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Abstract

Deep neural networks have been widely used for various applications and have pro-
duced state-of-the-art results in domains like speech recognition, machine translation,
and image recognition. Despite the impressive successes achieved with deep neural
networks, there has been an increasing awareness that there are tasks that still elude
neural network learning, specifically the learning of abstract grammatical patterns and
generalisation of the abstract patterns beyond the training data.

In this thesis, the problem of learning abstract patterns based on equality (also
called identity) with neural networks is addressed. It was found in this study that
feed-forward neural networks do not learn equality. This leads to feed-forward and
recurrent neural networks’ inability to learn abstract patterns. This problem is studied
empirically and constructive solutions are developed in this thesis.

A solution is proposed, which is called ‘Relation Based Patterns’ (RBP) models
abstract relationships based on equality by using fixed weights and a special type of
neuron. An extension of RBP called ‘Embedded Relation Based Patterns’ (ERBP) is
also proposed which models RBP as a Bayesian prior on network weights implemented
as a regularisation term in otherwise standard neural network learning. Both RBP
and particularly ERBP are very easy to integrate into standard neural network models.
It is observed in experiments that integration of (E)RBP structures leads to almost
perfect generalisation in abstract pattern learning tasks with synthetic data and
to improvements also in neural language and music modeling. (E)RBP has been
successfully applied on various neural network models like Feed-forward neural network
(FFNN), RNN and their gated variants like GRUs and LSTMs, Transformers and
Graph Neural Networks. It leads to improvements on real-word tasks like melody
prediction, character and word prediction, abstract compositionality and graph edit
distance.
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Chapter 1

Introduction

1.1 Motivation

The ability to learn abstractions and generalise is seen as the essence of human

intelligence (Brooks, 1991). Since 1950s, there have been efforts to build systems that

learn and think like humans (Lake et al., 2016). The lack of systematicity in neural

network learning has already been discussed over 30 years ago (Fodor and Pylyshyn,

1988). It was rekindled by Marcus et al. (1999) showing the failure of neural networks

to recognise abstract patterns that infants learn in minutes. In the recent years, deep

neural networks have had impressive successes based on computational advances and

greatly increased amounts of data. Yet, it has become evident that there are still

relevant limitations to systematicity of learning and generalisation in current neural

network architectures (e.g., Baroni, 2019; Hupkes et al., 2019; Keresztury and Bruni,

2020; Lake and Baroni, 2018; Marcus, 2018). The emerging picture is that neural

networks are effective at recognising and mapping numerical patterns seen in the

training data to corresponding outputs, but very often do not extrapolate this mapping

outside successfully on unseen data (Liska et al., 2018).

This problem also relates to recent discussions, sparked by Marcus (2018), about

deep neural networks’ need for very large amounts of training data, lack of robustness

and lack of transparency as also expressed, e.g., by (Kansky et al., 2017; Sabour
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et al., 2017; Szegedy et al., 2013). These issues related to the lack of generalisation

by neural networks beyond the space covered by the input data, i.e. extrapolation, is

generally seen as requiring an inductive bias in the learning system, but there is no

general agreement about the nature or implementation of inductive biases for neural

networks, e.g. (Barrett et al., 2018; Feinman and Lake, 2018). Marcus et al. (1999)

and (Marcus, 2018) see the failure to learn abstract patterns as evidence for general

limitations of neural network learning. To our knowledge, this link has not been shown

experimentally.

1.2 Problem Overview and Research Objectives

This thesis starts with the abstract pattern learning problem posed by (Marcus et al.,

1999). The task was to recognize patterns defined by simple grammatical rules,

specifically sequences of the structure ABA or ABB. The patterns are simple and

defined in terms of equality between sequence elements.1 Seven month old infants

showed evidence of recognizing the patterns after just two minutes of familiarization

while recurrent neural neural failed at the task. In the exchange of arguments that

followed over several years in several new studies no general consensus was reached

on whether and to what extent standard feed-forward and recurrent networks learn

abstract patterns. In experiments it is here confirmed that standard feed-forward and

recurrent neural network models are not able to learn abstract grammar-like rules of

Marcus et al. (1999). The underlying problem turns out to be that standard neural

networks do not seem to learn to recognise equality, which is fundamental for these

patterns and many higher level tasks requiring systematic or compositional learning.

While the generalising solutions to equality and abstract pattern tasks are clearly in

the hypothesis space of neural networks, gradient descent methods fail to find these

solutions. This prompted the interest in an inductive bias that enables neural networks

to find these solutions.

1The term identity is also often used for this kind of rule. Identity and equality are used
interchangeably in this thesis.
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It is identified that both the comparison of related input neurons and of input

tokens needs to be predefined in the network to learn general rules from data. The goal

is to design such a bias and evaluate its effectiveness on equality and abstract pattern

learning as well as practical tasks. In recent years, there was a trend to remove human

designed features from neural networks, and leave everything to be learned from the

data (Bengio et al., 2013). In this work the inverse approach is followed, which is to

add a designed internal representation in standard neural networks. The developed

methods are evaluated both on the synthetic data and real world data.

1.3 Research Questions

The primary focus of the research work addresses the following research questions :

• Can feed-forward neural networks learn equality? If not, why not?

• How do we make standard neural networks learn equality?

• How does equality learning relate to abstract pattern learning?

• What kind of inductive biases are required for abstract pattern learning, and

how do we add / implement them in the network?

• How do the inductive bias methods affect real world tasks and neural network

learning in general?

1.4 Main Contributions

In this research work, the problem of learning abstract patterns based on equality

using neural networks is studied. Equality learning has been addressed as a standard

problem, and evaluated with empirical methods. The solutions for learning equality

has been proposed in the thesis, which also further helps in understanding and realising

why standard neural networks cannot learn abstract grammatical patterns. Hence, the
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solutions for solving equality has been applied on tasks like abstract grammar/pattern

learning. This shows that modeling lower level equality and abstract pattern learning

in neural networks helps in learning real world problems. Thus, the main contribution

lies in terms of realising equality learning as a problem that standard neural networks

cannot solve, developing solutions for this to solve abstract pattern learning, and

applying this to real-world tasks like on natural language, music and graphs.

To solve this problem, simple ways of adding inductive bias into standard neural

network architectures has been proposed. Firstly, a solution called ‘Relation Based

Patterns’ (RBP) is proposed. RBP creates an inductive bias in the neural networks that

leads to the learning of generalisable solutions to equality and abstract patterns and

improved language and music modelling. Second, ‘Embedded Relation Based Patterns’

(ERBP) are also proposed, which is based on Relation Based Patterns (RBP), but

modeled as a Bayesian prior on network weights and implemented as a regularisation

term in otherwise standard network learning.

RBP and especially ERBP are easy to integrate into standard neural networks

and do not affect their general learning capacity. In our experiments, (E)RBP lead

to almost perfect generalisation when learning abstract patterns from synthetic data.

(E)RBP also improves natural language models on the word and character level, pitch

prediction in melodies, linguistic compositionality tasks and graph distance estimation.

While most current approaches focus on the structure of the network and adding

different operators, this is to our knowledge the first approach that addresses abstract

pattern recognition with a prior on the network weights. The main contributions of

the thesis are to:

• experiment with several common NN architectures: feed-forward networks, RNN,

GRU, and LSTM, to find that they fail to learn abstract patterns

• identify reasons that prevent the learning process from being successful in the

context of learning abstractions in data
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• formulate equality learning as a problem and link to how it helps in generalizing

abstract grammar patterns better

• propose Relation Based Patterns (RBP) and Embedded Relation Based Patterns

(ERBP) as new methods to enable the learning of equality and abstract patterns

with standard network structures

• show in experiments that abstract patterns can be learnt with (E)RBP structure

on artificial data, including mixed abstract and concrete patterns

• show (E)RBP improves performance in real word tasks on language, music and

graphs applied to state of the art neural network models like Transformers and

Graph neural networks.

1.5 Publications

1.5.1 Journal Papers

• Radha Kopparti and Tillman Weyde (2020). ‘Relational Weight Priors in

Neural Networks for Abstract Pattern Learning and Language Mod-

eling’ (under review for Machine Learning)

• Tillman Weyde and Radha Kopparti (2019). ‘Modelling Identity Rules with

Neural Networks’, Volume 6, No 4, 745–769, Journal of Applied Logic (JAL),

ISSN 2631-9829.

1.5.2 Conference Papers

1. Work on Rule Learning / Abstract Relations :

• Radha Kopparti and Tillman Weyde (2019). ‘Weight Priors for Learning

Identity Relations’. KR2ML @ NeurIPS, Vancouver, Canada, Dec 8-14.
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• Radha Kopparti and Tillman Weyde (2019). ‘Factors for the Gener-

alisation of Identity Relations by Neural Networks’. Workshop on

Understanding and Improving Generalization in Deep Learning, ICML, Long

Beach, June 9-15.

• Tillman Weyde and Radha Kopparti (2018). ‘Feed-Forward Neural

Networks need Inductive Bias to Learn Equality Relations’. Work-

shop on Relational Representation Learning at NIPS, Montreal, Canada,

December 3-8.

2. Work on Music Modeling :

• Radha Kopparti and Tillman Weyde (2020). ‘Monophonic Pitch Pre-

diction using Transformers with Relational Representations’ (sub-

mitted)

• Radha Kopparti and Tillman Weyde (2019). ‘Modeling Interval Re-

lations for Neural Music Language models’. Workshop on Machine

Learning for Music Discovery, ICML, Long Beach, June 9-15.

• Radha Kopparti and Tillman Weyde (2018). ‘Evaluating repetition

based melody prediction over different context lengths’. ICML

Joint Workshop on Machine Learning and Music, Stockholm, Sweden, July

14.

• Radha Kopparti and Tillman Weyde (2018). ‘Repetition Based Melody

Prediction Model’, at WiMiR workshop as part the 19th International

Society of Music Information Retrieval (ISMIR), Paris, France, Sep 22-28.

1.5.3 Poster presentations

• Poster/Talk on ‘Abstract Rule-based Learning with Neural Networks’,

AAAI-2020 Doctoral Consortium, New York, Feb 6-12, 2020.
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• Poster/Talk on ‘Abstract Rule learning with Neural Networks’, MI21-

HLC 2019, Windsor, Berkshire, UK, June 30- July 3.

• Poster/Talk on ‘Repetition Based Melody Modelling’ at Again and Again

Workshop, City University of London, April 24-25, 2019.

• Poster on ‘Learning Abstraction Relationships using Neural Networks’,

at WIML co-located with NIPS , Montreal, Canada, December 3-8, 2018.

• Poster on ‘Sequential Rule Learning with Neural Networks’, at Machine

Learning Summer School, at Universidad Autónoma de Madrid, Madrid, Spain,

Aug 27 - Sep 8, 2018 and Spring School on Language, Music, and Cognition:

Organizing Events in Time. University of Cologne, Cologne, Germany, February

2-8, 2018.

1.6 Code

Code for the experiments performed in the thesis are available here :

• https://github.com/radhamanisha1/RBP-architecture and

• https://github.com/radhamanisha1/ERBP-models

1.7 Organisation of the thesis

The thesis is organised as follows :

• Chapter 1 : Introduction provides an overview of the thesis, covering motivation

behind the work, problems and research objectives,and the main contributions of

the thesis. Publications and Code details are also provided.

• Chapter 2 : Literature Review in the thesis is divided into two parts. The first

section of the literature review covers the abstract rule learning work which is

https://github.com/radhamanisha1/RBP-architecture
https://github.com/radhamanisha1/ERBP-models
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the main problem solved in the thesis. The later part focuses on sequence to

sequence modeling tasks, compositionality and music language modeling works.

• Chapter 3 : Relation Based Patterns Approach introduces the Relation Based

Patterns (RBP) approach, the design and ways of integrating them into neural

network models. Further the application of RBP on the rule learning task, vector

equality task and numerical tasks like digit reversal, parity and sum of digits are

shown. Different experiments and variants of the models are explained in this

chapter.

• Chapter 4 : Case study : Applying RBP for Melody Modeling shows the applica-

tion of RBP on Melody Modeling task. The overview of the process of how RBP

has been applied on pitch prediction, dataset used and the experimental results

are summarized. Different experiments ranging from Markov Models to Neural

Networks are performed as shown in this chapter.

• Chapter 5 : Embedded Relation Based Patterns Approach introduces the Embed-

ded Relation based Patterns ((E)RBP) approach which is a bayesian approach to

the RBP method introduced in Chapter 5. Several Experiments with (E)RBP are

performed ranging from abstract pattern learning, mixed abstract and concrete

pattern learning, character prediction, melody prediction and word prediction.

The results are compared with the RBP model and summarized in the chapter.

• Chapter 6 : Experimenting (E)RBP with different architectures and tasks extends

the ERBP approach further on the recently popular neural network architectures

like Transformers and Graph Neural Networks. It also covers new tasks like

abstract compositionality and shows how adding (E)RBP structures in the neural

network models help in improving the performance.

• Chapter 7 : Conclusions has the final remarks and summarizes about the problems

addressed in the thesis, approaches proposed followed by the future scope of work.

References are provided after the Conclusions.



Chapter 2

Literature Review

The literature review is divided into the following parts. Firstly, the abstract pattern

learning is discussed, describing the earlier works and methods proposed. In the second

part, music melody modeling works are summarized. The later part of this chapter

focuses on sequence to sequence modeling tasks, compositionality and inductive bias

methods.

2.1 Abstract Pattern Learning

In abstract pattern learning, specifically as in the studies by Marcus (2001); Marcus

et al. (1999), the task is the learning of abstract patterns from sequential data. Abstract

patterns are defined by the relations between elements of a sequence, rather than the

specific values, and can described as grammar-like rules. The goal is to learn to apply

these rules based on sequences of example data like words in a language or notes in

music. This generalization of structured combinatorial relations from language-like

data is also known as rule learning or grammar learning (Alhama and Zuidema, 2019b).

In grammar learning, the key idea is to understand the rules of a language without

prior knowledge, just from the data. This is not only of interest in machine learning

but also as a model for human language acquisition by comparing the ability of humans

and artificial models in learning artificial and natural grammatical patterns.
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There are two phases in the grammar learning task as addressed in this thesis,

one is the training stage where the patterns are made familiar to the subjects (i.e.

humans or machines) and the ability to identify and generalise this new knowledge is

tested in the second stage, the testing phase. The testing phase typically comprises

the recognition of patterns used in the training phase but, at least partly, transferred

to another set of symbols or sounds or in a new sequential context. This corresponds

to the ability of humans to use words they have just learnt in a grammatically correct

way, or to arrange known words into a grammatically sentence they have not seen

before (Chomsky, 1986).

There have been several studies on grammar learning in psychology. Gordon and

Holyoak (1983) made an early contribution on implicit learning and generalisation.

Subsequently, Knowlton and Squire (1994, 1996) studied specifically the knowledge

acquired during artificial grammar learning tasks. An influential contribution to abstract

pattern learning was by Marcus et al. (1999) and Marcus (2001) where the abstract

grammar like rules are shown to seven-month-old infants and their reactions showed

that they could distinguish the sequences according to the underlying grammatical

rules. The infants were first exposed to sequences of one of the forms ABA or ABB, e.g.

‘le di le’ or ‘le di di’, for a few minutes in the familiarisation phase. In the test phase

the infants were exposed to sequences with a different vocabulary (e.g. ‘ba po ba’ and

‘ba po po’) and they reacted by approaching significantly more often the loudspeaker

that played sequences with a new structure, thus showing that the experiments was

that the infants were able to learn the grammatical rules within a few minutes of

habituation. The amount of time taken by the infants was noted using a head-turn

preference procedure (HTPP) where the looking times of both the grammar conditions

are measured.

A total of three experiments was performed. The stimuli used in Experiment 1

had mostly the combination ‘voiced-unvoiced-voiced’. There is a possibility that the

infants learned the voicing pattern rather than abstract rule, as there are studies which

showed that infants seem to be sensitive to voicing distinctions in the early months
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(Eimas et al., 1971). Experiment 2 was performed with grammar patterns highlighting

lexical features instead of phonetic features and the results of the experiments were

consistent with Experiment 1, showing that infants do learn abstract grammar rules

effectively. In another Experiment 3, the infants were tested on the grammars of the

form ‘ABB’ and ‘AAB’ where both the grammars contain immediate repetitions. In

Experiments 1 and 2 above, one of the grammar patterns had an immediate repetition

(eg: ‘ABB’ and the other didn’t have an immediate repetition ‘ABA’. Results from

Experiment 3 also suggest that infants showed a significant preference for the novel

stimuli, ruling out the possibility of infants distinguishing the grammars, was based on

having or lack of immediate repetition alone.

The type of pattern used in these experiments depends only on the equality

between elements of the sequence and after successful learning it should be recognisable

independently of the vocabulary used. Therefore underlying rules of these abstract

patterns are often called identity or equality rules. This suggests that the standard

networks have a problem in learning equality although the solution lies within the

hypothesis space of the network. When a recurrent neural network, often called an

Elman network, was applied to an equivalent task, it failed to distinguish the grammar

patterns, showing no significant difference in its outputs.

The finding by Marcus et al. (1999) sparked an exchange about whether human

speech acquisition is based on rules or statistics and the proposal of several neural

networks models that claimed to match the experimental results. Seidenberg and Elman

(1999) and Elman (1999) proposed a solution based on a distributed representation of

the input and on pre-training where the network is first trained to recognise repeated

items in a sequence. The network is subsequently trained on classifying ABA vs

ABB patterns. Only Elman (1999) reports specific results and has only 4 test data

points, but 100% accuracy. However, Vilcu and Hadley (2001) reported that they could

not reproduce these results. Shultz and Bale (2001) and Altmann and Dienes (1999)

suggested solutions which are based on modified network architectures and training

methods. Vilcu and Hadley (2005) could not replicate the results by Altmann and
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Dienes (1999) and found that the models by Shultz and Bale (2001) do not generalise.

The claims by Vilcu and Hadley (2005) were again contested by Shultz et al. (2005).

A number of other methods were suggested that used specifically designed network

architectures, data representations, and training methods, such as (Christiansen et al.,

2000; Dominey and Ramus, 2000; Gasser and Colunga, 1999; Shastri and Chang, 1999).

Further discussions of these results focused more on psychological aspects of this

experiment. More recent work by Alhama and Zuidema (2016) suggests that prior

experience or pre-defined context representation (“pre-training” or “pre-wiring”) is

necessary for the network to learn general identity rules when using echo state networks.

The discussion of this problem should be seen as part of a wider debate on the

systematicity of language learning models, which started in the 1980s and 1990s

(Fodor and Pylyshyn, 1988; Hadley, 1994a). This debate, like the more specific one on

identity rules, has been characterised by claims and counter-claims (Chalmers, 1990;

Christiansen and Chater, 1994; Fodor and McLaughlin, 1990; Hadley, 1994b; Niklasson

and van Gelder, 1994; Smolensky, 1987), which, as stated by (Frank, 2014), often suffer

from a lack of empirical grounding. Recently, the work in Lake and Baroni (2018) has

defined a test of systematicity in a framework of translation, applied it to standard

seq2seq neural network models (Sutskever et al., 2014). They found that generalisation

occurs in this setting, but it depends largely on the amount and type of data shown,

and does not exhibit the extraction and systematic application of rules in the way a

human learner would.

While the works listed above are interesting and relevant, they do not answer one

important question: whether commonly used network architectures can learn abstract

patterns. In addition: most of the studies above, the evaluation has mostly been

conducted by testing whether the output of the network shows a statistically significant

difference between inputs that conform to a trained abstract pattern and those that do

not. From a machine learning perspective, this criterion is not satisfactory as we, like

(Lake and Baroni, 2018), would expect that an identity/equality rule should always

be applied correctly once if it has been learned from examples, at least in cases of



2.2 Music Language Modeling 13

noise-free synthetic data. Therefore it is interesting to explore the question of whether

and how this general rule learning can be achieved with common neural network types

for sequence classification.

2.2 Music Language Modeling

One of the real-world examples of abstract patterns are musical melodies. Musical

melodies have culture-specific abstract repetition patterns as will be shown in this

thesis. A useful way of testing for abstract patterns is by modelling melodic repetitions

to gain a better understanding and better models of melodies. Musical melodies have

been stated as the first examples of a Gestalt already in 1890s by (von Ehrenfels, 1890).

In Gestalt psychology, it was observed that people can distinguish between melodies,

even though they have been transposed to a new key or tuning using different set of

notes (Ellis, 1938; von Ehrenfels, 1890).

One of the initial works focusing on the abstract mathematical interpretations of

information theory in the context of music was done by (Coons and Kraehenbuehl,

1958; Kraehenbuehl and Coons, 1959). In that study, various sequences of symbols such

as (AAAB, AABA, ABAC, AABB etc.) are ordered rank-wise according to the indices

of hierarchy and articulatedness. The authors assumed that these symbol sequences

reflected song structures and explained how their positions in the rank-ordering might

reflect their use in composition.

In mid 1990s, there have been series of works on statistical modeling of musical

structure (Conklin, 1990; Conklin and Cleary, 1988; Conklin and Witten, 1995). Few

other works on melody prediction using statistical modeling are (Conklin and Witten,

2003b; Paiement et al., 2009a,b; Pearce and Wiggins, 2004, 2012). There are also works

on implicit learning and acquisition of music (Rohrmeier and Rebuschat, 2012) and

statistical learning of musical tones by infants and humans (Saffran, 1999). Other

works explored the use of connectionist models for music prediction tasks (Baffioni

et al., 1984; Bharucha, 1987; Cherla et al., 2013, 2015).
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A wide range of statistical methods using n-gram models (Paiement et al., 2009a,b;

Pearce and Wiggins, 2004) have been used for music prediction tasks. N-gram models

are often criticised as unable to capture long-term dependencies. Techniques like

smoothing in combination with n-gram models of unbounded context length have

been proposed by Pearce and Wiggins (2004) to avoid problems of overfitting and

sparsity in music. As an extension to n-gram models, Conklin and Witten (2003a)

proposed multiple viewpoint systems for melody modelling, which take into account

various combinations of features and have shown to improve melody prediction tasks.

Pearce (2005) developed the IDyOM framework for constructing multiple-viewpoint

variable-order Markov models for predictive statistical modelling of musical structure.

Markov models like the above normally calculate the probabilities as the relative

frequencies of concrete events or features, hence they cannot account for representing

the abstract repetition patterns unless the relation that pattern is based on is encoded

in a feature and the feature is applied to all relevant notes. Thus, generalising identity

patterns from one pitch to another is limited using this approach.

An alternative to statistical models are recurrent neural networks which are pop-

ularly used for modelling sequential data. The simplest form of RNN is the Elman

network proposed in 1990 (Elman, 1990a). It differs from a feed-forward neural network

by having a temporal context layer that acts as input to the hidden layer. There are

two popular gated variants of RNNs called Long Short Term Memory (Hochreiter

and Schmidhuber, 1997b) and Gated Recurrent Units (Chung et al., 2014). RNNs,

especially LSTMs, have been used for music generation for about 20 years and seen

a surge in interest recently. LSTMs have also been very successful in other sequence

modelling tasks, such as speech recognition and Natural Language Modelling Franklin

(2004).

Connectionist models with multiple viewpoint modelling have been shown to

outperform n-gram models (Cherla et al., 2013, 2015). Recent improvements to melody

modeling include, a feature discovery approach Langabhel (et.al., 2017) using the

PULSE learning framework, and a predictive model based on recurrent gated auto-
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encoders for learning structured interval representations (Lattner et al., 2018). More

recently, Transformer based models Vaswani et al. (2017) have been used for generating

structured music compositions Huang et al. (2018) across longer polyphonic sequences.

Transformers are recently popular sequence-to-sequence models, which are currently

the state of the art in language modelling tasks, having beating LSTMs and other RNN

variant models (Vaswani et al., 2017). In Transformers, there is a Encoder-Decoder

model coupled with multi-head attention blocks that serve as the basis for deciding

which parts of the input sequence are important (Vaswani et al., 2017).

2.2.1 Music21 library and **kern representation

For music modeling experiments, the data is encoded in **kern format using the

music21 python library 1. This library allows encoding of the pitch, duration, time

signatures, timbre, ornaments, articulations, phrase markings, bar lines and other

syntactic and structural components of music. The relevant pitch information required

for the music pitch prediction experiments are extracted using the music21 toolkit. The

music21 library Cuthbert and Ariza (2010b) provides suitable functions for extracting

and parsing symbolic music scores. Example of the **kern score from the Essen Folk

Song Collection are shown in Figures 2.1 and 2.2.

2.3 Inductive Biases, Compositionality and System-

aticity

There has recently been an increased interest in inductive biases to improve generalisa-

tion in machine learning and specifically neural networks with potential benefits in

various applications like relational reasoning (Battaglia et al., 2018), spatial reasoning

(Hamrick et al., 2018), learning from few examples (Snell et al., 2017; Wang and Yao,

2019), cognitive modeling (Griffiths et al., 2010), natural language processing (Mitchell

1http://web.mit.edu/music21/

http://web.mit.edu/music21/


16 Literature Review

Fig. 2.1 **Kern format of the Jugoslav melody (jugos001.krn) from the Essen Folk
Song Collection.
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Fig. 2.2 **Kern format of the Czech melody ( czech01.krn) from the Essen Folk Song
Collection.
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et al., 2018), machine translation (Lake and Baroni, 2018; Sutskever et al., 2014), and

numeric reasoning (Trask et al., 2018).

Earlier work on systematicity of human language learning and connectionism started

with Fodor and Pylyshyn (1988). There have been wider debates on systematicity of

neural network learning with claims and counter-claims on their abilities (Christiansen

and Chater, 1994; Fodor and McLaughlin, 1990; Frank, 2014; Niklasson and van Gelder,

1994). In the context of abstract pattern learning, there was series of studies triggered

by Marcus et al. (1999) with different extended network architectures and evaluation

methods (Alhama and Zuidema, 2016, 2019a; Altmann, 1999; Elman, 1999; Shultz and

Bale, 2006; Vilcu and Hadley, 2005).

Traditional rule-based approaches do not suffer from the lack of systematicity, but

they lack the flexibility of neural networks. Some approaches aim to improve rule based

learning with more flexibility, e.g. through probabilistic logic (De Raedt and Thon,

2010; De Raedt et al., 2019). Other studies aim at combining symbolic rule based

knowledge with neural networks (Besold et al., 2017; Garcez et al., 2015; Raedt et al.,

2019; Vankov and Bowers, 2020). However, this approach has not yet been adopted in

the mainstream of machine learning research and applications.

There has been work on different ways of modeling inductive biases in neural

networks in recent years, like using matrix factorisation (Neyshabur et al., 2014) and

convolutional arithmetic circuits (Cohen and Shashua, 2016a) for computer vision

tasks, relational inductive bias models and Bayesian inference in the context of deep

reinforcement learning (Gershman and Niv, 2015; Zambaldi et al., 2019) and inductive

bias for integrating tree structures in LSTMs by ordering the neurons (Shen et al.,

2019).

It has also been identified for a long time that weight initialisation can improve

the speed and quality of neural network learning (Le et al., 2015; Nye and Saxe, 2018;

Sutskever et al., 2013). Various regularisation methods have also been proposed to

improve generalisation (Pachitariu and Sahani, 2013; Sussillo, 2014; Zaremba et al.,

2014). Mikolov et al. (2015) use two weight matrices with different learning dynamics
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to encourage long term memory. Recently, spatial weight priors have been proposed

for Bayesian convolutional neural networks by (Atanov et al., 2019). There are works

by Demeester et al. (2016) for injecting inductive bias in the form of implication first

order rules through an additional regularization term for learning relations between

entities in WordNet.

Recent studies have confirmed that state of the art neural networks lack systematic

generalisation, specifically recurrent neural networks for a sequence to sequence learning

task (Bastings et al., 2018; Lake and Baroni, 2018; Liska et al., 2018), but have stressed

the lack of compositionality and generalisation in neural networks (Andreas, 2019;

Baroni, 2019; Hupkes et al., 2019; Keresztury and Bruni, 2020; Lake, 2019; Nye et al.,

2020; Vankov and Bowers, 2019, 2020).

Other works on incorporating symbolic prior knowledge into neural networks include

(Xu et al., 2018) where a loss function based on constraints on the output has been

developed as a regularization term and evaluated on structured prediction and multi-

label classification tasks. (Minervini et al., 2017) and ? came up with a method for

regularizing multi-layer graph based neural networks using logic based prior knowledge

on link prediction tasks. There are other works like Neural Theorem Provers (NTPs)

(Rocktäschel and Riedel, 2017) which are proposed to solve large scale knowledge

reasoning tasks (Minervini et al., 2019) and systematic generalization (Minervini et al.,

2020). In the context of relational reasoning and natural language understanding there

are works like (Sinha et al., 2019, 2020) evaluating systematic out of order logical

generalization in graph neural networks.

Mitchell et al. (2018) studied among other problems the learning equality of numbers

in binary representation, which does not generalise from even to odd numbers as pointed

out already by Marcus (2001). They investigate several potential solutions, with a

preference for a convolutional approach. Trask et al. (2018) studied the numerical

extrapolation behaviour using logic gates based on arithmetic logic units for fundamental

numerical operations.
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In this research work, we have shown that equality relations and abstract patterns

based on equality/identity relations are not generalised by standard feed-forward

and recurrent neural network architectures. This failure is independent of various

parameters like the vector dimension, amount of training data, train/test split, type of

activation function, data representation, vector coverage, and aspects of the network

architecture. The proposed models, create an inductive bias that leads to almost perfect

generalisation on a number of tasks that relate to equality detection and learning

abstract patterns. More details are given in the next chapters.



Chapter 3

Relation Based Patterns Approach

In this chapter, the abstract pattern learning task is formally defined and different

network architectures are evaluated to see to what extent recurrent and feed-forward

neural networks can learn and generalise abstract patterns based on identity rules. A

new approach called Relation Based Patterns (RBP) is proposed as a solution for this

task.

3.1 Abstract Pattern Learning Task

The task is to learn rules from sequential data also known as grammar learning task. In

the well-known experiments by (Marcus et al., 1999), infants were exposed to sequences

of one of the forms ABA or ABB and in the test phase they showed significantly

different behaviour depending on whether the sequences exhibited the form they were

familiarised with or not. (Marcus et al., 1999) also showed that simple recurrent Elman

networks were not able to perform this learning task.

This raises the question of whether and how this general rule learning can be

achieved with common neural network types for sequence classification. The rest of the

chapter covers the formalisation of this problem, the design of the experiments, and

the approaches proposed to solve the rule learning problem which are further extended

and applied to other tasks in the next chapters.
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3.2 Supervised learning of identity rules

The task in the experiment by (Marcus et al., 1999) is an unsupervised learning task, as

the infants in the experiments were not given instructions or incentives. However, most

common neural network architectures are designed for supervised learning and there

are also natural formulations of abstract pattern recognition as supervised learning

task in the form of classification or prediction, which will be used here.

In our case, abstract patterns are defined by identity relations. Expressed in logic,

they can be described using the binary equality predicate eq(·, ·). For a sequence of

three tokens α, β, γ the rule-based patterns ABA and ABB can be described by the

following rules:

ABA : ¬eq(α, β) ∧ eq(α, γ) (3.1)

ABB : ¬eq(α, β) ∧ eq(β, γ). (3.2)

These rules are independent of the actual values of α, β, and γ, which is why they are

called abstract patterns. Concrete patterns, on the other hand, are defined in terms of

values of from a vocabulary a, b, c, ... . E.g., sequences a ∗ ∗, i.e. beginning with ‘a’, or

∗bc, ending with ‘bc’, can be formulated as follows:

a** : α = a (3.3)

*bc : β = b ∧ γ = c. (3.4)

For the remainder of this thesis, the informal notations ABA and a ∗ ∗ are used as far

as they are unambiguous in their context.

For classification, the task is to assign a sequence to a class, i.e. ABA or ABB, after

learning from labeled examples. For prediction, the task is to predict the next token

given a sequence of two tokens in a test case, after exposure in training to sequences

of one or more of the classes (e.g. only ABA, or ABB respectively). These tasks are

suitable for the most commonly used neural network architectures.



3.2 Supervised learning of identity rules 23

3.2.1 Experimental set-up

Network set-up

The Feed-forward Neural Network (FFNN) (also called Multi-Layer Perceptron) (Rumel-

hart et al., 1985), the Simple Recurrent Neural Network (RNN, also called Elman

network (Elman, 1990b)), the Gated Recurrent Unit (GRU) network (Cho et al., 2014),

and the Long Short Term Memory (LSTM) network (Hochreiter and Schmidhuber,

1997a) are used for the experiments. For prediction experiments, RNN and its gated

variants GRU and LSTM are used.

The input to the networks is a one-hot encoded vector representing each token

with n neurons, where n is the size of the vocabulary. In the case of the FFNN, the

whole sequence of 3 tokens is encoded as a vector of size 3n. For the recurrent models,

the tokens are presented sequentially, each as a n-dimensional vector. The number of

neurons in each hidden layer are set to (10, 20, 30, 40, 50), using 1 or 2 hidden layers.

For the hidden layers, Rectified Linear Units (ReLUs) are used as an activation function

in all networks. The output layer uses the softmax activation function. The number of

output units is 2 for classification and the size of the vocabulary for prediction. The

Adam optimisation method (Kingma and Ba, 2014), using initial learning rates of

0.01, 0.1, 0.2, 0.4 is considered for all the experiments and trained with the synthetic

datasets in one batch. For regularisation Dropout rates of 0.1, 0,2, 0.4 are used and

the number of epochs is set to 10, within which all trainings converged.

A full grid search over all hyperparameters using four-fold cross-validation is

conducted to optimise the hyperparameters and determine test results. A total of 10

simulations is run for each evaluation and the results are averaged. All experiments

have been programmed in PyTorch and the code is publicly available.1

1https://github.com/radhamanisha1/RBP-architecture

https://github.com/radhamanisha1/RBP-architecture
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Datasets

For performing the rule learning experiments, artificial data is generated in the form

of triples for each of the experiments. The sample vocabulary is considered as a...l (12

characters) for both prediction and classification tasks. The triples are generated in all

five abstract patterns: AAA, AAB, ABA, ABB, and ABC for the experiments. The

sequences are then divided differently for the different cases of classification. For all the

experiments a separate train, validation, and test sets are used with 50%, 25%, and 25%

of the data, respectively. All sampling (train/test/validation split, down sampling) is

done per simulation. Different train/validation/test splits are experimented in the later

sections on vector equality learning task, however, for the abstract pattern learning

experiments, the train/validation/test split is always fixed to 50%, 25%, and 25%

respectively.

3.2.2 Classification

Firstly, the three different classification tasks are tested as listed below. For the

experiments, half of the vocabulary is used for training and the other half is used for

testing and validation (randomly sampled). The sequences are divided into two classes

as follows, always maintaining an equal size of both classes:

1) ABA/ABB vs other: In task a), class one contains only pattern ABA while the

other contains all other possible patterns (AAA, AAB, ABB, ABC) down-sampled

per pattern for class balance. The task is to detect whether eq(α, γ) ∧ ¬eq(α, β)

is true or false. Analogously, the task in b) ABB vs other is to detect eq(β, γ) ∧

¬eq(α, β). This case corresponds to the experiment in (Marcus et al., 1999),

where only one rule-based pattern type is used for familiarisation.

2) ABA vs ABB: This task is like task 1 above, but only pattern ABB occurs in

the second class, so that this task has less variance in the second class. This

task is expected to be a bit easier to learn because two equality predicates
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eq(α, γ), eq(β, γ) change their values between the classes and are each sufficient

to indicate the class.

3) ABC vs other: In this case, class one (ABC) has no pair of equal tokens, while the

other class has at least one of eq(α, β), eq(α, γ), eq(β, γ) as true, i.e. detecting

equalities without localising them is sufficient for correct classification.

In the experiments, the training converged quickly in all cases and the classification

accuracy on the training data was 100%. The results on the test set are shown in

Table 3.1. In all cases, the baseline that corresponds to random guessing is 50%. This

baseline is only exceeded for task 1) by the RNNs and their gated variants, and even

then the accuracy is modest at 55%.

Classification task FFNN RNN GRU LSTM
1a) ABA/other 50% 55% 55% 55%
1b) ABB/other 50% 55% 55% 55%
2) ABA/ABB 50% 50% 50% 50%
3) ABC/other 50% 50% 50% 50%

Table 3.1 Three classification tasks based on abstract patterns over 10 simulations. The
numbers show test set accuracy after a grid search and cross validation as described in
section 3.2.1. All values are rounded to the next percentage point.

3.2.3 Prediction

For the prediction experiments two tasks are performed. In task 1) ABA patterns are

trained and tested and in task 2) ABB patterns are used. Training and test/validation

set use different vocabularies. The training converged quickly in less than 10 epochs,

and after training the classification accuracy on the training set is 100%.

The results on the test set are shown in Table 3.2. The baseline is 8.3% as the

vocabulary is of size 12. Similar to the classification experiments, again half of the

vocabulary (6 values) is used for training and the other half is used for validation/testing.

The results show that the tested networks fail completely to make correct predictions.
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They perform below the baseline at 0% accuracy, which is mostly because they predict

only tokens that appear in the training set but not in the test set.

Prediction task RNN GRU LSTM
1) ABA 0% 0% 0%
2) ABB 0% 0% 0%

Table 3.2 Prediction results for two different abstract patterns. The numbers show test
set prediction accuracy after a grid search and cross validation as described in section
3.2.1.

3.2.4 Discussion

The results show clearly that FFNNs, RNNs, GRUs and LSTMs do not learn general

abstract patterns based on identity rules. This agrees with the previously reported

experiments by Marcus et al. (1999). However, since there was some conflicting evidence

in the literature, the clarity of the outcome was not expected.

Questions raised

This result raises the question of why these neural networks do not learn to generalise

abstract patterns from data. There are two aspects worth considering for an explanation:

the capacity of the network and the necessary information for the network to solve the

problem.

Regarding the capacity: the solution to the task is in the hypothesis space of

the neural networks, since proofs exist of universal approximation properties for feed-

forward networks with unbounded activation functions (Leshno et al., 1993) and

of Turing-completeness for recurrent networks (Siegelmann and Sontag, 1995). A

constructive solution is presented below, putting that result into practice, with a design

of network instances that solve the problem.

The relevant question, as has been pointed out by Alhama and Zuidema (2016), is

therefore why learning with backpropagation does not lead to effective generalisation

here. There are three different steps that are necessary to detect identity rules: a



3.2 Supervised learning of identity rules 27

comparison of input neurons, a comparison of tokens, represented by multiple neurons,

and a mapping of comparison results to classes or predictions.

Vocabulary hypothesis

A possible reason for the failure of the networks to generalise may be due to the

vocabulary hypothesis. It is based on the separated vocabulary in one-hot encoded

representation. This leads to some input neurons only being activated in the training

set and some only in the validation and test sets.

In order to learn suitable weights for an input comparison, there would have to

be a suitable gradient of the weights of the outgoing connections from these inputs.

If parts of the vocabulary do not appear in the training data, i.e. the activation of

the corresponding input neurons is always zero during training, the weights of their

outgoing connections will not be adapted. Therefore it is expected that the separation

of the vocabulary prevents generalisation from the training to the test set as the

weights going out from neurons that are used during testing have not been adapted by

the gradient descent. Based on this consideration another experiment with a shared

vocabulary was conducted.

This experiment is called ABA-BAB vs other. The vocabulary is represented as a...l

(12 letters) for this task with train/validation/test split as 50%/25%/25%. The same

vocabulary is now used for training, validation, and testing, but different sequences of

the form ABA that use the same tokens between the training and validation/test sets are

separated. E.g., if the ded is in the test set, then ede is in the training or validation set,

so that there is no overlap in terms of actual sequences. Like in classification experiment

1), training converged quickly and resulted in perfect classification performance on the

training set.

Classification task FFNN RNN GRU LSTM
ABA-BAB vs other 50% 50% 50% 50%

Table 3.3 Classification results on test sets with the same vocabulary used in test,
validation and training set.
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The results on the test set presented in Table 3.3 show performance at the baseline

with no evidence of generalisation. This shows that activating all inputs by using a

shared vocabulary is not sufficient to enable generalisation in the learning process.

Other explanations

A second potential problem is which neurons should be compared. The FFNN has no

prior information about neurons belonging to the same or different tokens or about

which input neurons correspond to the same token values. In the RNN, one token

is presented per time step, so that a comparison between the previous hidden state

and the current input is possible as the same neurons are activated. However, with

a full set of connections between the previous hidden layer and the current, there is

no reason that relations between the same neurons at different time steps would be

processed differently from those between different neurons.

On the other hand, if the representation includes the information of which tokens

are identical or different, then all the information needed for a mapping is available, as

these are the relations in which our defining rules are formulated (e.g. ABA is defined

as eq(α, γ)∧¬eq(α, β)). This idea has led to the Relation Based Pattern (RBP) model

that is introduced in the next section and then evaluated with respect to its effect on

both abstract and concrete pattern learning.

3.3 Design of Relation Based Pattern models

To address the inability of neural networks to generalise rules in neural network learning,

the Relation Based Pattern (RBP) model is developed as a constructive solution, where

the comparisons between input neurons and between tokens and the mappings to

outputs are added as a predefined structure to the network. The purpose of this

structure is to enable standard neural networks to learn abstract patterns based on

the identity rules over tokens while retaining other learning abilities.
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In the RBP model there are two major steps. The first step is defining comparison

units for detecting repetitions, called DR units, and the second step is adding the DR

units to the neural network.

3.3.1 Comparison units

Comparing neurons

The input to the network is a one-hot encoded vector of the current token along

with the n − 1 previous vectors for a given context length n (in this study context

length 3 for classification and 2 for prediction). The comparison units, called DR units

(differentiator-rectifier) are used here. As the name suggests, they apply a full wave

rectification to the difference between two inputs:

f(x, y) = |x− y|

The first level of DR units are DRn units that are applied to every pair of corre-

sponding input neurons (representing the same value) within a token representation,

as shown in Figure 3.1.

Fig. 3.1 DRn units comparing related inputs with an absolute of difference activation
function. In one-hot encoding there are k DRn units for every pair of input tokens,
where k is the vocabulary size.
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Comparing tokens

The next level of DR units are the DRp units that sum the activations of the DRn

values that belong to one pair of tokens. Based on the sequence length n and vocabulary

size k, a total of k×n(n−1)/2 DRn units are created for all the possible pairs of tokens

and i.e. in our classification example, for a sequence of 3 tokens and a vocabulary size

of 12, there are 12× 3(3− 1)/2 = 36× 3 DRn units. All the DRn units for a pair of

tokens are then summed in a DRp unit using connections with a fixed weight of +1.

E.g. there are 5 × (5 − 1)/2 = 10 DRp units for a context of length 5. Figure 3.2a

shows the network structure with DRn and DRp units.

For the prediction case, the same approach is used to represent the difference

between each input token and the next token (i.e., the target network output). There

are n DRpout units created that calculate the difference between each input in the

given context and the next token. There are k × n DRnout units that compare the

corresponding neurons for each pair of input/output tokens, in the same way as for

the pairs of input tokens. The overall network structure is shown in Figure 3.2b.

3.3.2 Neural network integration

DR units (DRn and DRp) are combined with the neural network models in early,

mid and late fusion approaches. The weights that connect DRn units to input and

output, and the DRn to DRp units and the offset layer are fixed, all other weights that

appear in the following models are trainable with back-propagation. The three RBP

approaches are called as RBP Early Fusion (two variants RBP1n and RBP1p), RBP

Mid Fusion and RBP Late Fusion as explained below.

Early Fusion (RBP1n/p)

In this approach, DRn or DRp units are added as additional inputs to the network,

concatenated with the normal input. For the sake of brevity, RBP1n is used when

DRn units are added in Early Fusion and RBP1p is used when DRp are added in Early
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(a) The DRp and DRn units that
are used in the RBP1 and RBP2
structures with 3× k DRn and 3
DRp units for a vocabulary size
k and sequence length 3.

(b) The DRout structure for detecting
repetitions between input and target.
The DRpout values are calculated at
training time and a model is trained
to predict them conditional on DRpin
(see Figure 3.5).

Fig. 3.2 DRn and DRp units for inputs (all RBP) and outputs (RBP Late Fusion).

Fig. 3.3 Overview of the RBP1n/RBP1p structure.
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(a) RBP Mid Fusion (a) (b) RBP Mid Fusion (b)

Fig. 3.4 Overview of RBP Mid Fusion approaches, where the DRpout units are con-
catenated to the hidden layer. In the case of recurrent network, an additional context
from the previous layer is there, the rest of the network is the same as shown in (a)
where DRp units are added to the first hidden layer. DRp units are calculated using
the tokens in the input layer. The only difference from Early Fusion is that here the
DRp are added to the hidden layer unlike previously where they are added to the input
layer.

Fusion. In Figure 3.3, the RBP1n/p structure is depicted. Early fusion is used in both

the prediction and classification tasks.

Mid Fusion

The DRp units are added to the hidden layer. Figure 3.4a shows the mid fusion

structure for the feed-forward network and Figure 3.4b for the recurrent network

respectively. In Figure 3.4a, DRp units are calculated using the tokens in the input

and are added to the first hidden layer. For example, in Figure 3.4a the input has

three tokens, the DRp units are calculated for the three tokens and added to the first

hidden layer. In the case of RNNs, there is an additional context layer i.e. a recurring

connection, which is represented as a loop as shown in Figure 3.4b. This context

has the information from the previous hidden layer at time step t− 1. The input is

passed one token at a time, and the DRp units are calculated using the tokens from
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Fig. 3.5 Overview of the RBP Late Fusion approach. The DRpin values are calculated
as in RBP Mid Fusion. From there, a fully connected layer is used to predict DRpout
(trained with teacher-forcing). The predicted DRpout values are mapped back to
the vocabulary (based on the context tokens) and used as probability offsets in a
mixture of experts with the standard neural network in the left part of the diagram.
All connections are trainable except Input to DRpin and DRpout to Output offsets
(dotted arrows).

the previous time step t − 1, and added to the hidden layer. The other set up and

DRp calculation remains the same as in Figure 3.4a, however the only difference is the

recurrent connection from the previous hidden layer. The RBP Mid Fusion approach

is used for classification and prediction tasks.

Late Fusion

In this approach, same structure as in RBP Mid Fusion (which is called as DRnin

and DRpin in this context) is used, and in addition to that the probability of identity

relations between the input and the output is also estimated, i.e., that the token in the

current context is repeated as the next token. A structure called DRpout is used for
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this, which is projected back to the vocabulary space, to generate a probability offset

for the tokens appearing in the context.

Figure 3.5 gives an overview of the RBP late fusion scheme. The DRpin units detect

identities between the input tokens in the current context as before. The DRpout units

model the identities between the context and the next token, as shown in the Figure

3.4b, where repetition is encoded as 1, and a non-repeated token as a −1.

During training teacher-forcing is used, i.e., the values of the DRpout units are set

to the true values. A feed-forward neural network with one hidden layer is used to learn

a mapping from the DRin to the DRout. This gives us an estimate of the DRout units

given the DRin units. The DRout values are then normalised subtracting the mean, and

then mapped back to the output space (the one-hot vocabulary representation), using

a zero value for the output values that do not appear in the input. These output offsets

are then combined in a weighted sum (mixture of experts) with the output distribution

estimated by the standard normal network (on the left side in Figure 3.5). The weights

in the mixture are trainable. The outputs from the combined distribution of mixture

of experts are clipped between [0,1] and renormalised. The final output distribution is

a softmax layer providing the probability distribution over the vocabulary for the next

token.

3.4 Neural networks with RBP structures

In the following section, the experiments from section 3.2 are repeated and the neural

networks are tested by adding the RBP structures. For convenience and better

comparison previous results in the tables are repeated again in this section.

3.4.1 Classification experiments

This experiment is analogous to the first classification experiment. In the case of the

feed-forward network, RBP Mid Fusion (a) was used in the mid fusion approach and

for recurrent network, RBP Mid Fusion (b) was used. RBP Late Fusion is designed to
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model the similarity between elements of the input context and the output, which in a

classification setting is not possible as the output is a class vector which is of a different

nature than the input tokens and normally of different dimensionality. RBP Late

Fusion is therefore not applied in the classification experiments. The neural networks

are again trained for 10 epochs and all networks converged to perfect classification on

the training set. Table 3.4 provides the overall test accuracy for the three approaches.

Task RBP FFNN RNN GRU LSTM

1a) ABA vs other

- 50% 55% 55% 55%
RBP1n 50% 55% 55% 55%
RBP1p 65% 70% 70% 70%
RBP Mid Fusion 100% 100% 100% 100%

1b) ABB vs other

- 50% 55% 55% 55%
RBP1n 50% 55% 55% 55%
RBP1p 65% 70% 70% 70%
RBP Mid Fusion 100% 100% 100% 100%

2) ABA vs ABB

- 50% 50% 50% 50%
RBP1n 50% 60% 65% 65%
RBP1p 75% 75% 75% 75%
RBP Mid Fusion 100% 100% 100% 100%

3) ABC vs other

- 50% 50% 50% 50%
RBP1n 55% 65% 65% 65%
RBP1p 55% 70% 70% 70%
RBP Mid Fusion 100% 100% 100% 100%

4) ABA-BAB vs other

- 50% 50% 50% 50%
RBP1n 55% 72% 75% 75%
RBP1p 69% 74% 75% 76%
RBP Mid Fusion 100% 100% 100% 100%

Table 3.4 Classification experiments with RBP: test accuracy for the different models
and tasks, as explained above. Results with ‘-’ in the RBP column are the same as in
section 3.2 and shown here again for comparison.

The results with RBP1n models already show some improvement over the baseline in

most configurations, but the result are only slightly above the standard networks, with

RNNs, GRUs and LSTMs benefiting more than FFNN. This supports our hypothesis

that learning to compare corresponding input neurons is a challenging task for neural



36 Relation Based Patterns Approach

networks. However, the results show that providing that comparison is not sufficient

for learning identity rules.

RBP1p structures also aggregate all the l DRn neurons that belong to a pair of

input tokens. The results show that providing that information leads to improved

accuracy and provide evidence that this aggregation is another necessary step that the

networks do not learn reliably from the data.

The RBP Mid Fusion models enable the neural networks to make predictions and

classifications that generalise according to identity rules that they learn from data.

The RBP Mid Fusion leads to perfect classification for all network types tested. This

confirms the design consideration that comparing pairs of tokens provides the relevant

information in the form required for classification, as the classes are defined by equals

relations, so that the activations of the DRp units are directly correlated with the class

labels.

A surprising result is the big difference between the generalisation using the RBP1p

and the RBP Mid Fusion structures. They both provide the same information, only

in different layers of the network, but RBP1p only reaches at most 75% with a 50%

baseline. It is hypothesized that the additional expressive power provided by the

non-linearities in the hidden layer here provides effective learning. This effect deserves

further investigation.

3.4.2 Prediction experiments

Here two experiments are performed separately on ABA and ABB patterns as in

Experiment done on prediction. The tasks are the same as previously and the neural

networks are trained again for 10 epochs after which all networks had converged to

perfect prediction accuracy on the training data. Table 3.5, summarises the accuracy

for RNN, GRU and LSTM without RBP, and with RBP1n, RBP1p Early Fusion, RBP

Mid Fusion, and RBP Late Fusion.

Overall, it is observed that only the LSTM benefits from RPB Early Fusion, and

RBP Mid Fusion structures, all other networks can apparently not make use of the
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Pattern RBP RNN GRU LSTM

1) ABA

- 0% 0% 0%
RBP1n (Early Fusion) 0% 0% 16%
RBP1p (Early Fusion) 0% 0% 18%

RBP Mid Fusion 0% 0% 20%
RBP Late Fusion 100% 100% 100%

2) ABB

- 0% 0% 0%
RBP1n (Early Fusion) 0% 0% 17%
RBP1p (Early Fusion) 0% 0% 20%

RBP Mid Fusion 0% 0% 22%
RBP Late Fusion 100% 100% 100%

Table 3.5 Test set accuracy in prediction experiments for patterns ABA and ABB. As
before, results are averaged over 10 simulations and rounded to the nearest decimal
point. Results with ‘-’ in the RBP column are the same as in section 3 and shown here
again for comparison.

information provided. The RBP Late Fusion model, on the other hand, leads to perfect

classification on our synthetic dataset.

The interpretation of this study is that the standard recurrent networks do not

learn the more complex mapping that prediction requires, as not only recognition of a

pattern but also selecting a prediction on the basis of that pattern is required. The

somewhat better results of the LSTM networks are interesting and show that their

gating mechanisms learn some of the necessary mapping. In the RBP Late Fusion

model, the mapping between the identity patterns and back to the vocabulary adds

considerable prior structure to the model and it is very effective in achieving the

generalisation of rule-based patterns.

3.5 Learning Identity/Equality Rules of binary vec-

tors

To show the effectiveness of RBP models, further experiments with RBP structures

are performed on learning equality (identity) of binary vectors in different dimensions

and other numerical tasks like digit reversal and parity which are summarized below.
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• Different sets of experiments for estimating vector equality in relation to vector

dimensionality, vector coverage i.e. distribution of vectors in training, data size

and data structure.

• Experiments on numeric comparison of vectors, classification by sum of all digits

>= 3, recognising digit reversal by (swapping least significant bit with most

significant bit).

Basic relations such as equality are fundamental to the data structures in many

learning tasks. Although equality as such is typically not learned from data, equality or

approximate equality may be embedded as part of other tasks. The equality function

is clearly in the hypothesis space of feed-forward neural networks (FFNNs) as they

are universal approximators (Leshno et al., 1993). However, this does not mean that

the function can be found by training with gradient descent. Marcus et al. (1999) and

Marcus (2001) already highlighted that learning identity relationships within sequences

using neural networks does not generalise to unseen data, while 7-month old infant

learn and generalise these rules within minutes. This problem is evidently relevant

in tasks like natural language understanding and general reasoning tasks. Therefore,

in this part of the study we focus now exclusively on the case of feed-forward neural

networks and the equality of two binary vectors. We evaluate why standard neural

networks do not learn equality.

The task here is a simple one: detecting if two binary vectors v1, v2 with n dimen-

sions are equal. v1 and v2 are concatenated as input to a neural network. Different

experiments are performed by testing with various factors to determine the effect of

binary vectors on generalisation. For this task, a plain FFNN network is used with one

hidden layer and ReLU activation. FFNN is chosen because the task of learning vector

equality is relatively simple one and do not require any recurrent neural networks or any

of the variants. RBP in Early Fusion and Mid Fusion are used for these experiments,

as RBP in Late Fusion is not applicable here.
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Throughout all the experiments, the neural network is trained for 20 epochs, which

led to convergence in all cases and 100% average training accuracy. A total of 10

simulations are run for each configuration and the accuracies are averaged. The

differences between model accuracies are tested with a Wilcoxon Signed Rank Test

with threshold p = .05, over the results of the simulations This test does not assume a

normal distribution and tests for different medians.

3.5.1 Inductive bias creation with DR units

We use differential rectifier (DR) units that compare input values by calculating the

absolute difference: f(x, y) = |x − y| as defined in Section 3.3 above. One DR unit

for every vector dimension is created with weights from the inputs to the DR units

fixed at 1, thus learning the suitable summation weights for the DRs is sufficient for

creating a generalisable equality detector.

There are two ways of integrating DR units into the neural networks for the vector

equality task: RBP Early Fusion and RBP Mid Fusion also called as RBP1 and RBP2.

In Early Fusion, DR units are concatenated to input units 3.6b), and in Mid Fusion

they are added to the hidden layer 3.6c). In both cases the existing input and hidden

units are unchanged. The plain network without DR units is shown in 3.6a). These

are similar to the RBP Early and Mid Fusion approaches described in Section 3.3.2.

The diagrams are reproduced here to give a better clarity of how RBP is modeled in

the case of classifying binary vectors.

3.5.2 Variations of the data size

Vector dimensionality

Pairs of random binary vectors with dimensionality n between 2 and 100 are generated.

For n < 10 all the possible binary vectors are used to generate equal pairs, i.e. 2n

equal pairs, and random vectors for the unequal pairs. For n ≥ 10, a random class

balanced selection of 10000 vectors is used. The same number of unequal vector pairs
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a) b) c)

Fig. 3.6 Network architectures: a) standard feed-forward network, DR integration with
b) early fusion and c) mid fusion. The DR units receive their input in both cases from
vec 1 and vec 2.

are randomly generated. Then a stratified sampling is used to split the data i.e. 75:25

into train and test set. The results are shown in Table 3.6.

It is observed that the standard FFNNs barely exceed chance level (50%). The

early fusion model improves results, but never reaches full generalisation. The Mid

Fusion reaches close to perfect test performance. The significant differences is tested

between the lowest dimensionalities (n = 2, 3) vs the highest (n = 90, 100), with a

sample size of 20 each. The significant differences are found only for the RBP in Early

and Mid Fusion (p < .01), where accuracy is better for lower dimensionalities, but not

for the plain FFNN.

Training data size

Here the effect of training data size on the performance is studied. For this the training

data size is varied by keeping the test set and all other parameters constant. The

training data sizes of 1% to 50% is used (in relation to the totally available data as

defined above) and the accuracy achieved in various conditions is plotted in Figure 3.7.

The RBP Mid Fusion network reaches 100% accuracy from 10% data size on while the

FFNN shows only small learning effects.
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Vector Plain RBP Early RBP Mid
Dimension FFNN Fusion Fusion
n=2 52% 66% 100%
n=3 55% 65% 100%
n=5 51% 67% 100%
n=10 51% 65% 100%
n=20 49% 63% 100%
n=30 50% 65% 100%
n=40 50% 64% 100%
n=50 51% 65% 100%
n=60 48% 64% 100%
n=70 50% 62% 100%
n=80 50% 63% 100%
n=90 49% 62% 100%
n=100 50% 64% 100%
SD 1.59 1.23 0.07

Table 3.6 Accuracy of the different network types on pairs of vectors of different
dimensions. The joint train and test data covers all possible equal vector pairs for
n < 10, and a random, class-balanced selection of 10000 vector pairs where n ≥ 10.
The standard deviation (SD) is given in percentage points.

Effect of train/test split

In order to further study the effect of increased training data higher proportions of

the total data is used as training data, which means that the test data size should

be reduced. The train/test split is varied from 75/25% of training and testing data

up to 95/5% on pairs of 10-dimensional vectors. The results are given in Figure 3.8,

showing gradual improvements of the RBP Early Fusion with DR units and plain

FFNN models, but even with 95% of all possible combinations in the training set the

accuracy never exceeds 72% and 68%, respectively.

Vector coverage

A possible hypothesis for the results of the FFNN is that the coverage of the vectors

in the training set plays a role. The vectors are not shared in equal pairs between

training and test set, as it would mean to train on the test data. Instead a training set
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Fig. 3.7 Accuracy of plain FFNN and RBP variants for 10-dimensional binary vectors
when varying the distributions of training data from 1% to 50%, keeping the testing
data fixed at 50%.

is created that contains in its unequal pairs all vectors that appear in the test set. The

results are shown in column a) of Table 3.7. A training set is also created where each

vector appeared as above, but in two pairs, one in position v1 and once in v2. The

results are shown in column b) of Table 3.7. The results in both cases are similar to

those without this additional coverage in Table 3.6.

Type Plain RBP Early RBP Mid
FFNN Fusion Fusion

a) one 50% (1.56) 75% (1.17) 100% (0.03)
b) both 52% (1.56) 87% (1.14) 100% (0.04)

Table 3.7 Test set accuracy (standard deviation) of plain FFNNs and with DR units
i.e. RBP in Early and Mid Fusion for test set vectors appearing in training in a) one
position, or b) both positions for n = 10. Accuracies for a) and b) are not significantly
different to the case of random vectors for plain FFNNs, but the improvement is
significant for Early and Mid Fusion RBP models when compared to models without
RBP.



3.5 Learning Identity/Equality Rules of binary vectors 43

Fig. 3.8 Accuracy of plain FFNN and DR variants for 10-dimensional vectors when
varying the size of training data set from 75% to 95% of the total, with the remaining
data used for testing.

3.5.3 Variations of the network architecture

Network depth

Given the general success of deep networks, it is hypothesised that depth might help

in learning a generalisable solution and thus testing networks with greater numbers of

hidden layers is beneficial. In the mid fusion architecture, the DR units are always

concatenated to the first layer that is connected to the inputs. The results show some

improvement, but not to a large extent, as the number of hidden layers are increased

as given in Table 3.8. The difference between the shallow networks (1 and 2 layers)

and the deep networks (4 and 5 layers) is statistically significant (p < .01). This

is an interesting result, as the additional depth is not necessary for representing a

generalisable solution, but does help somewhat to find such a solution. It is not obvious,

why deeper networks learn somewhat more generalisable solutions, given that Early

Fusion models, where there is one more layer between the DR units and the outputs,

are doing worse than the Mid Fusion models.
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Number of Plain RBP Early RBP Mid
hidden layers FFNN Fusion Fusion
h=1 55% 65% 100%
h=2 57% 69% 100%
h=3 58% 69% 100%
h=4 60% 72% 100%
h=5 61% 73% 100%
SD 1.57 1.59 0.05

Table 3.8 Test accuracy for different numbers of hidden layers with 10 neurons each,
for vector dimension n=3. Deeper networks are significantly better than shallower ones
(see text for details).

Hidden layer width

Based on the positive effect of a larger model with more parameters, the performance

of the network is also evaluated using a single hidden layer and by varying the number

of neurons in that layer. The hidden layer size of 10 to 100 is considered, again

with and without DR units, the results are tabulated in Table 3.9. The observation

here is that the larger models do not improve in performance when width is changed

instead of depth. There is no significant difference between the two smallest networks

(hn = 10, 20) and the largest (hn = 80, 100) for Plain FFNNs, while for the RBP models

the smaller networks perform significantly better.

Hidden layer Plain RBP Early RBP Mid
size FFNN Fusion Fusion
hn = 10 50% 65% 100%
hn = 20 49% 63% 100%
hn = 30 51% 61% 100%
hn = 40 45% 65% 100%
hn = 50 47% 65% 100%
hn = 80 51% 62% 100%
hn = 100 50% 64% 100%
SD 1.62 1.23 0.04

Table 3.9 Accuracy of different network types for n=3. The networks contain a single
hidden layer of variable size hn.
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The overall accuracy with RBP Early Fusion does not seem to improve with the

hidden layer size and the performance varies and doesn’t increase with the increase in

the hidden layer size. For example, as seen in Table 3.9, the accuracy with 10 hidden

layers is similar to the one with 40 and 50. However, RBP in Mid Fusion leads to 100%

accuracy in all the cases.

3.5.4 Other factors

Activation function

Another approach to change the learning behaviour is using different activation functions

in the hidden layer. For n=3, the networks are evaluated with ReLU, Sigmoid and

Tanh activations. The results are given in Table 3.10 and they show that the type of

activation in the hidden layer has small positive effect in the overall accuracy, which is

significant for all models.

Activation Plain RBP Early RBP Mid
function FFNN Fusion Fusion
ReLu 55% (1.38) 65% (1.23) 100% (0.05)
Sigmoid 58% (1.28) 69% (1.18) 100% (0.03)
Tanh 58% (1.29) 69% (1.17) 100% (0.03)

Table 3.10 Test accuracy (standard deviation) of the network for different activation
functions for vector dimension n=3

Data representation

A different data representation of the binary vectors is tested where 0;1 has been

replaced with -1;1, like the activation levels networks binarised with the sign function

but only applied to the inputs like Courbariaux et al. (2016). The results of the

accuracy for n=3 with and without DR units are given in Table 3.11. An improvement

is seen with the DR units, it is relatively small but significant across all models.
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Type Plain RBP Early RBP Mid
FFNN Fusion Fusion

a) 0/1 55% (1.23) 65% (1.09) 100% (0.03)
b) -1/1 58% (1.19) 69% (1.07) 100% (0.03)

Table 3.11 Accuracy of the network for data representation. a) standard 0/1 represen-
tation and b) ‘sign’ -1/1 representation for vector dimension n=3.

Further tests are performed on FFNN with 5 hidden layers, sigmoid activation

function and -1/1 representation. Apparently the gains do not accumulate, as the test

set accuracy was only 58%.

3.6 Numerical Tasks

Given the positive results for the DR mid fusion architecture for vector pairs, we want

to test whether the DR units have a, possibly negative, effect on other learning tasks.

The study of vector equality learning is now extended to numerical problem learning

with the RBP structures for solving digit reversal and parity. The tests are to check a)

numeric comparison of the two vectors in the pair, We also tested a task that is not a

comparison of the two vectors in the pair, by b) calculating the digit sum. We classify

by checking if the digit sum is ≥ 3. The results are shown in Table 3.12. In both a)

and b) it is seen that the performance is actually not hindered but helped by the DR

units adding through RBP in Early and Mid Fusion.

There are further tests performed on tasks the DR architecture was not explicitly

designed for: i.e. c) digit reversal (v1 = flip(v2)) and d) parity checking (digit sum

mod 2). The DR units organised per corresponding input neurons do not deliver a

perfect solution here, but still lead to better results than a plain FFNN. The results

are shown in Table 3.12.

The accuracy and standard deviation for the numerical tasks are summarized in

Table 3.12. The differences of Plain FFNN vs Early Fusion and Early vs Mid Fusion

DR are statistically significant for all tasks.
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Task Plain RBP Early RBP Mid
FFNN Fusion Fusion

a) 75% (1.08) 92% (0.94) 100% (0.03)
b) 77% (1.05) 82% (1.03) 100% (0.03)
c) 50% (1.62) 55% (1.53) 58% (1.50)
d) 51% (1.62) 55% (1.53) 62% (1.45)

Table 3.12 Test set accuracy (standard deviation) of FFNN without and with DR units
for a) numeric comparison (v1 ≥ v2), b) digit sum ≥ 3, c) inversion of digit order and
d) parity check.

The digit reversal and parity problem do not generalise as RBP is not explicitly

designed to model both the tasks. To evaluate the problem, n = 6 dimension vectors

are used and certain experiments are performed. The effect of increase in the amount

of training data and deeper networks are tested for digit reversal and parity recognition

task. The results for the increase in the data size achieved in various conditions are

shown in Tables 3.13 and 3.14.

There are no standard deviation values reported in Tables 3.13 and 3.14 as the

experiments had only a single run here and not averaged across 10 simulations like

other experiments.

Train/test Plain RBP Early RBP Mid
split FFNN Fusion Fusion

75%-25% 50% 55% 58%
80%-20% 51% 55% 58%
85%-15% 51% 58% 60%
90%-10% 52% 58% 61%
95%-5% 52% 58% 62%

Table 3.13 Accuracy in digit reversal of FFNN for 6-dimensional binary vectors after
varying the distributions of training data from 75%-95% with the remaining data used
for testing accordingly.)

As can be seen from the results above, increasing the amount of training data, leads

to some improvement especially significant in the case RBP Mid Fusion, but does not

lead to perfect generalisation. The effect of train/test data distribution doesn’t seem
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Train/test Plain RBP Early RBP Mid
split FFNN Fusion Fusion

75%-25% 51% 55% 62%
80%-20% 51% 55% 61%
85%-15% 53% 58% 65%
90%-10% 55% 59% 68%
95%-5% 58% 65% 72%

Table 3.14 Accuracy in parity recognition of FFNN for 6 dimensional binary vectors
after varying the distributions of training data from 75%-95% with the remaining data
used for testing accordingly.)

to make much difference, as can be seen in Table 3.14 where for example, having a

train/test split of 80%/20% doesn’t improve over the case 75%/25% split. One point to

note here is that the model accuracies are reported over a single run, and not averaged

across 10 simulations as done in the other numerical tasks, but the overall effect of

varying train/test data distribution is negligible. One possible reason for that could

be that in RBP only a pair of input vectors are connected to a DR unit. The other

possible connections which include all pairs of input neurons are not connected to the

DR unit.

So an extended DR structure is tested, where every possible pair of input neurons are

connected to a DR unit. This extends the performance, leading to perfect generalisation

on both tasks, as shown in Table 3.15. However, this gain comes at the expense of

O(n2) DR units.

Task Plain RBP Early RBP Mid
FFNN Fusion Fusion

a) Digit Reversal 50% (1.63) 76% (1.04) 100% (0.05)
b) Parity check 51% (1.63) 82% (1.02) 100% (0.06)

Table 3.15 Accuracy of the network a) digit reversal and b) parity using DRs for all
the pairs on 6 dimensional binary vectors.

The results presented so far were all obtained with synthetic data where classification

was exclusively on rule-based abstract patterns. This raises the question whether the
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RBP will impede recognition of concrete patterns in a mixed situation. Furthermore,

it is beneficial to know whether RBP is effective with real data where the abstract

and concrete patterns may interact. Therefore we perform experiments using mixed

abstract and concrete patterns.

3.7 Mixed abstract and concrete patterns

An experiment was conducted where the classes were defined by combinations of

abstract and concrete patterns. Specifically 4 classes were defined based on the abstract

patterns ABA and ABB combined with the concrete patterns a ∗ ∗ and b ∗ ∗. E.g.,

the class ABA, a ∗ ∗ can be expressed logically as

eq(α, γ) ∧ ¬eq(α, β) ∧ α = a. (3.5)

A vocabulary of 18 characters is used, out of which 12 are used for training and 6

are used for validation/testing in addition to ‘a’ and ‘b’, which need to appear in all

sets because of the definition of the concrete patterns.

The classes are mixed with abstract and concrete patterns. There are four classes

(2 abstract and 2 concrete patterns). Each class is a combination of one abstract and

one concrete pattern. Each of the 4 classes are defined as follows. For classes 1 and 3

abstract pattern ABA is used and for classes 2 and 4, ABB abstract pattern is used.

Similarly, classes 1 and 2 are defined to start with token ‘a’ and classes 3 and 4 are

defined to start with token ‘b’ respectively. This is ensured so that there is a mix of

each of the classes when performing a four-way classification. The train, validation

and test split is 50%, 25%, and 25% respectively.

The network was trained for 10 epochs, leading to perfect classification on the

training set. A total of 10 simulations has been performed. A feed forward and a

recurrent neural network were tested both in RBP Early and Mid Fusion.

The results are shown in Table 3.16.
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RBP FFNN RNN
Without RBP 23% 42%
RBP Early Fusion 49% 57%
RBP Mid Fusion 100% 100%

Table 3.16 Test set accuracy for mixed abstract/concrete pattern classification.

As in the previous experiments, networks without RBP fail to generalise the abstract

patterns. The results for RBP Early Fusion and Mid Fusion show, that the ability to

learn and recognise the concrete patterns is not impeded by adding the RBP structures.

3.8 Observations and Remarks

3.8.1 Standard neural networks

The results of the experiments described above confirm the results of Marcus et al.

(1999) and others that standard recurrent (and feed-forward) neural networks do not

learn generalisable identity rules. From the tested models and settings of the task it

can be seen that the lack of activation of input neurons impedes learning, but avoiding

this is not sufficient. The task assumes that the identity of input tokens is easy to

recognise, classify and base predictions on, but the models that are tested do not learn

to generalise in this way. These results confirm the view that in order to generalise

it is necessary to know which input neurons are related, similarly on the next level,

which comparisons of input belong to a pair of tokens so that they can be aggregated

per token. The structure of neural networks does not provide any prior preference

for inputs that are related in this way over any other combinations of inputs. This

makes it seem plausible that the solutions by Altmann and Dienes (1999); Elman

(1999); Seidenberg and Elman (1999) could not be replicated by Vilcu and Hadley

(2001, 2005).
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3.8.2 Constructive model with RBP

The RBP model addresses the learning of identity rules by adding neurons and

connections with fixed weights. From the input neurons connections are added to a

DR (differentiator-rectifier) unit from each pair of corresponding input neurons within

any pair of tokens (represented in one-hot encoding). These DR units calculate the

absolute of the difference of the activations of the two input neurons. They are followed

by DR units that aggregate by taking the sum of the DR unit activations for each pair

of tokens. The fact that the DR units relate to the difference between each pair of

neurons makes the learning task for classification much simpler, as has been confirmed

by our results. An open question in this context is why the RBP Mid Fusion is so much

more effective than RBP Early Fusion for classification, although the only difference is

the layer in which the information is added into the network.

For prediction, a more complex structure is needed, as beyond recognition of identity,

also the selection of the token to predict is required, that depends on the tokens in

the context and their similarity relations. The constructive RBP solution requires a

transformation into a representation of identity relations in the input that is mapped

to identities between input and output and that is mapped back to the token space by

adding prediction probability to the tokens that are predicted to be identical between

input and output. This created a complex predefined structure, but without it even

the models that achieved prefect classification failed to make correct predictions with

new data. Only the LSTM models could use the RBP1 and RBP2 information to

make prediction above the baseline (22% vs 8.3%). It is therefore hypothesises that

the gating structure of the LSTMs enables at least some effective mapping. The 100%

correct predictions by all models using RBP Late Fusion shows the effectiveness of this

structure.

Adding a bias into the network with a predefined structure such as RBP raises the

question whether there is a negative effect on other learning abilities of the network

and whether interactions between the abstract and concrete tasks can be learnt. In

the mixed pattern experiment, RBP is still effective and showed no negative effect. In
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experiments with prediction it was observed that that RBP Late Fusion has a positive

effect overall.

3.8.3 Extrapolation and inductive bias

The results in this study confirm that an inductive bias is needed for extrapolation,

in the terminology of Marcus (2018), in order to generalise in some sense outside

the space covered by the training data. This general challenge has recently attracted

some attention. E.g., Mitchell et al. (2018) provided several solutions to the related

problem of learning equality of numbers (in binary representation), which does not

generalise from even to odd numbers as pointed out already by Marcus (2001). As the

authors point out in Mitchell et al. (2018), an essential question is which biases are

relevant to the domain and problem. The identity problem addressed here is in itself

fundamental to learning about relations Battaglia et al. (2018), as relations depend on

object identity. This further raises the question what is needed to enable more complex

concepts and rules to be learnt, such as more general logical concepts and rules.

The identity rules also point to the lower-level problem that the natural relations of

position and belonging to objects are not naturally addressed in neural networks. Other

tasks may require different structures, relating for example to arithmetics, geometry

or physics (Cohen and Shashua, 2016b). It is therefore seen as an important task

the definition or predefined structures in neural networks, so that they create useful

inductive bias, but do not prevent learning of functions that do not conform to that

bias.

To summarize, the question why standard neural networks do not learn abstract

patterns and vector equality relations in a generalisable way is studied in this chapter

and a solution called ‘Relation Based Patterns’ (RBP) has been proposed. RBP can

be integrated in standard neural networks in three ways, Early Fusion, Mid Fusion

and Late Fusion.

A simple modification to the network with differential rectifier (DR) units resulted in

substantial improvements on unseen test data. This improvement is largely independent
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of vector dimension, data size and other parameters. Similar results are observed in

other numerical tasks like numeric inequality and sum of bits of binary vectors, digit

reversal and parity.

RBP has shown positive effect so far on synthetic and artificially simulated tasks

leading to significant improvements. This provides the evidence that relatively simpler

tasks like equality learning have a positive effect after introducing inductive biases like

RBP into standard neural networks.

It is therefore important to investigate the design of further measures for creating

and controlling inductive biases in neural network learning for various real-world tasks.

In the next chapter, the effect of RBP is tested on the real-world application of music

modeling as melodic sequences in music have repetition cues that can be possibly

modeled with the RBP structures.





Chapter 4

Case study: Applying RBP to

Melody Modeling

4.1 RBP for Pitch Prediction

Repetition is generally seen as an essential feature of music, but not often used as a

feature to model and characterize music. Computational modeling of music involves

studying abstract patterns like repetition of notes. A useful way of testing the relevance

of a melodic feature or model is to test its capacity to support prediction.

In this chapter, abstract repetition patterns of pitches are studied in the context of

monophonic folk melodies as a case study using various models ranging from statistical

to neural network models. Specifically in statistical melody models, the often used

Markov (or n-gram) models lack a mechanism for representing repetitions as such.

The recently popular recurrent neural networks as Turing-complete models are able to

represent them given enough resources, but typically fail to detect repetition patterns

when trained with gradient descent. In this chapter, the use of repetition patterns as

features in music analysis and prediction are explored.

Several experiments are performed using the recurrent neural network models and

their performance is compared by using the new RBP approach described in the

previous chapter. The details about RBP approach as adapted to music modeling,
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the methodology and the dataset used for the analysis are described in the rest of the

chapter.

This RBP music language model is inspired by the time delay neural networks

(Waibel et al., 1989), where the input context is the current note along with the

t − 1 previous notes. Each note is represented as a one-hot-encoded vector of its

pitch. The output is a softmax over the possible pitches for the next note. The basic

model is extended with the RBP as shown below in the next Section. The approaches

are adapted from the RBP model described already in Chapter 3, however the only

difference is in terms of the input given to the neural network, in this case being a

set of pitches in a melodic context. To give a better understanding of how RBP can

be used for notes in a melody context instead of set of abstract tokens as shown in

Chapter 3, the formulation of RBP is explained here again.

The rest of the Chapter focuses on describing the RBP method again for music

modeling, showing importance of similarity correlation in the context of melodies,

experiments with RBP using various fusion models on Markov models, RNNs and their

gated variants followed by performance analysis and plots.

4.2 Repetition Detection

There are two stages in our analysis. Firstly a repetition detector called a DR unit is

defined, which identifies notes with the same pitch. This is applied to all pairs of notes

in a given note sequence of length t, our input context, and to all notes in the input

context in comparison to the following note, the output, or prediction.

The repetition pattern on the context is then used to predict the repetitions in the

output, which are combined with a general music language model. Alternatively, the

repetition patterns are used in the input context directly as an additional input for a

music language model. These are the early, mid and late fusion approaches as defined

in Chapter 3, respectively, which are described again in the sections below.
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4.2.1 Repetition Pattern Representation

The first step in the analysis is to construct a mechanism by which the repetitions

patterns in an input context of length t can be represented as a vector. To do this, a

differential rectifier unit is implemented. This is related to the standard ReLU, but

applies a full wave rectification to the difference between two inputs. The standard

ReLU function for input x is defined as

f(x) = max(0, x),

while here the differential rectifier unit (DR units) is defined as

f(x, y) = |x− y|,

where x and y are the input values, in this case the pitches of two notes. These units

will output 0 if two pitches are the same, and a positive value (the pitch interval in

semitones) otherwise.

Based on the context length t, k = t(t− 1)/2 DR input units are created for all the

possible pairs of notes in the input context which are called as (DRin1, ..., DRink) as

shown in Figure 4.1, which defines the input repetition vector.

For the next note, DR output units (DRout1, ..., DRoutt) are defined as the output

repetition vector. Figure 4.2, defines the output repetition vector. The DRout takes the

pitch of each of the t notes in the input context in combination with the output note’s

pitch as input for the DR units.

Fig. 4.1 DR input units for time window t=5.
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Fig. 4.2 DR output units for time window t=5.

4.2.2 Calculating DR input and output units

The DR input units can be used as additional inputs to the music language model.

However, here the key hypothesis is that the repetitions in the input pattern have an

influence on the output pattern. Therefore, for a full implementation of the RBP, DR

output vectors needs to be predicted based on the DR input vectors. A feed-forward

neural network with logistic sigmoid as the hidden layer activation function is used for

this, which is trained on the DR input and DR output patterns computed from the

data to arrive at the distribution of the DR output units given the DR input units.

In order to understand the correlations between the input and output patterns,

several tests are performed on the patterns across different genres. The analysis of

the correlation of repetition patterns is done. The dataset used for the experiments is

summarized below, followed by the results of correlation between input and output

patterns.

4.3 Corpus

The corpus used for the experiments is Essen Folk Song Collection (Schaffrath, 1995a).

The corpus consists of 8 datasets of monophonic folk chorales and melodies for different

genres. This has been previously used by (Pearce and Wiggins, 2004), (Cherla et al.,

2013), (Cherla et al., 2015) for melody prediction tasks. The corpus contains 119

Yugoslavian folk melodies, 91 Alsatian folk melodies, 93 Swiss folk melodies, 104

Austrian folk melodies, 213 German folk melodies, 185 Bach chorales, 152 Canadian

folk melodies and 237 Chinese folk melodies. The number of predictable musical events
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in these melodies ranges between 2,691 for the smallest one (Yugoslavian folk melodies)

and 11,056 for the largest (Chinese folk melodies).

Examples of repetition cues of the melodies taken from the Essen Folk Song

Collection are shown in Figures 4.3 and 4.4.

Fig. 4.3 Examples from the Essen Folk Song Collection : Repetition of notes.

Fig. 4.4 Examples from the Essen Folk Song Collection : Context length n=6 (pink)
and corresponding note (green).

Table 4.1 provides an overview of the 8 datasets in the corpus. The corpus consists

of monophonic melodies in MIDI format. Each of the MIDI files in the 8 datasets are

encoded to the **kern format. Music21 library (Cuthbert and Ariza, 2010a) is used

to parse and extract pitch information. The pitches are one-hot and integer encoded

in several experiments performed, the details of which are given in the subsequent

sections.

Genre Songs Events Pitches
Elsass 152 8553 25
Bach 185 9227 21
Schweiz 91 4496 32
Jugoslav 119 2691 25
Swiss 93 4586 34
Austrian 104 5306 35
German 213 8393 27
Chinese 237 11056 41

Table 4.1 Essen Folk Song Collection (Schaffrath, 1995a).

A 10 fold cross validation is performed for each of the songs in the 8 datasets as

done in (Pearce and Wiggins, 2004), (Cherla et al., 2013) as the dataset is small and

also to make our results comparable with the previous models.
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4.3.1 Correlation between input and output patterns

To calculate the correlation between input and output patterns DR units are used as

described above. Given a context size n, the mapping of the DR output patterns given

the DR input patterns is calculated. DR units are always calculated for a pair of notes.

For the ease of analysis, binary DR values are considered. A value of 0 corresponds to

pair of notes being equal and 1 corresponds to pair of notes being unequal.

For example, consider a context size of length 5. In this case, the DR input patterns

are calculated as outlined in Section 3.1 which results in a total of 10 DR inputs. Here

as n is 5, the output is the sixth note. To get the output DR units, a simple neural

network is trained using scikit-learn 1 MLPRegressor (Hinton, 1989) with logistic

sigmoid as the activation function, to arrive at the distribution of the output DR units

given the input DR units.

Fig. 4.5 Jaccard similarity and Conditional probability distribution of 10 input DR
units and 5 output DR units for Schweiz dataset

Figures 4.5 and 4.6, describe the similarity matrix of the 10 DR input units and

5 output DR units for Schweiz (Swiss) dataset and Shanxi (Chinese) dataset, both

taken from the Essen Folk Song collection (Schaffrath, 1995a). In the Essen Folk Song

Collection, there are a total of 8 datasets, as described in the above section. Here for

showing the similarity correlation, Swiss and Chinese datasets are considered as they

seem to have more variation and abstract repetition patterns when compared to other

datasets.

1http://scikit-learn.org
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Fig. 4.6 Jaccard similarity and Conditional probability distribution of 10 input DR
units and 5 output DR units for Shanxi dataset.

Continuing from the example above, if the context size of the sequence is 5, then

for every note there are 10 input DR units and 5 output DR units. Each input DR is

compared with each of the output DR to get a 10x5 matrix where each of the elements

represents the similarity index over all 4581 notes for the Schweiz (Swiss) dataset as

an example. The similarity correlation between the inputs in a given context and the

corresponding output is calculated.

To compute the similarity, Jaccard index 2 and conditional probability distribution

are used. 3 The above methods are used for visualising the correlation of input and

output DR units in a given melodic context. Jaccard similarity is defined as follows :

J(X, Y ) = |X ∩ Y |/|X ∪ Y |

where X corresponds to the set of notes in the input context being equal and Y

corresponds to the set of notes in the input context and the output being equal. Each

of the above events constitute a set, so here Jaccard similarity (J) is looking at a

certain equality relationship between the input context and the input context and the

output being the same, so we are comparing intersection of the sets with the union of

the sets.

Similarly, conditional probability is also calculated as follows :

2http://www.statisticshowto.com/jaccard-index/
3http://setosa.io/conditional/
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P (X/Y ) = P (X ∩ Y )/P (Y )

where P denotes the probability that X i.e. notes in the given input context are

equal and Y i.e. notes between the input context and the output are equal given the

condition that Y hold true. This is another way of measuring how DR output and

input units are related.

Fig. 4.7 Overall distribution of DR input and output units for 8 datasets.

Similarly, the distributions of all the other datasets are calculated. The overall

proportion of repetitive input and output DR patterns for a context length of 5 for all

the 8 different datasets is given in Figure 4.7. This shows that repetition is indeed an

essential feature of music and it is important to take the information of the repetition

patterns while performing music analysis. Once the DR input and output units are

computed, they are used in a Markovian setting to estimate the pitch prediction first,

followed by using three variants of recurrent neural network models. The process is

outlined in the next section.

4.3.2 Prediction Task

Markovian modeling

The outline for the prediction task for Markov models is as follows. This is similar to

RBP in Late Fusion.

• The inputs are integer encoded pitch values (midi numbers).
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• The prediction task in a zero order, first order and second order Markov model

(pitch space) setting is performed for all the 8 datasets individually and the

average cross entropy loss of the outputs is calculated.

• Now DR units for each pair of input notes is calculated.

• Given each DR input units, the corresponding correlation of the DR output units

is calculated using MLPRegressor as already outlined above.

• These output DR units are mapped back into the pitch space using mixture of

experts approach (Jacobs et al., 1991) as a post processing step after computing

the pitch prediction probability distribution.

• The overall output distribution is normalised and the cross entropy loss after

adding the DR outputs is calculated.

• The average cross entropy loss with and without adding DR units is now compared

for all the 8 datasets. The results are tabulated in Tables 4.2, 4.3, 4.4.

Neural Networks

RBP integration in neural network models( RNN, GRU and LSTM) are carried out

in three ways described as below. The approaches are similar to those described in

Chapter 3 and briefly summarized again here.

• Early Fusion : DR units are added as extra inputs to the network.

• Mid Fusion : DR units are added to the hidden units of the network.

• Late Fusion : In this approach, the whole RBP training and prediction process

are performed separately from the neural language model. The predictions of

the RBP, which are repetition patterns, are then projected back into pitch space,

and combined with the language model in final network layer.

The exact procedure is outlined below. It comprises of two phases.
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– The first step is to train the neural language model as normal without

adding any DR units or RBP.

– In the second phase, the RBP is trained to predict DR output units from

DR input units.

– In the third phase, the Neural Language Model and the RBP are combined.

For this, the DR outputs are mapped back to pitch space. The DR output

values are normalised to zero mean as

DRoutnk = DRoutk − avgl(DRoutl).

– This is done, because the DR output values are not a probability distribution

but rather a prediction of whether the next note will be a repetition of any

nk.

– Then it is mapped back to the output oRBP per pitch (p1, ..., pm) as follows:

oRBP (pl) =


∑

k DRoutnk if pitch(nk) = pl

0 if ∄k such that pitch(nk) = pl

– This output is treated as an offset that increases or decreases the probability

of a pitch in the next note.

– Then the output vectors of the Neural Network and oRBP are combined

with separate weights and a bias per combined output.

– In this configuration the whole model is trained end to end.

For performing the analysis, monophonic folk melodies and chorales are used.

The detailed description of the dataset is given in the next section.
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4.4 Experimental Results

4.4.1 Model Parameters

Two different set of experiments are performed here. One of them is on evaluating

the performance using the zero order, first order and second order Markov models.

Even though Markov models cannot learn abstract repetition patterns, we perform the

experiments on them to notice the effect of RBP integration. Then, the three neural

network models, i.e. RNN, LSTM and GRU, are used with different input context

length [3,4,5,6,7,8,9].

The choice of context length was fixed as the above because of the musical intuition

that repetition cues are more effective in shorter segments, and in order to limit the

complexity, as the number of DR input units grows quadratically with the size of the

input context.

The number of hidden units and epochs are set to 20 and 30 respectively after

performing a grid search over [10,20,30,50] for hidden units and no of epochs. A single

hidden layer is used in all the three neural network models and the learning rate is set

to 0.01.

To evaluate the model, cross entropy is used to compare the effect of DR units on

melody prediction. An estimate of cross entropy between two probability distributions

original distribution p and predicted distribution q is given by

[ H(p, q) = −Σxp(x) log q(x)] (4.1)

where x is the possible set of events. Lower cross-entropy values indicate better

prediction.

4.4.2 Markov models

Tables 4.2, 4.3, 4.4, show the cross entropy (rounded to four decimal points) of all the

8 datasets without DR units and with DR units for Zero order, First order and Second
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Genre Without DR units With DR units
Nova scotia 3.2312 3.0682
Elsass 3.5814 3.3176
Jugoslav 3.5908 3.4211
Bach 3.3786 3.1502
Kinder 3.4862 3.2312
Shanxi 3.8929 3.7693
Schweiz 3.8265 3.6896
Osterrh 3.8704 3.5989
Average 3.6072 3.4057

Table 4.2 Cross entropy loss with and without DR units across 8 datasets for Zero
order Markov model.

order Markov models respectively. It is seen that there is a consistent decrease in the

overall cross entropy for all the 8 genres for all the Markov models. This suggests

that Markov models lack a mechanism to understand abstract patterns and providing

this abstract pattern distribution to the model results in a considerable change in the

predictions for all the 8 datasets.

Genre Without DR units With DR units
Nova scotia 2.8508 2.6430
Elsass 2.9670 2.7576
Jugoslav 2.9890 2.7668
Bach 2.8623 2.6416
Kinder 3.0142 2.7905
Shanxi 3.0768 2.7072
Schweiz 3.0350 2.8285
Osterrh 2.9609 2.7442
Average 2.9695 2.7349

Table 4.3 Cross entropy loss with and without DR units across 8 datasets for First
order Markov model.
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Genre Without DR units With DR units
Nova scotia 2.8086 2.6116
Elsass 2.9125 2.7875
Jugoslav 2.9176 2.4002
Bach 2.8176 2.6291
Kinder 2.8353 2.3256
Shanxi 3.0477 2.9537
Schweiz 2.9215 2.7456
Osterrh 2.9094 2.8947
Average 2.8697 2.6685

Table 4.4 Cross entropy loss with and without DR units across 8 datasets for Second
order Markov model.

4.4.3 Neural Network Models

The performance of the three neural network models are evaluated by varying in the

following conditions:

• Neural network without RBP

• RBP Early Fusion

• RBP Mid Fusion

• RBP Late Fusion

To evaluate the models, cross entropy loss is used as the metric for prediction

performance. The experimental configurations are listed in Table 4.5.

The performance of the models are evaluated using different forms of encoding ie.

both integer and one-hot encoding and then further experiments are performed using

different context lengths as explained below.

4.4.4 Integer Encoding vs One Hot Encoding

The input encoding in the neural network models has been tested using both one hot

encoding (Figure 4.8) and integer encoding (Figure 4.9).
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No Experiment
Exp 1 RNN without RBP
Exp 2 RNN + RBP (Early, mid and Late Fusion)
Exp 3 GRU without RBP
Exp 4 GRU + RBP (Early, mid and Late Fusion)
Exp 5 LSTM without RBP
Exp 6 LSTM + RBP (Early, mid and Late Fusion)

Table 4.5 Overview of the experiments performed on 8 datasets using different context
lengths.

Fig. 4.8 Example of one hot encoding with Note 1 (A2), Note 2 (B2), Note 3 (C2).

It is observed that the integer encoding performed better than one hot encoding.

For example, for a context size of length 5, the performance of RNN, GRU and LSTM

models for three different genres Bach, Elsass and Shanxi from the Essen Folk Song

data are tabulated below in Tables 4.6, 4.7 and 4.8 respectively. The reason behind

choosing three different genres is that all the three genres are very different from each

other, so it would be interesting to note how encoding them in various forms influences

the prediction at the output.

Type Songs Integer encoding One hot encoding
Bach 185 2.4336 2.8548
Elsass 152 2.7715 2.8322
Shanxi 237 2.9913 2.9981

Table 4.6 Performance of Integer vs One hot encoding using the RNN model for Bach,
Elsass and Shanxi datasets.

The accuracy plots of the integer encoding and one-hot encoding for sequence

length 9 are given in Figures 4.10 and 4.11 respectively.
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Fig. 4.9 MIDI values of notes - Integer encoding.

Type Songs Integer encoding One hot encoding
Bach 185 2.4334 2.8579
Elsass 152 2.7721 2.8322
Shanxi 237 2.9925 2.9948

Table 4.7 Performance of Integer vs One hot encoding using the GRU model for Bach,
Elsass and Shanxi datasets.

Integer encoding was significantly better than one-hot encoding in all cases. Integer

encoding with LSTM in late fusion resulted in the best performance overall. As integer

encoding performed better than one hot encoding, for the next set of experiments using

different context lengths only integer encoding is used.

4.4.5 Experiments over different context lengths

Tables 4.9, 4.10 and 4.11 provide the values of the average cross entropy loss across

different context lengths and the corresponding accuracy of the models are given in

Figures 4.12, 4.13 and 4.14 respectively.
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Type Songs Integer encoding One hot encoding
Bach 185 2.4348 2.8540
Elsass 152 2.7635 2.8320
Shanxi 237 2.9901 2.9967

Table 4.8 Performance of Integer vs One hot encoding using the LSTM model for Bach,
Elsass and Shanxi datasets.

Fig. 4.10 Overall Accuracy with Integer Encoding for sequence length : 9 without RBP
and RBP in Early, Mid and Late Fusion.

Fig. 4.11 Overall Accuracy with One-Hot Encoding for sequence length : 9 without
RBP and RBP in Early, Mid and Late Fusion.
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Seq Without With RBP
Len RBP Early Fus Mid Fus Late Fus
n= 2 2.8467 2.7743 2.7572 2.6232
n= 3 2.8323 2.7682 2.7585 2.6254
n= 4 2.8166 2.7516 2.7264 2.6232
n= 5 2.8012 2.7365 2.7356 2.6065
n= 6 2.8023 2.7387 2.7243 2.5878
n= 7 2.7704 2.6803 2.6632 2.5957
n= 8 2.7856 2.6823 2.6745 2.5868
n= 9 2.7503 2.6702 2.6535 2.5927

Table 4.9 Average Cross Entropy Loss with and without RBP units across 8 datasets
using RNNs for various context lengths.

Seq Without With RBP
Len RBP Early Fus Mid Fus Late Fus
n= 2 2.8459 2.7703 2.7568 2.6172
n= 3 2.8338 2.7623 2.7565 2.6208
n= 4 2.8179 2.7498 2.7238 2.6224
n= 5 2.7968 2.7328 2.7302 2.6012
n= 6 2.7995 2.7312 2.7213 2.5856
n= 7 2.7687 2.6756 2.6614 2.5945
n= 8 2.7823 2.6745 2.6704 2.5867
n= 9 2.7456 2.6678 2.6528 2.5907

Table 4.10 Average Cross Entropy Loss with and without RBP units across 8 datasets
using GRUs for various context lengths.

4.4.6 Genre wise analysis

Along with encoding and context length, it is also interesting to evaluate the affect

of RBP on different genres in the Essen Folk Song Collection. The performance of

different datasets using an RNN without RBP and with RBP in Early Fusion, Mid

Fusion and Late Fusion are given in Figure 4.15.
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Seq Without With RBP
Len RBP Early Fus Mid Fus Late Fus
n= 2 2.8339 2.7588 2.7552 2.6123
n= 3 2.8268 2.7610 2.7512 2.6157
n= 4 2.8080 2.7456 2.7214 2.6165
n= 5 2.7928 2.7314 2.7219 2.5962
n= 6 2.7875 2.7266 2.7175 2.5831
n= 7 2.7646 2.6711 2.6554 2.5933
n= 8 2.7811 2.6709 2.6679 2.5832
n= 9 2.7428 2.6618 2.6517 2.5867

Table 4.11 Average Cross Entropy Loss with and without RBP units across 8 datasets
using LSTMs for various context lengths.

Fig. 4.12 Overall Accuracy with and without RBP across 8 datasets using RNNs for
various context lengths n with integer encoding.

Fig. 4.13 Overall Accuracy with and without RBP across 8 datasets using GRUs for
various context lengths n with integer encoding.
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Fig. 4.14 Overall Accuracy with and without RBP across 8 datasets using LSTMs for
various context lengths n with integer encoding.

Fig. 4.15 Overall Accuracy across 8 different datasets of the Essen Folk Song Collection
using an RNN model.

4.4.7 Extending RBP in Late Fusion with octave intervals

using D units

Similar to the DR units, another variant of RBP in late fusion is tried now with D

units ie. Differential Units. D units are defined as

f(x, y) = x− y,
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Fig. 4.16 Combining DR units and D units in RBP Late Fusion.

where x and y are the input values, in this case the pitches of two notes. These units

will output 0 if two pitches are the same, and a signed value of the the pitch interval

in semitones otherwise.

Both the DR units and D units are added to the RBP in Late Fusion as shown in

Figure 4.16. This octave interval offset is now mapped back similar to the standard

RBP in Late Fusion. The overall cross entropy loss and accuracy after combining DR

units and D units are given in Table 4.12 and Figure 4.17 respectively. The results

show consistent improvement after adding the D units as it gives rise to a much richer

representation in terms of learning exact octave interval offsets.

Seq Late Fusion
Len DR units DR and D units
n= 2 2.6232 2.5984
n= 3 2.6254 2.5925
n= 4 2.6232 2.5864
n= 5 2.6065 2.5802
n= 6 2.5878 2.5724
n= 7 2.5957 2.5714
n= 8 2.5868 2.5654
n= 9 2.5927 2.5658

Table 4.12 Average Cross entropy loss with DR units and DR and D units for RBP in
Late Fusion across 8 datasets using LSTMs for various context lengths.
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Fig. 4.17 Overall Accuracy for RBP in Late Fusion with DR units and combining DR
and D units.

4.5 Observations and Remarks

Starting with Markov models, it is seen that there is a consistent decrease in the overall

cross entropy for all the 8 genres in the Essen Folks Song Collection as observed by

the experiments using Zero, First and Second order Markov models after adding the

DR units. This suggests that Markov models lack a mechanism to understand abstract

patterns and providing this abstract pattern distribution to the model results in a

considerable change in the predictions for all the 8 datasets.

For evaluation cross entropy has been used in all the experiments. Lower cross-

entropy values indicate better prediction. There is also a consistent decrease in the

overall cross entropy for all the 8 genres in the case of all the neural network models as

well after adding the DR units in early, mid and late fusion. Across the three models,

the late fusion approach has best average results overall when compared to the early

and mid fusion approach or the models without RBP.

Out of the three neural network models, LSTMs performed the best, followed by

GRUs and then RNNs. Overall, LSTMs with late fusion produced the best result

among all models tested here and also improves over the best reported performance in

pitch prediction across various context lengths. In terms of statistical significance, each
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of the RBP models were better when compared on LSTMs, GRUs and RNNs. Although

the difference in terms of cross entropy loss reported in the results seems small, but the

clear difference in accuracy shows that modeling repetition based patterns with RBP

does benefit overall prediction. This does seem to have much practical significance

in general for building better melody models, where RBP can be applied to capture

abstract repetition patterns between notes in a given melodic context and add the

patterns into standard neural networks. The fact that all neural network models

performed better when combined with RBP indicates that these models are not making

full use of the identity relations represented in our repetition pattern vectors. The

LSTM models in late fusion with integer encoding led to the best performance overall.

The performance did benefit from the RBP for all the network models and this concurs

with the claims by Marcus (2018) that neural networks in their current form fail to

effectively learn abstractions from data, especially small amounts of data. Therefore

approaches like RBP are necessary to model melody sequences using neural networks

and also can be applied to other sequence to sequence learning tasks.

In the next chapter, the approach of RBP is extended to ERBP which is the

Embedded Relation Based Pattern where further improvements (state of the art in

many) are observed in the performance of all the neural network models on various

tasks. The ERBP approach and the experimental details are described in detail in the

next chapter.
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Embedded Relation Based Patterns

Approach

5.1 Bayesian Approach to Relation Based Patterns

Relation Based Pattern (RBP) adds units with hard-wired connections and non-

standard activation function, which limits the flexibility of that part of the network and

makes practical use more complex. By contrast, Embedded Relation Based Pattern

(ERBP) introduces a modified Mid Fusion RBP structure (shown in Figure 5.1 and

remodels it as a Bayesian prior on a standard weight matrix, thus avoiding hard-coded

weights and non-standard network structures and activation functions.

DR units are modeled with two standard neurons and model the fixed weights with

a default weight matrix D, that is applied at initialisation and through a loss function

to the weights between input and hidden layer with ReLU activation. A diagram of

the ERBP structure is given in Figure 5.2 where α and β are the two input values

being compared. An example of this default matrix for context length n = 3 is shown

in Figure 5.3. The incoming connections from two corresponding inputs to a neuron in

the hidden layer to be compared have values of +1 and −1.

For the same pair another hidden neuron is used with inverted signs of the weights,

as in rows 1 and 2. Therefore at least 2n hidden units are required in the first hidden
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Fig. 5.1 Structure of the RBP Mid Fusion. The DR units are concatenated with the
first hidden layer. The weights of incoming connections of the DR units are fixed in
RBP. In ERBP, the same structure is used but with a trainable weights. Then the
only difference to a standard Feed Forward Neural Network is the prior on the weights
between input and hidden units as described in the text. This structure can be applied
to Recurrent Neural Networks, as long as there are n items represented in the input.

layer for each comparison of two n-dimensional vectors. All other incoming weights to

the hidden layer are set to 0, including the bias. This ensures that in all cases where

corresponding inputs are not equal, there will be a positive activation in one of the

hidden neurons.

Fig. 5.2 ERBP: The DR units are each modelled by two hidden layer neurons h1, h2. α
and β indicate two input vectors of dimensionality n.

As stated, Matrix D is used for initialisation and in the loss function. In the

initialisation, weight matrix W between the input and hidden layer is first initialised

as normal, e.g. with low-energy noise, and then the non-zero values of D are copied to
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D =



+1 0 0 −1 0 0
−1 0 0 +1 0 0
0 +1 0 0 −1 0
0 −1 0 0 +1 0
0 0 +1 0 0 −1
0 0 −1 0 0 +1


Fig. 5.3 Default weight matrix D for two input vectors of dimension n=3. Each row
corresponds to the incoming weights of a hidden neuron. If there are more hidden
neurons than pairs of input neurons, the additional rows contain only zeros.

W . If ninp is the number of input units then D matrix with i rows and j columns is

initialised and updated as follows :

Algorithm 1 ERBP weight matrix initialisation
j ← 0
for i in range(ninp/2) do

Dj,i = +1
Dj,i+ninp/2 = −1
j+ = 1
Dji = −1
Dj,i+ninp/2 = +1
j+ = 1
if j > ninp then

break
end if

end for

Further, ERBP loss is defined based on the difference between D and the actual

weights in W . Both L2 or L1 norm of the difference D −W is computed. This loss

term corresponds to a Bayesian prior on the weights with the mean defined by the

values of D. The L2 loss corresponds to a Gaussian prior and L1 loss to a Laplacian

prior, such that backpropagation maximises the posterior likelihood of the weights

given the data (Williams, 1995). The overall training loss lt is defined as

lt = lc + λ× lERBP (5.1)



80 Embedded Relation Based Patterns Approach

where lc is the classification loss, lERBP is

lERBP =


∑k

i=1(wi − di)2, if L2∑k
i=1 |(wi − di)|, if L1

and λ is the regularisation parameter, corresponding to the inverse of the variance

of the prior, effectively regulating the strength of the ERBP regularisation. These

methods are called ERBP L1 and ERBP L2 respectively in the rest of the chapter.

The ERBP approach can be applied to feed froward and to recurrent networks. The

only additional condition for recurrent networks is that all n items on which abstract

patterns need to be detected are represented in the input vector, i.e. a sliding window

of size n is needed.

5.2 Experiments: Abstract Pattern Learning

In this section, the ERBP method is evaluated on generalising abstract relations

from training data. ERBP is compared to standard neural networks and Early and

Mid-Fusion RBP, and also evaluated on the mixed abstract and concrete patterns.

5.2.1 Setup

For all tasks on synthetic data, a standard feed-forward neural network is used. A grid

search over hyper-parameters is run: the number of epochs with values [10,20,30], and

the number of neurons in the hidden layer with values [10,20,30], except for ERBP

where minimal number necessary for the ERBP matrix is used.

The regularisation parameter λ is varied with values [0.01,0.03,0.1,0.3,1,3,10,30] for

the ERBP approaches. The train/test split was set to 75% / 25% for all tasks. A total

of 10 train-test runs is run using Adam optimiser and Stochastic Gradient Descent

(SGD) is also for comparison. A single hidden layer and a mini-batch size of 1 is used
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unless indicated otherwise. The networks have been implemented using the PyTorch

library1.

5.2.2 Abstract Patterns

In this experiment, the aim is to learn classification based on abstract patterns (as

shown in Chapter 3) based on equality as in the experiments by Marcus et al. (1999).

Triples of items (α, β, γ) are presented to the network, following the abstract patterns

AAA, AAB, ABA, ABB and ABC. These abstract patterns can be described in logic

using a binary equality predicate eq(·, ·). E.g., the abstract patterns ABA and ABB

can be represented by the following predicates:

ABA : ¬eq(α, β) ∧ eq(α, γ) (5.2)

ABB : ¬eq(α, β) ∧ eq(β, γ). (5.3)

These predicates only depend on the equality relations and not the values of α, β, and γ.

They are also called as algebraic patterns or abstract rules (Dehaene et al., 2015;

Marcus, 2001). A vocabulary of size 12 is used for the task, e.g. letters ‘a...l’, which

are presented to the network in one-hot encoded vectors. Five different experiments

are performed as follows. The various cases correspond to the experiment in Marcus

et al. (1999), where only one rule-based pattern type is used for familiarisation.

1. ABA vs other: In this task, one class contains only patterns of ABA and the

other class contains all the other possible patterns (AAA, AAB, ABB, ABC),

downsampled for class balance. Expressed in logic, the task is to detect whether

eq(α, γ) ∧ ¬eq(α, β) is true or false.

2. ABB vs other: In this task, one class contains only patterns of the form ABB and

the other class contains all the other possible patterns (AAA, AAB, ABA, ABC),

downsampled for class balance. The logical task is to detect eq(β, γ) ∧ ¬eq(α, β).

1http://pytorch.org

http://pytorch.org


82 Embedded Relation Based Patterns Approach

3. ABA-BAB vs other: In this task, class one contains patterns of type ABA as

in 1. For ABA sequences in the training set, the corresponding BAB sequences

appear in the test set. The other class contains all other possible patterns (AAA,

AAB, ABB, ABC) downsampled per pattern for class balance as before.

4. ABC vs other: In this case, class one (ABC) has no pair of equal tokens, while the

other class has at least one of eq(α, β), eq(α, γ), eq(β, γ) as true, i.e. detecting

equalities without localising them is sufficient for correct classification.

5. ABA vs ABB: This task is like task 1 above, but only pattern ABB occurs in

the other class, so that this task has less variance in the second class. This task

is expected to be easier to learn because two equality predicates eq(α, γ), eq(β, γ)

change their values between the classes and are each sufficient to indicate the

class.

Type 1) 2) 3) 4) 5)
Standard 50 (1.86) 50 (1.83) 50 (1.73) 50 (1.68) 50 (1.81)
Early Fusion 65 (1.26) 65 (1.29) 75 (1.22) 69 (1.04) 55 (1.18)
Mid Fusion 100 (0.00) 100 (0.00) 100 (0.05) 100 (0.00) 100 (0.00)
ERBP L1 100 (0.00) 100 (0.00) 100 (0.02) 100 (0.00) 100 (0.00)
ERBP L2 100 (0.00) 100 (0.00) 100 (0.00) 100 (0.00) 100 (0.00)

Table 5.1 Accuracy (in %) and standard deviation over 10 simulations (in brackets)
using different models for Abstract Pattern Learning: 1) ABA vs other, 2) ABB vs
other, 3) ABA-BAB vs other, 4) ABC vs other, 5) ABA vs ABB).

In Table 5.1 (Abstract patterns) test set accuracies are presented, the training set

accuracy was 100% in all cases. It is found that abstract patterns are almost perfectly

generalised with ERBP L1 and ERBP L2, like with Mid Fusion RBP. The differences

between network performances across 10 simulations are compared using the Wilcoxon

Signed Ranked Test. The differences between ERBP L1/L2 and Standard as well as

between ERBP L1/L2 and Early Fusion were statistically significant in all Abstract

Pattern experiments at a threshold of p < 0.05. Those between Mid Fusion, ERBP L1

and ERBP L2 were not, which was expected as ERBP is based Mid-Fusion RBP.
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5.2.3 Parameter Variations

The effect of several parameters are studied: number of hidden layers, choice of

optimizer, regularisation factor and weight initialisation on abstract pattern learning

task as detailed below.

Network Depth: The abstract pattern learning experiment is tested with deeper

neural network models, using h = 2, 3, 4, 5 hidden layers. The results are tabulated in

Table 5.2, showing only minor improvements in the network performance for deeper

networks. However, Mid Fusion RBP and ERBP generalisation is consistent and

independent of the network depth.

Hidden No Early Mid ERBP L1 ERBP L2
Layer RBP Fusion Fusion
h=2 50 (1.56) 65 (1.23) 100 (0.05) 100 (0.00) 100 (0.00)
h=3 52 (1.59) 66 (1.08) 100 (0.03) 100 (0.00) 100 (0.00)
h=4 55 (1.63) 68 (1.12) 100 (0.02) 100 (0.00) 100 (0.00)
h=5 56 (1.55) 70 (0.89) 100 (0.02) 100 (0.00) 100 (0.00)

Table 5.2 Classification accuracy (in %) along with standard deviation (test) for abstract
pattern learning (ABA vs other) using deeper networks with hidden layers h= 2,3,4,5.

Type ERBP L1 ERBP L2
Adam 100 (0.00) 100 (0.00)
SGD 98 (0.06) 96 (0.04)

Table 5.3 Accuracy (in %) and standard deviation of abstract pattern learning (ABA
vs other) using Adam and SGD optimiser for ERBP L1 and L2. SGD can also lead to
100% accuracy on the test set, but needs higher λ values.

Optimiser: Both Stochastic Gradient Descent (SGD) and the Adam optimiser

are used for training the ERBP. It is observed that faster convergence and greater

improvement in the overall accuracy is achieved with the Adam optimiser compared to

SGD even though SGD by itself also led to good performance. Similar results were

observed for both ERBP L1 and L2.

Table 5.3 summarises the results of abstract pattern learning for both the optimisers

with the regularisation parameter λ set to 1. It is observed that the SGD does not

reach full generalisation in this setting, however it does so at higher values of λ.
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Fig. 5.4 Accuracy (in %) of the network with ERBP L1 and L2 when varying the
regularisation parameter λ (in logarithmic scale) for abstract pattern learning (ABA
vs other).

Regularisation Factor: The regularisation factor λ is varied in the loss function

of the ERBP model and it is observed that a large factor reliably leads to perfect

generalisation in abstract pattern learning task. Figure 5.4 shows how the effect

depends on the size of the regularisation factor λ using L1 and L2 loss functions for

abstract pattern learning task.

Weight initialisations: The effect of different weight initialisations is also tested

without the ERBP weight prior, i.e. without the weight matrix D as shown in Figure 5.3.

For random initialisation, weight and bias are initialised from a uniform distribution

over (-stdv, stdv) where stdv = 1/
√

n and n = size of the weight matrix. The results of

the network using random initialisation, zero weight initialisation, Xavier initialisation

(Glorot and Bengio, 2010) and ERBP initialisation are shown in Table 5.4. Although

ERBP initialisation shows the best generalisation in this comparison, it falls far short

of the performance with the ERBP weight loss (see Table 5.1).

5.2.4 Mixed Abstract and Concrete Patterns

An important question about any inductive bias for abstract patterns is whether it has

negative effects on other tasks. Here concrete patterns are used as test cases.
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Initialisation: Random Zero Xavier ERBP
Task 1 53 (1.82) 51 (1.67) 54 (1.53) 61 (1.12)
Task 2 53 (1.76) 52 (1.72) 54 (1.57) 61 (1.09)
Task 3 55 (1.73) 54 (1.59) 56 (1.49) 65 (1.04)
Task 4 52 (1.89) 54 (1.62) 55 (1.62) 60 (1.23)
Task 5 52 (1.54) 53 (1.58) 54 (1.67) 62 (1.20)

Table 5.4 Classification accuracy (in %) and standard deviation with different weight
initialisation methods on standard neural networks for various tasks ie. Task 1-5
Abstract Pattern Learning (ABA vs other, ABB vs other, ABA-BAB vs other, ABA
vs ABB, ABC vs other)

An experiment is conducted where the classes were defined by combinations of

abstract and concrete patterns similar to the task defined in Chapter 3. Specifically

four mixed classes are defined based on combinations of the abstract patterns ABA

and ABB with the concrete patterns a ∗ ∗ and b ∗ ∗.

Type Accuracy
Simple Network 23 (1.67)
Early Fusion 49 (1.52)
Mid Fusion 100 (0.00)
ERBP L1 100 (0.00)
ERBP L2 100 (0.00)

Table 5.5 Accuracy (in %) and standard deviation for the Mixed pattern learning task
using various approaches of RBP. Both Mid Fusion and ERBP approaches result in
100% accuracy as shown above.

The results of the experiment are given in Table 5.5 and show that the mixed

patterns are perfectly generalised by Mid Fusion RBP and ERBP. This shows that the

(E)RBP does not impede neural network learning of concrete patterns. A range of

values for λ are tried and it is found that a minimum was necessary for learning but

higher values did not impede the learning of the concrete patterns.
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5.3 Generalising and Learning of Identity/Equality

Relations

For the task of learning identity relations, synthetic data is generated and a standard

feed-forward neural network is used. The input vector is binary and the target values

are [0, 1] for unequal and [1, 0] for equal vector halves.

A grid search over hyper-parameters: the number of epochs varied as [10,20,30], the

number of neurons per hidden layer was varied as [10,20,30]. For the Bayesian weight

prior, the regularization parameter λ was varied with values [0.01,0.03,0.1,0.3,1,3,10,30].

A total of 10 simulations was run using the SGD and Adam optimizers, training for 20

epochs. A single hidden layer was used and a batch size of 1 unless indicated otherwise.

The networks have been implemented using the PyTorch library2.

The train/test split was set to 75% / 25% for all tasks. The vector dimensionalities

tested were n = 3, 10, 30. All vectors with equal halves are generated and then a

random sample of all those with unequal halves was taken to balance the classes. The

size of the dataset was down-sampled to 1000 when it is greater.

5.3.1 Identity Relations

Identity is an abstract relation in the sense that it is independent of the actual values

of the individual arguments, it just depends on their combined configuration. In

this task, pairs of vectors are presented to a feed-forward network and the task is to

distinguish whether the two vectors are equal or not. The performance of the network

was evaluated in different configurations on a held-out test set and the results are

tabulated in Table 5.6 for different vector dimensions.

As observed in experiments in Chapter 3, standard networks do not improve much

over random guessing, while ERBP L1 and ERBP L2, as well as Mid Fusion, almost

always achieve perfect generalisation with sufficiently strong λ (see next section for

details).
2http://pytorch.org

http://pytorch.org
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Type Standard Early Fusion Mid Fusion ERBP L1 ERBP L2
n = 3 55 (1.91) 65 (1.34) 100 (0.04) 100 (0.00) 100 (0.00)
n = 10 51 (1.67) 65 (1.32) 100 (0.08) 100 (0.04) 100 (0.02)
n = 30 50 (1.52) 65 (1.27) 100 (0.07) 100 (0.05) 100 (0.04)

Table 5.6 Test set classification accuracy (in %) and standard deviation over 10
simulations (in brackets) using different models for Identity Learning (vector dimensions
n = 3, 10, 30). The networks were trained with the Adam optimizer for 20 epochs.

5.3.2 Parameter Variations

The effect of several parameters like number of hidden layers, choice of optimizer,

regularization factor and weight initialization on identity relation learning tasks is also

studied. More details are given below in this section.

Network Depth: The identity learning task is tested with deeper neural network

models, using h = 2, 3, 4, 5 hidden layers. The results are tabulated in Table 5.7,

showing only minor improvements in the network performance for deeper networks.

However, ERBP L1 and L2 generalization is consistent and independent of the network

depth.

Hidden No Early Mid ERBP L1 ERBP L2
layers RBP Fusion Fusion
h = 2 55 (1.65) 65 (1.26) 100 (0.02) 100 (0.00) 100 (0.00)
h = 3 55 (1.67) 67 (1.14) 100 (0.03) 100 (0.00) 100 (0.00)
h = 4 58 (1.63) 68 (1.25) 100 (0.02) 100 (0.00) 100 (0.00)
h = 5 59 (1.68) 72 (1.23) 100 (0.02) 100 (0.00) 100 (0.00)

Table 5.7 Test set classification accuracy (in %) with standard deviation (in brackets)
for identity learning (n = 3) using deeper networks. The networks were trained with
the Adam optimizer for 20 epochs.

Optimiser: Both Stochastic Gradient Descent (SGD) and the Adam optimizer

are used for training the ERBP L1 and L2. Overall faster convergence and greater

improvement in the overall accuracy was observed with the Adam compared to SGD.

Similar results were observed for both ERBP L1 and L2. Table 5.8 summarizes the
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Type ERBP L1 ERBP L2
Adam 100 (0.00) 100 (0.00)
SGD 98 (0.06) 96 (0.05)

Table 5.8 Accuracy (in %) and standard deviation of identity learning (n = 3) using
Adam and SGD optimizer for ERBP L1 and L2. SGD can also lead to 100% accuracy
on the test set, but needs higher λ values.

results of identity learning for both the optimizers with the regularization parameter λ

set to 1. It is observed that the SGD does not reach full generalization in this setting,

however it does so at higher values of λ.

Regularization Factor: The regularization factor λ in the loss function of the

ERBP models is varied to see its effect in the overall performance. It is observed that

a factor of 3 or above reliably leads to perfect generalization in identity learning task.

Figure 5.5, shows how the effect depends on the size of the regularization factor λ

using L1 and L2 loss functions for learning identity relations.

Fig. 5.5 Test set classification accuracy (in %) of the network with ERBP L1 and L2
when varying the regularization parameter λ (shown in logarithmic scale) for identity
learning with (n = 3) and using the Adam optimizer.

5.3.3 Jointly learning identity relations and bit patterns

In order to test, whether the RBP and ERBP impedes other learning tasks, learning

with some non-relational patterns that are based on values of specific neurons are also
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tested. The simplest form of the task considered is to determine the target class based

on one bit. This case is learned with 100% generalization performance for a network

with 2 additional outputs for the pattern classification.

Furthermore, the learning of classification based on all even or odd elements in the

vector being 0 is also tested. In this case, a perfect generalization is achieved for λ

up to 10. For λ = 30, first deterioration of the accuracy is observed, but there is a

wide range of values where both the identity relations and the even/odd classification

generalize perfectly. The results with ERBP are comparable to the RBP in Mid Fusion.

5.4 Experiments: Language Modeling

In order to evaluate the effect of ERBP on language models, further experiments are

performed with real world data on character and word prediction in natural language

and also on pitches in melodies. RNN, GRU and LSTM models are used for character,

word and pitch prediction.

The input vectors represent items in a context window of length n. Therefore there

are n× (n− 1)/2 pairs of vectors to compare. The ERBP is applied in the same way

as before in the first hidden layer after the input. In these tasks, the encoding of the

information is not binary, as in the synthetic tasks, but integer-based or continuous.

Thus, the differences in DR units and the ERBP hidden neurons represent not just

equality but a form of distance of the input values, which is expected to be useful for

prediction.

5.4.1 Character and Word Prediction

For the experiments on character and word prediction, Wikitext-2 (Merity et al.,

2016) has been used. For word prediction, the entire dataset with 2 million words

was used with train/validation/test split as in the original dataset with pretrained

Glove embeddings (Pennington et al., 2014) with 50 dimensional vectors. For character

prediction, a truncated version with 60, 000 words was used with a train/validation/
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test split of 50/25/25 and with integer encoding of the characters. The predictions are

evaluated by perplexity. Perplexity is calculated as follows :

P (p) = 2H(p) = 2−Σxp(x) log q(x)

where, H(p) is the cross entropy between original distribution p and predicted distri-

bution q and x is the set of events. Here the base is 2, in general the perplexity is

independent of the base. The lower the perplexity, the better the result.

Type n=10 n=20 n=30 n=40
RNN 21.99 21.73 21.42 21.47
Early Fusion 21.90 21.64 21.35 21.24
Mid Fusion 21.89 21.60 21.33 21.20
ERBP L1 20.66 20.50 20.04 20.32
ERBP L2 20.60 20.53 20.03 20.27

Table 5.9 Perplexity per character for various context lengths n = 10,20,30,40 with
RNNs on the Wikitext-2 dataset truncated to 60k words with integer encoding tested
on plain RNN, Early, Mid Fusion, ERBP L1 and L2. The best results (in bold) occur
for the ERBP approaches with λ = 0.3.

A network with 2 hidden layers with 50 neurons each is used. The networks

were trained for up to 30 epochs for character prediction task and up to 40 for word

prediction task. The learning rate was set to 0.01. Training typically converges after

less than 30 epochs and the best model is selected according to the validation loss.

The regularisation parameter λ is tested using values [0.01,0.03,0.1,0.3,1,3] for ERBP.

A context length n of [10,20,30,40] is used and evaluated again with ERBP L1 and L2,

RBP Early and Mid Fusion, and standard networks.

The results for character prediction and word prediction are summarised in Tables

5.9, 5.10, 5.11 and 5.12, 5.13, 5.14 for RNN, GRU and LSTM models respectively. The

performance was best for LSTMs with ERBP and the choice of λ value didn’t have a

major effect in the case of word prediction, unlike character prediction where λ = 0.3

gave best performance.
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Type n=10 n=20 n=30 n=40
GRU 21.97 21.72 21.39 21.45
Early Fusion 21.89 21.63 21.33 21.20
Mid Fusion 21.87 21.59 21.30 21.19
ERBP L1 20.61 20.43 20.02 20.25
ERBP L2 20.53 20.46 19.96 20.23

Table 5.10 Perplexity per character for various context lengths n = 10,20,30,40 with
GRUs on the Wikitext-2 dataset truncated to 60k words with integer encoding tested
on plain GRU, Early, Mid Fusion, ERBP L1 and L2. The best results (in bold) occur
for the ERBP approaches with λ = 0.3.

Type n=10 n=20 n=30 n=40
LSTM 21.88 21.64 21.34 21.33
Early Fusion 21.84 21.63 21.27 21.14
Mid Fusion 21.81 21.57 21.24 21.16
ERBP L1 20.54 20.32 19.89 20.18
ERBP L2 20.45 20.33 19.87 20.19

Table 5.11 Perplexity per character for various context lengths n = 10,20,30,40 with
LSTMs on the Wikitext-2 dataset truncated to 60k words with integer encoding tested
on plain LSTM, Early, Mid Fusion, ERBP L1 and L2. The best results (in bold) occur
for the ERBP approaches with λ = 0.3.

Wilcoxon signed rank test has been used with threshold p=0.05 as above to compare

the standard models with ERBP L1 and L2 for both character and word prediction

across 60000 words for context length n = 10. For character prediction, RNN, GRU

and LSTM with ERBP L1 and L2 are significantly better than the standard RNN,

GRU and LSTM models. For word prediction, all ERBP models except LSTM ERBP

L1 are significantly better than the corresponding standard models.

The results show that the prediction performance benefits from ERBP in all tested

tasks: character and word prediction in natural language, and pitch prediction in

melodies. The prediction improvements are relatively small, but very consistent and

statistically significant. There is little difference in performance between ERBP L1

and L2.

The size of the improvements achieved by ERBP is not dramatic, but its consistency

shows that standard neural networks do not detect patterns of a pair-wise equality
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Type n=10 n=20 n=30 n=40
RNN 186.97 164.56 114.26 101.95
Early Fusion 186.80 164.52 114.21 101.89
Mid Fusion 186.52 164.41 114.19 101.69
ERBP L1 185.83 163.98 113.96 100.25
ERBP L2 185.54 163.90 113.99 100.23

Table 5.12 Perplexity per word for various context lengths n = 10,20,30,40 with RNNs
on the Wikitext-2 dataset consisting of 2 million words with integer encoding tested
on plain RNN, Early, Mid Fusion, ERBP L1 and L2. The best results (in bold) occur
for the ERBP approaches.

Type n=10 n=20 n=30 n=40
GRU 174.62 160.31 114.05 97.62
Early Fusion 174.35 160.26 113.86 96.39
Mid Fusion 174.42 160.27 113.55 96.35
ERBP L1 173.33 159.36 113.42 96.21
ERBP L2 173.21 159.32 113.32 96.32

Table 5.13 Perplexity per word for various context lengths n = 10,20,30,40 with GRUs
on the Wikitext-2 dataset consisting of 2 million words with integer encoding tested
on plain GRU, Early, Mid Fusion, ERBP L1 and L2. The best results (in bold) occur
for the ERBP approaches.

Type n=10 n=20 n=30 n=40
LSTM 160.44 153.61 113.40 93.28
Early Fusion 160.32 153.42 113.26 93.23
Mid Fusion 160.38 153.30 113.23 93.15
ERBP L1 159.29 152.78 113.02 92.96
ERBP L2 159.22 152.89 112.99 92.82

Table 5.14 Perplexity per word for various context lengths n = 10,20,30,40 with LSTMs
on the Wikitext-2 dataset consisting of 2 million words with integer encoding tested
on plain LSTM, Early, Mid Fusion, ERBP L1 and L2. The best results (in bold) occur
for the ERBP approaches.
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or similarity between tokens. Adding a structure in the form of RBP and ERBP

does improve predictions, providing evidence that addressing systematicity in neural

network learning is not just a theoretical issue, but that it has an impact on practical

tasks. By exploring these systematicity issues further, it may be possible to achieve

larger improvements, but that was outside the scope of this PhD work.

The perplexity values shown above for character and word prediction are not the

desired (best) values i.e. i.e. not the state of the art (SOTA) values, we can arrive at

the best perplexity with proper fine-tuning. The aim of the task was not to improve

the SOTA performance in language modeling, but to evaluate effect of RBP/ERBP

using the standard recurrent neural network models.

5.4.2 Melody Prediction

In another experiment, effect of ERBP has been tested for predicting the pitch of the

next note in melodies with a selection of the Essen Folk Song Collection (Schaffrath,

1995b), which comprises songs in 8 different datasets. Pitches are integer-encoded.

Using RNN, GRU and LSTM two hidden layers are used each of size 20.

Type RNN GRU LSTM
Standard 2.8012 2.7968 2.7928
Early Fusion 2.7365 2.7328 2.7314
Mid Fusion 2.7356 2.7302 2.7219
ERBP L1 2.7264 2.7252 2.7132
ERBP L2 2.7240 2.7260 2.7144

Table 5.15 Average cross entropy per note for pitch prediction using context length
n = 5 on the Essen Folk Song dataset using standard models, Early, Mid fusion and
ERBP approaches. The best results (in bold) are achieved with the ERBP approaches
at λ = 0.3.

For optimisation, Adam is used with a learning rate of 0.01 and the values of [0.01,

0.03, 0.1, 0.3, 1,3] were tested for the regularisation factor λ. Context lengths of both

5 and 10 are tested and the train/validation/test split was set to 50/25/25%.

Tables 5.15 and 5.16 summarise the results of the neural networks without and

with RBP in Early, Mid fusion and using ERBP L1 and L2. For statistical significance



94 Embedded Relation Based Patterns Approach

Type RNN GRU LSTM
Standard 2.7502 2.7457 2.7432
Early Fusion 2.6735 2.6723 2.6712
Mid Fusion 2.6653 2.6650 2.6648
ERBP L1 2.6642 2.6641 2.6639
ERBP L2 2.6649 2.6645 2.6632

Table 5.16 Average cross entropy per note for pitch prediction using context length
n = 10 on the Essen Folk Song dataset using standard models, Early, Mid fusion and
ERBP approaches. The best results (in bold) are achieved with the ERBP approach
at λ = 0.3.

over the results for the 8 subsets, we tested using the Wilcoxon signed rank test

with threshold p = 0.05 as in above experiments. It is found that all model types

(Standard/Early/Mid/ERBP L1/L2) are different with statistical significance, and

ERBP L1 and L2 outperform standard networks and RBP models for this task. The

results on character, word and pitch prediction are not close to the SOTA model

perplexities, as the aim of experiment to test the effect of RBP and ERBP in each of

the experiments, and not to improve the state of the art performance. The perplexities

values can be made better with proper hyper-parameter turning and configuration.

5.5 Observations and Remarks

A new approach called ERBP as a re-modeling of RBP as a Bayesian prior is introduced

in this chapter, because of the simple integration into standard recurrent and feed-

forward network structures as a regularisation term and because it retains the full

flexibility of the network learning. The experiments in the chapter show that the ERBP

L1 and L2 models are effective in learning classification based on abstract patterns.

ERBP is even slightly more effective than the original RBP formulation. The learning

of abstract patterns with ERBP is robust over a wide range of parameter settings

as shown. ERBP also does not limit the network’s learning of concrete pattern in

combination with abstract patterns. This is an empirical confirmation that was to be
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expected, given that with ERBP the network is still a universal approximator as the

proof of (Leshno et al., 1993) still applies.

The second point of this study was, whether the enabling of the abstract pattern

learning would improve neural networks learning on real-world data, was addressed

in the second set of experiments in the later part of the chapter. The results show

that the prediction performance benefits from ERBP in all tested tasks: character and

word prediction in natural language, and pitch prediction in melodies. The prediction

improvements are relatively small, but very consistent and statistically significant.

There is little difference in performance between ERBP L1 and L2. Overall, this

provides some evidence that addressing systematicity in neural network learning is not

just a theoretical issue, but that it has a impact on practical tasks.

In general, identity based relations are fundamental to relational learning. In

this work, it is observed that creating a weight prior on the network weights leads

to generalisable solutions of learning identity based relations. It is believed that

addressing these issues and coming up with effective solutions is necessary for more

higher level relational learning tasks and also is relevant to address problems in general

neural network learning. While most approaches to learning abstractions focus on the

structure of the network and non-standard operators, this is to our knowledge the

first approach that addresses abstract pattern recognition with a prior on the network

weights.

In future, this work can be extended towards learning other complex relational

learning tasks and different neural network architectures as shown in the next chapter.

The (E)RBP approach has been applied on other tasks like abstract compositionality

and tested on recently popular Transformer models and Graph neural networks. More

details in the next chapter.





Chapter 6

Experimenting with (E)RBP in

different architectures and tasks

The E(RBP) method described in Chapter 5, so far has been experimented on language

modeling tasks using RNN and their gated variants GRUs and LSTMs. In this chapter,

the ERBP method is extended and applied to the state of the art language models

and recently popular neural network architectures i.e. Transformers.

Transformers have self-attention based representation in their core architecture with

absolute and relative positional encodings (Shaw et al., 2018; Vaswani et al., 2017).

ERBP is tried here as a weight prior for the positional encoding as a variant of the

absolute / relative positional encoding used in the standard Transformer models. After

trying the relational representations, (E)RBP is used on a different task i.e. abstract

compositionality comparison.

Further, ERBP is tested on the graph neural networks (Zhou et al., 2018), specifically

on the graph edit distance task, as the task involves learning similarity between two

graphs. The standard similarity function in graph neural networks is replaced with

ERBP i.e. a default weight prior is used and the rest of the network remains the

same. This work specifically explores how ERBP performs on different relational

learning tasks using Transformers and graph neural networks exploring aspects of

compositionality and similarity/ distance based learning.
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6.1 Transformer Models with (E)RBP

A Transformer model introduced by (Vaswani et al., 2017) is used in this work with

embedding and hidden dimension size set to 20, 2 hidden layers with learning rate set

to 0.02, regularization parameter λ = 0.3, number of attention heads = 2 and sequence

length ‘n’ = [5,10,20,30,50] and batch size 50. The Transformer model with ERBP

with X ∈ x1....xn as the input context with sequence length ‘n’ comprises

l0 = X ×D

l1 = l0 ×We + Wp

li = transformerlayer(Qi, Ki, Vi)∀i ∈ [2, n− 1]

ln = P (y|x1....xn) = softmax(ln−1 ×W t
e),

(6.1)

where l0...ln are the layers of the Transformer network, X is the input context, D is the

default weight matrix as shown above with different dimensions n = [5,10,20,30,50],

We is the embedding matrix, Wp is the position embedding matrix. Each of the layers

calculates the matrix vector multiplication (×)

Self-Attention is applied over the input context in the transformer layer with Qi,

Ki and Vi query, key and vector values. For an ith query token, attention weights with

respect to other tokens at position ‘j’ are calculated as exp(qikj
⊤)√

dk

∑
r∈Si

exp(qikr
⊤)vi where Si

is the set of all the key positions to attend for the ith query. Finally a feed forward

layer is used to produce an output probability distribution for target ‘y’.

Absolute and Relative Attention are similar to RBP in Early Fusion models as the

positional encodings in both cases are concatenated to the input tokens directly. In

absolute attention, positional encodings are computed based on random sine and cosine

wave functions with different frequencies (Vaswani et al., 2017). In Relative Attention,

pairwise difference is calculated between tokens in a given context (Shaw et al., 2018),

while in RBP, the DR units calculate the absolute of the difference. In Mid Fusion

RBP, the DR units are concatenated to the hidden layer. In ERBP, a weight prior is

used that is modeled on a modified RBP Mid Fusion model.
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6.1.1 Music Language Modeling

The set up for this experiment is similar to the one mentioned in Chapter 4 using

the Essen Folk Song Collection and similar hyper-parameter configuration. The input

context length is varied in the range [5,10,20,30,50] as the largest length of the melody

was 50. Firstly, experiments are run without RBP and then with RBP in Early, Mid

and Late Fusion using LSTMs as a baseline. After that ERBP is compared with the

RBP models and further with other relational representations(absolute and relative).

A grid search is performed on the number of epochs [20,30,50] and number of hidden

layers was set to 2 with Adam optimizer. The model usually converged with less than

30 epochs. The learning rate was set to 0.02. As loss function and main evaluation

metric cross entropy was used. The cross entropy H between the original distribution

p and predicted distribution q is defined as

H(p, q) = −Σx∈S p(x) log q(x) (6.2)

where S is the set of possible events, i.e. pitches. Lower cross-entropy values indicate

better prediction. The results for the LSTM model with and without RBP are shown

in Table 6.1. This is similar to experiment results given in Table 4.11, however the

experiments here are done on longer context lengths i.e. n = [5,10,20,30,50] unlike in

Chapter 4, where smaller context lengths of n are tested.

Context Without With RBP ERBP
Length RBP Early Fus Mid Fus Late Fus

n= 5 2.592 2.531 2.521 2.506 2.502
n= 10 2.432 2.401 2.391 2.386 2.372
n= 20 2.025 2.015 2.012 1.994 1.992
n= 30 1.985 1.976 1.973 1.970 1.963
n=50 1.976 1.964 1.952 1.949 1.946

Table 6.1 Average Cross entropy loss with and without RBP and ERBP across 8
datasets using LSTMs for various context lengths n with integer encoding.
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LSTMs with RBP in late fusion performed the best overall when comparing the

RBP and all the results were statistically significant with p < .05 using the Wilcoxon

signed rank test. Further, LSTM with ERBP seems to be slightly better than RBP in

late fusion when evaluated on different context lengths, however the difference is very

small.

Experiments are now conducted with the Transformers using different relational

representations i.e. Absolute Attention, Relative Attention and the ERBP approach.

Table 6.2 has the results with different context lengths. RBP in late fusion has been

used as the baseline as it gave the best performance so far in other experiments.

Context Transformers
Length Late Fusion Absolute Relative ERBP
n = 5 2.421 2.321 2.304 2.287
n = 10 2.326 1.952 1.946 1.932
n = 20 2.016 0.983 0.973 0.971
n = 30 1.954 0.953 0.942 0.938
n= 50 1.952 0.906 0.893 0.886

Table 6.2 Average Cross entropy loss with and without RBP across 8 datasets using
Transformer models with different context lengths n and context representations with
integer encoding.

As shown in Table 6.2, ERBP with Transformers outperformed all other models

when tested on the Essen Folk Song Collection giving a new state of the art in

monophonic pitch prediction task as shown in Table 6.3. All Transformer models

except late fusion benefit dramatically from increased input context lengths of 20 and

more. When comparing performance across different context lengths for the different

subsets of the Essen Folk Song Collection, the differences in the results are statistically

significant at p < .05 using the Wilcoxon signed rank test.

As shown in Table 6.3, Transformers drastically outperform LSTMs on the mono-

phonic pitch prediction task. The difference between each of the Transformers models

i.e. with absolute, relative and ERBP is very small, however ERBP with Transformers

performs slightly better overall.
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Model Type Avg Cross Entropy
(Cherla et al., 2015) 2.479

Langhabel (et.al., 2017) 2.395
Transformers (absolute) 0.906
Transformers (relative) 0.893

Transformers (with ERBP) 0.886

Table 6.3 Comparative performance with state of the art monophonic pitch prediction
models. Transformers with ERBP leads to best performance overall.

Further experiments are also conducted using the melodies of chorales by J.S. Bach

Chorales and from the Nottingham dataset1, using the same configuration as in the

previous experiment. The results are shown in Table 6.4. A similar trend is observed

here as well, i.e. that the Transformers using ERBP performed better than relative and

absolute attention. However, the difference between each of the Transformer models

is very minimal, the main significant difference is seen from LSTMs to Transformers

when tested across various context lengths.

Model Type JS Bach Nottingham
Transformers (absolute) 1.893 2.234
Transformers (relative) 1.862 2.123

Transformers with ERBP 1.856 2.119

Table 6.4 Performance of Transformer model types on JSB Chorales and Nottingham
datasets with different contextual representations for input size n = 50.

6.1.2 Relational Mapping Approach

Two different variants of Transformers have been experimented in late fusion and mid

fusion settings. The process is called relational mapping, as the mapping between DR

input and output units is mapped back into the standard output distribution of the

Transformers. Both the processes of late fusion and mid fusion relational mapping are

1The datasets are available here: http://www-etud.iro.umontreal.ca/~boulanni/
icml2012.

http://www-etud.iro.umontreal.ca/~boulanni/icml2012
http://www-etud.iro.umontreal.ca/~boulanni/icml2012
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outlined below. The key hypothesis is that the abstract relations in the input context

have an influence on the relations between the context and the predicted word.

The relation between the input context units and the corresponding output are

modeled as shown in Figures 6.1 and 6.2 respectively. The difference between late

fusion and mid fusion lies in the way the offsets are added in the neural network. The

late and mid fusion shown in Chapter 3 is adapted here to Transformers. The current

self-attention approach is briefly described below followed by the late and mid fusion

mapping approaches.

Current Self-Attention approach

• Input words converted into word vectors using embedding algorithm

• For each word corresponding query, key and value vector projections are created

• A score is calculated by taking dot product between query vector (current word)

and key vector (all the words in the context)

• All the corresponding query, key scores are scaled (divided by 8 in the paper as

key vector has dim 64) for having more stable gradients and then normalised

(softmax) so they all are positive and sum upto 1

• Each value vector is multiplied with the softmax score and weighted sum of the

value vectors is the final attention score

Mapping in Late Fusion

• Input words converted into word vectors using embedding algorithm

• Two parallel neural networks are trained Transformers (NN1) and Transformers

(NN2)

• NN1 : Transformer is trained to get standard output distribution with self

attention
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• NN2 : For each word query,key and value vector projections are created

• Score based on query (current word) and key values (all words in context) using

absolute difference and dot product is calculated for input context

• Using the corresponding (query,key) pairs and their scores as ground-truth - score

between the key and the next word are computed using a feed-forward network

with logistic sigmoid as activation function

• Final scores are normalised and projected to the vocabulary space to produce

value vectors

• These value vectors are added to the output distribution vector in NN1 based on

a set threshold using a gated mixture product of experts model

Fig. 6.1 Relational Mapping in Late Fusion. This is the ERBP Late Fusion model
with Transformers where the DR offsets are normalised and projected back to the
vocabulary space (NN2) and added to the output probability distribution of the
standard Transformer (left part i.e. NN1).
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Mapping in Mid Fusion

• Input words converted into word vectors using embedding algorithm

• Two parallel neural networks are trained Transformers (NN1) and Transformers

(NN2)

• NN1 : Transformer is trained to get standard output distribution with self

attention

• NN2 : For each word query,key and value vector projections are created

• Score based on query (current word) and key values (all words in context) using

absolute difference and dot product is calculated for input context

• Using the corresponding (query,key) pairs and their scores as ground-truth - score

between the key and the next word are computed using a feed-forward network

with logistic sigmoid as activation function

• These offsets are added to the scores of the self-attention module after normalisa-

tion

6.1.3 Results

Tables 6.5 and 6.6 described the performance of different types of Transformer repre-

sentations. LSTM model is compared as the baseline and tested with four different

variants i.e. Transformers with dot product, Transformers with absolute difference,

Transformers in late fusion and mid fusion relational mapping as outlined in the above

section.

Two different experiments are performed using the WikiText2 dataset, for the first

experiment, the entire dataset with 2 million tokens are considered from 720 articles in

total and for the other experiment, a truncated version with 50k tokens is used from

one single article, the results of which are given in Tables 6.5 and 6.6 respectively. The
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Fig. 6.2 Relational Mapping in Mid Fusion. The left part of the model is the standard
Transformer model (NN1) and the right part (NN2) is where the DR unit offsets
are added to the attention scores of Transformer model (left part i.e. NN1) after
normalisation.

Type Perplexity
Plain LSTM 85.67
Transformers (dot product) 77.32
Transformers (abs diff) 77.36
Transformers(late fusion) 78.07
Transformers(mid fusion) 77.83

Table 6.5 Test set Perplexity of different models on WikiText2 dataset. Here the entire
dataset with 2 million tokens is considered with Train/Valid/Test split set to 50/25/25
%. Best results occur with Transformers using dot product for calculating attention
scores.

vocab size of the entire 2 million data is 33,278. For the second experiment, only one

article is considered with the vocab size of 1230. Train/Valid/Test split for both the

experiments are set to 50/25/25 %.
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For the hyper-parameter configuration, the embedding and hidden dimension size

are set to 20, 2 hidden layers with learning rate set to 0.02, regularization parameter λ

= 0.3, number of attention heads = 2 and batch size is set to 50.

Type Perplexity
Plain LSTM 35.25
Transformers (dot product) 29.32
Transformers (abs diff) 29.64
Transformers(late fusion) 28.62
Transformers(mid fusion) 28.56

Table 6.6 Test set Perplexity of different models on truncated WikiText2 dataset (a
total of 50k tokens from one article are considered from the 2 million tokens in the
entire dataset with 720 articles in total). Train/Valid/Test split is set to 50/25/25 %.
Transformers in Mid Fusion relational mapping leads to best performance overall.

It is observed that the relational mapping does seem to have some effect in the

truncated setting when compared to the one with the entire dataset. One possible

reason could be that for the truncated version, articles from the similar Wikipedia pages

are considered, so that could have added to some bias in modeling. In general, it is

observed that the Transformers using dot product attention led to the best performance

overall as can be seen in Table 6.5.

6.2 Abstract compositionality task

6.2.1 Notion of Compositionality

In another experiment, the effect of ERBP has been tested on an abstract composition-

ality task in natural language data. Previously, ERBP was tested on synthetic data

generated based on abstract rules such as ABB or ABA. In this task, the notion of

abstract rules has been extended to words and sentences formed by words following

certain abstract rules on their semantics. The key aspect here is in understanding

the compositionality of the words that constitute the sentence. The notion of com-

positionality here is in the sense of understanding of how words combine to form a
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sentence, in a way that generalizes to words and sentences that have not previously

been encountered. Examples of sentences based on simple abstract rules are given in

Table 6.7.

Type Entailment Contradiction No of Pairs
Same X is more Y than Z Z is more Y than X 14670
More-Less Z is less Y than X X is less Y than Z 14670
Not Z is not more Y than X X is not more Y than Z 14670

Table 6.7 Comparisons dataset summary. Set of rules for premise: X is more Y than Z

Table 6.7 holds true for any X, Y and Z that may never have occurred in that

combination before. In fact, it is expected of the neural network models to generalize

to X, Y and Z that have never been encountered before at all. The goal of this task is

to test this generalization ability beyond rule based grammars to words and sentences

based on such abstract rules.

6.2.2 Compositional Comparison Dataset

The dataset used in the task is the Compositional Comparison Dataset introduced

by Dasgupta et al. (2018). The task is to classify a pair of sentences into neutral,

contradiction or entailment originally motivated from the popular Stanford Natural

Language Inference (SNLI) dataset (Bowman et al., 2015) natural language inference

classification task. In this abstract compositionality task, pairs of sentences are

generated which differ by permutation of words, such that each of the pairs represent

different relations. This dataset is called as the Compositional Comparison dataset as

all the pairs of sentences are compositionally generated by changing the word ordering

in the sentences. There are three categories ‘Same’,‘More-less’ and ‘Not’ type as shown

in Table 6.7.

For the scope of the experiments in this work, a subset of the dataset is considered.

Two categories namely ‘Same’ and ‘More-Less’ type are considered for the task. The
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task was reduced to classify the given pair of sentences into either Contradiction or

Entailment.

For example,

Same Type : A-B sentence pairs differ only in the order of the words.

A : The woman is more cheerful than the man

B : The man is more cheerful than the woman (Contradiction)

A : The woman is more cheerful than the man

B : The woman is more cheerful than the man (Entailment)

More-Less Type : A-B pairs differ by whether they contain the word ‘more’ or the

word ‘less’.

A : The woman is more cheerful than the man

B : The woman is less cheerful than the man (Contradiction)

A : The woman is more cheerful than the man

B : The man is less cheerful than the woman (Entailment)

The experiment details and results are outlined below.

6.2.3 Experimental Results

ERBP is applied here on the sentences A and B together ( i.e. a specific word from A

and same corresponding position word from B) rather than considering all the possible

pairs. Glove embeddings (Pennington et al., 2014) are used with a single LSTM layer

and a sigmoid layer for classification as the output layer. The dataset consists of

about 5k sentences with equal split between each of the categories. The results are

tabulated in Table 6.8. Bag of Words (BOW) Multi-Layer Perception (MLP) model

that averages the Glove embeddings (Pennington et al., 2014) is used as the baseline

for the experiments. The results of the ERBP are compared against the state of art

InferSent model (Conneau et al., 2017).

As can be seen from Table 6.8, both the Bag of Words MLP model and InferSent

model perform just about 50% chance level for the ‘Same’ type class. Plain LSTMs

without ERBP gave an accuracy of about 50%, similar to the InferSent model for both
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Model Same type More-Less type
BOW-MLP 50% 30.24%
InferSent model (Conneau et al., 2017) 50.37% 50.35%
LSTM with ERBP 51.32% 50.64%

Table 6.8 Accuracy of various models for abstract compositionality task.

‘Same’ and ‘More-Less’ types. LSTMs with ERBP results in about an accuracy of

51.32%. For the ‘More-Less’ type, the Bag of Words MLP model gives only about 30%

accuracy where as the InferSent and the LSTM model with ERBP gives above 50%

accuracy.

There is small difference in the overall accuracy of the models after adding ERBP

for both the ‘Same’ and ‘More-Less’ types. Adding ERBP to LSTMs seems to be

slightly better when compared to the Bag of words and InferSent models. So far,

ERBP has been applied as a relational positional embedding for the Transformers and

as a weight prior for learning compostionality in abstract sentence embeddings on a

sentiment classification task. Both the experiments did benefit from ERBP. Up next,

ERBP has been applied as a similarity metric in the graph neural networks for the

graph edit distance task. The details for the experiment are given in the next section.

6.3 ERBP with Graph Neural Networks

Graph neural networks (GNN) are popularly used in relational learning tasks. In a

GNN, a graph based data structure is used where there are nodes and edges to infer

relations between entities. The nodes are the items and the edges represent relationship

between the items. In this task, the goal is primarily to learn a similarity function

between graphs. Given two graphs G1, G2, a graph similarity model can be written as

a function f(G1, G2) that computes a scalar similarity value.

The model is based on embedding each graph independently into a vector and

then use an existing distance (or similarity) metric in the vector space to compute the
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distance between graphs. More concretely, it is defined as

d(G1, G2) = dH(embed(G1), embed(G2)),

where embed is a model that maps any graph G into an H-dimensional vector, and dH

is a distance metric in that vector space. Typical examples are the Euclidean distance

in RH , i.e.

dH(x, y) =

√√√√ H∑
i=1

(xi − yi)2

, and the Hamming distance in H-dimensional space of binary vectors, i.e.

dH(x, y) =
H∑

i=1
I[xi ̸= yi]

.

6.3.1 Graph Embedding Module

Each graph input contains a set of nodes V and edges E. Each node i ∈ V may have

a feature vector xi associated with it, and each edge (i, j) ∈ E may also have a feature

vector xij encoding e.g. edge type or attributes.

The embedding model will therefore jointly reason about the graph structure as

well as the graph features to come up with an embedding that reflects the notion of

similarity described by the training examples.

The embedding graph module has 3 basic steps :

• An encoder with two separate MLPs to learn node and edge representations ie.

mappings between xi and xij

h
(0)
i = MLPnode(xi)

eij = MLPedge(xij)
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• Iterative message passing inside GNN to compute node presentations that encode

local neighbour structure and semantics.

In the t-th round of message passing, a message vector on each edge is computed,

and then each node aggregates all the incoming messages and updates its own

representation:

mi→j = fmessage(h(t)
i , h

(t)
j , eij)

h
(t+1)
i = fnode(h(t)

i ,
∑

j:(j,i)∈E mj→i)

MLPs are used for fmessage, while for fnode MLPs or even recurrent neural network

cores like LSTMs or GRUs can be used.

• After obtaining the final node representations after T rounds of message passing,

they are aggregated to get graph representations hG = fG({h(T )
i }i∈V ) by imple-

mentating a simple sum that reduces the node representations into a single vector

and then transform it:

hG = MLPG

(∑
i∈V

h
(T )
i

)
.

On top of the embedding graph module is the graph matching networks. The only

difference to the embedding model is in the message passing step, where each node not

only gets messages from within the same graph, but also gets cross-graph messages by

attending to all the nodes in the other graph.

Within-graph messages as before are defined as :

mi→j = fmessage(h(t)
i , h

(t)
j , eij).

Each node in one graph attends to all the other nodes in the other graph. The

cross graph attention weight (node i in one graph attending to node j in the other
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graph, and vice versa) is computed as

ai→j = exp(s(h(t)
i ,h

(t)
j ))∑

j
exp(s(h(t)

i ,h
(t)
j ))

aj→i = exp(s(h(t)
i ,h

(t)
j ))∑

i
exp(s(h(t)

i ,h
(t)
j ))

,

where s(., .) is again a vector space similarity function, like Euclidean, dot-product or

cosine.

6.3.2 Graph Edit Distance Task

One of the tasks to evaluate the effectiveness of the above algorithm is the task of

computing edit distance (Li et al., 2019). A graph similarity or distance model that

aligns with the GED is trained, by giving graphs with small edit distance a high

similarity score or low learned distance, and otherwise low similarity score or high

learned distance.

For training, random pairs of graphs are generated using GraphSimilarityDataset

(Li et al., 2019). Given a dataset of pairs (G1, G2) and labels t ∈ {−1, 1}, the following

margin-based loss is used for minimising the loss if using Euclidean distance is used as

the similarity function:

Lpair = E(G1,G2,t)[max{0, γ − t(1− d(G1, G2))}]

This loss encourages similar graphs to have distance smaller than 1 − γ, and

dissimilar graphs to have distance greater than 1 + γ, where γ is a margin parameter.

Here ERBP is used as the similarity function in the standard GNN and the entire

set up remains the same. For the baseline, a Siamese network (Chicco, 2021) 2 and

Plain GNN without ERBP are considered.

The performance of standalone GNN model, GNN with ERBP and Siamese network

are compared. The dimensionality of node vectors are set to 32 and the dimensionality

2https://en.wikipedia.org/wiki/Siamese_neural_network

https://en.wikipedia.org/wiki/Siamese_neural_network
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of graph vectors are set to 128. A total of 1000 pairs are used for the analysis. The

results are tabulated in Table 6.9.

Model Accuracy
Siamese network 96.09%
GNN 97.54%
GNN + ERBP 97.72%

Table 6.9 Accuracy of various models on graph edit distance task.

6.4 Observations and Remarks

ERBP has been tested on wide range of tasks like melody prediction, character and

word prediction, language modeling with Transformers, abstract compositionality task

and the graph edit distance task. Different ways of adding ERBP weight prior into the

neural networks have been developed.

Firstly, ERBP as a relative pair wise attention prior has been applied on Transform-

ers for music modeling tasks. It has been observed that Transformers outperform LSTM

models when tested across different context lengths. Transformers with ERBP lead

to further improvements when compared to Transformers in absolute and relative self

attention. This has resulted in a new state of the art in monophonic pitch prediction

task on the Essen Folk song collection, Bach chorales and Notthingham datasets.

Secondly, ERBP as a relational mapping prior has been applied on Transformers

in Late and Mid fusion settings. The approach is similar to the fusion modeling

described in Chapter 4 where ERBP weight prior mappings are added to the standard

Transformers in mid (hidden layer) and late fusion (output layer) settings. The results

were evaluated on WikiText-2 dataset, where it has been observed that ERBP did lead

to some improvement when tested on smaller subsets of WikiText-2. However, on the

entire WikiText-2 dataset, Transformers with dot product for self-attention (standard

Transformers) led to best performance overall. This shows that ERBP tends to have

a positive effect on smaller datasets, than on larger datasets. For larger models and



114 Experimenting with (E)RBP in different architectures and tasks

datasets, the weight prior needs to be re-modeled and optimised to handle pair-wise

relations effectively.

More generally, it can be seen that the effect of ERBP on Transformers in various

settings like mid and late fusion doesn’t lead to improvements unlike the RNN and

their gated variants. One of the reasons could be the self attention mechanism in

Transformers which has a way of modeling and capturing comparisonal pair-wise

relationships, very similar to the ERBP approach. Hence, standard Transformers

perform well without ERBP as can be seen in the language modeling experiments.

Although, it looks like Transformers have a way of modeling abstract relationships in

data, it is believed that the wider problem of systematicity is still something which

they may not learn, which is an interesting aspect to be studied for the future work.

Further, ERBP has been applied on abstract compositional comparison task and

graph neural networks. The compositional comparison task has two categories i.e.

classifying sentences based on ‘same type’ and ‘more-less type’. The baseline encoder-

decoder model is compared with LSTM using ERBP for the experiments. For the ‘same

type’ category, LSTMs with ERBP lead to best for performance outperforming the

state of the art model for this task. In the ‘more-less type’ ERBP leads to improvement

from the baseline but not better than the state of the art. It is interesting to see how

Transformers like models performe in this task, which is a future scope of work.

As can be seen from Table 6.9, Graph neural network (GNN) outperforms a

Siamese network in the Graph edit distance task. GNN with ERBP results in further

improvements when compared to a plain GNN, even though the difference is small.

Therefore, ERBP as a weight prior is an easy way of integrating into the standard

networks, and as can be seen in a wide range of experiments, all the neural networks

models be it sequence models like Markov models, RNN and their gated variants to

Transformers to Graph neural networks, did benefit from ERBP.

In general, ERBP-like mechanisms are seen as a way of modeling inductive bias in

neural network architectures addressing aspects of data efficiency, systematic learning,

memorisation and the need for explicit data modeling in neural networks for solving
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abstract relational learning tasks. This approach of creating an inductive bias with

weight priors can be extended easily to other forms of relations and will be beneficial

for many other learning tasks as well.

The effect of ERBP can be studied further to assess its effectiveness on different

tasks and datasets. Beyond its current form, ERBP can be adapted to other forms of

abstract relations and improving generalisation on more complex tasks such as question

answering and natural language understanding.





Chapter 7

Conclusions

7.1 Summary

This project started from the observation that the controversy about abstract pattern

recognition posed by Marcus et al. (1999) had not been resolved. The finding that

7 month old infants learned to recognise patterns that neural networks fail to learn

is intriguing, and had caused a high-profile debate over several years. One reason

for controversy was that the task was not very clearly defined as a machine learning

problem. Thus the first task was to define machine learning formulations of the problem

in logic as classification and prediction tasks. By systematically testing the learning

ability of standard neural network architectures it became clear that they do not learn

generalisable solutions to this problem, although they find perfect solutions to the test

sets. This raised two questions: what is the reason for this failure and how can this

problem be solved.

While a mathematical answer to the first question has not yet been found, the

problem can be reduced to that of learning equality relations, which are necessary

to recognise the ABA and ABB patterns proposed by Marcus et al. (1999). It turns

out that learning equality is a surprisingly difficult problem. It occurs also where the

problem of coverage of the input neurons, that was pointed out by Marcus (2001), does

not apply and even when 95% of all possible equal pairs are covered in the training set.
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The experiments performed have shown that equality relations and abstract patterns

based on equality/identity relations are not generalised by standard feed-forward

and recurrent neural network architectures when tested on various settings. It was

found that this failure to learn simple grammatical patterns is independent of various

parameters like the vector dimension, amount of training data, train/test split, type of

activation function, data representation, vector coverage, and aspects of the network

architecture.

The Relation Based Patterns (RBP) approach, that was proposed as a first solution

to the abstract pattern and equality problems, is designed to enable the learning

of equality relations by introducing comparator neurons with fixed weights to and

the absolute value as activation function (DR units) to encourage equality learning.

Experiments show that with RBP equality is learnt with close to perfect generalisation.

The RBP approach is easy to implement with a library like PyTorch, but it deviates

somewhat from a standard NN architecture, as it uses the absolute value as activation

and fixed weights, both of which are non-standard. Therefore, Embedded RBP (ERBP)

was introduced, which uses the popular rectified linear function and employs two ReLUs

instead of one DR unit. ERBP is based on RBP, but modelled as a Bayesian prior

on network weights and implemented as a regularisation term in otherwise standard

network learning. ERBP is very easy to integrate into standard neural networks and

does not affect their learning capacity. In the experiments, the ERBP prior leads to

almost perfect generalisation when learning abstract patterns from synthetic data on a

wide range of tasks, beating RBP approach in most of the cases. A possible drawback

of (E)RBP is that the preference for learning equality relationships may impede other

learning tasks. Although this may be true to some extent, the results in this work

show that this is not the case for ‘concrete’ vs ‘abstract’ patterns, and we have not

observed any adverse effects in other experiments.

Both RBP and ERBP have been applied on several of real-word tasks, namely

melodic pitch and textual character and word prediction, i.e. language modelling.

The application of (E)RBP has shown improvement in melody prediction task when



7.2 Discussion and Reflections 119

tested with a range of models for RNNs, GRUs to LSTMs. A similar trend was

observed on character and word prediction experiments on natural language data.

Integrating ERBP into Transformers did yield a small improvement on melodies, but

no improvement in word prediction.

The effect of ERBP has also been tested on abstract compositional comparison

task and graph edit distance estimation, where the aim was to learn distance based

relationships in data. ERBP improves consistently over RBP and standard networks

in both tasks, albeit by a small margin.

7.2 Discussion and Reflections

Equality or identity based relations are an important characteristic that defines abstract

relations in data e.g., the grammar-like rules ABA or ABB rules this work started

with. It is still not fully understood why the standard neural network models in their

current form are not able to learn equality or abstract rules based on equality. This

problem of abstract pattern learning did not start the debate on systematicity in neural

network learning, which has been going on for over 30 years, but it played an important

role. The lack of learning basic structures was often presented as evidence that neural

networks cannot learn systematically more complex tasks especially in real-world data.

The modelling of relational equality with (E)RBP enables abstract pattern learning in

standard neural networks as can be seen from the various experiments performed. The

consistent improvement in performance in a wide range of abstract pattern learning

tasks ranging from grammatical rules, musical patterns, natural language, relational

reasoning, graph edit distance and abstract compositionality provides evidence that

modelling lower-level equality based relations in data does benefit and lead to improved

performance in higher level relational learning tasks. To our knowledge, this link has

not been shown experimentally.

Many real-world applications of rules depends on the ability to recognise identity or

similarity according to some criterion, and if that can not be learned for new items, then
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the generalisation and applicability of the learning is severely limited. The experiments

on tasks like language and music (word/note prediction, natural language inference)

show that there are improvements when biases are added to the networks. This is the

evidence, that this is not just a theoretical problem, but that addressing the structures

underlying these problems does address fundamental and relevant problems in neural

network learning.

This line of research work has raised some questions. The results on music language

modelling, shows that adding structural weight priors does benefit in melody prediction,

which means that even recurrent neural networks in their current form lack a mechanism

to learn and generalise abstract repetition patterns in music melodies. RNNs including

their gated variants GRUs and LSTMs give to rise to better performances with the

added inductive biases, unlike Transformers where we see that the effect is minimal.

Transformers did benefit from the priors by a very small amount for melodies, but

results on natural language show very slightly worse results than standard transformers.

A possible explanation for this is that the attention mechanism using the scalar product

in transformers already serves a similar purpose as (E)RBP, namely comparing vectors

that represent items within a given context. Although (E)RBP works slightly better

with melodies than the scalar product, it seems slightly worse suited for word vectors.

Another interesting question is about the ways of adding DR units to the neural

networks. Abstract patterns are generalised perfectly with RBP in mid fusion, where

having DRp neurons in the hidden layer is fully effective, but while having them

in the input layer in early fusion is not. This holds even true with deeper network

architectures, which shows that the distance between the DR units and the output

units is not the reason.

The RBP approach also solves learning for other numerical tasks that are difficult

to generalise, like digit reversal, sum of digits and it helps with parity, although this

is not fully solved. It is observed that increasing the amount of training data, leads

to some improvement especially significant in the case RBP mid fusion, but doesn’t

lead to perfect generalisation for the digital reversal and parity task. One possible
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reason for that could be that in RBP we only have a pairs of corresponding vectors

elements connected in a DRn unit. In experiment where each element in one vector

is connected to each element in the other vector, parity was learned and generalised

perfectly. However, this gain comes at the expense of O(n2) DRn units. The problem of

network size complexity is also relevant to models like Transformers where we still make

O(n2) pair-wise comparisons and this has a problem when we try to model long-term

dependencies in data. There are solutions like Draguns et al. (2020) proposed to achieve

efficient sequence processing across longer sequences that could also be adapted to

(E)RBP.

The most general question that remains after the work in this PhD stems from

the fact that the improvements in performance after adding the priors is consistent

but relatively small. This is an indication that modelling equality and comparisons

is relevant, but not sufficient to reach substantial improvements in learning that we

would expect from full systematicity in neural network learning. The question is: what

other aspects need to be modelled and what kind of inductive bias would be required to

model them? There are many possible aspects, such as hierarchical processing, logical

reasoning, or just relations other than equality that are not modelled and it seems they

are attracting increasing interest in current research.

7.3 Future Work

In general, mechanisms like RBP and ERBP can be seen as a way of modelling inductive

bias in neural network architectures to improve data efficiency and systematic learning.

This approach of creating an inductive bias can be extended to other forms of relational

learning tasks, to address more general systematicity and compositionality in neural

network architectures. For example, Tanneberg et al. (2020) used the differential

rectifier units proposed as part of RBP approach (Weyde and Kopparti, 2018) to

develop an architecture for learning efficient strategies that solve abstract algorithmic

problems.
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There are many other aspects and layers of systematicity that need to be addressed

for achieving better systematic and compositional generalisation in neural network

architectures. The work in Lake and Baroni (2018) has defined a test of systematicity

and compositionality in a framework of translation, applied it to standard seq2seq

neural network models Sutskever et al. (2014). It would be interesting to see how

(E)RBP-like techniques perform on their compositional generalisation tasks. In the

context of relational reasoning and natural language understanding there are works like

Sinha et al. (2019, 2020) evaluating systematic out of order logical generalization in

graph neural networks on CLUTRR dataset which can be experimented with (E)RBP

like methods.

More generally, how can we make (E)RBP learn hierarchical structures in data,

what kind of structural changes are needed for modelling the different forms of grammar

in language is a very interesting future scope of work. The adapation of the existing

methods towards improving systematic generalisation on more complex tasks like

question answering or perception-based reasoning combined with memory models forms

the future scope of work, thus approaching a more comprehensive human-like learning

paradigm in neural network models.
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