
              

City, University of London Institutional Repository

Citation: Toubeau, J. F., Morstyn, T., Bottieau, J., Zheng, K., Apostolopoulou, D., De 

Greve, Z., Wang, Y. & Vallee, F. C. (2020). Capturing Spatio-Temporal Dependencies in the 
Probabilistic Forecasting of Distribution Locational Marginal Prices. IEEE Transactions on 
Smart Grid, 12(3), pp. 2663-2674. doi: 10.1109/tsg.2020.3047863 

This is the accepted version of the paper. 

This version of the publication may differ from the final published version. 

Permanent repository link:  https://openaccess.city.ac.uk/id/eprint/25564/

Link to published version: https://doi.org/10.1109/tsg.2020.3047863

Copyright: City Research Online aims to make research outputs of City, 

University of London available to a wider audience. Copyright and Moral Rights 

remain with the author(s) and/or copyright holders. URLs from City Research 

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study, 

educational, or not-for-profit purposes without prior permission or charge. 

Provided that the authors, title and full bibliographic details are credited, a 

hyperlink and/or URL is given for the original metadata page and the content is 

not changed in any way. 

City Research Online



City Research Online:            http://openaccess.city.ac.uk/            publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk


1

Capturing Spatio-Temporal Dependencies in the
Probabilistic Forecasting of Distribution Locational

Marginal Prices
Jean-François Toubeau, Member, IEEE, Thomas Morstyn, Member, IEEE, Jérémie Bottieau, Student

Member, IEEE, Kedi Zheng, Student Member, IEEE, Dimitra Apostolopoulou, Member, IEEE,
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Abstract—This paper presents a new spatio-temporal frame-
work for the day-ahead probabilistic forecasting of Distribution
Locational Marginal Prices (DLMPs). The approach relies on
a recurrent neural network, whose architecture is enriched by
introducing a deep bidirectional variant designed to capture
the complex time dynamics in multi-step forecasts. In order
to account for nodal price differentiation (arising from grid
constraints) within a procedure that is scalable to large dis-
tribution systems, nodal DLMPs are predicted individually by
a single model guided by a generic representation of the grid.
This strategy offers the additional benefit to enable cold-start
forecasting for new nodes with no history. Indeed, in case of
topological changes, e.g. building of a new home or installation
of photovoltaic panels, the forecaster intrinsically leverages the
statistical information learned from neighbouring nodes to pre-
dict the new DLMP, without needing any modification of the tool.
The approach is evaluated, along with several other methods, on a
radial low voltage network. Outcomes highlight that relying on a
compact model is a key component to boost its generalization
capabilities in high-dimensionality, while indicating that the
proposed tool is effective for both temporal and spatial learning.

Index Terms—Electricity price forecasting, Deep learning,
Bidirectional Long Short-Term Memory, Space-time correlation,
Multistep-ahead time series forecasting.

I. INTRODUCTION

W ITH the advent of distributed energy resources, such as
photovoltaic (PV) generation, electric vehicles and new

storage technologies (e.g. home batteries), there is a growing
interest in local energy markets to foster coordination between
end-users [1]. In that regard, pricing energy in distribution
networks, which is enabled by the massive roll-out of smart
metering and energy management systems, is becoming in-
creasingly important [2]. To account for network constraints in
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these local energy exchanges, an effective solution consists in
penalizing energy transfers in accordance with the Distribution
Locational Marginal Prices (DLMPs) [3]. Such DLMPs reflect
the marginal cost of supplying an extra unit of energy at each
bus (arising mainly from losses, voltage constraints and phase
imbalances), thus creating nodal price differentiation when
network constraints are violated. Market designs based on
DLMPs have already shown some strong theoretical advan-
tages for the future energy landscape, offering benefits not
only for end-users, but also for the system as a whole [4], [5].
In particular, the implementation of DLMPs would incentivize
the investment of distributed assets at optimal locations on the
distribution network, while better reflecting the value of the
different flexible resources.

In practice, DLMPs are the dual variables associated with
the nodal energy balance constraints when solving an optimal
power flow (OPF) problem that minimizes the total costs of the
distribution system [6]. These DLMPs are thus complicated
signals which are strongly correlated between nodes (due
to technical constraints of the distribution system) and in
time (along the time steps of the scheduling horizon) [7].
Additionally, these DLMPs are highly uncertain, since the OPF
problem is subject to different stochastic sources, i.e. upstream
energy prices, as well as local PV generation and consumption
that have a significant impact on power flows.

Our objective is thus to develop a data-driven tool providing
reliable probabilistic prediction of DLMPs that will be used
by distribution system operators (DSOs) to properly moti-
vate end-users to contribute to the network support during
their subsequent trading process [8]. In particular, we aim
at developing a prediction framework that bypasses the need
for the DSO of solving a day-ahead multi-phase distribution
system dispatch, in a probabilistic environment that accurately
represents correlations among the many uncertainty sources.
This aspect is of high interest since determining the economic
dispatch requires the DSO to gather the preferences and
resource characteristics of all the consumers, which would
necessitate significant bidirectional communication and may
have privacy implications. Overall, the proposed data-driven
tool is designed to be applicable to any low-voltage (LV)
system, for predicting (in day-ahead) the DLMPs embodying
the intricate space-time correlations, while quantifying the
uncertainty related to future conditions.

This task requires that each position of the space-time graph
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(i.e. each node of the distribution feeder for each time step)
has access to information from all positions [9]-[11], which
is difficult to achieve in a compact and robust framework.
In that respect, traditional machine learning techniques, such
as random forests, support vector machines and feedforward
neural networks, are designed for a static learning of the
relationship between the variables of interest (i.e. outputs) and
their covariates (i.e. inputs) [12]. Such models are thus known
to struggle at efficiently sharing information among different
space-time locations [13].

A naive approach to account for such dependencies consists
thus in splitting the complexity of the task by relying on mul-
tiple models, e.g. a different model is trained for each point of
the space-time domain [14]. However, such a procedure does
not scale well to large systems since the number of models
to train (and store) increases with the problem dimensionality.
Moreover, it necessitates a cumbersome (engineering-based)
data pre-processing to feed each model with the relevant
neighbouring information [15]. Another solution consists in
simultaneously predicting all outputs of the forecast domain
(in a single instance) [16]. However, when the number of out-
puts increases (with many clients over a long forecast horizon),
this architecture typically leads to optimization difficulties to
efficiently map the resulting high-dimensional input features to
the high-dimensional output vector [17]. This issue is further
exacerbated when few relevant historical data are available.

In order to improve such strategies, statistical methods (such
as autoregressive models) have been developed with the goal
of processing and learning sequences where the elements are
strongly correlated over time [18]. Different alternatives have
then been proposed to integrate spatial information into such
models. In [19], [20], the spatial dimension is represented
through a vector autoregressive (VAR) model, where co-
dependence between sites is captured by additional coeffi-
cients. In [21], the interdependence structure among locations
and lead times is modeled with multivariate ellipsoids. In
such models, the correlations are imposed a priori, which is
not suited for representing the varying correlation pattern of
DLMPs. Indeed, nodal dependencies strongly differs between
safe operation conditions where all nodal prices are equal, and
stressed situations where price discrepancies arise. Moreover,
the linear nature of the model leads to limitations in the ability
to represent nonlinear dependencies and high-frequency events
(such as rapid variations between successive time steps) [22].

To better represent complex dependencies, one can rely
on recurrent neural networks (RNNs), which have recently
achieved improved performance in many tasks such as the
short-term prediction of electrical series (load, renewable
generation and prices) [23]-[26]. In particular, their emergence
has been fostered by the Long Short-Term Memory (LSTM)
architecture, which is characterized by a memory cell that
is able to extend the range of temporal context available to
the model [27]. This basic (one-dimensional) architecture has
been generalized towards the space-time domain in [28], by
introducing convolutional LSTM (ConvLSTM) for the task
of precipitation forecasting. However, such an architecture re-
quires that the data follows a matrix structure, where the spatial
information is divided into (2-dimensional) equal subspaces

which does not suit the radial topology of low-voltage systems.
In [29], a LSTM-based network is used to extract relevant
features of different (spatially-correlated) wind farms, which
are then fed into a deterministic prediction model combining
graph theory and convolutional neural networks.

Overall, applying these approaches for DLMPs forecast-
ing involves tailoring the model to a specific architecture
of the low-voltage system, such that the resulting model is
not robust in case of topological modification. In particular,
accommodating new nodes (e.g. construction of a new home,
installation of community PV, etc.) requires to modify the
forecaster architecture, and to resort to reliable assumptions
to infer the historical missing data, which may not be trivial.

In this paper, we develop a generic model that is able to cope
with new clients (with no history) in a framework that exploits
space-time dependencies. The contributions are threefold.

Firstly, we use the flexible nature of neural networks to
represent the high-level spatio-temporal structure of DLMPs.
Practically, the tool relies on a deep bidirectional LSTM
network, which is designed to share the information among
all time steps of the prediction horizon. We find that this
structure yields a large improvement over the standard LSTM,
thus showing a great potential for other multi-step forecast
applications. This solution is combined with a new generic
method to encode spatial information within the model inputs,
which includes both the nodal position indication and the
grid structure. These data enrich the model with the ability
to account for nodal price differentiation.

Secondly, in order to stimulate cross-nodal learning within
a procedure that is applicable to any distribution system, each
nodal DLMP is considered as a different sample fed into a
single model. This solution boosts the model generalization
capabilities, while inherently supporting cold-start forecasting
for new nodes with no historical values [30]. Indeed, for any
new client, the procedure only requires to encode its spatial
information, and we can use the model (which is trained with
the past information of other nodes) to obtain the desired
predictions, without needing to retrain the tool from scratch.

Thirdly, an extensive comparison with other state-of-the-art
forecasting approaches in a probabilistic setting is carried out.
The benchmark intends not only to compare most successful
tools such as gradient boosting and deep feedforward neural
networks, but also different strategies to represent space-time
correlations. Outcomes show that avoiding to deal with high-
dimensionality in both input and output feature spaces is
essential to obtain an efficient model, and that the proposed
tool is an efficient architecture to compactly leverage space-
time information, thereby outperforming other forecasters.

Overall, the resulting model is thus scalable in time (through
a bidirectional recurrent model) and in space (since the
model predicts each nodal DLMP individually). Moreover, the
generic and data-driven nature of the model makes it ideally
suited for smart grid applications where a different model can
be efficiently applied to each of the many low-voltage areas.

The proposed deep bidirectional LSTM model is presented
in detail in Section 2, together with the strategy to encode
spatial information. Section 3 defines the different modeling
frameworks used as benchmark to capture space-time depen-
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Fig. 1. Representation of the day-ahead forecasting problem, i.e. at the
forecast creation time t0, the model jointly provides the predicted DLMPs
yt,n for every grid nodes n ∈ N = {n1, . . . , nN} for all time periods
t ∈ T = {t1, ..., tT } of the next day.

dencies in the prediction of DLMPs. In Section 4, these models
are evaluated on a 57-buses low-voltage distribution system
with a complex tree-structured topology. Finally, Section 5
concludes the paper and outlines the main results.

II. MODEL DESCRIPTION

The objective is to generate (in day-ahead) reliable prob-
abilistic forecasts of DLMPs, so as to properly inform local
energy exchanges, and thereby supporting an optimized man-
agement of the low-voltage (LV) system [3].

As represented in Fig. 1, there is a delay (of typically 12
hours) between the forecast creation time t0 and the start of the
prediction horizon t1, which differentiates this problem from
traditional online prediction tasks. Overall, the forecaster is
designed to solve the following time series regression problem:

p
(
yt1,n, ..., ytT ,n

∣∣y:t0,n, x(f)t0:,n, x
(s)
n

)
∀n ∈ N (1)

where the goal is to forecast DLMPs for each grid node
n ∈ N = {n1, ..., nN} over the t ∈ T steps (from t1 to
tT ) of the daily horizon. To that end, the tool has access to
different explanatory variables (inputs), i.e. the DLMP values
y:t0,n known at the forecast creation time t0 as well as the
temporal covariates x(f)t1:,n (such as the estimated consumption
and PV generation), and the static features x(s)n (such as the
node location features) that do not vary with time.

This task is difficult since electricity prices are non-
stationary signals that show multiple periodicities (both slow
and fast fluctuating components) with strong space-time cor-
relations [31]. To that end, based on [25], we propose in
Section II-A a modeling framework that uses the ability of
bidirectional LSTM recurrent neural networks to access long-
range context along time dimension. Then, in Section II-B,
the procedure is complemented to foster cross-nodal learning
(between nodes of the distribution system). This is achieved
by encoding spatial information as additional explanatory
variables, while feeding each nodal price series as a different
sample into a single model. Finally, the input selection and
training framework are described in Section II-C.

A. Capturing time dependencies

Recurrent neural networks (RNNs) are models designed
to process input series through the recursive application of
a transition function H at each time period. Such networks
are characterized by a time-dependent hidden state ht that
provides an internal representation of past events, which is
used to propagate relevant information through time (Fig. 2).

Indeed, at each time step t ∈ [t1, tT ], the transition function
H maps the hidden state ht to both local features (inputs) xt
and the previous hidden state ht−1.

Fig. 2. Recurrent neural network.

Basic RNN architectures have shown a limited ability in
grasping dependencies more than a few time steps long [27].
This problem is alleviated by the introduction of the Long
Short-Term Memory (LSTM) transition function, which is
characterized by an additional hidden state ct designed to
act as a memory for keeping long-term information from
past inputs (5). This memory cell ct interacts with three
control gates, i.e. the input gate it which memorizes the new
information revealed over time (2), the forget gate ft which
has the ability to discard irrelevant information from the past
(3), and the output gate ot that extracts the relevant information
from the memory content ct to compute the LSTM state ht (4).
Since the neural network is composed of multiple LSTM neu-
rons, the information can be either propagated or eliminated
among different units such that the tool is potentially able to
model any complex nonlinear signals, resulting in performance
enhancement [32]. The standard LSTM is implemented by the
following composite function HLSTM :

it = σ (Wixt + Uiht−1 + bi) , (2)

ft = σ (Wfxt + Ufht−1 + bf ) , (3)

ot = σ (Woxt + Uoht−1 + bo) , (4)

ct = it � tanh (Wcxt + Ucht−1 + bc) + ft � ct−1, (5)

ht = ot � tanh(ct), (6)

where W· and U· are the weight matrices, while b· are the bias
vectors, all of which representing the parameters of the neural
network (that need to be optimized during the training phase
to efficiently predict DLMPs). Also, � denotes element-wise
multiplication, and σ is the logistic sigmoid function.

As depicted in Fig. 2, standard LSTM networks process
inputs in temporal order, i.e. the DLMP at tk is predicted
using only data from [t1, tk] such that the predictions are
only based on previous context. This framework is perfectly
suited for online tasks, but may be plagued with a loss
of valuable information for our day-ahead problem. Indeed,
since the whole DLMP sequence yt1,n, ..., ytT ,n needs to be
jointly predicted at once (Fig. 1), there is no reason not to
exploit the available context in [tk+1, tT ]. The underlying
idea is that the available knowledge related to time tk+i with
i = 1, . . . , T − k, such as the estimated values of aggregated
loads and PV generation at the LV system level, can help
at explaining the price conditions at time tk. This logic has
been successfully applied in translation tasks where sentences
that seem meaningless after a few words are found to become
intelligible in the light of future context [33].
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A powerful strategy to capture such backward dependencies
is to rely on a bidirectional LSTM (BLSTM). This tool is
built upon two separate hidden layers HLSTM (2)-(6), each
one processing the data in opposite directions. The BLSTM
model (Fig. 3) computes the forward hidden sequence

−→
h t by

iterating from t = 1 to T , and the backward hidden sequence←−
h t by iterating from t = T to 1. These vectors are then fed
into the same output layer to generate the DLMP predictions
yt (9). Hence, for every point t of the sequence, the BLSTM
has complete information about all points before and after t.

−→
h t = HLSTM

(
W−→

h
xt + U−→

h

−→
h t−1 + b−→

h

)
, (7)

←−
h t = HLSTM

(
W←−

h
xt + U←−

h

←−
h t+1 + b←−

h

)
, (8)

yt =W−→
h y

−→
h t +W←−

h y

←−
h t + by. (9)

Finally, we further strengthen the tool by using deep archi-
tectures to extract more information from input features [34].
Deep RNNs are created by stacking multiple RNN hidden
layers on top of each other, with the output hl of one layer
l forming the input for the next l + 1. When combining
deep architectures with the bidirectional data processing, each
hidden state hl is replaced by the concatenation of forward
and backward states

−→
h l and

←−
h l. Practically, for layers l > 1,

the input xt in (7)-(8) is replaced by the concatenation of the
outputs

(−→
h l−1t ,

←−
h l−1t

)
of the bidirectional layers at the level

l − 1 below. The prediction yt is computed in (9) using the
hidden vectors

−→
h Lt and

←−
h Lt of the upper layer L.

B. Capturing nodal dependencies

In its standard form, the deep BLSTM network strictly
focuses on processing sequential data. In order to capture
space dependencies (i.e. nodal price differentiation due to grid
constraints), we train a single model in a framework where
each nodal price series y·,n is individually forecasted.

This strategy offers four advantages. Firstly, training a single
model on multiple nodal series allows the sharing of statis-
tical information across nodes, thereby triggering cross-series
learning. Secondly, the training dataset is |N | times larger than
models where nodes are jointly predicted, so that overfitting
risk reduces. Thirdly, the framework efficiently decouples the
size of the distribution system from the dimensionality of
the output space yt,n treated by the model. This prevents
scalability issues associated with approaches jointly predicting
all nodal prices {yt,n1

, ..., yt,nN
} in a single instance. Fourtly,

since the model is intrinsically trained to generalize to all
nodes n ∈ N of the distribution system, it has the ability

Fig. 3. Bidirectional recurrent neural network.

to generate cold-start predictions for nodes with little or no
history (such as new homes). In order for the tool to exploit
this ability, we need to properly express spatial data.

These spatial features must represent the location of the
nodes, while accounting for the structure of the distribution
system. Traditional methods rely on discrete variables, but
such strategies face the issue that node n2 is not 2 times more
important than n1. Moreover, they are unable to capture the
similarity between nodes of concomitant branches in complex
tree-structured systems. In this work, we therefore use a
binary representation, which offers a more generic way of
representing spatial data. Practically, each branch of the system
is associated with a boolean feature, which is equal to 1 for
the nodes connected to the branch, and 0 for the others. This
information is then complemented by encoding the distance
between each client and the root node of the branch.

This generic framework separates the size of the distribution
system from the dimension of the input-output space, thus ac-
commodating new nodes without affecting the structure of the
forecaster. Indeed, in case of a new connection, we only need
to encode its spatial information, and the forecaster leverages
its generalization capabilities learned from past observations
of other clients to generate the DLMP predictions of interest.

C. Inputs selection and model training

In addition to spatial features (described in Section II-B), the
input vector x must be enriched with relevant explanatory vari-
ables. Since DLMPs are mainly dependent on global loading
conditions within the system, the forecaster is guided by the
aggregated conditions at the low-voltage substation level. In
particular, the model takes as inputs the forecasted global PV
generation and load consumption. Moreover, calendar-based
features, i.e. hour of the day, and day of the week, are also
represented with a binary representation [25]. In this work, no
historical prices (such as previous day, or previous week) are
used as explanatory variables in neural networks.

In general, the use of neural networks is divided into
two stages. Firstly, in the training phase, we have access to
the historical database, and the objective is to optimize the
parameters θ of the forecaster (corresponding to the weight and
bias matrices for neural networks) such that we accurately map
the output y corresponding to a given input x. Secondly, once
the model is trained, it can be used for actual field forecasting.

During the training, the optimal model parameters θ∗ are
determined by minimizing a loss function L between the actual
values y and the predictions ŷ:

θ∗ = argmin
θ
L
(
ŷ(x, θ), y

)
(10)

The loss function L is a user-defined measure that quantifies
how well the model fits the historical data. In traditional
regression models, the goal is to minimize the mean squared
error

∑
t∈T

∑
n∈N (ŷt,n − yt,n)2, which yields a determin-

istic forecast reflecting the conditional mean E (yt,n | xt,n)
where xt,n denotes all explanatory variables known at t0.

In order to properly consider the uncertainty around predic-
tions, two distinct philosophies can be found. Firstly, one can
implement a two-step procedure whereby a point forecasting
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Fig. 4. Strategies to represent space-time dependencies with static models, (S1) probabilistic DLMPs are individually predicted for each time step t ∈ T
at each node n ∈ N , (S2) the model is run for each time step individually, and all nodal prices are jointly predicted, (S3) the model is run for each node
individually, and all time periods are jointly predicted, (S4) all DLMPs of the space-time horizon are predicted together.

is firstly obtained and a distribution should then be estimated
to calibrate the point results and get a final density forecast. In
particular, an efficient framework to approximate the posterior
distribution that quantifies the prediction uncertainty consists
in using variational inference [35]-[37]. Secondly, there are
methods directly providing the probabilistic predictions. This
can be achieved using either a fully parametrized model
(assuming, e.g., a Gaussian distribution of the error) or via
an empirical function. In this paper, the latter approach is
selected, where a tailored quantile regression tool is developed.

Practically, the model is trained with the goal of predicting
the conditional quantiles ŷqt,n|xt,n for different q ∈ Q ∈
[0, 1], within a non-parametric (distribution free) method. The
resulting |Q|-dimensional output ŷt,n = {ŷq1t,n, ..., ŷ

qQ
t,n} is

forecasted within a single compact network.
To that end, we minimize the pinball loss Lq , which yields a

trade-off between calibration and sharpness [38]. A calibrated
model ensures the statistical correctness of the predictions,
i.e. the percentage of values yt,n (across all t and n) below
the predicted quantile ŷqt,n is close to the nominal probability
q. The sharpness ensures that the prediction interval widths
(between quantiles) are sufficiently narrow to provide useful
information.

Lq(y, ŷ) = qmax (y − ŷ, 0) + (1− q)max (ŷ − y, 0) (11)

However, the standard pinball loss is not differentiable when
the forecast error is zero, i.e. ŷqt,n = yt,n, which prevents
the use of gradient descent-based methods to train the model.
The loss function is thus smoothly approximated by including
the Huber norm [39], which consists in replacing the pinball
function by the (continuously differentiable) Euclidean norm
when the error is lower than a user-defined threshold ε (in this
paper, we arbitrarily use ε = 10−6):

LqHb
(y, ŷ) = qmax (Hb(y, ŷ), 0) + (1− q)max (Hb(y, ŷ), 0)

(12)
where the Huber norm Hb (y, ŷ) is computed as:

Hb (y, ŷ) =

{
(ŷ−y)2

2ε 0 ≤ |ŷ − y| ≤ ε
|ŷ − y| − ε

2 |ŷ − y| > ε
(13)

In this work, the model is trained to minimize the total loss∑
t∈T

∑
n∈N

∑
q∈Q L

q
Hb

(yt,n, ŷ
q
t,n), using the Adam algo-

rithm, a stochastic gradient descent method that uses adaptive
learning rates for escaping local optima.

III. BENCHMARKS

In this section, we introduce different probabilistic forecast-
ing methods as benchmarks for the case study.

A. Static models

In this part, we implement four different static models, i.e.
which do not endogenously represent dependencies between
points of the space-time horizon. These are shown in Fig. 4.

The static model of reference (S1) consists in individually
forecasting each point (t, n) of the space-time domain, i.e.
the model is run |T |*|N | times to generate a |Q|-dimensional
output ŷt,n = {ŷq1t,n, ..., ŷ

qQ
t,n} at each iteration.

The second topology (S2) aims at jointly forecasting all
nodes at a given time period, i.e. the model is run |T | times
to generate the |N |*|Q|-dimensional output.

The third architecture (S3) is trained to jointly predict all
times periods for each particular node, i.e. the model is applied
|N | times to provide the |T |*|Q|-dimensional output.

Finally, the fourth strategy (S4) is designed to forecast all
points of the spatio-temporal horizon in a single instance, i.e.
with an output of size |T |*|N |*|Q|.

It is important to notice that, since all nodes are jointly
predicted in models (S2) and (S4), it is irrelevant to feed them
with spatial information (Section II-B). These four strategies
(S1)-(S4) are applied for the four forecasting tools described
hereunder, resulting in 4*4 = 16 tested cases.
• FFNN, a feedforward neural network characterized by a

single hidden layer composed of neurons with rectifier
linear units (ReLUs) as activation function. This tool is
the basic neural network structure, which is theoretically
able to learn any nonlinear function.

• DFFNN, a deep feedforward neural network, composed
of several hidden layers stacked on top of each other
with the goal of building up higher level representations
of data, which enables to more efficiently map the raw
available inputs to the desired predictions.

• QRF, a quantile regression forest, i.e. a method that gen-
eralizes random forests for estimating quantiles instead
of the conditional mean. The number of trees is set to
500, which makes the QRF a strong learning model.

• GradBoost, a gradient boosting regression tree trained
with the pinball loss to generate quantile predictions. This
method sequentially creates new models to forecast the
residuals of the global model obtained at the previous
stage. The number of boosting stages is fixed to 100.
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Fig. 5. Strategies to represent space-time dependencies with time-dependent
models, (R1) by encoding spatial information so as to predict each node
individually (in a more compact model enabling cold-start forecasting), and
(R2) by jointly predicting all nodes of the distribution system.

B. Recurrent models

We focus here on time-dependent models. As represented
in Fig. 5, two different topologies can be considered.

In the strategy of reference (R1), each nodal series is
individually predicted (which allows cross-nodal learning and
cold-start forecasting). In the second one (R2), all nodes are
jointly predicted for each time step of the horizon. These two
topologies are tested on the six techniques described thereafter,
resulting in 2*5 = 10 tested cases.
• a traditional LSTM recurrent neural network, composed

of a single hidden layer.
• R-DFFNN, an hybrid forecaster merging a recurrent

model with a deep feedforward neural network (DFFNN).
The goal is to combine the strengths of a LSTM model
(which is tailored to capture the sequential structure of
DLMP sequences) with a regular fully connected feed-
forward layer (which has the ability to learn relations
among non-sequential data).

• BLSTM, a bidirectional LSTM which is dedicated to share
information across all time steps of the horizon.

• DBLSTM, a deep architecture of BLSTM.
• NS DBLSTM, a non spatial DBLSTM where location

features and topology of the distribution system are not
encoded so that there is no nodal price differentiation.

These forecasters are also compared with an ARIMA-
GARCH model, where a standard Auto-Regressive Integrated
Moving Average (ARIMA) model is combined with General-
ized AutoRegressive Conditional Heteroscedasticity (GARCH)
residuals, to leverage their ability to represent changes in
variance over time. The confidence intervals around point
forecasts is obtained from the variance derived with the
GARCH model, by assuming a Gaussian distribution of the
error [40]. Moreover, we also implement a naive methodology,
consisting in partitioning the historical observations (in the
training set) into 7*|T |*|N | groups, respectively based on the
day of the week, the time period of the day, and the node
of the system. The empirical distribution within each group
is then constructed, and is used (in the test set) as a naive
benchmark to represent the uncertain DLMPs.

C. Hyper-parameters optimization

To make a fair comparison, we have carried out an extensive
random search to find the combination of hyper-parameters
that optimizes the predictive power of each model. Indeed,
the forecaster has to be sufficiently sophisticated for reflecting
the dynamics of nodal electricity prices, but not too complex

for avoiding to overfit the model on the training observations,
thus undermining its generalization capacity on unseen data.

The complexity of neural networks is defined by the number
of hidden layers and the number of neurons within each layer.
In deep models, different number of hidden layers are tested
(between 2 and 6, since the first manual simulations have
quickly shown that a higher number does not enhance the
performance of the tools). The weights of neural networks
were initialized using a Glorot uniform distribution. Also,
the activation function of neurons from feedforward neural
networks are rectified linear unit (ReLU).

In complement, early stopping is implemented for avoiding
overfitting in the learning procedure. This consists in dividing
the historical set of data into three sets, respectively for train-
ing, validating and testing. This allows stopping the learning
phase (carried out on the training set) before the network
begins to memorize the data instead of learning the underlying
trend, on the basis of the model performance on unseen data
(i.e. the validation set). At the end of the learning phase, the
accuracy of the final model is evaluated on the test set.

D. Evaluation metrics

For the sake of completeness in performance comparison,
all forecasters are also trained in a traditional deterministic
framework. We evaluate the statistical quality of these point
forecasts using the root mean square error (RMSE). This error
metric focuses on the degree of correspondence between the
deterministic predictions and the actual observations.

RMSE =

√∑
t∈T

∑
n∈N (ŷt,n − yt,n)2

|N | × |T |
(14)

where ŷt,n is the deterministic output of the prediction model
for client n ∈ N at time t ∈ T , and yt,n is the actual value.

Then, four different probabilistic metrics are computed to
evaluate the accuracy of the predicted quantiles. The per-
formance is evaluated not only in terms of reliability (how
closely the predicted intervals correspond to the actual data
frequencies) and sharpness (concentration of the predicted
intervals), but also through two global metrics, i.e., the pinball
loss and the Winkler score, which quantify the compromise
between these two criteria. Overall, sharpness and reliability
need to be jointly analyzed, as high sharpness (i.e., a desirable
property) is not always associated with a better prediction if
the reliability of the model is low.

Firstly, we use a simple empirical measure of the reliability
of the prediction intervals, by computing E

(
I(yt,n ≤ ŷqt,n)

)
over the test set. The deviation with respect to the corre-
sponding nominal probability q is a direct measure of forecast
calibration.

Secondly, we evaluate the sharpness of the models using the
prediction interval average width (PIAW), which is computed
for a confidence interval of (1− α) · 100% as follows [41]:

PIAWα =
1

|T |
1

|N |
∑
t∈T

∑
n∈N
|ŷ1−α/2t,n − ŷα/2t,n | (15)

where ŷ
α/2
t,n and ŷ

1−α/2
t,n represent the α/2 and (1 − α/2)

predicted quantiles for node n at time t.
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Thirdly, as a first global metric, we use the total pinball
loss, i.e. the average value of all pinball losses (11) across all
quantiles (in this paper, q = 5, 10, 25, 50, 75, 90 and 95 %),
over all points (t ∈ T , n ∈ N ) of the space-time domain for
each day of the test set. The smaller is the quantile loss, the
better is the forecasting performance.

However, by averaging all quantiles in the final score, the
total pinball loss may hide low reliability levels for extreme
quantiles [42]. For instance, a high inaccuracy in the 5% quan-
tile forecasts may have a limited impact on the global score.
Hence, we complement the pinball loss with the Winkler score,
which jointly quantifies if the intervals properly encapsulate
the actual realization of uncertain variables (calibration), while
considering the tightness of these intervals (sharpness), within
a design where a lower score indicates a better probabilistic
forecast. For a confidence interval of (1 − α) · 100%, the
Winkler score is defined as:

1

|T |
1

|N |
∑
t∈T

∑
n∈N


δt,n Lt,n ≤ yt,n ≤ Ut,n
δt,n + 2(Lt,n − yt,n)/α yt,n < Lt,n

δt,n + 2(yt,n − Ut,n)/α yt,n > Ut,n
(16)

where Lt,n = ŷ
α/2
t,n and Ut,n = ŷ

1−α/2
t,n are respectively the

lower and upper bounds of the prediction interval (defined by
the confidence level α), and δt,n = Ut,n−Lt,n is the interval
width. If an observation yt,n falls into the predicted interval
[Lt,n, Ut,n], the Winkler score is a direct measure of sharpness.
Otherwise, a penalty term is added, whose value depends on
the severity of the forecast error, hence integrating a calibration
measure.

IV. CASE STUDY

This part intends to evaluate the performance of the differ-
ent probabilistic forecasting tools. The neural networks have
been implemented using Python 3.6.0 and the Keras library
(along with the TensorFlow backend), whereas the Scikit-
Learn tool has been employed for ensemble models (QRF
and GradBoost). It should be noted that the same input data
(Section II-C) are used by all models of the case study.

The benchmark is implemented for the IEEE European
Low Voltage Test Feeder, shown in Fig. 6, which has a tree-
structured topology composed of 6 line ramifications. The

Fig. 6. The case study distribution network, composed of 6 line ramifications
(I to VI) feeding 57 clients, i.e. 15 single-phase inflexible loads, 40 single-
phase prosumers (with inflexible load, PV source and battery system) and 2
three-phase community-scale PV plants. The industrial load (node D) is added
to the (resulting 58-bus) system at a later stage.

original network, which is used to compare the different
forecasters in Section IV-A, feeds a total of |N1| = 57
nodes, among which 55 are residential prosumers with single-
phase connections, while 2 are community-scale PV plants
(100 kWp) with three-phase connections. Among residential
clients, 40 are equipped with PV sources (6 kWp) and batteries
(4 kW, 8 kWh), while the other 15 have only inflexible loads.
In order to evaluate the ability of cold-start forecasting, a 3-
phase 100kW industrial load ‘Ind. Load’ (node D) is added in
Section IV-B.

The DLMPs database comes from the three-phase prob-
abilistic dispatch in [3], realized based on residential load
and PV generation data from the Customer-Led Network
Revolution Trial from October 2012 to March 2014 [43].

A. Comparison of models for DLMPs forecasting

The DLMPs are predicted over a (daily) multi-horizon of
|T | = 48 intervals of 30 minutes for the |N1| = 57 nodes. The
available database has a total of 478 days, among which 286
and 96 are respectively used for model training and validation,
while the last 96 are applied for model testing. Table I presents
the performance of the different (naive, static and recurrent)
tools, and their respective ability to capture the space-time
dependencies in DLMPs. Practically, we compare the static

TABLE I
OVERALL PERFORMANCE OF DIFFERENT METHODS FOR PROBABILISTIC DLMPS FORECASTING.

Topology Model RMSE Pinball loss Winkler score [c£/kWh] Empirical coverage [%]
[c£/kWh] [c£/kWh] α = 0.1 α = 0.2 α = 0.5 q = 5% q = 25% q = 75% q = 95%

naive methodology 2.52 3.37 9.97 8.18 5.12 3.4 21.1 73.7 94.1
ARIMA-GARCH 2.02 2.47 7.23 5.84 3.97 6.2 27.0 75.0 94.2

static (S1) FFNN 1.49 2.14 5.57 4.70 3.41 3.2 19.9 74.4 95.8
static (S1) DFFNN 1.31 1.91 4.99 4.20 3.05 3.9 21.0 72.6 93.6
static (S1) QRF 1.36 2.28 6.45 5.19 3.57 11.8 30.6 65.1 86.4
static (S1) GradBoost 1.50 2.14 5.72 4.74 3.40 3.1 23.7 73.0 95.1
static (S2) DFFNN 1.43 2.04 5.79 4.55 3.21 7.7 22.2 72.4 92.4
static (S3) DFFNN 1.55 2.18 5.90 4.98 3.47 3.0 21.7 74.5 96.6
static (S4) DFFNN 1.62 2.22 6.65 5.24 3.39 6.1 25.7 71.6 92.5

recurrent (R1) LSTM 1.42 1.69 4.38 3.74 2.70 4.3 25.0 75.6 94.2
recurrent (R1) R-DFFNN 1.27 1.62 4.29 3.59 2.56 4.6 24.0 75.5 96.1
recurrent (R1) BLSTM 1.20 1.33 3.63 2.97 2.09 6.7 26.8 70.1 91.5
recurrent (R1) DBLSTM 0.93 1.19 3.20 2.65 1.88 4.7 24.1 68.0 91.4
recurrent (R1) NS DBLSTM 1.25 1.40 3.90 3.24 2.27 5.3 26.3 71.4 91.5
recurrent (R2) DBLSTM 1.22 1.31 4.00 2.99 2.01 4.5 22.9 72.5 93.7
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Fig. 7. Sharpness estimate using the prediction interval average width (PIAW).

forecasting techniques presented in Section III-A on the single-
output topology (S1). Then, we select the best technique (i.e.
the deep feedforward neural network), and we apply it on
the other three (multi-output) topologies (S2, S3 and S4).
Similarly, we compare the different recurrent models on the
single output topology (R1), which highlights the advantages
of the bidirectional processing of data in multi-step forecasting
as well as the effect of spatial information on the prediction
performance. Finally, we compare this learning framework
(where each nodal price series is treated individually) with the
multi-output topology (R2). This information is completed in
Fig. 7, where the average sharpness for nominal coverage rates
(1−α) · 100% ∈ [50− 90]% is depicted for different models.

The experiments show that all neural networks strongly out-
perform both the naı̈ve (averaging) method and the ARIMA-
GARCH statistical model. This observation is aligned with
previous studies [22], [44], which show that the linear nature
of econometric models make them poorly suited for predicting
the highly nonlinear behavior (and quick fluctuations) of the
price signals. This trend is exacerbated by the increasing
penetration of renewable sources, since prices are becoming
more volatile with frequent price spikes that require advanced
nonlinear tools to be accurately forecasted.

Interestingly, we also observe that LSTM-based
recurrent neural networks are well-calibrated, i.e.,
P
(
yt,n ≤ ŷqt,n | xt,n

)
≈ q, and exhibit higher sharpness

than other models, with the exception of the QRF. Indeed,
the quantile random forest yields narrow quantiles (leading
to high sharpness as depicted in Fig. 7), but this does not
contribute to improved forecast accuracy in comparison to
other models such as deep feedforward neural networks
and traditional LSTM that consistently achieve higher
performances. Generally, static tools (QRF, GradBoost and
feedforward neural networks) are structure agnostic, which
makes them broadly applicable, but at the expense of a weaker
performance than recurrent models which are purposefully
tailored to the time structure of the multi-step prediction [45].

This observation is strengthen by the improvement as-
sociated with the bidirectional LSTM architecture (relative
increase in accuracy of around 20% with respect to the
standard LSTM). This difference illustrates the BLSTM ability
to make more use of surrounding context than the other tools,
by efficiently sharing the information among the different time
periods of the prediction horizon.

Acting in a complementary way, the advantage of deep

networks is also obvious. In line with the current literature,
we see that deep architectures (with several hidden layers)
have better generalization capabilities than shallow ones, with
the pinball loss dropping from 1.33 to 1.19 c£/kWh as the
number of layers increases from one to five for the BLSTM
model. In the latter model, which is the most efficient of the
benchmark, each hidden layer is composed of 20 neurons.
A similar improvement of approximately 10%, from 2.14
to 1.91 c£/kWh, is observed for feedforward networks (in
which the optimal complexity is obtained with four hidden
layers). However, in accordance with [22], the hybrid R-
DFFNN model exhibits comparable performances than its
individual components, which illustrates the difficulty to de-
sign hybrid architectures that improve the global prediction
accuracy. Overall, the best performance, in terms of both
reliability and sharpness, is achieved by the deep bidirectional
LSTM model. Its hyper-parameters are presented in Table II,
which is complemented in Table III with a sensitivity analysis
evaluating the effects of the model complexity on the related
accuracy. Different numbers of neurons within hidden layers
are tested, i.e., {10, 20, 50, 100, and 200}, but the same
number of neurons is used for forward and backward layers
in the proposed DBLSTM tool.

TABLE II
HYPER-PARAMETERS OF THE DBLSTM MODEL.

Hyper-parameter Value
number of layers (L) 5

number of neurons by layer 20
Training algorithm Adam

Batch size 16
Time lag 0

Regularization Early stopping

The optimal structure is a DBLSTM layer with 20 neurons
in each of the 5 hidden layers. The batch size to train the model
is set to 16 daily sequences (of 48 half-hourly intervals) for the
Adam algorithm. This stochastic gradient descent procedure
endogenously adapts the learning rate during the learning. Due
to the nature of the task, in which predictions are needed with
a horizon of interest ranging from 12 to 36 hours from the
forecast creation time (Fig. 1), no past data are treated by
the model. Also, early stopping proves sufficient to achieve
good generalization capabilities, and traditional regularization
techniques such as dropout or adding penalty terms using L1-
L2 norms in the loss function (to enforce sparsity on network
weights) do not lead to improved results. Finally, to deal with
differences in the scales across (input and output) variables,
all data are individually standardized, using a robust scaler
that removes the median and scales the data according to the
quantile range [0.1, 0.9].

From Table III, we see that increasing the model complexity
is beneficial but may ultimately lead to overfitting issues
(due to network parameter redundancy). Also, we observe
that relying on additional hidden layers is more efficient in
improving performance than adding more neurons within the
same recurrent layer. However, it should be reminded that the
hyper-parameter solution is closely linked to the size of the
training database. In the case of a limited dataset, a more
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Fig. 8. Day-ahead probabilistic forecasts of the DLMPs associated with three different nodes (A, B and C in Fig. 6) of the distribution system.

TABLE III
SENSITIVITY ANALYSIS ON THE COMPLEXITY OF THE DBLSTM MODEL.

Model complexity Pinball loss [c£/kWh]# layers - # neurons
1 - 100 1.33
2 - 100 1.27
3 - 50 1.23
4 - 20 1.20
5 - 20 1.19
6 - 20 1.23

compact (less complex) model is more likely to be selected to
avoid a model overfitting on the limited information.

Fig. 8 shows the day-ahead DLMP forecasts of 3 nodes
(A, B, and C in Fig. 6) during a summer day (subject to
a base load with high PV generation) for the best model
(DBLSTM). The gray areas stand for the forecasted quantiles
and the red line denotes the actual price series. At this stage,
it is important to remind that DLMPs are defined by three
main components: energy, losses, and voltage violations. In
general, uncertainties on the energy component arise from the
underlying load and generation uncertainties. Here, we notice
that such forecast uncertainties are globally small in compar-
ison with the average price of around 20 c£/kWh, and that
the quantiles can effectively seize the variability in the DLMP
profiles. However, during periods of peak PV generation and
low consumption (in the middle of the day), voltage violations
(and increased losses) are observed, resulting in lower price
values. Since the actual voltage violation rates are highly
uncertain (and thus difficult to predict), this leads to increased
uncertainty on nodal prices during these off-peak periods
(which is associated with larger confidence intervals on DLMP
values). Also, these violations of the network voltage limits
on certain buses lead to nodal price differentiation (mainly
between 08:00 am and 16:00 pm). Interestingly, we see that the
forecaster has properly captured these spatial dependencies,
thereby suggesting that the proposed approach is effective in
learning across the related nodal price series.

To further illustrate the contribution of the energy and
voltage components in the forecasted DLMPs, we show in Fig.
9 the predictions for node A for a classical autumn day (during
which the probability of stressed network conditions is close to
0). During this day, the DLMP uncertainty is mainly driven by
the energy component, and we observe that price uncertainty is
higher during peak periods (slightly in the morning and more
prominently in the evening).

Over the test set, no congestion nor voltage violation (and
thus no price discrepancies) were observed during night peri-

Fig. 9. Day-ahead probabilistic forecasts of daily DLMPs of node A for a
working day in autumn.

ods, which explains the acceptable global accuracy of the non-
spatial NS DBLSTM model in which all nodes have roughly
the same price profile. Based on these outcomes, we see that
the predicted DLMPs provide useful day-ahead information
incentivizing the prosumers to increase their individual self-
consumption when the price of energy is low during the middle
of the day (to alleviate overvoltage issues), and to flatten their
load when the price of energy is highest, hence leading to
safer operating conditions.

At this stage, it is important to notify that, for achieving
decent accuracy on the multi-output architectures (S2, S3, S4
and R2), a different model had to be trained for each q ∈ Q.
This operation is needed to reduce the size of the output space
of each individual model, which is realized at the expense of an
increased computational burden. In general, these multi-output
models attempt to better account for correlations between
outputs, but are inevitably plagued with scalability issues, e.g.
model (S4) requires to compute |T |*|N1| = 48*57 = 2736
points (for each q) in a single instance, which is impractical in
view of the number of historical data. This leads to an increase
of the pinball loss from 1.91 (for model S1) to 2.22 c£/kWh
(i.e. accuracy loss of 16%). Likewise, the joint prediction of
all nodal price series with the DBLSTM (R2) is associated
with a drop in performance of 21% in comparison with the
single-output variant (R1). Overall, the outcomes show that
relying on a compact model (with a limited dimensionality
of both input and output feature spaces) is a key element to
extract the predictive power of machine learning techniques.

B. Cold-start DLMP forecasting

By considering each nodal DLMP individually (in R1), the
DBLSTM is able to smoothly accommodate nodes with little
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history (without modifying the tool structure nor relying on
uncertain inference strategies). This appealing feature is fur-
ther investigated by adding a large 3-phase 100 kW industrial
load (node D) in the case study. We then perform the day-
ahead probabilistic forecast for all |N2| = 58 nodes over the
same 96 days of the test set.

The prediction outcome for the new node D is depicted in
Fig. 10 (for the first week of the test set). It is observed that the
proposed tool has powerful generalization capacities which en-
ables to efficiently determine the price profile of the new node.
However, the size of the industrial load has a significant impact
on the power flows within the system, and thus on the resulting
DLMPs. The trained tools are therefore not well-calibrated
to these new conditions, with the global pinball loss of the
DBLSTM growing from 1.19 to 2.62 c£/kWh, mainly due to
a loss of sharpness coming from the increased uncertainty.
Interestingly, the NS DBLSTM suffers a greater deterioration
with the pinball loss increasing to 2.88 c£/kWh, which shows
that our generic way used to encode spatial information is not
only efficient in capturing nodal discrepancies, but makes also
the tool more resilient to changes in the operating conditions.
Overall, the ill-conditioning effects can be smoothly alleviated
over time through a proper recalibration of the model (that can
be progressively fitted to the updated system topology) with
the new data revealed each day [46]-[48].

V. CONCLUSION

This paper addresses the problem of a distribution system
operator who is responsible to come up with probabilistic
forecasts of DLMPs in low-voltage systems for incentivizing
end-users to account for network constraints in their prosump-
tion profile. These DLMPs are not only correlated across
consecutive time steps, but also among the different nodes
of the distribution network (due to technical limitations). We
show that the combination of deep, bidirectional Long Short-
term Memory RNNs (to capture time information) with a
strategy dedicated to learn across nodal price series gives state-
of-the-art results in probabilistic DLMP prediction.

The main advantage of the method is to capture space-
time dependencies in a framework inherently scalable to large
systems thanks to an unified treatment across all nodes of the
distribution network, which moreover ensures adaptability to
fluctuating operating conditions. Moreover, the strategy allows
to smoothly accommodate new end-users without historical

Fig. 10. Cold-start prediction of the new client connected to the system.

information (i.e. cold-start forecasting) by leveraging the rel-
evant information from other nodes. Additionally, the generic
nature of the methodology can be applied to other space-
time problems such as forecasting transmission LMPs, or the
localized probability of voltage violation or line congestion
within power systems.
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