were presented in Landau et al.

(2003) and subsequently used in Wood (2017), and are available in the R package gamair,

available on CRAN, as a data frame called brain. The goal of the original study is to

test for a difference in the timing (phase shift) of the physiological response between two

anatomically distinct brain regions. For this purpose, a set of fMRI measures were acquired

from a healthy participant during the performance of a verbal fluency task. The active task

of this experiment consisted of generating words beginning with a cued letter, while the

baseline condition was given by covertly repeating a letter. Brain activity was then sum-

marized as the median of three measurements of fundamental power quotient on each brain

voxel. This physiological activity summary is the nonnegative continuous response vari-

able medFPQ. The coordinates x1 and x2 of each voxel (labeled X and Y, respectively, in the

brain data frame in gamair) are used as covariates to model the response surface. The

medFPQ measurements roughly range from 0 till 21, with a median around 0.86, and are

heavily right-skewed. They are known to be rather noisy with possible spikes and troughs

in activity which do not relate to the controlled stimulus (Landau et al. 2003), but the

mean response level and its spread are likely to vary smoothly over the 2D brain slice.
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In this simulation study, we use the x1 and x2 covariates to generate a response for each

voxel according to a GAMLSS with a gamma distribution with expectation µ and variance

σ2µ2 where log(µ) = η1 = s1(x1, x2) and log(σ) = η2 = s2(x1, x2). The smooth functions s1

and s2 are constructed to mimic the main features of the fitted surfaces on the real data in

Section 5, see Figure S2 in Web Appendix C. The combinations of x1 and x2 values result

in a sample size of n = 1567.

To generate data that is contaminated in a similar way to what is observed in the

real data, we modify a clean simulated dataset by choosing at random 78 (= 5%) of the

responses falling in the upper-right corner of the brain slice, for x1 > 70 and x2 > 30, and

by adding 10 to their original value. We simulate 200 replications of the above in both

a “clean” scenario (at the assumed model) and in the contaminated scenario. For each

replication we fit a gamma GAMLSS with log links for both µ and σ, both with a classical

(ML) and with our robust estimation method. We use bivariate thin plate regression splines

with k=100 bases to approximate the s1 and s2 smooth functions. Both estimators rely on

the EFS method for selecting the smoothing parameters. The robust estimator is tuned

to achieve an MDP of 0.95, resulting in c = 3.1 given the design. We assess estimation

performance by investigating the differences between the true parameter and the estimated

one, both on the linear predictor scale (η1 and η2) and on the canonical parameter scale (µ

and σ), computed as a bias averaged over the n observations. We also compute the mean

squared error (MSE) of each target θ computed as MSE(θ̂, θ) = 1
n

∑n
i=1(θ̂i − θi)2, where θ

is one of η1, η2, µ or σ.

Figure 1 presents boxplots of the MSE of both methods under both scenarios, while

Figure S3 in Web Appendix C shows the same but with the vertical scales manually set to

improve visualization. Similarly, Figures S4 and S5 present boxplots of MSEs on the scale

of µ and σ. In Web Appendix D, Tables S2 and S3 report summary statistics for the MSE

and average bias, respectively. In the clean data scenario, the MSE of classical estimates for

both parameters is slightly smaller than that of robust estimates, as theoretically expected.

When the data are contaminated, the MSE and average bias of classical estimates explode,

whereas the MSE of the robust method only shows a slight increase with somewhat more

variability across replications and average bias quite comparable to that with clean data.
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Figure 1: GAMLSS simulation, MSE of the linear predictors η1 (left panel) and η2 (right

panel) for classical and robust methods with data generated at the assumed model and

under contamination.

We investigate these differences further by looking at the fitted surfaces for s1(x1, x2) and

s2(x1, x2). Figure 2 shows colored surfaces representing the average bias across replications

1
200

∑200
j=1(θ̂i,j − θi), where i = 1, . . . , n and θ is either η1 or η2, in the clean data scenario;

Figure 3 shows the same under the contaminated scenario. Note that the coloring scales are

not the same between the two figures. At the assumed model, we see that both methods

perform equally well, showing overall little bias centered about zero. However, under

contamination the classical estimates show a large positive bias in the top-right corner of

the brain slice, which is precisely the area that is contaminated (x1 > 70 and x2 > 30).

Under contamination, the robust estimates show roughly similar biases to those at the

model, meaning that the fitted surfaces are quite stable in spite of the contamination. In

Web Appendix C, Figures S6 and S7 present similar colored surfaces but for µ and σ;

the results are essentially the same. Overall, this simulation study not only highlights the

robustness property of our proposed estimator but also how tuning for an MDP of 0.95

yields smooth functions estimations that are nearly indistinguishable from ML-based ones
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when the data come from the assumed model.

4.2 Comparison to Robust Alternatives in a GAM Setting

In order to compare our proposed estimation method to existing robust approaches in the

special case of a GAM, we consider here one of the simulation designs of Wong et al. (2014).

For i = 1, . . . , n, we generate independent responses Yi ∼ Poisson(µi) with µi = exp(ηi)

and ηi = 4 cos(2π(1 − x2
i )), where the xi’s are independently drawn from a Uniform(0, 1)

distribution. The sample size is set to n = 100. Following Wong et al. (2014, p. 280),

contaminated data are obtained by randomly selecting 5% or 10% of the original responses

and changing them to the nearest integer yiu
u2
1 , where u1 is drawn from a Uniform(2, 5)

distribution and where u2 is randomly set to either 1 or −1. We simulate 200 replications.

We compare the following methods, with the same setting choices as in Wong et al.

(2014):

• AS: the approach of Alimadad & Salibian-Barrera (2011) with span=0.5;

• CGP: the approach of Croux et al. (2012) with nknots=15;

• WYL: the approach of Wong et al. (2014) with k = 30 basis functions and with

smoothing parameter chosen by minimizing their robust BIC, following their recom-

mendation;

• GAMLSS: our proposed approach with k = 20 basis functions;

• Classical: ML-based estimation with k = 20 basis functions and smoothing parameter

selected by the Fellner-Schall method of Wood & Fasiolo (2017).

All existing approaches build on Cantoni & Ronchetti (2001b) to define robust penalized

estimating equations for δ. Croux et al. (2012) additionally define a similar set of estimating

equations for the dispersion parameter in their extended GAM setting. That is, all these

approaches robustify estimating (score) equations, typically by appending weights, whereas

our proposed approach directly robustifies a likelihood. Regarding smoothers and basis

functions, Alimadad & Salibian-Barrera (2011) use local linear fits as smoothers; Croux
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Figure 2: GAMLSS simulation, surfaces of the average bias for the linear predictors η1

(top row) and η2 (bottom row) based on classical (left column) and robust (right column)

estimation methods, at the assumed model.
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et al. (2012) use P-splines; while in Wong et al. (2014) the nonparametric fits are based on

thin plate regression splines. Regarding the smoothing parameter selection, Alimadad &

Salibian-Barrera (2011) use a robust version of CV defined as a sum of squared weighted

residuals in line with Cantoni & Ronchetti (2001a), and implemented it in a “brute-force”

way; Croux et al. (2012) construct a robust GCV criterion and a robust AIC by applying

some bounded function to the deviances appearing in the classical counterparts; while Wong

et al. (2014) define robust versions of AIC, BIC and leave-one-out CV, all of them borrowing

from the quasi-likelihood definition in Cantoni & Ronchetti (2001b). The proposals based

on brute-force (G)CV are generally too demanding to be practical for medium to large

applications. The robust information criteria are more tractable, although still with a high

computational cost if grid searches are to be used. In all of the three existing approaches,

there is no formal treatment of the robustness tuning constant selection. Alimadad &

Salibian-Barrera (2011, p. 723) advise to use c = 1.5, commenting on the fact that “values

of c between 1 and 4 produce similar qualitative results”. Croux et al. (2012, p. 33) suggest

using c = 1.345 for both estimating equations for the mean and the dispersion, borrowing

from the Gaussian regression setting and stating that “this value gives reasonable results

for other models as well”. Finally, Wong et al. (2014) suggest to use c = 1.6 as in Cantoni

& Ronchetti (2001b) without further discussion, even though the simulation designs are

different.

Since we only have one smooth term here, we can afford the computational cost of the

brute-force CV of AS and consider three variants of our estimator to compare smoothing

parameter selection methods: minimizing our proposed robust AIC (RAIC); minimizing

our robust BIC (RBIC); and the extended Fellner-Schall method (EFS). The RAIC/RBIC

minimizations are performed by a grid search starting from EFS, with a relative numerical

tolerance of 10−5 on the RAIC/RBIC scale. All the methods have been tuned to achieve an

MDP of 0.95 following the procedure introduced in Section 3.5, to make them comparable.

The resulting tuning constants are k = 1.2 for the AS method, tccM = 1.2 and tccG =

1.345 for CGP, c = 1.2 for WYL, and c = 5.8 for our approach. As already noted by

Wong et al. (2014, p. 286), the CGP method estimates an additional dispersion param-

eter by default. This implies greater modeling flexibility and may make the comparison
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unfair in some situations, but we do not expect this to contribute much to its performance

in the simulation settings considered here. We evaluate and compare the performances

of the methods by assessing their MSE for the Poisson mean parameter µ computed as

MSE(µ̂, µ) = 1
n

∑n
i=1(µ̂i−µi)2. The R code for the WYL approach is available through the

R package robustGAM, whereas the AS approach is available via the R package rgam. The

code for the CGP approach was retrieved from the online supplementary material of Wong

et al. (2014).

Figure 4 displays boxplots of the MSE for all methods both at the assumed Poisson

GAM model (left sub-panel), under 5% contamination (center sub-panel), and under 10%

contamination (right sub-panel). Some summary statistics for the MSE are given in Table 1,

while summary statistics for the average bias are reported in Table S4 in Web Appendix D.

The classical (ML-based) estimation has the lowest MSE under clean data, while it unsur-

prisingly shows poor performance under contamination. Among the robust methods, AS

has the largest MSEs and both AS and WYL tend to vary more across samples than the

others. CGP, WYL and our method all roughly have the same MSEs on average, while

CGP tends to vary the least under contamination. Among our three variants (RAIC, RBIC

and EFS) performance is similar at the model, but under contamination RAIC features

slightly larger MSEs than RBIC and EFS. This is in line with remarks made by Wong

et al. (2014) about AIC/RAIC favoring wigglier fits which here may allow contaminated

observations to contribute relatively more to the fit than with heavier penalties such as

BIC/RBIC, and this regardless of the robustness property of the method.

Timings for all methods at the model, including the grid searches for minimizing our

RAIC/RBIC, are reported in Table S5 and S6 in Web Appendix D (running on a laptop

housing a 2.9 GHz CPU). The Classical and CGP usually take less than 1 second and are

much faster than the others. Our method with EFS is generally faster than WYL, both of

the order of a few seconds, while AS with its brute-force CV is the slowest. Our somewhat

crude grid search, with nonetheless strict convergence criteria, generally takes between 1

and 3 minutes and is usually faster than AS.

Overall, these simulation results yield two main conclusions. First, our proposed robust

method performs similarly to the best-performing existing alternatives in the GAM special
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Figure 4: GAM simulation, MSE at the assumed model and under contaminated data

(vertical scale manually set for better visualization, some points not displayed).

case. Second, the extended Fellner-Schall method allows for a reliable selection of the

smoothing parameter and is on par with minimizing the RBIC but at a fraction of the

computational cost of a grid search.

5 Application to Brain Imaging Data

In the brain imaging data first presented in Landau et al. (2003), the response variable is

the median fundamental power quotient medFPQ which represents the physiological response

of the brain to controlled stimuli. This response is measured at voxels in a 2D brain slice

with two covariates x1 and x2 identifying the location of each voxel.

Following Wood (2017), we model both the mean and variance of medFPQ as joint

functions s(x1, x2) to be approximated by thin plate regression spline basis functions with

a smoothness penalty based on second order derivatives. However, contrary to the analysis

in (Wood 2017, p. 329) where two voxels with medFPQ ≤ 5 × 10−3 were excluded on the

ground that they can be regarded as outliers, we will consider the entire data set without
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Table 1: GAM simulation, summary statistics of MSE for the robust methods (SD is

standard deviation, IQR is inter-quartile range).

AS CGP WYL GAMLSS RAIC GAMLSS RBIC GAMLSS EFS

At the model

Average 102.51 3.83 12.29 4.62 4.94 4.10

SD 282.49 1.95 23.15 3.62 5.52 3.09

Median 4.76 3.43 3.49 3.95 3.75 3.51

IQR 4.69 2.64 3.72 2.50 2.56 2.35

Under 5% contamination

Average 61.40 5.33 16.47 26.95† 27.61† 21.41†

SD 217.46 4.55 29.68 161.38† 160.51† 119.47†

Median 5.27 4.33 4.17 4.24 4.08 4.07

IQR 4.94 3.17 6.36 3.01 3.12 3.30

Under 10% contamination

Average 60.70 14.17 24.57 32.91‡ 21.54‡ 29.97‡

SD 212.41 47.29 57.20 422.19‡ 265.96‡ 300.74‡

Median 5.91 5.14 5.23 4.83 4.63 4.76

IQR 5.45 3.53 10.44 4.36 4.30 4.70

†higher values due to five samples creating divergence

‡×103 due to six samples creating divergence

exclusions, which amounts to n = 1567. Given the nonnegative and positively skewed

nature of medFPQ, we postulate a gamma distribution parameterized with mean µ and

variance σ2µ2, with log(µ) = η1 = s1(x1, x2) and log(σ) = η2 = s2(x1, x2). Other families

were considered, including the log-logistic distribution which is outside the exponential

family; diagnostics and model validation confirmed that a gamma distribution provides the

best fit, see Figure S8 in Web Appendix C.

We fit the gamma GAMLSS with a classical (ML, non-robust) estimation method and

our proposed robust method. Because of the joint smoother used here, we rely on the EFS

method which provides fast computations. The robust estimator is tuned to achieve an
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MDP of 0.95, resulting in a robustness constant of c = 4.5.

The fitted surfaces for η1 and η2 are given in Figure 5. Overall, the robust fitted surfaces

appear smoother for both parameters, with a surface that is nearly flat for η2. The classical

fit uses a total of 77.2 effective degrees of freedom (56.09 for fitting η1, 19.11 for η2, plus 2

for the constants), whereas the robust fit only uses 30.04 effective degrees of freedom (26.00

for fitting η1, 2.04 for η2, and 2 for the constants). This hints that the automatic selection

of the smoothing parameter in the classical fit was influenced by some potentially outlying

observations.

Consider the largest local differences in Figure 5 between the two fits: in the upper-right

corner of the brain for η̂1 (which has motivated the contamination scheme of Section 4.1),

and in the leftmost part of the brain for η̂2. For the latter, classical estimates imply a

much larger localized response variance than robust estimates do. This is driven by two

observations in this area which are the ones excluded from the analysis in Wood (2017).

Regarding the large differences in η̂1 between the two fits, the spike in mean brain activity

implied by classical estimates is much subdued when considering robust estimation. This

is explained when investigating the robustness weights, which are displayed in Figure 6. A

few observations in the top-right corner are heavily downweighted by the robust method,

which results in the smoother mean surface in Figure 5. These low weights do not imply

that these observations are necessarily outliers, but simply that they do not seem to follow

the same trends as the majority of the data given the gamma GAMLSS assumed here. The

downweighted observations in the top-right corner may indeed represent a physiological

response of interest here, we note that the robustness weights identify them in an automated

way. Also, note that the two observations excluded by Wood (2017) are also heavily

downweighted; these are indicated in Figure 6 as green crosses for reference. Hence, the

robust fitted surfaces combined with the robustness weights are effective at both modeling

smooth functions in a reliable way and at automatically detecting observations deviating

from trends and model assumptions.
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Figure 5: Brain imaging data, fitted surfaces for the linear predictors η1 (top row) and

η2 (bottom row) based on classical (left column) and robust (right column) estimation

methods.
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Figure 6: Brain imaging data, robustness weights from the robust GAMLSS fit, with the

two green crosses identifying the two observations excluded from the analysis in Wood

(2017).

6 Discussion

We introduced a robust estimation method for the broad class of GAMLSS. Our approach

is quite general since it can be employed for any differentiable likelihood. By directly

robustifying the log-likelihood and correcting it for Fisher consistency, this method yields

natural robust versions of AIC and BIC. For more complicated designs where grid searches

are not feasible, our extended Fellner-Schall method allows for a reliable and automatic

selection of smoothing parameters. Our implementation in the R package GJRM, based on the

trust region algorithm, is modular and stable. Furthermore, the introduced MDP criterion

addresses the challenge of the selection of the robustness tuning constant for models with

flexible non-linear effects in a simple and effective way. We believe this criterion has broad

applicability in the implementation of robust methods in many contexts, including the
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ones where efficiency criteria based on asymptotic covariances already exist but may be

computationally expensive.

Simulations in the special case of a GAM showed that our robust estimator is on par

with the best-performing existing approaches, when tuned for comparable robustness under

the assumed model. Simulations in the broader GAMLSS setting as well as our application

to the brain imaging data showed that our robust estimator allows for the automatic

detection of deviating observations through the robustness weights, and that the approach

yields trustworthy estimates.

The proposed robust estimator has of course some limitations. Like any robust M -

estimator, the proportion of contaminated data cannot be unreasonably large without the

estimator starting to break at some point (the so-called breakdown point). In our GAM

simulations, 10% contamination seems to remain safe for all robust methods given the

design but some numerical instabilities do start to arise (notably, our method did diverge

on six samples). In a similar fashion, the EFS automated smoothing parameter selection can

definitely be improved for numerical stability as it is based on heuristics. Another aspect

where more work is needed is in the computation of the Fisher consistency correction term.

This term is defined as an intergral/sum over the response support, which often needs to be

approximated. This approximation can involve heavy computations which may contribute

to the numerical stability of the estimator, and ultimately to its reliability. That said, these

aspects are not specific to our method, we note that Rigby et al. (2019, p. 259) state in

similar way that “Further research is needed on the robust fitting of a GAMLSS model.”.

Future work also includes the extension to high-dimensional settings, following for instance

Mayr et al. (2012) where the problem of variable selection is considered. An alternative

strategy for variable selection is developed in Hambuckers et al. (2018) and Groll et al.

(2018) using L1-type of penalties.
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