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Abstract

Learning often requires splitting continuous signals into recurring units, such
as the discrete words constituting fluent speech; these units then need to be
encoded in memory. A prominent candidate mechanism involves statistical
learning of co-occurrence statistics like transitional probabilities (TPs), re-
flecting the idea that items from the same unit (e.g., syllables within a word)
predict each other better than items from different units. TP computations
are surprisingly flexible and sophisticated. Humans are sensitive to forward
and backward TPs, compute TPs between adjacent items and longer-distance
items, and even recognize TPs in novel units. We explain these hallmarks of
statistical learning with a simple model with tunable excitatory connections
and inhibitory interactions controlling the overall activation. With weak for-
getting, activations are long-lasting, yielding associations among all items;
with strong forgetting, no associations ensue as activations do not outlast
stimuli; with intermediate forgetting, the network reproduces the hallmarks
above. Forgetting thus is a key determinant of these sophisticated learning
abilities. Further, in line with earlier dissociations between statistical learn-
ing and memory encoding, our model reproduces the hallmarks of statistical
learning in the absence of a memory store in which items could be placed.

Keywords: Statistical Learning; Implicit Learning; Transitional Probabilities;
Neural Networks; Chunking

An R implementation of the model is available at https :// figshare .com / s /
7a4ad045a3084f7b8920. Please note that the URL will change in the final version of the manuscript.
The final location will be http://doi.org/10.25383/city.11359376. This research was
support by NIH grant R01-HD073535 to SPJ.
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1 Introduction

Observers often need to segment continuous signals into discrete recurring units,
from the recognition of meaningful actions, where observers need to identify meaningful
units in the continuous movement of other agents (Newtson, 1973; Zacks & Swallow,
2007) to language acquisition, where learners need to find out where words start and
where they end in fluent speech (Aslin, Saffran, & Newport, 1998; Saffran, Aslin, &
Newport, 1996; Saffran, Newport, & Aslin, 1996). In the context of language acquisition,
this challenge is called the segmentation problem (Aslin et al., 1998; Saffran, Aslin,
& Newport, 1996; Saffran, Newport, & Aslin, 1996) and is clearly one of the first
challenges infants face, even before they can acquire the meaning of any word.

To extract and understand words from fluent speech, adults can rely on a variety
of speech cues, including rhythmic, prosodic and phonotactic cues (e.g., Christophe,
Peperkamp, Pallier, Block, & Mehler, 2004; Mehler, Dommergues, Frauenfelder, &
Segui, 1981; McQueen, 1998; Norris, McQueen, Cutler, & Butterfield, 1997; Salverda
et al., 2007). However, while some of these cues can be perceived at birth and across lan-
guages (e.g., Brentari, González, Seidl, & Wilbur, 2011; Christophe, Dupoux, Bertoncini,
& Mehler, 1994; Christophe, Mehler, & Sebastian-Galles, 2001; Endress & Hauser,
2010; Pilon, 1981) and are among the most salient cues for word-learning (e.g., Johnson
& Jusczyk, 2001; Johnson & Seidl, 2009; Shukla, Nespor, & Mehler, 2007; Shukla,
White, & Aslin, 2011), others tend to be language-specific (e.g., Cutler, Mehler, Norris, &
Segui, 1986, 1992; Cutler & Mehler, 1993). As a result, a language-universal mechanism
for solving the segmentation problem would be desirable.

A prominent set of potentially language-universal mechanisms that might solve the
segmentation problem relies on co-occurrence statistics of various sorts (but see Gervain
& Guevara Erra, 2012; Saksida, Langus, & Nespor, 2017). These mechanisms track
the predictability of items such as syllables. For example, predicting the next syllable
after “the” is much harder than predicting the next syllable after “whis”, because “the”
can be followed by any noun while there are few possible continuations after “whis”
(e.g., whiskey, whisker, . . . ). More formally, these predictive relationships have been
quantified using Transitional Probabilities (TPs), i.e., the conditional probability of a
syllable σ2 following another syllable σ1 P (σ2|σ1).

After the initial discovery that infants and other animals are sensitive to TPs in
general (Aslin et al., 1998; Chen & Ten Cate, 2015; Creel, Newport, & Aslin, 2004;
Endress, 2010; Endress & Wood, 2011; Fiser & Aslin, 2002a; Hauser, Newport, &
Aslin, 2001; Saffran, Newport, & Aslin, 1996; Saffran, Aslin, & Newport, 1996; Saffran,
Johnson, Aslin, & Newport, 1999; Saffran & Griepentrog, 2001; Sohail & Johnson,
2016; Toro & Trobalón, 2005; Turk-Browne & Scholl, 2009), further research revealed
the astonishing sophistication of these abilities.

For example, adults and infants can track backwards TPs (Endress & Wood, 2011;
Perruchet & Desaulty, 2008; Pelucchi, Hay, & Saffran, 2009; Turk-Browne & Scholl,
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2009) and discriminate high-TP items from low-TP items when the test-items are played
in reverse order with respect to the familiarization (i.e., they readily recognize the item
CBA after familiarization with ABC; Endress & Wood, 2011; Turk-Browne & Scholl,
2009). Learners can also track TPs between non-adjacent items (Endress, 2010; Endress
& Wood, 2011; Peña, Bonatti, Nespor, & Mehler, 2002), though in some experiments,
additional manipulations were required (Creel et al., 2004; Pacton & Perruchet, 2008).
Both abilities are critical for language acquisition, because backwards TPs are in some
languages more informative than forward TPs (e.g., Gervain & Guevara Erra, 2012) and
because, across languages, non-adjacent dependencies abound (e.g., Newport & Aslin,
2004).

Learners prefer high-TP items to low-TP items even when the items are equated
for frequency of occurrence (Aslin et al., 1998), and even when they had heard or seen
only the low-TP items but not the high-TP items (Endress & Mehler, 2009; Endress &
Langus, 2017; Perruchet & Poulin-Charronnat, 2012).

How can we make sense of these data? While a variety of computational models
have been proposed to explain word segmentation (e.g., Batchelder, 2002; Brent &
Cartwright, 1996; Christiansen, Allen, & Seidenberg, 1998; Frank, Goldwater, Griffiths,
& Tenenbaum, 2010; Orbán, Fiser, Aslin, & Lengyel, 2008; Perruchet & Vinter, 1998),
none of the extant models captures the sophistication of statistical learning abilities in
their entirety.

For example, network models (such as Simple Recurrent Networks; Elman, 1990)
are directional, and thus do not account for backward TPs, while their sensitivity to
non-adjacent TPs will likely depend on the network parameters. “Chunking models” that
store items in memory (Batchelder, 2002; Perruchet & Vinter, 1998; Thiessen, 2017)
and information-theoretic models (or related Bayesian models) that minimize storage
space in memory (Brent & Cartwright, 1996; Orbán et al., 2008) will not track (adjacent
or non-adjacent) TPs in unattested items, and thus do not account for the entire range of
data either.

Here, we suggest that an ability to succeed in the crucial test cases above follows
naturally from a correlational learning mechanism such as Hebbian learning. Specifically,
we assume that each item (syllable, visual shape, . . . ) is represented by some population
of neurons, and that participants are exposed to some sequence ABCD. . . , where each
letter stands for an item. If the activation of such a population decays more slowly than
the duration of an item, two adjacent items will be active simultaneously, and thus form
an association. For example, if the representation of A is still active while B occurs,
these representations will form an association. But if the representation of A is still
active while C occurs, A and C will form an association as well even though they are not
temporarily adjacent (see also Endress, 2010). Importantly, these associations are not
directional: just as presenting A will activate B, presenting B will activate A.

Here, we provide a computational implementation of this model. The model is a
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Figure 1. Schematic representation of the network architecture with three units A, B
and C (e.g., representing syllables). All units inhibit each other with a fixed weight of
β. They also have tunable excitatory connections. For example, unit A sends excitatory
input to unit B with a weight of wBA and sends excitatory input to unit C with a weight
of wCA. In addition to excitation and inhibition, all units undergo forgetting.

fairly generic network, based on a widely used model of saliency maps in the parietal
cortex to which we added a Hebbian learning component (see Figure 1 for a schematic
representation of the network architecture and Supplementary Information A for more
details). We use this network architecture as it is fairly generic and widely used, but
have no particular claims about attentional involvement in TP computations (but see e.g.
Toro, Sinnett, & Soto-Faraco, 2005; Turk-Browne, Jungé, & Scholl, 2005). Further, as
this model is rather generic, we do not attempt to fit it to specific experiments. Rather,
our critical point is a conceptual one: the sophisticated properties of statistical learning
follow naturally from the combination of two simple mechanisms, namely correlational
learning and forgetting.

Specifically, the network consists of units that stand for populations of neurons
encoding the items (see Figure 1 for a schematic representation of the network architec-
ture). Excitatory connections between units follow a Hebbian learning rule. To keep the
total activation in the network at a reasonable level, we also added mutual interference
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among the units; the inhibitory interactions do not undergo learning.

Further specifics of the model can be found in Supplementary Information A.

2 Computational principles

We first illustrate the computational principles of the model by running a simulation
with a stream consisting of 9 symbols A, B, . . . I that are arranged into three three-item
units ABC, DEF and GHI. Units were concatenated in random order so that each unit
occurred 100 times.

Figure 2 shows the activation in response to the presentation of each item when
the unit ABC is presented for the first time (a) and for the last time (b) as well as the
weights between the underlying items after the last presentation.

Figure 2a shows that the A unit is still active when the C item is presented. As a
result, we would expect a strong and reciprocal associative link between A and B and a
weaker one between A and C, which is just what Figure 2c shows.

Comparing Figures 2a and b reveals that the activation of A is more reduced at
its last occurrence. This is due to the inhibitory input from other units: On the first
occurrence, no other units are active yet, and activation of A can only be reduced through
inhibition when other units are active. In contrast, the activations of B and C do not seem
reduced between Figures 2 a and c. This is because they receive excitatory input from A
(and B in the case of C) which compensates the inhibitory input from other units.

While we focus on statistical learning in sequences, there is a considerable litera-
ture about statistical learning in simultaneously presented arrays of visual items (see e.g.,
Fiser & Aslin, 2002b, 2005, among many others). In principle, correlational learning
applies to simultaneously presented items as well. For example, consider an experiment
where the network is familiarized with two strongly associated pairs of shapes A-B and
a-b (where each letter stands for a shape). If the network is then tested on the strongly
associated pair A-B and the weakly associated pair A-b, it will be more familiar with the
A-B pair than with the A-b pair. In either pair, A receives the same amount of inhibition
from B or b. However, only A and B will have formed an association that provide A with
excitatory input from B, while less excitation is received from b.1

However, associations among spatially distributed items present other complica-
tions, including associations between items and (relative or absolute) spatial positions,
Gestalt-based grouping principles and the allocation of spatial attention. As little is
known about these factors in statistical learning (but see e.g., Vickery & Jiang, 2009),
we thus focus on sequential statistical learning, and use these computational principles
to illustrate some of the critical results in the statistical learning literature.

1To foreshadow the results below, forgetting will also play role in learning. For example, if forgetting
is so slow that, say, the representations of A and B are still active while a and b are presented, all shapes
will form associations, and the network will not preferentially recognize certain pairs.
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Figure 2. Illustration of the computational principles of the simulations. We plot the
network activation when stimulated by a recurring unit ABC. (a) On the first occurrence
of the unit, no associations have been formed yet. Hence, when A is presented, A (but no
other items) becomes active, and then decays, though some activation persists even while
C is presented. Likewise, B and C become active upon presentation, and then decay.
The initial activation is weaker for B and C than for A due to the presence of inhibitory
interactions; this is because, for A, no other potentially inhibiting representations are
active yet, while other activated items (e.g., A) have inhibitory input for B and C. (b) On
the last occurrence of a unit, associations between the items have been formed. When
the network is externally stimulated with a unit such as ABC, the activation of B and C
is greater than that of A when the corresponding items are stimulated. This is because B
and C (but not A) receive excitatory input from the strongly associated, preceding items.
(c) Weights at the end of the familiarization phase. The connection weights between
adjacent items are stronger than those between non-adjacent items (i.e., between A and
C).
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3 Results

3.1 High- vs. low-TP items, tested forwards and backwards

We first explore the discrimination of high vs. low TP items after exposure to
a sequence of 4 units of 3 items each (e.g., 4 words of 3 syllables). These units are
randomly concatenated into a familiarization stream so that each unit occurs 100 times.
We then present the network with test-items (see below) and record the total network
activation while each item is presented. We hypothesize that the total activation provides
us with a measure of the network’s familiarity with the unit.2

This cycle of familiarization and test will be repeated 100 times, representing 100
participants.

While keeping the parameters for self-excitation and mutual inhibition constant
(α and β in Supplementary Material A), we used forgetting rates (λa in Supplementary
Material A) between 0 and 1. As forgetting in our model is exponential, a forgetting rate
of zero means no forgetting, a forgetting rate of 1 implies the complete disappearance
of activation on the next time step (unless a population of neurons receives excitatory
input from other populations), and a forgetting rate of .5 implies the decay of half of the
activation.

Before presenting our results, it is useful to outline possible psychological inter-
pretations of the forgetting parameter. Similar forgetting parameters are widely used
in related models (e.g., Bays, Singh-Curry, Gorgoraptis, Driver, & Husain, 2010; En-
dress & Szabó, 2020; Gottlieb, 2007; Knops, Piazza, Sengupta, Eger, & Melcher, 2014;
Roggeman, Fias, & Verguts, 2010), and seem plausible at least at the single neuron
level (e.g., Whitmire & Stanley, 2016). Forgetting functions have also been proposed
at the macroscopic, cognitive level (e.g., Wixted & Ebbesen, 1991; Rubin & Wenzel,
1996), though the specific forgetting functions are debated. However, the psychological
mechanisms underlying “forgetting” have a considerable history of controversy. While
forgetting is time-based in our model, many authors argue that, psychologically speaking,
there is no forgetting over time unless there are other stimuli that interfere with the
memory items (e.g., Baddeley & Scott, 1971; Berman, Jonides, & Lewis, 2009; Nairne,
Whiteman, & Kelley, 1999). Here, we do not attempt to decide between these possibili-
ties; in fact, the model equations in Supplementary Material A make it plausible that our
interference parameter might well mimic the role of forgetting (see Endress & Szabó,
2020). Our point simply is that the (time-based or interference-based) mechanisms that
lead to forgetting are critical for learning to occur.

2We also report simulations where we consider only those network activation in the items that are
part of the current test-item rather than the global network activation. For example, when an unit ABC is
presented, we assess the network’s familiarity with the items by recording the activation in A, B and C –
rather than the activation in all items. Intuitively, one would expect the results to be similar, as the active
items will mainly be those that have been stimulated. These simulations are reported in Supplementary
Information D.
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3.1.1 Adjacent and non-adjacent forward TPs. We first evaluate the net-
work’s sensitivity to forward TPs among adjacent and non-adjacent items. These simula-
tions are inspired by the paradigm by Saffran, Aslin, and Newport (1996) and Saffran,
Newport, and Aslin (1996), among many others. After familiarization as described
above, the network will be tested on units such as ABC and “part-units.” Part-units are
created either by taking the last two items from one unit and the first item from the next
unit (e.g., BC:D, where the colon indicates the former unit boundary but is not present
in the stimuli) or by taking the last item from one unit and the first two items from the
next unit (e.g., C:DE). As a result, part-units have occurred during the familiarization
sequence but straddled a unit boundary and thus have relatively weak TPs. We thus
expect the network to be more familiar with units than with part-units.

The demonstration of a sensitivity to TPs among non-adjacent items is inspired
by the paradigm by Endress and Bonatti (2007). Specifically, our high non-adjacent TP
test-items take their first and the last item from the same unit, but the middle item from a
different unit (e.g., AGC, where A and C come from the unit ABC, while G was the first
item of the unit GHI). By analogy to Endress and Bonatti (2007), we call these items
rule-units.

Our low non-adjacent TP test-items take their first and the last items from different
units and take the middle item from yet another unit (e.g., AGF, where A is the first item
from ABC, F is the last item from DEF, while G was the first item of the unit GHI).
By analogy to Endress and Bonatti (2007), we call these items class-units. The critical
difference between the rule-units and the class-units is that the TP between the first and
the last item is 1.0 in rule-units and 0 in class-units.

We will also test a second rule-unit vs. class-unit contrast where the middle item is
novel and did not appear in the familiarization stream (e.g., AXC vs. AXF, where X has
never appeared in the familiarization stream).

For each comparison, we will create normalized difference scores to evaluate the
model performance:

d = Item1 − Item2

Item1 + Item2

We then evaluate these difference scores against the chance level of zero using
Wilcoxon tests. An alternative evaluation metric is to count the number of simulations
(each representing a participant) preferring the target items, and to evaluate this count
using a binomial test. With 100 simulations per parameter set, performance is signifi-
cantly different from the chance level of 50% if at least 61 % of the simulations show a
preference for the target items.

The results are shown in Figure 3a and 3b. For low forgetting rates (0 and 0.2), the
network fails for all comparisons. This is unsurprising as low forgetting rates mean that
all items remain active for many time steps, so that the network indiscriminately forms
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Figure 3. Results for items presented in forward order, different forgetting rates (0, 0.2,
0.4, 0.6, 0.8 and 1), and for the different comparisons (Unit vs. Part-Unit: ABC vs. BC:D
and ABC vs. C:DE; Rule-Unit vs. Class-Unit: AGC vs. AGF and AXC vs. AXF). (a)
Difference scores. The scores are calculated based the global activation as a measure of
the network’s familiarity with the items. Significance is assessed based on Wilcoxon tests
against the chance level of zero. (b) Percentage of simulations with a preference for the
target items. The simulations are assessed based on the global activation in the network.
The dashed line shows the minimum percentage of simulations that is significant based
on a binomial test.
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associations among virtually all items, and thus fails to track the statistical structure
of the familiarization stream. Likewise, for the maximum forgetting rate, the network
fails on all discriminations as well; this is again unsurprising, as no associations can
be formed among items if forgetting is so strong that there is no overlap in activation
between items.

Critically, for intermediate forgetting rates, the network performed well above
chance for all comparisons. It performed somewhat better when contrasting units
with C:DE part-units than when contrasting units with BC:D part-unit, a result that
has been observed in human participants with syllables (Saffran, Newport, & Aslin,
1996), tone sequences (Saffran et al., 1999) and visual shapes (Fiser & Aslin, 2002b).
Importantly, all difference scores are clearly above chance, and between 83% and 100%
of the simulations yielded positive difference scores (though only 63% yielded positive
difference scores for forgetting rate .6 and non-adjacent TP comparisons). Further,
adjacent TPs support higher forgetting rates than non-adjacent TPs, because activations
need to last longer for non-adjacent TPs to be formed; while a sensitivity to TPs among
adjacent items is maintained for a forgetting rate of 0.8, there is no such sensitivity to
non-adjacent TPs.

3.1.2 Adjacent and non-adjacent backward TPS. There is considerable ev-
idence that participants are not only sensitive to forward TPs, but also to backward TPs.
They track TPs when the only informative TPs are backward rather than forward TPs
(Perruchet & Desaulty, 2008; Pelucchi et al., 2009), and discriminate high-TP items
from low-TP items when the test-items are played in reverse order (Endress & Wood,
2011; Turk-Browne & Scholl, 2009).

Here, we test the network’s ability to track backward TPs by familiarizing the
network with the same streams as in the previous section, but playing the test-items in
reverse order (e.g., CBA instead of ABC).

As shown in Figure 4a and 4b, the network performance with reversed items
essentially mirrors that with forward items, with similar performance for both forward
and backward items, with the main difference that the performance asymmetry between
C:DE and BC:D part-units was reversed.

3.2 The role of frequency of occurrence

The experiments presented so far confound TPs and frequency of occurrence:
Units do not only have stronger TPs than part-units, but they also occur more frequently.

This problem was initially noted by Aslin et al. (1998). They addressed it by
having infants “choose” between units and part-units that were matched in frequency
(see Aslin et al., 1998 for more details on the design).

Endress and Mehler (2009) and Endress and Langus (2017) presented a more
“extreme” control experiment. In their experiments, high-TP units were matched in terms
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Figure 4. Results for items presented in backward order, different forgetting rates (0,
0.2, 0.4, 0.6, 0.8 and 1), and for the different comparisons (Unit vs. Part-Unit: ABC vs.
BC:D and ABC vs. C:DE; Rule-Unit vs. Class-Unit: AGC vs. AGF and AXC vs. AXF).
(a) Difference scores. The scores are calculated based the global activation as a measure
of the network’s familiarity with the items. Significance is assessed based on Wilcoxon
tests against the chance level of zero. (b) Percentage of simulations with a preference
for the target items. The simulations are assessed based on the global activation in
the network. The dashed line shows the minimum percentage of simulations that is
significant based on a binomial test.
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of TPs to high-TP phantom-units that had the same TPs as units but never occurred
in the familiarization stream and thus had a frequency of occurrence of zero (see Sup-
plementary Information B for more details on the design). Participants preferred (i.e.,
better recognized) high-TP units to low-TP part-units that had occurred in the familiar-
ization stream, they preferred high-TP phantom-units to low-TP part-units despite the
difference in frequency of occurrence, and they failed to discriminate between units and
phantom-units (but see Perruchet & Poulin-Charronnat, 2012, for evidence that units
and phantom-units might sometimes be discriminated).

Here, we expose the network to a six unit stream inspired by Endress and Mehler
(2009) and Endress and Langus (2017). Following this, we test the network on units,
phantom-units and part-units.

The results are shown in Figures 5a and 5b. As in the experiments reported above,
the network failed on all comparisons for low forgetting rates as it indiscriminately
learned associations among all items.

For medium and, in this experiment, high forgetting rates, the network preferred
units and, critically, also phantom-units over part-units roughly to the same extent; we
also replicate the somewhat better performance when the part-unit is of C:DA type
compared to part-units of BC:D type. As the participants in Endress and Mehler (2009)
and Endress and Langus (2017), the network is thus more sensitive to differences in TPs
than to differences in frequency of occurrence, and recognizes TPs even in items it has
never encountered before.

In contrast, the network does not seem to discriminate between units and phantom-
units, replicating Endress and Mehler’s (2009) and Endress and Langus’s (2017) results,
and suggesting again that the network is more sensitive to TPs than to frequency of
occurrence.

4 Discussion

Identifying recurrent units in a continuous signal is an important problem, es-
pecially for language acquisition. Observers might potentially solve this problem by
tracking co-occurrence statistics among items, assessing the predictiveness of different
items. Indeed, humans have sophisticated statistical learning abilities, allowing them to
encode and recognize Transitional Probabilities (TPs) irrespective of whether items are
played forward or backwards, whether the items are temporarily adjacent or non-adjacent,
and whether the units in which the TPs occur are known or entirely novel.

We show that a simple neural network accounts for all of these phenomena based on
correlational (i.e., Hebbian) learning. Interestingly, the critical ingredient for successful
learning seems to be forgetting: If forgetting is too weak, indiscriminate associations
are formed that are, therefore, uninformative; conversely, if forgetting is too strong, no
associations are formed.
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Figure 5. Results of the simulations comprising phantom-units, for items presented in
forward order, different forgetting rates (0, 0.2, 0.4, 0.6, 0.8 and 1), and for the different
comparisons (Unit vs. Part-Unit: ABC vs. BC:D and ABC vs. C:DE; Phantom-Unit vs.
Part-Unit: Phantom-Unit vs. BC:D and Phantom-Unit vs. C:DE; Unit vs. Phantom-Unit).
(a) Difference scores. The scores are calculated based the global activation as a measure
of the network’s familiarity with the items. Significance is assessed based on Wilcoxon
tests against the chance level of zero. (b) Percentage of simulations with a preference
for the target items. The simulations are assessed based on the global activation. The
dashed line shows the minimum percentage of simulations that is significant based on a
binomial test.
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Given that statistical learning has been observed in human adults and infants as
well as non-human animals, it is interesting to ask how forgetting develops over the
lifespan. However, as mentioned above, interference can likely mimic the effects of
forgetting, and developmental changes in interference might appear as developmental
changes in forgetting. For example, younger infants might have more broadly tuned
representations (e.g., Pascalis, de Haan, & Nelson, 2002; Vouloumanos, Hauser, Werker,
& Martin, 2010) that are more likely to overlap and thus to interfere with each other;
in fact, at least in working memory, items that do not have categorical representations
are less well retained (e.g., Olsson & Poom, 2005). Conversely, infants might also
experience less interference if they have fewer representations; after all, if there are
fewer representations, there are fewer representations that can interfere with any other
representation (see Mani & Plunkett, 2011, for data consistent with this possibility). As
a result, we need to know more about the nature of the underlying representations before
being able to make specific developmental predictions.

Our results lead to a counterintuitive conclusion about the computational function
of statistical learning. While our model presents a rather simple and straightforward
mechanistic explanation for our sophisticated statistical learning abilities, these TP-
based mechanisms are only partially compatible with the presumed function of statistical
learning – namely to store recurrent units in memory. Ultimately, a mechanism that
recognizes items played backwards or items it has not encountered at all can hardly
be said to maintain faithful memory representations of the relevant items. Conversely,
recognizing backwards or unheard items is inconsistent with models that actually store
items in memory (Batchelder, 2002; Perruchet & Vinter, 1998; Thiessen, 2017). As
a result, it is important to find out what the function of statistical learning is during
language acquisition.

Similar dissociations between statistical learning abilities and memory for specific
episodes between amnesic and Parkinson’s patients have led to the conclusion that
humans have a (cortical) declarative memory system that is independent of a (neostriatal)
system for forming associations (Knowlton, Mangels, & Squire, 1996; Poldrack et
al., 2001). Statistical learning might be used for predictive processing rather than
memory per se (Goujon, Didierjean, & Thorpe, 2015; Turk-Browne, Scholl, Johnson, &
Chun, 2010), and statistical predictive processing might even impair memory encoding
(Sherman & Turk-Browne, 2020). Our model is consistent such results: it learns the
statistical structure of a sequence (and thus to predict elements in the sequence elements)
in the absence of a memory store in which units could be placed.3

Together with our model, such results suggest that statistical learning, powerful as

3While Parkinson’s patients were initially thought to be impaired in associative learning in general
(Knowlton et al., 1996), further research revealed that, for many tasks, such patients have intact associative
learning abilities, and that their impairment might depend on the need to integrate probabilistic feedback
across learning episodes (Smith & McDowall, 2006). Be that as it might, statistical learning does not seem
to lead to declarative knowledge of specific events even in studies that link it to the Medial Temporal Lobe
(Turk-Browne et al., 2010).
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it is, might not be sufficient for placing recurring units in memory. After all, we clearly
have declarative memories of such items, and know that we know the word learning
rather than a backwards version such as gninrael. As a result, a critical question for
future research is to find out how the power of predictive processes such as statistical
learning is harnessed to form declarative memories of recurring units in sequences or
whether other cues and mechanisms4 are required.

4As mentioned above, such cues and mechanisms might include rhythmic, prosodic and phonotactic
cues (e.g., Christophe et al., 2004; Mehler et al., 1981; Johnson & Jusczyk, 2001; Johnson & Seidl, 2009;
McQueen, 1998; Norris et al., 1997; Salverda et al., 2007), especially those that available across languages
(e.g., Brentari et al., 2011; Christophe et al., 1994, 2001; Endress & Hauser, 2010; Pilon, 1981; Shukla et
al., 2007, 2011).
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Supplementary Material A
Model definition

The activation of the ith unit xi(t) is governed by the differential equation.

ẋi = −λaxi + α
∑
j 6=i

wijF (xj)− β
∑
j 6=i

F (xj) + noise

where F (x) is some activation function. (Here we use F (x) = x
1+x

). The first term
represents exponential forgetting with a time constant of λa, the second term activation
from other units, and the third term inhibition among items to keep the overall activation
in a reasonable range.

The weights wij are updated using a Hebbian learning rule

ẇij = −λwwij + ρF (xi)F (xj)

λw is the time constant of forgetting (which we set to zero in our simulations)
while ρ is the learning rate.

A discrete version of the activation equation is given by

xi(t+ 1) = xi(t)− λaxi(t) + α
∑
j 6=i

wijF (xj)− β
∑
j 6=i

F (xj) + noise

While the time step is arbitrary in the absence of external input, we use the
duration of individual units (e.g., syllables, visual symbols etc.) as the time unit in
our discretization because associative learning is generally invariant under temporal
scaling of the experiment (Gallistel & Gibbon, 2000). Further, while only excitatory
connections are tuned by learning in our model, the same effect could be obtained by
tuning inhibition, for example through tunable disinhibitory interneurons (Letzkus et al.,
2011). Here, we simply focus on the result that a fairly generic network architecture
accounts for the hallmarks of statistical learning that, so far, have eluded explanation.

The discrete updating rule for the weights is

wij(t+ 1) = wij(t)− λwwij(t) + ρF (xi)F (xj)

Simulation parameters are listed in Table A1. An R implementation is available
at https://figshare.com/s/7a4ad045a3084f7b8920. (Please note that
the URL will change in the final version of the manuscript. The final location will be
http://doi.org/10.25383/city.11359376.)
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Table A1
Parameters used in the simulations

Symbol Function Value(s)

α Excitation coefficient 0.7
β Inhibition coefficient 0.4
λa Forgetting rate — Activation 0, 0.2, 0.4, 0.6, 0.8, 1
λw Forgetting rate — Weights 0
σnoise, activation Standard deviation of activation noise 0.001
σnoise, weights Standard deviation of weight noise 0
ρ 0.05
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Figure B1. Design of the stimuli used in Endress and Mehler’s (2009) experiments.
Reproduced from Endress and Mehler (2009).

Supplementary Material B
Design of phantom-words

The design of Endress and Mehler’s (2009) experiments is shown in Figure B1. Dur-
ing familiarization, participants listened to continuous speech streams consisting of a
concatenation of nonce words.

Critically, the “words” were constructed to equate TPs among syllables in words
and in “phantom-words,” that is, in items that did not occur in the stream but had the
same TPs as words.

As shown in Figure B1, phantom-words were constructed through overlap with
actual words in the speech stream. Specifically, each phantom-word shared the first
two syllables with one word, the last two syllables with another word, and the first
and last syllable with yet another word. (Syllables not shared between words and the
corresponding phantom-words are shown in bold face in Figure B1.) As result, TPs
among adjacent and non-adjacent syllables were identical in both words and phantom-
words. Within-word TPs were 0.5, while TPs among syllables straddling a word boundary
were 0.33.
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Supplementary Material C
Detailed results

Table C1 provides detailed results for the simulations in terms of descriptive statistics
and statistical tests for the simulation testing the recognition of (forward and backward)
units, part-units, rule-units and class-units.

Table C2 provides similar results for the simulations testing the recognition of
units, part-units and phantom-units.

Table C1
Detailed results for the different forgetting rates and comparisons (Unit vs. Part-Unit:
ABC vs. BC:D and ABC vs. C:DE; Rule-Unit vs. Class-Unit: AGC vs. AGF and AXC
vs. AXF), for items presented in forward and backward order, and using the global
activation as a measure of the network’s familiarity with the items. pW ilcoxon represents
the p value of a Wilcoxon test on the difference scores against the chance level of zero.
PSimulations represents the proportion of simulations showing positive difference scores.

λa Statistic ABC vs BC:D ABC vs C:DE AGC vs AGF AXC vs AXF

Forward
0 M −180× 10−3 −113× 10−3 −82.7× 10−3 −101× 10−3

0 SE −18.1× 10−3 −11.4× 10−3 −8.31× 10−3 −10.2× 10−3

0 pW ilcoxon 95.7× 10−3 222× 10−3 452× 10−3 607× 10−3

0 PSimulations 470× 10−3 540× 10−3 490× 10−3 570× 10−3

200× 10−3 M −109× 10−3 −72.8× 10−3 −92.6× 10−3 −87.1× 10−3

200× 10−3 SE −11.0× 10−3 −7.32× 10−3 −9.31× 10−3 −8.75× 10−3

200× 10−3 pW ilcoxon 120× 10−3 118× 10−3 152× 10−3 134× 10−3

200× 10−3 PSimulations 490× 10−3 530× 10−3 540× 10−3 510× 10−3

400× 10−3 M 3.68× 10−3 102× 10−3 12.4× 10−3 13.2× 10−3

400× 10−3 SE 369× 10−6 10.2× 10−3 1.25× 10−3 1.33× 10−3

400× 10−3 pW ilcoxon 2.92× 10−12 3.96× 10−18 4.08× 10−18 4.08× 10−18

400× 10−3 PSimulations 830× 10−3 1.00 990× 10−3 990× 10−3

600× 10−3 M 7.65× 10−3 50.8× 10−3 565× 10−6 465× 10−6

600× 10−3 SE 769× 10−6 5.10× 10−3 56.8× 10−6 46.7× 10−6

600× 10−3 pW ilcoxon 3.96× 10−18 3.96× 10−18 462× 10−6 320× 10−6

600× 10−3 PSimulations 1.00 1.00 630× 10−3 630× 10−3

800× 10−3 M 9.48× 10−3 17.1× 10−3 −13.0× 10−6 −35.9× 10−6

800× 10−3 SE 953× 10−6 1.72× 10−3 −1.31× 10−6 −3.61× 10−6

800× 10−3 pW ilcoxon 3.96× 10−18 3.96× 10−18 583× 10−3 681× 10−3

800× 10−3 PSimulations 1.00 1.00 590× 10−3 470× 10−3

1.00 M 32.9× 10−6 31.9× 10−6 23.7× 10−6 −64.9× 10−6

1.00 SE 3.30× 10−6 3.21× 10−6 2.38× 10−6 −6.52× 10−6

1.00 pW ilcoxon 737× 10−3 646× 10−3 897× 10−3 231× 10−3

1.00 PSimulations 530× 10−3 500× 10−3 480× 10−3 450× 10−3
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Table C1
Detailed results for the different forgetting rates and comparisons (Unit vs. Part-Unit:
ABC vs. BC:D and ABC vs. C:DE; Rule-Unit vs. Class-Unit: AGC vs. AGF and AXC
vs. AXF), for items presented in forward and backward order, and using the global
activation as a measure of the network’s familiarity with the items. pW ilcoxon represents
the p value of a Wilcoxon test on the difference scores against the chance level of zero.
PSimulations represents the proportion of simulations showing positive difference scores.
(continued)

λa Statistic ABC vs BC:D ABC vs C:DE AGC vs AGF AXC vs AXF

Backward
0 M −125× 10−3 −82.7× 10−3 −79.9× 10−3 −74.8× 10−3

0 SE −12.5× 10−3 −8.31× 10−3 −8.03× 10−3 −7.52× 10−3

0 pW ilcoxon 947× 10−3 448× 10−3 286× 10−3 607× 10−3

0 PSimulations 620× 10−3 560× 10−3 480× 10−3 560× 10−3

200× 10−3 M 9.35× 10−3 5.52× 10−3 −75.9× 10−3 −91.2× 10−3

200× 10−3 SE 940× 10−6 555× 10−6 −7.63× 10−3 −9.16× 10−3

200× 10−3 pW ilcoxon 753× 10−3 730× 10−3 160× 10−3 92.4× 10−3

200× 10−3 PSimulations 650× 10−3 580× 10−3 520× 10−3 510× 10−3

400× 10−3 M 111× 10−3 76.7× 10−3 14.9× 10−3 16.9× 10−3

400× 10−3 SE 11.2× 10−3 7.71× 10−3 1.50× 10−3 1.70× 10−3

400× 10−3 pW ilcoxon 3.96× 10−18 3.96× 10−18 7.01× 10−18 3.96× 10−18

400× 10−3 PSimulations 1.00 1.00 980× 10−3 1.00
600× 10−3 M 54.9× 10−3 32.2× 10−3 308× 10−6 536× 10−6

600× 10−3 SE 5.52× 10−3 3.23× 10−3 31.0× 10−6 53.9× 10−6

600× 10−3 pW ilcoxon 3.96× 10−18 3.96× 10−18 239× 10−3 14.2× 10−6

600× 10−3 PSimulations 1.00 1.00 550× 10−3 660× 10−3

800× 10−3 M 16.4× 10−3 12.8× 10−3 −22.4× 10−6 42.4× 10−6

800× 10−3 SE 1.65× 10−3 1.29× 10−3 −2.25× 10−6 4.26× 10−6

800× 10−3 pW ilcoxon 3.96× 10−18 3.96× 10−18 985× 10−3 463× 10−3

800× 10−3 PSimulations 1.00 1.00 500× 10−3 500× 10−3

1.00 M −118× 10−6 −50.9× 10−6 −47.2× 10−6 −22.9× 10−6

1.00 SE −11.9× 10−6 −5.12× 10−6 −4.75× 10−6 −2.30× 10−6

1.00 pW ilcoxon 39.6× 10−3 278× 10−3 358× 10−3 709× 10−3

1.00 PSimulations 410× 10−3 460× 10−3 490× 10−3 490× 10−3
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Table C2
Detailed results for the different forgetting rates and comparisons, using the global
activation as a measure of the network’s familiarity with the items. pW ilcoxon represents
the p value of a Wilcoxon test on the difference scores against the chance level of zero.
PSimulations represents the proportion of simulations showing positive difference scores.
λa Statistic Unit vs BC:D Unit vs C:DE Phantom vs BC:D Phantom vs C:DE Unit vs Phantom

0 M −57.8× 10−3 −121× 10−3 −49.7× 10−3 −91.3× 10−3 −38.7× 10−3

0 SE −5.81× 10−3 −12.1× 10−3 −5.00× 10−3 −9.18× 10−3 −3.89× 10−3

0 pW ilcoxon 876× 10−3 385× 10−3 865× 10−3 835× 10−3 133× 10−3

0 PSimulations 540× 10−3 520× 10−3 570× 10−3 550× 10−3 450× 10−3

200× 10−3 M −53.0× 10−3 −164× 10−3 −53.5× 10−3 −178× 10−3 27.6× 10−3

200× 10−3 SE −5.33× 10−3 −16.5× 10−3 −5.38× 10−3 −17.8× 10−3 2.77× 10−3

200× 10−3 pW ilcoxon 761× 10−3 120× 10−3 979× 10−3 111× 10−3 544× 10−3

200× 10−3 PSimulations 500× 10−3 480× 10−3 590× 10−3 540× 10−3 530× 10−3

400× 10−3 M 76.4× 10−3 −27.0× 10−3 72.2× 10−3 −36.4× 10−3 14.3× 10−3

400× 10−3 SE 7.68× 10−3 −2.71× 10−3 7.25× 10−3 −3.66× 10−3 1.44× 10−3

400× 10−3 pW ilcoxon 22.7× 10−3 819× 10−3 6.92× 10−3 471× 10−3 681× 10−3

400× 10−3 PSimulations 640× 10−3 570× 10−3 700× 10−3 650× 10−3 450× 10−3

600× 10−3 M 2.06× 10−3 21.8× 10−3 2.12× 10−3 21.9× 10−3 −60.7× 10−6

600× 10−3 SE 207× 10−6 2.20× 10−3 214× 10−6 2.20× 10−3 −6.10× 10−6

600× 10−3 pW ilcoxon 296× 10−12 3.96× 10−18 5.91× 10−12 3.96× 10−18 654× 10−3

600× 10−3 PSimulations 780× 10−3 1.00 820× 10−3 1.00 500× 10−3

800× 10−3 M 2.12× 10−3 5.21× 10−3 2.17× 10−3 5.26× 10−3 −50.4× 10−6

800× 10−3 SE 213× 10−6 524× 10−6 218× 10−6 529× 10−6 −5.07× 10−6

800× 10−3 pW ilcoxon 3.96× 10−18 3.96× 10−18 3.96× 10−18 3.96× 10−18 382× 10−3

800× 10−3 PSimulations 1.00 1.00 1.00 1.00 480× 10−3

1.00 M 17.8× 10−6 17.9× 10−6 17.5× 10−6 17.7× 10−6 233× 10−9

1.00 SE 1.79× 10−6 1.80× 10−6 1.76× 10−6 1.78× 10−6 23.4× 10−9

1.00 pW ilcoxon 5.51× 10−18 172× 10−18 2.31× 10−15 846× 10−18 849× 10−3

1.00 PSimulations 980× 10−3 920× 10−3 880× 10−3 870× 10−3 490× 10−3
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Supplementary Material D
Experiments using the activation in the test-items

Here, we report on experiments where we evaluate the network performance using the
activation of only those items that are part of the the test-items instead of the global
activation. That is, when an unit ABC was presented, we assess the network’s familiarity
with the items by recording the activation in A, B and C; in contrast, in the simulation
above, we recorded the activation in all items. Intuitively, one would expect the results
to be similar, as the active items will mainly be those that have been stimulated.

D.1 High- vs. low-TP items, tested forwards and backwards

D.1.1 Adjacent and non-adjacent forward TPs. In this section, we seek to
demonstrate that the network is sensitive to basic forward TPs among and non-adjacent
items. Again, to demonstrate a sensitivity to TPs among adjacent items, the network will
be tested on units and part-units. Likewise, the demonstration of a sensitivity to TPs
among non-adjacent items is inspired by the paradigm by Endress and Bonatti (2007)
and will be tested on rule-units vs. class-units, either with a middle item that appear
during familiarization or with a novel middle item.

As shown in Figure D1 and D2, the results are very similar to those based on the
global network activation reported above: The network fails for very low and very high
forgetting parameters, and successeds on all comparisons with intermediate forgetting
parameters. Numerically speaking, the results are similar to those used above as well.

D.1.2 Adjacent and non-adjacent backward TPS. Again, we test the net-
work’s ability to track backward TPs by familiarizing the network with the same streams
as in the previous section, but playing the test-items in reverse order (e.g., CBA instead
of ABC).

As shown in Figures D3 and D4, the results are very similar to those based on the
global network activation reported above: The network fails for very low and very high
forgetting parameters, and successeds on all comparisons with intermediate forgetting
parameters. Numerically speaking, the results are similar to those used above as well.
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Figure D1. Difference scores for items presented in forward order, different forgetting
rates (0, 0.2, 0.4, 0.6, 0.8 and 1), and for the different comparisons (Unit vs. Part-Unit:
ABC vs. BC:D and ABC vs. C:DE; Rule-Unit vs. Class-Unit: AGC vs. AGF and AXC vs.
AXF). The scores are calculated based the activation in the test items as a measure of the
network’s familiarity with the items. Significance is assessed based on Wilcoxon tests
against the chance level of zero.
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Figure D2. Percentage of simulations with a preference for the target items for items
presented in forward order, different forgetting rates (0, 0.2, 0.4, 0.6, 0.8 and 1) and
for the different comparisons (Unit vs. Part-Unit: ABC vs. BC:D and ABC vs. C:DE;
Rule-Unit vs. Class-Unit: AGC vs. AGF and AXC vs. AXF). The simulations are
assessed based on the activation in the test items. The dashed line shows the minimum
percentage of simulations that is significant based on a binomial test.
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Figure D3. Difference scores for items presented in backward order, different for-
getting rates (0, 0.2, 0.4, 0.6, 0.8 and 1), and for the different comparisons (Unit vs.
Part-Unit: ABC vs. BC:D and ABC vs. C:DE; Rule-Unit vs. Class-Unit: AGC vs. AGF
and AXC vs. AXF). The scores are calculated based the activation in the test items as a
measure of the network’s familiarity with the items. Significance is assessed based on
Wilcoxon tests against the chance level of zero.
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Figure D4. Percentage of simulations with a preference for the target items for items
presented in backward order, different forgetting rates (0, 0.2, 0.4, 0.6, 0.8 and 1)
and for the different comparisons (Unit vs. Part-Unit: ABC vs. BC:D and ABC vs.
C:DE; Rule-Unit vs. Class-Unit: AGC vs. AGF and AXC vs. AXF). The simulations are
assessed based on the activation in the test items. The dashed line shows the minimum
percentage of simulations that is significant based on a binomial test.
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Table D1
Detailed results for the different forgetting rates and comparisons (Unit vs. Part-Unit:
ABC vs. BC:D and ABC vs. C:DE; Rule-Unit vs. Class-Unit: AGC vs. AGF and
AXC vs. AXF), for items presented in forward and backward order, and using the
activation of the elements of the test-items as a measure of the network’s familiarity with
the items. pW ilcoxon represents the p value of a Wilcoxon test on the difference scores
against the chance level of zero. PSimulations represents the proportion of simulations
showing positive difference scores.

λa Statistic ABC vs BC:D ABC vs C:DE AGC vs AGF AXC vs AXF

Forward
0 M −180× 10−3 −113× 10−3 −82.7× 10−3 −101× 10−3

0 SE −18.1× 10−3 −11.4× 10−3 −8.31× 10−3 −10.2× 10−3

0 pW ilcoxon 95.7× 10−3 222× 10−3 452× 10−3 607× 10−3

0 PSimulations 470× 10−3 540× 10−3 490× 10−3 570× 10−3

200× 10−3 M −109× 10−3 −72.8× 10−3 −92.6× 10−3 −87.1× 10−3

200× 10−3 SE −11.0× 10−3 −7.32× 10−3 −9.31× 10−3 −8.75× 10−3

200× 10−3 pW ilcoxon 120× 10−3 118× 10−3 152× 10−3 134× 10−3

200× 10−3 PSimulations 490× 10−3 530× 10−3 540× 10−3 510× 10−3

400× 10−3 M 3.68× 10−3 102× 10−3 12.4× 10−3 13.2× 10−3

400× 10−3 SE 369× 10−6 10.2× 10−3 1.25× 10−3 1.33× 10−3

400× 10−3 pW ilcoxon 2.92× 10−12 3.96× 10−18 4.08× 10−18 4.08× 10−18

400× 10−3 PSimulations 830× 10−3 1.00 990× 10−3 990× 10−3

600× 10−3 M 7.65× 10−3 50.8× 10−3 565× 10−6 465× 10−6

600× 10−3 SE 769× 10−6 5.10× 10−3 56.8× 10−6 46.7× 10−6

600× 10−3 pW ilcoxon 3.96× 10−18 3.96× 10−18 462× 10−6 320× 10−6

600× 10−3 PSimulations 1.00 1.00 630× 10−3 630× 10−3

800× 10−3 M 9.48× 10−3 17.1× 10−3 −13.0× 10−6 −35.9× 10−6

800× 10−3 SE 953× 10−6 1.72× 10−3 −1.31× 10−6 −3.61× 10−6

800× 10−3 pW ilcoxon 3.96× 10−18 3.96× 10−18 583× 10−3 681× 10−3

800× 10−3 PSimulations 1.00 1.00 590× 10−3 470× 10−3

1.00 M 32.9× 10−6 31.9× 10−6 23.7× 10−6 −64.9× 10−6

1.00 SE 3.30× 10−6 3.21× 10−6 2.38× 10−6 −6.52× 10−6

1.00 pW ilcoxon 737× 10−3 646× 10−3 897× 10−3 231× 10−3

1.00 PSimulations 530× 10−3 500× 10−3 480× 10−3 450× 10−3

Backward
0 M −125× 10−3 −82.7× 10−3 −79.9× 10−3 −74.8× 10−3

0 SE −12.5× 10−3 −8.31× 10−3 −8.03× 10−3 −7.52× 10−3

0 pW ilcoxon 947× 10−3 448× 10−3 286× 10−3 607× 10−3

0 PSimulations 620× 10−3 560× 10−3 480× 10−3 560× 10−3

200× 10−3 M 9.35× 10−3 5.52× 10−3 −75.9× 10−3 −91.2× 10−3

200× 10−3 SE 940× 10−6 555× 10−6 −7.63× 10−3 −9.16× 10−3
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Table D1
Detailed results for the different forgetting rates and comparisons (Unit vs. Part-Unit:
ABC vs. BC:D and ABC vs. C:DE; Rule-Unit vs. Class-Unit: AGC vs. AGF and
AXC vs. AXF), for items presented in forward and backward order, and using the
activation of the elements of the test-items as a measure of the network’s familiarity with
the items. pW ilcoxon represents the p value of a Wilcoxon test on the difference scores
against the chance level of zero. PSimulations represents the proportion of simulations
showing positive difference scores. (continued)

λa Statistic ABC vs BC:D ABC vs C:DE AGC vs AGF AXC vs AXF

200× 10−3 pW ilcoxon 753× 10−3 730× 10−3 160× 10−3 92.4× 10−3

200× 10−3 PSimulations 650× 10−3 580× 10−3 520× 10−3 510× 10−3

400× 10−3 M 111× 10−3 76.7× 10−3 14.9× 10−3 16.9× 10−3

400× 10−3 SE 11.2× 10−3 7.71× 10−3 1.50× 10−3 1.70× 10−3

400× 10−3 pW ilcoxon 3.96× 10−18 3.96× 10−18 7.01× 10−18 3.96× 10−18

400× 10−3 PSimulations 1.00 1.00 980× 10−3 1.00
600× 10−3 M 54.9× 10−3 32.2× 10−3 308× 10−6 536× 10−6

600× 10−3 SE 5.52× 10−3 3.23× 10−3 31.0× 10−6 53.9× 10−6

600× 10−3 pW ilcoxon 3.96× 10−18 3.96× 10−18 239× 10−3 14.2× 10−6

600× 10−3 PSimulations 1.00 1.00 550× 10−3 660× 10−3

800× 10−3 M 16.4× 10−3 12.8× 10−3 −22.4× 10−6 42.4× 10−6

800× 10−3 SE 1.65× 10−3 1.29× 10−3 −2.25× 10−6 4.26× 10−6

800× 10−3 pW ilcoxon 3.96× 10−18 3.96× 10−18 985× 10−3 463× 10−3

800× 10−3 PSimulations 1.00 1.00 500× 10−3 500× 10−3

1.00 M −118× 10−6 −50.9× 10−6 −47.2× 10−6 −22.9× 10−6

1.00 SE −11.9× 10−6 −5.12× 10−6 −4.75× 10−6 −2.30× 10−6

1.00 pW ilcoxon 39.6× 10−3 278× 10−3 358× 10−3 709× 10−3

1.00 PSimulations 410× 10−3 460× 10−3 490× 10−3 490× 10−3

D.2 The role of frequency of occurrence

As mentioned above, the experiments presented so far confound TPs and frequency
of occurrence: Units do not only have stronger TPs than part-units, but they also occur
more frequently. Among the control experiments for this issue (Aslin et al., 1998;
Endress & Mehler, 2009; Endress & Langus, 2017), our computational experiments are
inspired by Endress and Mehler (2009) and Endress and Langus (2017). We thus expose
the network to a six unit stream inspired by Endress and Mehler (2009) and Endress
and Langus (2017). Following this, we test the network on units, phantom-units and
part-units.

As shown in Figure D5 and D6, the results are very similar to those based on
the global network activation reported above: The network fails for very low and very
high forgetting parameters, and prefers units and phantom-units over part-units roughly
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Figure D5. Difference scores for items presented in forward order, different forgetting
rates (0, 0.2, 0.4, 0.6, 0.8 and 1), and for the different comparisons (Unit vs. Part-Unit:
ABC vs. BC:D and ABC vs. C:DE; Phantom-Unit vs. Part-Unit: Phantom-Unit vs. BC:D
and Phantom-Unit vs. C:DE; Unit vs. Phantom-Unit). The scores are calculated based
the activation in the test items as a measure of the network’s familiarity with the items.
Significance is assessed based on Wilcoxon tests against the chance level of zero.
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Figure D6. Percentage of simulations with a preference for the target items for items
presented in forward order, different forgetting rates (0, 0.2, 0.4, 0.6, 0.8 and 1) and
for the different comparisons (Unit vs. Part-Unit: ABC vs. BC:D and ABC vs. C:DE;
Phantom-Unit vs. Part-Unit: Phantom-Unit vs. BC:D and Phantom-Unit vs. C:DE; Unit
vs. Phantom-Unit). The simulations are assessed based on the activation in the test items.
The dashed line shows the minimum percentage of simulations that is significant based
on a binomial test.
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to the same extent for medium and high forgetting rates. As in Endress and Mehler
(2009) and Endress and Langus (2017), it thus more sensitive to differences in TPs than
to differences in frequency of occurrence. In contrast, the network does not seem to
discriminate between units and phantom-units, replicating Endress and Mehler’s (2009)
and Endress and Langus’s (2017) results.

D.3 Detailed results

Table D1 provides detailed results for the simulations in terms of descriptive
statistics and statistical tests for the simulation testing the recognition of (forward and
backward) units, part-units, rule-units and class-units.

Table D2 provides similar results for the simulations testing the recognition of
units, part-units and phantom-units.

Table D2
Detailed results for the different forgetting rates and comparisons, and using the activa-
tion of the elements of the test-items as a measure of the network’s familiarity with the
items. pW ilcoxon represents the p value of a Wilcoxon test on the difference scores against
the chance level of zero. PSimulations represents the proportion of simulations showing
positive difference scores.
λa Statistic Unit vs BC:D Unit vs C:DE Phantom vs BC:D Phantom vs C:DE Unit vs Phantom

0 M −57.8× 10−3 −121× 10−3 −49.7× 10−3 −91.3× 10−3 −38.7× 10−3

0 SE −5.81× 10−3 −12.1× 10−3 −5.00× 10−3 −9.18× 10−3 −3.89× 10−3

0 pW ilcoxon 876× 10−3 385× 10−3 865× 10−3 835× 10−3 133× 10−3

0 PSimulations 540× 10−3 520× 10−3 570× 10−3 550× 10−3 450× 10−3

200× 10−3 M −53.0× 10−3 −164× 10−3 −53.5× 10−3 −178× 10−3 27.6× 10−3

200× 10−3 SE −5.33× 10−3 −16.5× 10−3 −5.38× 10−3 −17.8× 10−3 2.77× 10−3

200× 10−3 pW ilcoxon 761× 10−3 120× 10−3 979× 10−3 111× 10−3 544× 10−3

200× 10−3 PSimulations 500× 10−3 480× 10−3 590× 10−3 540× 10−3 530× 10−3

400× 10−3 M 76.4× 10−3 −27.0× 10−3 72.2× 10−3 −36.4× 10−3 14.3× 10−3

400× 10−3 SE 7.68× 10−3 −2.71× 10−3 7.25× 10−3 −3.66× 10−3 1.44× 10−3

400× 10−3 pW ilcoxon 22.7× 10−3 819× 10−3 6.92× 10−3 471× 10−3 681× 10−3

400× 10−3 PSimulations 640× 10−3 570× 10−3 700× 10−3 650× 10−3 450× 10−3

600× 10−3 M 2.06× 10−3 21.8× 10−3 2.12× 10−3 21.9× 10−3 −60.7× 10−6

600× 10−3 SE 207× 10−6 2.20× 10−3 214× 10−6 2.20× 10−3 −6.10× 10−6

600× 10−3 pW ilcoxon 296× 10−12 3.96× 10−18 5.91× 10−12 3.96× 10−18 654× 10−3

600× 10−3 PSimulations 780× 10−3 1.00 820× 10−3 1.00 500× 10−3

800× 10−3 M 2.12× 10−3 5.21× 10−3 2.17× 10−3 5.26× 10−3 −50.4× 10−6

800× 10−3 SE 213× 10−6 524× 10−6 218× 10−6 529× 10−6 −5.07× 10−6

800× 10−3 pW ilcoxon 3.96× 10−18 3.96× 10−18 3.96× 10−18 3.96× 10−18 382× 10−3

800× 10−3 PSimulations 1.00 1.00 1.00 1.00 480× 10−3

1.00 M 17.8× 10−6 17.9× 10−6 17.5× 10−6 17.7× 10−6 233× 10−9

1.00 SE 1.79× 10−6 1.80× 10−6 1.76× 10−6 1.78× 10−6 23.4× 10−9

1.00 pW ilcoxon 5.51× 10−18 172× 10−18 2.31× 10−15 846× 10−18 849× 10−3

1.00 PSimulations 980× 10−3 920× 10−3 880× 10−3 870× 10−3 490× 10−3


