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Abstract

In this paper, we recall actuarial and financial applications of sums of dependent random vari-

ables that follow a non-Gaussian mean-reverting process and contemplate distribution approx-

imations. Our work complements previous related studies restricted to lognormal random vari-

ables; we revisit previous approximations and suggest new ones. We then derive moment-based

distribution approximations for random sums attuned to Asian option pricing and computation

of risk measures of random annuities. Various numerical experiments highlight the speed-

accuracy benefits of the proposed methods.

Keywords: Mean reversion, non-Gaussian processes, moment-matching, Asian option

valuation, stochastic annuities

JEL classification: G13, C63, C15, G22

1. Introduction

We devise accurate distribution approximations for discrete and continuous sums of random

variables that follow an exponential Lévy Ornstein–Uhlenbeck (OU) process.

Contingent claims on sums of random variables have various applications in actuarial prac-

tice. For example, the valuation and risk management of annuities are important topics in

actuarial science. The literature is rich with cases of annuities with fixed payouts or variable

annuity guarantees (e.g., see Vanduffel et al., 2008, Pirjol and Zhu, 2016, Feng and Volkmer,

2012 and references therein). These will be revisited later in the paper in greater detail. In

addition, as emphasized in Plat and Pelsser (2009), a common embedded option in insurance

products in Europe is a profit-sharing rule based on a (moving average) fixed income rate, com-

bined with a minimum guarantee. In practice, these options are often valued using an (average)

forward swap rate as an approximation for the profit-sharing rate, which turns out to be an

equivalent problem to that of valuing Asian options. Also, due to periodic investment over a

long period, the embedded option in equity-linked pension schemes with a guarantee is of the

average type, therefore the pricing of the pension scheme is inherently linked to the pricing of
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the Asian option (see Nielsen et al., 2011). Guaranteed equity-linked life insurance contracts are

closely related (e.g., see Schrager and Pelsser, 2004, Hürlimann, 2010), hence similar principles

are shared; refer to Nielsen et al. (2011) for a more detailed literature review.

Average-based derivatives are also prevalent in commodity markets where risk management

is everlasting. For example, in Europe, contracts on the CME Cumulative Average Temperature

(CAT) Indexes allow businesses to hedge against monthly volatility. In the freight market,

charterers typically face freight rate exposure during a voyage, therefore most freight derivatives

are settled against average spot freight rates. But also, crude oil consumers use average-based

options to hedge against spikes in oil prices during the supply period. The path-dependent

character of these options inevitably adds to the complexity of the pricing and hedging using

these contracts.

The key points of our approach are its modelling capability of mean reversion and jumps

in the dynamics of the underlying variable, but also its generality in the sense that its sole

requirement is the availability of a closed-form expression for the cumulant generating function

of the background driving process of interest. Mean reversion in different variables’ dynamics is

spotlighted in researches such as Poterba and Summers (1988), Wong and Lo (2009) and Liang

et al. (2011). In addition, the deficiencies of a more basic model, such as the lognormal model,

with absent skewness and excess kurtosis of the log-returns, are clearly acknowledged, for ex-

ample, in the American Academy of Actuaries (2005) report, which highlights the importance

of distributions with varying skewness and fat tails that better reflect the market realism. Jang

(2007) explains the usefulness of jump diffusions and, in general, Lévy processes for modelling

in insurance, such as aggregate claim amounts, and in finance, e.g., in zero-coupon bond pricing

or in pricing credit default swaps. As Bakshi and Madan (2002) argue, a model in catastrophe

insurance, with “low-frequency, high-severity” risks, that omits the jump loss feature, or alter-

natively relies only on diffusion loss dynamics, is likely misspecified. But also, when studying

the price dynamics of commodity products mentioned earlier, jump and mean reversion are

important stylized properties that need to be taken into account (e.g., see Kyriakou et al., 2016,

Kyriakou et al., 2017, Kyriakou et al., 2018).

In this paper, we consider a general exponential Lévy OU process for the underlying asset

(e.g., equity) price, index, or variable, in general, or loss. The modelling philosophy is based on

the fact that large fluctuations of the underlying lead to non-normal deviations from the long-

term mean towards which it reverts. Boyle and Potapchik (2008) uniquely survey extensively

different methods for pricing average-based derivatives, including seminal contributions such as

those of Geman and Yor (1993) and Milevsky and Posner (1998), which are limited, though, to

the basic Black–Scholes model framework. Since then, we have seen various contributions in the

literature under more sophisticated models; we do not reiterate them here, but rather refer to

Fusai and Kyriakou (2016) for more details. The literature so far comes to a standstill when start

thinking of nonlinear functions of linear combinations of dependent random variables in this

model. The purpose of this paper is to fill this void using moment-based approximations for this

unknown distribution law. We reconsider approximating laws from the literature, such as the 3-

parameter shifted versions of the lognormal, gamma and reciprocal gamma distributions (see Lo

et al., 2014) as well as the series expansion of Willems (2019). These have been applied originally

in the geometric Brownian motion model setting, therefore their efficiency in different model
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settings is debatable. More importantly, aiming to account for non-Gaussian driving dynamics,

we also come up with new suggestions, including the 3-parameter modified lognormal power-

law for a better control of the tail behaviour, and the 4-parameter Pearson system and Johnson

family of transformations. In addition, we derive a lower bound for the Asian option price along

the lines of Fusai and Kyriakou (2016), adapted to the proposed model framework. We end

up with a full battery of option pricing expressions with grounded cornerstone the moments of

the discrete or continuous arithmetic average, which we derive under general underlying model

assumptions and show how to compute fast and accurately. We find that the Pearson system

offers the flexibility required to capture the skewness and excess kurtosis of the distribution of

the arithmetic average and, in the largest part of our numerical experimentation, it is found to

be the most precise.

So, what are the sought merits of a formula? First, it is easy and can be better understood

than numerical algorithms, is fast to implement, and expectantly accurate. Second, the inversion

of a pricing formula smooths the way for the inference of the underlying model parameter values

from option market quotes based on different maturities and strikes traded on the market.

Third, in practical actuarial applications (e.g., see Laeven et al., 2005), one may be interested in

computing popular risk measures for annuities, which can be already challenging enough under

simpler driving dynamics. Our method provides access to the cumulative distribution function,

which is extremely useful as it offers itself to direct computation of the risk measures. A part

of the paper is devoted to the case of random, continuous or discrete, annuities under general

model assumptions. Finally, replicating the payoff of an option leads to a perfect hedge for the

risk associated with the sale of this option. Traders and risk managers favour uncomplicated

formulae for option prices as they also yield formulae for the price sensitivities with respect

to the changes of various model parameters that constitute the components of the replicating

portfolio and facilitate also the analysis of these changes.

The remainder of the article is structured as follows. In Section 2, we present the under-

lying model assumptions accompanied by an empirical validation and the basic results about

the moments of the arithmetic average required for the mathematical treatment that follows.

Section 3 introduces the moment-matching approach, whereas Sections 4–5 introduce the var-

ious 3 and 4-parameter distribution approximations for the arithmetic average. In Section 6,

we additionally propose a lower bound for the Asian option price. In Section 7, we assess the

accuracy of the different pricing expressions on numerical simulations. In Section 8, we extend

to annuities and the efficient computation of popular risk measures. Section 9 concludes the

article.

2. The model

Consider the stochastic process

dX(t) = α(β −X(t))dt+ dL(t), (1)

where α > 0 is the speed of mean reversion, β is the long-run mean, and L is a general

background driving Lévy process (BDLP). The solution of the stochastic differential equation
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(1) is

X(t) = X(0)e−αt + β(1− e−αt) +

∫ t

0
e−α(t−s)dL(s). (2)

By means of a preliminary empirical analysis, we aim to investigate how this model fares in

reproducing the stylized properties of the dynamics of underlying variables in index-linked

products1. To this end, we consider a Gaussian OU and an example of non-Gaussian OU

process with double exponential jump diffusion BDLP as well as their special counterparts with

parameter α = 0. We calibrate to market prices of options written on assets from different

classes, such as the S&P500 index, VIX, Emerging Markets Ishares MSCI ETF (EEM ETF)

and Apple stock; we report the relevant results in Table 1. In Table 2, we study the impact of

varying model assumptions on the ability to reproduce the market prices of options based on

minimization of the mean squared error (MSE). First, we find that permitting non-Gaussian

dynamics can significantly reduce the MSE: 17% reduction for the Apple stock options up to

98% for the VIX options (bottom panel, second column); these figures are generally boosted

in analogous models with mean reversion allowed (last column). Second, accounting for both

jumps and mean reversion yields further reductions ranging from 6% for EEM ETF up to 69%

for S&P500 (fourth column). Third, moving from the basic Black–Scholes model setting in the

Asian options literature, that is, Gaussian dynamics (log-scale) without mean reversion to a

non-Gaussian mean-reverting model results in a percentage MSE reduction from a minimum of

30% for EEM ETF up to a maximum of 99% for VIX (third column). Looking at the estimated

parameters of the DEJD-driven mean-reverting model in Table 1, we see that α ranges from

0.3 (Apple) to 9.97 (VIX) and the jump arrival intensity λ is between 0.93 (S&P500) and 2.99

(VIX). Obviously, the presence of mean reversion and jumps and their effect on the option

pricing error is undoubtedly significant.

In view of the above empirical results, we adopt the general model (1), which can also be

flexibly reduced to a simpler without mean reversion depending on the needs of the user. Then,

as per the scope of this paper, we consider an option with payoff at some terminal time T > 0

contingent on the average Y{
(continuous) Y (T ) = 1

T

∫ T
0 eX(t)dt

(discrete) Yn(T ) = 1
n

∑n
j=1 e

X(tj), where t1 < · · · < tn = T
. (3)

For example, an Asian call option with fixed strike price K has payoff at maturity time T

(Y −K)+,

where x+ := max(x, 0), and time-0 price

e−rT p0

where

p0 = E
[
(Y −K)+

]
. (4)

1For example, in https://equitable.com/retirement/products/variable-annuities, there are several in-
dices, exchange-traded funds (ETFs) and funds linked to annuities reported which are actively traded.
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The pricing expectation is traditionally evaluated under the risk neutral measure with under-

lying asset price dynamics

S(t) = S(0)
ert+X(t)

E(eX(t))
, (5)

which no longer depends on β and satisfies the standard martingale condition. However, it

may be the case, for example, of an underlying (non-economic) loss process that is uncorrelated

with economy-wide risk factors. In such and other similar cases, the expected payoffs can be

discounted under the physical measure using the risk free rate. For the purposes of the option

pricing application and the computation of the risk measures of annuities we consider in the

later sections, we adhere, respectively, to the risk neutral and the physical measure.

Computing (4) by means of an exact closed-form solution is an unsolvable problem. For

this, we present, next, important results relating to the moments of Y that will be the building

block of our proposed solution. In particular, we aim to provide suitable approximations of the

distribution of the arithmetic average exploiting knowledge of its moments.

2.1. The moments of the arithmetic average

In this section, we show how to obtain the moments of the arithmetic average within the

general model framework defined in the previous section. First, we derive the multivariate

characteristic function of the intertemporal joint distribution of (X(t1), X(t2), . . . , X(tn)) for

any partition 0 = t0 < t1 < t2 < · · · < tn = T of the interval [0, T ] using the following useful

lemma.

Lemma 1 (Eberlein and Raible, 1999). Let L be a Lévy process. If h : R+ → C is a complex-

valued, left-continuous function with limits from the right, such that |Re(h)| ≤M , then

E

[
exp

(∫ t

0
h(s)dL(s)

)]
= exp

(∫ t

0
ψ(h(s))ds

)
,

where ψ(u) := lnE[exp(uL(1))].

Lemma 2. For parameter vector (γ1, γ2, . . . , γn) where γj ∈ C ∀j, we have that

E

exp

 n∑
j=1

γjX(tj)

 = exp


n∑
j=1

X(0)γje
−αtj + βγj(1− e−αtj ) +

∫ tj

tj−1

ψ

 n∑
i=j

γie
−α(ti−s)

 ds

 .

(6)

Proof. See Appendix A.

Having access to the characteristic function of (X(t1), X(t2), . . . , X(tn)) , we can now state

the results for the moments of the continuous and discrete arithmetic average.

Proposition 3 (Discrete average). The mth moment of the discrete arithmetic average price

is given by

E[Y mn (T )] =
1

nm

∑
γ1+···+γn=m

(
m

γ1, . . . , γn

)

exp


n∑
j=1

X(0)γje
−tj + βγj

(
1− e−tj

)
+

∫ tj

tj−1

ψ

 n∑
i=j

γie
−α(ti−s)

 ds

 , (7)
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where

(
m

γ1, . . . , γn

)
= m!

γ1!γ2!···γn! is a multinomial coefficient and the sum
∑

γ1+···+γn=m is

taken over all combinations of non-negative integer indices γ1 through γn such that their sum

is m.

Proof. (7) follows from the multinomial theorem, which yields

(exp (X(t1)) + · · ·+ exp (X(tn)))m =
∑

γ1+···+γn=m

(
m

γ1, . . . , γn

)
n∏
j=1

exp (γjX(tj)) ,

and (6).

Proposition 4 (Continuous average). The nth moment of the continuous arithmetic average

price is given by

E[Y n(T )] =
n!

T

∫ T

t0

dt1

∫ T

t1

dt2 · · ·
∫ T

tn−1

exp


n∑
j=1

(
X(t0)e

−αtj + β
(
1− e−αtj

)

+

∫ tj

tj−1

ψ

 n∑
i=j

e−α(ti−s)

 ds

 dtn. (8)

Proof. From Bharucha-Reid (1960, p. 344–345),

E[Y n(T )] =
1

T

∫ T

t0

· · ·
∫ T

t0

E[exp(X(t1) + · · ·+X(tn))]dt1 · · · dtn

=
n!

T

∫ T

t0

dt1

∫ T

t1

dt2 · · ·
∫ T

tn−1

E[exp(X(t1) + · · ·+X(tn))]dtn.

Then, (8) follows from (6).

Our general results presented in Propositions 3–4 are based on the key quantity

∫ tj

tj−1

ψ

 n∑
i=j

γie
−α(ti−s)

 ds. (9)

This may admit an explicit expression depending on the choice of the background driving Lévy

process L. Table 3 exhibits various examples of Lévy processes that may or may not lead

to an explicit solution for (9). To avoid illegible long mathematical expressions, we present,

instead, in Appendix B snippets of Mathematica® codes that generate those expressions for (9)

corresponding to models including the Gaussian, normal inverse Gaussian (Barndorff-Nielsen,

1998) and double exponential jump diffusion (Kou, 2002). Solutions for other popular model

choices, such as the variance gamma, Carr–Geman–Madan–Yor, and hyperexponential jump

diffusion (Cai and Kou, 2011), can be obtained similarly. In the absence of an analytic solution,

(9) can still be computed numerically fast and accurately, e.g., consider the cases of Merton jump

diffusion and the Meixner (Schoutens and Teugels, 1998) and generalized hyperbolic (Eberlein

and Prause, 2002) models.

[Insert Table 3]
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The unknown distribution law of the arithmetic average precludes the existence of true

solutions for expected values of nonlinear functions of the average. Therefore, in the following

few sections, we study different candidates for the unknown probability distribution of the

arithmetic average (3).

3. Moment-matching approximations

We focus here on the Asian option pricing problem, although any conclusions drawn about

the validity of a proposed approximation are transferable to other problems requiring access to

the distribution of the average or, in general, sums of random variables. We denote by p̃0 the

approximate expression for the true pricing expectation (4) given by

p̃0 =

∫ ∞
0

(x−K)+f̃(x; θ)dx =

∫ ∞
K

xf̃(x; θ)dx−K(1− F̃ (K; θ)), (10)

where f̃(x; θ) is a supposed probability density function, F̃ (x; θ) the associated cumulative

distribution function, and θ the vector of its parameters.

Two natural questions arising in this context are the following. What probability distri-

butions could be potentially assigned to the arithmetic average? What is the resulting error

from such an approximation? The answer to the first question varies; we postpone showcasing a

collection of likely distribution proxies until the next sections. Before that, we look into the first

questions. According to the literature (see Solomon and Stephens, 1978), the intrinsic accuracy

of the approximation is difficult to assess in a mathematical way and has so far been determined

by examples. Here, we improve on this by adapting Akhiezer’s 1965 error bound for cumulative

distribution functions and turning it into an error bound for expected value representations.

We present an upper bound to the error from replacing the unknown distribution F of the

arithmetic average with an approximating F̃ that shares the first 2n moments.

From Akhiezer (1965, p. 66), ∣∣∣F (x)− F̃ (x)
∣∣∣ ≤ ρn(x), (11)

where

1

ρn(x)
=
(

1 x ... xn
)


1 µ1 ... µn

µ1 ... ... µn+1

...
...

...
...

µn µn+1 ... µ2n


−1

1

x
...

xn


and µn is the nth moment of the unknown distribution. The error bound (11) is then applicable

to expected values of functions of the underlying random quantity. For example, the price of

the Asian put option with fixed strike K is given by

e−rTE
[
(K − Y )+

]
= e−rT

∫ K

0
F (x)dx ≈ e−rT

∫ K

0
F̃ (x)dx.

Then, from (11),

e−rT
∫ K

0

∣∣∣F (x)− F̃ (x)
∣∣∣ dx ≤ e−rT ∫ K

0
ρn(x)dx. (12)
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When n = 1, for example, we have that

∫ K

0
ρ1(x)dx =

√
µ2 − µ21

[
arctan

(
K − µ1√
µ2 − µ21

)
+ arctan

(
µ1√
µ2 − µ21

)]
,

but in general (12) can be computed easily and accurately numerically for any n.

Figure 1 shows a simple implementation of (11)–(12) based on a Gaussian OU process.

Two comments are in order. The error upper bound becomes tighter the more moments are

taken into account. This improves particularly with decreasing option moneyness, consistently

with Lindsay and Basak (2000) who show that this bound is accurate only in the tails of the

distributions.

[Insert Figure 1]

As it is not possible to exactly characterize the distribution of the arithmetic average, we

will use Propositions 3–4 and moment-matching to define approximating distributions for the

arithmetic average. In Section 4, we present 3-parameter approximations and resulting closed-

form price solutions for Asian options; in Section 5, we study 4-parameter approximations which

lead to solutions that require a simple and fast numerical integration. Later on in Section 7, we

will assess the performance of the different candidate solutions based on accuracy–computational

burden tradeoffs.

4. Approximations based on the first three moments

For brevity, in what follows we omit the details of the associated probability density and

cumulative distribution functions, which can be found in the cited original works, and rather

merely present the resulting pricing expressions following from (10).

4.1. Shifted lognormal (SLN)

Posner and Milevsky (1998) and Lo et al. (2014) suggest approximating the distribution of

the arithmetic average Y by a lognormal distribution with parametersm ∈ R, s > 0 and addition

of a shift parameter h to the originally proposed approximation of Turnbull and Wakeman

(1991). Matching the mean µY = µ1, variance vY = µ2 − µ21 and skewness γY = (µ3 − 3µ1µ2 +

2µ31)/v
3/2
Y , where µ1, µ2, µ3 are the first three raw moments of the arithmetic average Y in (3),

yields the following expressions for the parameters:

h = µY −
√
vY
γY

(
1 +B

1
3 +B−

1
3

)
, s2 = ln

(
1 +

γY
(µY − h)2

)
(13)

and

m = ln(µY − h)− s2

2
, (14)

where B := (γY + 2−
√
γ4Y + 4γY )/2 ∈ (0, 1]. For Y approximated by a shifted lognormal law

with parameter vector θ = (h, s,m) given by (13)–(14), the pricing formula (10) leads to

p̃SLN0 := (µY − h) Φ(d1)− (K − h)Φ(d2),

8



where Φ(·) denotes the standard normal cumulative distribution function and

d1,2 :=
1

s
ln

∣∣∣∣µY − hK − h

∣∣∣∣± s

2
.

4.2. Shifted gamma (SG)

Following Chang and Tsao (2011) and Lo et al. (2014), another possibility is an approxi-

mation of the unknown distribution using a shifted gamma distribution with shape and scale

parameters a > 0 and b > 0, and shift parameter h. In this case, moment-matching yields the

following solution for the unknown parameters:

a =
4

γ2Y
, b =

√
vY
a
, h = µY − ab.

Applying the parameter vector θ = (a, b, h) in formula (10) under the assumption of a shifted

gamma law for Y gives us

p̃SG0 := (µY − h)

(
1− Γω(a+ 1)

Γ(a+ 1)

)
− (K − h)

(
1− Γω(a)

Γ(a)

)
,

where ω := t(K − h)/b and

Γω(z) =

∫ ∞
ω

tz−1e−tdt

is the upper incomplete gamma function; Γ corresponds to ω ≡ 0. We refer to Lo et al. (2014)

for the details of this derivation.

4.3. Shifted reciprocal gamma (SRG)

In addition, Lo et al. (2014) consider an approximation based on a shifted reciprocal gamma

distribution with parameters a, b and h. Here, the relevant parameters are given by

h = µY −
√
vY
γY

(
2 +

√
4 + γY

)
, a = 2 +

(µY − h)2

vY

and

b = (µY − h)(a− 1).

Substituting the resulting parameter vector θ = (h, a, b) in (10) yields under the assumption of

a shifted reciprocal gamma law for Y the option price approximation

p̃SRG
0 := (µY − h)

Γω(a− 1)

Γ(a− 1)
− (K − h)

Γω(a)

Γ(a)
.

4.4. Modified lognormal power-law (MLP)

Finally, we consider for the first time in this context the case of the modified lognormal

power-law distribution with initial lognormal distribution parameters m, s and parameter a

controlling the tail behaviour, which we calculate by matching raw moments given by

µk =
a

a− k
exp

(
s2k2

2
+mk

)
, a > k

9



(see Basu and Jones, 2004). Parameter a can be calculated from

(a− 2)3aµ32
(a− 3)(a− 1)3µ3Y

= µ3

numerically. Given a, the remaining parameters are given by

s2 = ln
(a− 2)µ2
a(a− 1)2µ2Y

, m = −s
2

2
+ ln

(a− 1)µY
a

.

The relevant pricing formula in this case is

p̃MLP
0 :=

∫ ∞
K

aeam+a2s2

2 x

2x1+a
erfc

{
as2 − lnx+m

s
√

2

}
dx

−K

1− 1

2
erfc

{
− lnK +m

s
√

2

}
− eam+a2s2

2

2Ka
erfc

{
as2 − lnK +m

s
√

2

} ,

where erfc(z) = 2√
π

∫∞
z e−t

2
dt is the complementary error function.

5. Approximations based on the first four moments

5.1. Pearson system

The Pearson system is a family of solutions f̃(x) to the differential equation

1

f̃(x)

df̃(x)

dx
= − a0 + x

a1 + a2x+ a3x2

whereby well-defined density functions can be derived. The shape of the distribution depends

on the Pearson parameters (a0, a1, a2, a3) and these parameters can be expressed in terms of

the first four moments of the distribution, here, of the arithmetic average Y . Therefore, if we

know the first four moments, as in the case of Y , we can construct a density function that is

consistent with these moments. The different types of probability distributions are classified

based on the skewness γY and now also the kurtosis εY = (µ4−4µ1µ3 +6µ21µ2−3µ41)/v
2
Y , where

µ4 is the fourth raw moment of Y in (3). Then, we get that

a0 = a2 =

√
γY (εY + 3)

10εY − 12γY − 18

√
µ2, a1 =

4εY − 3γY
10εY − 12γY − 18

µ2, a3 =
2εY − 3γY − 6

10εY − 12γY − 18

(e.g., see Johnson and Balakrishnan, 1994, p. 22). The classification consists of several types

according to the η-criterion (Elderton and Johnson, 1969)

η =
γ2Y (εY + 3)2

4
(
4εY − 3γ2Y

) (
2εY − 3γ2Y − 6

) .
In particular, we have the main types I, IV and VI with η < 0, 0 < η < 1 and η > 1, respectively;

and the transition types, i.e., the normal η = 0 (εY = 3), II η = 0 (εY < 3), III η = ±∞, V

η = 1 and VII η = 0 (εY > 3).

The (undiscounted) option price is given from (10) computed using numerical integration.
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5.2. Johnson transformations

The Pearson family provides a unique distribution for every possible (γY , εY ) combination.

The full 4-parameter Johnson (1949) family offers the same flexibility using transformations of

the standard normal distribution. In particular, if Z ∼ N (0, 1) and Y is a transform of Z, the

Johnson family is given by

SL (lognormal) Y (Z) = c+ d exp
(
Z−a
b

)
⇔ Z = a+ b ln

(
Y−c
d

)
,

SU (unbounded) Y (Z) = c+ d sinh
(
Z−a
b

)
⇔ Z = a+ b sinh−1

(
Y−c
d

)
,

SB (bounded) Y (Z) = c+ d 1
1+exp(−Z−a

b )
⇔ Z = a+ b ln

(
Y−c
d−Y+c

)
,

where the last two are the main types separated by a transition type, that is, the lognormal,

a ∈ R and b > 0 are shape parameters, c ∈ R a location factor and d > 0 a scale factor. By

design, a unique family is chosen for any mathematically feasible pair (γY , εY ). On the upside,

density and distribution functions are given in closed forms, nevertheless, whereas the Pearson

system can be fitted spontaneously, the Johnson system is more involved in this respect.

The (undiscounted) option price is given from (10),

∫ ∞
−∞

(Y (z)−K)+
e−

1
2
z2

√
2π

dz,

which is computed using numerical integration.

5.3. Polynomial expansions

Polynomial expansions provide possible alternatives for probability density function esti-

mation based on moments. Willems (2019) and Dufresne (2000) present approaches based on

orthogonal polynomial expansions and show that their methods converge in the basic Black–

Scholes setting. The main downside of the approach of Dufresne (2000) is that it relies on the

reciprocal average to ensure convergence and its moments need to be calculated by numerical

integration, which raises the computational cost and potentially introduces numerical errors.

We exclude the Edgeworth expansion (e.g., see Turnbull and Wakeman, 1991 and Ritchken

et al., 1993) as increasing the number of matched moments does not ensure improvement of

the approximation, but also the Gram–Charlier expansion based on the choice of an auxiliary

normal density as it diverges in most cases of interest2. The efficacy of such density approxi-

mations lies in the appropriate choice of the auxiliary density function and the corresponding

orthonormal polynomials (see Filipović et al., 2013); this becomes even more questionable when

the underlying is not modelled as a geometric Brownian motion.

In light of the above discussion, we choose the method which ensures a fair runtime–accuracy

balance. Consistently with the logic of Filipović et al. (2013) of a density expansion being as

close as possible to the unknown density function, we revisit the expansion approach of Willems

(2019) based on polynomials that are orthogonal with respect to the lognormal, rather than

the normal, distribution to approximate the distribution of the arithmetic average. We recall,

2For this, Dufresne and Li (2014) apply the Gram–Charlier expansion to the log-average, but again the
moments of this are not available in closed form raising serious computational concerns.
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though, that convergence may not be guaranteed beyond the Black–Scholes setting. More

specifically, the weight function is then given by the lognormal density

w(x) =
1

xσ
√

2π
exp

{
−(lnx− µ)2

2σ2

}
,

where µ ∈ R and σ > 0. The approximating density function using the first N integer moments

is given by

f̃N (x) = w(x)
N∑
n=0

lnbn(x),

where (
l0 l1 · · · lN

)T
= L−1

(
1 µ1 · · · µN

)T
and the orthonormal polynomial basis satisfies(

b0(x) b1(x) · · · bN (x)
)T

= L−1
(

1 x · · · xN
)T

with L the Cholesky factor of the Hankel moment matrix M with entries

Mij =

∫ ∞
0

xi+jw(x)dx = e(i+j)µ+(i+j)2σ2/2, i, j = 0, . . . , N,

and µ and σ2 matched with the first two moments of the unknown distribution.

6. Lower bound price approximation

Lastly, in this section we consider a price approximation for Asian options given by a lower

bound (LB) which we derive based on the principles delineated in Fusai and Kyriakou (2016).

Here, we adapt to the case of the stochastic process (1) and present an analytical expression

for the bound in the Fourier domain. For the Asian call option, this is given by

p̃LB0 := E
[
(Y −K) 1{Ỹ >γ}

]
≤ E

[
(Y −K)+

]
, (15)

where Y is given in (3) and Ỹ is for each of the continuous and discrete averages given by{
(continuous) Ỹ (T ) = 1

T

∫ T
0 X(t)dt

(discrete) Ỹn(T ) = 1
n

∑n
j=1X(tj), where t1 < · · · < tn = T

.

This lower bound has the following inverse Fourier transform representation:

p̃LB0 =
e−δγ

2π

∫
R
e−iuγ

Φ(u; δ)

iu+ δ
du, (16)

where the constant δ > 0 ensures integrability and Φ(u; δ) is given by (continuous) 1
T

∫ T
0 E

[
eX(t)+i(u−iδ)Ỹ (T )

]
dt−KE

[
ei(u−iδ)Ỹ (T )

]
(discrete) 1

n

∑n
k=1E

[
eX(tk)+i(u−iδ)Ỹn(T )

]
−KE

[
ei(u−iδ)Ỹn(T )

] . (17)
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The optimal bound is given for

γ∗ = argmax
γ

p̃LB0 .

Computing (17) apparently requires knowledge of the characteristic functions of
(
X(t), Ỹ (T )

)
and

(
X(tk), Ỹn(T )

)
. This paper contributes towards that direction for the model dynamics in

question. The relevant results are derived in the following two propositions. These involve time

integrals of the cumulant generating function, which, as explained in Section 2.1, depending

on the BDLP may admit analytic solutions or, alternatively, may need to be computed fast

numerically.

Proposition 5 (Continuous average). The characteristic function of
(
X(t), Ỹ (T )

)
, 0 ≤ t ≤ T ,

is given by

E

[
exp

(
iξX(t) +

iζ

T

∫ T

0
X(s)ds

)]
= exp

{
iξX(0)e−αt + iξβ(1− e−αt) + iζβ +

iζ(X(0)− β)
(
1− e−αT

)
αT

+

∫ t

0
ψ

(
iξe−α(t−s) +

iζ
(
1− e−α(T−s)

)
αT

)
ds+

∫ T

t
ψ

(
iζ
(
1− e−α(T−s)

)
αT

)
ds

}
. (18)

Proof. See Appendix A.

Proposition 6 (Discrete average). The characteristic function of
(
X(tk), Ỹn(T )

)
, 0 ≤ k ≤ n,

is given by

E

exp

iξX(tk) +
iζ

n

n∑
j=1

X(tj)


= exp

 iζβn
n∑

j=k+1

(
1− e−α(tj−tk)

)
+

n∑
j=k+1

∫ tj

tj−1

ψ

 iζ
n

n∑
i=j

e−α(ti−s)

 ds

+

 iζ
n

k∑
j=1

e−αtj + iξ̃e−αtk

X(0) +

 iζ
n

k∑
j=1

(
1− e−αtj

)
+ iξ̃

(
1− e−αtk

)β

+

k∑
j=1

∫ tj

tj−1

ψ

iξ̃e−α(tk−s) +
iζ

n

k∑
i=j

e−α(ti−s)

 ds

 , (19)

where

ξ̃ :=
ζ

n

n∑
j=k+1

e−α(tj−tk) + ξ.

Proof. See Appendix A.

7. Numerical experiments

In this section, we perform runtime–accuracy comparisons of the various moment-based

approximations for the arithmetic average option price presented in Sections 4–5. Computations
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are done in Matlab R2017b running in Microsoft Windows 10 on an Intel(R) Core(TM) i7-

6700HQ machine with CPU @2.60GHz and 16.0GB of RAM. We use as benchmark the results

from a very accurate Monte Carlo simulation using the lower bound (15), which is computed

exactly in (16), as control variate (henceforth referred to as CV-LB). To this end, we employ

standard CV Monte Carlo setup with the CV coefficient estimated in a pilot run, e.g., see

Glasserman (2004) and Cont and Tankov (2004). Our choice of the Monte Carlo benchmark is

justified by its high accuracy and flexible adaptability to different dynamics, with a, nevertheless,

notable computational burden (see later reports in the tables).

In this analysis, we consider three examples of background driving Lévy processes for (1)

and different parameter sets: a Brownian motion, DEJD, and NIG process with cumulant

generating functions shown in Table 3, i.e., those models that lead to explicit solutions for (9).

Nevertheless, with some additional computational effort, one can apply to the other models in

Table 3; such results can be made available upon request.

7.1. Computation of moments: the case of continuous average

Apparently, implementing our approximations for the continuous average requires fast and

accurate computation of the iterated integrals for the moments given in (8). To this end, we

considered different approaches. We found the Gauss–Legendre quadrature (see Press et al.,

1992 and Abramowitz and Stegun, 1968, Ch. 25.4) with 24 nodes to be achieving an ideal speed–

accuracy balance, requiring for the Gaussian model about a hundredth (half) of a second for

the first three (four) integer moments of the continuous average for an, at least, 4-decimal place

precision. We confirmed this against Matlab’s built-in global adaptive quadrature that took

14 seconds for the first three moments as well as computationally heavy Monte Carlo moment

estimates. Changing to NIG or DEJD models slightly uplifts the computing time, due to the

more involved computation of (9), to around 1 or 4 seconds (for four moments), respectively.

Calculating the moments occupies most of the total time (indeed, Tables 4–5 report total times)

required for a continuous Asian option price which is then given from a simple closed-form

expression or by (fast) numerical integration for the 4-parameter approximations as shown in

Sections 4 and 5. In light of these preliminary results, in what follows we adhere to the use of

Gauss–Legendre quadrature.

7.2. Discussion of results

The base parameter values are from Fusai and Kyriakou (2016) and Černý and Kyriakou

(2011), which we then vary aiming to assess the accuracy of our moment-based approaches

under stressed conditions of volatility and speed of mean reversion. Our comparative analysis

encompasses the 3-parameter approximations SLN, SG, SRG, MLP and the orthogonal polyno-

mial expansion based on 3 moments (OP-3), as well as the 4-parameter approximations Pearson

(P), Johnson (J) and the OP-4.

In Tables 4–5 we report results for a continuous Asian call option from an implementation

of Gauss–Legendre quadrature using 6 and 24 nodes for comparison purposes. Increasing the

nodes inevitably increases the computing time, which may vary depending on the underlying

model assumption. However, in absolute terms this does not exceed 5 seconds for a 4-moment-

based approximation such as J, P or OP-4 for the NIG model. This, nevertheless, reduces also

the error.
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[Insert Tables 4–5]

Consistently with our expectations, the 4-parameter approximations represent the group of

front runners in terms of accuracy. Pearson is the clear winner across the different background

driving models, parameter values and monitoring frequency of the averaging (continuous or

discrete). This is sometimes also more accurate than the LB. Generally low in the precision

rankings we find SG and OP-3 to be. We calculate absolute relative errors against the CV-LB

benchmark. More specifically, under market conditions of either low or high volatility for a

given speed of mean reversion α, we report in Table 4, respectively, an error (for 24 nodes)

of 0.011% and 0.012% for the Gaussian case, 0.042% and 0.001% for the DEJD, and 0.056%

and 0.049% for the NIG: the discrepancies for different models and sets of parameter values are

generally small. There is an overall homogeneity in the precision achieved of ±10−3 that these

errors map to. In fact, in the high volatility case, Pearson surmounts the lower bound both in

terms of computing time and precision. Switching to a higher α in Table 5, still shows Pearson

as the best with approximation errors of 0.006% and 0.014% (Gaussian), 0.114% and 0.027%

(DEJD), and 0.016% and 0.002% (NIG) which translate to a similar precision as for low α.

In Tables 6–7 we focus on a discretely sampled arithmetic Asian call option and present

results for the same model parameterizations. Pearson is again the winning competitor. The

impact of changing α is minor for a given low volatility and the error turns out to be for α = 0.1

and α = 0.5, respectively, 0.001% and 0.003% (Gaussian), 0.067% and 0.067% (DEJD), and

0.072% and 0.040% (NIG); this translates to a precision of up to ±10−3. We also study the

impact of changing α when volatility is high and obtain errors of 0.002% and 0.058% (Gaussian),

0.034% and 0.021% (DEJD), and 0.164% and 0.124% (NIG). Quite similarly to the continuous

average case, SG and SLN appear low in the precision rankings and OP-3 around the middle

of the rankings but beaten by MLP. The computing time is no more than a second, depending

on the model choice, for 12 dates, and this is generally faster than the LB which is sometimes

also surpassed in terms of accuracy by Pearson for non-Gaussian dynamics.

[Insert Tables 6–7]

To shed some more light on our discussion of the different approximations, we provide also

a few visualizations. Figure 2 presents the density of the log-return process lnS (from equation

5, where for convenience we assume S(0) = 1 and one-year time horizon) and, on the same

scale for comparison purposes, also the densities of the log-arithmetic average lnY based on a

Pearson fit and a shifted lognormal fit to the average Y and a true probability density estimate

of lnY from exact simulation of Y . We consider the Gaussian as well as the DEJD and NIG

background driving processes. From these plots, it first becomes obvious from comparing with

the log-return distribution that averaging tapers the thickness of the tails. Second, it is clear

that the Pearson fit is the closest to the true distribution of the average (noting that this is only

indicative given the simulation error), while the basic shifted lognormal fit diverges from the true

distribution of Y especially when we depart from Gaussian driving dynamics. We confirm our

observation based on the outcome of a two-sample Kolmogorov–Smirnov test of the difference

between the distribution of each of the Pearson and SLN fits from the true distribution. In the

case of the Gaussian driving dynamics, the p-value is 1 and 0.9921 for the Pearson fit and 1

and 0.8938 for the SLN fit, for each of the low and high σ, which is overall good news for the
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standard choice of the SLN approximation although Pearson is performing better. Nevertheless,

in favour of Pearson, the discrepancy from the SLN fit increases dramatically when we switch

to non-Gaussian driving dynamics with SLN’s p-values dropping to 0.003 and 0.01 (for the two

DEJD parameter sets) and 0.093 and 0.069 (for the two NIG parameter sets). On the other

hand, the p-values remain high for the Pearson fit, in particular, 0.961 and 1 (DEJD parameter

sets) and 0.8839 and 0.8938 (NIG parameter sets). Clearly, this confirms the superiority of our

4-parameter approximation against traditional 3-parameter alternatives.

[Insert Figure 2]

8. Risk measures for random annuities

In finance and insurance, typical problems, such as setting of provisions and optimal portfolio

selection, come down to computing risk measures related to random sums of the type

Yn(T ) :=

n∑
j=1

Zje
X(tj), (20)

where {Zj} are non-negative representing payments and (X(t1), X(t2), . . . , X(tn)) is a random

vector of returns or discount factors (Vanduffel et al., 2008). The continuous-time analogue of

(20) is

Y (T ) :=

∫ T

0
Z(t)eX(t)dt, (21)

where {Z(t) : t ≥ 0} here is a continuous stream of payments. The discrete case (sum of random

variables) or the continuous counterpart (integrated product of stochastic processes) is inter-

preted as the stochastically discounted value of all future obligations Z. In Norberg’s (1999)

terminology, Z and exp(X) are, respectively, the liability/insurance risk related to the insur-

ance portfolio and the asset/financial risk related to the investment portfolio (see also Tang and

Tsitsiashvili, 2003).

In this section, based on general driving dynamics for X with possible mean reversion and

jumps under the physical probability measure, we extend our theorerical framework to the

more general sum-product structure (20)–(21) which traditionally appears in the study of the

interplay of insurance and financial risks3. We also treat Z generally as a Lévy process. The

basic special case of constant Z and Gaussian process X is encompassed in our formulation.

We present exact formulae for the moments of (20) and (21) and, based on these, derive an

accurate approximation for the cumulative distribution function of Y , thereby allowing an also

fast evaluation of the risk measures. This way we tackle the important problem of efficient

computation of risk measures of random, continuous or discrete, finite annuities under universal

underlying model assumptions.

Proposition 7 (Continuous sum-product). Let Y (T ) be as in (21), where X is given by (1)–

(2) and Z(t) := exp
((
µ− ψ̃(1)

)
t+ L̃(t)

)
for µ ∈ R and L̃ an independent Lévy process with

3We thank the editor for pointing towards this direction.
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cumulant generating function ψ̃. The nth moment of Y (T ) is then given by

E[Y n(T )] =

∫ T

t0

dt1

∫ T

t0

dt2 · · ·
∫ T

t0

exp


n∑
j=1

(
X(t0)e

−αtj + β
(
1− e−αtj

)
(22)

+

∫ tj

t0

ψ

 n∑
i=j

e−α(ti−s)

 ds+
(
µ− ψ̃(1)

)
tj + ψ̃(n− j + 1)(tj − tj−1)

 dtn.

Proof. See Appendix A.

Proposition 8 (Discrete sum-product). Let Yn(T ) be as in (20). Based on the same assump-

tions as in Proposition 7 for the driving dynamics, the mth moment of Yn(T ) is given by

E[Y m
n (T )] =

∑
γ1+···+γn=m

(
m

γ1, . . . , γn

)
E
[
e
∑n
j=1 γj lnZj

]
E
[
e
∑n
j=1 γjX(tj)

]
,

where

E
[
e
∑n
j=1 γjX(tj)

]
= exp


n∑
j=1

X(0)γje
−tj + βγj

(
1− e−tj

)
+

∫ tj

tj−1

ψ

 n∑
i=j

γie
−α(ti−s)

 ds

 ,

E
[
e
∑n
j=1 γj lnZj

]
= exp


n∑
j=1

(µ− ψ̃(1)
)
tjγj + ψ̃

 n∑
i=j

γi

 (tj − tj−1)

 , (23)

and

(
m

γ1, . . . , γn

)
and the sum

∑
γ1+···+γn=m are as defined in Proposition 3.

Proof. The proof follows that of Proposition 3. In addition, for (23) refer to the last part of

the proof of Proposition 7.

Although in Propositions 7–8 we assumed independent Lévy processes, the more general

case of correlated BDLPs for Z and X can also be accommodated based on the multivariate

Lévy model of Ballotta et al. (2019) and relevant results can be derived. Finally, adapting to

the case of correlated Z and X is straightforward in a Gaussian-driven model setting. To this

end, define

Z(t) := exp
((
µ− σ̃2/2

)
t+ ρσ̃W2(t) + σ̃

√
1− ρ2W1(t)

)
(24)

and, without loss of generality upon setting X(0) = 0,

X(t) := σ

∫ t

0
e−α(t−s)dW2(s), (25)

where ρ ∈ [−1, 1] controls the correlation between Z and X, and W1(t) and W2(t) are inde-

pendent standard Brownian motions. As is obvious from Propositions 7–8, key quantity in the
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derivation of the moments’ results is

E
[
e
∑n
j=1 γj lnZ(tj)+γjX(tj)

]
= exp


n∑
j=1

(µ− σ̃2

2

)
γjtj + ψ

 n∑
i=j

γiσ̃
√

1− ρ2

 (tj − tj−1)

+

∫ tj

tj−1

ψ

 n∑
i=j

γi

(
σ̃ρ+ σe−α(ti−s)

) ds

 ,

where ψ(u) := u2/2 and the integrated cumulant generating function can be computed as

explained in Section 2.1.

Adhering to the notation introduced in Section 3 and following Vanduffel et al. (2008), we

define the p-quantile risk measure

Qp [Y ] = inf
{
x ∈ R | F̃ (x) ≥ p

}
, (26)

where p ∈ (0, 1) and F̃ is the (approximate) cumulative distribution function of Y in (20) or

(21); investing an initial amount equal to Qp [Y ] will enable one to meet all future payments

with probability p. We also consider the Conditional Tail Expectation defined by

CTEp [Y ] = E [Y | Y ≥ Qp [Y ]] =

∫ 1
p Qq [Y ] dq

1− p
(27)

for a continuous and strictly increasing function F̃ . Finally, the stop-loss premium with retention

K > 0 of Y , that is, E
[
(Y −K)+

]
follows from (10) based on the earlier analysis on Asian

options in the paper.

In Table 8 we compute the risk measures (26) and (27) under the model assumptions specified

in Proposition 7 based on a Pearson curve fit (see Section 5.1) to the first four moments of

Y (T ) in (21) given by (22). The results from our method are obtained in less than 1 second and

are very close to the estimates from Monte Carlo simulation, consistently with our numerical

experiments in the previous section. Nevertheless, Monte Carlo converges very slowly taking

more than 1 hour for a comparable level of accuracy.

[Insert Table 8]

Given the convenience offered by our fast and accurate computational approach, we perform

a sensitivity analysis of Qp and CTEp with respect to changes in the parameters of the models

underlying the insurance and financial risks. In particular, we want to see how mean reversion

and the interplay between the liabilities and the asset returns affect the risk measures. In the

spirit of Tang and Tsitsiashvili (2003), we want to look into the impact of the heaviness of

the two risks on the risk measures4. Therefore, for given p = 0.95, in Figure 3 we vary the

volatility σ̃ of the process Z in (24) and the long-term mean level β and mean reversion speed

α of the process X, whereas in Figure 4 we study the effect of changing volatility σ of X and

of the instantaneous correlation ρ between the two processes. Qualitatively similar results for

4We thank our third reviewer for bringing the particular research to our attention.
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p = 0.75, for example, are not currently presented in the interest of space, but can be made

available upon request.

[Insert Figure 3]

As seen in Figure 3, mostly significant is the boost-up effect of the volatility σ̃ of the liabilities

on the risk measures. For Qp, we obtain up to 36% increase when α is high and σ̃ grows from

0.1 to 0.5 and a further increase by up to 42% when σ̃ is 1. The corresponding increases of

CTEp are slightly higher in the range of 40–50%. This is due to the dominating kurtosis5 effect

of Z over eX which becomes stronger for large σ̃. This is in analogy with Tang and Tsitsiashvili

(2003) in the ruin probability context where it is concluded that the main determinant is the

heaviest-tailed risk. The risk measures’ discrepancies for different β values, and likewise the

kurtosis discrepancies between Z and eX , become more obvious with increasing α. Increasing

α has a clear decreasing (increasing) effect on the risk measures when β and σ̃ are low (high).

These match, respectively, the cases of diametrically smallest kurtosis of Z and eX (with the

former’s being smaller) and largest kurtosis of Z and eX (with the former’s being substantially

larger).

[Insert Figure 4]

In Figure 4, the effect of the volatility σ of the asset risk on the risk measures Qp and CTEp

varies with the correlation ρ: the stronger the correlation, the larger the volatility boost-up

effect which is now due to the dominating kurtosis of eX . The risk measures’ discrepancies for

varying ρ become more obvious for low α and increasing σ. Increasing α clearly reduces the

risk measures when σ is moderately high to very high and ρ is positive enough and, again, this

is attributed to the more evident decline in the kurtosis of both risk factors in this case; when

the correlation is negative there is more uncertainty as to the direction of the volatility effect

due to mixing kurtosis levels of Z and eX .

Our analysis leads us to the conclusion that the parameters that prevail in the kurtosis of

the insurance risk or financial risk (or both) are those that ultimately drive the risk measures.

9. Conclusions

We propose and survey different distribution approximations for discrete and continuous

sums of random variables which play a pivotal role in various financial and actuarial applica-

tions. Our approach relies on moment-based approximations that are flexible with conventional

empirical regularities, such as mean reversion and discontinuous movements. To this end, we

present a general expression for the raw moments of weighted stochastic sums which we imple-

ment within our proposed model framework.

In light of the discussion in the previous sections, we can draw some interesting conclusions.

Despite the attention that series expansions have received in the literature of derivatives’ pricing,

they are shown not to be the best method. Having tested different background driving models

under mild or stressed market conditions, we find that a 4-parameter Pearson approximation

5We do not explicitly report the kurtosis in the paper in the interest of space.
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of the distribution of the continuous or discrete sum yields results which are accurate up to the

third decimal place usually. Sometimes this is more accurate than the optimized lower bound

for Asian options which we also derive, and perceptibly faster especially under non-Gaussian

dynamics where the computations generally become more involved. Other approximations that

are popular in Gaussian-driven models, such as the shifted lognormal, gamma and reciprocal

gamma, cease performing well once we switch to non-Gaussian models. All in all, we con-

clude that the Pearson approximation achieves a favourable runtime–accuracy balance which

remains robust to changing dynamics, skewness, excess kurtosis, parameter combinations, but

also computation of quantities of interest such as option prices or risk measures.
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Filipović, D., Mayerhofer, E. and Schneider, P. (2013) Density approximations for multivariate

affine jump-diffusion processes. Journal of Econometrics, 176, 93–111.

Fusai, G. and Kyriakou, I. (2016) General optimized lower and upper bounds for discrete and

continuous arithmetic Asian options. Mathematics of Operations Research, 41, 531–559.

Geman, H. and Yor, M. (1993) Bessel processes, Asian options, and perpetuities. Mathematical

Finance, 3, 349–375.

Glasserman, P. (2004) Monte Carlo Methods in Financial Engineering. Stochastic Modelling

and Applied Probability. New York: Springer.

Hürlimann, W. (2010) Analytical pricing of the unit-linked endowment with guarantees and

periodic premiums. ASTIN Bulletin, 40, 631–653.

Jang, J. (2007) Jump diffusion processes and their applications in insurance and finance. In-

surance: Mathematics and Economics, 41, 62–70.

Johnson, N. L., K. S. and Balakrishnan, N. (1994) Continuous Univariate Distributions, vol. 1

of Wiley Series in Probability and Statistics. New York: John Wiley & Sons, 2 edn.

21



Johnson, N. L. (1949) Systems of frequency curves generated by methods of translation.

Biometrika, 36, 149–176.

Kou, S. G. (2002) A jump-diffusion model for option pricing. Management Science, 48, 1086–

1101.

Kyriakou, I., Nomikos, N. K., Papapostolou, N. C. and Pouliasis, P. K. (2016) Affine-structure

models and the pricing of energy commodity derivatives. European Financial Management,

22, 853–881.

Kyriakou, I., Pouliasis, P. K., Papapostolou, N. C. and Andriosopoulos, K. (2017) Freight

derivatives pricing for decoupled mean-reverting diffusion and jumps. Transportation Research

Part E: Logistics and Transportation Review, 108, 80–96.

Kyriakou, I., Pouliasis, P. K., Papapostolou, N. C. and Nomikos, N. K. (2018) Income uncer-

tainty and the decision to invest in bulk shipping. European Financial Management, 24,

387–417.

Laeven, R. J. A., Goovaerts, M. J. and Hoedemakers, T. (2005) Some asymptotic results for

sums of dependent random variables, with actuarial applications. Insurance: Mathematics

and Economics, 37, 154–172.

Liang, Z., Yuen, K. C. and Guo, J. (2011) Optimal proportional reinsurance and investment in

a stock market with Ornstein–Uhlenbeck process. Insurance: Mathematics and Economics,

49, 207–215.

Lindsay, B. G. and Basak, P. (2000) Moments determine the tail of a distribution (but not much

else). The American Statistician, 54, 248–251.

Lo, C.-L., Palmer, K. and Yu, M.-T. (2014) Moment-matching approximations for Asian options.

The Journal of Derivatives, 21, 103–122.

Milevsky, M. A. and Posner, S. E. (1998) Asian options, the sum of lognormals, and the recip-

rocal gamma distribution. Journal of Financial and Quantitative Analysis, 33, 409–422.
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Appendix A. Proofs

Proof of Lemma 2. From (2),

n∑
j=1

γjX(tj) =

n∑
j=1

(
X(0)γje

−αtj + βγj(1− e−αtj ) +

∫ tj

0
γje
−α(tj−s)dL(s)

)

=
n∑
j=1

X(0)γje
−αtj + βγj(1− e−αtj ) +

∫ tj

tj−1

n∑
i=j

γie
−α(ti−s)dL(s)

 .

Then, for h(s) :=
∑n

i=j γie
−α(ti−s) and by applying Lemma 1, we get, by independence and

stationarity of the increments of L,

E

exp

∫ tj

tj−1

n∑
i=j

γie
−α(ti−s)dL(s)

 = exp

∫ tj

tj−1

ψ

 n∑
i=j

γie
−α(ti−s)

 ds

 ,

from which (6) follows.

Proof of Proposition 5. From (2) and conditional expectations,

E

[
exp

(
iξX(t) +

iζ

T

∫ T

0
X(s)ds

)]
= E

[
exp

(
iξX(t) +

iζ

T

∫ t

0
X(s)ds

+
iζ

T

∫ T

t

(
X(t)e−α(s−t) + β(1− e−α(s−t)) +

∫ s

t
e−α(s−w)dL(w)

)
ds

)]
= E

[
exp

(
iζ(X(t)− β)(1− e−α(T−t))

αT
+
iζβ(T − t)

T
+
iζ

T

∫ t

0
X(s)ds+ iξX(t)

)

Et

[
exp

(
iζ

T

∫ T

t

∫ T

w
e−α(s−w)dsdL(w)

)]]
= exp

(
iζβ(T − t)

T
− iζβ(1− e−α(T−t))

αT
+

∫ T

t
ψ

(
iζ
(
1− e−α(T−s)

)
αT

)
ds

)

E

[
exp

(
i

(
ζ(1− e−α(T−t))

αT
+ ξ

)
X(t) +

iζ

T

∫ t

0
X(s)ds

)]

where the last equality follows from Lemma 1. Replacing where necessary above by

X(s) = X(0)e−αs + β(1− e−αs) +

∫ s

0
e−α(s−w)dL(w), s ≤ t,

we reach (18) by a further application of the same steps.

Proof of Proposition 6. Before proceeding with the proof of the required result, we state

the following two equations which are straightforward implications of (2):

n∑
j=k+1

X(tj) = X(tk)

n∑
j=k+1

e−α(tj−tk) + β

n∑
j=k+1

(
1− e−α(tj−tk)

)
+

n∑
j=k+1

∫ tj

tj−1

n∑
i=j

e−α(ti−s)dL(s)
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for 0 ≤ k < n, and

X(tk) = X(0)e−αtk + β
(
1− e−αtk

)
+

k∑
j=1

∫ tj

tj−1

e−α(tk−s)dL(s).

Using conditional expectations, the above two results and by applying Lemma 1, we get

E

exp

iξX(tk) +
iζ

n

k∑
j=1

X(tj) +
iζ

n

n∑
j=k+1

X(tj)


= E

exp

iξX(tk) +
iζ

n

k∑
j=1

X(tj) +
iζ

n

n∑
j=k+1

(
X(tk)e

−α(tj−tk) + β
(

1− e−α(tj−tk)
))

Etk

exp

 iζ
n

n∑
j=k+1

∫ tj

tj−1

n∑
i=j

e−α(ti−s)dL(s)


= exp

 iζβ
n

n∑
j=k+1

(
1− e−α(tj−tk)

)
+

n∑
j=k+1

∫ tj

tj−1

ψ

 iζ
n

n∑
i=j

e−α(ti−s)

 ds


E

exp

iξ̃X(tk) +
iζ

n

k∑
j=1

X(tj)


= exp

 iζβ
n

n∑
j=k+1

(
1− e−α(tj−tk)

)
+

n∑
j=k+1

∫ tj

tj−1

ψ

 iζ
n

n∑
i=j

e−α(ti−s)

 ds

+

 iζ
n

k∑
j=1

e−αtj + iξ̃e−αtk

X(0) +

 iζ
n

k∑
j=1

(
1− e−αtj

)
+ iξ̃

(
1− e−αtk

)β


E

exp

 k∑
j=1

∫ tj

tj−1

iξ̃e−α(tk−s) +
iζ

n

k∑
i=j

e−α(ti−s)

 dL(s)

 .
A further application of Lemma 1 then leads to (19).

Proof of Proposition 7. (22) follows the proof of Proposition 4. We have that

E [Y n(T )] = E

[(∫ T

0
Z(s)eX(s)ds

)n]
=

∫ T

t0

· · ·
∫ T

t0

E

 n∏
j=1

Z(tj)e
X(tj)

 dt1 · · · dtn. (28)

By independence of Z and X, (28) is equal to∫ T

t0

· · ·
∫ T

t0

E
[
e
∑n
j=1 lnZ(tj)

]
E
[
e
∑n
j=1X(tj)

]
dt1 · · · dtn,

where E
[
e
∑n
j=1X(tj)

]
follows from (6). In addition,

E
[
e
∑n
j=1 lnZ(tj)

]
= e

∑n
j=1(µ−ψ̃(1))tjE

[
e
∑n
j=1 L̃(tj)

]
= e

∑n
j=1(µ−ψ̃(1))tjE

[
e
∑n
j=1(n−j+1)

∫ tj
tj−1

dL̃(s)
]

= e
∑n
j=1((µ−ψ̃(1))tj+ψ̃(n−j+1)(tj−tj−1)).
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This completes the proof.

Appendix B. Towards computing the moments of the arithmetic average price

We present here Mathematica® codes that produce the integral (9). In particular, we

provide the codes for each of the Gaussian OU, OU with DEJD BDLP and NIG BDLP.

Gaussian OU

PSI_G[u_] := u^2*\[Sigma]^2/2

INT_PSI_G[n_] := Simplify[Integrate[

PSI_G[Sum[Exp[-\[Alpha]*(t[i] - s)], {i, j, n}]], {s, t[j - 1],

t[j]}]]

OU with NIG BDLP

PSI_NIG[u_] := (1 -

Sqrt[1 - 2*\[Theta]*\[Kappa]*u - \[Kappa]*\[Sigma]^2*u^2])/\[Kappa]

INT_PSI_NIG[n_] := Simplify[Integrate[

PSI_NIG[Sum[Exp[-\[Alpha]*(t[i] - s)], {i, j, n}]], {s, t[j - 1],

t[j]}]]

OU with DEJD BDLP

PSI_DEJD[u_] :=

u^2*\[Sigma]^2/

2 + \[Lambda]*(p*eta1/(eta1 - u) + (1 - p)*eta2/(eta2 + u) - 1)

INT_PSI_DEJD[n_] := Simplify[Integrate[

PSI_DEJD[Sum[Exp[-\[Alpha]*(t[i] - s)], {i, j, n}]], {s, t[j - 1],

t[j]}]]
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Index Parameters No. of contracts
α σ λ p η1 η2 MSE

SP500 0.810 0.168 0.931 0.10% 48.551 2.872 163 173
VIX 9.972 1.602 2.997 1.65% 1.013 0.928 0.769 218
ETF 5.220 0.200 2.332 2.38% 1.102 2.576 0.149 62
AAPL 0.308 0.257 1.654 0.05% 1.056 5.729 1.189 537

Table 1: DEJD-driven OU model parameters based on calibration to options based on different asset classes (as
on 16/6/2020). MSE: minimized mean squared difference between market prices of plain vanilla put and call
options (based on reported number of contracts) with different strikes and maturities and corresponding model
prices based on indicated parameter values.

Model Gaussian DEJD
Mean reversion (MR) 5 3 5 3

SP500 1306.85 1506.71 521.20 163.01
VIX 75.46 15.18 1.64 0.77
ETF 0.21 0.21 0.16 0.15
AAPL 3.93 2.54 3.28 1.19

% MSE reduction
DEJD vs. MR-DEJD vs. MR-DEJD vs. MR-DEJD vs.
Gaussian Gaussian DEJD MR-Gaussian

SP500 60% 88% 69% 89%
VIX 98% 99% 53% 95%
ETF 26% 30% 6% 30%
AAPL 17% 70% 64% 53%

Table 2: MSE of different calibrated models and % reductions based on indicated transitions from models in the
ninth to the eighth row of the table.
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BDLP ψ(u) Solution of (9)

Gaussian σ2u2

2
Explicit

DEJD λ
(

η1p
η1−u

+ η2(1−p)
η2+u

− 1
)

+ σ2u2

2
Explicit

HEJD λ
(∑m

i=1
piηi
ηi−u

+
∑n
j=1

(1−pj)θj
θj+u

− 1
)

+ σ2u2

2
Explicit

MJD λ

(
e
δ2u2

2
+µu − 1

)
+ σ2u2

2
Non-analytic

NIG
1−
√

−kσ2u2−2kθu+1

k
Explicit

VG − ln(− 1
2
kσ2u2−kθu+1)

k
Special function

CGMY CΓ(−y) ((G+ u)y −Gy −My + (M − u)y) Special function

Meixner log
((

cos
(
b
2

)
sech

(
1
2
(−iau− ib)

))2δ)
Non-analytic

GH
(

α2−β2

α2−(β+u)2

)λ
2 Kλ(δ

√
α2−(β+u)2)

Kλ(δ
√
α2−β2)

Non-analytic

Table 3: Cumulant generating functions of different background driving Lévy processes (BDLP) and correspond-
ing solutions of (9): Gaussian, double exponential jump diffusion (DEJD), hyperexponential jump diffusion
(HEJD), Merton jump diffusion (MJD), normal inverse Gaussian (NIG), variance gamma (VG), Carr–Geman–
Madan–Yor (CGMY), Meixner, generalized hyperbolic (GH). Note: Kλ(·) is the modified Bessel function of the
second kind.
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Nodes = 6 Nodes = 24 Nodes = 24
Method Price Abs. error Time (sec.) Price Abs. err. Time (sec.) Price Abs. err. Time (sec.)

Gaussian: σ = 0.1 Gaussian: σ = 0.5
CV-LB 3.1768 – 8.39 3.1768 – 8.39 11.6954 – 7.44
(std. error) 7.8E-08 7.8E-08 5.2E-06
LB 3.1766 0.006% 0.605 3.1766 0.006% 0.61 11.6809 0.124% 0.35
SLN 3.1875 0.338% 0.002 3.1776 0.024% 0.02 11.7039 0.072% 0.02
SG 3.1883 0.362% 0.002 3.1784 0.049% 0.02 11.7930 0.835% 0.02
SRG 3.1873 0.329% 0.001 3.1773 0.016% 0.02 11.6785 0.144% 0.02
MLP 3.1874 0.334% 0.008 3.1764 0.013% 0.03 11.6774 0.154% 0.02
OP-3 3.1867 0.313% 0.002 3.1775 0.021% 0.02 11.7144 0.163% 0.02
J 3.1875 0.338% 0.016 3.1776 0.024% 0.58 11.6854 0.086% 0.57
P 3.1863 0.300% 0.020 3.1771 0.011% 0.58 11.6968 0.012% 0.57
OP-4 3.1873 0.329% 0.024 3.1773 0.016% 0.56 11.6935 0.017% 0.56

DEJD: (σ, λ) = (0.1, 3) DEJD: (σ, λ) = (0.5, 5)
CV-LB 3.9255 – 19.40 3.9255 – 19.40 12.0331 – 19.51
(std. error) 2.3E-07 2.3E-07 6.0E-06
LB 3.9253 0.005% 2.893 3.9253 0.005% 2.89 12.0165 0.138% 3.01
SLN 4.0039 1.997% 0.003 3.9898 1.639% 0.04 12.0433 0.085% 0.04
SG 4.0109 2.176% 0.004 3.9968 1.815% 0.04 12.1400 0.888% 0.04
SRG 4.0016 1.939% 0.003 3.9876 1.582% 0.04 12.0164 0.138% 0.04
MLP 3.9871 1.568% 0.005 3.9732 1.214% 0.04 12.0166 0.137% 0.04
OP-3 3.9945 1.759% 0.005 3.9806 1.404% 0.04 12.0542 0.176% 0.04
J 3.9430 0.445% 0.021 3.9307 0.132% 1.42 12.0178 0.127% 1.41
P 3.9176 0.201% 0.027 3.9238 0.042% 1.44 12.0330 0.001% 1.48
OP-4 3.9109 0.373% 0.020 3.9297 0.106% 1.40 12.0276 0.046% 1.46

NIG: (θ, σ) = (−0.4091, 0.2637) NIG: (θ, σ) = (−0.6819, 0.4395)
CV-LB 7.0756 – 51.97 7.0756 – 51.97 10.8344 – 52.25
(std. error) 1.8E-06 1.8E-06 5.7E-06
LB 7.0726 0.042% 21.228 7.0726 0.042% 21.23 10.8200 0.133% 22.16
SLN 7.1847 1.542% 0.007 7.1543 1.112% 0.11 10.9743 1.291% 0.09
SG 7.1854 1.552% 0.007 7.1550 1.122% 0.12 11.0056 1.580% 0.10
SRG 7.1845 1.539% 0.009 7.1540 1.108% 0.11 10.9640 1.196% 0.10
MLP 7.1847 1.542% 0.010 7.1543 1.112% 0.11 10.9743 1.291% 0.09
OP-3 7.2828 2.928% 0.009 7.2507 2.475% 0.11 11.0828 2.293% 0.10
J 7.1007 0.355% 0.050 7.0688 0.096% 4.61 10.8202 0.131% 4.09
P 7.0978 0.313% 0.042 7.0717 0.056% 4.58 10.8398 0.049% 4.44
OP-4 7.1968 1.713% 0.040 7.1654 1.269% 4.47 11.0515 2.004% 4.46

Table 4: Continuous arithmetic Asian option prices: case of mean reversion speed α = 0.1. Gauss–Legendre
quadratures nodes = {6, 24}. Other parameters: (DEJD) p = 0.6, η1 = η2 = 25; (NIG) k = 0.1222; and
S(0) = K = 100, r = 0.0367, T = 1. LB: lower bound; CV-LB (std. error): control variate lower bound
(standard error); SLN: shifted lognormal; SG: shifted gamma; SRG: shifted reciprocal gamma; MLP: modified
lognormal power law; OP-m = m-moment orthogonal polynomial expansion; J: Johnson; P: Pearson. Boldface
entries indicate cases of smallest and largest absolute error (abs. err.) excluding the LB. Computing times are
in seconds (sec.).
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Nodes = 6 Nodes = 24 Nodes = 24
Method Price Abs. err. Time (sec.) Price Abs. err. Time (sec.) Price Abs. err. Time (sec.)

Gaussian: σ = 0.1 Gaussian: σ = 0.5
CV-LB 2.9075 – 7.48 2.9075 – 7.48 10.2898 – 8.02
(std. error) 2.9E-07 2.9E-07 1.6E-05
LB 2.9074 0.003% 0.32 2.9074 0.003% 0.32 10.2748 0.146% 0.41
SLN 2.9196 0.417% 0.02 2.9084 0.030% 0.01 10.2938 0.039% 0.02
SG 2.9201 0.433% 0.01 2.9088 0.046% 0.02 10.3550 0.633% 0.01
SRG 2.9195 0.411% 0.01 2.9082 0.025% 0.02 10.2753 0.141% 0.01
MLP 2.9195 0.414% 0.01 2.9083 0.028% 0.02 10.2711 0.182% 0.02
OP-3 2.9192 0.402% 0.01 2.9079 0.015% 0.01 10.3205 0.298% 0.02
J 2.9197 0.421% 0.04 2.9084 0.030% 0.60 10.2834 0.062% 0.56
P 2.9189 0.393% 0.03 2.9077 0.006% 0.57 10.2884 0.014% 0.56
OP-4 2.9195 0.412% 0.03 2.9082 0.025% 0.56 10.3172 0.266% 0.54

DEJD: (σ, λ) = (0.1, 3) DEJD: (σ, λ) = (0.5, 5)
CV-LB 3.5504 – 18.07 3.5504 – 18.07 10.5839 – 18.15
(std. error) 5.4E-07 5.4E-07 1.7E-05
LB 3.5502 0.006% 2.53 3.5502 0.006% 2.53 10.5669 0.161% 2.58
SLN 3.6193 1.941% 0.003 3.6034 1.491% 0.03 10.5897 0.055% 0.04
SG 3.6239 2.071% 0.002 3.6079 1.619% 0.03 10.6568 0.688% 0.04
SRG 3.6178 1.899% 0.005 3.6019 1.450% 0.03 10.5696 0.135% 0.03
MLP 3.6070 1.593% 0.003 3.5912 1.149% 0.03 10.5653 0.176% 0.04
OP-3 3.6134 1.774% 0.005 3.5976 1.328% 0.03 10.6151 0.295% 0.04
J 3.5604 0.282% 0.018 3.5457 0.133% 1.26 10.5742 0.091% 1.24
P 3.5409 0.268% 0.019 3.5545 0.114% 1.25 10.5810 0.027% 1.23
OP-4 3.5694 0.536% 0.010 3.5553 0.139% 1.27 10.6092 0.239% 1.22

NIG: (θ, σ) = (−0.4091, 0.2637) NIG: (θ, σ) = (−0.6819, 0.4395)
CV-LB 6.3024 – 43.34 6.3024 – 43.34 9.6307 – 44.54
(std. error) 5.0E-06 5.0E-06 1.7E-05
LB 6.2996 0.044% 17.18 6.2996 0.044% 17.18 9.6164 0.148% 17.42
SLN 6.4031 1.598% 0.009 6.3685 1.049% 0.10 9.7183 0.910% 0.10
SG 6.4032 1.599% 0.007 6.3685 1.049% 0.09 9.7332 1.065% 0.09
SRG 6.4031 1.598% 0.007 6.3685 1.049% 0.10 9.7133 0.857% 0.09
MLP 6.4031 1.598% 0.007 6.3685 1.049% 0.09 9.7183 0.910% 0.09
OP-3 6.4930 3.024% 0.007 6.4564 2.444% 0.10 9.8131 1.894% 0.09
J 6.3343 0.506% 0.038 6.2997 0.042% 3.97 9.6528 0.229% 3.95
P 6.3326 0.479% 0.034 6.3014 0.016% 3.96 9.6309 0.002% 3.97
OP-4 6.3982 1.519% 0.038 6.3631 0.962% 3.97 9.8010 1.768% 3.95

Table 5: Continuous arithmetic Asian option prices: case of mean reversion speed α = 0.5. Other notes: see
Table 4.
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Method Price Abs. err. Time (sec.) Price Abs. err. Time (sec.)

Gaussian: σ = 0.1
α = 0.1 α = 0.5

CV-LB 3.3970 – 5.77 3.1023 – 5.81
(std. error) 1.1E-07 1.0E-07
LB 3.3968 0.004% 0.05 3.1021 0.004% 0.08
SLN 3.3960 0.029% 0.15 3.1016 0.020% 0.16
SG 3.3978 0.026% 0.13 3.1027 0.013% 0.12
SRG 3.3967 0.008% 0.16 3.1020 0.008% 0.12
MLP 3.3967 0.007% 0.15 3.1020 0.007% 0.12
OP-3 3.3963 0.020% 0.14 3.1018 0.015% 0.11
J 3.3970 0.001% 0.23 3.1022 0.003% 0.18
P 3.3970 0.001% 0.25 3.1022 0.003% 0.20
OP-4 3.3969 0.003% 0.22 3.1021 0.005% 0.18

DEJD: σ = 0.1, λ = 3, p = 0.6, η1 = η2 = 25
α = 0.1 α = 0.5

CV-LB 4.1933 – 27.89 3.7816 – 27.99
(std. error) 5.9E-05 5.1E-05
LB 4.1929 0.009% 2.85 3.7812 0.010% 4.34
SLN 4.2574 1.529% 0.14 3.8334 1.371% 0.11
SG 4.2647 1.703% 0.13 3.8381 1.495% 0.14
SRG 4.2551 1.473% 0.13 3.8319 1.331% 0.13
MLP 4.2409 1.136% 0.13 3.8216 1.058% 0.14
OP-3 4.2472 1.285% 0.14 3.8271 1.203% 0.13
J 4.1838 0.227% 0.27 3.7753 0.168% 0.25
P 4.1961 0.067% 0.24 3.7841 0.067% 0.24
OP-4 4.1812 0.289% 0.24 3.7734 0.217% 0.23

NIG: θ = −0.4091, k = 0.1222, σ = 0.2637
α = 0.1 α = 0.5

CV-LB 7.5363 – 9.91 6.6864 – 9.99
(std. error) 4.0E-04 3.4E-04
LB 7.5348 0.020% 2.52 6.6848 0.023% 2.74
SLN 7.4320 1.385% 0.46 6.5901 1.440% 0.35
SG 7.7192 2.427% 0.45 6.8462 2.389% 0.38
SRG 7.6419 1.400% 0.41 6.7569 1.054% 0.33
MLP 7.6145 1.038% 0.42 6.7512 0.969% 0.31
OP-3 7.6156 1.052% 0.42 6.7513 0.970% 0.35
J 7.5279 0.112% 1.28 6.6820 0.066% 0.97
P 7.5309 0.072% 1.27 6.6837 0.040% 0.98
OP-4 7.6141 1.032% 1.27 6.7512 0.969% 0.95

Table 6: Discrete arithmetic Asian option prices: case of low volatility. 12 monitoring dates. Other notes: see
Table 4.
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Method Price Abs. err. Time (sec.) Price Abs. err. Time (sec.)

Gaussian: σ = 0.5
α = 0.1 α = 0.5

CV-LB 12.4356 – 5.91 10.8942 – 5.68
(std. error) 1.9E-03 1.9E-03
LB 12.4154 0.162% 0.13 10.8723 0.201% 0.05
SLN 12.3781 0.462% 0.13 10.8546 0.364% 0.11
SG 12.5325 0.779% 0.12 10.9537 0.546% 0.11
SRG 12.4087 0.216% 0.12 10.8682 0.239% 0.12
MLP 12.4142 0.172% 0.12 10.8696 0.226% 0.12
OP-3 12.4031 0.262% 0.12 10.8604 0.311% 0.13
J 12.4289 0.054% 0.21 10.8825 0.108% 0.19
P 12.4358 0.002% 0.21 10.8880 0.058% 0.19
OP-4 12.4160 0.158% 0.20 10.8771 0.158% 0.19

DEJD: σ = 0.5, λ = 5, p = 0.6, η1 = η2 = 25
α = 0.1 α = 0.5

CV-LB 12.7912 – 27.19 11.2023 – 24.61
(std. error) 2.0E-03 2.1E-03
LB 12.7715 0.154% 3.14 11.1807 0.192% 1.74
SLN 12.7319 0.464% 0.17 11.1614 0.365% 0.15
SG 12.9001 0.851% 0.17 11.2720 0.623% 0.14
SRG 12.7670 0.190% 0.16 11.1786 0.212% 0.15
MLP 12.7684 0.179% 0.17 11.1800 0.199% 0.14
OP-3 12.7627 0.223% 0.17 11.1698 0.290% 0.14
J 12.7856 0.044% 0.27 11.1914 0.097% 0.26
P 12.7956 0.034% 0.28 11.1999 0.021% 0.25
OP-4 12.7740 0.135% 0.26 11.1840 0.164% 0.25

NIG: θ = −0.6819, k = 0.1222, σ = 0.4395
α = 0.1 α = 0.5

CV-LB 11.5623 – 10.34 10.1895 – 9.93
(std. error) 1.3E-03 1.2E-03
LB 11.5551 0.062% 3.46 10.1890 0.005% 2.63
SLN 11.7024 1.211% 0.38 10.3035 1.119% 0.42
SG 11.7484 1.609% 0.33 10.3891 1.959% 0.40
SRG 11.6663 0.899% 0.31 10.2863 0.950% 0.44
MLP 11.6663 0.899% 0.31 10.2863 0.950% 0.44
OP-3 11.8058 2.106% 0.32 10.3956 2.023% 0.43
J 11.5311 0.270% 0.95 10.1660 0.231% 1.03
P 11.5813 0.164% 0.97 10.1769 0.124% 1.01
OP-4 11.5097 0.455% 0.96 10.1521 0.367% 1.02

Table 7: Discrete arithmetic Asian option prices: case of high volatility. 12 monitoring dates. Other notes: see
Table 4.

p-quantile risk measure Conditional Tail Expectation
p Monte Carlo 4-moment Pearson fit p Monte Carlo 4-moment Pearson fit

0.25 0.9387 0.9385 0.25 0.7934 0.7912
0.5 1.0058 1.0057 0.5 0.5577 0.5476

0.75 1.0862 1.0786 0.75 0.2683 0.2875
0.95 1.1935 1.1947 0.95 0.0579 0.0626
0.99 1.2739 1.2853 0.99 0.0124 0.0134

0.995 1.3007 1.3204 0.995 0.0069 0.0069

Table 8: p-quantile risk measure Qp [Y (T )] and Conditional Tail Expectation CTEp [Y (T )] for varying p and
Y (T ) as in (21). Moments of (21) follow from formula (22) by solving iterated integrals using Gauss–Legendre
quadrature (30 nodes). Model parameters: X(0) = 0, α = 0.1, β = 0.2, σ = 0.1, µ = 0, σ̃ = 0.15, ρ = 0. Monte
Carlo estimates correspond to 5× 107 simulation trials and 2000 time steps over the interval [0, T ] with T = 1.
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Figure 1: Error upper bounds for a continuum of strike prices K. ρn (left plot): the case of an approximating

distribution function that shares 2n moments with the original distribution function (see 11).
∫K
0
ρn(x)dx (right

plot): the case of the fixed-strike Asian put option price with the unknown distribution function of the arithmetic
average approximated by a distribution function that has the first 2n moments matched (see 12).
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Figure 2: Probability density functions of the log-return process lnS (from equation 5, where for convenience we
assume S(0) = 1 and one-year time horizon); log-arithmetic average lnY : based on fitted Pearson distribution to
Y ; based on fitted shifted lognormal distribution to Y ; true probability density estimate obtained using Matlab’s
ksdensity based on exact Monte Carlo samples of lnY .
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Figure 3: p-quantile (Qp) and Conditional Tail Expectation (CPEp) for varying parameters α, β and σ̃. Other
parameters: p = 0.95, X(0) = 0, µ = 0, σ = 0.3, ρ = 0 and T = 1.
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Figure 4: p-quantile (Qp) and Conditional Tail Expectation (CPEp) for varying parameters α, ρ, σ. Other
parameters: p = 0.95, X(0) = 0, µ = 0, σ̃ = 0.3, β = 0.1 and T = 1.
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