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Abstract

We construct an optimal investment portfolio model with deferred annuities for an individual

investor saving in a retirement plan. The objective function consists of power utility in terms of

consumption of all secured retirement income from the deferred annuity purchases, as well as

bequest from remaining wealth invested in equity, bond, and cash funds. The asset universe is

governed by a vector autoregressive model incorporating the Nelson-Siegel term structure and

equity returns. We use multi-stage stochastic programming to solve the optimization problem

numerically. Deferred annuity purchases are made continuously over the working lifetime of

the investor, increasing particularly in the years before retirement. The investment strategy

hedges price changes in deferred annuities, and bond holding and deferred annuity purchases

increase when interest rates are high. Optimal investment and deferred annuity choices depend

on realised and expected values of state variables. The optimal strategy is also compared with

typical retirement plan strategies such as glide paths. Our results provide support for deferred

annuities as a major source of retirement income.

Keywords: Stochastic programming, Retirement planning, Deferred annuities

1. Introduction

Constant-payment deferred annuities are a life-contingent income product that provides

fixed lifetime income beginning at a pre-specified date, in most cases at retirement or at ad-

vanced age. Compared to nominal coupon-paying bonds, deferred annuities have the benefit

that policyholders’ mortality risk is pooled because they are sold by life insurers to large pop-

ulations of policyholders. Premiums are determined by four factors: the deferment period, dis-

count rates, mortality, and expenses. For retirees, deferred annuities reduce longevity risk in the

distant future (Scott, 2008). For relatively young individuals who will work for a long period of

time, they can be used to secure retirement income well before retirement (Horneff et al., 2010;
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Maurer et al., 2013). More broadly, social security and defined benefit pensions provide a type

of deferred annuity, where governments and companies guarantee the pension benefits. Pension

and annuity markets have started to afford individual investors greater freedom to use deferred

annuities, but little research has been undertaken on the optimal purchase of such annuities be-

fore retirement. The U.S. Treasury allows target date funds to include deferred annuities among

their assets in 401(k) plans (U.S. Treasury Department, 2014). Many retirement funds, however,

apply a typical investment strategy, so-called glide paths, which reduce the proportion of equity

and increase the proportion of bond in the investment portfolio as retirement approaches.

Immediate annuities, which pay a life-contingent benefit from the time the annuity contract

is purchased, are more common than deferred annuities, and are the subject of considerably

more research. Most studies focus on annuity purchases on or after retirement, i.e. in the decu-

mulation phase. Koijen et al. (2011) present the optimal full-annuitization portfolio of nominal,

inflation-indexed, and variable annuities at retirement, and the associated hedging strategy be-

fore retirement. In the hedging strategy, the optimal composition of nominal and inflation-linked

bonds depends on an annuity strategy that will be used at retirement. Milevsky & Young (2007)

derive analytically the optimal age for annuitization when wealth can only be fully annuitized

just once. They also show that it may be optimal to buy immediate annuities gradually over

time when this is permissible. Horneff et al. (2008, 2009) likewise find that buying an increas-

ing amount of immediate annuities over the lifecycle enhances the individual’s welfare.

Deferred annuities, by contrast to the above, have been less scrutinized. Huang et al. (2017)

provide conditions for the optimal purchase of deferred annuities when the interest rate process

is mean-reverting, but do not study the portfolio optimization problem. This is done in the sim-

ple environment of one risky asset and one risk-free asset by Horneff et al. (2010) and Maurer

et al. (2013). They assume that the individual has an uncertain labour income stream, invests

his disposable income, and is also allowed to buy deferred annuities at any time before retire-

ment. The deferred annuities begin to pay lifetime benefits at a fixed retirement date. These

studies show that deferred annuities have a crucial role in increasing welfare gains. The optimal

strategy is to start to purchase deferred annuities early (from age 40) and to keep purchasing

them over time up to about 80% of the final portfolio at retirement (Horneff et al., 2010; Maurer

et al., 2013). The conclusion that deferred annuities should be purchased early is also supported

by Konicz & Mulvey (2013) in a simpler setting where optimization is over annuity income

assumed to be fully consumed during retirement.

This article provides further support for the early and regular purchase of deferred annuities

2



prior to retirement. The framework that we consider is saving and investment in the accumu-

lation phase within a retirement plan, which may be sponsored by an employer or provided by

a life insurer. Individuals in the plan seek financial advice from pension planners and actuaries

who focus on income rather than terminal wealth, as enjoined by Merton (2014). To this end,

we solve numerically for the optimal allocation to stock, bond and cash, and for the optimal

purchase of deferred annuities before retirement.

Our main contributions are as follows. First, we use a richer model of the financial market

than Horneff et al. (2009, 2010), Maurer et al. (2013), Milevsky & Young (2007) and Konicz

& Mulvey (2013), who consider only a constant risk-free rate and a risky asset with a single

geometric Brownian motion. Koijen et al. (2011) argue that time-varying opportunities in eq-

uity return and a full term structure of interest rates are critical to long-term asset allocation.

Diebold & Li (2006) find that the Nelson-Siegel model provides accurate long-term forecasts of

yield curves. We use the framework of Konicz et al. (2016) with a vector autoregressive model

combined with the Nelson-Siegel model which allows for time-varying equity risk premia and

a full term structure of interest rates. This means that we quantify optimal asset allocation and

deferred annuity purchase in a manner that can be used by actuaries and other risk managers to

advise pension savers in the real world.

Second, our model allows for realistic frictions and constraints. Koijen et al. (2011) obtain

large short positions in bonds together with borrowing. This is unlikely to be achievable for

individual investors, especially within their retirement plans. Short-selling is precluded in our

model. Furthermore, transaction costs on stocks and bonds and charges on annuity purchases

are included.

Third, our richer financial model comes at the cost of many more state variables than nu-

merical dynamic programming can contend with. In possibly the most advanced numerical op-

timization model among the above, Koijen et al. (2011) employ simulation-enhanced dynamic

programming but fail to incorporate realistic portfolio constraints and frictional costs. Instead,

we use a key technique in operations research, multi-stage stochastic programming (MSP), as

employed by Konicz et al. (2016). However, we consider the accumulation (pre-retirement)

phase whereas they consider the decumulation (post-retirement) phase. We generate scenarios

with a close fit to market data and we implement a step procedure which disallows arbitrage.

Using the MSP method, Duarte et al. (2017) incorporate Solvency II regulatory constraints into

an asset-liability management problem for a risk-averse pension plan operator. For other ap-

plications of MSP to individual retirement planning, see Consigli et al. (2012), Dempster &
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Medova (2011)

Fourth, we compute the welfare gains from having not just immediate annuities, but also

deferred annuities. The welfare improvements from practical, deterministic strategies such as

glide paths are also calculated, to aid actuaries and other financial planners.

We caution that our model, like all models, carries certain simplifying assumptions. We do

not endogenize the optimal timing for annuitization. Annuities pay out only at a single (retire-

ment) date, as in Maurer et al. (2013) and Horneff et al. (2010). We assume full annuitization

at retirement, an empirically rare observation (the “annuity puzzle”), although not far off the

80% of total wealth that should be annuitized using deferred annuities according to the two

abovementioned studies. We do not optimize over the full financial cycle, but only over the

accumulation phase. Investment takes place within a retirement plan only; individuals are as-

sumed to fully consume all retirement income and their expected utility from this consumption

is maximized, similar to Koijen et al. (2011), Horneff et al. (2008) and Konicz & Mulvey (2013).

We hope to address these simplifications in subsequent iterations of our model.

Our model shows that, as age increases, it is optimal to purchase more deferred annuities

and reduce the portfolio allocation to risky financial assets in the retirement plan. The dynamic

strategy is based on changes in state variables including asset returns, yield curves, and deferred

annuity prices. The bond fund, in particular, has a critical role of hedging price changes in

deferred annuities. An optimal strategy in some scenarios is to use the equity and bond funds to

maximize investment returns and to wait for the best time to buy deferred annuities.

This article is organized as follows. We describe the portfolio optimization problem and

define the price dynamics of available assets in Section 2. In Section 3, the time-varying and

predictable market movements of equity returns and yield curves are defined using a vector

autoregressive model with the Nelson-Siegel model. We solve the model by applying a multi-

stage stochastic programming approach. Descriptions for the model formulation are given in

Section 4. We investigate the numerical results of optimal investment and deferred annuity

choice in Section 5. We also describe how the optimal solution changes as risk aversion, time

preference, bequest motives, mortality, and contribution amounts vary. In Section 6, we discuss

how the optimal strategy changes if deferred annuities are unavailable. Finally, we compare our

optimal strategies with typical retirement-plan strategies, such as constant-mix, glide-path, and

“100−age” strategies.
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2. Investment for a Retirement Plan

2.1. Investment problem

We consider an individual who starts to contribute to a personal retirement plan at time 0,

when he is δ years old, and who retires at time T . During the retirement planning period [0,T ),

he contributes a fixed proportion φ of his labour income Lt (at time t) every year to the retirement

plan. He can hold equity, bond and cash in the retirement fund, which is worth Wt at time t.

Withdrawals from the fund are not allowed,1 except to buy deferred annuities (DAs). DAs will

pay out, if the individual is alive at retirement time T , every year from time T until he dies.

Annuities are irreversible contracts, so the individual can buy, but not sell, annuities. Every

unit of annuity that is bought pays out a secured income of £1 annually in retirement. If the

individual dies before retirement, then the annuities do not pay out, but the wealth in his fund is

bequeathed to his heirs. If he survives till retirement, then his accumulated wealth in the plan is

fully annuitized by purchasing an immediate annuity.

During the retirement planning period [0,T ), the individual allocates his portfolio and pur-

chases deferred annuities in order to maximize the expected utility of consumption of all income

in retirement and of bequest before retirement. Note that we consider investment for a retire-

ment plan only, and therefore we assume that the individual consumes fully his income from the

retirement plan and that he can separate utility over consumption of retirement income from the

utility over pre-retirement consumption.

The individual investor has a power utility function u(t, x) = e−ρt x1−γ/(1 − γ) in terms of

cash flow or wealth x at time t. The individual therefore has a constant relative risk aversion

(CRRA) coefficient γ. As γ tends to one, the utility function becomes logarithmic. We assume

that all retirement income is used for consumption, so the utility function is defined in terms

of income from annuities. The time preference coefficient 0 ≤ ρ ≤ 1 reflects the individual’s

preference for early income over late income. The utility function is also defined with regards

to the bequest amount Wt before retirement. A bequest parameter κ captures the importance of

bequest relative to retirement income.

In the following, standard actuarial notation is used for survival and death probabilities. The

probability that a person aged δ years survives until age δ + t is denoted by t pδ. The probability

that a (δ + t)-year old person dies over the following ∆t years is denoted by ∆tqδ+t, abbreviated

1 Because of the tax privileges afforded to pension plans to encourage saving, withdrawals are in general restricted

and attract a hefty tax liability.
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to qδ+t when ∆t = 1. For practical purposes, we also assume that a person cannot live beyond

age ω, which is the maximum age in an actuarial life table, so the individual investor dies before

or at time τ = ω − δ, since he is aged δ at time 0.

Let the total number of units of deferred annuities purchased by time t be XA,t, where the

subscript A stands for annuities. Since each unit of annuity provides £1 annually in retirement,

the secured retirement income by time t is XA,t. If the annuity price is S A,t, then the investor

pays S A,t(XA,t − XA,t−1) to buy annuities at time t ∈ [0,T ] (with XA,−1 = 0).

We also assume that the investor buys and sells units or shares in an equity fund, a cash fund

and a bond fund, denoted by E, C and B respectively. Let XE,t be the number of units of the

equity fund held in the retirement plan at time t, and S E,t be the price of equity units at time t.

A corresponding notation holds for the cash and bond funds. At time t, the individual decides

how much to hold in equity, cash and bond, and how many annuity units to buy. The decision

variable for the individual at time t ∈ [0,T ) is therefore Xt = [XE,t, XC,t, XB,t, XA,t]′.

The objective function, budget constraints, and variable constraints for the retirement plan-

ning problem are given by the equations below:

max
{Xt ,t∈[0,T )}

E0

 ∑
t∈[T,τ)

t pδ u(t, XA,T ) +
∑

t∈[0,T )
t pδ · qδ+t · κ

γu(t + 1,Wt+1)

 , (1a)

s.t. Wt+1 = Wt + φ · Lt − S A,t(XA,t − XA,t−1) +
∑

i∈{E,C,B}

(S i,t+1 − S i,t)Xi,t for t ∈ [0,T ), (1b)

Xi,t ≥ 0 for i ∈ {E,C, B, A} and t ∈ [0,T ), (1c)

XA,t+1 ≥ XA,t for t ∈ [0,T ), (1d)

Xi,T = 0 for i ∈ {E,C, B}, (1e)

XA,T = XA,T−1 + WT/S A,T , (1f)

Wt ≥ 0 for t ∈ [0,T ], (1g)

W0 = w0 w.p. 1. (1h)

In Eq. (1a) above, the decision variables over which expected utility is maximized are the

portfolio and annuity purchase decisions over the planning horizon [0,T ). Since the retirement

income which is secured through deferred annuity purchase by retirement time T is XA,T , the

utility of secured income at time t ∈ [T, τ) during retirement is u(t, XA,T ) = e−ρt(XA,T )1−γ/(1−γ).

If the individual dies during period [t, t+1), then wealth Wt+1 constitutes a bequest, so the utility

of bequest is then κγu(t,Wt+1) = κγe−ρt(Wt+1)1−γ/(1 − γ).

The budget constraint, in Eq. (1b) above, shows the dynamics of wealth Wt in the retirement

plan. Wealth is increased by a contribution which is a fixed proportion φ of labour income Lt, as
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well as by increases in the price of equity, cash and bond funds, (S i,t+1 − S i,t) for i = {E,C, B}.

Wealth in the retirement plan is reduced if there is a withdrawal of S A,t(XA,t − XA,t−1) to buy

deferred annuities at time t.

The constraint in Eq. (1c) means that short sales are not allowed, while the constraint

in Eq. (1d) means that annuities can be bought but not sold. The terminal conditions in Eq. (1e)

and Eq. (1f) assert that, at retirement time T , equity, bond and cash holdings are sold off, and all

wealth in the retirement plan is annuitized. Eq. (1g) ensures that wealth remains non-negative.

The initial condition in Eq. (1h) states that the investor has a known initial wealth at time 0.

2.2. Available assets

The individual can rebalance his portfolio and buy deferred annuities at regular intervals of

length ∆t years. There are N ∈ N such regular intervals in the retirement planning period [0,T ),

i.e. T = N ∆t. Defining Ri,t as the accumulated log-return of asset i ∈ {E,C, B} from time t − ∆t

to t, the price S i,t of asset i evolves according to the following:

S i,t = S i,t−∆t · exp(Ri,t) for i ∈ {E,C, B}, (2)

where S i,0 = 1 without loss of generality.

The gross return of the long-term bond fund with a maturity of M years over a holding

period of length ∆t from time t − ∆t to t is approximated by

Ri,t = M · y(βt−∆t,M, λ) − (M − ∆t) · y(βt,M − ∆t, λ), (3)

where the asset i is a zero-coupon bond with maturity M at time t − ∆t. The term y(βt,M, λ)

denotes the M-year spot rate at time t, determined by the Nelson-Siegel term structure model,

with parameters βt and λ to be specified shortly. Accordingly, the dynamics of the bond fund

price is obtained by subsituting Ri,t from Eq. (3) into Eq. (2).

The gross return of the cash fund is defined simply by changing bond maturity M in Eq. (3)

to ∆t. The cash fund return from time t − ∆t to t, then, is given by

Ri,t = ∆t · y(βt−∆t,∆t, λ). (4)

Of course, this cash fund return at time t does not depend on the current spot rate y(βt,∆t, λ) at

time t, but on the past spot rate y(βt−∆t,∆t, λ).

For a policyholder aged δ + t at time t, the fair actuarial price of a deferred annuity contract

paying £1 of annual retirement income for lifetime from his retirement at time T is

S A,t =

τ−t∑
s=T−t

s pδ+t · exp (−s · y(βt, s, λ)) . (5)

We assume static pricing mortality rates here, and we also ignore loading factors (expenses).
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3. Financial Markets

In order to incorporate interest rate uncertainty into the deferred annuity price, a stochastic

term structure model is required. The Nelson-Siegel model is chosen as the term structure model

along with a vector autoregressive (VAR) model for stochastic equity and bond returns. Ferstl

& Weissensteiner (2011) combines the Nelson-Siegel formulation proposed by Boender et al.

(2008) with the VAR model. This allows our model to incorporate asset return predictabilities

and to use a seamless yield curve for pricing not only the cash and bond funds, but also annuities.

3.1. Term structure of interest rates

The entire yield curve is determined by a fitted Nelson-Siegel model with three time-varying

parameters: β1,t (level), β2,t (slope), and β3,t (curvature)2. This parsimonious model is known

to avoid over-fitting and to return better out-of-sample predictions than affine term structure

models (see Diebold & Li, 2006). The Nelson-Siegel model for the s-year spot rate at time t is

as follows:

y(βt, s, λ) = β1,t + (β2,t + β3,t)
(
1 − e−λs

λs

)
− β3,te−λs, (6)

where the scaling parameter λ is a constant. Here, βt = [β1,t, β2,t, β3,t]′.

3.2. Time-varying investment opportunities

To incorporate predictabilities of asset returns and the three parameters in the Nelson-Siegel

model, we use a VAR(1) model (for details, see Barberis, 2000; Campbell et al., 2003). In

particular, a combined approach of the interest rate model and equity returns, as in Ferstl &

Weissensteiner (2011), Pedersen et al. (2013) and Konicz et al. (2016), is applied. Our VAR

model is given by

zt = Φ0 + Φ1zt−1 + vt, (7)

where zt = [rt, β1,t, β2,t, β3,t]′. Here, rt is monthly log-returns on the equity fund. The accumu-

lated return RE,t on the equity fund, defined near Eq. (2) as the log-return from time t − ∆t to t,

is simply a sum of monthly log-returns. In Eq. (7), Φ0 is a row vector of intercepts, Φ1 is a

4× 4 matrix of the slope coefficients of the VAR model, and vt is a row vector of iid innovations

∼ N(0,Σz), where Σz = E[vv′].

2In the Nelson-Siegel model, the long interest rate is given by lims→∞ y(βt, s, λ) = β1,t and the short interest rate

is lims→0 y(βt, s, λ) = β1,t + β2,t. See e.g. Boender et al. (2008).
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If all eigenvalues of Φ1 have moduli less than one, the stochastic process in Eq. (7) is stable

with the unconditional expected mean µzz and covariance Γzz of zt in the steady state:

µzz = (I − Φ1)−1Φ0 (8)

vec(Γzz) = (I − Φ1 ⊗ Φ1)−1vec(Σz), (9)

where I is an identity matrix and the operator ⊗ is the Kronecker product and vec is a vectorisa-

tion function, which transforms a K × K matrix into a K2 × 1 vector.

Table 1: Estimated parameters and t-statistics for the VAR(1) model.

Φ0 Φ1 R2

rt−1 β1,t−1 β2,t−1 β3,t−1

rt -0.0093 0.0136 0.2446 0.0037 -0.0980 0.0125

t-value (-0.9961) (0.2158) (1.3086) (0.0266) (-0.9722)

β1,t 0.0070 0.0033 0.8620 -0.0325 0.0229 0.9700

t-value (4.6116) (0.3216) (28.5657) (-1.467) (1.4069)

β2,t -0.0044 0.0128 0.0777 1.0008 0.0072 0.9771

t-value (-4.1225) (1.7827) (3.6479) (63.9633) (0.6246)

β3,t -0.0024 0.0084 0.0514 0.0206 0.9560 0.9336

t-value (-1.3018) (0.6857) (1.4191) (0.7742) (48.9678)

Monthly data of FTSE 100 and the Bank of England’s fitted yield curves are used from January 1993 to December

2013; t-statistics in parentheses.

Table 2: Cross correlations and standard deviations of residuals of the VAR(1) model.

r β1 β2 β3

r †4.0371 -0.0354 0.1487 -0.0180

β1 -0.0354 †0.6518 -0.7944 -0.2002

β2 0.1487 -0.7944 †0.4599 0.0577

β3 -0.0180 -0.2002 0.0577 †0.7821

†Standard deviations along the leading diagonal are multiplied by 100.

Table 3: Unconditional expected mean µzz of the VAR(1) model.

r β1 β2 β3

µzz 0.0040 0.0559 -0.0204 0.0028

Using historical yield curves from the Bank of England from January 1993 to December

2013 with 0.5 to 25-year spot rates, and monthly FTSE 100 data over the same period, and
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by minimizing the sum of squared errors between the fitted and historical yields, we estimate

λ = 0.3820 in Eq. (6) in the Nelson-Siegel model. Our estimates for Φ0 and Φ1, in Eq. (7),

along with t-statistics, are collected in Table 1. The level of R2 for the equity return component

is low, so it is difficult to confirm that return predictability in the UK equity market exists. Table

2 exhibits the correlations and standard deviations (multiplied by 100) of the residuals. Table 3

presents the unconditional expected mean µzz of zt in the steady state.

4. Formulation for Multi-Stage Stochastic Programming

4.1. Scenario generation

Stochastic programming is a mathematical framework for optimisation problems with uncer-

tain variables, commonly used in operations research. The variables can be economic, financial,

and demographic. Multi-stage stochastic programming (MSP) discretizes both the state space

and time, and the multiple discrete-time points are known as stages. An MSP model is con-

structed in a nodal form by using state variables generated in a scenario tree. The scenario tree

starts at the initial stage from a unique root node which branches out to a number of children

nodes at the second time stage. Each of these children nodes themselves branch out to further

nodes at the third time stage, etc. The nodes at the terminal stage are known as leaf nodes. A

scenario is the path followed from the root node through descendant nodes to a leaf node. The

tree is non-recombining, in general.

Some helpful notation pertaining to the scenario tree is set out below. The root node of the

scenario tree is denoted by n0. Let N be the set of all nodes in the tree, and Nt be the set of

nodes at time t. For our retirement planning problem, time 0 is the first stage and retirement

time T is the terminal stage. Thus, N0 = {n0} contains the root node only, NT is the set of

leaf nodes, and N =
⋃

t∈[0,T ]Nt. The unconditional probability that a node n occurs is prn and,

clearly,
∑

n∈Nt prn = 1. A node n , n0 will branch off a parent node, denoted by n−, which may

itself have its own parent node n−−, etc. A node n < NT will engender a set of children nodes,

denoted by {n+}, which may themselves have their own children nodes {n++}, etc.

In the operations research literature, scenario trees are generated using three main methods:

scenario reduction, state aggregation, and moment matching (see Geyer et al., 2010). We choose

the moment matching method (Høyland & Wallace, 2001; Klaassen, 2002) for generating sce-

nario trees of accumulated equity returns and the three Nelson-Siegel term structure parameters.

More precisely, we use the sequential approach of Høyland & Wallace (2001) with the moment

matching method to generate scenario trees.
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A large multi-period scenario tree consists of many small single-period sub-trees. The first-

period sub-tree has a number of outcomes corresponding to each child node in the set {n+
0 }.

The outcomes for the first-period sub-tree are obtained by matching the first four moments of

the distributions of state variables. For the second-period sub-trees, the conditional outcomes

are obtained by matching the first four moments of the conditional distribution properties on

outcomes of the first-period sub-tree. This procedure is executed sequentially for the third,

fourth etc. sub-tree until the final-period sub-tree. By doing so, we ensure that all conditional

distribution properties are fully matched through the multi-period scenario tree.

The scenario tree that we construct in our multi-stage stochastic programming problem has

six stages. The time interval between the stages is ∆t, so the stages occur at time 0, ∆t, 2∆t, . . . ,

T = 5∆t. At each node n, we store the state variables [Rn, rn, β1,n, β2,n, β3,n] employing the same

notation as before except that we index by node n rather than by time. Thus, if node n occurs

at time t, Rn denotes equity log-return over a ∆t-long time interval ending at time t (Eq. (2)); rn

denotes equity log-return over a month ending at time t (Eq. (7)); and β1,n, β2,n, β3,n denote the

Nelson-Siegel term structure parameters at time t (Eq. (6)). At the root node n0, the initial state

values are set to equal the unconditional expected means in Table 3. In the scenario tree, every

non-terminal node branches off to six children nodes. Six outcomes is the minimum to match

the first four moments of the five state variables.

The scenarios that are generated are arbitrage-free. This is achieved using the following

procedure:

Step 1. Given a node n ∈ N \NT , generate scenarios for its children nodes {n+} by matching the

four moments of conditional distributions of five state variables [Rn+ , rn+ , β1,n+ , β2,n+ ,

β3,n+] given the current state values of [Rn, rn, β1,n, β2,n, β3,n].

Step 2. Check if the generated scenarios preclude arbitrage opportunities (see Klaassen, 2002).

Go back to Step 1 if any arbitrage opportunity is found.

Step 3. Check if each of the generated scenarios has conditional moments over the next stage

that are within no-arbitrage bounds (see Geyer et al., 2014)

Step 4. Repeat Steps 1 to 3, if Step 3 meets the always-arbitrage bound.

Step 2 can be subsumed within Step 1. The four moments of the conditional distributions

in Step 1 are obtained as in Appendix A. The above procedure is applied from the first to

the penultimate stage in a sequential way. Validating arbitrage opportunities among the three
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Figure 1: Left panel (a) shows the initial term structure starting from the steady state. Right panel (b) shows twelve

different realizations of the term structure after 5 years (the thicker the line, the higher the probability of occurrence).

Table 4: Percentiles of the spot rate for different maturities at the final stage

5y 10y 15y 20y 25y 30y

5th perc. 0.0059 0.0160 0.0202 0.0223 0.0235 0.0241

50th perc. 0.0497 0.0530 0.0544 0.0550 0.0555 0.0558

95th perc. 0.1041 0.0993 0.0966 0.0953 0.0943 0.0938

financial assets (equity, cash and bond funds) in steps 2 and 3 is dealt with by using the two

methods of Klaassen (2002) for two arbitrage types ex-post and the method of Geyer et al.

(2014) for no-arbitrage bounds ex-ante.

Since there are six children nodes for every non-terminal node and there are six stages (five

periods), there are 65 = 7,776 scenarios and
∑5

j=0 6 j = 9,331 nodes. To improve the stability

of our results, we aggregate two independently-generated scenario trees, with an identical root

node, into one large scenario tree (see Høyland & Wallace, 2001). So, the total number of

scenarios is 15,552 and the total number of nodes is 18,661. Generating each scenario tree takes

just under one hour with Matlab by using parallel package parfor on a laptop with Intel CPU

i7-7700 3.60 Ghz and 32 Gbyte memory.

In order to verify how well the combined scenario tree describes the fitted VAR model of

section 3.2, we compare unconditional cumulative distributions of the state variables generated

on the scenario tree with the actual cumulative distributions from the VAR model: see Figure B.5

in Appendix B). This shows that, although the scenario tree discretizes the state space of
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variables, it replicates the distributions very closely, particularly in the later stages.

Table 4 shows the percentiles of the spot rates for different maturities at time T from the

scenario tree. This is consistent with the empirical evidence that short-term interest rates are

more volatile than long-term interest rates. Figure 1(a) displays the initial term structure starting

from the steady state with the unconditional expected values in Table 3. Figure 1(b) shows

twelve different realizations of the term structure at the second stage. The thickness of the lines

is linked to the probability that the term structure occurs.

From the generated outcomes on each node, the asset prices given in Eq. (2) to Eq. (5) can

be rewritten in a nodal form. Recall that any node n in the scenario tree (except for the root

node n0) branches off a parent node n− at the previous time stage. The asset price in Eq. (2), for

example, is transformed into the nodal form simply by replacing t with n and t − ∆t with n− as

follows:

S i,n = S i,n− · exp(Ri,n) for n ∈ N \ {n0} and i ∈ {E,C, B},

with S i,n0 = 1. Other pricing formulas are transformed in a similar way.

4.2. Optimization problem

The objective function and constraints set out in Eq. (1) for the general problem can now be

formulated on the scenario tree as a multi-stage stochastic programming problem. The notation

transfers in a straightforward way, except that we index by node rather than time. For example,

Xi,n refers to the number of units of asset i ∈ {E,C, B, A} held at node n in the scenario tree. We

also distinguish between buy and sell decisions, so that Xbuy
i,n is the number of units of asset i

to buy at node n and Xsell
i,n is the number of units of asset i to sell at node n. Recalling that

deferred annuities cannot be sold, the decision variable for the individual at node n is therefore

Xn =
[
Xbuy

E,n , Xsell
E,n , Xbuy

C,n , Xsell
C,n , Xbuy

B,n , Xsell
B,n , Xbuy

A,n

]′
. The decision variable must be chosen at every

node n in the scenario tree.

The objective function in Eq. (1a) is rewritten in a nodal form as follows:

max
{Xn,n∈N\NT }

 ∑
t∈[T,τ]

∑
n∈NT

t pδ u(t, XA,n) prn +
∑

t∈[0,T )

∑
n∈Nt+∆t

t pδ ∆tqδ+t κ
γu(t + ∆t,Wn) prn

 ,
(10)

where it is implicit that summations occur over the time stages in the scenario tree during the

planning phase when t ∈ [0,T ].

A cash balance constraint in Eq. (11) below controls cash inflows and outflows. Below, ϕs
i

and ϕu
i indicate a percentage selling fee and upfront fee respectively for asset i ∈ {E,C, B, A},
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and w0 is non-random positive initial wealth.

1{n=n0}w0 + 1{n<NT }φ·Ln +
∑

i∈{E,C,B}

Xsell
i,n S i,n(1−ϕs

i ) =
∑

i∈{E,C,B,A}

Xbuy
i,n S i,n

(
1 + ϕu

i

)
, ∀n. (11)

An asset inventory constraint appears in Eq. (12) below and tracks the number Xi,n of units

of asset i ∈ {E,C, B, A} held at node n:

Xi,n = 1{n,n0}Xi,n− + Xbuy
i,n − Xsell

i,n , for n ∈ N . (12)

Wealth in the retirement plan, which includes equities, cash and bonds, and excludes pur-

chased deferred annuities, satisfies the following equation:

Wn =
∑

i∈{E,C,B}

Xi,n− S i,n (1 − ϕm
i ), for n ∈ N \ {n0}, (13)

where 0 ≤ ϕm
i < 1 is a percentage investment management fee for asset i ∈ {E,C, B}.

Other constraints appear below and correspond to Eq. (1c) to Eq. (1f):

Xi,n ≥ 0 for i ∈ {E,C, B, A} and n ∈ N , (14a)

Xsell
A,n = 0 for n ∈ N , (14b)

Xi,n = Xbuy
i,n = 0 for n ∈ NT and i ∈ {E,C, B}, (14c)

Xbuy
A,n = Wn/S A,n for n ∈ NT . (14d)

The non-negative wealth condition of Eq. (1g) is not imposed as it is satisfied in Eq. (13) since

asset prices are positive and no short-selling is allowed in Eq. (14a). Wealth is initialized at the

non-random amount w0 specified on the l.h.s. of Eq. (11).

On every node in the scenario tree, the cash balance, asset inventory and other constraints

are set, following Eq. (11) to Eq. (14). Finally, we use an efficient non-linear solver, MOSEK,

to find optimal investment and deferred annuity choices by maximizing the objective function

in Eq. (10) subject to the constraints in Eq. (11) to Eq. (14).

5. Numerical Results

5.1. Numerical example

We investigate a hypothetical case in which a 40-year-old individual (δ = 40) intends to

retire at age 65 (T = 25). His goal is to maximize and secure his retirement benefits in nominal

terms and to set aside a portion of his portfolio as a bequest if he dies before retirement. In his

retirement plan, he can invest in an equity fund, a bond fund (maturity M = 20 years), a cash
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fund (maturity M = 5 years), and in deferred annuities as described in section 2. To price the

deferred annuity, we use a U.K. mortality table based on 2000–2006 experience.3

The individual can rebalance his portfolio and buy deferred annuities every 5 years (∆t = 5)

so there are six stages (five periods) in the scenario tree spanning the 25-year planning horizon.

The individual has an initial wealth of w0 = £80,000 which he credits to his retirement plan.

His annual wage is fixed at £40,000 in nominal terms throughout. He contributes £4,000 p.a.

to his retirement plan (φ = 10%). Because of the incidence of cash flows in our model, the

contribution is in effect £20,000 every five years in advance (φ · Ln = £20, 000 for n ∈ N \NT ).

In the base case, the individual is a male with risk aversion coefficient γ = 3, time preference

ρ = 0, bequest parameter κ = 0. For the bond and equity funds, upfront and selling fees are

ϕu
i = ϕs

i = 0.5% for i ∈ {B, E}, following Geyer et al. (2009) and Konicz et al. (2014). Expense

loadings on annuities are ϕu
A = 3.0%, comparable with Horneff et al. (2010) and Huang et al.

(2017). The cash fund has no fees, ϕu
C = ϕs

C = 0, and management fees for all assets are ignored,

ϕm
i = 0 for i ∈ {B,C, E}. Variations on the base case are also considered below, with female

mortality and with other parameter values.

5.2. Optimal investment and deferred annuity choices

Our numerical results show that the optimal strategy to secure retirement income involves

buying deferred annuities regularly during working lifetime, starting fairly early, and acceler-

ating in the years before retirement. This is illustrated in Figure 2 which shows the secured

retirement income from deferred annuity holdings at various ages, with constant retirement in-

come from annuity payments after retirement for remaining lifetime. The average and various

percentiles are shown in Figure 2.

This result is robust for different investor profiles. Figure 3 shows average optimal asset

allocations including deferred annuities (DA) over 25-year planning horizons for three different

constant relative risk aversion (CRRA) coefficients. Deferred annuities are purchased early

and continually by investors. Unsurprisingly, the more risk-averse the investor, the greater the

holding of deferred annuities, the faster deferred annuity holdings are built up, and the lower

equity and bond holdings are at every age, on average. Regardless of the levels of risk aversion,

the proportion of deferred annuity holding in overall wealth increases on average, as retirement

approaches.

3 Institute and Faculty of Actuaries, S1PML/S1PFL—All pensioners (excluding depen-

dants), male/female lives www.actuaries.org.uk/research-and-resources/documents/
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Figure 2: Percentiles and average of retirement income (×£1,000 p.a.) from deferred annuity holdings at various

ages. Deferred annuities start paying retirement income from retirement age 65. Parameter values as in base case.
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Figure 3: Optimal investment and deferred annuity allocations of overall wealth on average at various ages over the

planning horizon and for different risk aversion (CRRA) coefficients (γ). ‘DAs’ in the legend indicates Deferred

Annuities. Parameter values as in base case except as stated.

Average holdings of bond and equity decline in general. Bonds clearly play a significant role

in the investor’s portfolio. This is because they hedge price changes in future deferred annuities,

i.e. future retirement income. Similar hedging strategies with long-term bonds are found by

Cairns et al. (2006) and Koijen et al. (2011). However, deferred annuity is not available to

the investor in their models, so the hedging demand is stronger and bond holding is greater, as

retirement draws closer. Our case shows that the hedging demand appears to weaken as annuity

holdings increase and retirement draws closer.

s1pml-all-pensioners-excluding-dependants-male-lives(www.actuaries.org.uk).
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The optimal allocation to cash increases initially and then decreases with age, on average.

The cash account can be interpreted as providing liquidity to fund future deferred annuity pur-

chases. The decrease near retirement occurs because of the reduced hedging demand.

In Table 5, average and standard deviation values of the optimal asset allocations over 25-

year planning horizons are presented for different risk aversion γ, bequest motive κ, time im-

patience ρ parameter values, and there are no transaction costs and fees. Comparing panels A

and B (or D and E), we find that deferred annuity holdings decrease, if bequest has greater im-

portance to the investor. Annuitizing wealth means that less wealth is available to heirs if death

occurs before retirement, so this result is sensible. A greater bequest motive increases bond

allocation on average, with only a small increase in equity allocation: the investor postpones

buying deferred annuities as much as possible, as they reduce inheritance if the individual dies

before retirement, and bonds are held to hedge the eventual purchase of annuities at or close to

retirement.

Optimal investment and annuity choices do not appear to be very sensitive to the investor’s

time preference, at least on average, when we compare panels B and C (or E and F) in Table 5.

Time impatience simply enlarges the bequest motive. Nevertheless, in all these cases, deferred

annuities are purchased early and continually.

Table 6 presents the optimal investment and deferred annuity allocations with various contri-

bution rates and male/female mortality rates. Comparing panels A and B (or C and D), changing

contribution rates, i.e. the proportion of income paid regularly into the retirement plan, does not

alter asset allocation significantly, although the number of units of annuities purchased obvi-

ously increases with a higher contribution, resulting in higher secured income in retirement.

However, a female investor holds on average less annuities, more bonds, and about the same in

equities, compared to a male investor who has a higher mortality: compare panels A and C (or

B and D) in Table 6.

5.3. Optimal investment and deferred annuity choices: investigating the dynamic solution

The results described in section 5.2 above concern the average investment and annuitization

choices (with standard deviations also presented), but the optimal strategy is a stochastic and

dynamic one. To investigate these results further, we consider how the strategy works at age 45

under different scenarios. In particular, we observe that the dynamic strategy adjusts to hedge

price changes in deferred annuities in accordance with realized and expected values of state

variables.

In the VAR asset model with Nelson-Siegel term structure model as fitted to UK data in
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Table 5: Optimal investment and deferred annuity allocations (%) on average for different risk aversion, time prefer-

ence and bequest parameters. Parameter values as in base case except as stated, no transaction costs and fees.

A. γ = 3.0, ρ = 0.0, and κ = 0.0 B. γ = 3.0, ρ = 0.0, and κ = 2.0 C. γ = 3.0, ρ = 0.04, and κ = 2.0

age Cash Bond Equity DA Cash Bond Equity DA Cash Bond Equity DA

40 0.0 81.4 18.6 0.0 0.0 81.1 18.9 0.0 0.0 80.9 19.1 0.0

(0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0)

45 9.2 52.0 24.1 14.6 9.3 54.6 24.2 11.9 9.3 56.3 24.2 10.2

(25.8) (37.9) (33.7) (24.7) (25.8) (37.0) (33.7) (19.4) (25.8) (37.0) (33.6) (16.7)

50 16.3 32.1 24.8 26.8 16.7 35.4 25.4 22.5 17.0 37.4 25.8 19.8

(29.8) (30.2) (32.1) (27.1) (30.0) (31.2) (32.3) (22.0) (30.1) (32.2) (32.6) (19.6)

55 10.6 32.1 19.2 38.1 11.8 36.0 19.9 32.3 12.3 37.9 20.3 29.5

(24.1) (33.2) (28.8) (26.8) (25.0) (33.6) (29.4) (21.6) (25.6) (34.2) (29.8) (19.9)

60 5.9 18.3 14.9 60.9 8.2 23.6 16.6 51.6 8.8 24.7 17.0 49.5

(18.4) (29.9) (23.0) (31.9) (19.7) (30.0) (23.7) (25.4) (20.4) (30.6) (24.1) (25.0)

65 0.0 0.0 0.0 100.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0 100.0

(0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0)

D. γ = 5.0, ρ = 0.0, and κ = 0.0 E. γ = 5.0, ρ = 0.0, and κ = 2.0 F. γ = 5.0, ρ = 0.04, and κ = 2.0

age Cash Bond Equity DA Cash Bond Equity DA Cash Bond Equity DA

40 0.0 80.8 13.1 6.1 0.0 83.2 13.4 3.4 0.0 86.6 13.4 0.0

(0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0)

45 10.5 41.9 16.2 31.3 11.3 49.9 16.3 22.6 12.4 53.6 15.9 18.0

(23.7) (34.5) (25.6) (29.4) (24.4) (33.0) (25.4) (20.6) (25.3) (33.6) (24.7) (19.1)

50 14.1 20.5 14.9 50.4 15.6 27.9 16.1 40.4 16.6 30.4 16.3 36.7

(26.3) (17.8) (20.1) (25.7) (27.2) (20.5) (20.8) (18.0) (28.1) (22.1) (20.9) (16.7)

55 6.9 21.6 11.6 59.9 9.0 28.0 12.9 50.1 9.7 29.7 13.2 47.4

(16.4) (25.2) (18.1) (22.4) (18.4) (26.3) (19.4) (16.8) (19.3) (27.1) (20.0) (16.3)

60 3.8 12.2 9.0 75.0 6.8 18.3 10.8 64.1 7.3 19.2 11.0 62.5

(12.2) (20.7) (13.9) (21.9) (14.6) (22.0) (15.3) (16.8) (15.2) (22.7) (15.6) (17.0)

65 0.0 0.0 0.0 100.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0 100.0

(0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0)

The expected values are averaged from 15,552 scenarios with standard deviations appearing in parentheses.
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Table 6: Optimal investment and deferred annuity allocations (%) on average for various contribution rates and

male/female mortality. Parameter values as in base case except as stated, κ = 2.0, no transaction costs and fees.

A. Male, Contribution rate, φ = 0.10 B. Male, Contribution rate, φ = 0.20

age Cash (%) Bond (%) Equity (%) DA (%) SRI Cash (%) Bond (%) Equity (%) DA (%) SRI

40 0.0 81.1 18.9 0.0 0.0 0.0 80.7 19.3 0.0 0.0

(0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0)

45 9.3 54.6 24.2 11.9 7.9 8.2 55.0 25.0 11.8 10.4

(25.8) (37.0) (33.7) (19.4) (14.7) (25.7) (37.7) (35.5) (19.2) (19.6)

50 16.7 35.4 25.4 22.5 15.9 16.3 35.6 26.1 22.0 21.4

(30.0) (31.2) (32.3) (22.0) (19.9) (29.8) (31.5) (33.1) (21.7) (27.0)

55 11.8 36.0 19.9 32.3 23.5 11.7 36.4 20.1 31.7 32.2

(25.0) (33.6) (29.4) (21.6) (20.0) (25.1) (33.8) (29.7) (21.3) (27.4)

60 8.2 23.6 16.6 51.6 40.4 8.3 23.8 16.7 51.2 56.7

(19.7) (30.0) (23.7) (25.4) (25.3) (19.9) (30.2) (23.8) (25.6) (35.4)

65 0.0 0.0 0.0 100.0 83.1 0.0 0.0 0.0 100.0 117.8

(0.0) (0.0) (0.0) (0.0) (30.3) (0.0) (0.0) (0.0) (0.0) (41.4)

C. Female, Contribution rate, φ = 0.10 D. Female, Contribution rate, φ = 0.20

age Cash (%) Bond (%) Equity (%) DA (%) SRI Cash (%) Bond (%) Equity (%) DA (%) SRI

40 0.0 81.1 18.9 0.0 0.0 0.0 80.8 19.2 0.0 0.0

(0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0)

45 9.3 55.2 24.2 11.3 6.7 8.2 55.4 25.0 11.3 8.9

(25.8) (37.3) (33.7) (19.4) (13.4) (25.7) (38.0) (35.5) (19.4) (18.0)

50 16.8 37.1 25.6 20.5 13.0 16.4 37.1 26.2 20.3 17.7

(30.1) (33.3) (32.5) (22.5) (18.6) (29.8) (33.5) (33.2) (22.3) (25.4)

55 12.8 43.0 20.2 24.0 15.7 12.7 43.3 20.5 23.5 21.6

(26.5) (37.1) (29.8) (21.1) (18.2) (26.6) (37.3) (30.1) (20.6) (24.9)

60 10.9 29.1 17.8 42.3 29.2 11.0 29.3 17.9 41.8 41.0

(24.1) (35.2) (25.5) (29.0) (24.0) (24.2) (35.4) (25.6) (29.0) (33.7)

65 0.0 0.0 0.0 100.0 74.3 0.0 0.0 0.0 100.0 105.3

(0.0) (0.0) (0.0) (0.0) (27.7) (0.0) (0.0) (0.0) (0.0) (37.8)

The last columns titled SRI are the expected values of the total secured retirement income (×£1,000 p.a.) at the

given age by purchasing deferred annuities. The expected values are averaged from 15,552 scenarios with standard

deviations appearing in parentheses.

section 3, short-term interest rates β1,t + β2,t at time t are strongly negatively correlated with the

conditional expectations of equity returns Et(Rt+1) as well as with the conditional expectations

of long-term interest rates Et(β1,t+1). In the following, we suppress dependence on t in the

notation as it is implicit.

Table 7 shows how the dynamic strategy works with the predictable and time-varying in-

vestment opportunities from ages 40 to 45. We can compare the investment positions at age 40,

labelled as case (a) in Table 7, with the positions at age 45, under different scenarios labelled as

cases (b)–( f ) in the table. At age 40 (the root node of the scenario tree), the optimal allocations
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Table 7: Optimal investment and deferred annuity choices at ages 40 and 45 under different scenarios. Parameter

values as in base case except as stated, κ = 2.0, no transaction costs and fees.

Age Node Parameters Net purchases of unitsa (prices in brackets)

β1 + β2 E(R) E(β1) Cash Bond Equity DAb

40 (a) root node 0.0355 0.2428 0.0559 0.0000 81.3532 18.6468 0.0000

(1,000.00) (1,000.00) (1,000.00) (2,332.90)

45 (b) the highest β1 + β2 0.0761 0.0595 0.0502 0.0000 -81.3490 -18.6460 84.0117

(1,268.90) (631.99) (570.82) (976.71)

(b′) the lowest β1 + β2 0.0109 0.4436 0.0601 0.0000 -45.9758 35.4381 11.2023

(1,268.90) (1,354.52) (1,456.23) (2,737.74)

(c) the highest bond price 0.0124 0.3596 0.0593 0.0000 -81.3528 135.1827 0.0000

(1,268.90) (2,171.58) (1,454.81) (7,088.03)

(c′) the lowest bond price 0.0761 0.0595 0.0502 0.0000 -81.3490 -18.6460 84.0117

(1,268.90) (631.99) (570.82) (976.71)

(d) the highest equity price 0.0191 0.3948 0.0585 0.0000 -63.0181 -18.6463 85.8842

(1,268.90) (957.31) (2,780.05) (1,538.87)

(d′) the lowest equity price 0.0761 0.0595 0.0502 0.0000 -81.3490 -18.6460 84.0117

(1,268.90) (631.99) (570.82) (976.71)

(e) the highest DA price 0.0124 0.3596 0.0593 0.0000 -81.3528 135.1827 0.0000

(1,268.90) (2,171.58) (1,454.81) (7,088.03)

(e′) the lowest DA price 0.0761 0.0595 0.0502 0.0000 -81.3490 -18.6460 84.0117

(1,268.90) (631.99) (570.82) (976.71)

( f ) the highest cash hold 0.0621 0.0317 0.0513 119.7519 -81.3518 -18.6467 0.0000

(1,268.90) (1,253.71) (1,606.81) (3,458.22)

aUnits in funds, or units of deferred annuities (DA). A negative number means that there is a net sale.
b DA = deferred annuity. One unit of DA is equivalent to £1,000 p.a. of secured retirement income.

are about 0.00%, 81.35%, 18.65%, and 0.00% in cash, bond, equity, and deferred annuity re-

spectively. The prices of the bond and equity fund units are £1,000, but the price of the deferred

annuity is £2,332.90 for £1,000 p.a. retirement income.

Case (b) in Table 7 refers to the scenario where the short-term rate (β1 + β2) at age 45

is the highest. Since a high short-term rate (7.61%) correlates with a low expected long-term

rate (5.02%), deferred annuities are expected to become more expensive in the future, so a

large amount of annuities are purchased. Indeed, case (b) coincides with case (e′), i.e. deferred

annuities are at their cheapest, hence it is worth buying them to secure income in retirement.

The large bond holding at age 40 in case (a) can therefore be sold to buy the annuities. A high

short-term rate also correlates with a low expected equity return (5.95%), so equities should be

sold as they are relatively unattractive. This is indeed what case (b) in Table 7 shows: almost
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all the bond and equity funds are sold and the proceeds, together with the contribution to the

retirement plan, are used to buy deferred annuities.

On the other hand, case (b′) in Table 7 refers to the scenario where the short-term rate

at age 45 is the lowest (1.09%). This coincides with a high expectation of return on equities

(44.36%), so it is optimal for the investor to buy equities, funded by a sale of bonds as well

as by the contribution inflow to the retirement plan. Long-term rates are expected to be high

(6.01%), so deferred annuities are expected to be cheap, and less deferred annuities are bought

compared to case (b).

Cases (c) and (e) in Table 7 represent identical scenarios where both the long-term bond

and the deferred annuity are at their most expensive. The short-term rate, however, is very low

(1.24%) coinciding with a fairly high expected equity return (35.96%). The optimal strategy

is therefore to sell the bond holdings held at age 40 (since bond prices are peaking), to buy no

deferred annuity (since it is expensive, about three times higher than at age 40), and instead to

buy large amounts of equities.

Finally, case ( f ) in Table 7 refers to the scenario where it is optimal to hold the most

cash. The short-term rate (6.21%) in this case is relatively high and expected return on equities

(3.17%) relatively low while the current equity, bond and annuity prices have risen compared to

the situation at age 40 in case (a). The optimal strategy therefore calls for selling virtually all

equity and bond holdings, in order to enjoy a relatively high risk-free return on cash.

The dynamic optimal investment and annuitization behaviour can therefore be explained

by the current level of short-term interest rates, the realized gains of assets, and the change in

deferred annuity price. This exploits the predictability in asset returns in our model. This also

shows that the dynamic optimal strategy from the multi-stage stochastic programming model is

responsive to market changes.

6. Further Numerical Results

6.1. Availability of deferred annuities

In this section, we consider the situation where deferred annuities are unavailable to the

investor, but an immediate annuity remains available at retirement at which point the investor

has to annuitize all wealth. This means an additional constraint, XA,t = 0 for t ∈ [0,T ), in

the general statement of the optimization problem in section 2.1. Equivalently, in the multi-

stage stochastic programming version of section 4.2, we impose the constraint that XA,n = 0

for n ∈ N \ NT . To compare the situation with and without deferred annuities, we use the
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Table 8: Distributional statistics and certainty equivalent values of secured retirement income (×£1,000 p.a.) when

deferred annuities are available/unavailable and for different values of risk aversion (CRRA) coefficient γ. Parameter

values as in base case except as stated, no transaction costs and fees.

γ Annuitization Mean StDev Mean/StDev 5th Pctl. 95th Pctl. CEc

1 (Log) Deferred + Immediatea 89.1498 42.2555 2.1098 44.3841 164.0076 81.7216

Immediate onlyb 88.7975 44.1526 2.0112 42.7610 168.5922 80.7718

3 Deferred + Immediatea 82.8841 29.7284 2.7880 53.4512 137.5443 72.7528

Immediate onlyb 83.4228 33.6379 2.4800 49.0865 146.6900 70.5130

5 Deferred + Immediatea 77.3079 21.5061 3.5947 56.2560 117.9621 68.5068

Immediate onlyb 77.4188 25.1553 3.0776 50.6060 125.2448 64.6650

a Deferred annuities are available before retirement, and an immediate annuity is available at retirement.
b Deferred annuities are not available, but an immediate annuity remains available at retirement.
c Certainty equivalent values of secured retirement income from annuities.

numerical example in section 5.1 and we compute various statistics for retirement income under

all the scenarios in the scenario tree after optimization. This is repeated for three different risk

aversion coefficients.

The results are tabulated in Table 8. The individual investor in our model receives a higher

average retirement income per unit risk (standard deviation), when deferred annuities are avail-

able compared to when they are not, for all three levels of risk aversion: see the fifth column of

Table 8. The last column of Table 8 also shows the certainty equivalents of retirement income.4

In all three cases, the certainty equivalent is higher when deferred annuities are available com-

pared to when they are not.

In fact, our model shows that, for a weakly risk-averse investor (γ = 1), making deferred

annuities available increases the certainty equivalent retirement income by £949.80 per year for

the remaining lifetime of the investor. This amount rises to £3,841.80 for a strongly risk-averse

investor (γ = 5).5 The analysis here shows that the availability of deferred annuities raises the

mean-variance efficiency of retirement income and increases welfare for the investor.

4 The certainty equivalent is calculated by evaluating u−1 (
E

[
u
(
T, XA,T

)])
.

5From the rows for γ = 1 in Table 8 and the column for certainty equivalent (CE), £949.80 = (81.7216 −

80.7718) × £1, 000. Likewise, for γ = 5, £3, 841.80 = (68.5068 − 64.6650) × £1, 000.
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Figure 4: Performance comparison between 12 different investment strategies labelled A to L. Strategy A, labelled

“Stochastic/DA”, is our stochastic optimal strategy with deferred annuities (DA). It produces the highest certainty

equivalent of retirement income. Strategy B, labelled “Stochastic/IA”, is the stochastic optimal strategy without

deferred annuities but with an immediate annuity (IA) at retirement. The other strategies are described in section 6.2.

Parameter values as in base case except γ = 5.0, no transaction costs and fees.

6.2. Stochastic vs. deterministic investment strategies

It is also helpful to compare our stochastic optimal strategy with traditional deterministic

strategies used in practice. For the numerical example in section 5.1, we evaluate two per-

formance metrics: the expected retirement income per unit risk (which is the mean retirement

income from annuities at retirement divided by the standard deviation of retirement income),

and the certainty equivalent of retirement income. This is done for twelve different strategies,

and the results are displayed in Figure 4.

The twelve strategies labelled on Figure 4 are as follows: (A) our stochastic optimal strat-

egy with deferred annuities (DA) available including an immediate annuity (IA) at retirement,

(B) our stochastic optimal strategy without DAs but including an IA at retirement, (C) cash only,

(D) bond only, (E) 70/30 bond/equity, (F) 50/50 bond/equity, (G) 30/70 bond/equity, (H) equity

only, (I) glide path starting from 80/20 equity/bond with equity decreasing and bond increasing

by 6% every 5 years, (J) glide path starting from 80/20 equity/cash with equity decreasing and

cash increasing by 6% every 5 years, (K) (100 − age)% in equity and the rest in bond, (L) (100

− age)% in equity and the rest in cash. The equity allocations in the glide-path strategies match

those suggested by Vanguard (Daga et al., 2016).

Figure 4 shows that our stochastic optimal strategy (A) with deferred annuities produces the
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highest certainty equivalent of retirement income, which is about 40% higher than the best deter-

ministic strategy (E) (70/30 bond/equity). Strategy (A) also produces the third highest expected

retirement income per unit risk, after strategies (D) (bond only) and (E) (70/30 bond/equity).

Strategy (H) (equity only) has the worst performance among the twelve strategies, under both

performance metrics.

7. Conclusion

We construct an optimal investment model with deferred annuities for an individual investor

who is saving for retirement. Our results show that buying deferred annuities is an optimal

strategy when the objective is to maximize the expected utility of retirement income (as well

as bequest), and retirement income is secured by annuitization. Deferred annuity purchase

starts fairly early and is made continuously over the working lifetime of the investor, increasing

particularly in the years before retirement.

Optimal investment (in equity, cash and bond funds) and optimal deferred annuity choices

depend on realised and expected values of state variables, i.e. equity returns and interest rates.

We show the links between the time-varying investment opportunities and the optimal invest-

ment strategies by investigating representative scenarios. Our results are consistent with pre-

vious studies, but also provide support for deferred annuities as a major source of retirement

income.

Changes in the optimal portfolio for different preferences (risk aversion, time preference and

bequest motive) as well as for different mortality rates, were considered. We also discussed the

increased welfare effect of making deferred annuities available to investors in their retirement

plan. Our strategy was shown to be superior to typical deterministic strategies, such as glide

paths and 100−age strategies, in terms of certainty equivalent of retirement income.

The optimization problem is solved numerically using multi-stage stochastic programming.

We use a powerful nonlinear solver to optimize power utility with linear constraints on a scenario

tree with a close fit to stock and bond markets data, and we optimize over scenarios that preclude

arbitrage by validating scenarios using two different sets of arbitrage-checking methods.

Our model has limitations. We have not taken account of inflation which affects consumer

prices, asset prices, and wages. Uncertainties on labour income, labour supply, and political

risk are also ignored. Various types of annuity products, such as inflation-protected and other

index-linked annuities, are not considered. Other types of insurance products, like life insurance

and health insurance covering long-term care and critical illnesses, are also disregarded. They
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can affect the optimal retirement planning. The results that we have here are influenced by the

discretization of state and time in the scenario tree. In practice, individuals will rebalance their

portfolio regularly. Practical features such as taxes are also ignored. These limitations will be

carefully investigated in future studies.
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Appendix A. Moments of Cumulative Returns and Nelson-Siegel Parameters

Recall from section 4.1 that N is the set of all nodes in the scenario tree, and Nt is the set

of nodes at time t. The set of children nodes of node n ∈ N \ NT is denoted by {n+}. The time

interval between node n and its children nodes {n+} is ∆t. At each node n ∈ Nt, Rn is the equity

log-return over a ∆t-long time interval ending at time t (Eq. (2)); rn is the equity log-return

over a month ending at time t (Eq. (7)); and β1,n, β2,n, β3,n are the Nelson-Siegel term structure

parameters at time t (Eq. (6)).

We derive the moments of the conditional distributions of the five state variables (Rn+ , rn+ ,

β1,n+ , β2,n+ , β3,n+) on its unique parent node n. Let H be the number of monthly time steps of

our vector autoregressive (VAR) model in Eq. (7) which matches the time interval ∆t between

the parent node and its children nodes in the scenario tree.

Eq. (A.1) and Eq. (A.2) below show the first two conditional moments of the accumulated

equity log-return and Nelson-Siegel parameters. Barberis (2000) and Pedersen et al. (2013)

apply these equations to scenario generation for their asset-liability management model. Let

ζn+ = [Rn+ , β1,n+ , β2,n+ , β3,n+]′ and zn = [rn, β1,n, β2,n, β3,n]′, then we have the following equa-

tions:

E(ζn+ | zn) =


H−1∑

h=1

(I + J (H − h)) Φ1
h−1

 + Φ1
H−1

 Φ0 +

Φ1
H +

H−1∑
h=1

JΦ1
h

 zn (A.1)

V(ζn+ | zn) = Σz + (J + Φ1) Σz (J + Φ1)′ +
(
J + JΦ1 + Φ1

2
)
Σz

(
J + JΦ1 + Φ1

2
)′

+ · · · +

Φ1
H−1 +

H−1∑
h=1

JΦ1
h−1

 Σz

Φ1
H−1 +

H−1∑
h=1

JΦ1
h−1


′

, (A.2)

where J = diag([1, 0, 0, 0]). Note that Φ0, Φ1 and Σz are the coefficients and covariance matrices

from the VAR model (Eq. (7)). If J = 0 (a 4 × 4 matrix of zeros), then Eq. (A.1) and Eq. (A.2)

simplify to E(zn+ | zn) and V(zn+ | zn) respectively. In addition, we can evaluate the covariance

σR,r between Rn+ and rn+ :

σR,r = J(1)ΣzJ(1)′ + Φ
(1)
1 Σz

(
J(1) + Φ

(1)
1

)′
+

(
Φ

(1)
1 Φ1

)
Σz

(
J(1) + Φ

(1)
1 + Φ

(1)
1 Φ1

)′
+ · · ·

+
(
Φ

(1)
1 Φ1

H−2
)
Σz

J(1) +

H∑
h=2

Φ
(1)
1 Φ1

H−h


′

, (A.3)

where Φ
(1)
1 is the first row of Φ1 and J(1) is the first row of J.

Aggregating the moments information from Eq. (A.1) to Eq. (A.3), the conditional expecta-

tions and covariances of the five state variables (Rn+ , rn+ , β1,n+ , β2,n+ , β3,n+) on its unique parent

node n can be evaluated. These are used, as described in section 4.1, to generate the scenario

tree.
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Appendix B. Comparing Distributions from VAR Model and Scenario Tree

Figure B.5: Cumulative Density Functions (solid) from VAR model and Cumulative Mass Functions (dot-dash)

generated from the scenario tree for state variables Rt, rt (equity return) and β1,t, β2,t, β3,t (term structure) at different

times during the retirement planning period.
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