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Abstract. Traditional power grids are evolving to keep pace with the
demands of the modern age. Smart grids contain integrated IT systems
for better management and efficiency, but in doing so, also inherit a
plethora of cyber-security threats and vulnerabilities. Denial-of-Service
(DoS) is one such threat. At the same time, the smart grid has particular
characteristics (e.g. minimal delay tolerance), which can influence the
nature of threats and so require special consideration. In this paper,
we identify a set of possible smart grid-specific DoS scenarios based on
current research, and analyse them in the context of the grid components
they target. Based on this, we propose a novel target-based classification
scheme and further characterise each scenario by qualitatively exploring
it in the context of the underlying grid infrastructure. This culminates
in a smart grid-centric analysis of the threat to reveal the nature of DoS
in this environment.

Keywords: Smart grid · cyber-security · DoS · DDoS.

1 Introduction

The digital age has caused an increased dependency on electricity, and con-
sequently, given rise to an increased demand on power systems. As a result,
traditional power grids have had to evolve to deal with this inflated demand. A
smart grid is a traditional power grid integrated with information communica-
tion systems. The former is referred to as the physical or operational technology
(OT), and the latter is called the cyber or information technology (IT). In prac-
tice, this means that IT networks gather data from field systems and deliver
them to a central command centre via local controllers. That data can then be
used to regulate physical grid components and to make management decisions.

Whilst this can greatly improve efficiency, the IT network also makes the
smart grid more vulnerable to malicious activity by expanding the previously
limited attack surface. Grid components are now remotely accessible, and grid
processes are now dependent on data flows through communication channels that
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can be disrupted. Furthermore, the cyber and the physical systems are highly
interconnected and interdependent, meaning that faults or attacks at one point
can cause a chain of effect across the wider smart grid.

This work is focused on Denial-of-Service (DoS), a well-known cyber-attack
targeting availability, designed to hinder normal system processes. It is popular
because, despite being relatively simple, a successful DoS attack can cause a large
degree of disruption. DoS attack methodology may consist of a) flooding, where a
channel/device is overwhelmed with data, b) the exploitation of vulnerabilities or
quirks in systems and protocols, or c) both. A DoS attack launched by multiple
dispersed individuals (e.g. in a botnet) is known as Distributed DoS (DDoS).
Whilst disruption resulting from physical tampering can also be explored, we
consider DoS predominantly as a cyber threat.

DoS attacks in conventional networks are well-studied, but the smart grid
has particularities that influence both methodology and results. In this paper,
we first identify and then characterise smart grid DoS scenarios to build up a
picture of how this threat manifests in this new environment. Identification is
achieved via a detailed survey of existing research, which then forms the basis
of a new classification scheme organised by potential targets. This differs from
conventional approaches and is designed to link targeted grid components with
likely DoS attack methods, providing a reference for researchers and defenders.
To our knowledge, a survey and classification of smart grid-specific DoS scenarios
is novel to this work.

The research presented in this paper is part of the European Union’s Energy
Shield project [1], commissioned in recognition of the energy industry’s transition
from traditional systems to smart grids. The aim of this project is to develop
a defence toolkit for EPES (Electrical Power and Energy System) operators [1]
to protect critical infrastructure from cyber-attacks, including DDoS. This work
was conducted to provide a foundation of understanding of the smart grid-centric
DoS threat on which the project can further build.

The rest of the paper is structured as follows: Section 2 provides a back-
ground explanation of smart grid architecture, including domains, flows, and
key components. Then, the smart grid DoS research survey is presented in Sec-
tion 3. Based on the information in 2 and 3, Section 4 presents our classification
scheme and characterisations of the identified DoS scenarios. This is followed
by the discussion of our findings in Section 5, with an analysis of related works
given in Section 6. We then conclude in Section 7.

2 Smart Grids Background

2.1 Smart Grid Domains

The smart grid follows a domain model architecture, which means it is split
into multiple domains, each handling a different function. A domain will gener-
ate/process either power flows (in the OT), communication flows (in the IT), or
both. Generally, data on power flows is collected and shared as communication
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Fig. 1. Smart grid domains.

flows. Fig. 1 provides an illustration of the core domains as they relate to each
other and the flows between them. Note that this paper focuses on communica-
tion flows as the main target of DoS attacks, but the characteristics of these are
influenced by the nature of the underlying power flows.

The core domains of the traditional power grid, responsible for the production
and delivery of electricity as a utility, are described first. These are the ones that
contain power flows. The Customer domain deals with the delivery of power to
customer premises. It also handles the collection of usage data. Power is received
from the Distribution domain, which is responsible for dissemination. This do-
main also transforms the power received from the Transmission domain, which
is where bulk energy is carried between geographically distributed locations (e.g.
a power plant and a city). The Generation domain houses power plants where
electricity is ‘produced’. If distributed power generation exists (i.e. customers
generate their own electricity), this is also handled within the Customer and
Distribution domains.

The rest are the communication-focused domains. Operations is the main
control hub and the core of the communication network, responsible for the
collection of monitoring data and the dissemination of control commands. The
Service domain houses the providers who deliver electricity as a utility, whilst the
buying/selling of electricity is handled within the Markets domain. Both Service
and Markets make use of the IT to provision services and to bill customers.
However, it should be noted that there is a separation between the IT that
controls the grid, and the corporate TCP/IP networks of energy companies and
service providers.

2.2 Smart Grid Structure

The traditional power grid (i.e. the OT) is hierarchical in the way it transmits
and distributes electricity to users. One or more power plants generate electricity.
This is then carried in bulk through heavy-duty transmission lines to many
geographically dispersed substations. Here, transformers convert (i.e. step-down)
and transfer energy to distribution lines, which then branch out to deliver power
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Fig. 2. Smart grid IT network hierarchy with CPNs (Customer Premise Networks).

to a large number of individual customer premises. Hence, there are a larger
number of component systems at the bottom then at the top, which means that
a single problem higher up in the power hierarchy affects many systems lower
down.

The IT network is also hierarchical. For a given region and/or provider, a
single core management system, such as SCADA (Supervisor Control and Data
Acquisition), contains various master controls to monitor, analyse, and regulate
grid operations. This core network receives inputs from distributed monitoring
devices (like RTUs and PLCs, described in the next sub-section) sitting in FANs
(Field Area Networks), NANs (Neighbourhood Area Network) and substation
LANs (Local Area Networks) operating throughout the Generation, Transmis-
sion, and Distribution domains. NANs amalgamate smaller customer networks,
including HANs (Home Area Networks), BANs (Business Area Networks), and
IANs (Industry Area Networks). Each contain devices that connect to upload
usage data. As with the OT, the IT hierarchy means that higher level issues
impact a large number of lower level systems. Furthermore, there is a variation
in DoS attack surface (smaller at the top, bigger at the bottom).

In addition to this, connectivity and dependency exist between the IT and
OT, which means that malicious activity in one will have some influence on
the other. In other words, assuming that DoS attacks are targeted at IT de-
vices/flows, when some function of the IT network is denied, there will be a cor-
responding impact, related to that function, on the OT. Furthermore, disruption
to a particular grid process can have subsequent effects on other processes, and
may escalate into general grid instability. This is a unique characteristic of crit-
ical infrastructures, as DoS within conventional IT networks does not typically
have the potential for this level of widespread disruption.

2.3 Smart Grid Components

Within the IT network, there are a number of sub-systems responsible for dif-
ferent grid processes. The key sub-systems are:
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Systems Domains Function

Smart Meter -Customer Located in customer premises, collects usage data
for operations (via the AMI) and provides pricing
information to users.

Remote Telemetry -Distribution Located in substations, collects data on grid
processes from PLCs for automated monitoring
and control processes.

Unit (RTU) -Transmission
-Generation

Phasor Measurement -Distribution Located in substations, collects data on
electrical phasor patterns for synchronisation of
grid supply and demand.

Unit (PMU) -Transmission
-Generation

Programmable Logic -Distribution Field device, collects telemetry data on grid
processes, communicated to RTUs and LFC to
generate control signals.

Controller (PLC) -Transmission
-Operations

Master Telemetry -Operations Part of SCADA or WAMS, processes data
received and aggregated from RTUs.Unit (MTU)

Phasor Data -Distribution Part of SCADA or WAMS, processes data
received and aggregated from PMUS.Concentrator (PDC) -Transmission

-Generation
-Operations

Load Frequency -Generation Located alongside generators, minimises
fluctuations in energy input and output for
frequency balance.

Control (LFC)

Supervisory Control -Operations Control system, responsible for manipulating
grid topology, monitoring processes, and
maintaining functionality.

& Data Acquisition
(SCADA)

Wide Area -Operations Control system, uses information gained from
PMU/PDC data to monitor and react to grid
instabilities/issues.

Management System
(WAMS)
Table 1. Smart grid sub-systems and components, their domains, and their functions.

-Advanced Metering Infrastructure (AMI): A two-way communication
network between smart meters sitting within customer premises and utility
servers in the core network. The AMI enables the collection of usage data (anal-
ysed for load forecasting and pricing models), as well as the delivery of relevant
customer services.

-Phasor Control: Consists of PMUs (Phasor Measurement Units) which mea-
sure electrical signals and monitor phasor patterns, and PDCs (Phasor Data
Concentrators) which aggregate and process this data for monitoring, fault re-
sponse, and command generation. The purpose of this is to ensure that the
frequency of the electricity in the grid is synchronised and the grid remains
stable.

-Telemetry Control: Consists of RTUs (Remote Telemetry Units, distributed
across the domains), which collect telemetry data from grid components, and
MTUs (Master Telemetry Units, connected to core systems), which receive that
data and process it for management and topology manipulation. This supports
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efficient power generation and transfer. RTUs connect multiple PLCs (Pro-
grammable Logic Controllers), which connect to field devices.
-Load Frequency Control: Consists of PLCs (that connect to field devices)
and RTUs which collect data on the performance of various processes. This
is communicated to LFCs (Load Frequency Controls), which use the data to
manage generators to maintain a stable frequency in the grid.
-Core Control Systems: Includes SCADA (Supervisor Control and Data Ac-
quisition) systems and WAMS (Wide Area Management Systems), which act
as the central management point for the grid, where all data is aggregated,
processed, and used for human-lead decision-making and for automatically gen-
erated controls.

Table 1 provides a summary of typical sub-systems and components, which
domains they sit in, and what they do. Note that this list is not exhaustive.
For the scope of this paper, we have focused on the most common sub-systems
which rely on communication flows. Other systems include those responsible for
pricing models, for distributed power generation management, and external data
systems used for load prediction (e.g. weather forecasts).

3 Smart Grid DoS Survey

The purpose of this survey is to answer the following research question: According
to the literature, what are the DoS attack possibilities in smart grids, given the
smart grid’s unique characteristics? The answer to this question must consider
attack method, attack target, and attack impact. The survey methodology used
is as outlined in [4], and the review protocol was to search IEEEXplore, Science
Direct, and Google Scholar with a set of DoS and smart grid search term pairs.
Specifically, we aimed to identify recent works that defined, modelled, simulated,
or discussed DoS scenarios. Note that SCADA or WAMS are not considered,
as these systems are common across critical infrastructures and are considered
a separate field of study. The scenarios identified in the surveyed works are
summarised here.

Wang et al. (2017) [23] explored the adversarial interaction between smart
grid defenders and attackers, anchored on an AMI DDoS attack. The AMI is
modelled as a tree with many smart meters connecting to aggregators in layers.
Traffic from the meters travels up these layers to a base station, which then relays
it to the AMI core. In this study, the attacks were targeted at smart meters
and aggregators, assuming the attack source to be a botnet. The authors found
that, depending on where the target sits, certain communication paths become
saturated, with nodes attached to these paths consequently being knocked offline.
Meanwhile, the AMI’s tree structure eventually causes “downstream” nodes to
lose core connectivity [23]. Honeypots embedded within the AMI core were used
to derive optimal attack and defence strategies.

As with [23], Guo and Ten (2015) [8] also studied a botnet-driven AMI DDoS
scenario. They created a two-staged model combining botnet formation and
attack launch. Three actor categories were considered: attackers, victims, and
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agents (i.e. smart meters converted into bots). The authors posited that it is
reasonable to assume that a population of smart meters will have similar vulner-
abilities, and hence, will be susceptible to the spread of an automated malware
targeting firmware or communication functions [8]. They simulated a UDP flood
against a 2-layer AMI topology, with each bot generating packets at a rate of
2Mbps [8] and reported that growth in the bot population directly correlated
with an increased number of dropped packets and longer end-to-end delays [8].

Similarly, Sgouras et al. (2017) [20] investigated the AMI impact of a botnet-
launched DDoS attack. They modelled the AMI as multiple residential smart
meters connected to a central control server, and posited that the Internet is a
likely channel for communication between control servers and aggregators. Based
on this, they suggested that a botmaster could sniff traffic to determine the server
IP and then use a botnet (external to the smart grid network) to launch a TCP
SYN DDoS attack at great scale. Using this proof-of-concept, the authors were
able to demonstrate how Internet-connectivity exposes the grid to the outside
world and can make it susceptible to attacks from remote adversaries.

Asri and Pranggono (2015) [3] also investigated botnet-based DDoS attacks
against the AMI. With similar assumptions to [20], they modelled the AMI as a
collection of households containing smart meters connecting to a central utility
server via the Internet. An external botnet can then connect to the utility server
to flood it in a UDP storm attack, targeting many random ports. The server
will try to initiate applications on random ports that do not exist and respond
with ICMP ‘Destination Unreachable’ packets [3]. With simulations, the authors
showed that the entire grid could be compromised with a large-enough DDoS
attack, though the effect on the power supply network was not immediate. Only
after the server had been knocked offline was an impact observed.

Sgouras et al. (2014) [19] considered four different AMI DoS setups: 1) DoS
on a smart meter, 2) DDoS on a smart meter, 3) DoS against an AMI utility
server, and 4) DDoS on an AMI utility server. Comparing the DoS and DDoS
scenarios, they found that the targeted smart meter suffered from significantly in-
creased queue lengths under the latter. In fact, they observed that queue lengths
reached maximum levels much faster. The DoS attack against the server caused
a drop in the number of TCP packets delivered to smart meters, leading to some
service degradation. In comparison, the DDoS attack on the server reportedly
diminished connections with almost 90% of the smart meters [19].

Hoffman and Bumiller (2019) [9] proposed a special AMI DoS attack called
Denial-of-Sleep. This is where a battery-powered device is prevented from en-
tering sleep mode (i.e. a low-power state intended to conserve energy), thereby
significantly reducing its lifespan. Smart meters enter sleep mode when they are
not forwarding measurement data or receiving traffic from other nodes [9]. Two
sleep protocols are identified: S-/T-mode (where the device transmits and waits
some time for a response before sleeping) and C-mode (where the device sleeps
immediately after completing its transmission). The authors used an abstract
version of a TLS (Transport Layer Security) handshake to model Denial-of-Sleep
attacks in the context of the C-mode sleep protocol and reported that a small
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number of attacks of relatively short length can significantly deplete batteries
[9].

Chatfield et al. (2018) [5] studied jamming, which they categorised as a form
of DoS used to disrupt the wireless networks within smart grids. They defined
two possible scenarios. The first is where a jamming attack produces lots of radio
signals on the same frequency as legitimate communications, causing delays and
increased latency for control messages. The second is where the degradation
caused by a jamming attack interferes with standard protocol processes and
leads to constant retransmissions, further congesting the network and, in the
case of routing protocols, causing network instability [5]. In their AMI model,
they used the received signal strength of nodes to differentiate between normal
and attack scenarios, and related attack effectiveness to the distance between
attacker and victim nodes.

Pedramnia and Rahmani (2018) [17] explored AMI-based DoS against cel-
lular LTE (Long-Term Evolution) networks. They identified signalling attacks,
where bearer assignment is exploited to prevent legitimate use. A malicious
bearer request is sent, and once an assignment is made, that bearer is left un-
used. It expires, triggering another assignment process, and the pattern is re-
peated. LTE-specific jamming attacks may be possible too. The authors also
discussed SMS link saturation, where device user panels (where customers re-
ceive updates) are flooded. This drowns out legitimate messages, causes buffer
overflows, or leads to delays [17]. Lastly, DoS against NAT (Network Address
Translation) systems are highlighted, specifically for NAT64. These include NAT
overflow (where malicious mapping requests block legitimate use), NAT wiping
(where TCP-RST messages are used to delete mappings), and NAT breaking
(where spoofed IPs make NAT requests and ignore server responses, forcing
those IPs onto blacklists) [17].

Yi et al. (2016) [27] defined a new AMI DoS technique called the puppet
attack. This seeks to exploit the use of DSR (Dynamic Source Routing) and
the way that mesh networks are formed. One or more nodes are selected as
‘puppets’, and receive attack commands. DSR uses route requests (RREQ) and
route replies (RREP) to build address lists amongst nodes. The attack makes a
puppet node erase addresses from the list, causing path errors [27]. This then
triggers another round of path discovery and list building, thereby stopping the
network from settling into a routing structure. This contrasts with standard DoS
which relies on crafted packets or exhaustion of resources. Meanwhile, puppet
attacks undermine the structure and functionality of the mesh itself.

Wei and Kundar (2012) [25] explored DoS attacks targeting communication
channels between distributed PMUs and the WAMS. Specifically, the authors
suggested that PMU data rates may vary with network congestion. They mod-
elled a hierarchical network covering the cyber (IT) and physical (OT) networks.
PMUs in the cyber network collect data on a particular generator node in the
physical network. Local controllers obtain data from PMUs to create control sig-
nals to be applied to the generator nodes. Generators are grouped into clusters,
with a single PMU and local controller in charge of each cluster. Hence, power
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Ref Premise Target Impact

[23] Defender vs. attacker interactions. AMI Channel saturation; downstream
nodes lose core connectivity.

[8] Botnet-launched UDP flood DDoS. AMI Botnet growth increases dropped
packets and end-to-end delays.

[20] Botnet-launched TCP-SYN DDoS. AMI Load fluctuations and system avail-
ability diminished.

[3] UDP storm DDoS against residen-
tial AMI.

AMI Possible complete compromise; de-
layed impact on power network.

[19] DoS/DDoS attack impact in the
AMI.

AMI Dropped TCP packets, service
degradation, and diminished con-
nectivity.

[9] Denial-of-Sleep attacks against
battery-powered AMI nodes.

AMI Increased battery depletion in af-
fected nodes.

[5] Jamming attack detection in wire-
less networks.

AMI Delays on legit frequencies; protocol
process interruption.

[17] Signalling, SMS link saturation, and
NAT attacks against cellular LTE
networks.

AMI Repeated bearer assignments; re-
duces devices’ interface functional-
ity. NAT-based disruptions.

[27] Puppet attack against mesh net-
works.

AMI Corrupted address lists, causing
path discovery cycles.

[25] Resilient routing model for PMUs-
WAMS traffic.

PMUs Delays/packet dropping within
PMU data channels.

[21] Nash Equilibrium-based DoS-
resilient routing.

PMUs Reduced relay nodes functionality;
delays/reduced connectivity.

[28] Interface and PLC-targeting attacks
exploiting query replies.

PLCs Delays increase with attack length,
management SW becomes non-
functional.

[14] DoS switching strategies against
LFCs.

LFCs Attack impact is maximised via
start time selection and attack
length.

Table 2. DoS types and targets identified by surveyed works.

flow depends on control signals, and control signals depend on PMU data. The
DoS attack then targets the PMUs’ communication channels with the aim of
causing delays or packet drops. The authors used this attack model to propose
a flocking-based scheme to route traffic around DoS-affected regions.

Srikantha and Kundur (2015) [21] also studied attacks on PMUs to enhance
resiliency against DoS attacks. They modelled the smart grid as a pair of hi-
erarchical, inter-connected directed graphs, populated with relay nodes (RNs)
responsible for transmitting data. Some function as PMUs (collecting data) and
some as cyber-actuators (sending control signals). At the top of the hierarchy is
the root node that transmits control data downstream, whilst PMUs send mea-
surement data upstream. The authors then experimented with DoS attacks that
target one or more RNs in the tree. This causes delays and disruption for the
downstream/upstream movement of traffic as RNs are rendered non-functional.
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As with [25], they proposed a routing system to allow the topology to morph
around the attacked nodes.

Yilmaz et al. (2018) [28] explored the possibility of DoS attacks against PLCs,
suggesting that a PLC can be targeted both from within and outside of its own
IP network, as long as its IP address is known. Furthermore, the authors high-
lighted that PLCs reply to any queries from any source, further increasing their
potential for exploitation [28]. A testbed was built, consisting of PLC devices and
some PCs running a) TIA (Totally Integrated Automation) portal management
software, b) DoS tools, and c) attack detection systems [28]. Attacks were then
simulated against both the PLCs and the TIA portal. The results showed that
the PLCs’ ping response delay continued to increase the longer the attack was
sustained. Meanwhile, the TIA portal became non-functional. The authors noted
that the network was quickly disrupted even with a small number of attackers
[28].

Finally, Liu et al. (2013) [14] investigated DoS attacks designed to disrupt the
delivery of telemetry data from RTUs to LFC systems. This would prevent the
LFC from generating accurate command signals for physical grid components,
potentially causing further issues. The authors modelled DoS as a switched sys-
tem and suggested that attacks can have maximum impact if attackers select
the optimal switching strategy. They identified this to be a sequential attack
over multiple intervals [14]. DoS attacks were simulated with different starting
times, revealing that impact was more significant for those launched before power
systems have fully converged. This period was therefore highlighted as one of
increased vulnerability [14].

The survey is summarised in Table 2 and the findings are analysed in the
next section.

4 Smart Grid Denial-of-Service Characterisation

Based on the architecture of smart grids (discussed in Section 2) and the litera-
ture survey (presented in Section 3), we propose a set of smart grid DoS scenarios,
classified in a target-based structure. This contrasts with existing classification
schemes which tend to focus on attack methodology. The main categories are:

– A: Network-Targeting
• A.1 : Saturation Scenarios (aiming to use up channel resources)
• A.2 : Exploit Scenarios (aiming to manipulate standard processes)

– B : Device-Targeting
• B.1 : Exhaustion Scenarios (aiming to use up device resources)
• B.2 : Compromise Scenarios (aiming to manipulate a device)

In A scenarios, the aim is to disrupt the network itself, either by blocking
communications through full consumption of channel capacity (A.1 ), or the
blocking of standard operations by preventing normal protocols from functioning
as intended (A.2 ). Meanwhile, the aim of B scenarios is to disrupt the operation
of particular network nodes so that they can be manipulated and cannot function
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as normal. This may be achieved by overwhelming the capacity of a device (B.1 )
or by exploiting some vulnerability in it (B.2 ). Note that B.1 scenarios are
similar in concept to A.1. In the following, each scenario is described in terms
of the smart grid sub-systems that may be targeted, allowing us to consider
subsequent impact possibilities given the smart grid’s multifaceted and inter-
connected infrastructure. Key points for effective defence and mitigation are
also highlighted.

4.1 Network Saturation Scenarios (A.1)

The AMI may use a number of communication technologies, including WiFi,
WSNs, cellular networks, or the Internet. Hence, it can be targeted in several
different ways. Saturation may be attempted using typical flooding attacks (e.g.
ICMP flood, UDP flood, HTTP flood) on any layer of the TCP/IP protocol
stack, as seen in conventional networks. This type of scenario was explored by
[8] and [3]. Jamming attacks may also be used to similar effect against wireless
channels, as cited by [5]. Similarly, where SMS communication is used to push
information to device interfaces, SMS link saturation may be employed [17].
Therefore, A.1 scenarios in the AMI can be characterised by a reduced upstream
flow of usage data and downstream flow of service data. This could consequently
lead to load estimation errors, bad pricing models, and reduced service quality
for customers. Furthermore, as modelled in [23], the hierarchical structure of
the AMI can cause a larger number of nodes lower down in the chain to lose
connectivity to the core, further exasperating the issue.

Meanwhile, the Load Frequency Control sub-system may use SCADA proto-
cols like ICCP (Inter Control Center Protocol) [12] or the IEC 61850 protocol
stack [15] running on top of TCP/IP infrastructure [12] [7] to ensure RTU-to-
core communication. Flooding-style attacks can therefore be deployed here too,
as examined by [14]. A.1 scenarios in the LFC system would be characterised by
the untimely or reduced sharing of telemetry data by RTUs. This could result
in incorrect control signal generation and consequently, the incorrect operation
of physical grid devices, which may escalate into grid instability. Furthermore,
it should be noted that ICCP and IEC 61850 do not provide robust and secure
authentication mechanisms [12] [7], leaving these communications vulnerable to
malicious influence. The mechanisms for how flooding may be achieved on chan-
nels using these protocols (and for DoS in general) is an area for further study.

The survey also threw up the threat of A.1 scenarios against the Phasor
Control sub-system, which may use IEC 61850 protocols too [15]. This attack
possibility was explored by [25], where the authors examined the relationship
between PMU data and control signals. The results of their experiments suggest
that the prevention of timely measurement readings due to flooded communica-
tion channels can result in incorrect control signals, which in turn may lead to
fluctuations in frequency and ultimately, an unstable grid. This assessment on
the impact of disrupted PMU flows was also supported by the results of [21].
A similar angle may be considered for the Telemetry Control and Core Control
sub-systems as well.
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Saturation scenarios on TCP/IP connections may be dealt with using anomaly
detection to identify increases in traffic volume. This is also applicable against
low-rate DoS attacks [26]. Similarly, IDS (Intrusion Detection Systems) should be
used to identify suspicious activity, including jamming attacks [5]. For external
attack sources, traffic from suspected IPs can then be blocked. Both anomaly
detection and IDS (Intrusion Detection Systems) should be deployed at each
layer of the cyber hierarchy [8]. Honeypots are suggested by [23] and can ab-
sorb attack impact. Saturation attacks can also be prevented by minimising the
number of device and server interfaces with remote access. For the disruption
caused by ongoing DoS attacks, Li et al. [13] suggested the use of predictive
algorithms and historical data to estimate correct values and maintain grid sta-
bility. Meanwhile, SCADA and other control layer protocols need to introduce
stronger authentication and improved security.

4.2 Network Exploit Scenarios (A.2)

Wireless ad-hoc network architectures are designed to be self-forming so that
nearby nodes can organise themselves to define routes for data transmission. As
stated previously, mesh networks may be deployed in the AMI (and possibly
within the wider distribution and transmission domains for field sensors). How-
ever, the protocols used may be exploited to prevent these networks from forming
and/or stabilising. This possibility was explored by [27], who defined the pup-
pet attack against the DSR protocol. Other ad-hoc routing protocols like RPL
(Routing Protocol for Low-Power) or OLSR (Optimized Link State Routing)
may also be vulnerable to similar attacks. The result of an A.2 scenario in the
AMI may therefore be characterised as a customer domain network which has
failed to converge and so no smart meter data can be delivered. Jamming attacks
can similarly disrupt the normal operation of wireless network protocols [5].

As suggested in [17], LTE-based cellular networks may be used as an AMI
architecture. In this type of setup, bearers are created to link devices to the data
network. Bearer assignment may be exploited in a method similar in concept to
TCP SYN; channels are opened to the target and then not used. As a result
legitimate access is denied [17]. Once again, this would lead to the denial of
AMI services.

Another possible A.2 scenario is the exploitation of AMI NAT systems, as
identified by [17]. Despite the introduction of IPv6, IPv4 is still widely used. This
means that NAT is required for both translating between private and public IPv4
addresses, and for IPv4-to-IPv6 mappings [17] [11]. For example, if field sensors
using IPv6 attempt to send data to core networks still operating on IPv4, the
corruption of NAT64 mappings would deny such transmissions. In cases such
as this and in LTE networks, A.2 scenarios will be characterised by a lack of
connectivity between endpoints. We did not identify A.2 scenarios for the other
sub-systems during our survey and suggest this as an area for further study.

To avoid network disruption, routing protocols should be secure against tam-
pering attempts, and robust enough to re-converge efficiently. Such an approach
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was proposed by [21] whose topology configuration scheme is designed to main-
tain routing between PMUs and RNs. Similarly, [27] suggested that corrupted
nodes be identified by their abnormal communications and isolated, given that
WSN nodes depend on their neighbours for their network connectivity. For field
networks, physical security is needed to prevent illegitimate devices from joining
ad-hoc networks. Anomaly detection applied to network exploitation needs to
monitor protocol activity rather than general communication traffic. For SMS
links, [17] cited the use of machine learning with bearer-related data to achieve
this. They also suggest that migrating more widely to IPv6 could reduce the
need for NAT mappings, thus reducing the risk of this type of DoS [17].

4.3 Device Exhaustion Scenarios (B.1)

Certain devices may be specifically targeted. An example in the Phasor Control
sub-system is the relay nodes between PMUs and control systems, as highlighted
by [21]. Given the large number of data collection points, relay nodes are used
to ensure end-to-end delivery, sometimes also acting as aggregators. A targeted
DoS attack on these devices can therefore disrupt the whole sub-system’s com-
munication flows, again leading to inaccurate measurements being collected. Fur-
thermore, it is plausible to assume that relay node services in other sub-systems,
such as the AMI, Load Frequency Controls, and Telemetry Controls, can be
denied in this way too.

PLCs (and their interfaces) may also be actively targeted, as highlighted by
[28]. Like relay nodes, PLCs have a central role in data collection and aggre-
gation, but are more closely integrated with core control systems. Therefore,
deliberate disruption of PLCs will significantly impact management decisions.
The same scenario may be applicable to RTUs too. However, devices such as
these, which are found deeper within the smart grid architecture, should theo-
retically be more difficult to access and would require insider access or skilled
adversaries. Therefore, B.1 scenarios in such systems will be characterised by
the likely presence of skilled attackers or malicious insiders, and the hindering
of data delivery to the core.

Finally, direct attacks within the AMI may be directed at smart meters,
overwhelming their processing capacity as demonstrated by [23] and [19]. Un-
like attacks on the AMI channels, forcing smart meters offline has the benefit of
preventing both their communications with appliances and with head nodes di-
recting traffic to the core. The location of smart meters within customer premises
also exposes them as easier targets. Furthermore, [23] and [19] both demonstrated
that AMI aggregator nodes and utility servers can be directly targeted. Attacks
may be in the form of TCP SYN flood, HTTP flood, or other similar device-
focused TCP/IP methods. Therefore, these B.1 scenarios will be characterised
as disabled devices within the AMI tree, with diminished connectivity for all the
nodes served by them.

B.1 is the device-focused equivalent of A.1, so similar defensive measures may
be applied. The aim is to knock particular devices offline, so suspicious traffic
directed at those devices can be identified using anomaly detection. Anomaly
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profiles should be derived from the normal activity of those devices, with con-
sideration of typical performance values, and critical nodes may be prioritised to
reduce the overheads introduced by this. Predictive algorithms may again be ap-
plied to control systems to reduce the impact of lost telemetry data [13]. To deal
with possible insider threats, [28] recommends strict monitoring and regulation
of user privileges and activities.

4.4 Device Compromise Scenarios (B.2)

A possible compromise scenario is where smart grid devices are recruited into
botnets. Whilst this is less probable in the deeper areas of the grid (given that
those devices may be running proprietary software and may be difficult to phys-
ically access), it should not be completely disregarded as a possibility where
malicious insiders are considered. Bot compromise is most likely to occur within
edge systems (like the AMI), where some devices sit within customer premises
and may be exposed to public networks. As highlighted in [8], a population
of smart meters (with similar manufacturers and models) could see the spread
of bot code via an automated malware. IoT-based botnets (made up of smart
appliances) are also a factor. Whilst a botnet compromise is itself not necessar-
ily a DoS scenario, it provides a platform from which to launch such attacks.
Additionally, bots provide backdoor access and can serve as vectors for smaller
and more targeted DoS campaigns. Botnet-based DDoS, where smart meters are
compromised, was studied by [8], and similar botnet scenarios were considered
by [23], [20] and [3].

Another B.2 scenario, primarily targeting the field sensors, is the forced
depletion of physical resources on the target device. This is especially problematic
in low power networks such as those in WSNs. For example, the Denial-of-Sleep
attack defined by [9] is designed to drain the energy of battery-powered sensors
and control devices to render them non-functional. Whilst the impact of such an
attack may be slower to manifest, it could have a longer-term impact on service
quality as depleted nodes would need to be physically changed. The loss of nodes
in the AMI would reduce its overall accuracy and functionality, but Denial-of-
Sleep could plausibly be used against any type of battery-powered field device.
B.1 scenarios may therefore be characterised by the presence of grid devices over
which the operators do not have full control.

To stop nodes from being recruited into a botnet, devices must be regularly
updated and patched with the latest software to minimise vulnerabilities. This
can be challenging for difficult-to-access field sensors with limited capacity, which
highlights the need for security-by-design in such devices. Login credentials must
also be properly configured, as default passwords can be used to gain access [2].
Battery depletion can be mitigated by designing more energy-efficient devices,
and connecting nodes to the main power where possible. To deal with Denial-of-
Sleep, [9] suggested the need for an additional security layer for key exchanges
to prevent meters being forced into FAC (Frequent Access Cycle).
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Fig. 3. Smart grid DoS attack classification tree.

Fig. 4. Smart grid DoS attack sources.

Fig. 3 summarises and depicts the smart grid DoS scenario classifications de-
scribed here, and Fig. 4 illustrates where DoS attacks sources may sit in relation
to the smart grid.

5 Discussion

In this work, we sought to uncover where and how DoS attacks may manifest
in the smart grid. Given that this is still a relatively new technology, there
have thankfully been very few real-world attacks thus far, for which (to our
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knowledge) detailed data is not available. Therefore, we turned to the avail-
able cyber-security literature and our understanding of smart grid architectures
(combined with what we know of typical DoS attacks) for answers. We believe
that this proved to be a sound methodology, as through the survey, we were
able to enumerate and identify the sub-systems which could be targeted and
how. This provides defenders with a means to prioritise their methods. It also
provides future researchers with a reference point for what has been done so
that other sub-systems may be considered as well. For example, areas for fu-
ture DoS research may include attacks against generators and distributed power
generation, and those originating from within the corporate networks of service
provides or the Markets domain.

Through the survey, we were able to identify that the research community
considers the AMI to be the most likely target of DoS attacks, with botnets being
the most likely source. This suggests the need for better AMI security measures,
and relates to other open research topics such as the security of IoT devices and
WSNs. Meanwhile, the definitions of Denial-of-Sleep by [9] and puppet attacks
by [27] demonstrate how the particularities of the smart grid can create space for
new attack scenarios. Both scenarios were set in the AMI, once again highlight-
ing the need for resilient security channels, as well as security-by-design in IoT
technologies. It is also worth noting that these attacks may be feasible wherever
mesh networks or battery-powered devices are used across the grid domains.

The potential vulnerability of other systems, despite their locations deeper
within the grid network, is also apparent in the works of [25] and [21] who
observed the impact of DoS on PMUs, and [28] and [14] who did the same for
PLCs and LFCs, respectively. These components are likely harder to impact
remotely and without specialist knowledge, but may still be targeted by skilled
attackers (e.g. those working on behalf of nation states). The location of such
components, higher up within the grid hierarchy, also means that the impact of
any successful attack will be felt throughout the grid. Therefore, these systems
must be secured appropriately.

Furthermore, we believe that the proposed classification provides a novel
perspective for smart grid DoS. There are many classifications of DoS attacks in
the existing literature, but most focus on the methodology. This is appropriate
for the high-level characterisation of generic DoS attacks, but we argue that in
the context of smart grids, it is beneficial to characterise attacks by target and
impact, as this helps to align them with the IT and OT layers. Simply, this view
enumerates the grid’s vulnerable points. Furthermore, it makes a distinction
between attacks against the channel and against the device. This is not always
clear in exploit-based DoS scenarios, but is significant in smart grids because
the domain of attack and the domain of impact can be different. By determining
where an attack is intended to cause damage, we can work towards expanding
typical DoS defence methods.

Due to scope restrictions, the survey itself was not exhaustive and can also
be expanded - the smart grid is a complex web of sub-systems spanning the
IT, OT, and domains. Therefore, another possibility for future work is to build
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upon this survey to uncover more grid systems which may be vulnerable to
DoS attacks, both known and novel. We assume that as smart grids become
more well-established, the research into their security will also grow. Finally, as
mentioned in Section 4.1, protocols developed for critical infrastructure may be
further studied to uncover new DoS attack methods and possible exploits.

6 Related Work

The novelty of this work comes from our singular focus on DoS scenarios for
smart grids, with special consideration for smart grid sub-systems, supported by
a survey of the existing literature on the subject. Whilst there are many works
considering the different types of DoS attack and the cyber-security challenges
faced by smart grids, few works focus on both at the same time. In addition to
this, most existing classification schemes deal with methodology whilst this work
aims to highlight the relationship between attack targets and attack impact.

Huseinovic et al. [10] developed a taxonomy of possible DoS attacks based
on available literature, followed by a discussion of defensive strategies. Similar
to this work, they explored different taxonomy perspectives, including one that
considers which grid applications are targeted. However, they put more emphasis
on analysing the security measures against each attack type and did not provide
in-depth characterisations as we have. Otuoze et al. [16] also considered an al-
ternative classification perspective by looking at threat sources, identifying both
technical (i.e. infrastructural, operational, data) and non-technical (environmen-
tal, policy) sources, but did not provide details on DoS scenarios.

Wang and Lu [24] contributed a thorough survey of cyber-security challenges
in the smart grid, with a section dedicated to DoS threats. However, they did
not examine different sub-systems to characterise and classify attacks as we
have. El Mrabet et al. [6] conducted a similar survey but also did not offer
characterisations. In their extensive cyber-security survey, Tan et al. [22] did
consider different smart grid components, but organised them differently as sub-
systems (AMI, SCADA/WAMS) and data-generating devices (smart meters,
PMUs, etc). Meanwhile, they did not look in detail at DoS scenarios. Our work
sits alongside this to provide an alternative perspective.

Lastly, Ramanauskaite and Cenys [18] created a detailed taxonomy of DoS
attack types and the defences against them, including considerations of attack
source, exploited vulnerabilities, method, target type, and rate. However, smart
grids were not in the scope of their work and so they did not consider the grid-
specific attack targets. As with [22], we believe our work sits alongside this to
help focus in on smart grid-specific DoS threats.

7 Conclusions

Smart grids are designed to make the generation and provision of power ser-
vices more efficient and sustainable through the integration of IT technologies.
However, this exposes the OT to cyber threats as seen in conventional networks
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and the Internet. DoS and DDoS attacks are among the most prevalent of these
threats. This work provides a survey and a summary of the grid sub-systems that
may be targeted, and characterises several possible DoS scenarios, alongside a
target-based classification scheme to support this new perspective. Overall, we
hope to have highlighted areas of smart grid vulnerability and set a foundation
for better DoS defence and mitigation.
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