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Abstract
The selection of systems of inputs and outputs (input and output structure) forms
part of the early system design and this is important since it preconditions the poten-
tial for control design. Existing methodologies for input, output structure selection
rely on criteria expressing distance to uncontrollability, unobservability. Although
controllability is invariant under state feedback, its corresponding degrees expressing
distance to uncontrollability is not. The paper introduces new criteria for distance to
uncontrollability which is invariant under feedback transformations. The approach
uses the restricted input-state, state-output matrix pencils developed for the matrix
pencil characterisation of invariant spaces of the geometric theory and then deploys
exterior algebra to define the invariant input and output decoupling polynomials.
This reduces the overall problem of distance to uncontrollability to two optimisation
problems: the distance from the Grassmann variety and distance of a set of poly-
nomials from non-coprimeness that relates to the notion of approximate Greatest
Common Divisor. Results on the distance of Sylvester Resultants from singular-
ity provide the new measures. By duality, the results also apply to the problem of
invariant distance to unobservability related to the selection of the output structure.

KEYWORDS
Distance to uncontrollability, distance to unobservability, feedback invariant
measures, decomposability of multivectors, Sylvester resultant, “approximate”
GCD.

1. Introduction

The selection of sets of inputs and outputs in a system is a fundamental problem
that has appeared in many areas of design such as aerospace (Müller & Weber, 1972),
noise suppression (Dunn & Garcia, 1999), process systems (Kumar & Seinfeld, 1978)
etc. This problem is independent from control system design, but the selection affects
the resulting model and has a significant effect on resulting structure and system
properties, which determine the potential for control design (Karcanias, 2008). The
selection of inputs and outputs has been based so far on controllability, observability
criteria for a given system (fixed input and output structure) (Müller & Weber, 1972),
(Dunn & Garcia, 1999), (Kumar & Seinfeld, 1978) (and references therein). Such
measures have been used for the design of the input and output maps (Müller & Weber,
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1972), (Dunn & Garcia, 1999), (Kumar & Seinfeld, 1978), (Georges, 1995), (Xia, Yin,
& Zou, 2018). It is known that such measures of distance are clearly affected by the
selection of coordinate transformations, as this is evident by the theory of balanced
realisations (Moore, 1981).

The existing methods for selection do not take into account the fact that although
controllability is invariant under state feedback and observability is invariant under
output injection (Kailath, 1980), (Karcanias, 1979), their corresponding degrees (mea-
sures of distance to uncontrollability, unobservability) are not invariant under com-
pensation (state feedback, output injection) as this can be demonstrated by simple
examples. Given that selecting input and output structures fix the system structure
and that different feedback schemes will be used, it is essential to derive selection pro-
cedures for input and output structures, based on criteria which are invariant under
feedback. The paper considers state space descriptions based on physical state vari-
ables and deals with the development of criteria measuring distance of a given system
from uncontrollability, unobservability, which are invariant under state feedback. We
focus on the problem of distance to uncontrollability, whereas the case of distance to
unobservability is treated along similar lines by using duality arguments.

The approach used is based on the matrix pencil characterisation of controllability
using the controllability pencil C(s) (Kailath, 1980), (Rosenbrock, 1970) (similarly
K(s) matrix pencil for observability), which has a feedback invariant version provided
by the restricted input state pencil R(s) (restricted output Q(s)) (Karcanias, 1979),
(Jaffe & Karcanias, 1981). The restricted input-state pencil has been used in matrix
pencil approach (Karcanias, 1979), (Karcanias & Kouvaritakis, 1979), (Jaffe & Kar-
canias, 1981) to geometric system theory (Wonham, 1979). The characterisation of
uncontrollability is based on the presence of zeros (input decoupling zeros). In the
effort to develop distance criteria from uncontrollability, it is natural to consider the
distance to singularity (Gu, 2000) of these pencils, which is equivalent to the charac-
terisation of almost input decoupling zeros (Karcanias, Giannakopoulos, & Hubbard,
1983), (Karcanias & Halikias, 2013).

We use the state feedback invariant pencil R(s) (Q(s)) and by taking the exterior
product (Marcus & Minc, 1964) of the rows of R(s) (Q(s)) we define a polynomial
vector r′(s)t(q′(s)) the Greatest Common Divisor (GCD) which determine the input
decoupling zeros of the system (Rosenbrock, 1970). Thus, controllability can be as-
sessed by the coprimeness of the polynomials in r′(s)t(q′(s)). This leads naturally
to the characterisation of the distance to uncontrollability (unobservability) that is
invariant under feedback to the distance of a set of polynomials from lack of coprime-
ness, or the distance to the GCD variety (Karcanias, Fatouros, Mitrouli, & Halikias,
2006). The latter problem is related to the notion of “almost zeros” (Karcanias et al.,
1983) and the computation of “approximate” GCD of a set of polynomials (Mitrouli
& Karcanias, 1993), (Karcanias et al., 2006). The distance for the set of correspond-
ing polynomials from non-coprimeness are based on results expressing the distance
of Sylvester Resultants from singularity. Given that the invariant input decoupling
zero polynomial vector r(t) is obtained as exterior product of the rows of R(s) im-
plies that the coefficient vector of this has to belong to the Grassmann variety of the
corresponding projective space. The overall problem of distance to non-coprimeness
is thus reduced to two optimisation problems, that is the distance to the Grassmann
and the GCD varieties. We use recent results (Karcanias & Leventides, 2016) allowing
the computation of a vector r′(t) of the best approximation of a given vector r(t) to
the Grassmann variety, and then use this for the computation of the distance to the
GCD variety.
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The paper is organised as follows: Section 2 deals with background definitions, pro-
vides a motivation for the study of the problem and introduces the matrix pencil
descriptions. Section 3 deals with the restricted input-state and state output pencil
descriptions and the feedback invariance property of the restricted input-state pencil
under state feedback, and the restricted state-output pencil under output injection.
The role of these pencils in defining invariant distance measures is investigated. Section
4 introduces the input-decoupling zero polynomial vector which provides the means
for developing feedback invariant characterisations of distance to uncontrollability, by
linking this distance to the computation of distance to non-coprimeness. Section 5 sum-
marises recet results (Karcanias & Leventides, 2016) on multivector decomposability
and defines an optimisation problem allowing the computation of the best approxi-
mation of a vector r(t) in a projective space by a vector r′(t) of the corresponding
Grassmann variety. Section 6 reviews the basics on coprimeness and distance to non-
coprimeness of a set of polynomials. Section 7 develops criteria for invariant distance
to uncontrollability, where the approximate vector r′(t) is used in general. The devel-
opment of distance to unobservability follows by using the results on the distance to
uncontrollability and deploying duality.

2. Background Results

Consider a linear system described as follows

S(A,B,C,D) : ẋ = Ax+Bu, A ∈ Rn×n, B ∈ Rn×p (1)

y = Cx+Du, C ∈ Rm×n, D ∈ Rm×p (2)

where (A,B) is controllable, (A,C) is observable and rank(B) = p, rank(C) = m.
With the pairs (A,B), (A,C) we associate the controllability, observability pencils
(Karcanias & Vafiadis, 2002), (Rosenbrock, 1970) respectively.

Definition 2.1 ((Rosenbrock, 1970)). Let S(A,B,C) be a system description and
consider the matrix pencils

C(s) = (sI −A, −B), K(s) =

(
sI −A
−C

)
(3)

Then, system’s controllability and observability properties are characterised by the
absence of finite (or Smith) zeros in (3), meaning that the finite Smith form has no
polynomial entries.

We assume that the state space description is made from physical variables. For such
descriptions performance conditions and constraints may be introduced on the states.
Preserving the physical state space description implies that input, output coordinate
transformations and state, output feedback and output injection may be used.

Remark 1. Note that matrix pencils C(s),K(s) are modified under state feedback
L ∈ Rp×n and output injection K ∈ Rn×m, respectively, which is a generally known
result and hence is omitted. Although the rank of the two pencils is invariant under
these two transformations, the numerical rank may be considerably different.

A number of criteria for measuring the degrees of those two fundamental system
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properties have already been given in the literature (Xia et al., 2018), (Moore, 1981).
However these open loop criteria suffer from the fact that they are affected by state
feedback (output injection respectively) as this is demonstrated in the following ex-
ample.

Example 1. Consider the state space description of a linearised two-mass model of
the wind turbine, where the states are physical variables and the model parameters
are similar to the physical parameters for the wind turbine model as in (Xia et al.,
2018). The state and input matrices for this model are:

A =

 −0.0467 0 −9.104× 10−7

0 0 3.3673× 10−4

8.0215× 106 −1.8583× 105 0

 , B =

 0
−0.014535

0


(4)

Let the distance of the open-loop system to uncontrollability be denoted by

do(A,B) = min
s∈C

σmin([sI −A, B])

Then for the closed-loop system (with the LQR controller denoted by K = −kR−1B′V ,
where R is a positive-definite matrix, V is the unique positive definite solution of
the corresponding Riccati equation and k is a gain parameter) the distance becomes

dc(Â, B) = mins∈C σmin([sI − (A + BK), B]). The optimal solution of the Riccati
equation V verified in (Xia et al., 2018) is

V =

 0.7439 0.0017 −2.2412× 10−8

0.0017 1.0230× 10−5 −5.9486× 10−11

−2.2412× 10−8 −5.9486× 10−11 1.0973× 10−14

 (5)

With k = 1 the closed loop state matrix is computed as

Â =

 −0.0467 0 −9.1040−7

−3.5915× 10−7 −2.1613× 10−9 3.3673× 10−4

8.0215× 106 −1.8583× 105 0

 (6)

Using Gu’s algorithm along the straight line (Gu, 2000) for estimation of the distance
to uncontrollability we start increasing the value of the gain k in order to observe
differences in the distance. With k = 108 the closed-loop distance to uncontrollability
of the system (which is already close to uncontrollability in open-loop) demonstrates a
rapid decrease. The results can be evaluated with given tolerance tol = 10−8 as follows

do(A,B) = 2.8997× 10−7, dc(Â, B) = 1.9118× 10−8 (7)

It should be noted that the higher the value of the gain, the smaller the value of
dc(Â, B) (for this particular example).

This example clearly demonstrates the property that although controllability is
invariant under the state feedback, the corresponding degree of the property, that is
equivalent to the distance to uncontrollability, varies under the feedback. This suggests
that the measures of the distance to uncontrollability that can be used for the selection
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of the input matrix has to be based on the distance criteria which is invariant under
state feedback. This provides the motivation for the search for invariant measures of
the distances.

3. Feedback Invariant System Descriptions

Consider the linear system described as in 1. If N is a left annihilator of B, that is,
NB = 0, N ∈ R(n−p)×n, rank(N) = n− p, B† is a (p× n) left inverse of B (B†B =
In), M is a right annihilator of C, that is, CM = 0, M ∈ Rn×(n−m), rank(M) = n−m
and C† is a (n×m) right inverse of C (CC† = Im). Then we define matrices Z,W

Z =

(
N
B†

)
∈ Rn×n, |Z| 6= 0,W =

(
M C†

)
∈ Rn×n, |W | 6= 0 (8)

The matrix pencils

R(s) = sN −NA, Q(s) = sM −AM (9)

are known as the restricted state-input pencil and restricted state-output pencil re-
spectively (Karcanias & Kouvaritakis, 1979), (Jaffe & Karcanias, 1981), (Rosenbrock,
1970). The following results are known:

Theorem 3.1 ((Rosenbrock, 1970)). The system S(A,B,C) is controllable if and
only if the pencil C(s) has no finite elementary divisors and it is observable if and
only if the pencil K(s) has no finite elementary divisors.

Clearly, the case where C(s) and K(s) have zeros then we have uncontrollability,
unobservability respectively and the corresponding elementary divisors define the sets
of input and output decoupling zeros respectively (Rosenbrock, 1970).

Notation 1 ((Marcus & Minc, 1964)). Let Qk,n denote the set of lexicographically or-
dered, strictly increasing sequences of k integers from ñ = {1, 2, . . . , n}. If {xi1 , . . . , xik}
is a set of vectors of V, ω = (i1, . . . , ik) ∈ Qk,n, then xi1 ∧ · · · ∧ xik = xω∧ denotes the

exterior product and by ∧rV we denote the r-th exterior power of V. If H ∈ Fm×n
and r ≤ min(m,n), then by Cr(H) we denote the r-th compound matrix of H.

If ci(s)
t, ki(s)

t, i ∈ ñ, denote the rows of C(s) ∈ Rn×(p+n)[s], columns of K(s) ∈
R(n+m)×n[s] and Cr(X) denotes the r-th compound matrix of X ∈ Rt×w[s], r ≤
min(t, w) (Marcus & Minc, 1964) then we may define the polynomial vectors

Cn(C(s)) = c1(s)t ∧ · · · ∧ cn(s)t = c(s)t∧n ∈ R1×ρ[s]

= c̃(s)t, ρ =

(
n+ p
n

)
(10)

Cn(K(s)) = k1(s) ∧ · · · ∧ kn(s) = k(s)∧n ∈ Rρ′ [s]

= k̃(s), ρ′ =

(
n+m
n

)
(11)
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as the input decoupling zero and output decoupling zero polynomials of the system
respectively.

Remark 2. The system is controllable, if the polynomials of c̃(s) are coprime and it
is observable if the polynomials in k̃(s) are coprime. If the polynomials in c̃(s) and
k̃(s) are coprime, then their distance to the corresponding GCD variety (Karcanias
& Vafiadis, 2002) defines the distances to uncontrollability, d(A,B) , unobservability,
d(A,C) of the S(A,B), S(A,C) systems respectively.

Note that the distances d(A,B), d(A,C) may vary when state feedback, respec-
tively output injection is applied. In fact, if L ∈ Rp×n is a state feedback, then the
controllability pencil of the closed loop system becomes

C ′(s) = (sI −A−BL, −B) = (sI −A, −B)

(
In 0
L Ip

)
(12)

and the corresponding input decoupling polynomial is then defined by

c̃′(s)t = Cn(C ′(s)) = Cn([sI −A−BL, −B])

= Cn([sI −A, −B])Cn

([
In 0
L Ip

])
= c̃(s)tT (L) (13)

where T (L) ∈ Rσ×σ.

Remark 3. Condition (13) clearly demonstrates that although c̃′(s)t and c̃(s)t have
the same GCD their distance to the GCD is affected by the choice of L.

Similar results may be stated for unobservability and the effect of output injection on
the distance to unobservability when Cn(K(s)) = k̃(s), is considered. The above raises
the question of defining measures of the distance to uncontrollability, unobservability
which are feedback invariant.

4. The Invariant Distance Problem

The study of the invariant distance to uncontrollability and unobservability uses early
results for characterising controllability and observability based on the restriction pen-
cils introduced above (Karcanias, 1979), (Karcanias & Kouvaritakis, 1979), (Jaffe &
Karcanias, 1981). Note that

ZC(s) =

(
N
B†

)
(sI −A, −B) =

(
sN −NA 0
sB† −B†A Ip

)
= C∗(s) (14)

and

K(s)W =

(
sI −A
C

)(
M C†

)
=

(
sM −AM sC† −AC†

0 Im

)
= K∗(s) (15)

Clearly, C(s) and C∗(s), as well as K(s) and K∗(s) are strict equivalent (Gantmakher,
1998) and both C(s) and K(s) do not have zeros at infinity. Thus their finite zeros, if
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any, are given by their corresponding Smith forms defined by

C∗(s) =

(
sN −NA 0
sB† −B†A Ip

)
/

(
sN −NA 0

0 Ip

)
= C(s) (16)

K∗(s) =

(
sM −AM sC† −AC†

0 Im

)
/

(
sM −AM 0

0 Im

)
= K(s) (17)

where / denotes R[s]-equivalence. The above lead to the following result (Karcanias,
1979):

Theorem 4.1. The system S(A,B,C) is:

(1) Controllable if and only if the pencil R(s) has no finite elementary divisors
(2) Observable if and only if the pencil Q(s) has no finite elementary divisors.

Corollary 4.2. The input restriction pencil R(s) = sN−NA is invariant under state
feedback and the output restriction pencil Q(s) = sM −AM is invariant under output
injection.

The above is rather obvious from the fact that if L ∈ Rp×n is a state feedback, then
R′(s) = sN − N(A + BL) = sN − NA = R(s). Similarly, if F ∈ Rn×m is an output
injection, then Q′(s) = sM − (A + FC)M = sM − AM = Q(s) . The invariance of
R(s) and Q(s) leads to the following definition.

Definition 4.3. (1) For the pencil R(s) = sN − NA we define by ri(s)
t, i =

1, . . . , n− p the rows of R(s). The polynomial defined as

Cn−p(R(s)) = r1(s)t ∧ · · · ∧ rn−p(s)t

= r(s)t∧n−p ∈ R1×σ′ [s]

= r̃(s)t, σ′ =

(
n

n− p

)
(18)

will be called the invariant controllability polynomial (ICP) of the system.
(2) For the restriction pencil Q(s) = sM −AM we define by q

i
(s), i = 1, . . . , n−m

the rows of Q(s). The polynomial defined as

Cn−m(Q(s)) = q
1
(s) ∧ · · · ∧ q

n−m(s)

= q(s)∧n−m ∈ Rσ′ [s]

= q̃(s), σ′ =

(
n

n−m

)
(19)

will be called the invariant observability polynomial (IOP) of the system.

The invariance under feedback of R(s) and Q(s) implies the invariance of r̃(s)t, q̃(s)
and these will be used for the study of feedback invariant distances to uncontrollabity,
respectively unobservability of the system. Note that deg{r̃(s)t} = n − p and that
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deg{q̃(s)} = n −m, where deg(·) denotes the highest order degree of polynomials in

the corresponding multivector. Given that the GCD of r̃(s)t, provides a state feedback
invariant characterisation of input decoupling zeros and q̃(s) provides an output injec-
tion invariant characterisation of output decoupling zeros we are led to the following
result:

Corollary 4.4. The distances of the set of polynomials of r̃(s)t, q̃(s)t from noncopri-
ness define respectively the invariant distance to uncontrollability, unobservability.

Thus such distance problems may be studied using the results on the “approximate”
GCD of a set of polynomials (Karcanias et al., 1983), (Fatouros & Karcanias, 2003),
(Karcanias et al., 2006) and express the distance of the corresponding sets of polyno-
mials from their respective GCD variety (Karcanias et al., 2006). The existing results
on the approximate GCD assume that the set of polynomials is arbitrarily defined.
However, this is not the case for the polynomials of r̃(s)t, q̃(s) since these are defined
as exterior products of rows, columns of matrix pencils and the study of such distances
has to take into account these properties. We summarise next some of the basics from
exterior algebra (Marcus, 1973).

Definition 4.5 ((Marcus, 1973)). Let τ =

(
v
r

)
, r ≤ v and let k ∈ Rτ . The vector

k is called decomposable, if there exists a set of vectors {hi, i = 1, . . . , r, hi ∈ Rv} such
that

h1 ∧ · · · ∧ hr = h∧r = k (20)

The matrix H = [h1, . . . , hr] ∈ Rv×r defines a basis for subspace H = span{h1, . . . , hr}
which has dimension r and may be referred to as the parent space of the decomposable
vector k.

The set of r-dimensional subspaces H of Rv is referred to as the r-Grassmaniann, it
is denoted by G(r,Rv) and the column space of H, defines a basis for such subspaces.
The mapping of each r-dimensional subspace H such as h1∧· · ·∧hr = h∧r = k (where
hi are the column vectors of H) is a vector k ∈ Rτ defining a point in the projective
space Pτ−1(R); the points of Pr−1 which satisfy for some H ∈ Rr×v (20) are those
which belong to the Grassmann variety Ω(r, v) of the projective space Pτ−1(R) (Hodge,
Hodge, & Pedoe, 1994). Let k ∈ Rσ with coordinates kω, ω = (i1, . . . , ir) ∈ Qr,v.These
are referred to as the Plücker coordinates of k and the mapping of H through ∧r is
known as the Plücker Embedding of the r-Grassmaniann G(r,Rv) into the projective
space Pτ−1(R) (Hodge et al., 1994). The variety Ω(r, v) is characterised by the result
(Marcus, 1973):

Theorem 4.6 ((Karcanias & Giannakopoulos, 1984)). (1) Let k ∈ Rτ , τ =

(
v
r

)
.

Necessary and sufficient condition for a matrix H to exist, where H ∈ Rr×v, H =
[h1, . . . , hr]

t such that

h∧r = h1 ∧ · · · ∧ hr = k = [. . . , kω, . . . ]
t (21)
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is that the coordinates kω satisfy the following quadratic relations

r+1∑
k=1

(−1)v−1ki1,...,ir−1,jkv j1,...,jv−1,jv+1,jr+1
= 0 (22)

where ki1,...,ir are the coordinates of k, 1 ≤ i1 < i2 < · · · < ir−1 ≤ v and
1 ≤ j1 < j2 < · · · < jr+1 ≤ v.

(2) If the conditions (22) are satisfied, there exists a uniquely defined space H that
corresponds to k ∈ Rτ that satisfies equation (21).

The vectors k which satisfy (21) are called decomposable and the set of quadratics
defined by (22) (Marcus, 1973), (Hodge et al., 1994), as Quadratic Plücker Relations
(QPR) and they define the Grassmann variety of Pτ−1(R). Alternative conditions for
decomposability are given in (Karcanias & Leventides, 2016), in terms of the Grass-
mann matrix; the latter criteria also provide the means for the reconstruction of the
space H as thus its basis matrix H.

Example 2 ((Karcanias & Giannakopoulos, 1984)). Let v = 5, r = 3 and let
(k0, k1, k2, . . . , k8) be the coordinates of a vector defining a point in the projective
space Pτ−1(R), τ = 9. The set of QPRs describing the Grassmann variety Ω(3, 5) are
given by

k0k5 − k1k4 + k2k3 = 0, k0k8 − k1k7 + k2k6 = 0,

k0k9 − k3k7 + k4k6 = 0 (23)

k1k9 − k3k8 + k5k6 = 0, k2k9 − k4k8 + k5k7 = 0 (24)

Note that the above set of equations are not minimal. It may be readily shown that
the above set of equations is not minimal; in fact, the set (24) may be obtained from
the set (23) and thus (23) is a minimal set of quadratics describing the Grassmann
variety Ω(3, 5).

5. The Distance Problem from the Grassmann Variety

In this section we examine the problem of distance from the Grassmann Variety which
is an essential part in the effort to compute the invariant distance. We first review
some standard results from exterior algebra and algebraic geometry.

Lemma 5.1 ((Marcus, 1973)). Let U be a vector space over a field F with dimU = v.
Then any vector in ∧v−1U as well as ∧1U is decomposable.

Note that the exterior algebra results on decomposability of real or complex vectors
also apply for vectors of rational functions and thus polynomial vectors and they will
be used in the following analysis. We consider next two cases: the first concerns with
the case where the polynomial vector is always decomposable, and the second where
the polynomial multivector has to satisfy the decomposability conditions.

Clearly, in this case, that is, when the polynomial vector is decomposable the Grass-

mann variety of Pτ−1(F),

(
τ =

(
v
r

)
, r = v − 1 or r = 1

)
coincides with the projec-
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tive space Pτ−1(F), or in other words there are no Quadratic Plücker Relations defin-
ing the variety. Thus the above study of the invariant distance to uncontrollability,
unobservability is reduced to the following two cases:

Linear Invariant Distance Problem (LIDP):

(1) The invariant distance to uncontrollability is defined by the distance to the GCD
variety of the polynomial Cn−p(R(s)) = r̃(s)t, where the resulting multivector
k ∈ Rp, r̃(s)t is free if p = 1 or p = n− 1.

(2) The invariant distance to unobservability is defined by the distance to the GCD
variety of the polynomial Cn−m(Q(s)) = q̃(s), where the result of compound
matrix, the vector k ∈ Rm, q̃(s) is free if m = 1 or m = n− 1.

Note that the general case p 6= 1, n− 1 and m 6= 1, n− 1 implies that the polynomials
r̃(s)t and q̃(s) are generated by vectors k ∈ Rp, k ∈ Rm respectively, which are not any
longer free, but they have to satisfy the corresponding QPRs. Note that in this case
the general problem of invariant distance to uncontrollability, unobservability becomes
a problem of distance between the GCD variety and the corresponding Grassmann
variety. Thus we are led to the formulation of the following problem.

General Invariant Distance Problem (GIDP):

(1) The case where p 6= 1, n − 1 the general invariant distance to uncontrollability
is defined by the distance to the GCD variety of the polynomial Cn−p(R(s)) =
r̃(s)t, where the resulting polynomials denoted as the vector k ∈ Rp, r̃(s)t also
satisfies the corresponding QPRs.

(2) The case where m 6= 1, n − 1 the general invariant distance to unobservability
is defined by the distance to the GCD variety of the polynomial Cn−m(Q(s)) =
q̃(s), where vector k ∈ Rm, q̃(s) also satisfies the corresponding QPRs.

We consider next the non-linear case and this raises the important problem of
defining the distance of a general polynomial multivector to the Grassmann Variety.

6. The Study of the General Invariant Distance Problem

The General Invariant Distance Problem is based on the study of the vector invari-
ant zero polynomial z(s) (r̃(s) for input and q̃(s) for output decoupling polynomials
respectively) and it is reduced to two optimisation problems:

(1) Define the distance of z(s) polynomial vector from the GCD variety.
(2) Define conditions for the decomposability of z(s) polynomial vector, that is its

distance from the Grassmann variety of the corresponding projective space.

We may handle those two optimisation problems as follows:
First, we define the best approximation of z(s) from the Grassmann variety, and let

us say that this polynomial vector z′(s) ∈ Ω(m,n;R[s]). Then, define the distance of
z(s) from the GCD variety and this shall be the solution to our problem.

Note that in the linear case, where z(s) is decomposable, then z′(s) = z(s), whereas
in the nonlinear case z(s) is approximated by z′(s). Throughout this analysis, the
polynomial vectors z(s), z′(s) have coordinates polynomials, which are the Plücker
coordinates in the projective space of the corresponding vector. Assuming that z(s) is
obtained as the exterior product of a matrix Z(s) ∈ Rm×n[s],m < n, where zi(s), i ∈
m̃, denote the rows of Z(s) then we define
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Cm(Z(s)) = z1(s)t ∧ · · · ∧ zm(s)t = z(s)t∧m ∈ Rl×ρ[s] = z̃(s)t, ρ =

(
n
m

)
(25)

and the Plücker coordinates are {zω(s), ω ∈ Qm,n}
The standard results on decomposability of real, or complex vectors, carry over to

the case of rational functions and polynomials (Gantmakher, 1998), (Marcus, 1973)
and can be used here for the decomposability of polynomial multivectors. In this case
we shall denote the set of QPRs associated with z(s) by

Q = {qi(s), i ∈ ρ̃, qi(s) ∈ R[s]} (26)

and they characterise the Grassmann variety Ω(m,n). Clearly, the set Q is defined
by the set of Plücker coordinates {zω(s), ω ∈ Qm,n}.

Lemma 6.1. The multivector z̃(s)t ∈ R1×ρ[s] is decomposable, if and only if the QPRs
are exactly zero, that is

qi(s) ≡ 0, ∀i ∈ ρ̃, qi(s) ∈ R[s] (27)

Alternative decomposability conditions may be defined in terms of the Grassmann
matrices (Karcanias & Leventides, 2016). The above set of conditions are polynomial
equations and can be checked for each of the qi(s) defined by the set of Plücker
coordinates {zω(s), ω ∈ Qm,n}. In the case where at least one of the above conditions
is not satisfied, then we address the problem of minimal distance of z(s) from the
Grassmann variety Ω(m,n).

Note that we can always find vectors k(s) ∈ ∧mR[s]n such that z′(s) = z(s) + k(s),
with z′(s) ∈ Ω(m,n). This generates an approximate solution and can evaluate the
derivation for the non-generic cases, where the exact problem does not have solution.
Finding ‖k(s)‖ which is minimum expresses the distance problem of the given z(s)
from the Grassmann variety (Leventides, Petroulakis, & Karcanias, 2014) defined as:

Definition 6.2. Define a vector k(s) ∈ ∧mR[s]n, such that the vector z′(s) = z(s) +
k(s), z′(s) ∈ Ω(m,n), where ‖k(s)‖ is the minimum and ‖·‖ corresponds to the spectral
norm. The resulting z′(s) may be referred to as the projection of z(s) on the Grassmann
variety Ω(m,n).

The above defines the minimum distance problem of z(s) from the Grassmann va-
riety. If {zω(s), ω ∈ Qm,n}, {kω(s), ω ∈ Qm,n} are the Plücker coordinates of z(s)
and k(s) respectively, then the corresponding coordinates of z′(s) are {z′ω(s) =
zω(s) + kω(s), ω ∈ Qm,n}. Using Lemma 6.1, the minimum distance problem is then
defined as:

Problem 1 (Minimum Distance Problem). Define the minimum solution {kω(s), ω ∈
Qm,n} for the set of quadratic equations

qi(s) = 0,∀i ∈ ρ̃, qi(s) ∈ R[s] defined for {z′ω(s) = zω(s) + kω(s), ω ∈ Qm,n} (28)

The above problem may be tackled using analytical, as well as numerical techniques.

11



The resulting z′(s) will then be used for the estimation of distance from the GCD
variety.

Remark 4. Given that the decomposable set z′(s) = {z′i(s), i ∈ ρ̃} is a constrained
version of the free {zi(s), i ∈ ρ̃}, we expect that the distance from singularity of the free
set to define a lower bound for the distance from singularity of z′(s) = {z′i(s), i ∈ ρ̃}. Of
course, whenever {z′i(s), i ∈ ρ̃} is decomposable, then the two distances are equivalent,
such that the vectors coincide.

Characterisation of the distance from the GCD variety is considered next.

7. “Almost” non-coprimeness of a set of polynomials: Background Results

In this section the problem of defining the GCD of a set of polynomials is reviewed first
which leads to the study of “almost GCD” of a set of polynomials and thus enables
the computation of the distance to the GCD variety. This will be first described for
the simple, unconstrained case where there are no QPRs and then the results will be
extended to the general case where the set of QPRs is non-trivial. In the latter case
we will use the polynomial vector defined as the best approximation that satisfies the
QPRs.

Following this we will deal with the invariant distance to uncontrollability of the
polynomial Cn−p(R(s)) = r̃(s)t and the results for the invariant distance to unobserv-
ability based on q̃(s) follow by duality.

7.1. Background Results on the GCD: The Sylvester Resultant

Consider the set of σ polynomials in r̃(s), where v denotes the maximal degree, v =
n− p. This set may be denoted by

Pσ,v = {a(s)} ∪ {bi(s) ∈ R[s], i = 1, . . . , σ − 1, v = deg{a(s)},
v ≥ deg{bi(s)}, i = 1, 2, . . . , σ − 1} (29)

δ = max{deg{bi(s)}, i = 1, . . . , σ − 1} (30)

We represent the polynomials a(s), bi(s) with respect to the largest degrees (v, δ) as:

a(s) = sv + av−1s
v−1 + · · ·+ a1s+ a0

bi(s) = bi,σs
δ + · · ·+ bi,1s+ bi,0, i = 1, 2, . . . , σ − 1 (31)

Pσ,v will be called an (v, σ) order polynomial set and whenever we denote the number
of elements and the maximal degree of a polynomial set we shall use this notation,
otherwise the set of polynomials will be abbreviated as P . The GCD of P will be
denoted by φ(s).

The classical approaches for the study of coprimeness and determination of the
GCD makes use of the Sylvester Resultant (Fatouros & Karcanias, 2003), (Barnett,
1971), (Vardulakis & Stoyle, 1978).

Definition 7.1. Consider the set Pσ,v of (29). We can define δ × (v + δ) matrix
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associated with a(s):

S0 =


1 av−1 av−2 . . . a1 a0 0 . . . 0

0 1 av−1 . . . . . . a1 a0
. . .

...
...

. . .
. . .

. . .
. . . 0

0 . . . 0 1 av−1 . . . . . . a1 a0

 (32)

and v × (v + δ) matrix associated with bi(s), i = 1, 2, . . . , σ − 1 as:

Si =



bi,δ bi,δ−1 . . . bi,0 0 . . . . . . 0

0 bi,δ bi,δ−1 . . . bi,0 0
. . . 0

...
. . .

. . .
. . .

...
...

. . .
. . .

. . . 0
0 . . . 0 bi,δ bi,δ−1 . . . . . . bi,0

 (33)

for every i = 1, 2, . . . , σ − 1. An extended Sylvester matrix or a Sylvester Resultant
for the set P is then defined by:

SP =


S0

S1
...

Sσ−1

 ∈ R(δ+σv−v)×(v+δ) (34)

The resultant provides a criteria for the evaluation of GCD and this is summarised
by the results (Fatouros & Karcanias, 2003),(Barnett, 1971), (Vardulakis & Stoyle,
1978).

Theorem 7.2 (Generalised Resultant Theorem). Given the set of polynomials of (29)
with a generalised resultant SP , the following properties hold true:

(1) The necessary and sufficient condition for a set of polynomials to be coprime is
that

rank(SP ) = v + σ (35)

(2) Let φ(s) be the GCD of P . Then

rank(SP ) = v + δ − deg{φ(s)} (36)

(3) If we reduce SP , by using elementary row operations, to its row echelon form,
the last non-vanishing row defines the coefficients of the GCD.

The Sylvester Resultant result stated above is central in establishing a number of
important computational procedures for the GCD of many polynomials (Mitrouli &
Karcanias, 1993). Clearly, the set of polynomials is not coprime if SP is singular, which
occurs when the polynomial vector r̃(s)t is on the GCD variety defined as:
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Definition 7.3. For a polynomial vector r̃(s)t the GCD variety is defined by the set
of maximal order minors of SP which are all are equal to zero. This variety is defined
by a polynomial in parameters defined by the coefficients of the polynomials of r̃(s)t

specified in (31).

An obvious Corollary of the above result is:

Corollary 7.4. The distance of the polynomial vector r̃(s)t from the GCD variety is
defined by the distance of Sylvester matrix SP from the set of singular matrices.

In the following section we will provide estimates for this distance.

7.2. Distance to the GCD variety for unconstrained and constrained
polynomials

Important properties of the Sylvester resultant matrix, summarised in Theorem 7.2,
characterise the distance of a set of polynomials from the GCD variety. The well-known
results (Meyer, 2000) correspond to the fact that the distance of SP to singularity is
denoted by the smallest singular value of the matrix.

Corollary 7.5. For the set of unconstrained polynomials the distance to the GCD
variety is exact and defined by the smallest singular value of the Sylvester matrix SP .

If additional constraints are involved to satisfy the QPRs, then the smallest singular
value of SP is the lower bound of the distance. The problem we address is equivalent
to finding the nearest common root of the polynomials that characterises the distance
of SP to singularity. Generically any arbitrary set of polynomials is coprime, thus the
distance to coprimeness is an important notion. This is linked to defining and comput-
ing the “approximate” GCD and the notion of “almost zeros” (Mitrouli & Karcanias,
1993), (Karcanias & Mitrouli, 1994), (Fatouros & Karcanias, 2003), (Karcanias et al.,
2006), (Karcanias & Halikias, 2013), (Barnett, 1971).

Calculation of the “approximate” GCD can be defined from various perspectives.
One of the common approaches (Fatouros & Karcanias, 2003) aims to approximate
the calculation of the GCD by reducing the residual error that arises after matrix
factorisation. The computational procedure determines the nearest polynomial set
with the common divisor of defined degree d. Such a degree can be evaluated as the
sensitivity measure of the set of smallest singular values of the corresponding Sylvester
matrix.

An alternative approach for the calculation of the ”approximate” GCD, recently
evaluated in (Halikias, Galanis, Karcanias, & Milonidis, 2012), (Limantseva, Halikias,
& Karcanias, 2019), defines the distance problem as the standard structured singular
value problem, considering the minimal norm perturbation in the coefficients of the
nominal polynomials to the set of the polynomials with a common root. Such an
approach uses powerfully notions of the µ-value in order to tackle highly structured
nature of the Sylvester resultant.

First, consider the representation in (Fatouros & Karcanias, 2003) that evaluates
distance of the polynomial set P from the GCD variety ∆d with a GCD of degree d
based on the matrix factorisation.

Theorem 7.6 ((Fatouros & Karcanias, 2003)). Let Pσ,v be a set of polynomials as
in (29) and (30) with the largest degrees (v, δ) respectively and define a corresponding
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Sylvester matrix as SP . If φ(s) is the GCD of degree d and Φφ ∈ R(v+δ)×(v+δ), then

Ŝ
(k)
P ∗ = SPΦφ = [0d|ŜP ∗ ] (37)

or

SP = Ŝ
(d)
P ∗ Φ̂φ = [0d|ŜP ∗ ]Φ̂φ (38)

where Φ̂φ is a Toeplitz representation of φ(s) = φds
d + · · ·+ φ1s+ φ0, defined as

Φ̂φ =



φ0 0 0 . . . . . . . . . 0

φ1 φ0 0
...

...
. . .

. . .
. . .

...

φd
. . .

. . .
. . .

...

0 φd φ1 φ0
. . .

...
...

. . .
. . .

. . .
. . . 0

0 . . . 0 φd . . . φ1 φ0


,

i.e. Φφ = Φ̂−1
φ and the expanded resultant of coprime polynomials defined as Ŝ

(d)
P ∗

is obtained by division of the initial matrix SP by the GCD. The matrix factorisation
implies the following formulation of the distance minimisation problem:

d(P,∆) = min
∀P ∗,φ

‖SP − [0d|ŜP ∗ ]Φ̂φ‖F , (39)

where SP , ŜP ∗ are the Sylvester resultant matrices of the initial and reduced polynomial
sets respectively and Φ̂φ is a Toeplitz representation of a polynomial nearest common
divisor φ(s), degφ(s) = d, 1 ≤ d ≤ max(v, δ).

It can be observed that the reduced set ŜP ∗ and corresponding Toeplitz matrix Φ̂φ

in (39) form the non-exact factorisation that leads to the residual error matrix. The
minimisation of (39) is equivalent to the solution of the nonlinear least-squares prob-
lem, which is computationally hard to obtain. In (Ruhe & Wedin, 1980), (G. H. Golub
& Pereyra, 1973), (G. Golub & Pereyra, 2003) the nonlinear least-squares problem
is studied as a separable problem of two sets of parameters. It is argued that such
an approach develops a robust procedure and guarantees the convergence in fewer
iterations than the traditional non-linear least-squares methods. Following this, the
problem in (39) can be simplified as a separable problem of two linear least-squares
projections, where iterating between the two the minimum of (39) can be achieved.
Such an approach is of the particular interest and is going to be evaluated in future
work.

Since, the problem of “approximate” GCD is closely related to the coefficients of
polynomials and the Sylvester matrix is a Toeplitz structure matrix, thus stronger
criteria for the distance to singularity should be considered. Motivated by the recent
results of the authors in (Halikias et al., 2012), (Limantseva et al., 2019) one can define
the distance to non-coprimeness as an optimisation problem, where we seek to find
the minimal magnitude norm perturbation in the coefficients.
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Definition 7.7. Let M ∈ Rn×n and consider the structured set of uncertainties as

∆ = {diag(θ1Ir1 , θ2Ir2 , . . . , θsIrs) : θi ∈ R, i = 1, . . . , s} , (40)

where ri are positive integers corresponding to the block-structure of ∆, i.e.
∑s

i=1 ri =
n. If there exists ∆ ∈ ∆∆∆, such that det(In −M∆) = 0, then the structured singular
value of M is:

µ∆(M) =
1

min{‖∆‖ : ∆ ∈∆∆∆, det(In −M∆) = 0}
, (41)

If for all ∆ ∈∆∆∆, det(In−M∆) 6= 0 then µ∆(M) = 0 (Hinrichsen & Pritchard, 2005).

The simple case of a two-polynomial case, where Sylvester resultant is a square
matrix, is presented in (Halikias et al., 2012). However, the structured singular value
approach is considerably more difficult for an arbitrary number of polynomials. In the
resent paper (Limantseva et al., 2019) an alternative way to approach the µ-problem
of many polynomials is proposed. With the concept of structured singular values the
set of perturbed polynomials P ∗, such that

a(s) = sv + (av−1 + θv−1)sv−1 + · · ·+ (a0 + θ0),

bi(s) = (bi,δ + εi,δ)s
δ + · · ·+ (bi,0 + εi,0), i = 1, . . . , σ − 1 (42)

form a reduced Sylvester matrix has the null space, such that null(SP ∗) ≥ 1 . Then
formally define

γ = max{|θ0|, . . . , |θn−1|, |ε0,1|, . . . , |εt−1,h|} (43)

we seek to minimise γ so that the perturbed polynomials (42) have a common root.
Equivalently the problem can be formulated as: inf{γ : null(SP ) ≥ d} generalising the
problem for the degree of d GCD.

8. Feedback Invariant Measures of Distance Uncontrollability and
Unobservability

Combining characteristics of the input, output restriction matrix pencils R(s) = sN −
NA,Q(s) = sM −MA respectively and the notion of the distance to the GCD variety
of a polynomial set, it is possible to specify invariant measures to uncontrollability
and unobservability.

Corollary 8.1. Let Pσ,v be a set of polynomials, obtained from Cn−p(R(s)) = r̃(s)t.
If p = 1, n− 1, then the smallest singular value of a corresponding Sylvester Resultant
SPσ,v denotes the invariant distance to uncontrollability. If p 6= 1, n−1 and there exists
such a multivector k ∈ Rp that satisfies the QPRs, then the smallest singular value of
a respective SPσ,v defines the bound of the distance.

Similar results can be defined for the distance to unobservability that follows by
duality.

Corollary 8.2. Let Pσ,v be a set of polynomials, obtained from Cn−m(Q(s)) = q̃(s).
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For m = 1, n− 1 the smallest singular value of SPσ,v defines the invariant distance to
uncontrollability.

Remark 5. For the case of p 6= 1, n− 1 a Sylvester matrix SPσ,v is structured from a
corresponding multivector of the polynomials k ∈ Rp that satisfy the QPRs, then the
smallest singular value of SPσ,v characterises the bound of the distance to uncontrol-
lability, respectively unobservability.

It is obvious that constrained polynomials lead to a bounded result of the feed-
back invariant distance to uncontrollability or unobservability respectively. It can be
observed that for an arbitrary system the problem of finding invariant measures of
system properties can be narrowed to the analysis of the lower bound, where we have
to satisfy the constraints of the Grassmann variety. Such observations form a basis
of the future work and possible ways of finding the better bound of the distance to
uncontrollability and unobservability for the design problem.

9. Conclusions

We have addressed an alternative approach for measuring fundamental properties of
a system, namely controllability and observability, that are invariant under the state
feedback and output injection respectively. The framework uses concepts of restricted
input R(s) and restricted output Q(s) pencils in order to develop criteria for evalu-
ating the distance to uncontrollability, unobservability. By studying properties of the
invariant polynomials of a system, r̃(s)t, q̃(s), it is shown that the problem is equiva-
lent to the distance of a set of polynomials Pσ,v to the GCD variety that is reduced to
the two special cases: LIDP, where polynomials are decomposable and the QPRs are
satisfied, and GIDP that requires additional optimisation of the polynomials in order
to satisfy the QPRs.

The invariant distance to uncontrollability (unobservability by the duality) is char-
acterised by the smallest singular value of the corresponding Sylvester matrix SPσ,v , for
the decomposable case and a lower bound for the general case. For the case where the
invariant polynomial vector is not decomposable, we are using its best approximation
on the Grassmann variety. In this case the decomposable set provides a lower bound
for the distance to uncontrollability, unobservability. Working out efficient methods
for computing the best approximation of an invariant zero polynomial vector to the
Grassmann variety remains an open question which is a topic for further research.

Overall, proposed framework defines invariant criteria for measuring systems prop-
erties that can be used as an alternative measure prior control design. Hence, com-
putation of the invariant distance to uncontrollability, unobservability can lead to the
optimal control design and input/output structure selection that is the going to be
studied in the future work.
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