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Abstract

This paper presents new developments in meshless local Petrov-Galerkin with Rankine source (MLPG R)
particle based method for studying interaction of waves with fixed structures in a numerical wave-tank.
A new 3D formulation of the Lagrangian flow problem for incompressible fluid with optimised solution
strategy is presented. The pressure Poisson equation is solved in local weak-form with integration done
semi-analytically using a new symmetric expression. The wave-generation is done using one-way coupling
with a 2D fully-nonlinear potential theory based finite-element model. Further a simple identification method
for free-surface particles is proposed, which is shown to work well in vicinity of the structure. The solid-
wall boundary condition is treated using ghost and mirror particles for accurate calculation of gradients.
The waterline on domain boundary faces is treated using a tangentially moving side-wall approach which
makes this particle based scheme capable of capturing small amplitude waves and focusing waves. The
paper briefly presents experimental setup used for studying the interaction of a fixed emergent cylinder with
uni-directional regular and focusing waves in 3D. The numerical model is validated against results from
this experiment. An analysis is conducted on parameters related to local integration domain, wave-making
coupling algorithm, particle distribution and time-step. This work highlights the use of hybrid approach for
efficient and accurate simulation of waves-structure interaction.

Keywords: Particle-based method, Wave-structure interaction, Hybrid modelling, Free-surface flow,
Focused waves

1. Introduction

Numerical wave-tanks are important tools in studying wave-transformation and their interaction with
fixed and floating structures. With advancements in computational technology and a growing demand for
efficient and accurate analysis tools in the industry, numerous methods have been developed using different
numerical schemes to study the wave-structure interaction. The methods can be classified based on their5

governing equations and their numerical method. Potential flow models in wave-hydrodynamics solve the
Laplacian or the Boussinesq type equations and show excellent performance in capturing wave refraction,
diffraction, wave-wave interaction and in replicating wave-generation as done in physical wave-tanks. The
viscous flow models solve the Navier-Stokes equation or Lattice Boltzmann equations and are required for
problems involving wave-breaking, run-up, violent interaction of waves with a number of fixed and floating10

structures. These models are often computationally expensive, which limits their application in practical
ocean engineering.

Mesh based numerical schemes such as finite difference method (FDM) [1], finite volume method (FVM)
and finite-element method (FEM) have been applied successfully in single phase and multi-phase problems
over the last few decades. The popular open-source FVM fluid package OpenFOAM has seen rigorous15
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development in wave generation, propagation and interaction with structures [2, 3]. Single phase BEM
models [4, 5] and FEM models for potential flow such as QALE-FEM (quasi-arbitrary Lagrangian and
Eulerian finite element method) [6] have shown promising results for 3D waves and their interaction with
fixed and floating structures, with improvements in simulation of over-turning waves [7]. However, these
methods have severe limitations for problems involving free-surface flow over practical domain. A single20

phase model for wave simulation requires additional numerical treatment to compute violent and overturning
waves. The multi-phase models require a free-surface tracking algorithm and fluid identification approaches,
such as volume of fluid (VOF), to differential the phases. In order to minimise mass and momentum loss,
the mesh needs to be of sufficient quality in every location where the free-surface may lie at any time-step.
These methods also need meshing of the air region in a two phase water-air interface problem, which may25

not be necessary for most ocean engineering free-surface problems. On adding a floating or fixed structure
to this domain, an additional complexity is introduced. Earlier mesh based approaches relied on use of
computationally costly methods such as adaptive meshing for ensuring a body-confirming mesh at every
time-step. Advanced techniques have been developed for modelling complex and moving geometries in mesh-
based schemes. These include overset method [8] which consists of overlapping grids and can easily execute30

large motion of a body. Immersed boundary methods [9, 10] let go of the body-conforming mesh requirement,
and instead modify the governing equation to incorporate a structure, thus modelling complex and moving
geometries. Other such examples are Cartesian cut-cell method [11], partial cell treatment (PCT) [12]
and virtual boundary force method [13]. A few examples of these mesh-based techniques applied to wave-
structure interaction are [14, 15, 13]. However, implementing boundary conditions in these techniques may35

require investigation of the conservation properties, and controlling the exact mesh size around the geometry
may be a challenge.

Mesh-free methods provide a refreshed approach for modelling free-surface flow problems which has lead
to an increasing focus on them in ocean engineering over the past two decades. In mesh-free methods the
domain is discretised using particles without a predefined mesh connectivity. The solution procedure does40

not require a mesh at any step. Instead, it uses the nodes within a sub-domain with appropriate shape
functions to solve the differential equation. Therefore the mesh-free approach provides a large number of
options in solution procedure, weak or strong form approach, use of various shape and trial functions, shape
and size of the neighbouring sub-domain and free-surface particle identification methods. A popular example
is smoothed particle hydrodynamics method (SPH) [16, 17], which has shown good results for free-surface45

problems over the last decade. It solves the governing equation in strong form and uses smoothed kernel
functions for calculating gradient. However, it usually requires large number of nodes and relies on GPU
speed-up for practical run-times. Other popular schemes include moving particle semi-implicit method
(MPS) [18, 19], particle finite element method (PFEM) [20] and meshless local Petrov-Galerkin method
(MLPG) [21]. A more recently developed scheme, called fragile point method (FPM) [22] uses simple local50

discontinuous trial and test functions for solving extreme problems such as rupture and fragmentation.
The current work is built up on the meshless local Petrov-Galerkin method with Rankine source function

(MLPG R) [23]. It solves the Navier-Stokes equation using the projection scheme, where only the pressure
Poisson equation is solved in weak form. By using a continuous trial function in the weak form, the gradients
can be calculated using the trial function itself. The choice of Rankine source as the test function allows55

removal of gradient operators from the unknown variables to the known variables which enhances the stability
of the solution. This method has been applied successfully in 2D for problems related to wave-breaking and
run-up [24] and recently for interaction with floating bodies [25].

This method, along with the other mentioned mesh-free schemes, provide solutions to the issues with the
mesh-based schemes in free-surface flow problems. However their computational cost limits their application60

in large practical domains. The current work aims at targeting this problems with two approaches, a semi-
analytical integration approach and hybrid modelling. We provide a method to evaluate the integrals in
local weak form of the pressure Poisson equation using a semi-analytical technique with the quantification
of the error term. We investigate the influence of the parametric radius in this integration scheme on the
stability of the system. Using this technique we aim to reduce the time in assembling the system matrix65

and to reduce the iterations required for its solution.
The hybrid modelling approach in this work intends to use the advantages of potential flow models in
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wave generation, propagation and its transformation over large distances, where the viscosity conditions are
not required. We provide the algorithm for transferring waves generated and propagated in a 2D fully non-
linear potential theory (FNPT) model to this 3D MLPG R model as a replacement for the wave-making70

boundary condition. The current state of such coupling between potential and viscous flow models was
discussed in [24]. Thus by using the viscous model only in the vicinity of the structure, this hybrid approach
can drastically reduce computational time and limit the numerical dissipation of the waves. This approach
shows its benefits particularly in focusing wave problems, where the focusing point may lie far from the
wave-paddle.75

We have focused on improving the implementation of side-wall boundary condition to reduce the tradi-
tional wave-dissipation over long distances using a moving side-wall approach. This enables us to simulate
small amplitude waves and hence allows accurate replication of focusing waves. This work also presents
a free-surface particle detection method with improved performance especially in the wake of a structure
under the action of incoming waves. We have also incorporated the recent developments in application of80

wall boundary condition on 3D structures inside the fluid domain, particle collision and wave-absorption.
The paper is organised with the description of the governing equations and the improved solution proce-

dure. It discusses the one-way coupling algorithm with the 2D FNPT model, the free-surface identification
method and the other improvements. The results provide a discussion on the integration domain radius. A
detailed investigation is done on the influence of the overlapping zone in the coupling procedure for solitary,85

regular and focusing waves. This is followed by a brief description of the experimental set-up used for
obtaining the data on interaction of fixed cylinder with regular and focusing waves. And finally the results
obtained from this hybrid model on the same experiments are presented and validated against the physical
data.

2. Formulation of the problem90

2.1. Governing equations
The incompressible flow in the numerical wave tank with domain Ω bounded by boundary Γ, t ≥ 0 and

is governed by Lagrangian form of Navier-Stokes equations given by the conservation of mass Eq. (1a) and
conservation of momentum Eq. (1b). The variable ~u = d~r/ dt is velocity vector, ~r is the position vector, ρ

is fluid density which is assumed to be constant, P is the local pressure, ~g = −9.81k̂ is body force vector95

and ν is the kinematic viscosity of the fluid.

∇.~u = 0 in Ω (1a)

D~u

Dt
=
−1

ρ
∇P + ~g + ν∇2~u in Ω (1b)

The numerical wave tank is spatially dicretised using particles. The boundary value problem is completed
with three types of boundary conditions (BC), 1) Wave-maker Γa, 2) Free surface Γb, 3) Rigid wall Γc. The
wave-maker boundary is implemented using a one-way coupling algorithm with a fully non-linear potential
theory based finite element model on the boundary Γa and is described in detail in section 2.4. The free-100

surface BC requires identification of particles lying on the free surface, as described in section 2.5, and then
application of Dirichlet type condition of P = Patm at those nodes on the boundary Γb. The rigid wall
BC is applied by assuming zero normal flow across the boundary Γc which gives the velocity condition as
Eq. (2a), where ~U is velocity of the wall and ~n is its outward unit normal. Pressure BC for the wall is given

by Eq. (2b), which is obtained by substituting Eq. (2a) in the scalar product of Eq. (1b) with ~n. Here ~̇U is105

acceleration of the wall.

~u.~n = ~U.~n on Γc (2a)

~n.∇P = ρ
(
~n.~g − ~̇U.~n+ ~n.(ν∇2~u)

)
on Γc (2b)

The rigid-wall is treated as slip-wall BC because a no-slip BC would require accurate capturing of tangential
gradient of velocity in close vicinity of the wall using appropriately fine node resolution, and is not an area
of focus for this paper.
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2.2. Solution procedure for governing equation110

The system of governing equation in Eqs. (1) is solved using the projection scheme, in order to decouple
the pressure gradient terms and to obtain a governing equation for pressure.

Step 1. Solve for intermediate velocity
An intermediate velocity ~u∗ is calculated by removing the pressure gradient term from the momentum
equation. The temporal derivative is expanded using Taylor series accurate till first order.115

~u∗ = ~un + ∆t
(
~g + ν∇2~un

)
in Ω (3)

Step 2. Solve for Pressure
The pressure governing equation is obtained by subtracting Eq. (3) from the momentum equation, taking
the divergence of the resultant vector equation and substituting conservation of mass Eq. (1a) for velocity
vectors ~un and ~un+1.

∇2Pn+1 =
ρ

dt
∇.~u∗ in Ω (4a)

Pn+1 = Patm on Γb (4b)

~n.∇Pn+1 = ρ(~n.~g − ~n.~̇Un+1) on Γc (4c)

The above equation can be further modified by subtracting a linear quantity P ∗ = ρg(H0 − zn) from the120

instantaneous pressure Pn+1 in Eq. (4). With the assumption of H0 as constant, P ∗ satisfies ∇2P ∗ = 0,
and also simplifies the boundary condition at walls given that z is the vertical coordinate. H0 is chosen as
mean still water depth.

∇2q =
ρ

dt
∇.~u∗ in Ω (5a)

q = Patm − P ∗ on Γb (5b)

~n.∇q = −ρ~n.~̇Un+1 on Γc (5c)

Pn+1 = q + P ∗ (5d)

The above modification allows for a faster convergence for the Poisson equation. The terms in P ∗ are known
from previous time-step and therefore does not increase complexity of the process. In our numerical test case125

with identical set-up, the Poisson equation solved using bi-conjugate gradient stabilised method achieves
convergence in 641 iteration for the original Poisson equation and 194 iterations for the modified Poisson
equation.

Step 3. Velocity correction and particle position update
The final velocity is then corrected using the intermediate velocity and the gradient of the pressure. After130

applying the boundary conditions for velocity, the particle position is updated using first order time-stepping.

~un+1 = ~u∗ −∆t
1

ρ
∇Pn+1 in Ω (6a)

~n.~un+1 = ~n.~Un+1 on Γc (6b)

~rn+1 = ~rn + ~un+1∆t (6c)

In the above solution procedure Eq. (3) and Eqs. (6) are solved in ’strong’ form with the gradients calculated
using simplified finite-difference interpolation (SFDI) method as described in [26]. Pressure Poisson equation
Eqs. (5) is solved in a ’weak’ form to reduce the order of the equation. This procedure is a defining difference135

between the particle based schemes such as reproducing kernel particle method [27], element free Galerkin
method [28] and smoothed particle hydrodynamics (SPH) [16]. In the present work, the equation is solved
using meshless local Petrov-Galerkin method with Rankine source function (MLPG R).
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Figure 1: Schematic showing location of the integration points within the spherical sub-domain of radius RI around a node

2.3. Weak-form solution using MLPG R

The local weak form of pressure Poisson equation is evaluated at each node within a spherical sub-domain140

of radius RI with the node as its centre. The 3D sub-domain is denoted by ΩI with its surface boundary as
ΓI having outward unit normal ~λ. Eq. (7) is the local weak form of Eq. (5a), where ψ is the test function.∫

ΩI

ψ∇2q dΩ =
ρ

dt

∫
ΩI

ψ∇.~u∗ dΩ (7)

As shown in [29], the use of Rankine source function as the test function offers a few important simplifications
for the pressure Poisson equation. It reduces the left-hand side from a domain to a surface integral. The
Laplacian operator on the unknown quantity q is simplified to the gradient of the analytically known quantity145

ψ. On the right hand side too the gradient operator is shifted from the numerically calculated quantity ~u∗ to
analytically known quantity ψ. With the substitution of ψ = 1

4π (1−RI/r), where r is the distance between
the centre of ΩI and a location within ΩI , Eq. (5a) is reduced to Eq. (8). The modified pressure equation
Eq. (8) does not require numerical calculation of derivative of any quantity.∫

ΓI

~λ.(q∇ψ) dΓ−RIq =
ρ

∆t

∫
ΩI

~u∗.∇ψ dΩ (8)

The calculation of domain and surface integrals within the spherical sub-domain around the node is done150

using a semi-analytical method. This approach is a further development on the work in [23]. The earlier
derivation relies on dividing the sphere into eight divisions and assuming a linear variation of variables
within each division for domain integral, and a linear variation along the surface of each division for a
surface integral. The resultant expression is asymmetric in space and does not provide with the order of
error. We have done an alternate derivation using the complete Taylor series expansion and then chose to155

terminate final expression based on an acceptable order of error.

1

4π

∫ 2π

0

∫ π

0

q sin(θ) dθ dγ − q =
1

4π

ρ

∆t

∫ RI

0

∫ 2π

0

∫ π

0

u∗r sin(θ) dθ dγ dr (9)

On substituting the expression for Rankine source function as ψ in Eq. (8) and dividing the resultant by the
constant RI , we obtain Eq. (9) with integrals in spherical coordinate, where u∗r is the radial intermediate
velocity. On expanding variables q and velocity components ~u = (u, v, w) about the centre of the spherical
sub-domain in 3D using Taylor series expansion and integrating the final expression analytically, the integrals160

in Eq. (9) result to Eq. (10), which is expanded till (RI)
4. Here q0, u0, v0, w0 are variables at the centre of

the spherical sub-domain.∫ 2π

0

∫ π

0

q sin(θ) dθ dγ = 4πq0 +
2

3
πR2

I (q0,xx + q0,yy + q0,zz)

+
1

30
πR4

I (q0,xxxx + q0,yyyy + q0,zzzz)

+
1

30
πR4

I (q0,xxzz + q0,xxzz + q0,yyzz) + ...

(10a)

5



∫ RI

0

∫ 2π

0

∫ π

0

u∗r sin(θ) dθ dγ dr =
2

3
πR2

I

(
u∗0,x + v∗0,y + w∗0,z

)
+

1

30
πR4

I

(
u∗0,xxx + u∗0,xyy + u∗0,xzz

)
+

1

30
πR4

I

(
v∗0,xxy + v∗0,yyy + v∗0,yzz

)
+

1

30
πR4

I

(
w∗0,xxz + w∗0,yyz + w∗0,zzz

)
+ ...

(10b)

The expressions for the integrals involve no numerical approximations so far. In our work we will terminate
the expressions till (RI)

3 giving us the integration error proportional to (RI)
4. The first and second order165

derivatives of variables about the centre of the spherical sub-domain can be numerically estimated using
central difference scheme using values at the points at distance RI along the axes of the sphere as shown in
Fig. (1). The resultant expressions are symmetric along the 3 axes with a leading error term proportional
to R4

I and require only 6 integration points.∫ 2π

0

∫ π

0

q sin(θ) dθ dγ =
2

3
πR2

I

(
q1 + q2 + q3 + q4 + q5 + q6

R2
I

+ E(R2
I)

)
+ E(R4

I)

=
2

3
π (q1 + q2 + q3 + q4 + q5 + q6) + E(R4

I)

(11a)

170 ∫ RI

0

∫ 2π

0

∫ π

0

u∗r sin(θ) dθ dγ dr =
1

3
πRI (u∗1 − u∗3 + v∗2 − v∗4 + w∗5 − w∗6) + E(R4

I) (11b)

The integrated expressions are now substituted in Eq. (9) to give the final form of the pressure Poisson
equation, Eq. (12), with leading error proportional to R4

I . The choice of RI therefore is an important
parameter in determining the accuracy and convergence rate for the solution. In the section 3.1, we have
investigated the influence of increasing RI on the solution and have prescribed an appropriate value for our
set of simulations.175

1

6
(q1 + q2 + q3 + q4 + q5 + q6)− q0 =

ρ

∆t

RI
12

(u∗1 − u∗3 + v∗2 − v∗4 + w∗5 − w∗6) (12)

The value of variables at integration points is evaluated using the moving least-squares shape function (MLS),

[30, Ch. 3]. Hence with the interpolation as q(~r) =
∑M
k=1 Φk qk, where M is the number of neighbouring

nodes and Φ is the MLS shape function, the weak form of pressure Poisson equation for domain with N
nodes is converted to system of N linear equations given by [A]N×N [q]N×1 = [B]N×1, where

Ajk =


1

4π

∫ 2π

0

∫ π
0

Φk(x) sin(θ) dθ dγ − Φk(xj) for interior

~n.∇Φk(xj) for Γc

(13a)

Bj =


1

4π
ρ

∆t

∫ RI

0

∫ 2π

0

∫ π
0
u∗r sin(θ) dθ dγ dr for interior

−ρ~n.~̇U for Γc

(13b)

The gradient for applying the wall boundary condition in the above system is calculated using SFDI [26]. In180

our work the system of linear equations is solved using bi-conjugate gradient stabilised method (BiCGStab)
and generalised minimal residual method (GMRES). They are provided by an open-source OpenMP enabled
Paralution library [31]. The comparison between the rate of convergence and the total parallel scalability
for our code is presented in section 3.1.
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2.4. One-way coupling with FNPT-FEM185

The Lagrangian model allows generation of waves in a numerical wave-tank (NWT) by directly mod-
elling the motion of the wave-maker. It is a convenient approach that allows duplicating the exact piston
motion of physical wave tank. However in order to achieve a stable wave-train, the structure under study
should be placed multiple wave-lengths away from the wave-maker. The flow under the waves during this
propagation phase is potential flow, therefore using a 3D viscous model just for wave-generation and prop-190

agation would be computationally costlier and will invariably lead to numerical dissipation. This problem
is further compounded in focused wave studies where the focusing point may be at a significant distance
from the wave-maker. Alternatively, theoretical source function can be used to generate the waves starting
near the structure itself. This can reduce the domain size, and thus reduce computational cost, however
the theoretical functions will not be fully nonlinear and involve approximations that limit the wave height195

and steepness. In focused wave studies these limitations can lead to generation of spurious sub and super
harmonics in the numerical wave-tank [32].

In our work we use a 2D finite element model for fully nonlinear potential theory (FNPT-FEM) for
wave-generation and its propagation for majority of the distance between the wave-maker and the structure.
It is a proven model with excellent correlation with experiments as shown in [32]. Thereafter the wave is200

transferred from FNPT-FEM to MLPG R near the structure using a one-way coupling algorithm. It allows
us to retain the nonlinear wave-trains without significant numerical losses and also reduced computational
effort by limiting the domain requirement for 3D MLPG R to only near the structure. In principle one
can employ a 3D FNPT model [7] instead. Currently we have only presented uni-directional waves for
which the 2D model is sufficient, however our future work will be coupling with a 3D model to simulate205

multi-directional waves, and to shift the sponge layer in the downstream region to 3D FNPT.

∂φ

∂x
= ẋp(t) at x = xp(t) on ΓFp (14a)

∂φ

∂n
= 0 on ΓFb and ΓFr (14b)

∂φ

∂t
= gη − 1

2
∇φ∇φ on ΓFη (14c)

FNPT-FEM is a 2D semi-Lagrangian model in X-Z plane, where the nodes are allowed to move in vertical
direction to model free-surface movement. The flow is assumed to be incompressible and irrotational and
hence viscous forces are neglected. Governing equation for the velocity potential φ is∇2φ = 0, where ~u = ∇φ.
Vertical left boundary ΓFp of the 2D domain is wave-maker, with the Neumann boundary condition enforced210

by Eq. (14a), where ẋp is velocity of the piston type wave-paddle. Bottom ΓFb and right ΓFr edges have
wall boundary condition applied using Eq. (14b). With the assumption of non-breaking waves, non-linear
dynamic free-surface boundary condition is applied at the continuous free surface ΓFη using Eq. (14c),
obtained using the unsteady Bernoulli equation. Here η is the surface elevation from initial still-water level.
The wave paddle motion is calculated from piston-type wave-maker theory with second order correction215

based on [33]. The detailed formulation and validation for this model is given in [34].
The complete FNPT-FEM domain, as shown in Fig. (2), contains three regions of interest. In R1 waves

are generated and allowed to propagate till they reach the vicinity of the MLPG R domain. R2 is the region

R1 R2 R3Fp

F

Fr

Fb

Figure 2: Schematic for the FNPT-FEM domain with coloured region indicating the region from where data is passed to
MLPG R
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Figure 3: FNPT-FEM sub-domain R2 in 2D shown in red, overlapping with part of MLPG R domain in 3D

overlapping with the 3D MLPG R domain as shown in Fig. (3). Particle position, velocity and pressure
are transferred from this region to MLPG R nodes. R3 is a redundant region with the function of avoiding220

reflection within the FNPT domain by using a large sponge layer. Given that FNPT-FEM is a 2D potential
flow code, we use a long R3 to avoid any reflection at extremely low computational cost.

The coupling procedure within the MLPG R domain is limited to only a few nodes inside the FNPT-
FEM overlapping region. As the FNPT-FEM domain is 2D, the data from this model is assumed to have
zero variation of variables along the y-axis. The one-way coupling procedure is described below.225

Step 1 : Extract data from time-step (n+1) from FNPT-FEM inside R2

Step 2 : Interpolate the variables in MLPG R domain at particle position ~rn using MLS with surrounding
FNPT nodes to give the values V n+1

int (~rn), consistent with Eq. (6c). Here V represents the variables
P , ~u = (u, v, w).

Step 3 : The extracted values Pn+1
int (~rn) at the left face of MLPG R domain are used to calculate qn+1

int (~rn) =230

Pn+1
int (~rn) − ρP ∗. These values are then used to apply Dirichlet type BC on the left face for the

pressure Poisson equation Eq. (5a).

Step 4 : Finally, before the position update step Eq. (6c), the values of P , ~u = (u, v, w) within the over-
lapping nodes of MLPG R domain are corrected to gradually merge with the FNPT-FEM solution
using Eq. (15).235

V n+1(~rn) = αV n+1
int (~rn) + (1− α)V n+1

ML (~rn) (15a)

α = 1− 3

(
x0 − x0

L

Lc

)2

+ 2

(
x0 − x0

L

Lc

)3

(15b)

Here α is the coupling coefficient which has to be calculated only based on the position of MLPG R particles
at zeroth time-step. x0

L is the left-most position at zeroth time-step and Lc is the length of the coupling
region within MLPG R domain. Hence the value of α does not change with time and therefore does not
require any additional computation. As per our study it is necessary to use at-least a minimum coupling
region within MLPG R. Applying just the Dirichlet boundary condition with known values from FNPT-240

FEM on the left face without the use of a overlapping zone will lead to leak of internal fluid nodes through

8



Figure 4: Internal fluid nodes (in black) leaking through the left face nodes (in red) when coupling zone is not used within
MLPG R domain

the left face as shown in Fig. (4). This is because the left face is not a wall boundary. In section 3.2 we
have studied the required Lc for transferring solitary, regular and focused wave-train from FNPT-FEM to
MLPG R.

2.5. Identification of free-surface245

Application of free-surface BC, Eq. (5b), in pressure Poisson equation requires accurate detection of
the free-surface nodes. A misidentification of fluid node as free-surface can create artificial sharp gradients
and noise in pressure values. Many of the free-surface identification algorithms rely on particle number
density [35, 19]. This method uses the variation of instantaneous particle number density as compared
with zeroth time-step value for identifying free-surface nodes. This approach was used in earlier MLPG250

work for successfully simulating 3D breaking waves as shown in [23]. However this approach is difficult to
implement when the domain has variable particles number density. In the vicinity of structures, particles
have a tendency to collate or disperse creating regions of high and low particle number density with respect
to the zeroth time-step, which can lead to misidentification of fluid nodes as free-surface. The sequence
of images in Fig. (5) show a few instances of this error inside the fluid domain under a steep wave and in255

the vicinity of the cylinder during their interaction. This error results in artificial spikes in the numerical
pressure results and can lead to masking of a physical phenomenon. For example, the ringing of vertical
cylinders under certain waves could get masked within the noise of such errors. It can also create artificially
high gradients causing fluid particles to shoot out of the domain and can result in failure of the simulation.
Therefore there is a need to develop free-surface identification techniques which are not directly dependent260

on the particle number density.
We propose a simple free-surface detection method. For a node i a summated unit displacement vector

~vi is calculated as shown in Eq. (16). Here Rf is a size of a spherical sub-domain around node i, calculated
using M closest neighbours. If |~vi| > vmax then the node is on free-surface. In our work we have used
M = 6, β = 2.0 and vmax = 0.24. This approach alone however will identify nodes near corners and faces of265

the domain as free-surface as shown in Fig. (6). In order to solve this we add a single layer of ghost nodes
along the outward normal of the side, bottom and body faces, placed at a distance of 0.55Rf . In case of
highly irregular node distribution, two or more layers of ghost nodes along the outward normal can be used.
This approach eliminates the misidentification problem for the free-surface nodes as shown in Fig. (7).

~vi =
∑
k

~rik
|~rik|

for |~rik| ≤ Rf (16a)

Rf =
β

M

M∑
k=1

|~rik| (16b)
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Time: 34.20 s Time: 34.80 s

Time: 35.20 s Time: 35.80 s

Figure 5: Sequence of snapshots showing the misidentification of free-surface nodes inside the fluid domain as indicated by the
red arrow

XY Plane ( Z) YZ Plane ( X)x

XZ Plane ( Y)x

Figure 6: The summated unit displacement vector method without ghost nodes detects the fluid nodes near corners of the
domain as free-surface as shown in red

2.6. Treatment of the tangentially moving side-wall boundary270

Identification and treatment of waterline on the domain boundaries is crucial for wave propagation. In a
2D domain the waterline is only limited to a point on each face and a simple numerical treatment through
interpolation is sufficient. In a 3D domain the waterline extends over the entire length. Fig. (8) shows the
possible approaches for treating the waterline. The approach A is a conventional wet-dry approach where
the side wall particles are fixed and are identified to be under the fluid (wet) by the neighbouring fluid free275

surface. As shown from the schematic, this approach leads to a ”stepped” waterline, thus requiring high
density particle distribution near side-wall and making it unsuitable for small amplitude waves. These waves
are crucial for generating high steepness focusing waves whose interaction with structures is an important
study case.

This work has implemented a tangentially moving wall approach B on the vertical faces of the domain.280

The side wall particles are moved as per Lagrangian motion Eq. (6c). The boundary condition on these
side wall particles is slip-wall with no normal flow across the face. As per Eq. (4c) reducing to ~n.∆P = 0,
the gradient of pressure in the velocity correction steps can be limited to just the respective vertical plane
(XZ or YZ) for these vertical faces. Hence by converting the gradient from 3D to 2D at the waterline the
associated error due to incomplete surrounding domain can be reduced. This along with the now continuous285

waterline as shown in Fig. (8) makes the approach suitable for both small and large amplitude waves, which
is crucial for replicating the focusing wave test cases. This method however needs to be further tested for 3D
breaking waves, where the purely Lagrangian motion of the particle may introduce problems. Additionally,
if the viscous effects on this domain side-wall are of significance for a particular problem, then the boundary
condition has to be modified to no-slip type, for which the boundary particle velocity is zero. In such a case,290

the moving side wall approach will not be suitable.
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Time: 34.20 s Time: 35.10 s

Time: 36.00 s Time: 36.90 s

Figure 7: Sequence of snapshots showing the free-surface under a steep focusing wave interacting with a cylinder with no falsely
identified free-surface nodes

A B

Wall Dry

Wall Wet

FS Water

FS Wall

Figure 8: Schematics for two approaches for treating waterline on side-walls of the domain

2.7. Implementation of rigid wall boundary condition

The rigid wall BC for pressure and velocity are given by Eq.(4c) and Eq.(6c). The boundary condition
is directly applied as Neumann type BC while solving the weak form of the pressure Poisson equation as
described in Eqs.(5). However, the velocity correction step is solved in ’strong’ form and it will require special295

treatment for accurately applying the pressure and velocity BC. We achieve this using pairs of mirror M
and ghost G particles attached to every wall node W as shown in Fig. (9). The two points are placed along
the outward unit normal ~n of the wall point W at a distance of lG, on opposite sides of the wall point,
~rG = ~rW + ~n lG and ~rM = ~rW − ~n lG. The mirror point M should be within the fluid domain and the
values of pressure and velocity are interpolated at this point using the surrounding fluid nodes with MLS.300

As the wall point is the midpoint between M and G, the values of pressure and velocity at G are evaluated
using Eqs.(17) in order to apply the boundary conditions at the corresponding wall point W . Here ρ is fluid

density, ~τ1 and ~τ2 are the corresponding tangents to the normal ~n, and ~UW = (UW , VW ,WW ) is the required
velocity boundary condition at W . Fig. (10) shows an example of the velocity vector for the ghost nodes
used to apply the slip velocity boundary condition at a stationary cylinder boundary under a wave-crest.305

PG = PM + 2ρ lG

(
~n.~g − ~n.~̇Un+1

W

)
(17a)uGvG

wG

 =

nx τ1x τ2xny τ1y τ2y
nz τ1z τ2y

−nx −ny −nzτ1x τ1y τ1z
τ2x τ2y τ2z

uMvM
wM

+

nx ny nz0 0 0
0 0 0

 2UW
2VW
2WW

 (17b)

2.8. Particle distribution and wave absorption

The fluid particles have a tendency to collate together or disperse in regions around a structure. This is
a major issue for incompressible Lagrangian models. If two particle are too close to each other then, when

11



Ghost

Mirror

Wall

Fluid

Figure 9: The ghost particle (G, red star) and mirror particle (M, red dot) placed around the corresponding wall particle (W)
for applying rigid wall boundary conditions

Figure 10: Top view of velocity vector at ghost nodes (in red), wall nodes (in black + •) and fluid nodes (in black) for applying
slip velocity boundary condition for cylinder under the crest of a wave

compared with the sub-domain radius; the system of linear equations Eqs. (13) will not be solvable due to310

the matrix [A] close to being singular. Conversely, if nodes drift too far apart then there will not be enough
neighbours in the sub-domain to accurately apply MLS and SFDI. Most particle based models use techniques
for correcting the distribution of particles. One example in assuming pseudo-compressible fluid by applying
additional correction term in pressure Poisson equation based on particle number density [19]. Multiple
versions of particle shifting techniques are also used to slowly nudge the particles in desired distribution315

[36]. In our work we have used a particle-collision algorithm as described in [37] based on kinetic collision
theory. We assume a fully elastic collision between fluid particles, which ensure conservation of momentum
and energy. The mass of wall particles within the collision algorithm is assumed to be very large with
respect to the fluid nodes. This reduces the leak through walls as presented in the reference. Additionally,
we do a periodic re-distribution of all particles in the domain. In SPH model a similar re-distribution was320

successfully implemented in [38]. In 3D free-surface flows, this would first require an accurate mapping of
the free surface, followed by distribution of nodes under this free-surface and the final interpolation of values
using the 3D MLS interpolation with Gaussian weight function.

A sponge layer is placed on far-end of the domain to absorb the incoming waves. It is necessary for
studying the structure’s interaction with regular and focused waves while keeping a limited domain size.325

The sponge layer is applied by using damping source term S~u in the momentum equation. Here S(x) is the
power damping function of order nS , as tested in [39] for SPH, x0 and xmax are the beginning and end of
the sponge layer zone. Thus resultant velocity vector obtained after the correction step will be modified to
Eq. (18c). We have used nS = 3 and Smax = 10 based on our own tests and the recommendations in [39].

D~u

Dt
=
−1

ρ
∇P + ~g + ν∇2~u− S~u in Ω (18a)

S(x) = Smax

(
x− x0

xmax − x0

)nS

(18b)

~un+1 =
1

1 + ∆tS

(
~u∗ −∆t

1

ρ
∇Pn+1

)
in Ω (18c)
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Figure 11: Surface elevation at x = 40m for different values of α coefficient

The developments in this paper, including the 3D formulation with new symmetric integration expression,330

new free-surface particle detection, side wall and rigid-wall treatment, and particle distribution are collec-
tively named as meshless local Petrov-Galerkin method with Rankine source symmetric (MLPG RS) to
differentiate from [23].

3. Results and Discussions

3.1. Influence of size of integration sphere on convergence335

In section 2.3 we have derived the semi-analytical technique for integration in the sub-domain around a
node to evaluate the local weak form of the pressure Poisson equation. The resultant error is found to be
proportional to R4

I , where RI is the radius of the spherical integration domain. We define RI as given in
Eq. (19), with M = 6 closest neighbours. The value of coefficient α is varied between 0.1 and 0.4 to check
the influence of increasing RI on the converge of Poisson equation solver and on the accuracy of result.340

RI =
α

M

M∑
k=1

|~rik| (19)

We investigate this using a test case with 65m long computational domain in which a solitary wave of height
0.1m is generated in water-depth of 1m. The wave is transferred from FNPT-FEM to MLPG RS at 25m.
Thus, the MLPG RS domain is 40m long, starting from x = 25m till x = 60m and is filled with 218673
particles initially distributed at 0.05m. With the time-step of 0.01s, about 2700 time-steps in MLPG RS
give us the required results for comparison. A sponge layer of 8m is placed in the right end. Every setting345

for the simulation, including the size of neighbour domain for MLS interpolations, are kept identical in all
cases, except for the value of α. A wave probe is kept at x = 40m to compare the results of MLPG RS
for different values of α with FNPT-FEM simulation, as shown in Fig. (11). Here the MLPG RS solutions
show partial reflection after 20s from the sponge layer due to the restriction of the domain size. Fig. (12)
shows the comparison of the number of iterations requires by a GMRES solver to reach an error limit of350

10−10 for different values of α. A large value of RI leads to divergence of result due to the integration error
being proportional to R4

I as shown by α = 0.4. However a very small value of RI ,as shown by α = 0.1,
requires larger number of iterations to achieve the solution and the wave probe reading does not correlate
with the FNPT-FEM solution as seen in Fig. (11). Due to a smaller integration domain, the solution at
a node is not linked with sufficient number of surrounding nodes, which is required in a local weak-form355

solution. This influences the condition number of the system making in more sensitive to the truncation
errors, which explains the erratic number of iterations in Fig. (12) and divergence from the converged result
in Fig. (11). The values of α between 0.2 and 0.3 show similar convergence and wave probe solution. The
method shows an inverted bell curve type dependence on RI , without being over-sensitive to its value. In
our work, we have taken α = 0.25.360
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Figure 12: Number of iterations required by GMRES solver to reach the error limit at each time-step for different values of α
coefficient
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Figure 13: Comparison between number of iterations required by BiCGStab and GMRES solvers for identical test case

We have tested same solitary wave test case with α = 0.25 with solution obtained using BiCGStab
solver. Fig. (13) shows comparison between GMRES and BiCGStab solvers for identical test case with the
error limit of 10−10. BiCGStab requires half the number of iterations and hence saves computational time,
however we have observed that it fails to converge in certain circumstances, especially near the beginning
of the simulation. Therefore we use BiCGStab as default solver and shift to GMRES if it fails to converge.365

The code has been made parallel using OpenMP and the Fig. (14) shows the time taken per time-step for
the same solitary wave test case with 218673 nodes for different number of cores to test the scalability of the
code. The tests were done on Intel Xeon E5-2640 v3 processor with clock speed of 2.60GHz. The authors
do recognise recent works on GPU parallelisation of SPH [17], but it has not been focus of this work. In the
current state, about 75% of the code in made parallel using OpenMP, which entails a maximum speedup370

of 4x compared to a serial run. Further improvements can be made in simulation time by increasing the
parallel portion, shifting from shared memory to distributed memory form, using a better sparse matrix
solver and by moving parts of computation to GPU.

3.2. One-way coupling with FNPT for wave-generation

In section 2.4 we have described the procedure for one-way coupling of MLPG RS with FNPT-FEM,375

where the waves are generated in FNPT-FEM using a piston-type wave-maker and are transferred to
MLGP R near the body using an overlapping zone of length Lc. In this section, we will investigate the
influence of Lc and validate the coupling procedure.
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Figure 14: Boxplot showing speed scalability of the OpenMP parallelised code for different number of CPUs. The line plot is
for the median wall-time per time-step

3.2.1. Solitary Wave

The tests are first conducted for transfer of solitary wave. The 2D FNPT domain is 100m long and 1m380

deep. The mesh resolution is set to ∆x = 0.0625m and ∆y varying exponentially from 0.1094m near bottom
to 0.0241m near the free-surface in 20 intervals. These mesh parameters are as per the recommendations in
[34] and will not be investigated in this work. The region R2 of this domain as described in Fig. (2) is set
from 24.5m to 34.5m with solution saved at a regular resolution of 0.05m at every time-step for coupling
procedure.The simulation time-step is set to 0.01s. A solitary wave of height 0.1044m is generated.385

The 3D MLPG RS domain is initially a cuboid of length 40m, width 0.6m and depth 1m with a particle
distribution done at regular intervals of 0.05m. It starts from 25m and goes till 65m with the left face
within the R2 region of FNPT domain. A sponge layer of 10m is placed from 55m to 65m. The transfer of
solitary wave is tested by comparing the wave probes at 30m and 40m in the FNPT domain and the coupled
FNPT+MLPG RS domain. With the overlapping zone Lc = 0.5m, initially between 25m and 25.5m in the390

MLPG RS domain, the wave probe comparison as shown in Fig. (15) demonstrates the successful transfer
of solitary wave from FNPT domain to the MLPG RS domain. As mentioned in section 2.4, the MLPG RS
particles in overlapping zone are identified only based on initial domain, after which their coupling weight is
not modified. The MLPG RS results beyond 40s shows the partial reflection of the solitary wave from the
sponge layer because a solitary wave would require very long sponge layers for a complete absorption. This395

is not visible in the FNPT domain because the domain length is set to a larger value in the FNPT domain.
We can also observe the MLPG RS results not showing dissipation of the solitary wave amplitude over the
15m of propagation shown in these figures, thus indicating low numerical errors.

The influence of Lc on the coupling is investigated by testing cases with identical setup for values of
Lc = 0.20m, 0.30m, 0.40m, 0.75m, 1.00m. The coupling procedure fails for values of Lc ≤ 0.3m due to400

leakage of fluid particles through the left face as was shown in Fig. (4). However for values Lc ≥ 0.5m the
results of the transfer of the wave are identical, as shown in Fig. (16). In each of these simulations, the log
of relative error is less than −3 as shown in Fig. (15) and Fig. (16).

3.2.2. Regular and Focused Wave

The mesh and time-step setup as described under the solitary wave case was used to test the transfer of405

the regular wave TW1 and the focused wave TW2 from FNPT-FEM to MLPG RS. The theoretical wave-
length for the regular wave TW1 based on the dispersion relationship is 6.60521m. The overlapping zone
length of Lc = 0.50m and 0.75m were tested, with the two cases having wave-probe readings comparable to
FNPT as shown in Fig. (17). The final test was conducted for the focusing wave TW2 using a overlapping
zone of length Lc = 0.5m. The resultant wave-probe readings at 30m and 40m as in Fig. (18) show agreeable410

comparison the FNPT-FEM result.
From these tests we can conclude that the one-way coupling for transfer of solitary, regular and focused

waves from 2D FNPT-FEM to 3D MLPG RS can be achieved using the algorithm described in this work.
A sufficient length of the overlapping zone in MLPG RS domain is required to avoid the leakage of fluid
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Figure 15: Wave probes comparison of surface elevation η between FNPT results and coupled FNPT+MLPG RS results with
Lc = 0.5m for solitary wave
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Figure 16: Wave probes comparison of surface elevation η between FNPT results and coupled FNPT+MLPG RS results with
different lengths of the overlapping zone for solitary wave

particles through the left face. The length does not depend upon the type of the wave because Lc ≥ 0.50m415

provided agreeable results for solitary, regular and focused. For the focusing wave case, where the theoretical
wave-length for the individual frequency limits ranges from 2.13205m to 10.41058m, Lc = 0.5m provided
a good comparison indicating that Lc does not depend on the length of a regular wave. From these tests
the required condition for overlapping zone length in MLPG RS domain can be concluded as Lc

∆r ≥ 10,
where ∆r is the initial resolution for particle distribution. The focusing wave results also confirms the420

implementation of moving side-wall algorithm to obtain the continuous waterline. The algorithm shows
the ability to capture the small-amplitude waves necessary for accurately replicating shape, focusing point
and phase of the focusing wave group, including the high frequency waves. These results show superior
agreement to experiments as compared to similar SPH as shown in [17].

3.3. Experimental setup425

The numerical model is validated against experiments conducted on interaction of fixed cylinder with
focusing and regular waves. The experiments were performed using the wave tank in the Franzius-Institute
Laboratory, Hannover, Germany. The tank is 110.0m long, 2.2m wide, and 2.0m deep with a computer-
controlled hydraulically driven piston type wave-maker at one end of the tank and a beach at the other end.
The tank was filled with fresh-water to a working depth of 0.7m. The waves were generated using the second430

order Schaffer correction to suppress the spurious free waves, as described in [32]. Wave probes were placed
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Figure 17: Wave probes comparison of surface elevation η between FNPT results and coupled FNPT+MLPG RS results with
different lengths of the overlapping zone for regular wave

Wave Probe X Distance from wave-maker Y Distance from side-wall
X(m) Y (m)

WP1 4.9750 1.085
WP2 14.4280 1.085
WP3 24.3100 0.825
WP4 24.8800 0.825
WP5 25.5850 0.825

Table 1: Location of wave-probes in experiment setup

at location shown in Table (1) for measuring the generated waves. A cylinder of diameter 0.22m is fixed at
a distance of 24.88m from the wave-maker, with its centre close to the mid-line of the flume at 1.085m from
the side-wall. It is fixed with eight pressure transducers with sampling frequency of 100Hz, five towards the
wave-maker at different depths and three around the cylinder as shown in Fig. (19) and their location on the435

cylinder is described in Table (2). Here, α = 0◦ is for the pressure probes on the cylinder surface towards
the wave-maker. Note that PP4 and PP5 are placed above the initial water-level.

The details of the regular wave and a focused wave against which the numerical results will be compared
are given in Table (3). Here fc is the central frequency, ∆f is the bandwidth, N is the number of frequency
components, f1 is the starting frequency, fN is the ending frequency, Ga is the gain, tf is the focusing time440

and Xf the focusing point. For convenient comparison of numerical and experimental results, the values of

length are non-dimensionalised with respect to initial still water depth d0, time with respect to t0 =
√

d
g

and pressure with respect to P0 = ρgd0. Hence, the location and diameter of the cylinder are 35.5429d0 and
0.3143d0 respectively.

3.4. Interaction of fixed cylinder with different waves445

The numerical domain is 58.5429d0 long, 1.6d0 wide with initial water depth 1d0. The cylinder of
diameter 0.3143d0 and height 1.5d0 is fixed with its centre at x = 35.5429d0 and y = 0.8d0. The total
domain is split between the 2D FNPT sub-domain starting from the wave-maker for wave-generation and
propagation, and the 3D MLPG RS domain starting from 28.5429d0. In section 3.2 we have shown the
successful transfer of TW1 and TW2 from the FNPT domain to the MLPG RS domain, therefore the450

same 2D mesh characteristics will be used for the FNPT sub-domain, with ∆x = 0.0625d0 and ∆y varying
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Figure 18: Wave probes comparison of surface elevation η between FNPT results and coupled FNPT+MLPG RS results with
Lc = 0.5m for focused wave
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Figure 19: Schematic for physical wave tank and cylinder along with location of probes

exponentially from 0.1094d0 near bottom to 0.0241d0 near the free-surface in 20 intervals. The region R2
for the FNPT-FEM domain lies from x = 28d0 to x = 32d0 with the length of the overlapping zone fixed to
Lc = 1.0d0. These parameters are kept same for all the test cases based on the conclusion from section 3.2.

The MLPG RS sub-domain is 30d0 long, initially starting from 28.5429d0, 1.6d0 wide with initial water-455

depth of 1d0. A 10d0 long sponge layer is placed on the right end to absorb the incoming wave. The
initial particle distribution is done as a Cartesian grid with uniform spacing ∆r. However, a radial particle
distribution is done in the vicinity of the cylinder by placing nodes at regular intervals along the normal of
body nodes as shown in Fig. (20). It improves the Lagrangian motion of these fluid particles around the
cylinder.460

The first test results are presented for the focusing wave TW2. Three particle distribution are tested,
with the finest being M1 with ∆r = 0.0500d0, followed by M2 with ∆r = 0.0625d0 and the coarsest M3 with
∆r = 0.0833d0. Each of them is tested with time-step ranging from 0.0235t0 to 0.0626t0. The combination
of ∆r and ∆t which were successfully tested are shown in Table (4). The number of nodes listed in this
table are only for the MLPG RS sub-domain. The total simulation time is 183t0 resulting in number of465

time-steps as shown in Table (4). However, as the MLPG RS domain starts from 28.5429d0 onwards, there
is no need to solve the particle based problem for the first 37.5851t0 till the wave reaches this sub-domain,
which directly reduces the computational effort by 21%.

A mesh and time-step convergence study is conducted for the focusing wave TW2. Results are compared
using pressure probe signals from the experiment and simulations. For the purpose of convergence analysis,470
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Pressure Vertical location Non-dimensional Angular position
Probe Z(m) Z

d0
α

PP1 0.4150 0.5929 0◦

PP2 0.5150 0.7357 0◦

PP3 0.6150 0.8786 0◦

PP4 0.7150 1.0214 0◦

PP5 0.8150 1.1643 0◦

PP6 0.6150 0.8786 20◦

PP7 0.6150 0.8786 90◦

PP8 0.6150 0.8786 180◦

Table 2: Location of pressure-probes on the cylinder in experiment setup

Name d fc ∆f N f1 fN Xf tf Ga H
- (m) (Hz) - - (Hz) (Hz) (m) (s) - (m)

TW1 0.7 0.5 - - - - - - - 0.1
TW2 0.7 0.6857 0.6857 32 0.3429 1.0286 23 38 0.002 -

Table 3: Details of the waves tested for interaction with the cylinder

Name ∆t
t0

∆r
d0

∆t
√
gd0

∆r Time-steps Time-steps Nodes

Total on MLPG RS Fluid

M1T235 0.0235 0.0500 0.4698 7800 6200 416336
M1T251 0.0251 0.0500 0.5011 7312 5812 416336
M1T313 0.0313 0.0500 0.6264 5850 4650 416336
M1T376 0.0376 0.0500 0.7517 4875 3875 416336
M1T392 0.0392 0.0500 0.7830 4680 3720 416336
M1T470 0.0470 0.0500 0.9396 3900 3100 416336
M2T235 0.0235 0.0625 0.3759 7800 6200 220890
M2T251 0.0251 0.0625 0.4009 7312 5812 220890
M2T313 0.0313 0.0625 0.5011 5850 4650 220890
M2T376 0.0376 0.0625 0.6014 4875 3875 220890
M2T392 0.0392 0.0625 0.6264 4680 3720 220890
M2T470 0.0470 0.0625 0.7517 3900 3100 220890
M2T626 0.0626 0.0625 1.0023 2925 2325 220890
M3T313 0.0313 0.0833 0.3759 5850 4650 117384
M3T392 0.0392 0.0833 0.4698 4680 3720 117384
M3T470 0.0470 0.0833 0.5638 3900 3100 117384
M3T626 0.0626 0.0833 0.7517 2925 2325 117384

Table 4: Details of particle distribution and time-step of the numerical setups for focusing wave TW2
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Figure 20: Radial particle distribution in the vicinity of the cylinder

error is quantified using root-mean-square of the difference between numerical and experiment pressure.
The RMSE plot for PP2 and PP6 for all of numerical setups from Table (4) are shown in Fig. 21, with
similar results for the other pressure probes. In particle based schemes the ratio ∆r/∆t is an important
parameter for solution stability and accuracy, and as per [29], it should be kept within the range of 5− 7 for
MLPG RS scheme. However, the value being dimensional is difficult to interpret in that form. Therefore,475

RMSE is plotted against two different x-axis, time-step ∆t and ratio ct = ∆t
√
gd0/∆r, where ct is a form of

Courant coefficient with characteristic velocity taken as
√
gd0, similar to the approach taken by established

overturning wave work by [40]. Therefore the recommendation from [29] will convert to range of ct within
0.4− 0.65.

It is observed from the RMSE plot that M3 results in higher error irrespective of the time-step compared480

to the fine particle distribution. This can be explained by observing the difference in numerical results using
M3 and M2 with same time-step as shown in Fig. (22). M3 results in lower estimation of pressure even
before the focusing event. This is due to the coarse MLS gradient. A finer ∆r reduces MLS gradient
error, as evident from the M2 pressure which overlaps with the experiment. M3 shows highest errors for
troughs, which is highlighted for the steepest trough at t = 148t0 for PP3. Lagrangian motion in trough485

region spreads the nodes apart. Support domain radius for each node is calculated dynamically to ensure
sufficient neighbouring nodes. Therefore this Lagrangian spread of nodes in the trough region results in
larger support domain radius, thus lowering the accuracy of gradients. Alternatively, the crest region brings
the nodes closer, which helps in maintaining gradient accuracy. For finer resolution such as M2, the increase
in support domain radius due to Lagrangian spread is not sufficient to reduce gradient accuracy, resulting490

in better capture of the steepest trough.
A lower time-step reduces error in the numerical form of the differential equation. However, in Lagrangian

methods the time-step also plays a crucial role in particle distribution, and hence effects the simulation
stability. This is observed by comparing results for M2 from two time-steps as shown in Fig. (23). Pressure
from both time-steps is similar, but the smaller time-step results in more stable solution. This is because the495

smaller time-step results in smaller motion of nodes per time-step, and provides particle collision algorithm
better opportunity for maintaining particle distribution. A large time-step may momentarily bring two-
nodes very close to each other resulting is unnaturally high gradients, seen as noise in pressure results.
However this momentary noise in pressure will not show up in the RMSE value. These momentary high
gradients may sometimes throw particles apart resulting in simulation failure.500

From Fig. (21) it is observed that RMSE for M1 and M2 are similar for almost all setups. We can
observe a small increase in RMSE for the smallest ∆t in both M1 and M2. This is due to introduction of
small phase shift which is exaggerated in the RMSE value. But the RMSE for all time-steps for M1 and
M2 are in similar range. Therefore it can be concluded that a further reduction in particle distribution will
not further improve accuracy, hence confirming convergence. This is also observed in the Fig. (24), where505

the pressure for M1T235 and M2T313 overlap for all pressure probes.
We also investigate the conservation of mass by the MLPG RS scheme using the converged setup M2T313

for focusing wave case TW2. A control volume of length Lcv = 6d0, width Bcv = 1.6d0 and height 2d0
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Figure 21: Root-mean-squared error between numerical and experiment pressure for PP2 and PP6, with time-step and
ct = ∆t

√
gd0/∆r as x-axis

is placed between x = 32.5429d0 and x = 38.5429d0, thus covering the cylinder. The fluid flows in and
out of vertical planes of this control volume. These vertical planes (control surfaces) are discretised in510

regular intervals and MLPG RS solution is interpolated on these vertical planes using MLS. Mass of fluid
inside the control volume is calculated by integrating volume under the free-surface. Conservation of mass
is investigated by monitoring the error in mass flux for this control volume, using Eq. (20). Here the 2D
surface integration is done using Simpson’s 9-point scheme and time-derivative is calculated using central
difference method. The error is non-dimensionalised using End = ρLcvBcv

√
gd0. The non-dimensional error515

is observed to be of the order 10−3 as reported at every time-step in Fig. (25).

Ecv = −∂mcv

∂t
+

∫∫
cs

ρ(~u.~n)dS (20)

The setup M2T313 is used to simulate the interaction of regular wave TW1 with the cylinder. Con-
vergence was demonstrated for setup M2T313 for the steep narrow-banded focusing wave TW2 and is
expected to show good performance for the lesser steep TW1. Results for the pressure probes are presented
in Fig. (27) showing good agreement against the experiments. Please note the excellent comparison for520

PP4 which is located above the initial water level. Estimation of pressure at this location requires accurate
capture of the free-surface. This result highlights the strength of MLPG RS in simulating the free-surface.
An Eulerian model for free-surface flow would require a fine mesh in the region of free-surface motion for
an accurate capture of free-surface.

Influence of the developments in this model can be seen in Fig. (26) and Fig. (27), where the results525

for the pressure probes are compared against the previous 3D MLPG R work based on [23] and [41]. The
results from the earlier work for TW2 show instances of noise in the simulation with a deviation in phase
and amplitude as compared to the experiments. These errors in the earlier work have resulted from the mis-
identification of free-surface nodes as was shown in Fig. (5), improper particle distribution in the vicinity of
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Figure 22: Comparison between experimental and numerical pressure probe for ∆r = 0.0833d0 and ∆r = 0.0625d0 with
time-step ∆t = 0.0313t0

the cylinder under the waves and improper application of the rigid-wall BC. The issue is further compounded530

for regular wave TW1, where the structure is exposed to a number of steep waves in succession leading to
improper particle distribution and subsequent simulation failure.

A 3D illustration of velocity magnitude in the vicinity of the cylinder under the steepest crest and trough
for case TW2 is shown in Fig. (28) and Fig. (29) respectively. The developments outline in section 2.3-2.8
result in smooth, non-damping, stable solutions for both TW1 and TW2. The hybrid approach for wave-535

making boundary has allowed for reduction of 3D domain by 49% for this problem, with a further reduction
of 21% in the number of time-steps.

4. Conclusion

The paper presented a detailed new 3D formulation of the solution procedure for Navier-Stokes equation
for incompressible Lagrangian flow problem using MLPG. The existing MLPG R scheme with it Petrov-540

Galerkin formulation using Rankine source had the significant advantage of removing gradient operations
from the unknown quantity. This paper has additionally provided the derivation of a semi-analytical integra-
tion technique with a symmetric expression (MLPG RS) and has quantified the associated error. A detailed
analysis of the influence of the integration domain radius on the stability and accuracy of the solution was
conducted to understand the integration method error. Based on this, we have prescribed the radius of the545

support domain and the integration domain.
A detailed algorithm was presented for coupling of 2D FNPT-FEM with the 3D MLPG RS method.

This hybrid approach was used as the wave-making condition, which limited the need for 3D domain to the
vicinity of the cylinder. It allowed us to significantly reduce the 3D computational domain and number of
time-steps, and has improved the overall computational efficiency of the model. A detailed analysis was done550

to identify the appropriate size of overlapping zone between the 2D and the 3D domain for solitary, regular
and focusing waves. The paper presents minimum overlapping zone length criterion for successful coupling.
We were able to use the strength of potential flow model in accurate wave-generation and propagation over
long distances, due to which the wave reaching the cylinder was highly accurate and resulted in excellent
agreement of numerical pressure probe signals with the experiments.555

We have demonstrated the issue of mis-identification of free-surface particles in the vicinity of the cylin-
der with the existing scheme and have provided a simple alternative technique instead. A moving wall
algorithm was presented to capture the waterline on side-wall faces. It enabled the model to capture small
amplitude waves and thus made it possible to accurately replicate a focusing wave. We briefed upon the
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Figure 23: Comparison between experimental and numerical pressure probe for ∆r = 0.0625d0 with time-step ∆t = 0.0392t0
and ∆t = 0.0313t0

other improvements in application of rigid wall boundary condition, particle collision and redistribution.560

The collective result of these modifications was demonstrated through pressure probe signal comparison,
highlighting the improvements in the accuracy and the stability.

MLPG RS has the strength of simulating complex flows using relatively lesser number of nodes in com-
parison to other particle based schemes. This was demonstrated through the mesh and time-step convergence
study in this paper. We highlighted the capabilities through excellent comparison of pressure for probes565

located outside the initial water level. We have also conducted a mesh and time-step convergence study
and have demonstrated the suitable range of parameters for interaction of waves with fixed structures. This
work has set the basis for further developments in MLPG towards 3D simulation of moving and floating
bodies. The hybrid modelling approach will be extended to further reduce the computational domain by
shifting the absorbing layer to a potential flow model. Such developments can help bring particle based570

schemes in the mainframe.
The present manuscript has presented and validated a baseline laminar 3D MLPG model. The complex

cases of interaction of cylinder with banded steep focusing wave helped us identify issues with the model
which may be hidden under the noise of breaking waves. Therefore, with the confidence in the improvements
presented in this manuscripts we will present a detailed study on breaking waves in 3D using MLPG in our575

future work.
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Figure 25: Instantaneous error in mass flux for a control volume encompassing the cylinder, tested for focusing wave TW2 for
numerical set-up M2T313
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Figure 26: Pressure probe signal for focusing wave TW2 compared against the previous MLPG R work, highlighting the
improvements in the current model resulting in stable simulation
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