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Abstract. Wrist fractures (e.g. Colles’ fracture) are the most common
injuries in the upper extremity treated in Emergency Departments. Treat-
ment for most patients is an intervention called Manipulation under
Anaesthesia (MUA). Surgical treatment would be needed for complex
fractures or if the wrist stability is not restored. In addition, an unsuc-
cessful treatment via MUA may also require subsequent surgical opera-
tion causing inefficiency in constrained medical resources and patients’
inconvenience. Previous geometric measurements in X-ray images [21]
were found to provide statistical differences between healthy controls
and patients with fractures, as well as pre- and post-intervention images.
The most discriminating measurements were associated with the texture
analysis of the radial bone. This work presents further analysis of these
measurements and applying them as features to identify an appropriate
machine learning model for Colles’ fracture treatment diagnosis. Random
forest was evaluated to be the best model based on classification accu-
racy among the selected models commonly used in similar research. The
non-linearity of the measurement features has attributed to the superior
performance of an ensembled tree-based model. It is also interesting that
the most important features (i.e. texture and swelling) required in the
optimised random forest model are consistent with previous findings [21].
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1 Introduction

Colles’ fracture is one of the most common fractures of the radial bone leading to
posterior displacement of distal fragments at the wrist [8]. The fracture generally
causes acute pain and swelling. It may even lead to residual impairment in hand
and wrist motion if left untreated [13, 23].
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Current evaluation of fracture severity and stability is primarily based on
radiographs before and, when needed, after intervention [13]. A typical radio-
graphic study will include analysis from multiple views (i.e. posteroanterior and
lateral views) of the fractured wrist. Oblique views might also be needed to
better define the fracture location.

The type of treatment generally depends on fracture displacement, angu-
lation and shortening [13]. Fracture treatment has evolved over the past two
decades improving stability and anatomical functionality. The advancement has
also reduced the risk of complications such as neuropathies, arthrosis, tendon
ruptures and finger stiffness during the rehabilitation following a distal radius
fracture [9, 23]. Minor fractures (such as extra-articular, stable and minimally
displacement with no comminution) are generally treated at the Emergency De-
partment using closed reduction and immobilization technique (e.g. manipula-
tion under anaesthesia (MUA) [2, 16]. An unsuccessful treatment of MUA would
however require subsequent surgical operation (e.g. open reduction and internal
fixation (ORIF)).

Despite considerable research on the appropriate intervention according to
fracture characteristics [1–3, 11, 15], the choice of treatment remains highly sub-
jective to the X-ray interpretation by the radiologist and/or surgeon, and largely
depends upon the available clinical information on a case-by-case basis.

This work aims to develop a classification model based on a dataset of X-ray
images taken in an Emergency Department to detect fractured wrist cases from
the healthy controls. Within the fractured cases, it will further aim to determine
the success of closed reduction treatment (i.e. MUA). Effect of feature groups
are also evaluated to verify the findings from previous study [21] and utilise these
findings for more precise diagnostics models in the future.

2 Materials and Methods

2.1 Patient Dataset

A data collection of 161 independent cases of wrist fracture was used in this
work. The data was sourced ethically from the Royal Devon and Exeter Hospital
with Caldicott Guardian approval. Prior informed consent was obtained from
each participant. The data was subsequently anonymised according to the ethics
policy of the donating institution.

Each case included basic anonymised patient information (e.g. age and gen-
der), as well as, human-annotated measurements from X-ray radiographs in
posterior-anterior (PA) views. The selection of these measurements has been
documented in [21]. There were 139 cases diagnosed with wrist fracture of vary-
ing severity and 22 cases of healthy controls. Among the cases of fracture, it
was also retrospectively classified into sub-groups of pre-successful (n=50), pre-
unsuccessful (n=31), post-successful (n=40) and post-unsuccessful (n=18) based
on patient electronic records. Pre- and post- refer to before and after the inter-
vention. Successful refers to those cases for which the intervention (MUA) was
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successful and no further treatment was required, and unsuccessful for those
cases where surgery was recommended, but not yet performed.

2.2 Acquisition of X-ray Radiographs

The X-ray images were obtained with the following systems across a range of
exposure factors:

1. DigitalDiagnost DidiEleva01 (Philips Medical Systems, Netherlands)
2. Mobile tablet work station (Thales, France)
3. DirectView CR 975 (Kodak, USA)
4. DirectView CD850A (Kodak, USA)
5. Definium 5000 (GE Healthcare, USA)

The raw images were stored in DICOM format [4]. Some representative cases
of these images are shown in Fig. 1. These images are expected to represent the
variation in image quality, positioning of wrist and presence of noisy input (e.g.
collimation lines and text legends).

Fig. 1. Six representative X-ray images were collected from previous clinical activity at
Royal Devon and Exeter NHS Foundation Trust Emergency Department. These images
present the variability in the quality, positioning of the arm and presence of noisy input
(e.g. collimation lines and text legends). The images were anonymised while metadata
such as age, date of acquisition, gender and clinical outcome were retained.

2.3 Image Pre-processing and Model Feature Generation

Three landmark points were firstly located manually - (1) base of the lunate, (2)
extreme of the radial styloid and (3) centre of the metacarpal of the middle finger.
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Fig. 2. Automatic pre-processing of the radiographs and location of landmarks. The
six representative cases shown in Fig. 1 were automatically rotated so that the forearm
is vertical, the artefacts due to the collimator were removed and landmarks for lunate,
radial styloid and metacarpal were manually located.

The X-ray images were pre-processed automatically using Matlab based on the
identified landmarks. A detailed description of the pre-processing procedure can
be referred to [21]. This procedure is summarised below.

Each image was firstly aligned vertically along the forearm. The lines of col-
limation were also removed. Fig. 2 shows some of the pre-processed images. The
following three indicator groups of measurements were extracted from the pro-
cessed images to determine the appropriate treatment procedures. An illustration
of geometric measurements from [21] is presented in Fig. 3.

1. Indication of Swelling: Widths along the forearm as an indication of
swelling.

2. Indication of Osteoporosis: Width of finger and ratio of trabecular area
to the total area of interest measured at the middle finger [6, 24, 14].

3. Texture Indication at Radial Bone: Texture measurement from a se-
lected region of radial bone using Local Binary Pattern (LBPs) [19]. Grayscale
intensity profile across landmarks #2 and #3 to indicate the changes in tex-
ture in the radial bone.

This forms a feature set of 36 variables for model construction including age,
gender and 34 image-based measurements in the three indicator groups. Table
1 presents the exact features used in this study.

2.4 Predictive Classification Models

Three different classification models were used for the selection of the best pre-
dictive model - Logistic Regression (LR), Decision Tree (DT) and Random Forest
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Fig. 3. Illustration of preliminary characterisation of radiographs with geometric mea-
surements. (a) Original radiograph with landmarks. (b) Pre-processing. (c) Boundaries
and traces of forearm. (d) Cortical bone region of interest (ROI). (e) Segmentation of
cortical and trabecular bone regions. (f) Intensity profile of the average intensity pro-
jection of the bone with the following markers: edges of the bone (magenta diamond),
limit of cortical bone (blue square) and centre of bone (red circle). (g) Texture ROI
on the radius. (h) Zoom into the texture ROI. (i) Ten texture coefficients generated by
Local Binary Pattern analysis. (j) Two profile lines from the radial styloid: at 30 (red)
and at 45 (blue) degrees from the line (green) between the lunate the radial styloid
landmarks. (k) Intensity profiles corresponding to the lines traced in (j). (l) Intensity
profiles adjusted by removing the slope. [21]

(RF). These models have been widely used in classification for medical use cases
[5, 7, 10, 18] and have found varying success in prediction.

Logistic Regression is a linear model for classification based on the probabil-
ities describing the possibility of outcomes (i.e. classes) of a single sample using
a logistic function [5, 20]. In a multi-class scenario, the class with the highest
probability denotes the predicted class [22]. Decision Trees are non-parametric
classification models by learning simple decision rules from features to predict
class value [20]. Random Forest is an ensemble classifier by fitting a pre-defined
number of decision trees and finding the most probable class from the average
of the leaf nodes of the decision trees [17, 20].

Given that the number of samples (n=161) in the dataset is limited, oversam-
pling has been applied in this study to mimic sampling from the population by
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Table 1: Grouping of Features for Treatment classification by Indicator Type. Details
of measurements for each individual feature can be found in [21].

data replication using sampling with replacement. The resulting sample dataset
had a size of 10000 samples where further increase in sample sizing did not ap-
pear to yield significant model improvement. The distribution of the 5 classes in
the oversampled dataset remained consistent. This was based on the assumption
that the dataset of X-ray images was representative of the distribution of batch
analysed images within a typical Emergency Department and has a natural bias
towards fractured cases.

This work was written in Python and used the Scikit-Learn package for model
construction and evaluation. Each model was trained and evaluated in a 10-fold
cross-validation. Default values for model hyperparameters can be assumed un-
less otherwise stated in the model evaluation. The average classification accuracy
of each model was used for performance comparison. All models were set to the
same random state to ensure comparability.

3 Analysis and Evaluation

3.1 Exploratory Data Analysis

The cross-correlation between the given features was first investigated. A heatmap
(Fig. 4) was generated to determine the degree of correlation. It can be observed
that there is a strong correlation between features within indicator groups (e.g.
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Fig. 4. Heatmap showing clusters of cross-correlations among variables in the Fracture
dataset. Blue indicates a negative correlation and red indicates a positive correlation.
The colour intensity of each cell shows the strength of the correlation.

wrist width ratios as swelling indicators, local binary profiles and grayscale in-
tensity profiles on the texture of the radial bones).

Interestingly, LBP9 has a distinctive negative correlation with other texture
related features. Given the bin value range for LBP9 (approx. 204 to 229 in
binary format), it may indicate the contrasting presence of edges (e.g. hairline
cracks) and smooth surface (e.g. blocks of whiteness of a cast).

In addition, the low cross-correlation across different indicator groups sug-
gests that these groups were relatively independent. This was useful to assess
the significance of the indicator groups on classification performance that will
be discussed later in this work.

To understand the univariate correlation for the classification task, distribu-
tion plots of all the features (except LBP3 & LBP5) are presented in Fig. 5.
LBP3 and LBP5 were omitted due to the predominant values of zeros (0) across
the cases causing a distribution calculation error. It can be observed that some
features (e.g. Width of Finger) showed no significant difference across classes
while others (e.g. Local Binary Pattern) showed different distribution between
pre-treatment and post-treatment conditions. Age and Radial Bone Landmark
Distance (dist 2) also showed differences between healthy wrist and fractured
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wrist. No feature showed a significant difference in distribution between success-
ful and unsuccessful treatments. These findings were consistent with the findings
published in [21].

Fig. 5. Univariate distribution by treatment classes to identify prominent features for
classification.

3.2 Model Evaluation

Based on the initial exploratory data analysis, univariate correlation for classifi-
cation had been poor. This had implication to the model performance accuracy
used in this work. Fig. 6 shows the summary results of the 3 models over 10-fold
cross-validation. The poor univariate correlations and linear separability could
be attributing to the poor performance for the logistic regression model (Ave.
Acc.: 71.0% & weighted F1-Score: 0.69).

The accuracy of a decision tree showed significant improvement (Ave. Acc.:
86.7% & weighted F1 Score: 0.87). The tree branches allowed better classification
through non-linear separation. A maximum tree depth of 6 (i.e. square root of the
total number of features) was used as recommended in [12] to avoid overfitting.
Fig. 7 presents a sample distribution plot of a leaf node in a decision tree where
post-treatment samples were separated entirely, and a threshold can be seen for
separating the healthy cases from the fractured pre-treatment samples.

To further boost the accuracy of the model, a random forest of 4 decision trees
was selected with the same tree hyper-parameters as the decision tree model to
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Fig. 6. Classification Performance for Logistic Regression (LR), Decision Tree (DT)
and Random Forest (RF) models over 10-fold cross-validation based on classification
accuracy of prediction.

Fig. 7. Distribution of radial bone landmark distance (dist 1) within a leaf node (Local
Binary Pattern 4 > 0.09 & Local Binary Pattern 8 > 0.16 & Ratio of Wrist Line 2
over Wrist Line 4 <= 1.04).

demonstrate a significant improvement in classification accuracy of more than
3% to an accuracy of 90.0% (weighted F1 Score: 0.94). Increasing the number of
trees will potentially improve the accuracy further with added model complexity.
This is not necessary for the illustration in this study. The aggregation of weak
classifications from each tree enhanced the probability of the most expected
class.

The impact of different indicator groups on classification accuracy was also
investigated. Fig. 8 presents the accuracy of the same configured random forest
model trained using different subsets of features. It can be clearly observed that
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Fig. 8. Comparison of Random Forest Models based on different category groups.
(a) All Features (RF All), (b) All Swelling Features (RF Swelling), (c) Local Binary
Patterns Only (RF LBP Only), (d) All Texture Features (RF Texture), (e) All Swelling
& Texture Features (RF Swelling & Texture).

swelling indicators (RF Swelling) and local binary patterns alone (RF LBP Only)
predicted poorly against the base model with 36 features (i.e. RF All) due to
missing information. When all texture features at the radial bone were used
(RF Texture), it achieved similar accuracy as the base model. Despite the tex-
ture features captured most of the information needed for the classification task,
this resulted in a significant variation in accuracy during cross-validation sub-
jecting to the random choice of features selected for each tree in the random
forest model.

In the final model (RF Swelling & Texture), other indicator groups (e.g.
swelling) were used to provide supplemental information with an aim to boost
accuracy. The better performance against the base model indicated that relevant
supplementary features could enhance performance despite its weak predictabil-
ity on its own. It however also implied that the patient’s age, gender and indica-
tion of osteoporosis were not the attributing features for this classification task
and instead hampered the random selection of the most important features used
by the random forest model (i.e. lower accuracy observed in the base model.)

4 Conclusion

This work has presented the complexity and multivariate nonlinearity for treat-
ment procedure classification. Random Forest model was shown as the model



A machine learning approach for Colles’ fracture treatment diagnosis 11

of choice for this nonlinear tasks where weak classifications from decision trees
were ensembled with an average classification accuracy of 90.0%.

Based on the analysis of the input data and model outcome, this work has also
found similar feature importance as [21] where texture indicators at the radial
bones were crucial to the classification of the input images. Local Binary Profile,
together with the intensity changes across landmark points, essentially provided
information on the presence of edges (i.e. signs of fracture). Other features, e.g.
swelling, would aid prediction but did not classify well on its own.

From these findings, it is expected that a convolution neural network (CNN)
models for classification will yield similar, if not better, performance given the
mechanism of feature extraction across a CNN architecture. This will form the
basis for investigation in future work.
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