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Welfare theorems for random assignments with priorities∗

Jan Christoph Schlegel1 and Akaki Mamageishvili2

1Department of Economics, City, University of London†
2Department of Management, Technology and Economics, ETH Zurich

Abstract

We introduce new notions of priority-constrained efficiency and provide priority-
constrained versions of the ordinal efficiency welfare theorem for school choice lotteries.
Moreover, we show that a priority-constrained version of a cardinal second welfare
theorem fails to hold, but can be restored for a relaxed notion of equilibrium with
priority-specific prices.
JEL-classification: C78, D47
Keywords: Matching; Random Assignments; Priority-based Allocation; Constrained
Efficiency; Pseudo-Market

1 Introduction

The assignment of students to schools (Abdulkadiroglu and Sönmez, 2003) is one of the
major applications of matching theory. A school choice mechanism assigns students to
schools taking into account the preferences of students and priorities of the students at
different schools. Coarse priorities are a generic feature in school choice. In practice,
students are prioritized according to coarse criteria (e.g. based on catchment areas or
having a sibling in the school) such that many students have the same priority for
a seat at a school. Thus, one can sometimes not avoid treating students differently
ex-post even though they have the same priorities and preferences. However, ex-ante,
some form of fairness can be restored by the use of lotteries. This motivates the study
of school choice lotteries.
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previous version of the paper. We are particularly grateful to Antonio Miralles for pointing out the connection
of the results to the ordinal welfare theorems of McLennan and of Manea. Financial support by the Swiss
National Science Foundation (SNSF) under project 100018-150086 is gratefully acknowledged.
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Respecting priorities in school choice mechanisms can lead to efficiency losses (Ab-
dulkadiroglu and Sönmez, 2003). This motivates the question under which conditions
priority-constrained efficiency can be achieved. We contribute to this discussion by
studying different notions of constrained efficiency for school choice lotteries, and wel-
fare in pseudo-market mechanisms with priorities.

Throughout the paper we are interested in three different classes of efficiency-related
concepts and how they relate to each other: priority-constrained efficiency, priority-
respecting improvement cycles,1 and pseudo-market equilibria with priority-specific
prices. We introduce a weaker and a stronger version of each of the three concepts.

Constrained efficiency requires that a random assignment cannot be welfare im-
provement upon by a random assignment that respects priorities as least as much as
the original random assignment. Our two versions of the notion use different criteria to
compare priority-respect of different random assignments: The first criterion compares
priority-respect by first-order stochastic dominance according to schools’ priorities.
We call the induced efficiency notion ”priority-constrained efficiency”. The second
(weaker) criterion compares priority-respect by cut-offs, i.e., the lowest priority that is
sufficient to be admitted to a school with positive probability.2 We call the induced
(stronger) efficiency notion ”cut-off-constrained efficiency”.3 We consider ordinal as
well as cardinal versions of the two efficiency notions.

Correspondingly, we introduce two notions of an improvement cycle. Priority-
respecting improvement cycle are improvements cycles whose execution does not impair
priorities. Equal-priority improvement cycle are improvement cyles in which two con-
secutive agents have the same priority at the school under consideration.

Finally, we consider two notions of an equilibrium with priority-specific prices: In a
pseudo-market (Hylland and Zeckhauser, 1979; He et al., 2018), a random assignment is
generated by a market for probability shares. Each agent has a budget of tokens and can
“buy” probability shares at the different schools. Agents face different prices depending
on their priority. Our first equilibrium notion requires that prices are priority-specific
and (weakly) decreasing with priority. The second and stronger equilibrium notion

1An improvement cycle is a sequence of agents i0, i1, . . . , iK and schools j0, j1, . . . , jK such that agent i0
is matched to school j0 with positive probability, but prefers j1 to j0, agent i1 is matched to school j1 with
positive probability, but prefers j2 to j1, and so on taking indices modulo K + 1.

2If priorities are, for example, derived from exam scores or grade point averages, then cut-offs are specified
by minimum scores that grant admission at the different schools, where randomization can be used to
ration seats among applicants who achieve exactly the minimum score. These kinds of priorities occur
frequently in centralized college admission (e.g. in China, and several European countries, see http://www.

matching-in-practice.eu/higher-education/). In practice, different methods are used to ration seats
among equal score students, such as lotteries, the use of additional tie-breaking criteria, or (in the case of
Hungary) leaving seats unassigned.

3This notion is particularly natural for ex-ante stable random assignments: ex-ante stability requires that
a student only can obtain a seat at a school with positive probability if there is no higher priority student
for that school who obtains a less desirable school with positive probability (Kesten and Ünver, 2015). For
deterministic matchings under strict priorities and preferences, priority cut-offs uniquely determine stable
matchings (Azevedo and Leshno, 2016). Similarly, in the probabilistic setting with coarse priorities and
strict preferences, ex-ante stable random assignments are uniquely determined by priority cut-offs and by a
probabilistic rationing rule for admission at the cut-off. Cut-off constrained efficiency precludes inefficient
rationing for given priority cut-offs.
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(due to He et al., 2018) uses ”cut-off pricing”: At each school, there is a specific cut-
off priority class, such that agents within the priority class face the same finite price,
agents ranked strictly above the cut-off can obtain a seat in the school for free, and
agents ranked strictly below the cut-off face an infinite price for a seat in the school.
These equilibria are ex-ante stable by construction.

Our first main result (Theorem 1) establishes that priority-constrained ordinal ef-
ficiency is equivalent to the absence of priority-respecting improvement cycles, and
moreover, equivalent to the existence of a cardinal utility profile consistent with the
ordinal preferences such that social-welfare is maximized subject to priority constraints.
Thus, we generalize the ordinal efficiency welfare theorem (McLennan, 2002; Manea,
2008) to the school-choice context. If the random assignment under consideration is
ex-ante stable, we obtain a stronger version (Corollary 1) of the result: in this case,
constrained ordinal efficiency according to the cut-off criterion is equivalent to the ab-
sence of equal-priority improvement cycles, and moreover, equivalent to the existence of
a cardinal utility profile consistent with the ordinal preferences such that social-welfare
is maximized subject to a set of priority cut-offs.

Next, we relate the different equilibrium notions to the efficiency notions: We show
that equilibria in the sense of He et al. (2018) are cut-off constrained efficient (Corol-
lary 2). Moreover, we prove (Theorem 2) a stronger version of Corollary 1, where
for ex-ante stable assignments without equal-priority improvement cycles, supporting
prices and budgets can be constructed along the utility profile, such that the random
assignment under consideration is an equilibrium assignment in the sense of He et al.
(2018) for the economy defined by the constructed utility profiles and budgets. This
naturally leads to the question whether the result can be strengthened in such a way
that for any utility profile and priority-constrained efficient random assignment, there
exist corresponding budgets such that the random assignment is an equilibrium assign-
ment in the sense of He et al. (2018). In other words, does a constrained second welfare
theorem hold? We show using a counterexample that this is not the case. However, for
the relaxed notion of equilibrium, we obtain (Theorem 3) a second welfare theorem.

1.1 Related literature

Ordinal efficiency welfare theorems for probabilistic assignments have been studied for
object allocation without priorities (McLennan, 2002; Manea, 2008) and for marriage
markets (Doğan and Yıldız, 2016). An ordinal efficiency welfare theorem establishes
that ordinal efficiency (with welfare evaluated by first-order stochastic dominance) for
a random assignment is equivalent to the existence of a cardinal utility profile con-
sistent with the ordinal preferences under which the random assignment maximizes
social welfare when lotteries are evaluated according to expected utility. The origi-
nal ordinal welfare theorem is due to McLennan (2002), answering a question raised
by Bogomolnaia and Moulin (2001). Manea (2008) provides a constructive proof.

Kesten and Ünver (2015) initiate the study of ex-ante stable school choice lotter-
ies. For the classical marriage model, the condition was first considered by Roth et al.
(1993). Kesten and Ünver (2015) consider mechanisms that implement ex-ante stable
lotteries and satisfy constrained ordinal efficiency properties that are generally more
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stringent than the ones we consider. Han (2016) considers a refinement of ex-ante sta-
bility and mechanisms that implement such allocations. He et al. (2018) define an
appealing class of mechanisms that implement ex-ante stable lotteries. These mech-
anisms generalize the pseudo-market mechanisms of Hylland and Zeckhauser (1979)
by allowing for priority-specific prices (agents with different priorities are offered dif-
ferent prices). Cardinal welfare theorems for random assignments are counterparts to
the classical welfare theorems for exchange economies. For cardinal welfare theorems,
utility profiles are the primitive of the model. Hylland and Zeckhauser (1979) show
that the equilibria of their pseudo markets are Pareto efficient and hence establish a
cardinal first welfare theorem. Miralles and Pycia (2020) establish a cardinal second
welfare theorem that demonstrates that each Pareto efficient random assignment can
be decentralized as a pseudo-market equilibrium by appropriately choosing budgets and
prices. We show that their result only generalizes to pseudo markets with priorities,
only if we use the weaker notion of an equilibrium with priority-specific prices.

2 Model

There is a set of n agents N and a set of m schools M . A generic agent is denoted
by i and a generic school by j. For each school j, there is a finite number of seats
qj ∈ N. We assume that there are as many school seats as agents,

∑
j∈M qj = n. The

assumption is for ease of exposition and, more generally, we can modify our definitions
and results to the case of

∑
j∈M qj ≥ n. We discuss the extension to excess capacity in

Appendix E.4 A lottery over schools is a probability distribution over M . We denote
the set of all lotteries over schools by ∆(M).

Agents have preferences over lotteries over schools. Preferences of agents can be
modeled in two different ways: In the first version, each agent i has a preference
relation Ri over different schools. We call R = (Ri)i∈N a preference profile. We
write j Pi j

′ if j Ri j
′ but not j′Ri j, and j Ii j

′ if j Ri j
′ and j′Ri j. The preferences can

be extended to a partial preference order over lotteries using the stochastic dominance
criterion: A lottery π′ weakly first-order stochastically dominates lottery π with
respect to preferences Ri, if for each j ∈M we have∑

j′∈M :j′Ri j

π′j′ ≥
∑

j′∈M :j′Ri j

πj′ .

In this case, we write π′Rsdi π . We write π Isdi π′ if all of the above weak inequalities
hold with equality, and π′ P sdi π if at least one of the inequalities is strict. In the latter
case, we say that π′ strictly first-order stochastically dominates lottery π.

In the second version, each agent i has a von-Neumann-Morgenstern (vNM)
utility vector Ui = (uij)j∈M ∈ RM+ . We call U = (Ui)i∈N a utility profile. Lotteries
are evaluated according to expected utility. Thus, agent i prefers lottery π′ to lottery
π if ∑

j∈M
uijπ

′
j >

∑
j∈M

uijπj .

4The case of excess aggregate demand n >
∑

j∈M qj and the case of outside options can be dealt with by
adding a dummy school with a large enough capacity.
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A utility vector contains more information than a preference relation. In addition to
ranking the schools, the vNM-utilities express the rates with which agents substitute
probabilities of obtaining seats at the different schools. Utility vector Ui is consistent
with preferences Ri, if for each pair of schools j, j′ ∈ M we have jRij

′ ⇔ uij ≥ uij′ .
Each utility vector Ui is consistent with one preference relation Ri that we call the
preference relation induced by Ui. It is a standard result (see e.g., Proposition 6.D.1
in Mas-Colell et al., 1995), that if lottery π′ strictly first-order stochastically dominates
lottery π according to preferences Ri, then lottery π′ yields higher expected utility than
π according to any vNM-utilities Ui consistent with Ri.

Each school j has a weak (reflexive, complete and transitive) priority order %j of
the agents. We let i ∼j i′ if and only if i %j i

′ and i′ %j i. We let i �j i′ if and only
if i %j i

′ but not i′ %j i. The priorities %j of a school j partition N in equivalence
classes of equal priority agents, i.e. in equivalence classes with respect to ∼j . We call

these equivalence classes priority classes and denote them by N1
j , N

2
j . . . , N

`(j)
j with

indices decreasing with priority. Thus, for ` < `′, i ∈ N `
j and i′ ∈ N `′

j we have i �j i′.
In that case, we also write N `

j �j N `′
j . We use the notation i %j N

`
j to indicate that i

has higher or equally high priority at j than the agents in the priority class N `
j . For

i ∈ N and j ∈M we denote the index of i’s priority class at j by `(i, j), i.e. `(i, j) = `
for the unique 1 ≤ ` ≤ `(j) with i ∈ N `

j .
A deterministic assignment is a mapping µ : N →M such that for each j ∈M

we have |µ−1(j)| = qj . A random assignment is a matrix x = (xij) ∈ RN×M with

0 ≤ xij ≤ 1,
∑
j∈M

xij = 1,
∑
i∈N

xij = qj ,

where xij is the probability that agent i is matched to school j. By the Birkhoff-von
Neumann Theorem, each random assignment corresponds to a lottery over determinis-
tic assignments and, vice versa, each such lottery corresponds to a random assignment
(see Kojima and Manea (2010) for a proof in the set-up that we consider). For each
i ∈ N we write xi = (xij)j∈M and for each j ∈M we write xj = (xij)i∈N .

A random assignment x is ex-ante blocked by agent i and school j if there is some
agent i′ 6= i with xi′j > 0 and i �j i′ and some school j′ 6= j with xij′ > 0 and j Pi j

′.
In this case, we say that i has justified envy at school j. A random assignment is
ex-ante stable or ex-ante priority respecting if it is not blocked by any agent-
school pair. The definition extends to the case where agents have vNM-utilities, by
considering the preference profile induced by the utility profile.

2.1 Constrained efficiency

2.1.1 Priority-constrained efficiency

Next, we introduce priority-constrained efficiency notions. Constrained efficiency re-
quires that there is not a more efficient random assignment that respects priorities
as much as the original random assignment. There are different ways of comparing
random assignments by how much they respect priorities. In the following, we will in-
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troduce two criteria, a stronger and a weaker one that will induce weaker and stronger
notions of constrained efficiency.

The stronger criterion is by stochastic dominance according to priorities: For school
j and random assignments x and y we let yj %sd

j xj if for each 1 ≤ ` ≤ `(j) we have∑
i%jN`

j

yij ≥
∑
i%jN`

j

xij .

We write yj �sdj xj if at least one of the inequalities is strict. We introduce ordinal
and cardinal versions of constrained efficiency:

Random assignment y first-order stochastically dominates (sd-dominates) ran-
dom assignment x if for each i ∈ N we have yiR

sd
i xi and for at least one i ∈ N we

have yi P
sd
i xi. Random assignment x is priority-constrained sd-efficient if for each

random assignment y that sd-dominates x there is a school j such that yj 6%sd
j xj .

Random assignment y Pareto dominates random assignment x with respect to
vNM-utility profile U if for each i ∈ N we have∑

j∈M
uijyij ≥

∑
j∈M

uijxij ,

and the inequality is strict for at least one agent. Random assignment x is priority-
constrained efficient if for each random assignment y that Pareto dominates x there
is a school j such that yj 6%sd

j xj . A random assignment y dominates random assign-
ment x in social welfare terms with respect to profile U if∑

i,j

uijyij >
∑
i,j

uijxij .

Random assignment x maximizes social welfare subject to priority constraints
if for each assignment y that dominates x in social welfare terms with respect to U
there is a school j such that yj 6%sd

j xj .
He et al. (2018) consider a slightly stronger version of priority-constrained efficiency,

called two-sided efficiency, in which also priority-improvements that leave agents’ wel-
fare unchanged are ruled out. Formally, a random assignment y makes a welfare-
indifferent priority improvement on random assignment x if for each i ∈ N we
have

∑
j∈M uijyij =

∑
j∈M uijxij , for each j ∈ M we have yj %sd

j xj and for at least

one j ∈ M we have yj �sdj xj . A random assignment x is two-sided efficient if it is
priority-constrained efficient and does not admit a welfare-indifferent priority improve-
ment. Analogously, we can define two-sided sd-efficiency as the combination of
priority-constrained sd-efficiency and the absence of ordinal welfare-indifferent priority
improvements.

2.1.2 Cut-off constrained efficiency

As a second priority comparison criterion we consider lower bounds on priorities: The
cut-off Cj(x) for school j under random assignment x is the lowest priority class
containing an agent that obtaining a seat in school j under x with positive probability,

Cj(x) := N
max{`:∃i∈N`

j ,xij>0}
j .
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A school j uses a more lenient admission policy under random assignment y than
under random assignment x, if either the school has a lower cut-off in y than in x or it
has the same cut-off, but admits a bigger fraction of the students in the cut-off class,

Cj(x) �j Cj(y) or [Cj(x) = Cj(y) and
∑

i∈Cj(x)=Cj(y)

yij >
∑

i∈Cj(x)=Cj(y)

xij ].

A random assignment x is cut-off-constrained sd-efficient if for each random assign-
ment y that sd-dominates it, there exists a school that uses a more lenient admission
policy under y than under x. Similarly, a random assignment x is cut-off-constrained
efficient if for each random assignment y that Pareto dominates it, there exists a school
that uses a more lenient admission policy under y than under x. A random assign-
ment x maximizes social welfare subject to priority cut-offs if for each random
assignment y that dominates x in social welfare terms there is a school j that uses a
more lenient admission policy under y.

Remark 1. By definition, first-order stochastic dominance according to priorities im-
plies a higher or the same cut-off, i.e., for j ∈M with yj %sd

j xj we have Cj(y) %j Cj(x).

Moreover, yj %sd
j xj implies that

∑
i�jCj(x) yij ≥

∑
i�jCj(x) xij so that in the case that

Cj(x) = Cj(y) we have∑
i∈Cj(x)

xij = 1−
∑

i�jCj(x)

xij ≥ 1−
∑

i�jCj(x)

yij =
∑

i∈Cj(x)

yij .

Hence yj %sd
j xj implies that j uses a more lenient or the same admission policy under

x than under y. Thus, cut-off-constrained (sd)-efficiency implies priority-constrained
(sd)-efficiency. We will later show (see Example 1) that cut-off constrained efficiency
is generally a stronger notion than priority-constrained efficiency.

On the other hand, cut-off-constrained (sd)-efficiency can be understood as priority-
constrained (sd)-efficiency according to a ”coarser” priority profile %′ under which
agents are partitioned into three priority classes at each school: Those that are ranked
above the cut-off priority class, those that are in the cut-off class, and those ranked
below the cut-off class. Formally, for j ∈M and i, i′ ∈ N define

i %′j i
′ ⇔ [i �j Cj(x) or (i ∼j Cj(x) %j i

′) or (Cj(x) �j i and Cj(x) �j i′)].

A random assignment is cut-off-constrained (sd)-efficient for priorities % if and only if
it is priority-constrained (sd)-efficient for priorities %′ .

2.2 Improvement cycles

Without priorities, sd-efficiency is equivalent to the absence of welfare-improving cycles
of trades (see Lemma 3 in Bogomolnaia and Moulin, 2001). Formally, a (stochastic)
improvement cycle for a random assignment x is a sequence of agents i0, i1, . . . , iK
and schools j0, j1, . . . , jK such that the following holds:

1. xik,jk > 0 for each 0 ≤ k ≤ K,

2. jK RiK−1 jK−1RiK−2 jK−2 . . . j1Ri0 j0 PiK jK .
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Next, we define priority-respecting versions of this notion. The first requires that real-
locating probability shares along the cycle should not lead to a less priority-respecting
(in the stochastic dominance sense) assignment. A priority-respecting improve-
ment cycle is an improvement cycle such that i0 %j1 i1 %j2 . . . iK %j0 i0. The second
and stronger notion leaves the allotment of probability shares to each priority class
invariant; an equal-priority improvement cycle is an improvement cycle such that
i0 ∼j1 i1 ∼j2 i2 . . . iK ∼j0 i0.

Remark 2. For the case that preferences R are strict, and x is ex-ante stable, Kesten
and Ünver (2015) consider the notion of a stable improvement cycle that generalizes a
notion introduced by Erdil and Ergin (2008) for deterministic stable matchings to the
probabilistic set-up. A stable improvement cycle is an improvement cycle such that
for 0 ≤ k ≤ K, ik is one of the highest priority agents at school jk+1 that prefers jk+1

to some of the schools that he is matched to with positive probability. Here we take
indices modulo K + 1.

The notion of a stable improvement cycle relates to the previous notions as fol-
lows: suppose R is a profile of strict preferences, and x is an ex-ante stable random
assignment. Then each priority-respecting improvement cycle for x is a stable im-
provement cycle, as otherwise for each k if there would be a higher priority agent
i �jk+1

ik %jk+1
ik+1 such that i prefers jk+1 to a school that he is matched to with

positive probability, then i and jk+1 ex-ante block x contradicting the ex-ante stability
of x. Thus, for ex-ante stable random assignment under strict preferences, priority-
respecting improvement cycles are a special case of stable improvement cycles.

Analogous to the notion of a welfare-indifferent priority improvement, we can de-
fine a welfare-indifferent priority-improvement cycle to be a sequence of agents
i0, i1, . . . , iK and schools j0, j1, . . . , jK such that xik,jk > 0 for each 0 ≤ k ≤ K,
jK IiK−1 jK−1 IiK−2 jK−2 . . . j1 Ii0 j0 IiK jK and i0 %j1 i1 %j2 . . . iK−1 %jK iK �j0 i0.

2.3 Equilibrium with priority-specific prices

In an equilibrium with priority-specific prices, a pseudo-market of probability shares
generates a random assignment. Each agent has a budget of tokens and can “buy”
probability shares at the different schools. Agents face different prices depending on
their priority.

Formally, a pseudo-market is a triple (U, b,%) consisting of a vNM-utility profile
U , a vector of budgets b ∈ RM+ , and priorities %. We consider two equilibrium notions
for pseudo-markets. The first relaxes the equilibrium notion of He et al. (2018): An
equilibrium with priority-specific prices for the pseudo market (U, b,%) is a pair
(x, p) consisting of a random assignment x, and prices p = (pj,`)j∈M,1≤`≤`(j) that are
(weakly) decreasing with priority, for each j ∈ M we have 0 ≤ pj,1 ≤ pj,2 ≤ . . . ≤
pj,`(j) ≤ ∞, such that for each i ∈ N the lottery xi is an optimum for the problem

max
π∈∆(M)

∑
j∈M

uijπj

subject to
∑
j∈M

pj,`(i,j)πj ≤ bi.
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We denote the set of equilibria with priority-specific prices for (U, b,%) by E(U, b,%).
A stronger notion of constrained equilibrium was introduced by He et al. (2018).

A cut-off-constrained equilibrium is a pair (x, p̄) of a random assignment x and
prices p̄ ∈ RM+ such that (x, p) ∈ E(U, b,%) for

pj,` :=


0, for N `

j �j Cj(x),

p̄j , for N `
j = Cj(x),

∞, for Cj(x) �j N `
j ,

We denote the set of cut-off-constrained equilibria for (U, b,%) by Ē(U, b,%). Re-
quiring zero prices above the cut-offs guarantees that cut-off-constrained equilibrium
assignments are ex-ante stable by construction: If an agent i and school j ex-ante block
the random assignment x, then i �j Cj(x) and i can obtain j for free. Thus, i could
afford a better lottery where he substitutes probability shares at a worse school for
probability shares at school j.5

3 Results

3.1 Constrained ordinal efficiency welfare theorems

We now relate the concepts of priority-respecting improvement cycles, priority-
constrained ordinal efficiency, and priority-constrained cardinal efficiency to each other
by providing an ordinal efficiency welfare theorem for random assignments with prior-
ities.

Theorem 1 (Constrained Ordinal Efficiency Welfare Theorem). For a random assign-
ment x, preferences R and priorities % the following statements are equivalent:

(1) x has no priority-respecting improvement cycle,

(2) x is priority-constrained sd-efficient for R and %,

(3) there exists a vNM-utility profile U consistent with R, such that x maximizes
social welfare subject to priority constraints for U and %.

Proof. To show that (3) ⇒ (2), note that if a random assignment y sd-dominates x
under the preferences R induced by U , then y Pareto dominates x with respect to U
and in particular y yields higher social welfare than x with respect to U . To show
that (2) ⇒ (1) note that if there is a priority-respecting improvement cycle, we can
construct an assignment y that sd-dominates x by reallocating probabilities across the
cycle: Let i0, . . . , iK and j0, . . . , jK be the agents and schools in the cycle. Choose

5Zero prices above the cut-off are essential for this argument. Otherwise, equilibria with priority-specific
prices can fail to be ex-ante or even ex-post stable: Consider two agents i1, i2, two schools j1, j2 each with
one seat and priorities i1 �j1 i2 and i1 �j2 i2. Suppose both agents prefer the first school to the second one:
u11 > u12 > 0 and u21 > u22 > 0. Let b1 = 0 and b2 = 1. Consider the deterministic assignment defined by
µ(i1) = j2 and µ(i2) = j1. Agent i1 and school j1 block the assignment. However, with prices p1,2 = 1 = p1,1
and p2,2 = p2,1 = 0 the degenerate lottery that chooses µ for sure is an equilibrium.
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ε > 0 such that ε < min{xik,jk , 1−xik,jk+1
} for each 0 ≤ k ≤ K (taking indices modulo

K+1), and define yikjk = xik,jk−ε and yikjk+1
= xik,jk+1

+ε for each 0 ≤ k ≤ K (taking
indices modulo K + 1). Leave the assignment otherwise un-changed. By construction
yj %sd

j xj for each j ∈ M , yiR
sd
i xi for each i ∈ N and yiK P

sd
iK
xiK . Thus, (2) ⇒ (1).

To show (1)⇒ (3), we use the following result due to Manea (2008):

Lemma 1 (Proposition 2 in Manea, 2008). Let B and ./ two disjoint binary relations
over a finite set O. Let D:=B ∪ ./. If D is acyclic, i.e. if there exists no sequence
o0, o1, . . . , ok with ok D ok−1 D . . . D o0 B ok, then there exist a mapping v : O → R
such that for all o, o′ ∈ O we have

o B o′ ⇒ v(o) > v(o′),

o ./ o′ ⇒ v(o) ≥ v(o′).

We choose O to be the set of all priority classes, i.e. O := {N `
j : j ∈M, 1 ≤ ` ≤ `(j)}

and define D such that it reflects a common component of the agents’ preferences: if
an agent is contained in two priority classes (at different schools), consumes from the
first one with positive probability, but (weakly) prefers consuming from the second
one, then that second priority class is (weakly) preferred to the first one according to
D . Formally, for j 6= j′, 1 ≤ ` ≤ `(j) and 1 ≤ `′ ≤ `(j′) we let

N `
j B N `′

j′ ⇔ (∃i ∈ N `
j ∩N `′

j′ , xij′ > 0, j Pi j
′),

N `
j ./ N

`′
j′ ⇔ (N `

j 7 N `′
j′ and ∃i ∈ N `

j ∩N `′
j′ , xij′ > 0, j Ii j

′).

We rank priority classes at the same school such that a lower priority is weakly
preferred to a higher priority, i.e. for j ∈M and 1 ≤ `, `′ ≤ `(j) we let

N `′
j ./ N `

j ⇔ ` < `′.

The absence of priority-respecting improvement cycles implies that D is acyclic. Indeed
suppose there is a cycle

N `K
jK

D N
`K−1

jK−1
D . . . D N `0

j0
. N `K

jK
.

In Figure 1 we illustrate an example of a cycle. Note that consecutive priority classes in
the cycle could be at the same school: Let k0 = 0, let k0 < k1 ≤ K be the smallest index
such that jk1 6= jk0 = j0, let k1 < k2 ≤ K be the smallest index such that jk2 6= jk1
etc. Let K ′ ≤ K be the number of resulting subindices. By definition of D, we can find

for r = 0, . . . ,K ′ − 1 a ir ∈ N
`kr+1

−1

jkr
∩N

`kr+1

jkr+1
with xirjkr > 0 and jkr+1 Rir jkr , and a

iK′ ∈ N `0
jk0
∩N

`kK′
jkK′

with xiK′jkK′
> 0 and jk0 PiK′ jkK′ . Moreover, by the definition of

./, for each r = 0, . . . ,K ′ we have N
`kr+1

−1

jkr
./ N

`kr+1
−2

jkr
./ . . . ./ N

`kr
jkr

and therefore

ir %jkr
ir−1 taking indices modulo K ′ + 1. The sequence of agents i0, i1, . . . , iK′ and

schools jk0 , jk1 , . . . , jkK′ form a priority respecting improvement cycle contradicting the
absence of such cycles.

We use the lemma to define the utility profile U . Consider a mapping v : O → R as
in Lemma 1. Since O is finite, we may choose v such that it takes on strictly positive
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Figure 1: Illustrative example of a cycle. Brown edges depict the ./ relation. Blue edges
depict the D relation, while the green edge depicts the B relation. Here j0 = j1 = jk0 = 3,
j2 = j3 = j4 = jk1 = 2 and j5 = j6 = j7 = jk2 = 1. Moreover, K = 7 and `0 = 1, `1 = 3,
`2 = 2, `3 = 3, `4 = 5, `5 = 3, `6 = 4, `7 = 6.

values everywhere. We define utilities such that for each priority class N `
j ∈ O all

agents in N `
j that are matched to j with positive probability have the same utility

v(N `
j ) for attending j. Moreover, this utility is the maximal utility that any agent in

N `
j has for attending j. Thus, we require for each i ∈ N and N `

j ∈ O that

xij > 0, i ∈ N `
j ⇒ uij = v(N `

j ), (1)

xij = 0, i ∈ N `
j ⇒ uij ≤ v(N `

j ). (2)

We show that we can construct U consistent with R such that Conditions (1) and (2)
hold. For i ∈ N order the schools that i obtains with positive probability consistently
with Ri, i.e., let {j0, . . . , jK} = {j ∈ M : xij > 0} with jK Ri jK−1Ri . . . Ri j0. For
0 ≤ k ≤ K, let `k := `(i, jk) and let for each j ∈M :

j Ii jk ⇒ uij = v(N `k
jk

).

Define Ui otherwise consistent with Ri such that (2) holds, by requiring for 0 ≤ k ≤
K − 1 that

jk+1 Pi j Pi jk ⇒ v(N `k
jk

) < uij < min
j′∈M :jk+1Ri j′ Pi jk

v(N
`(i,j′)
j′ ),

and that

j Pi jK ⇒ v(N `K
jK

) < uij < min
j′∈M :j′ Pi jK

v(N
`(i,j′)
j′ ),

j0 Pi j ⇒ 0 ≤ uij < min
j′∈M :j0Ri j′

v(N
`(i,j′)
j′ ).

By the construction of our ordering this is possible and yields Conditions (1) and (2), as

for each 0 ≤ k ≤ K and j ∈M : if j Pi jk, then N
`(i,j)
j B N `k

jk
and therefore v(N

`(i,j)
j ) >

v(N `k
jk

), and if j Ii jk, then N
`(i,j)
j ./ N `k

jk
and therefore v(N

`(i,j)
j ) ≥ v(N `k

jk
) = uij .

11



Having defined U , we can show that x maximizes social welfare subject to priority
constraints with respect to U and %. Suppose for random assignment y we have∑

i∈N

∑
j∈M

uijyij >
∑
i∈N

∑
j∈M

uijxij .

By Condition (1), we have

∑
j∈M

∑
i∈N

uijxij =
∑
j∈M

`(j)∑
`=1

∑
i∈N`

j

uijxij =
∑
j∈M

`(j)∑
`=1

v(N `
j )(

∑
i∈N`

j

xij).

By Conditions (1) and (2), we have

∑
j∈M

∑
i∈N

uijyij =
∑
j∈M

`(j)∑
`=1

∑
i∈N`

j

uijyij ≤
∑
j∈M

`(j)∑
`=1

v(N `
j )(

∑
i∈N`

j

yij).

Thus,

∑
j∈M

`(j)∑
`=1

v(N `
j )(

∑
i∈N`

j

yij) >
∑
j∈M

`(j)∑
`=1

v(N `
j )(

∑
i∈N`

j

xij).

Rearranging the terms and noting that
∑

i%jN
`(j)
j

yij =
∑

i∈N yij = qj =
∑

i∈N xij =∑
i%jN

`(j)
j

xij we have

0 <
∑
j∈M

`(j)∑
`=1

v(N `
j )(

∑
i∈N`

j

(yij − xij)) =
∑
j∈M

`(j)−1∑
`=1

(v(N `
j )− v(N `+1

j ))(
∑
i%jN`

j

(yij − xij)).

By construction, v(N `
j ) ≤ v(N `′

j ) for ` < `′ and therefore v(N `
j ) − v(N `+1

j ) ≤ 0 for
` = 1, . . . , `(j) − 1 for each j ∈ M. Thus, there is a j ∈ M and 1 ≤ ` ≤ `(j) with∑

i%jN`
j
(yij − xij) < 0 and therefore yj 6%sd

j xj .

Remark 3. An analogous ordinal efficiency theorem can be obtained for the two-sided
efficiency notions. The absence of priority-respecting improvement cycles and welfare-
indifferent priority-improvement cycles is equivalent to two-sided sd-efficiency and to
the existence of a vNM-utility profile under which the assignment under consideration
is two-sided efficient. We sketch the argument in the appendix.

Immediately from the theorem follows a stronger version of the ordinal efficiency
welfare theorem for the case that the random assignment in question is ex-ante sta-
ble. In this case, we can replace the notion of a priority-respecting improvement cycle
by the stronger notion of an equal-priority improvement cycle so that the absence
of a cycle is now a weaker efficiency notion. More specifically, it suffices to consider
equal-priority improvements cycles in which all involved agents are in a cut-off pri-
ority class. Moreover, priority-constrained (sd)-efficiency can be replaced by cut-off-
constrained (sd)-efficiency. More generally, the equivalence between cut-off-constrained
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sd-efficiency and cut-off-constrained efficiency under a consistent vNM-utility profile
does not require ex-ante stability.

We have to make one additional assumption on random assignments for the re-
sult. A random assignment x satisfies no indifferences between assigned cut-off
schools and safe schools6 if for i ∈ N j, j′ ∈ M with i ∈ Cj(x) and i �j′ Cj′(x),
we have j Ii j

′ ⇒ xij = 0. The condition is, for example, redundant if preferences are
strict.

Corollary 1 (Ex-ante Stable Ordinal Efficiency Welfare Theorem). For an ex-ante sta-
ble random assignment x that satisfies no indifferences between assigned cut-off schools
and safe schools under preferences R and priorities % the following statements are
equivalent:

(1) x has no equal-priority improvement cycle according to R and %,

(2) x is cut-off-constrained sd-efficient for R and %,

(3) there exists a vNM-utility profile U consistent with R, such that x maximizes
social welfare subject to priority cut-offs for U and %.

Proof. Consider the auxiliary priority profile %′ as defined in Remark 1. The equiv-
alence between (2) and (3) follows by Theorem 1 applied to %′. To show the equiv-
alence between (1) and (2), we show that if x is ex-ante stable and satisfies no in-
differences between assigned cut-off schools and safe schools, then an improvement
cycle under R is priority-respecting under %′ if and only if it is an equal-priority cycle
under %. The equivalence then follows from Theorem 1 applied to %′. Let agents
i0, i1, . . . , iK and schools j0, j1, . . . , jK form an improvement cycle for x. Suppose that
i0 %′j1 i1 %′j2 . . . iK %′j0 i0. By the assumption of no indifferences between assigned
cut-off schools and safe schools, we have i0 ∼′j1 i1 ∼

′
j2
. . . iK ∼′j0 i0. If ik, ik−1 ∈ Cjk(x)

for k = 0, . . .K (taking indices modulo K + 1), then i0 ∼j1 i1 ∼j2 . . . iK ∼j0 i0 and the
cycle is an equal-priority improvement cycle according to %. If ik, ik−1 �′jk Cjk(x) for
k = 0, . . .K (taking indices modulo K+1), then iK �′j0 Cj0(x) and thus iK �j0 Cj0(x).
In that case iK and j0 form an ex-ante blocking pair according to %, contradicting the
ex-ante stability of x. Immediately from the definition of %′, it follows that equal-
priority improvement cycles according to % are priority-respecting under %′.

Remark 4. Note that in the proof, we have used ex-ante stability and the assumption
of no indifferences between assigned cut-off schools and safe schools only for the equiv-
alence between (1) and (2), and between (1) and (3). Thus, statements (2) and (3) are
equivalent for arbitrary not necessarily ex-ante stable assignments.

The following example demonstrates that, even under ex-ante stability (and even
under no indifferences between assigned cut-off schools and safe schools), cut-off-
constrained efficiency is strictly stronger than priority-constrained efficiency.7

6We use the term ”safe school” for schools where the agent is ranked strictly above the cut-offs, since in
cut-off constrained equilibrium allocations those are the schools where the agent faces a zero price and thus
is always guaranteed a seat.

7The two notions are, however, equivalent for the case that priorities and preferences are strict and the
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Example 1. Consider three agents, three schools, each with a single seat (qj = 1 for
each j), the following utilities and priorities,

Ui1 Ui2 Ui3 %j1 %j2 %j3

2 3 5 i1 i1, i2, i3 i1, i2, i3
3 4 4 i2
4 9 3 i3

The underlined entries in the priorities are priority cut-offs for the following assignment
(here and in the following rows correspond to agents and columns to schools)

x =

0.6 0 0.4
0.2 0.2 0.6
0.2 0.8 0

 .

Random assignment x is ex-ante stable, since the only potential blocking pairs are
agent i1 with school j1 and agent i2 with school j1. However, for both agents, j1 is
the worst school. We show in the appendix that x is two-sided efficient. However, x
is not cut-off-constrained efficient, since the following assignment without more lenient
schools dominates it:

y =

0.5 0.2 0.3
0.3 0 0.7
0.2 0.8 0



3.2 Equilibria with Priority-Specific Prices

3.2.1 First Welfare Theorems

He et al. (2018) show that cut-off-constrained equilibrium assignments are priority-
constrained efficient if the following tie-breaking assumption is made: Whenever mul-
tiple lotteries are optimal for an agent, he chooses a cheapest one. Their argument im-
mediately generalizes to equilibrium random assignments under priority-specific prices.
For completeness, the appendix contains a proof.

Proposition 1 (Constrained First Welfare Theorem). For each pseudo-market
(U, b,%), each equilibrium random assignment for priority-specific prices such that each
agent chooses a cheapest lottery whenever multiple lotteries are optimal, is priority-
constrained efficient with respect to U and %.

The result can be strengthened to two-sided efficiency if prices in the cut-offs are
positive. However, two-sided efficiency can fail to hold if some prices in the cut-off are
zero:

random assignment is ex-ante stable: In that case, Schlegel (2018) proves that in each ex-ante stable random
assignment, at each school at most two agents have a positive probability of obtaining a seat at the school
which implies the equivalence between the two efficiency notions.
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Example 2. Consider two agents i1, i2, two schools j1, j2 each with one seat, arbitrary
budgets b1, b2, and priorities i1 �j1 i2 and i2 �j2 i1. Suppose u11 = u12 > 0 and
u21 = u22 > 0. Consider the random assignment x with xij = 1

2 for all i and j.
Since both agents are indifferent between both schools, but agent i1 is ranked higher
at j1 and agent i2 is ranked higher at j2, the assignment that assigns i1 to j1 for sure
and i2 to j2 for sure yields a welfare-indifferent priority improvement over x. Thus,
x is not two-sided efficient. However, it can be decentralized as a cut-off constrained
equilibrium with prices p̄j1 = p̄j2 = 0 and the second priority as cut-off.

An immediate consequence of the proposition and our definition of cut-off-
constrained efficiency is that cut-off-constrained equilibrium assignments are cut-off-
constrained efficient.

Corollary 2. For each pseudo market (U, b,%), each cut-off-constrained equilibrium
assignment such that each agent chooses a cheapest lottery whenever multiple lotteries
are optimal is cut-off-constrained efficient.

Proof. Consider the auxiliary priority profile %′ as in Remark 1. By definition, Ē(U, b,%
) = Ē(U, b,%′) ⊆ E(U, b,%′). Thus, by the proposition, each cut-off-constrained equi-
librium assignment x in (U, b,%) is priority-constrained efficient in (U, b,%′) and hence,
by Remark 1, cut-off-constrained efficient in (U, b,%).

3.2.2 Decentralizing random assignments as equilibrium

Next, we provide a strengthening of the ex-ante stable version of the ordinal efficiency
welfare theorem (Corollary 1). Instead of constructing a utility profile such that the
random assignment is cut-off constrained efficient, we now construct prices and budgets
along with the utility profile such that the random assignment can be decentralized as
a cut-off-constrained equilibrium.

Theorem 2 (Ordinal Efficiency Welfare Theorem with Prices). For a random assign-
ment x, preferences R and priorities %, the following statements are equivalent:

(1) x is ex-ante stable, satisfies no indifferences between assigned cut-off schools and
safe schools, and has no equal-priority improvement cycle according to R and %.

(2) There exists a vNM-utility profile U consistent with R, a budget vector b ∈ RN+ ,
and strictly positive prices p̄ = (p̄j)j∈M ∈ RM++ such that (x, p̄) is a cut-off-
constrained equilibrium under U , b and % in which each agent chooses a cheapest
lottery whenever multiple lotteries are optimal.

Proof. To show that (2) ⇒ (1), first note that, as all prices are strictly positive and
each agent chooses a cheapest lottery whenever multiple lotteries are optimal, x satis-
fies no indifferences between assigned cut-off schools and safe schools. As observed in
Section 2.3, cut-off-constrained equilibrium assignments are ex-ante stable. By Corol-
lary 2, x is cut-off constrained efficient with respect to U and %. Since x is ex-ante
stable, satisfies no indifferences between assigned cut-off schools and safe schools with
respect to R and %, and there exists a vNM profile U consistent with R, such that x
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is cut-off constrained efficient with respect to U and %, Corollary 1 implies that there
is no equal-priority improvement cycle according to R and %.

To show that (1) ⇒ (2), define Cj := Cj(x) for each j ∈ M and reconsider the
ordering D defined in the proof of Theorem 1. Observe that by the absence of equal-
priority improvement cycles, D is acyclic on the set O′ ⊆ O of all cut-off classes
O′ := {Cj : j ∈ M}. Thus, by Lemma 1, we find a mapping v : O′ → R such that
Cj B Cj′ ⇒ v(Cj) > v(Cj′) and Cj ./ Cj′ ⇒ v(Cj) ≥ v(Cj′). Since O′ is finite, we may
choose v such that it takes on strictly positive values everywhere. For each j ∈ M we
define p̄j := v(Cj). For each i ∈ N we let bi :=

∑
j:i∈Cj

p̄jxij . Moreover, we choose a

number 0 ≤ ū < minj∈M v(Cj) and define U as follows: For each i ∈ N we choose Ui
consistent with Ri such that

xij > 0, i �j Cj ⇒ uij = ū, (3)

xij = 0, i �j Cj ⇒ uij ≤ ū, (4)

xij > 0, i ∈ Cj ⇒ uij = p̄j + ū, (5)

xij = 0, i ∈ Cj ⇒ uij ≤ p̄j + ū. (6)

By construction of D and ex-ante stability this is possible: By ex-ante stability, for each
i ∈ N , if i �j Cj , then j′Ri j for each j′ ∈ M with xij′ > 0 and by the assumption of
no indifference between cut-off schools and safe schools, we have j′ Pi j if additionally
i ∈ Cj′ . Thus, (3) and (4) can be satisfied. For j, j′ ∈M with i ∈ Cj ∩Cj′ and xij > 0
we have that j′Ri j implies p̄j′ ≥ p̄j and that j′ Pi j implies p̄j′ > p̄j . Thus, (5) and
(6) can be satisfied.

We show that for each i ∈ N lottery xi is optimal given prices and his budget. It
suffices to show that xi is an optimum for the problem:

max
π

∑
j:i%jCj

uijπj

subject to
∑

j∈M :i∈Cj

p̄jπj ≤ bi,∑
j∈M

πj ≤ 1,

πj ≥ 0, ∀j ∈M.

The dual problem is

min
λ,µ

λbi + µ

subject to p̄jλ+ µ ≥ uij , ∀j : i ∈ Cj ,
µ ≥ uij , ∀j : i �j Cj ,
λ, µ ≥ 0.

The choice of λ = 1 and µ = ū is feasible for the dual, as, by Conditions (5) and (6),
for each j with i ∈ Cj we have

p̄jλ+ µ = p̄j + ū ≥ uij ,
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and by Conditions (3) and (4), for each j with i �j Cj we have

µ = ū ≥ uij .

By Conditions (3) and (5) we have∑
j∈M

uijxij =
∑
j:i∈Cj

(p̄j + ū)xij +
∑

j:i�jCj

ūxij =
∑
j:i∈Cj

p̄jxij + ū = bi + ū = λbi + µ.

By linear programming duality, this shows that xi is an optimal solution to the
agent’s maximization problem (and (λ = 1, µ = ū) is optimal for the dual). Next,
we show that there is no cheaper bundle that maximizes utility: If the budget con-
straint does not bind, then in the corresponding dual solution λ = 0, and therefore
µ ≥ maxj∈M :i%jCj

uij . But then by linear programming duality
∑

j∈M uijxij = µ ≥
maxj∈M :i%jCj

uij . Thus, uij = µ = maxj∈M :i%jCj
uij for each j ∈ M with xij > 0. If

there is a j ∈ M with i �j Cj such that xij > 0, then by the assumption of no indif-
ferences between assigned cut-off schools and safe schools, we have xij′ = 0 for each
j′ ∈M with i ∈ Cj′ , and therefore bi = 0. Otherwise note that for each j, j′ ∈M with
xij > 0, i ∈ Cj ∩ Cj′ and uij′ = maxj∈M :i%jCj

uij = uij we have j′ ./ j and therefore
p̄j′ ≥ p̄j . In either case, xi is a cheapest utility maximizing lottery.

The following example demonstrates that the assumption of ”no indifferences be-
tween assigned cut-off schools and safe schools” is necessary for the construction of a
utility profile and prices such that the random assignment is decentralized as a cut-off-
constrained equilibrium.8

Example 3. Consider three agents, three schools, each with a single seat (qj = 1 for
each j), and the following preferences and priorities.

Ri1 Ri2 Ri3 %j1 %j2 %j3

j1, j2 j1 j2 i1 i2 i3
j3 j2 j3 i2 i1, i3 i1, i2

j3 j1 i3

The underlined entries in the priorities are the cut-offs for the following assignment

x =

0.5 0.5 0
0.5 0.5 0
0 0 1

 .

There exists no blocking pair. Moreover, one can show that the random assignment
has no equal-priority improvement cycle and, more generally, is cut-off-constrained
sd-efficient.

Now suppose there exist a utility profile U consistent with R and decentralizing
cut-off prices p and budgets b. Observe that i1 is indifferent between j1 and j2 and is

8In the other direction, it is necessary that cut-off prices are strictly positive to imply that ”no indifferences
between assigned cut-off schools and safe schools” is satisfied by the equilibrium assignment: The random
assignment in Example 2 violates ”no indifferences between assigned cut-off schools and safe schools”, but
can be decentralized with zero prices.
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strictly above the cut-off at j1. Thus, it must be the case that p2 = 0, since otherwise i1
could obtain probability shares at school j1 instead to obtain a cheaper bundle. More
generally, the assignment cannot be decentralized even if we allow for zero prices in the
cut-off. It needs to be the case that p2 > p3 since otherwise agent i3 could substitute
shares at j3 by shares at j2 which he prefers. But then 0 = p2 > p3, a contradiction.

In Theorem 2 we started with ordinal preferences and constructed vNM-utilities,
budgets, cut-offs, and prices to decentralize an ex-ante stable random assignment that
is cut-off-constrained sd-efficient as a cut-off-constrained equilibrium. It is a natural
question, whether the result can be strengthened in the following way: Start with a
profile of vNM-utilities and show that each ex-ante stable random assignment that is
cut-off-constrained efficient can be decentralized as a cut-off-constrained equilibrium.
We demonstrate by means of a counterexample that this is not possible, and a cardinal
second welfare theorem does not hold. In the example, each agent obtains different
utility from the different schools. Thus, the induced ordinal preferences are strict (in
particular, there is no indifference between assigned cut-off schools and safe schools),
and the example does not rely on indifferences interfering with the construction of
decentralizing prices.

Example 4. Consider three agents, three schools, each with a single seat (qj = 1 for
each j), and the following utilities and priorities

Ui1 Ui2 Ui3 %j1 %j2 %j3

1 3 4 i1 i2 i3
2 1 2 i2, i3 i1, i3 i1, i2
5 6 1

The underlined entries in the priorities are the cut-offs for the following assignment

x =

0.1 0.6 0.3
0.8 0.2 0
0.1 0.2 0.7

 .

There exist no blocking pairs in this example since for all agents, their worst school
is the only school where they are ranked strictly above the cut-off. Therefore, x is
ex-ante stable. We show in the appendix that x is two-sided efficient (which, as there
are only two priority classes at each school and utilities are strict, is equivalent to
cut-off-constrained efficiency).

Next, we show that x cannot be decentralized as a cut-off-constrained equilibrium.
Suppose there are budgets b ∈ RN+ and prices p̄ = (p̄1, p̄2, p̄3) ∈ RM+ such that (x, p̄) is
a cut-off-constrained equilibrium.

Agent i1’s optimization problem is

max
π∈∆(M)

π1 + 2π2 + 5π3

subject to p̄2π2 + p̄3π3 ≤ b1.

Substituting π1 = 1− π2 − π3 and ignoring the constant in the objective function,
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we obtain the following equivalent optimization problem

max
π1,π2

π2 + 4π3

subject to p̄2π2 + p̄3π3 ≤ b1
π2 + π3 ≤ 1

π2, π3 ≥ 0.

If (x, p̄) is a cut-off-constrained equilibrium, then (π1, π2, π3) = (0.1, 0.6, 0.3) is a solu-
tion to the original problem and hence (π2, π3) = (0.6, 0.3) is a solution to the equivalent
problem. At (0.6, 0.3) neither the non-negativity constraints π2, π3 ≥ 0 nor the con-
straint π2 + π3 ≤ 1 binds. Thus, it is not a corner of the LP polytope and therefore
indifference curves are parallel to the first constraint p̄2π2 + p̄3π3. That is p̄2

p̄3
= 1

4 .
Agent i3’s optimization problem is

max
π∈∆(M)

4π1 + 2π2 + π3

subject to p̄1π1 + p̄2π2 ≤ b3

Similarly to the previous case, we can substitute π3 = 1 − π1 − π2 and ignore the
constant in the objective function, to obtain an equivalent problem

max
π1,π2

3π1 + π2

subject to p̄1π1 + p̄2π2 ≤ b3
π1 + π2 ≤ 1

π1, π2 ≥ 0

If (x, p̄) is a cut-off-constrained equilibrium, then (π1, π2, π3) = (0.1, 0.2, 0.7) is a
solution to the original problem and hence (π1, π2) = (0.1, 0.2) is a solution to the
equivalent problem. At (0.1, 0.2) neither the non-negativity constraints π1, π2 ≥ 0 nor
the constraint π1 + π2 ≤ 1 binds. Thus, it is not a corner of the LP polytope and
therefore indifference curves are parallel to the first constraint p̄1π1 + p̄2π2. That is
p̄1
p̄2

= 3
1 = 3.

Without loss of generality, we can assume that p̄2 = 1. Then p̄1 = 3 and p̄3 = 4.
Then, agent i2’s optimization problem becomes:

max
π∈∆(M)

3π1 + π2 + 6π3

subject to 3π1 + 4π3 ≤ b2

Similarly to the previous case, we can substitute π2 = 1 − π1 − π3 and ignore the
constant in the objective function to obtain an equivalent problem

max
π1,π3

2π1 + 5π3

subject to 3π1 + 4π3 ≤ b2
π1 + π3 ≤ 1

π1, π3 ≥ 0
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If (x, p̄) is a cut-off-constrained equilibrium, then (π1, π2, π3) = (0.8, 0.2, 0) is a
solution to the original problem and hence (π1, π3) = (0.8, 0) is a solution to the
equivalent problem. Since the second constraint does not bind at (0.8, 0), the first
constraint binds. That is, b2 = p̄1π1 + p̄3π3 = 3 × 0.8 = 2.4. But if b2 = 2.4 then
(π1, π3) = (0, 0.6) is feasible and gives a value 5 × 0.6 = 3, instead of 2 × 0.8 = 1.6.
This contradicts the assumption that (x, p̄) is a cut-off-constrained equilibrium.

Note that in the example, the optimality of xi1 for agent i1 determines the relative
cut-off price p̄2

p̄3
whereas the optimality of xi3 for agent i3 determines the relative cut-off

price p̄1
p̄2

. Thus, agents i1 and i2 jointly determine the relative cut-off prices for all pairs

of schools. However, the induced relative cut-off price p̄1
p̄3

is too high to make the lottery
xi2 optimal for agent i2. If we allow for positive prices above the cut-off at school j3 we
can decrease the relative cut-off price of schools j1 and j2 while maintaining optimality
of xi3 . Decreasing relative prices in such a way we can achieve optimality of xi2 for
agent i2 while maintaining optimality for the other two agents (similarly, we could use
a positive price above the cut-off at school j1 to change the relative cut-off prices for
schools j2 and j3 to achieve the same result). Thus, with positive prices above the
cut-off we can restore the second welfare theorem:

Example 4 (cont.). Random assignment x can be decentralized as an equilibrium with
priority-specific prices as follows: Prices are p1,1 = 0 < p1,2 = 1.6, p2,1 = 0 < p2,2 = 1,
p3,1 = 0.7 < p3,2 = 4, and budgets are b1 = 1.8, b2 = 1.28 and b3 = 0.85. Thus, for
school j3 there is a strictly positive price above the cut-off. One can check that for
each agent i ∈ N , lottery xi is a solution to the utility maximization problem subject
to the budget constraint:

Substituting π1 = 1 − π2 − π3 and ignoring the constant in the objective function
as above, agent i1’s optimization problem is equivalent to the following problem

max
π2,π3

π2 + 4π3

subject to π2 + 4π3 ≤ 1.8,

π2 + π3 ≤ 1,

π2, π3 ≥ 0.

Note that indifference curves and the first constraint are parallel. Thus, any feasible
(π2, π3) with π2 + 4π3 = 1.8, maximizes i1’s utility, in particular (0.6, 0.3).

Substituting π2 = 1 − π1 − π3 and ignoring the constant in the objective function
as above, agent i2’s optimization problem is equivalent to the following problem

max
π1,π3

2π1 + 5π3

subject to 1.6π1 + 4π3 ≤ 1.28,

π1 + π3 ≤ 1,

π1, π3 ≥ 0.

Note that indifference curves and the first constraint are parallel. Thus, any feasible
(π1, π3) with 1.6π1 + 4π3 = 1.28 maximizes agent i2’s utility, in particular (0.8, 0).
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Substituting π3 = 1 − π1 − π2 and ignoring the constant in the objective function
as above, agent i3’s optimization problem is equivalent to the following problem

max
π1,π2

3π1 + π2

subject to 0.9π1 + 0.3π2 ≤ 0.15,

π1 + π2 ≤ 1,

π1, π2 ≥ 0.

Note that indifference curves and the first constraint are parallel. Thus, any feasible
(π1, π2) with 0.9π1+0.3π2 = 0.15 maximizes i3’s utility, in particular a vector (0.1, 0.2).

More generally, we can obtain a second welfare theorem for equilibria with priority-
specific prices by using the second welfare theorem of Miralles and Pycia (2020) and
treating priority classes as separate objects that have to be priced. The second welfare
theorem for cut-off-constrained equilibria follows immediately as a corollary.

Theorem 3. For each priority-constrained efficient random assignment x under U
and %, there exist priority-specific prices p and budgets b such that (x, p) ∈ E(U, b,%).

Proof. We rely on Theorem 3 of Miralles and Pycia (2020). Importantly, a careful
inspection of their proof shows that their Theorem 3 does not hinge on the assumption
that the supply of each object is an integer number. Miralles and Pycia prove a more
general result for multi-unit demand, however, for our set-up, the following version of
their theorem is sufficient.

Lemma 2 ((Adapted) Theorem 3 in Miralles and Pycia, 2020). Let N be a finite set
of agents and let O be a finite set of objects where object o ∈ O is supplied in q̃o ∈ R+

units such that
∑

o∈O q̃o = |N |. Suppose each agent i ∈ N has a set of feasible objects,
Bi ⊆ O and a utility function ũi : Bi → R+. Let x̃ = ((x̃io)o∈Bi)i∈N ∈ ×i∈N∆(Bi)
such that for each o ∈ O we have

∑
i∈N x̃io ≤ q̃o and there is no ỹ ∈ ×i∈N∆(Bi) such

that for each o ∈ O we have
∑

i∈N ỹio ≤ q̃o and ỹ Pareto dominates x̃ in the sense that
for each i ∈ N we have ∑

o∈Bi

ũioỹio ≥
∑
o∈Bi

ũiox̃io

where the inequality is strict for at least one agent i ∈ N . Then there exist prices
p = (po)o∈O ∈ RO+ and budgets b = (bi)i∈N ∈ RN+ such that for each i ∈ N we have∑

o∈Bi
pox̃io ≤ bi and for each π ∈ ∆(Bi) we have∑

o∈Bi

ũioπo >
∑
o∈Bi

ũiox̃io ⇒
∑
o∈Bi

poπo > bi.

We define an auxiliary market as in Lemma 2. We treat priority classes as objects
which are supplied with the probability mass allotted to the priority class in the random
assignment x. Agents are allowed to buy from a priority class, as long as they are
ranked in or above that priority class at the school. Formally, let O := {N `

j : j ∈
M, ` = 1, . . . , `(j)}, let q̃j,` :=

∑
i∈N`

j
xij , for each i ∈ N let Bi = {N `

j ∈ O : i %j N
`
j }
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and let ũi,j,` := uij for each N `
j ∈ Bi. For each random assignment ỹ ∈ ×i∈N∆(Bi),

we can define a corresponding random assignment y ∈ ×i∈N∆(M) by

yij :=

`(j)∑
`=1

ỹi,j,`. (7)

Note that by construction, for each i ∈ N we have∑
j∈M

uijyij =
∑
j∈M

∑
`:i%jN`

j

ũi,j,`ỹi,j,`.

Moreover, ỹi ∈ ∆(Bi) and therefore
∑

j∈M
∑

`:i%jN`
j
ỹi,j,` = 1. As

∑
N`

j∈O
q̃j,` = |N |,

this implies that
∑

i∈N ỹi,j,` = q̃j,` for each N `
j ∈ O. Thus, for each j ∈ M and

1 ≤ `′ ≤ `(j) we have

∑
i:i%jN`′

j

yij =

`′∑
`=1

∑
i∈N

ỹi,j,` =

`′∑
`=1

q̃j,` =

`′∑
`=1

∑
i∈N`

j

xij =
∑

i:i%jN`′
j

xij ,

and therefore yj %sd
j xj . Similarly, we can derive a random assignment x̃ ∈ ×i∈N∆(Bi)

from x ∈ RN×M by

x̃i,j,` =

{
xij , for i ∈ N `

j ,

0, else.

Note that x̃ is Pareto efficient under Ũ among (in expectation) feasible random as-
signments for q̃, since otherwise if ỹ ∈ ×i∈N∆(Bi) is feasible (in expectation) under q̃
and Pareto dominates x̃ according to Ũ , the corresponding y ∈ ×i∈N∆(M), defined by
Equation (7), Pareto dominates x according to U . As yj %sd

j xj for each j ∈ M , this

contradicts the priority-constrained efficiency of x. Since x̃ is Pareto efficient under Ũ
among (in expectation) feasible random assignments for q̃, there exists, by Lemma 2,
prices p̃ ∈ RO+ and budgets b ∈ RN+ such that (x̃, p̃) is an equilibrium for (Ũ , b). For
each j ∈M and 1 ≤ ` ≤ `(j) define

pj,` := min
`≤`′≤`(j),q̃j,`′>0

p̃j,`′ ,

with the usual convention that the minimum over an empty set is ∞. Note that by
construction, for each j ∈M and 1 ≤ ` ≤ `′ ≤ `(j) we have pj,` ≤ pj,`′ . We show that
(x, p) is an equilibrium in (U, b,%). Let i ∈ N . First note that xi is affordable under
p since for j ∈M with xij > 0 we have q̃j,`(i,j) > 0 and therefore pj,`(i,j) ≤ p̃j,`(i,j) and

∑
j∈M

pj,`(i,j)xi,j ≤
∑
j∈M

p̃j,`(i,j)x̃i,j,`(i,j) =
∑
j∈M

`(j)∑
`=`(i,j)

p̃j,`x̃i,j,` ≤ bi.

Let πi ∈ ∆(M) such that ∑
j∈M

pj,`(i,j)πi,j ≤ bi.
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We show that xi yields weakly higher expected utility than πi under Ui. Define π̃i ∈
∆(Bi) as follows: for each j ∈ M choose a `(i, j) ≤ ` ≤ `(j) such that pj,`(i,j) = p̃j,`
and let π̃i,j,` := πi,j and πi,j,˜̀ := 0 for ˜̀ 6= `. By construction π̃i, is affordable under p̃

since it costs the same as πi under p. Since (x̃, p̃) is an equilibrium in (Ũ , b) and π̃i is
affordable under p̃ this implies that π̃i does not yield higher expected utility than x̃i
under Ũ . By construction π̃i and πi, yield the same expected utility

∑
j∈M

`(j)∑
`=`(i,j)

ũi,j,`π̃j,` =
∑
j∈M

ui,j

`(j)∑
`=`(i,j)

π̃j,` =
∑
j∈M

ui,jπi,j ,

and x̃i and xi yield the same expected utility

∑
j∈M

`(j)∑
`=`(i,j)

ũi,j,`x̃j,` =
∑
j∈M

ũi,j,`(i,j)x̃j,`(i,j) =
∑
j∈M

ui,jxi,j .

Thus, xi yields weakly higher expected utility than πi.

For the case of cut-off constrained efficient random assignments, we can strengthen
the result by having two prices for each school, a finite cut-off price, and a (weakly)
lower price for agents ranked above the cut-off. The following corollary follows imme-
diately from the previous theorem and Remark 1.

Corollary 3. For each cut-off-constrained efficient random assignment x under U and
R, there exist priority-specific prices p and budgets b such that (x, p) ∈ E(U, b,%), where
for each j ∈M there are two prices p

j
≤ p̄j such that

pj,` =


p
j

for N `
j �j Cj(x),

pj for N `
j = Cj(x),

∞ for Cj(x) �j N `
j .

A Proof Sketch for Remark 3

A welfare-indifferent priority-improvement cycle can be used (in a similar way as a
priority-respecting improvement cycle can be used to achieve a priority-constrained
sd-improvement in the proof of Theorem 1) to generate a random assignment y such
that yi I

sd
i xi for each i ∈ N , yj %sd

j xj for each j ∈M , and yj0 %sd
j0
xj0 . Thus, if there

is a welfare-indifferent priority-improvement cycle, the random assignment is not two-
sided efficient. Moreover, each two-sided sd-efficient random assignment is two-sided
efficient for any vNM utilities consistent with the ordinal preferences.

For the other direction, we adapt the proof of Theorem 1 as follows: We modify
the ordering D: For j 6= j′, 1 ≤ ` ≤ `(j) and 1 ≤ `′ ≤ `(j′) we leave D unchanged.
For j ∈ M and 1 ≤ ` < `′ ≤ `(j) we now let N `′

j B N `
j . One can show that if

there is no priority-respecting improvement cycle and no welfare-indifferent priority-
improvement cycle, then the modified D is acyclic. We derive U as before from D.
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The same argument as before shows that x maximizes social welfare subject to priority
constraints. To show that there is no welfare-indifferent priority improvement, observe
that for y with ∑

j∈M

∑
i∈N

uijyij =
∑
j∈M

∑
i∈N

uijxij ,

we can rearrange the terms as before to obtain

0 =
∑
j∈M

`(j)−1∑
`=1

(v(N `
j )− v(N `+1

j ))(
∑
i%jN`

j

(yij − xij)).

Now by the modified construction of D, we have v(N `
j ) < v(N `′

j ) for ` < `′ and therefore

v(N `
j )− v(N `+1

j ) < 0 for ` = 1, . . . , `(j)− 1 for each j ∈M. Thus, for each j ∈M and
1 ≤ ` ≤ `(j) we have

∑
i%jN`

j
yij =

∑
i%jN`

j
xij .

B Two-Sided Efficiency of x in Example 1

Let y be a random assignment such that

u11y11 + u12y12 + u13y13 ≥ 2× 0.6 + 3× 0 + 5× 0.4 = 3.2,

u21y21 + u22y22 + u23y23 ≥ 3× 0.2 + 4× 0.2 + 9× 0.6 = 6.8,

u31y31 + u32y32 + u33y33 ≥ 5× 0.2 + 4× 0.8 + 3× 0 = 4.2,

y11 ≥ 0.6, y11 + y21 ≥ 0.8.

We show that y = x. First we show that agent i1 obtains the same lottery, i.e. yi1 =
xi1 = (0.6, 0, 0.4). As 2y11 + 3y12 + 5y13 ≥ 3.2 and y11 + y12 + y13 = 1 we have
y12 + 3y13 ≥ 3.2 − 2 = 1.2. Since y11 ≥ 0.6 we have y12 + y13 ≤ 0.4 and therefore
1.2 ≤ y12 + 3y13 ≤ 0.4 + 2y13. As y12 + y13 ≤ 0.4, this implies y13 = 0.4 and y12 = 0.
Finally, since y11 + y12 + y13 = 1, we also have y11 = 0.6.

Next, we show that agent i3 obtains the same lottery, i.e. yi3 = xi3 = (0.2, 0.8, 0).
As 5y31 + 4y32 + 3y33 ≥ 4.2 and y31 + y32 + y33 = 1 we have 2y31 + y32 ≥ 1.2. As
y11 +y21 ≥ 0.8 we have y31 ≤ 0.2 and therefore, 0.4 +y32 ≥ 1.2 with the last inequality
strict only if y31 < 0.2. Thus, y32 = 0.8 and y31 = 0.2. Finally, since y31 +y32 +y33 = 1,
we also have y33 = 0.

As agents i1 and i3 obtain the same lottery also agent i2 obtains the same lottery,
i.e. yi2 = xi2 = (0.2, 0.2, 0.6).

C Two-Sided Efficiency of x in Example 4

Let y be a random assignment such that

u11y11 + u12y12 + u13y13 ≥ 1× 0.1 + 2× 0.6 + 5× 0.3 = 2.8,

u21y21 + u22y22 + u23y23 ≥ 3× 0.8 + 1× 0.2 + 6× 0 = 2.6,

u31y31 + u32y32 + u33y33 ≥ 4× 0.1 + 2× 0.2 + 1× 0.7 = 1.5,

y11 ≥ x11 = 0.1, y22 ≥ x22 = 0.2, y33 ≥ x33 = 0.7.
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We show that x = y. First we show that agent i1 obtains the same lottery, i.e. yi1 =
xi1 = (0.1, 0.6, 0.3). By y11 + y12 + y13 = 1 and y11 + 2y12 + 5y13 ≥ 2.8 we have
y12 +4y13 ≥ 1.8. As y11 ≥ 0.1, we have y12 +y13 ≤ 0.9 and therefore 1.8 ≤ y12 +4y13 ≤
0.9 + 3y13 with strict last inequality only if y11 > 0.1. Therefore y13 ≥ 0.3 and, as
y33 ≥ 0.7, we have y13 = 0.3. Thus, the last inequality from before holds with equality
and therefore y11 = 0.1. Since y11 + y12 + y13 = 1 this implies moreover y12 = 0.6.

Next, we show that agent i2 obtains the same lottery, i.e. yi2 = xi2 = (0.8, 0.2, 0). As
y13 = 0.3 and y33 ≥ 0.7, we have y33 = 0.7 and y23 = 0. Thus, 2.6 ≤ 3y21 +y22 +6y23 =
3y21 +y22. As y22 ≥ 0.2 we have y21 ≤ 0.8 and, as y21 +y22 ≤ 1 the previous inequality
can only hold for y22 = 0.2 and y21 = 0.8.

As agents i1 and i2 obtain the same lottery also agent i3 obtains the same lottery,
i.e. yi3 = xi3 = (0.1, 0.2, 0.7).

D Proof of Proposition 1

Proof. Let (x, p) ∈ E(U, b,%) such that each agent chooses a cheapest lottery if multiple
lotteries are optimal. Suppose random assignment y Pareto dominates x and y %sd x.
Then for each i ∈ N , ∑

j∈M
uijyij ≥

∑
j∈M

uijxij ,

where the inequality is strict for at least one agent. For an agent i, for which the
inequality is strict, we have by revealed preferences∑

j∈M
pijyij > bi ≥

∑
j∈M

pijxij .

For an agent i, for which equality holds, we have∑
j∈M

pijyij ≥
∑
j∈M

pijxij ,

since otherwise the tie-breaking rule that a cheapest lottery is chosen in case of multiple
optimal lotteries would be violated. Summing the inequalities over all agents, we obtain∑

i∈N

∑
j∈M

pijyij >
∑
i∈N

∑
j∈M

pijxij .

We can rearrange the right-hand side of the inequality,

∑
i∈N

∑
j∈M

pijxij =
∑
j∈M

∑
i∈N

pijxij =
∑
j∈M

`(j)∑
`=1

pj,`
∑
i∈N`

j

xij .

Similarly, we can rearrange the left-hand side of the inequality,

∑
i∈N

∑
j∈M

pijyij =
∑
j∈M

∑
i∈N

pijyij =
∑
j∈M

`(j)∑
`=1

pj,`
∑
i∈N`

j

yij .
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Thus,

∑
j∈M

`(j)∑
`=1

pj,`
∑
i∈N`

j

yij >
∑
j∈M

`(j)∑
`=1

pj,`
∑
i∈N`

j

xij

Rearranging the terms:

0 <
∑
j∈M

`(j)∑
`=1

pj,`(
∑
i∈N`

j

(yij − xij)) =
∑
j∈M

`(j)−1∑
`=1

(pj,` − pj,`+1)(
∑

i%jN
`+1
j

(yij − xij))

As pj,` − pj,`+1 ≤ 0 for each 1 ≤ ` ≤ `(j)− 1 and j ∈M , we thus have
∑

i%jN
`+1
j

(yij −
xij) < 0 for at least one 1 ≤ ` ≤ `(j)− 1 and j ∈M , contradicting yj %sd

j xj .

E Excess Capacity

Throughout the paper we have made the assumption that there is an equal number
of school seats and agents. We made this assumption for ease of exposition, and our
main results generalize to the case of excess capacity where n ≤

∑
j∈M qj . We briefly

describe how proofs and definitions have to be adapted in this case.
Now, a random assignment is a stochastic matrix x such that

∑
j∈M xij = 1 for

each i ∈ N and
∑

i∈N xij ≤ qj for each j ∈M . We can incorporate the case of outside
option by adding a dummy school with large capacity, i.e. by adding an additional
school j0 with qj0 > n to the problem.

With excess capacity, we distinguish between ex-ante priority respect which is
the absence of ex-ante blocking pairs and ex-ante stability which is the combination of
ex-ante priority respect and non-wastefulness which requires that no agent prefers a
school with unfilled capacity to a school that he is matched to with positive probability,
i.e. there is no i ∈ N and j, j′ ∈ M with j′ 6= j such that xij′ > 0, j Pi j

′ and
qj >

∑
i′∈N xi′j . The notions of ex-ante stability and ex-ante priority respect coincide

for the case of no excess capacity.
The notion of an equilibrium with priority-specific prices and a cut-off con-

strained equilibrium are modified as follows: We require additionally that for schools
that have unfilled capacity prices are zero: thus, we restrict ourselves to equilibria
(x, p) ∈ E(U, b,%) such that if qj >

∑
i∈N xij then pj,1 = pj,2 = . . . = pj,`(j) = 0,

resp. (x, p̄) ∈ Ē(U, b,%) such that if qj >
∑

i∈N xij then p̄j = 0 where we define the

cut-off for schools with unfilled capacity as the lowest priority class, Cj(x) := N
`(j)
j ,

for j ∈M with qj >
∑

i∈N xij . By construction, these equilibria are non-wasteful.
The definitions of stochastic dominance for schools, and hence the notion of priority

constrained (sd)-efficiency remains unchanged, as do the notions of a priority-respecting
and an equal-priority improvement cycle. We modify the notion of cut-off constrained
(sd)-efficiency as follows: A random assignment x is (priority)-cut-off-constrained
sd-efficient if for each random assignment y that sd-dominates it, there exists a school
that fills its capacity under x, qj =

∑
i∈N xij but uses a more lenient admission policy

under y than under x. Cut-off-constrained efficiency is defined analogously.
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Our results remain valid in the more general set-up with excess capacity and proofs
have to be adapted as follows:

Theorem 1

In the proof of Theorem 1 the assumption of no excess capacity is only used to prove
the identity:

∑
j∈M

`(j)∑
`=1

v(N `
j )(

∑
i∈N`

j

(yij − xij)) =
∑
j∈M

`(j)−1∑
`=1

(v(N `
j )− v(N `+1

j ))(
∑
i%jN`

j

(yij − xij)).

In the case of excess capacity, this identity becomes

∑
j∈M

`(j)∑
`=1

v(N `
j )(

∑
i∈N`

j

(yij − xij)) =
∑
j∈M

`(j)−1∑
`=1

(v(N `
j )− v(N `+1

j ))(
∑
i%jN`

j

(yij − xij))

+v(N
`(j)
j )

∑
i%jN

`(j)
j

(yij − xij)).

We can now modify the proof as follows: Instead of choosing a mapping v with strictly
positive values, we choose a mapping v with strictly negative values. In this case, for
each j ∈M , the extra term

v(N
`(j)
j )

∑
i%jN

`(j)
j

(yij − xij)

is positive only if
∑

i%jN
`(j)
j

(yij−xij)) < 0 and the proof continues as before to conclude

that yj 6%sd
j xj for some j ∈M. To guarantee that the constructed vNM utility profile U

takes on positive values, we can re-scale utilities by adding the same positive constant
everywhere. Since, agents consume lotteries this does not change the social welfare
ranking of random allocations.

Proposition 1 and Corollary 2

The proof of Proposition 1 remains unchanged. Note that in the case of no excess capac-
ity we implicitly used that

∑
i%jN

`(j)
j

yij =
∑

i∈N yij = qj =
∑

i∈N xij =
∑

i%jN
`(j)
j

xij

to obtain the equation

∑
j∈M

`(j)∑
`=1

pj,`(
∑
i∈N`

j

(yij − xij)) =
∑
j∈M

`(j)−1∑
`=1

(pj,` − pj,`+1)(
∑

i%jN
`+1
j

(yij − xij)),

whereas now we implicitly use the fact that pj,`(j) = 0 for j ∈ M with qj >
∑

i∈N xij
to obtain the same equation. The proof of Corollary 2 follows along similar lines: Let
M ′ := {j ∈ M : qj =

∑
i∈N xij} be the schools with filled capacity. By revealed
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preferences and the cheapest lottery tie-breaking rule, we find that for any y that
Pareto dominates x, we have∑

i∈N

∑
j∈M ′

pijyij >
∑
i∈N

∑
j∈M ′

pijxij .

Thus, either there is a i ∈ N and j ∈M ′ with Cj(x) �j i or∑
i∈N

∑
j∈M ′

pijyij =
∑
j∈M ′

p̄j(
∑

i∈Cj(x)

yij) >
∑
j∈M ′

p̄j(
∑

i∈Cj(x)

xij) =
∑
i∈N

∑
j∈M ′

pijxij ,

in which case we find a j ∈M ′ with Cj(x) = Cj(y) and
∑

i∈Cj(x) yij >
∑

i∈Cj(x) xij .

Corollary 1 and Theorem 2

For Corollary 1 and Theorem 2, we modify the definition of no indifferences between
assigned cut-off schools and safe schools such that also schools with unfilled
seats count as safe schools: for i ∈ N j, j′ ∈ M with i ∈ Cj(x) and qj =

∑
i∈N xij ,

if i �j′ Cj′(x) or qj′ >
∑

i∈N xij′ , then j Ii j
′ ⇒ xij = 0. In the statement (2)

of Theorem 2, instead of requiring that prices are strictly positive, we now require
that prices for schools with filled capacity are strictly positive and for schools with
unfilled capacity are zero, i.e. p̄ ∈ RM+ with p̄j > 0 for qj =

∑
i∈M xij and p̄j = 0 for

qj >
∑

i∈M xij .
The proof of (1) ⇒ (2) in Theorem 2 can be modified as follows: For each j ∈ M

with qj >
∑

i∈N xij we let p̄j = 0. For each j ∈ M with qj =
∑

i∈N xij we let
Cj := Cj(x) and define O′ = {Cj : j ∈M,

∑
i∈N xij = qj}. Lemma 1 applies as before

to obtain a mapping v : O′ → R++ that we can use to define prices p̄j for j ∈ M
with qj =

∑
i∈N xij . Budgets are defined as before. Utility values uij for j ∈ M with

qj =
∑

i∈N xij are defined as before, and for j ∈ M with qj >
∑

i∈N xij , we require
that xij = 0 ⇒ uij ≤ ū and xij > 0 ⇒ uij = ū. With these modifications the proof
continues as before. For the direction that (2) ⇒ (1), ex-ante stability holds since
equilibria are non-wasteful by construction, as prices for schools with unfilled capacity
are zero.

To prove (1) ⇒ (3) in Corollary 1, we can use the same construction of U as
for the direction (1) ⇒ (2) in Theorem 2. The implications (3) ⇒ (2) ⇒ (1) are
straightforward to prove.

Theorem 3

The proof of Theorem 3 applies verbatim to the case of excess capacity. Note that
in general, the constructed prices can be positive for schools with unfilled capacity.
However, it is easy to see that if the assignment x is non-wasteful, we can set prices
for schools with unfilled capacity to 0. By non-wastefulness, this will not change the
optimality of xi in agent i’s utility maximization problem.
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