

City, University of London Institutional Repository

Citation: Strigini, L., Bosio, D., Littlewood, B. and Newby, M. J. (2002). Advantages of
open source processes for reliability: clarifying the issues. Paper presented at the Workshop
on Open Source Software Development, Feb 2002, Newcastle upon Tyne, UK.

This is the unspecified version of the paper.

This version of the publication may differ from the final published
version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/256/

Link to published version:

Copyright: City Research Online aims to make research outputs of City,
University of London available to a wider audience. Copyright and Moral
Rights remain with the author(s) and/or copyright holders. URLs from
City Research Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,
educational, or not-for-profit purposes without prior permission or
charge. Provided that the authors, title and full bibliographic details are
credited, a hyperlink and/or URL is given for the original metadata page
and the content is not changed in any way.

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

City Research Online

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

Advantages of open source processes for reliability:

clarifying the issues

D. Bosio, B. Littlewood, L.Strigini
Centre for Software Reliability

M. J. Newby
Department of Actuarial Science and Statistics

City University, London, England

Abstract

Some authors maintain that open source software processes are
particularly well-suited for delivering good reliability. We discuss this
kind of statement, first clarifying the different measures of reliability
and of a process’s ability to deliver it that can be of interest, and then
proposing a way of addressing part of it via probabilistic modelling.
We present a model of the reliability improvement process that results
from the use of the software and the fixing of reported faults, which
takes account of the effect on this process of the variety of software use
patterns within the user community. We show preliminary, interest-
ing, non intuitive results concerning the conjecture that a more diverse
population of users engaged in reporting faults may give OSS processes
an advantage over conventional industrial processes, in terms of fast
reliability growth after release, and discuss further possible develop-
ments.

1 Introduction

Many claims have been made about the dependability of Open Source Soft-
ware (OSS), some of them contradicting each other (OSS is generally better
than Closed Source Software (CSS), or vice-versa), some of them presenting
a challenge to intuition (OSS is more secure because of the accessibility of
its source code to all, including would-be intruders). We find that these ar-
guments often fail to clarify the claims made and the reasoning supporting
them.

We propose to add some clarity to some of the issues. Specifically, we
wish: to separate different qualities of possible interest, corresponding to

Workshop on Open Source Software Development, Newcastle upon Tyne,
25-26 February 2002

1

Advantages of open source processes for reliability 2

different precisely defined measures related to reliability; then to give for-
mal expression to some of the conjectured laws which support the claims
made; to discuss to which extent these conjectures are consistent with the
common understanding of the processes that produce software reliability.
We do so via an example of probabilistic models of the effects on software
dependability of factors in the software production process. In this paper,
we use, as examples, models of a class which we developed earlier to weigh
claims about the merits of different testing methods [1, 2, 3].

1.1 Different aspects of reliability

One can identify many attributes of a product that are components of its
dependability (an umbrella word we will use for all the meanings of “relia-
bility” in its common, non-mathematical sense, to avoid confusion with the
specialist term “reliability”).

For instance, we can discriminate between the ability of a system to
deliver continuous correct service, described by “reliability” in its strict
technical sense, from its ability to provide a correct service at any given
moment. E.g., the probability of surviving a mission is a reliability mea-
sure while the average uptime is an availability measure. This distinction is
important because the two measures describe requirements whose relative
importance varies between users and circumstances; because a system can
exhibit a high level of availability without a high level of reliability; and
because the best system design for a given application (e.g. using static
redundancy vs rollback recovery) varies depending on which requirement is
most important.

Other important distinctions centre on the characteristics of the fail-
ures of interest, characterised by severity along a unidimensional scale, or in
terms of the level of specification that they violate (specifications internal to
the development process vs expectations of the users), or in terms of differ-
ences of kind: e.g. related to maintaining data integrity or privacy against
intentional attacks (two attributes of security) or to avoiding failures that
cause outcomes classified as hazards or as accidents (attributes of safety).
It is obvious that these distinctions also matter to a debate about OSS pro-
cesses, as exemplified by the debate over achieving security via openness vs
via obscurity of code or algorithms.

In this paper we choose to talk, for ease of exposition, about a single
reliability attribute, measured by the probability of a system completing a
demand (e.g. a user session for interactive software) without failures.

We also wish to point out two further important distinctions:

• reliability of a specific release of a product vs the evolution of reliabil-
ity during the lifetime of the product. One can have software that is
highly reliable at release but improves slowly (as an extreme example,

Advantages of open source processes for reliability 3

many safety-critical products will exhibit few failures but be subject to
exceedingly time-consuming procedures for any update), just as soft-
ware that is initially unreliable but improves quickly. From the users’
viewpoint, in many critical applications it is necessary to know that
software is sufficiently dependable when first deployed; in other ap-
plications, teething problems are tolerable, especially if the software
can be expected to improve rapidly, or to be exempt from reliabil-
ity deterioration in the long run. Some of the alleged advantages of
open processes, e.g. prompt response to problem reports, seem more
plausibly to aid fast reliability improvement than reliability at release
time;

• average reliability over all users, vs reliability seen by individual users
or groups of users. The manner of use of a product determines its
reliability; so, the failures affecting different users differ in kind and
frequency. Even software that performs well for most users may be
ruinously unreliable for some of them. These unfortunate users are
hidden in statistical averages, but the risk of becoming one of them
should weigh heavily on the mind of anyone planning a software pur-
chase. A software vendor is often interested in the average reliability
among all users (and possibly the number of users so wretched that
they might endanger the reputation of the vendor). A user is interested
in reliability for him/herself. For instance, this concern contributes to
the insistence of some military customers on being able to take over
maintenance of the products they buy.

Again, we see a plausible conjecture that some aspects of open pro-
cesses improve the lot of the least favoured users, e.g. the possibility
for minorities of users to modify the source code to fix their own spe-
cific problems, possibly leading to great advantages, from a buyer’s
viewpoint, even if the average reliability to be expected were less than
that obtainable from a competing, less open process.

Interestingly, this last conjecture is related to an assumption that seems
to underlie many of the claims for the usefulness of “open” processes: their
ability to exploit diversity among developers and among maintainers. For
instance, the saw “given enough eyes, all bugs are shallow” is obviously
wrong if all the eyes have blind spots for the same bugs. What matters is
that some eyes naturally see bugs that are hidden to other eyes. Diversity
between eyes is a common principle in all development processes: from the
use of independent V-and-V staff to “dual programming”. The issue is which
forms and extents of diversity work better, from the various viewpoints of
interest. We will outline some useful research questions and conjectures for
shedding light on possible advantages and disadvantages of open processes
in this area.

Advantages of open source processes for reliability 4

1.2 Probabilistic modelling

We wish to shed some light on the possible contributing factors to the
claimed greater (or lower) reliability of OSS. The questions of practical in-
terest we want to answer are of the form “Does factor X in the development
process tend to improve dependability measure Y”?

We choose here one aspect of statements like “the greater diversity be-
tween participants enjoyed by OSS processes causes better reliability in OSS
products”, often used either to argue that OSS processes favour dependabil-
ity or to explain the good dependability observed in some products of OSS
processes.

The first advantage of mathematical modelling is that it forces us to
explain what we mean by “diversity” and “greater degree of diversity”, to
express formally which results we wish to compare, etc. After being so
specific, we can often check whether it is plausible that the factor alleged
to improve dependability actually improves it, and under which additional
conditions we should observe this effect.

Some use of modelling is usually necessary for supporting a claimed
causal effect between aspects of the software production process and its
achieved results, even given some empirical evidence. What we do here
is to make the modelling formal and explicit. The only alternative would
be appealing to bare statistical evidence of correlation between the two.
This could prove to be prohibitively difficult. Checking empirically even a
simple statement like “OSS products are more reliable than the others, all
things being equal” is difficult in practice, for various reasons: paucity of
products with documented reliability, difficulty of choosing “equal” terms
of comparison, expected high variability of the effects so that it may be
exceedingly difficult to reach conclusions with any level of confidence.

We have started applying this approach to a specific scenario – we model
the reliability growth of software while in use after release – and initially
to a single conjecture of interest: that the diversity of users involved in
fault-reporting in an OSS environment may give it an advantage, from this
viewpoint, over comparable software that enjoys less of such diversity.

We do not inquire whether OSS products do improve faster than com-
parable non-OSS products (a worthwhile investigation if the investigator
overcomes the difficulties cited above), nor whether OSS products do in
general enjoy more diverse fault reporting. Instead we study how this kind
of diversity would affect software reliability growth if the plausible assump-
tions of our model were true. Essentially, we wish to produce conjectural
laws that link this kind of user diversity to reliability growth.

These laws are of interest to decision-makers, e.g. project managers
who can influence the make-up of the user community engaged in failure
reporting, or procurement managers who have to choose between products
with visibly different make-ups of this community. Using a mathematical

Advantages of open source processes for reliability 5

model also clarifies which statistical evidence would support or refute the
idea that these laws are at work in the real world, indicate confusing factors
that may affect the measurements, and so on. Even without experimental
support, a model that decision makers can recognise as consistent with their
experience will allow them to scrutinise the less formal, intuitively appealing
arguments proposed to them.

Our modelling is thus not framed in terms of OSS vs non-OSS processes:
it applies to comparing any processes whose differences can be described in
terms of its parameters.

2 A model of reliability growth during use

2.1 Description and basic assumptions

We start with an intuitive description of the process of finding faults in soft-
ware while using it, and of removing them. A program has well-identifiable
defects (“bugs”, “faults”), which may cause it to fail. There is a set of users
using the software. Some of them may actually be intentionally testing it,
some just using it normally. We do not need at this stage to discriminate
between the two sets. What matters is that they use the software, and
they may experience failures, as a random process due to their (different)
sequences of use of the software. If a failure occurs, the user may notice it
and report it. If it is reported, someone may attempt to identify and remove
the fault that caused it (and the attempt may succeed or fail).

We wish to describe the reliability growth patterns taking place as a
result of all these factors, from the viewpoint of any one user or group of
users.

We now go into more formal details of this model, as previously described
in [1, 2, 3].

For simplicity, we restrict ourselves to a demand-based model of program
execution. A program is given a demand, computes a result and terminates.
In other words, we characterise the “extent of exposure” of the program
to failure as a discrete variable represented by the number T of executions
of (i.e., demands applied to) the software. A demand is characterised by
the values of all the input parameters and machine state that determine
the behaviour of the program in one execution. This model is very general,
applying, for instance, even to interactive programs if we consider a “de-
mand” and a “result” to include the sequences of all user inputs and of all
the program’s outputs during a session (cf [2, 4]).

The collection of all the possible demands is called the demand space.
The demands which will cause the program to fail (failure points) form its
failure set, which we describe as composed of multiple, non-overlapping fail-
ure regions, each a collection of failure points corresponding to a specific
defect (or fault) in the code. If a failure point is found (through observing

Advantages of open source processes for reliability 6

a failure), and if an attempt is made to remove the fault that caused it,
then either the failure region to which it belongs is completely eliminated
(successful fix) or not at all (this is a simplistic description, commonly ac-
cepted in the literature; in reality, even the definition of what is “a fault”
is ambiguous, as two different people trying to eliminate the cause of the
same failure may well change different parts of the code; cf the discussion
in section 2.2, “So-Called Faults”, of [2]).

Users use the software in many different ways. The users’ ways of using
the software are described by their usage profiles. A user’s usage profile is
the set of the probabilities of each possible demand being chosen by that
user. It determines the different probabilities of the program failing1 for
that user due to each bug in the software (in a given number of demands by
that user), and thus also the reliability of the software for that user.

We also assume that the demands chosen on different executions (by the
same or different users) are statistically independent. Making this assump-
tion realistic requires a judicious choice of what is defined as “one demand”,
and excludes some kinds of testing from our model. These assumptions can
model “operational”, “statistical” or “stress” testing – each regime is mod-
elled by different usage profiles and different rates of bug reporting – but
not partition testing. We will not be modelling the reliability growth that
arises from early stages of testing by developers, which is of little present
interest to us.

Different users may use the software more or less frequently. Individual
users also differ in their probabilities of reporting the failures they observe.

2.2 Parameters of the model

The parameters in the model are

• qi,j, the probability of the fault i causing a failure for the user j on a
randomly selected demand,

• ri,j, the conditional probability of a failure caused by the fault i being
reported by user j if it occurs in an execution for that user,

• fi, the conditional probability of the fault i being successfully fixed
given it has been reported,

• Tj , the number of demands applied by user j by the moment in time
at which we study the achieved reliability of the software, and total
number of demands by all users T =

∑
j Tj .

1Note that we do not consider the consequence of a failure: the severity of a bug is only
given in terms of the probability of selection in operation of a demand from the failure
region associated to it.

Advantages of open source processes for reliability 7

All the probabilities just described, qi,j, ri,j and fi, are considered constant
over successive demands2. In other words, we are assuming that the number
of users, and their behaviour in terms of software execution and bug report-
ing, are constant over time. This constrains the generality of the model,
but not as severely as it may appear. For instance, we can describe users
recruited later as users who were always present but perform no executions
until a certain time. We can also describe a step change in a user’s us-
age profile in terms of two virtual users, one of which stops executing the
software when the other starts.

The qi,j parameters are determined by each user’s usage profile, and in
turn they determine both the effects of each fault on the reliability experi-
enced by that specific user, and the probability that that user will be able
to report the fault. For a given fault i, larger qi,js correspond to users with
higher probabilities of being affected by failures caused by fault i, thus users
who are better at finding that fault: if these users are intentionally testing
the software, they are better testers, and if they are using the software, they
are the less fortunate users.

The model parameters describe measures of practical interest in a debate
about software processes. About OSS processes, it is often stated that:

• their products tend to have better (or worse: opinions differ) initial
quality than with alternative processes. This can be modelled by sets
of qi,j parameters giving lower (conversely higher)

∑
i qi,js for the users

whose experienced reliability we consider.

• they enjoy better failure reporting: higher values of [some] ri,js.

• they offer more responsive bug-fixing for at least some faults: higher
fis.

2.3 Reliability improvement as a result of use

This model represents the fact that the reliability improvement process is
a stochastic process. The fixing of faults depends on when (and whether)
they are found during execution, and their being reported, and the report
prompting an action to fix the bug, and the fix actually removing the fault.
The model describes statistically how this process will evolve.

For instance, the initial reliability of the program as seen by user j cor-
responds to T = 0, i.e. after no executions of the software, and is described
by its probability of failure on demand (pfd) pfdj

pfdj =
∑

i∈{failure regions}
qi,j . (1)

2Note the underlying simplifying assumption that the probability of a user reporting a
fault does not depend on how many times that user has observed failures caused by that
fault before.

Advantages of open source processes for reliability 8

We now consider the case where multiple users have executed the soft-
ware, each user k having executed Tk demands. The probability of a fault
having being removed is the probability of the fault having been reported
(at least once) and fixed. The probability of the fault being reported at least
once is 1 − P (fault i not reported). The probability of the fault not being
reported by any user is given by

P (fault i not reported) =
∏

k∈{users}
(1 − ri,kqi,k)Tk , (2)

Recalling that fi is the probability of fixing bug i once it has been reported,
we have that the probability of the fault i being removed is

P (fault i removed) = fi(1 − P (fault i not reported)) .

Every user will experience an improvement in reliability as a result of the
faults fixed when revealed in this multi-user “testing” activity, but this im-
provement will be different for different users (as, indeed, would be their
initial perceived reliabilities before testing). The mean reliability as seen by
user j as a result of the multi-user testing, after a total number of executions
T =

∑
k Tk, depends on the usage profiles of the other users, in the following

way:

pfdj =
∑

i∈{failure regions}
qi,j

1 − fi(1 −

∏
k∈{users}

(1 − ri,kqi,k)Tk)

 . (3)

Thus, the associated expected increase in reliability for user j as a result of
exposure to the T tests will be

Ij =
∑

i∈{failure regions}
qi,jfi(1 −

∏
k∈{users}

(1 − ri,kqi,k)Tk)) . (4)

All the following factors will decrease pfdj (and hence increase Ij, the in-
crease in reliability of the software for user j): adding more users, perform-
ing more tests, increasing the value of any of the ri,k or qi,k, or fi parameters.
In other words, the more users executing (and thus testing) the software,
the greater the benefit for the community; the more likely each person is to
report any bug, the more bugs will be exposed, allowing for more bugs to be
corrected. The more likely the bug is to be removed if reported, the higher
the resulting reliability of the software.

We note that users for whom ri,j = 0 for all i are “free riders”: they
experience reliability improvement without reporting any bugs, and they
benefit from bugs being reported by and fixed for others.

All these are somewhat unsurprising properties, simply confirming that
the model captures “common-sense” understanding of how people interact

Advantages of open source processes for reliability 9

in fixing bugs. It is interesting to see how competing claims about OSS
processes can be represented in this model. In a CSS process, one would
expect there to be a small community of special users, the in-house testers,
who put in a big “lump” of executions early on in the life-cycle and after
major changes. These users have very high ri,j and aim to have high qi,j as
they often try to cause failures. Yet theory shows [1, 2, 3] that if their qi,j for
certain faults are lower than for “ordinary” users, the latter may see much
worse reliability than the in-house testers. There is anecdotal evidence that
this happens with many products. In an OSS process, this nucleus of heavy
duty testers may well be smaller. On the other hand, it is plausible that
“ordinary” users of OSS have ri,js that are often much higher than with
“ordinary” users of CSS, due to perceived higher chance of obtaining a fix;
visibility of the source code and higher number of potential “fixers” should
give higher fis than for many commercial products (at least after some time
from release).

2.4 Brief discussion of assumptions.

Of the assumptions of this model, the ones that seems most seriously un-
realistic are those of a constant rij for given i, j and of constant fi. I.e., a
user who observes a failure due to a certain fault more than once has the
same probability of reporting it each time; and the probability of a fault
being fixed depends only on whether it is ever reported. There are many
plausible factors that would suggest other behaviours. For instance, users
may be unlikely to report a failure that they recognise as similar to one
already reported, especially by themselves; however, this does not matter
as the model is only affected by a failure being reported at least once. For
certain failures, users who have not reported them previously may become
more willing to report them when they observe them again; but for others
(or other users for the same failures) they may be most likely to report the
failure at the first observation, and later discount it as a known nuisance.
Many such psychologically plausible assumptions are possible. They could
be represented in the model at the cost of added complexity, but this is pre-
mature during this first investigation. We will need later to examine under
which circumstances they would, if true, cause serious changes in the results
derived from the model.

We will not discuss here, for brevity, the other, more standard assump-
tions we made.

3 Diversity is useful

We now illustrate how models of this kind can be used to investigate the
plausibility of quite general hypotheses. The hypothesis we investigate here

Advantages of open source processes for reliability 10

is: “Diversity is a good thing: all things being equal, it is better for users
to have diverse demand profiles than for them to have the same profile.”

We want to compare a situation where users have many diverse profiles
with one in which all the users have the same profile (we will see below which
one), if the total number of executions of the software is the same in both
cases:

∑
Tk = T . Starting with the former situation, we define our “ideal

average equivalent user”, where “average” refers to the effectiveness in fault
reporting, measured by its effect on the potential reliability improvements
if all faults reported are fixed. For each bug i, it is a user who has the
average of all the considered profiles, weighted with their respective number
of executions. Mathematically this corresponds to a user with associated
parameters r′i,j and q′i,j such that

r′i,jq
′
i,j =

∑
k∈{users} Tkri,kqi,k∑

k Tk
. (5)

Let us then consider a situation in which all the users are “average” users:
all have identical parameters r′i,j and q′i,j satisfying equation (5) for all is.
The theorem of arithmetic and geometric means [5] (see appendix 5) now
tells us that, for each bug i, its probability of not being reported is smaller
in the case of diverse users than in the case of all users having this ideal
average profile

∏
k∈{users}

(1 − ri,kqi,k)Tk <
(
1 − r′i,jq

′
i,j

)∑
k

Tk
, (6)

unless all the products ri,kqi,k are equal, in which case equality occurs. Com-
bining the effect over all the failure regions i, we obtain

∑
i∈{failure regions}

qi,jfi

1 −

∏
k∈{users}

(1 − ri,kqi,k)Tk

 >

∑
i∈{failure regions}

qi,jfi

(
1 −

(
1 − r′i,jq

′
i,j

)∑
k

Tk
)

. (7)

What does this tell us? Any user (with profile qi,j, ri,j) would prefer the
previous exposure of the software to have been diverse rather than uniform,
because diversity gives them higher reliability. There are two conditions here
to represent “all things being equal” in our comparison of diverse-profile
testing with uniform-profile testing. They are (i) that the same number
of demands are executed in each case and, (ii) that the uniform profile is,
in an intuitively appealing way, the mean of the different profiles used in
the diverse-profile testing. Subject to all things being equal in this natural
way, we have thus shown that diverse-profile testing is superior to uniform-
profile testing, in the sense it can be expected to deliver greater reliability
improvement to every user (no matter what their profile is).

Advantages of open source processes for reliability 11

4 Discussion

4.1 Further implications of the model — conjectures

We consider here a few questions of clear interest, and speculate about
which answers the model would give to these questions. I.e., we formulate
mathematical conjectures; if in the future we manage to prove them to be
consequences of the model, they will gain the status of conjectures about the
actual evolution of software reliability. We rely heavily on our understanding
of similar models described in [1, 2, 3].

4.1.1 The individual user’s viewpoint

Studies in software reliability usually refer to the average reliability over
all users. In other words, they apply to predictions of the total number of
failures observed by the whole population of users. Of course, if users have
very diverse profiles, as is the case for many products, even a very good
average will not avoid very poor reliability for some users. In other words,
just because a product is known to be very reliable on average, I cannot
trust that it will be very reliable for me. Our model is a step in the right
direction for considering this issue: it refers to the reliability for each specific
user, and thus it will allow one to study distributions rather than averages.

In a practical situation, what would the model predict for an individual
user, or set of users, who benefit from the collective fault reporting and
fixing effort?

A simple (approximate) analogy with the previous work cited is that it is
“as though” there were two users, user 1 whose viewpoint we are taking, and
user 2 representing all the other users and executing many more demands,
T2 >> T1 (or T1 = 0, as when user 1 is deciding whether to adopt the
software). We can compare two scenarios with equal total fault-detecting
and reporting efficacies, i.e., two scenarios which, if one tried to estimate
the reliability of the program (averaged among all users) by looking at the
rate of generation of fault reports, would give identical estimates.

Suppose that user 1’s profile is very different from that of all others.
We can expect that after any amount of time and use, pfd1 will be better
than if user 1 were alone to report failures; yet much worse than if all users
had the same profile as user 1 (this is the standard argument in favour of
“operational” testing). Yet the situation is probably more complex. In [2]
it was found that if software is tested by user 2 with a constant profile,
there is a single profile that delivers the best reliability for user 1, among
all profiles that yield the same initial probability of failure per execution, in
other words under the constraint∑

i∈{failure regions}
qi,1 =

∑
i∈{failure regions}

qi,2 , (8)

Advantages of open source processes for reliability 12

This optimal profile that user 2 should apply for maximum benefit to user 1
actually depends on the amount of use/testing, T . Its parameters qi,2 satisfy
the following relation ([2], eq. 28):

qk,1 (1 − qk,2)
T−1 = ql,1 (1 − ql,2)

T−1 . (9)

for any two faults k and l, under the constraint (8).
What does our “diversity is good” result adds to this previous result?

If I (user 1) have to choose, for my software, among testing regimes with
constant profile (as though executed by the single other user 2), then equa-
tion (9) tells me how to choose this profile for maximum reliability. But on
top of that, if I then split my total number T of test cases among many
users, and give them more varied profiles, of which this optimal profile is
the average according to equation (5), I will get even better reliability for
myself. Software that has been used by a diverse community can reach me
with better reliability than software that has been used by “the best possi-
ble” (from my viewpoint) uniform community with comparable total usage
and fault reporting efficiency.

Other interesting questions deserve investigation, e.g.: under which con-
ditions could a user be aware of being too “special” to benefit greatly from
diversity in the user community? When is it that an apparently very good
fault finding process (large rs and qs) is less useful for me than a ”worse”
one (generally smaller rs and qs)?

And if “diversity is good”, is there a sense in which “more ” diversity is
better than “less”? We need to characterise what “more” means in terms of
the model’s parameters before we can ask whether differences between OSS
and other approaches matter in this respect. For instance, we may ask under
which conditions a law of diminishing returns would apply for diversity.

4.1.2 Evolution over time

All the results so far have been discussed in terms of reliability at a certain,
arbitrary moment in the history of use of the program. All results contain
parameters Tk, or their sum T =

∑
k Tk.

We are really interested in how the program’s reliability evolves over
time. We showed in [3] a phenomenon whereby testing with a profile similar
to one’s usage profile yields better reliability growth in the short term, but in
the long term different profiles, with some emphasis on the “less important”
bugs, are more beneficial (i.e., in the long run, the “important” bugs will
have been found and fixed no matter what; but the other ones are difficult
to get rid of).

In our model we can therefore conjecture two main contributing factors
to the reliability growth as observed by user j. In the short term, corre-
sponding to initial rapid reliability growth, it is affected mostly by those
users with similar profiles to user j’s own. In the long run, the profiles

Advantages of open source processes for reliability 13

which differ from user j’s will contribute more to improving reliability as
seen by j.

4.1.3 Predictability of results, dependability of process

We have so far referred to the average, or expected value of reliability mea-
sures for a given user. This acknowledges that reliability growth is a stochas-
tic process: for instance, a fault i with high qi,js is likely to be discovered
early on, but it may well (with low probability) go undetected for a long
time. The probabilities of different histories of reliability growth are deter-
mined by our model parameters. The averages that we have been discussing
are defined over all the possible histories of reliability growth. So, they are
useful indicators, but they may be misleading as they hide the potential
variation between different histories.

In reality, what matters in a project is the reliability growth history that
actually takes places. When I am stuck with an unreliable product, it does
not matter much that, if I consider all other possible histories, the average
of all the reliability levels that I could have obtained would be much better
than the one I actually see. So, in project decisions the probabilities of
“bad” reliability growth histories - thus, the probabilities of histories that
are “much worse” than average - matter.

In [3] we studied probability distributions of reliability growth histories,
accounting also for the fact that the initial set of faults is unknown. We
could show some counterintuitive examples of how comparatively bad failure
reporting rates, from usage with a user’s own usage profile, would be better
defences against the risk of very poor reliability growth than even much
higher reporting rates based on someone else’s, different profile.

We would like to explore how this translates into predictions, for a new
prospective user, of the risk of very bad reliability growth after adopting a
new product, and how the degree of “openness” of the process and diversity
of the user base should affect them.

4.2 Limits of this model and possible extensions

This model is not exhaustive: there are many aspects of OSS processes that
we have not described. Some of these could be studied through extensions
to the model, some require different methods. To give some examples:

• in OSS an individual user might make available to the other users
a fix which would work only in his particular profile, which is often
commercially unviable in CSS;

• having additional users reporting bugs may be generally useful as it
will increase the chances to improve the reliability in any case. How-
ever, in this model there is no explicit representation of any resource

Advantages of open source processes for reliability 14

bottleneck, like scarcity of bug fixing staff, or simply delays due to
the need to coordinate many fixes. As an example, consider the situ-
ation when bug fixing is a competing activity. Bug fixers may need to
abandon one bug for another, so that increasing the likelihood of user
k reporting bug i implies a higher probability of fixing bug i, but at
the expense of fixing bug l. Mathematically this can be described by
saying that increasing ri,k increases fi, which in turn decreases fl.

• the model lacks any notion of consequence of a failure, or failure “sever-
ity”, yet it seems likely that users will be influenced by this (as well
as their perception of its frequency) in deciding whether or not to re-
port it. It may well be that attitudes to failure severity are different
between OSS and commercial developments.

5 Conclusions

We started this work to clarify to ourselves some open issues about the re-
lationship between software processes and software dependability, using the
tools we know, i.e. a simple, formal, probabilistic approach. We were moti-
vated by interest in open source processes, but a reader may well say that
this paper is not about“open source”. Our considerations about depend-
ability attributes, and the model we propose, apply to any scenario in which
the important factors at work can be described by the model’s parameters.
It so happens that some of these parameters are plausibly influenced by
“openness” factors. E.g., if a development community appears responsive
to failure reports, we may well expect users to report failures more often than
they would otherwise. Such thorough reporting of failures might of course
be produced by appropriate management decisions or cultural factors even
without open source development.

So, we have not studied “open source” per se. Yet this way of modelling
does seem useful for decisions involving the choice between more or less
open project styles, both in managing development projects and in software
procurement. The model’s universe includes many of the factors that seem
important: the initial quality of the software, various factors affecting its
growth, the different reliability levels experienced by different users, etc.

In fact, we would argue that only questions of the kind we have chosen,
“how does factor X affect dependability attribute Y” are likely to produce
interesting general answers. Questions of the form “how reliable is open
source software?” may elicit highly specific, useful answers of the form
“product X achieved an average time between crashes of y days for user
community Z”, but no generalisation without the support of theories – i.e.,
of models.

As to useful answers that this model can give to our questions, we have
only proven a first theorem. This theorem does resolve an intuitively unclear

Advantages of open source processes for reliability 15

issue, but does not seem especially useful in the practical situations, in which
two processes are likely to differ in all the rijqij in arbitrary ways. However,
even this modest theorem has some practical implications. E.g., given a
community of similar users who are not likely to report all failures, it would
pay off to encourage different users to focus on reporting different kinds
of failures, provided their reporting frequencies, taken together, still satisfy
equation (5).

We will continue to interrogate this model, e.g. about the relationships
between reliabilities observed by different users, as outlined in the previous
sections.

We plan to obtain clarifications of what “one should believe” given plau-
sible assumptions, and thus about the consistency of various claims about
the differences between processes that differ in the extent of some aspect
of “openness”. We shall investigate which predictions can be checked em-
pirically to decide whether these models, however stylised, are useful ap-
proximations for important, dependability-related aspects of real, complex
processes.

We have chosen to study aspects of the software life-cycle for which our
modelling approach seems appropriate. We are sure that there are other
aspects for which it would be ineffective. For instance, some will argue that
a prestigious open source project will produce high initial dependability,
or long-term maintainability, simply because it will attract highly skilled
and dedicated contributors. In our model, this result would be represented
by low values of the sum in (1) for all js. The process it describes is not
represented in the model, nor would we expect any advantage from trying
to represent it. To investigate how this conjecture should affect one’s de-
cisions, e.g. in setting up an open-source project, one would need to use
knowledge from psychology, sociology or economics, and still would expect
rather imprecise answers. For someone intent on procuring a software prod-
uct, the conjecture is probably irrelevant, as what matters if whether that
specific product has been built by especially skilled individuals, and/or is
very reliable.

We expect our style of modelling to complement such other methods of
investigating software engineering problems, in terms of general laws or of
specific cases.

Acknowledgements

This work was supported in part by EPSRC, within the Interdisciplinary Re-
search Collaboration in Dependability of Computer-Based Systems, DIRC.

Advantages of open source processes for reliability 16

Appendix: theorem

In this appendix we describe the theorem of arithmetic and geometric means.
Let us consider two set of non-negative numbers a1, a2, . . . , an and p1, p2, . . . , pn.
We will call the ps weights. The weighted arithmetic means of the as is de-
fined as

A(a, p) =
∑n

k=1 pkak∑n
k=1 pk

,

whereas the weighted geometric means is defined as

G(a, p) =

(
n∏

k=1

apk
k

)1/
∑

k
pk

.

The theorem ([5], p.17) says that G(a, p) < A(a, p) unless all the as are equal.
Raising both sides to the power

∑
k pk the theorem gives the equation

n∏
k=1

apk
k <

(∑n
k=1 pkak∑n

k=1 pk

)∑
k

pk

. (10)

Replacing ak with (1 − ri,kqi,k) and the weights pk with the number of
executions Tk in equation (10) yields equation (6). Indeed, we find

n∏
k=1

(1 − ri,kqi,k)Tk <

(∑n
k=1 Tk (1 − ri,kqi,k)∑n

k=1 Tk

)∑
k

Tk

.

In the right hand side term we can recognise our definition of the “ideal
average user”. Indeed, by the definition of “ideal average user”(5), we have

(∑n
k=1 Tk (1 − ri,kqi,k)∑n

k=1 Tk

)
= 1 −

∑n
k=1 Tkri,kqi,k∑n

k=1 Tk
= 1 − r′i,jq

′
i,j .

References

[1] P. Frankl, D. Hamlet, B. Littlewood, and L. Strigini. Choosing a testing
method to deliver reliability. In Proceedings 19th International Confer-
ence on Software Engineering ICSE’97, pages 68–78, Boston, USA, 1997.
IEEE Computer Society Press.

[2] P. Frankl, D. Hamlet, B. Littlewood, and L. Strigini. Evaluating test-
ing methods by delivered reliability. IEEE Transactions on Software
Engineering, SE-24(8):586–601, 1999.

Advantages of open source processes for reliability 17

[3] M. Pizza and L. Strigini. Comparing the effectiveness of testing methods
in improving programs: the effect of variations in program quality. In
Proceedings 9th International Symposium on Software Reliability Engi-
neering, ISSRE ’98, pages 144–153, Paderborn, Germany, 1998. IEEE
Computer Society Press.

[4] L. Strigini. On testing process control software for reliability assessment:
the effects of correlation between successive failures. Software Testing
Verification and Reliability, 6(1):36–48, 1996.

[5] G. Hardy, J.E. Littlewood, and G. Polya. Inequalities. Cambridge Uni-
versity Press, 1952.

