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Abstract

When a company experiences credit-rating downgrades, its equity inevitably drops by a
sizable amount as well as the prices of the derivative contracts written on the company’s
equity and debt react accordingly. Stemming from the works of Merton (1974), Geske (1977)
and Geske (1979), a new structural model of default is introduced. As the reference firm
is assumed to have issued n bonds maturating at different future dates, the firm’s equity is
modelled as an n-fold compound option written on the firm’s assets and struck at the face
values of the bonds outstanding. This framework is used across the chapters of the thesis,
each constituting a different and original piece of research.

The first paper, ‘The Impact of Credit Risk on Equity Options’ analyses the effect of
credit risk on equity options. In order to conduct the analysis, a measure of impact of credit
risk option contracts is introduced. Consistently with the theory and economic intuition,
the option contracts which are mostly affected by changes in the underlying default risk
are put options. I further document that their pricing is consistent with the probability of
default embedded in the credit default swaps written on the same reference entity. It is also
shown that the implied volatilities estimated á la Black-Scholes tend to average out the effect
of credit risk over the moneyness space, leading to potential biases when applied for risk
management purposes.

The second paper, ‘Credit Spreads, Leverage and Volatility: A Cointegration Approach’
documents the existence of a cointegration relationship between credit spreads, leverage and
equity volatility for a large set of US companies. It is shown that accounting for the long-run
equilibrium dynamic is essential to correctly explain credit spread changes. Once credit these
variables are correctly modelled, the fit of the regressions sensibly increases if compared to
the results of previous research.

The third paper, ‘The Option-implied Asset Volatility Surface’ provides a simple way
to estimate the option-implied asset volatility surface. To describe the properties of the
surfaces, principal component analysis is conducted both across the moneyness and the
time-to-maturity dimension, as well as on the overall surface. Finally, the joint evolution of
the smirk and the slope of the surface is modelled as a Vector Autoregressive model with
exogenous variables. Both slope and smirk appear to be jointly autocorrelated.
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Chapter 1

The Impact of Credit Risk on Equity
Options

Abstract

The aim of this work is to understand and measure to what extent equity options price
credit risk. In addressing this question and, subsequently, to what extent the credit default
swap and equity option markets are integrated, the literature has focused on reduced-form
models (Carr and Linetsky 2006, Carr and Wu 2010, Carr et al. 2010). Here, instead, a novel
structural model is used, thus allowing to investigate and model the connection between the
firm’s fundamentals and the pricing of these derivative contracts. The proposed model stems
from Geske (1977, 1979) in which equity is priced as a compound call option written on the
firm’s asset. Then, the model allows to decompose the price of equity options in order to
construct a measure of impact of credit risk on the the contract. In terms of relative impact
across different options, empirical test confirm the economic intuition of put options being
sensitive to changes in the default risk in the underlying company. Contrarily, call options
do not appear to price credit risk. Furthermore, the same measure is shown to have some
predictive power in forecasting future changes of the negative skew of long-term maturity
options. Finally, it is shown that the implied volatilities estimated á la Black-Scholes tend to
average out the effect of credit risk over the moneyness space, leading to potential biases
when applied for risk management purposes.

JEL classification: C63, G12, G13, G32, G33
MSC classification: 91G20, 91G40, 91G50
Keywords: Defaultable options, credit risk, leverage effect, volatility skew, market

integration
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The Impact of Credit Risk on Equity Options

1.1 Introduction

Markets for both stock options and credit derivatives have experienced a significant growth in
the last decades. Along with the rapid growth, academics have started investigating a possible
link between stock option implied volatilities and credit default swaps (CDS) spreads: when
a company experiences credit-rating downgrades, its equity inevitably drops by a sizable
amount and, therefore, the prices of the options written on the company’s equity react as
well. As a result, the possibility of default induces negative skewness in the probability
distribution of stock returns. This negative skewness is manifested in the relative pricing of
stock options across different strikes: when the Black and Scholes (1973) implied volatility
is plotted against moneyness at fixed maturities, the slope of the graph is positively related to
the risk-neutral skewness of the stock return distribution. This phenomenon is commonly
referred in the literature as the leverage effect.

The aim of this work is to exploit this overlapping information on the market risk and the
credit risk of a company to provide better identification of the dynamics of the stock return
variance and default events, and how these impact equity option prices. Ultimately, this
allows to measure the impact of credit risk on each equity option contract and shed light on
the mechanism leading to future movements of the option skew due to credit-related events.

The first works to point out a possible effect of leverage and credit risk on equity
option are Black (1976) and Christie (1982). They both argue that the possibility by the
company of defaulting on its obligations can induce negative skewness in the company’s
return distribution. This manifests when the implied volatility is plotted against a measure
of moneyness and exhibits a decreasing pattern for increasing strike prices (the so-called
negative volatility skew) rather than a flat line. The skew is often observed in the region
where the implied volatility is estimated using out-of-the-money put options, being the latter
intrinsically affected the most by credit risk. More recent empirical works, such as Collin-
Dufresne et al. (2001), Elton et al. (2001), Cremers, Driessen and Meanhout (2008), Cremers,
Driessen, Meanhout and Weinbaum (2008), and Cao et al. (2010), show that CDS and bond
spreads are positively correlated with both stock option implied volatility levels and the skew
of the implied volatility plotted against moneyness. Also, Campbell and Taksler (2003), and
Ericsson et al. (2009) document a link between bond spreads and equity historical volatility.
At the aggregate level, similar results hold for sovereign CDS spreads (Carr and Wu 2007),
and credit default swap index (CDX) spreads and synthetic collateralised debt obligations
(CDOs) on the same index (Collin-Dufresne et al. 2012).
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1.1 Introduction

The relative pricing of equity and debt related derivatives instruments has been mainly ex-
plored using reduced-form models of default in the literature. Carr and Linetsky (2006), Carr
et al. (2010) and Carr and Wu (2010) develop joint frameworks of valuation for credit-
sensitive derivatives contracts and equity options. Their estimations highlight the interaction
between market risk (return variance) and credit risk (default arrival) in pricing stock options
and credit default swaps. They also point out the need of developing future models that
integrate both markets, rather than having separate valuation models. This work tries to
bridge this gap providing a unique structural valuation framework where both the price of
CDSs and options written on the same reference entity are driven by a unique state variable,
namely the firm’s asset value, which ultimately determines the default event properties.

On the other side of the spectrum, the use of structural model for jointly modelling
credit and equity derivative contracts has not been exhaustively explored. With the exception
of Toft and Prucyk (1997), which built on the Leland (1994) model to document the effect of
leverage on the pricing of options, and Hull et al. (2004), which develop a new calibration
methodology based on options to implement the Merton (1974) model, there have not been
significant attempts to develop structural models of default able to transmit the company’s
credit risk to the pricing of equity options. In this work instead, the firm is allowed to issue
multiple bonds with different maturities, thus removing the restriction on perpetual debt (as
in Leland 1994) or a unique zero-coupon bond (as in Merton 1974). The work of Geske
et al. (2016) moves towards this direction whilst investigating capital structure effects on the
pricing of equity options. However, their work does not measure the extent to which leverage
and credit risk impact the pricing of options which is assessed in this paper. Also, they focus
on call options only, which intuitively should be affected by credit risk the least, whilst here
both call and put options are taken into consideration.

Regarding the selection of data to infer default probabilities, CDS spreads are used rather
than bond prices. This is motivated by the fact that CDS spreads constitute a more direct
and clean signal for the underlying default risk. In fact, CDS spreads provide relatively
pure pricing of the default event of the underlying entity as they are typically traded on
standardised terms: unlike bonds, CDSs have a constant maturity, the underlying instrument
is always par valued, they concentrate liquidity in one instrument, and are not affected by
different taxation regimes. Moreover, many corporate bonds are bought by investors who
simply hold them to maturity, and the secondary market liquidity is therefore often poor1.
CDS contracts instead allow investors to implement trading strategies to hedge credit risk

1Shorting bonds is even more difficult in the cash market as the repo market for corporate bond is often
illiquid, and the tenor of the agreement is usually very short.
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The Impact of Credit Risk on Equity Options

over a longer period of time at a known cost. In addition, as shown by Blanco et al. (2005),
CDS spreads tend to respond more quickly than bond spreads to changes in credit conditions
in the short run.

This work also connects with the findings in Carr and Wu (2011, 2017). More specif-
ically, Carr and Wu (2011) show that under suitable assumptions the price of equity put
options struck deepest out-of-the-money (DOOM) is entirely driven by the default possibility
of the reference entity. Also, they show that the contract values of credit-sensitive instruments
and put options share similar magnitudes and show strong co-movements. On the other
hand, Carr and Wu (2017) is a crucial piece of research in interpreting and assessing the
extent to which results on the volatility skew obtained herein could be driven by factors other
than the leverage effect. In their article, the authors identify three different channels able
to generate the negative volatility skew documented in equity options. They show that the
option skew can be driven, as expected, by increasing leverage but also by volatility feedback
and self-exciting market disruptions. They also find that, contrary to conventional wisdom,
financial leverage does not always decline with increased business risk: financial leverage can
be positively correlated with business risk when the increase in risk is due to small, diffusive
market movements. The model I propose is able to explain this apparently counterintuitive
finding.

In terms of the modelling of equity options, the theory employed is based on Merton
(1974), Geske (1977), and Geske (1979) where the equity is considered as a contingent claim
on the firm’s value. Here, as the reference firm has issued more than one bond, equity turns
into a n-fold compound option (where n is the number of bond outstanding). To the best of
my knowledge, this is the first work that uses the theory of n-fold compound options for
pricing vanilla equity options. Based on the model prediction and using a novel calibration
technique, a measure of impact of credit risk is introduced. The effect of credit-related event
is further investigated in the relative pricing of call and put option, and it is shown as put
options reflect the credit risk implied by the credit spread. The ability of this new measure
to forecast future movement in the option skew is then tested. Finally, the model allows to
show how the estimation of the implied volatility á la Black-Scholes tend to average out the
effect of credit risk over the moneyness space, leading to potential biases when applied for
risk management purposes.

The rest of the paper is structured as follows: Section 1.2 introduces the value of the
equity as a n-fold compound option and extend the pricing to equity options; Section 1.3
gives a description of the data and the calibration methodology; in Section 1.4 the Average
Information Content Ration (AICR) measure of credit risk is introduced, and the different
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1.2 Firm’s Claims as Compound Options

impact of credit risk on calls and puts is investigated. Some robustness test are also conducted,
allowing to also investigate the integration of the CDS and option markets. Finally, Section 1.5
concludes.

1.2 Firm’s Claims as Compound Options

The given structural model of default allows to price equity, debt and options written on
equity and is inspired by Merton (1974) and Geske (1977). It extends the Merton model as it
allows the firm to have issued a sequence of bonds, with different face values and maturities.
It also borrows the intuition of Geske (1977) to construct and modify the definition of the
default events. In Geske (1977), default can occur at every coupon-payment date given one
bond outstanding. In this work instead there are several bonds (due at different point in time)
which the firm can default on.

Thereafter, the pricing of equity is addressed first, and eventually the same mechanism is
extended to the pricing of equity options.

1.2.1 Equity as a n – fold Compound Option on Asset Value

Consider a firm which has issued n bonds and equity, both receiving payments in the form
of coupons and dividends. According to the indenture of the bonds: (1) the firm promises
to repay each bond, with face value Fi, to the bondholders at known times ti ∈ (t0, tn],
i ∈ I := {1, . . . ,n}; (2) in case of default, the bondholders immediately take over the company
and the shareholders receive nothing; (3) the firm cannot issue any senior or equivalent
rank claims on the firm nor do share repurchases before tn. Usual assumptions in terms of
transaction cost, taxes, bid/ask spreads, short-selling and indivisibility of assets apply.

For convenience of notation, set t0 := 0 and denote the generic payoff at time ti as Xti :=Xi.
Let V , S and D represent the firm’s assets, equity and debt respectively. According to the
structural approach and the Modigliani-Miller theorem, both equity and debt are function of
the firm’s assets and not vice versa (Merton 1977). Also, I fix a filtered probability space
(Ω,F ,F,P) and assume no-arbitrage conditions in the economy. Under certain technical
conditions, there exist a risk-neutral probability measure Q, equivalent to P, such that the
gain process associated with any admissible trading strategy deflated by the risk-free rate is a
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The Impact of Credit Risk on Equity Options

martingale2. Furthermore, the following notation for the (risk-free) discount factor

DF(ti, t j) =
Bi

B j
= exp

(
−
∫ t j

ti
rs ds

)
,

is used, being Bt = exp
(∫ t

0 rs ds
)

the value of the money-market account at time t and rt a
(possibly stochastic) positive function of time.

Similarly to Geske (1977), the firm refinances each bond payment with equity. In this
setting, bankruptcy occurs when the firm fails to make the reimbursement payment because
it is unable to issue new equity. Black and Cox (1976) have argued that the firm will find no
takers for its stock whenever the value of the equity, if the payment is made, is less than the
value of the payment due. If all the firm debt is finally repaid, the firm is liquidated and the
shareholders receive any remaining value as lump-sum liquidating dividend.

More specifically, if at time ti the value of equity prior to making the payment is larger
than payment due, the bond is paid off and the firm is kept alive; otherwise bondholders
declare bankruptcy. In the case the bond is repaid, the same mechanism occurs at the next
payment date, ti+1, and so on until the last payment date, tn. This mechanism can also be
interpreted as the the firm defaulting on its debt because is unable to issue new equity (Geske
1977).

Hence, the default time is defined as

τ := inf
i∈I

{ti : S⋆i (V )< Fi} (1.1)

where S⋆i (V ) is the continuation value of equity3. The eventuality that shareholders may have
an incentive to raise new equity to keep receiving dividends in the future, thus postponing
default, is not possible within this model. First, as shown in Section 1.2.2, the effect of
dividends and coupons cannot be disentangled from the firm’s overall payout4. Second, larger

2Without further assumptions, the market is incomplete as both the firm’s equity and debt are contingent
claims on the firm’s asset which is a non-tradable asset (therefore, the replicating portfolio cannot be constructed).
In order to implement the model, as described in Section 1.3, a calibration on the equity and options is in fact
required (options are not redundant assets). However, as shown in Ericsson and Reneby (2002), if the interest
rate market is complete and the firm’s equity is traded, completeness can be achieved (thus leading to a unique
measure Q). In fact, considering a Black and Scholes (1973) economy, as the value of equity options can be
replicated by trading the stock and a riskless bond, the converse il also true: the payoff of the stock can be
replicated by trading the option and the bond. Similarly, as in the structural approach of default equity is an
option on the firm value, the payoff of the latter can be replicated by trading the firm’s equity and the risk-free
bond.

3That is the value of equity before paying the bond. E.g. if the continuation value of the equity S⋆ is 20 and
the face value of debt is 30, then equity is worthless (S = 0).

4This is a clear limitation of the model.
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1.2 Firm’s Claims as Compound Options

payouts tend to reduce the value of the equity as shown in the same Section. Finally, the
dilution effect driven by the issuance on new equity have the effect of reducing the dividend
per shares and therefore this incentive.

As equity is a function of the firm value, default times can be re-expressed as events in
the asset value space: for each value of equity which triggers default corresponds only one
value of the firm assets, namely V̄i at time ti, which implies (1.1), that is

τ = inf
i∈I

{ti : Vi < V̄i} .

The default barrier (V̄i)i∈I can be interpreted as a latent sequence of thresholds embedded
into the firm’s capital structure and riskiness. Operationally, the default thresholds are found
recursively starting from the default threshold in tn which coincides with Fn as in the Merton
model. The other values of the barrier are calculated as the solution of an integral equation,
where the dimension of the integrals increases alongside with the number of bond outstanding
(i.e., given n bond outstanding, n−1 integral equation must be solved, being the last integral
to be solved an (n−1)-dimensional integral). For further details on the estimation of the
default barrier, see Appendix E.

Within this framework, both the present and the continuation value of the equity can be
calculated as the risk-neutral expectation of their terminal payoffs. At any time ti ∈ [0, tn],
the terminal payoff of the the firm’s equity can be expressed as

Sn(V ) =Vn1τ>tn −
n

∑
k=i+1

Fk

DF (tk, tn)
1τ>tk . (1.2)

The interpretation of the payoff function is straightforward: equity holders receive the asset
value in tn (if the firm has been able to repay all its outstanding debt), net of all the future
reimbursements (if the firm has survived at each default point).

The continuation value of the equity is given by the present value of the expected payoff
of the equity before having checked for the potential default occurring at ti, that is

S⋆i (V ) = EQ
i [DF (ti, tn)Sn(V )] , (1.3)

where the expectation is taken under the risk-neutral measure. As a consequence, the value
of the equity is given by

Si(V ) = max{S⋆i (V )−Fi,0} . (1.4)
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The Impact of Credit Risk on Equity Options

Fig. 1.1 Continuation value (dashed and dotted line) and value (solid line) of the equity. Checking whether the
continuation value of the equity S⋆ is greater than the face value of the bond F is equivalent to finding the value
of the assets V greater than the default threshold V̄ .

See Figure 1.1 for a visual representation of the continuation and actual value of the equity.
Under (1.1), (1.3) can be further expressed in terms of events in equity space and, ultimately,
in the asset value space. Therefore

S⋆i (V ) = EQ
i

(
DF (ti, tn)Vn1⋂n

h=i+1

{
S⋆h(V )≥Fh

})−
n

∑
k=i+1

FkEQ
i

(
DF (ti, tk)1⋂k

h=i+1

{
S⋆h(V )≥Fh

})
= EQ

i

(
DF (ti, tn)Vn1⋂n

h=i+1{Vh≥V̄h}

)
−

n

∑
k=i+1

FkEQ
i

(
DF (ti, tk)1⋂k

h=i+1{Vh≥V̄h}

)
.

(1.5)

Notice that (1.5) is the most general expression for the continuation value of the equity.
So far, no distributional assumptions have been made on the process driving the asset value
nor on the form of the discount factor. The asset value process could be a Lévy process, as
well as a process with continuous paths and stochastic volatility; similarly, the discount factor
could be assumed stochastic. However, Frey and Sommer (1998) showed that compound
option problems such as in Geske (1977), Geske (1979) and Geman et al. (1995) can neither
be solved in a semi-closed form under stochastic interest rates nor stochastic volatility.
Consequently, in order to preserve analytical tractability, a positive constant continuously
compounded risk-free rate r is assumed throughout. Also, a geometric Brownian motion is
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1.2 Firm’s Claims as Compound Options

considered for the asset value process, that is

dVt = (r−ϖ)Vt dt +σVVt dWQ
t , (1.6)

where ϖ is the continuously compounded payout rate, σV the instantaneous volatility of the
assets, and WQ

t a Q-standard Brownian motion. The asset value is modelled as a geometric
Brownian motion as it allows to obtain semi-closed formulas for the compound option
problem.

Defining the events Vi,k :=
⋂k

h=i+1 {Vh ≥ V̄h}, the ti-continuation value of the equity can
be written as

S⋆i (V ) = e−r(tn−ti)EQ
i
(
Vn1Vi,n

)
−

n

∑
k=i+1

e−r(tk−ti)FkEQ
i

(
1Vi,k

)
, (1.7)

and for ti = t0, it follows

S0(V ) = e−rtnEQ (Vn1Vn)−
n

∑
k=1

e−rtkFkQ(Vk) , (1.8)

where Vk ≡ V0,k, for k ∈ I. Notice that the t0-continuation value of the equity and the
contemporaneous value of the equity coincide as no debt is due in t0 (i.e. F0 = 0). In order to
derive an analytical solution, a change of measure as in Geman et al. (1995) is performed,
such that M∼Q, with

dM
dQ

∣∣∣∣
Ft

=
Vteϖt

V0Bt
= exp

(
σVWQ

t −
σ2

V
2

t
)
.

The measure M is referred as the firm-value fund measure thereafter. Setting t = tn, it follows

S0(V ) = e−ϖtnV0M(Vn)−
n

∑
k=1

e−rtkFkQ(Vk) .

In order to compute the probabilities under M and Q, the result in Theorem 1 in Ap-
pendix C is needed. Notice that the proposed change of measure is not strictly necessary
to derive the value of the equity; it is only used as a useful mean to solve the model more
easily5. Using those results, the two probabilities can expressed as the following multivariate
Gaussian integrals

5Alternatively, the first expectation in (1.8) can be expressed in terms of truncated log-normal integrals
using Theorem 2 in Appendix C.
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Fig. 1.2 The Figures show how clustering the whole firm debt at different maturities affect the value of equity (as
a function of the asset value, as in Panel (a), and as a function of the asset volatility, as in Panel (b). Spreading
the same debt level over longer maturities lowers the value of the equity given the greater uncertainty on the
firm being able to repay the bonds at farther dates away in the future.

S0(V ) = e−ϖtnV0Φn
(
dM;ΓΓΓn

)
−

n

∑
k=1

e−rtkFkΦk
(
dQ

k ;ΓΓΓk
)

(1.9)

where dM :=
(
dM

i
)

1≤i≤n and dQ
k =

(
dM

i −σV
√

ti
)

1≤i≤k with

dM
i =

ln(V0/V̄i)+
(
r−ϖ +σ2

V/2
)

ti
σV

√
ti

, ΓΓΓk =



1
√

t1
t2

√
t1
t3

. . .
√

t1
tk

1
√

t2
t3

. . .
√

t2
tk

. . . . . . . . . . . . . . .

1
√

tk−1
tk

1


.

Notice that, if n = 1 and ϖ = 0, the model coincides with the Merton’s model.

1.2.2 Dividends, coupon payments and payouts

The proposed way of modelling the asset value process is quite common in the literature
on structural models of default (Toft and Prucyk 1997, Cremers, Driessen and Meanhout
2008, Collin-Dufresne et al. 2012 among others).

By model assumptions, a larger payout rate can be interpreted either as larger dividend
payments or larger coupons (or both)6. As previously discussed, default cannot happen
because on these payments, including coupons. Indeed, in the compound option model the

6Additional information on how this quantity is estimated is provided in Appendix B.
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1.2 Firm’s Claims as Compound Options

firm has already committed to pay-out at rate ϖ ex ante. This, together with the finite horizon
assumption in the model, implies that different payout policies impact in the valuation of the
firm securities.

However, the effect of payouts on default is indirectly induced by the drift in (1.6): given
two firms which have identical capital structure (and riskiness) but differ in their payout ratio,
the firm with larger ϖ would be more likely to default because of a smaller (and possibly
negative) drift. Nonetheless, the separate effect of dividends and coupons on ϖ cannot be
disentangled here. This is clearly one of the limitations of this model.

In order to understand the effect of ϖ on S, it is crucial to highlight that the risk-neutral
pricing equity in (1.9) relies on the existence of a trading strategy in which equity, can be
perfectly replicated using the firm’s assets and a riskless bond7. The replication arguments
are similar to those in (standard) option pricing with the key difference however that options
do not pay dividends but equity does.

For simplicity consider equation (1.9) with n = 1. The equity is replicated via a portfolio
of e−ϖt1Φ(dM) units of V and borrowing e−rt1F1Φ(dQ). As the assets pay-out at rate ϖ ,
these cashflow are used to buy more units of V . This ensures that the pay-off at maturity of
the replicating portfolio is as that one of equity, that is max{V1 −F1,0}. The same rational
applies to the term V0e−ϖtnΦn(dM) in (1.9) with n ≥ 1.

To investigate further the the effect of payouts on the value of equity, the latter is plotted
in Figure 1.3 (ϖ = 0.05) and 1.4 (ϖ = 0). Comparing the two, it is clear that the payout
rate does not influence the shape of the surfaces but does affect their level. Larger payouts,
whether originating from dividends or coupon payments, have the effect of reducing the
equity prices. This fact can be explained as follows.

Let us first assume that larger ϖ of the firm in Figure 1.3 is due to either the firm having
larger debt (thus having to meet larger interest expenses) or lower creditworthiness (thus
calling for larger credit spreads). As the payment of the firm’s debt is financed via issuing new
equity, having a larger payout implies either more debt to refinance or a lower risk-neutral
drift in (1.6) (and hence in (1.10)). Either way, this implies larger issuances of new equity
with the inevitable dilution effect which is incorporated in its price today.

Here instead let us assume that a larger ϖ is observed because the firm pays more div-
idends. Building on the Modigliani-Miller proposition on the irrelevance of the dividend
policy (Miller and Modigliani 1961), firms that pay more dividends offer less price apprecia-
tion but must provide the same total return to stockholders, given their risk characteristics
and the cash flows from their investment decisions. Although the value of equity in a firm

7About the ability to trade the asset value see Footnote 2
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(a)
F1 = 1 F2 = 5 F3 = 10
t1 = 1 t2 = 5 t3 = 10

(b)
F1 = 1 F2 = 5 F3 = 10
t1 = 1 t2 = 10 t3 = 30

(c)
F1 = 5 F2 = 10 F3 = 50
t1 = 1 t2 = 5 t3 = 10

(d)
F1 = 5 F2 = 10 F3 = 50
t1 = 1 t2 = 10 t3 = 30

Fig. 1.3 Equity (S) as a function of the firm value (V ) and asset volatility (σV ) for different sets of parameters
(r = 0.03, ϖ = 0.05). Fi denotes the face value of debt due at time ti, for i = {1,2,3}. Panels (a) to (d): impact
of different levels of leverage and debt maturities on value of the equity (for a given σV , i.e. the riskiness of the
firm). Safer firms (lower debt, shorter maturities: Panel (a)) are least affected by changes in σV . Progressively
riskier firms (lower debt, longer maturities: Panel (b); larger debt, shorted maturities: Panel (c); larger debt,
longer maturities: Panel (d)) display significant differences in the value of equity for different levels of riskiness.
Firms in Panel (d) are the most sensitive to changes in σV .
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(a)
F1 = 1 F2 = 5 F3 = 10
t1 = 1 t2 = 5 t3 = 10

(b)
F1 = 1 F2 = 5 F3 = 10
t1 = 1 t2 = 10 t3 = 30

(c)
F1 = 5 F2 = 10 F3 = 50
t1 = 1 t2 = 5 t3 = 10

(d)
F1 = 5 F2 = 10 F3 = 50
t1 = 1 t2 = 10 t3 = 30

Fig. 1.4 Equity (S) as a function of the firm value (V ) and asset volatility (σV ) for different sets of parameters
(r = 0.03, ϖ = 0). Fi denotes the face value of debt due at time ti, for i = {1,2,3}. Similar shapes compared
to the surfaces in Figure 1.3 are obtained when dividends and coupons are excluded; the levels are however
sensibly different: as expected, larger payout rates induce lower risk-neutral drifts in (1.6) and hence lower
equity values.
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should not change as its dividend policy changes, this does not imply that the price per share
will be unaffected, since larger dividends should result in lower stock prices and more shares
outstanding (and the subsequent dilution effect).

Nonetheless, one limitation of the model is its inability to identify whether a share price
reduction is to be attributed to larger dividends or larger coupons.

Finally, the pricing equation (1.9) allow also to determine the market value of the firm’s
debt which is given by D0(V ) = e−ϖtnV0 − S0(V ). This quantity represents the total debt
of the firm. Semiclosed-form solutions for the market value of each bond outstanding with
face value Fi and maturity ti, say D0,i(V ) with ∑i∈I D0,i(V ) = D0(V ), can also be obtained
(see Chen 2013).

The relationship
e−ϖtnV0 = S0(V )+D0(V )

can also be expressed as
V0 = S0(V )+D0(V )+X0(V )

with X0(V ) =V0(1− e−ϖtn). The quantity X0(V ) can be interpreted as the cash-flow already
promised to the firm’s stakeholders which are kept in a separate item of the firm’s balance
sheet such as committed funds (which are not tradable). As a matter of fact, the compound
option model is a structural model of default with commitment and known liquidation horizon:
being the firm’s payouts deterministic, the amount X0(V ) accounts for the amount, as of
today, that will be paid to the firm’s stakeholders. As the firm approaches to the liquidation
time tn, X declines.

1.2.3 Other properties of a compound option model of default

Figure 1.3 shows also how the value of the equity changes for different sets of parameters,
when equity is a compound option: the model is the 3–fold compound option which is
also used throughout the empirical investigation. The motivations for selecting n = 3 are
discussed in the next subsection.

Remarkably, equity is an increasing function of the asset volatility (as expected, being a
compound call option). Firms with relatively lower debt and shorter maturities are the least
affected by changes in the riskiness of the firms (see Panel(a)). Progressively riskier firms
(lower debt, longer maturities: Panel (b); larger debt, shorted maturities: Panel (c); larger
debt, longer maturities: Panel (d)) display significant differences in the value of equity for
different levels of riskiness. Also, the effect of progressively larger asset volatility on equity
is magnified for highly-levered firms with larger fraction of long-term debt (Panel (d)).
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Fig. 1.5 F1 = F2 = F3 = 10; t1 = 1, t2 = 5, t3 = 10, r = 0.03, ϖ = 0.05. When leverage is fixed (Panels (a), (c),
(e)) the firm’s riskiness is set to σV = 0.2; when the firm’s riskiness is fixed (Panels (b), (d), (f)), the value
of the asset is set to V = 100. Panel (a) shows that both equity and debt are increasing functions of V , with
equity being convex whilst debt being concave. Panel (b) shows both equity and debt as functions of the firm’s
riskiness, with equity being an increasing and convex function, whilst debt being decreasing and concave. Panel
(c) displays the volatility of equity and debt as function of leverage, showing σD far less sensitive to leverage
than σS, with the latter also always larger. Panel (d) analyses the same volatilities with respect to the asset
volatility: both are increasing in the volatility of the assets, despite being σV more affected. Panel (e) shows how
leverage decreases as the value of the assets increases and panel (f) shows that leverage tend to decrease with
larger level of asset volatility as the the numerator of D/S tends to decrease while the denominator increases.
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The Impact of Credit Risk on Equity Options

To investigate further the model dynamics and predictions,
Furthermore, Figure 1.2 shows how the value of the equity is affected by the maturity

of the firm’s debt. Given the same total face value of the bonds outstanding, firms whose
debt is concentrated at the first payment date are the ones whose equity is valued the most.
This result is intuitive and is due to the fact that companies whose debt is spread further
into the future are more exposed to uncertainty (i.e. they have more chances of defaulting).
Therefore, the today-price of the equity incorporates this future risk.

To conclude, the stochastic properties of the process driving the value of the equity are
discussed. By the virtue of Itô’s Lemma, the value of the equity does not follow a geometric
Brownian motion but instead a process that I refer as Stochastic Elasticity of Variance (SEV).
As a matter of fact, it can be shown that

dSt = α
Q
S (Vt , t)St dt +σV Sβ (Vt ,t)

t dWQ
t , (1.10)

with

α
Q
S (Vt , t) :=

1
St

(
∂S
∂ t

+
∂S
∂V

(r−ϖ)Vt +
1
2

∂ 2S
∂V 2 σ

2
VV 2

t

)
and β (Vt , t) := 1+

lnElV (St)

lnSt

where ElV (St) := ∂S
St
/∂V

Vt
is the elasticity of the firm’s equity with respect to the asset value.

This model closely resembles the Cox (1996) Constant Elasticity of Variance (CEV) in
which the parameter β is assumed constant. Here, the volatility of equity is stochastic and
given by

σS,t = σV ∆
(n)
S

Vt

St
, (1.11)

where ∆
(n)
S is the sensitivity of the equity with respect to changes of the asset value (as equity

is an option, it is the ‘Delta’ of the equity). Analytical expressions of ∆
(n)
S – which depends on

the number of bond outstanding n – are available in Appendix F. It is worth highlighting that
the process does not only have stochastic volatility, but it is also a model of local volatility in
the sense of Dupire (1994) as it depends on the current level of the equity. Therefore, the
model driving equity returns is a local-stochastic volatility model (for further details on this
class of models, see Henry-Labordère 2009).

To some extent the process in (1.10) produces similar trajectories to the reduced-form
default-extended CEV process in Carr and Linetsky (2006). The main difference between the
two approaches is that their process is only able to statistically reproduce the patterns caused
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Fig. 1.6 Sensitivity of equity with respect to asset volatility under the Merton (panel (a)) and a compound
option model (panel (b)) (r = 0.03, ϖ = 0.05). In panel (a): F1 = 50, t1 = 1; in panel (b): F1 = F2 = F3 = 50/3;
t1 = 1, t2 = 5, t3 = 10. Panel (a) shows how ν

(1)
S reacts to changes in the riskiness of the firm: it is optima for

equity holders to increase leverage, as this makes equity more sensitive to further changes in volatility. Panel
(b) shows how ν

(3)
S reacts to increasing business risk: pushing leverage is optimal as long as the sensitivity of

equity starts decreasing. The sensitivity of a highly-levered (dashed) company falls between the sensitivities of
the medium-levered (dotted) and low-levered (dotted-dashed) companies for plausible value of σV ∈ (0,0.3)
p.a..

by the leverage effect, while here the statistical properties of the SEV are directly attributable
to the firm’s capital structure.

1.2.4 Why a 3–fold compound option?

On a different note, a compound option default model is also able to explain some of
the ‘puzzling’ findings in Carr and Wu (2017). The authors document that, contrary to
conventional wisdom, financial leverage does not always decline with increased business
risk. Instead, financial leverage can increase if the risk increase is due to small, diffusive
market movements. Also Cremers, Driessen, Meanhout and Weinbaum (2008) document
a negative correlation between market volatilities and credit spread (and, therefore, default
probabilities) performing panel regressions. Given some suitable and reasonable assumptions,
these findings can be reconciled with the predictions of my model, and are discussed below.

If the volatility of the company increases, every structural model à la Merton would
predict that the value of its equity increases too as displayed in Figure 1.5 (b). Also, in
line with common sense, Figure 1.5 (a), (c) and (e) shows that the firm equity and debt are
increasing in the asset value (but they display opposite concavity), and that the volatility of
equity and debt both tend to decline as the firm becomes safer due to a larger asset value.
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The same applies for the debt to equity ratio. On the other hand, panels (d) and (f) can help
shedding some light on the counter-intuitive findings in Carr and Wu (2017).

In a model in which the capital structure is insensitive to changes in the business risk
(as in Merton 1974, Geske 1977 and here), the company’s financial leverage drops with
increasing business risk (panel (f)). Instead, in a more sophisticated compound option model
in which the firm can react to changes in its business risk and adjust its capital structure
accordingly, as the riskiness of the firm increases, it would be optimal to take on more debt
given the rise in equity so that the leverage ratio remains constant. Also, it would be more
beneficial for equityholders to take in a larger fraction of debt than the percentage increase
of the value of equity, being debt less volatile than equity (panel (d)). Thus, the findings
in Carr and Wu (2017) of increasing leverage for increasing diffusive volatility can be easily
reconciled with a model in which shareholders maximise the firm value, based on a targeted
leverage ratio, and where equity is seen as a compound option.

Finally, to illustrate why a 3–fold compound option model is used, the sensitivity of the
equity with respect to asset volatility, ν

(n)
S (i.e. the ‘Vega’ of the equity), can be looked at.

Analytical expressions for ν
(n)
S are available in Appendix G. Figure 1.6 shows how equity

reacts to volatility changes over different capital structures and aggregation schemes. Panel
(a) shows the sensitivity of the equity under the Merton model (where the whole firm’s
debt is clustered at unique date in the future). Panel (b) shows how the same sensitivity
displays a different behavour by having allowed for a more realistic aggregation scheme of
the company’s capital structure: short, medium and long-term debt.

Comparing the two panels, it is evident that the effect of leverage is exacerbated in a
compound option model: the equity of moderately-levered firms changes more severely in
panel (b). For reasonable combinations of asset volatility and leverage, there is an incentive
by the shareholders to increase the leverage. Considering plausible values of the asset
volatility (say between 5% and 40% p.a.), panel (b) in Figure 1.6 shows that equityholders
of the ‘dashed company’ would be better off increasing leverage to become the ‘dotted
company’. However, increasing leverage further, that is turning into the ‘dotted-dashed
company’, would reflect into a reduction on the sensitivity of the equity. On the other hand,
the Merton’s model is not able to reproduce this pattern: it is always optimal for shareholders
to increase leverage further.

This findings should not considered in contrast with the literature on optimal capital
structure and the trade-off theory. As this model does neither account for taxes nor for
bankruptcy costs, the implications in terms of optimal capital structures above described
relates to the sensitivity of the equity with respect to the firm riskiness (intended as volatility
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of its cashflow) not to the value of the equity itself. Being equity a compound call option, its
value is increasing with σV .

However, for a given leverage ratio, a maximum is observed in ν
(3)
S : if equity holders are

able to change the riskiness of the firm σV , then a 3–fold option model is able to determine the
optimal riskiness which maximises the Vega of the equity. In addition, if equityholders can
modify the composition of the capital structure (which is not taken into account thereafter),
it is arguable that there exist a leverage ratio for which ν

(3)
S

(D
S

)
is maximised regardless

of value of σV (though still considering reasonable values, say between 5% and 40% p.a.).
Nonetheless, optimal capital structure is not investigated in the following sections and left
for future research8.

1.2.5 Call and Put Equity Options as a (n+ 1) – fold Compound Op-
tions on Asset Value

Intuitively, as equity is an n–fold compound option, vanilla options are (n+1)–fold com-
pound options on the firm’s assets. Consider an European option with maturity T ∈ (ti, ti+1),
with 0 ≤ ti < ti+1 ≤ tn, and strike price K written on the firm’s equity. If the company is
allowed to default at any ti, the generic terminal payoff of the option is

PT,ξ = ξ
(
ST (V )1{τ>T}−K

)
1{ξ ST (V )≥ξ K} (1.12)

where ξ is a binary variable taking values +1 (respectively −1) in the case in which the
option is a call (respectively a put), 1{ξ ST (V )≥ξ K} determines the condition for the option to
expire in-the-money, and 1{τ>T} ≡ 1{τ>ti} is the condition to ensure that the firm has not
defaulted before the maturity of the option. Notice that the possibility for the company to
default after the maturity of the option is already accounted in the value of ST (V ). In case
the company defaults before the option maturity (that is the first indicator function is zero)
the firm’s equity drops to zero9.

8It may be the case that this concavity is induced by “hidden” bankruptcy costs in the model: if the firm
defaults, bondholders receive less than their claim, namely S⋆i instead of Fi (and equitholders receive nothing).

9To be precise, the option’s payoff consistent with the compound option model of equity should be

PT,ξ = ξ
(
ST (V )1{τ>T}+S⋆i 1{τ≤T}−K

)
1{ξ ST (V )≥ξ K},

where S⋆i is the value of the equity for which the firm defaulted at ti (which is the payment date before the
maturity of the option). As S⋆i depends on the model’s assumptions and needs to be estimated, it is more
likely that market participants trading option assume zero value for the equity at default (also for precautionary
reasons), and is therefore ignored. Also, for the vast majority of the options in the sample, the option’s maturity
is before the maturity of the first debt (that is T < t1), thus implying (1.12) to be the exact payoff function.
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Under risk-neutral valuation, the present value of the option is given by

P0,ξ = e−rTEQ (PT,ξ
)
.

In the same fashion as Section 1.2.1, the event of the option expiring in-the-money, {ξ ST (V )

≥ ξ K}, can be redefined as the event {ξVT ≥ ξV̄K}, where V̄K is nothing but the value of the
assets corresponding to the equity value that makes the option expire in-the-money. Letting
V ξ

T := {ξVT ≥ ξV̄K} and rearranging, the value of the option can be written as

P0,ξ = ξ e−rT
[
EQ
(

ST (V )1
Vi∩V

ξ

T

)
−KQ

(
V ξ

T

)]
,

where, using (1.7), the value of the equity at the maturity of the option is given by

ST (V ) = e−r(tn−T )EQ
T
(
Vn1Vi,n

)
−

n

∑
k=i+1

e−r(tk−T )FkEQ
T

(
1Vi,k

)
.

Being 1
Vi∩V

ξ

T
FT -measurable, and applying the law of iterated expectations, it follows

P0,ξ = ξ

[
e−rtnEQ

(
Vn1Vn∩V

ξ

T

)
−

n

∑
k=i+1

e−rtkFkQ
(
Vk ∩V ξ

T

)
− erT KQ

(
V ξ

T

)]
.

Operating the same change of measure of Section 1.2.1, the price of the option can be
expressed as

P0,ξ = ξ

[
e−ϖtnV0M

(
Vn ∩V ξ

T

)
−

n

∑
k=i+1

e−rtkFkQ
(
Vk ∩V ξ

T

)
− e−rT KQ

(
V ξ

T

)]
.

Furthermore, the probabilities under M and Q can be computed using the result in Theorem 1
in Appendix C, and the price can be expressed in terms of multivariate Gaussian integral as

P0,ξ = ξ

[
e−ϖtnV0Φn+1

(
dM

ξ
;ΓΓΓn+1,ξ

)
−

n

∑
k=i+1

e−rtkFkΦk+1
(
dQ

ξ ,k+1;ΓΓΓk+1,ξ
)

−e−rT KΦ
(
ξ dQ

T
)] (1.13)
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with dM
ξ
=
((

dM
i
)k

i=1 ,ξ dM
T ,
(
dM

i
)n

i=k+1

)
, dQ

ξ ,k+1 =
(

dM
ξ ,i −σV

√
ti
)

1≤i≤k+1
, where dM/Q

i are
defined as in Section 1.2.1 and

dM
T =

ln(V0/V̄K)+
(
r−ϖ +σ2

V/2
)

T

σV
√

T
, ΓΓΓk+1,ξ =



1
√

t1
t2

. . . ξ

√
t1
T . . .

√
t1
tk

1 . . . ξ

√
t2
T . . .

√
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tk
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1
√

tk−1
tk

1


,

and dQ
T = dM

T −σV
√

T . For ϖ = 0, n = 1 and t1 > T , the pricing formula coincides with that
in Geske (1979). The probabilities which appear in (1.8) and (1.13) are used in Section 1.4
in order to construct a novel measure of impact of credit risk based on option prices.

1.3 Data and Estimation Methodology

The dataset under investigation is composed by US companies, constituents of the S&P100
during the period January 2013 – December 2017. Companies with either preferred equity
or subject to merges or acquisitions are excluded. Also, only companies for which both
CDS spreads and option quotes available are included. The final sample is formed by 66
companies. Previous studies investigating the relative pricing of options and CDSs rely on
much smaller samples (see for instance Hull et al. 2004, Carr and Wu 2010, and Carr and Wu
2017). Table B.1 displays the complete name list, alongside the SIC code of the companies.

In the same spirit of Carr and Wu (2017), the sample is further divided into four categories
based on the industry/type or business: (a) Financial companies; (b) Mining, Energy and
Utilities companies; (c) Manufacturing; (d) Retail, Wholesale and Services. See Figure 1.7
for the relative frequencies of the different industries/sectors. A sub-sample analysis based
on these groups is carried out in Section 1.4.2.

Data on stock prices, number of shares outstanding, dividends and the risk-free yield
curve are obtained from Bloomberg. Option quotes are collected from Optionmetrics. CDS
spreads are from Thompson Reuters Datastream. Information relative to the firms’ capital
structures and cost of debt is gathered from Compustat and the 10-K documents. It is worth
mentioning that, with the exception of Vassalou and Xing (2004), Forte and Lovreta (2012)
and Ericsson et al. (2015), none of the contributions on structural models of default use
calibrations on stock prices, as they mostly rely on bond quotes or option-implied volatilities
(which are usually model-dependent).
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Fig. 1.7 Industry/sector composition of the whole sample: (a) Financial companies (15%); (b) Mining, Energy
and Utilities companies (12%); (c) Manufacturing (42%); (d) Retail, Wholesales and Services (30%).

Option quotes, CDS spreads and equity prices are observed at daily frequency. The data
from Compustat on the firms’ debt is available only at quarterly frequency though. Therefore,
it is assumed that the capital structure remains fixed within quarters, having only adjusted
the time to maturity of the firm’s debt due to the passage of time. It appears a reasonable
assumption given the empirical evidence on how often US firms decide to rebalance their
capital structures (see Strebulaev and Whited 2012).

Given the large amount of option data, only the most liquid OTM call and put options
traded every Wednesdays with time-to-maturity greater than six months are taken into
consideration. To determine the most liquid traded options, those prices whose moneyness is
outside the 5th to 95th percentile range are firstly removed. Secondly, only those options
with volume above their annual median are kept.

As one of the aims of this work is to study the interplay between market and credit risk,
and how this is reflected into the relative pricing of derivatives contracts (options and CDSs)
written on the same company, I opt for focusing on those option for which the impact of credit
risk is presumably not negligible. In fact, as the database is composed by firms members of
the S&P100 – which should be considered as ‘safe’ companies in the short-term – it seems
very unlikely that options with maturities lesser than six months would price any credit risk.
This intuition is also confirmed by Cremers, Driessen, Meanhout and Weinbaum (2008).

The price of the option is defined as the average of the bid and ask price when both are
available; the observation is removed otherwise. Finally, options with zero trading volume
and negative bid-ask spread are also excluded. The final sample counts 92,879 valid call and
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1.3 Data and Estimation Methodology

(a) OTM Calls’ moneyness (b) OTM Puts’ moneyness

(c) OTM Calls’ maturity (d) OTM Puts’ maturity

Fig. 1.8 Empirical distributions of moneyness (K/S) and maturity (T ) of option data. Panel (a) shows that most
of the valid call option observations have moneyness in (1,1.8), whilst for put options, displayed in panel (b),
the moneyness is in (0.6,1). The distribution of put options is less peaked than the one of calls. Panels (c) and
(d) takes into account the maturities of the options which range from 0.5 to 2.4 years form both call and put
quotes, being the distributions very similar.

112,347 put options observations over 259 weeks. Figure 1.8 shows the options’ distribution
in terms of moneyness and maturity.

One of the main disadvantage of working with equity options is that they are usually
American-style. This is the case in the analysed dataset and, in order to test and implement
the model, European quotes should be used. Hence, the de-Americanization procedure
introduced by Carr and Wu (2010) and further tested in Burkovska et al. (2018) is applied.
The aim of the de-Americanization is to find the corresponding European price (the so-called
pseudo-European price) for a given American price. That is, the price ought to be observed if
the contract would not allow to exercise the option before maturity. In a nutshell, a binomial
tree is used to price the American option. The volatility parameter such that the squared
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difference between the market price and the price generated by the tree is minimised is set
as the option implied volatility. Once estimated, the pseudo-European price is found by
applying the Black-Scholes formula for European options.

In order to estimate the impact of credit risk on equity options, and verify whether the
option market participants price credit risk consistently with the swap market, a calibration
based on equity prices, CDS spreads and option quotes is carried out. In addition, the term-
structure of the firm’s debt must be known or approximated somehow. I opt for clustering the
firm’s debt at three fixed point, ti = {1,5,10} years, i = 1,2,3. The face values of the bond
due in t1 = 1 represents the company’s short-term debt and is computed as the Compustat
variable DD1Q (Long-Term Debt Due in One Year). The remaining two bonds clustered at
t2 = 5 and t3 = 10 are obtained as half of DLTQ (Long-Term Debt Total) each.

The choice of setting n = 3 appears again optimal as it is also the smallest number of
maturity dates needed in order to match both the level, slope and curvature of the term
structure of the survival probabilities extracted from the CDSs. As a matter of fact, an
effective calibration of the model should aim at reproducing the aforementioned term structure
as accurately as possible. For a more in-depth description of the construction of Fi and the
payout rate see Appendix B. Furthermore, as shown in the previous Section, a 3–fold
compound option model displays some desirable properties.

The unknown parameters of the model are the value of the company’s asset, V0, and its
volatility, σV . In order to estimate their values, (1.9) and (1.13) are used (the two pricing
equations constitute a non-linear system of equations in two unknowns). In the same spirit of
estimating the implied volatility à la Black-Scholes, the value of the asset volatility, σ⋆

V , and
corresponding asset value, V ⋆

0 , are found such that both the market price of equity and the
option quote are matched.

Notice that the calibration can be implemented without using the risk-neutral probability
of survival estimated from the CDS spreads (to solve for two unknowns, only two equations
are needed, namely (1.9) and (1.13)). However the risk-neutral probabilities in (1.9), Q(τ >

ti), can be replaced by those estimated from the CDS spreads. Nonetheless, the price of the
firm’s equity is still represented by an equation unknown in σV and V0 as the probability
under the firm-value fund measure, M(τ > tn), cannot be determined from CDS quotes. Thus,
comparing the model estimates with and without the inclusion of CDS data should constitute
a test of relative pricing between the option and CDS markets. If the default probabilities
generated by the model – based on the calibration on the option and stock prices only – is
able to reproduce those estimated form the CDS spreads, it could be inferred that the two
markets are well integrated. For a further discussion on this topic and on how compute the
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implied default barrier (which determines the model-implied probabilities of survival), see
Appendix E.

This calibration on the equity and option prices also allows to construct the asset volatility
surface. Moreover, the equity volatility surface calculated as in (1.11) can be estimated.
This allows to make a direct comparison with the equity volatility surface obtained from the
inversion of the Black-Scholes formula, and it is addressed in the next section. Also, the
ability of the model to price option based on the previous asset volatility surface is tested
also in Section 1.4.5.

1.4 Empirical Results

In this section, a new measure of impact of credit risk on options is first introduced. Using
this measure I later test whether call and put options display different price impacts in terms
of credit risk, and I further look at differences among industries in terms of credit risk pricing.
Finally, it is shown that the same measure is able to forecast future movements of the options’
negative skew. In the robustness section, evidence for the integration of the option and CDS
markets is also discussed.

1.4.1 Information Content Ratios as Measure of Impact of Credit Risk

After having estimated the asset volatility and value such that (1.9) and (1.13) are met, a
measure of impact of credit risk on option prices can be constructed based on the pricing
equation (1.13). In the model, the option price depends on the risk-neutral probabilities

Q(τ > ti ∩ ξ ST > ξ K) (1.14)

with i ∈ I and µ intended as the risk-neutral measure (when it multiplies the discounted face
values) and the firm-value fund measure (when it multiplies the asset value). These are the
risk-neutral probabilities of the event for which the firm survives (up to ti) and the option
expires in-the-money. They can be factorised as

Q(τ > ti)Q(ξ ST > ξ K|τ > ti) , (1.15)

and can be interpreted as follows. The first factor is the probability of the firm surviving until
ti, whilst the second is the probability of the option expiring in-the-money conditional on the
firm having survived. Therefore, this decomposition rigorously disentangles the source of
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Calls Puts
K T K T

Correlation (w/o CDS) -0.0963 0.2209 -0.2573 0.2902
p-value 0.000*** 0.000*** 0.000*** 0.000***
Correlation (with CDS) -0.1078 0.2199 -0.2611 0.2876
p-value 0.000*** 0.000*** 0.000*** 0.000***

Table 1.1 Average sample correlation of AICR (calls and puts, with and without having used the CDS to
calibrate) with strike price (K) and maturity (T ) of the options. As expected, for both calls and puts, the AICR
is negatively correlated with the strike price, as lower strikes proxies for default thresholds, and positively
correlated with the time-to-maturity of the option, as the probability of defaulting is increasing with the time
horizon. The estimates are carried out both having calculated the AICRs with and without the extra calibration
of the risk-neutral probabilities extracted from CDSs (and are statistically equivalent).

credit and market risk and how these reflect into option prices. Notice that the estimation
of σ⋆

V and V ⋆
0 as in Section 1.3 allows to compute the probabilities in (1.14) as well as the

risk neutral probabilities of survival in (1.15). Hence, the probability of the option expiring
in-the-money conditional on surviving can be computed as well.

Alternatively, the risk-neutral probabilities of survival can be directly estimated in a
model-free fashion using the CDSs spreads (see Appendix D). The comparison of the
latter with those produced by the model allows to investigate the its ability to replicate the
observed term-structure of default probabilities and, indirectly, to test for the integration of
the two markets. In fact, if the model is calibrated on option quotes only and the generated
probabilities are close those estimated via the CDSs, this would point towards a similar and
consistent pricing of the two derivatives contracts by the economic agents trading in the two
markets.

In order to turn the multiplicative link into an additive one, instead of looking at raw
probabilities, their information content10 is instead considered. Thus, the Information Content
Ratio (ICR) for each probability is defined as

ICRi,ξ (K,T ) =
logQ(τ > ti)

logQ(τ > ti ∩ ξ ST > ξ K)
. (1.16)

This represents the percentage of credit risk over the whole event of the firm surviving and
the option expiring in-the-money, expressed in terms of the information content of the two
events.

10In Information Theory, information content (or surprisal) of a signal is the amount of information gained
when it is sampled. It is defined as minus the log-probability of the event: the less likely the event, the greater
is the “surprise” associated if it happens. See Cover and Thomas (2006) for further details.

26



1.4 Empirical Results

Once these ratios are computed for all the probabilities contributing to the price of the
option, they can be then aggregated in order to measure the impact of credit risk on each
option contract. The Average Information Content Ratio (AICR) is thus defined as a weighted
average of the information content ratios, that is

AICRξ (K,T ) =
∑i wi · ICRi,ξ (K,T )

∑i wi
. (1.17)

The weights wi are just the present values of the bond expiring in ti. Notice that if τ > ti a.s.
for all i ∈ I, then AICRξ (K,T ) = 0 (i.e. no impact of credit risk). For each option contract
AICR is computed. Given that every day several contracts are traded, the daily average AICR

is further calculated over all valid option prices. This allows us to construct a time series of a
measure of the company’s credit risk which is based on option quotes.

Moreover, the proposed measure is linked to the entropy of the default time. In fact,
changing the base of the logarithm, (1.16) can be written as

ICRi,ξ (K,T ) = logbi
Q(τ > ti)

with bi =Q(τ > ti ∩ ξ ST > ξ K). Therefore,

AICRξ (K,T ) = ∑
i

w̃i · logbi
Q(τ > ti)

and w̃i = wi/∑i wi. On the other hand, the risk-neutral entrotropy in base b ∈ (0,1) of the
default time is defined as11

HQ
b (default) = ∑

i
Q(τ = ti) logbQ(τ = ti) ,

and similarly
HQ

b (survival) = ∑
i
Q(τ > ti) logbQ(τ > ti) .

11Usually, the P-entropy of a discrete random variable X is defined as HP
b (X) =

−∑iP(X = xi) logbP(X = xi) as the chosen base is usually b = {2,e,10}. Here, instead, the base is
b ∈ (0,1), that is the minus is not necessary as the logb function is already positive.
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As long as bi is approximately constant12 and the Q(τ > ti) ∝ w̃i (i.e. they are proportional
to the fraction of debt due at ti), then AICR ∝ HQ

b (survival).
As expected, Figure 1.9 shows that the daily average AICR calculated over calls is

substantially smaller than those computed using put quotes. In addition, it appears that
financial companies (panel (a)) display the greatest variability (both in terms of calls and
puts) in the average daily AICR, thus suggesting a prompt reaction in option prices to changes
in the company’s credit risk and leverage.

Also, a correlation analysis shows that AICRs display a statistically significant negative
correlation with the strike price: the lower the strike price, the higher the price of credit
risk embedded in the option. In fact, the probability of the option expiring in-the-money
for put options with progressively lower strikes should mostly reflect default events. In
addition, AICRs is positively correlated with the maturity of the option: given the probability
of survival being a decreasing function of the time horizon, long-maturity options display
a larger impact of credit risk. Table 1.1 reports these estimates. These sample correlations
highlight a much stronger link between credit risk and put options.

The same calculations can be done by computing the AICR of each option contract using
either the model-implied probabilities or those extracted from the CDSs as described in
Appendix D. As AICR is a linear functions of information contents in (1.16), the discrepancies
between the AICRs computed using the two different sets of probabilities can shed light on
the level of integration of the two markets. The next section addresses the link between
the two constructions as well as the difference behaviour of put and call options in term of
pricing of credit risk. A more formal test of integration is conducted in Section 1.4.5.

Notice that the risk-neutral probabilities estimated as in Appendix D are model-free and
the estimation technique makes use of the whole term-structure of credit spreads (usually
available for several tenors between 6 months and 30 years). On the other hand, the imple-
mentation of the compound option model assumes that default can happen at three points in
time only. Regardless the compound option model is applied to a subset of the traded tenors,
if it is able to produce similar default probabilities (for 1, 5 and 10 years) to those estimated
directly from the spread (which are model-free), it could be argued that the option market
participants price default risk (via the compound option model) in a similar fashion to the
actual pricing observed in the market.

12Unreported empirical tests show that bi are indeed approximately constant for the sample. In fact bi is
already bounded in (0,1); moreover it is the probability of the intersection of the option expiring ITM and the
firm surviving up to ti. Therefore as the probability of the intersection is smaller of the probabilities of the
single events, it should not surprise that bi is quite small and stable.
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Fig. 1.9 Comparison of daily average AICR calculated over call and put options for four companies representing
the four selected industries/sectors. As expected, AICR calculated using call (solid lines) options is much
smaller than those obtained from put (dashed lines) options. AICRs are expressed in basis points.
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Fig. 1.10 Measures of leverage for four companies representing the four selected industries/sectors. The solid
line is a measure of leverage calculated as book value of debt over market value of equity. The dashed line is a
measure of leverage calculated as model-implied market value of debt (without having used the risk-neutral
probabilities of default from CDS spreads) over the market value of equity. The dashed-dotted line is a measure
of leverage calculated as model-implied market value of debt (having used the risk-neutral probabilities of
default from CDS spreads) over the market value of equity.

Alternatively, once V ⋆
0 and σ⋆

V are determined, the compound option model could be
solved for the implied credit spread smodel . This can be done via expressing the market value
of debt maturing at ti as a function of the asset value and risk, that is Di = fi(V,σV ), and then
compute the ti-spread as smodel

i =−1
ti

ln
(

fi(V,σV )
Fie−rti

)
. As the measure in (1.17) is constructed

via the probability of survival (and not the spread), it appears more appropriate to calibrate
the model to obtain V ⋆

0 and σ⋆
V and then compute the model-implied risk-neutral probabilities

of survival.
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1.4.2 Cross Sectional Differences in Calls and Puts

Economic and financial intuition suggests that a different pricing behaviour of credit risk
should be observed between calls and puts. As default is an event which is priced in the left
side of the equity distribution, put options, which constitute insurances against price falling,
should be affected more by credit-related events more than calls. As a matter of fact, Carr and
Wu (2011) show that, under a general class of stock price dynamics, a portfolio of two deep
out-of-the-money American-style equity put options can replicate a pure credit insurance
contract that pays off if and only if the company defaults prior to the option expiry.

A preliminary test is conducted on the relationship between the two measures of impact
of credit risk, either constructed using option quotes only (AICR) or based on the option
prices and CDS spreads (AICR′). As these measures are option-specific, the daily average
for the whole set of available call and put options is calculated each week (AICR and AICR′

respectively). In order to estimate the risk-neutral probabilities from the CDSs, a 50% loss
given default is assumed. A 50% recovery rate is consistent with the median value for senior
unsecured bonds reported in Duffie and Singleton (1999). Other values of loss given default
are investigated as a robustness test in the next section.

The following set of unbalanced panel pooled regressions are estimated

AICR′
j,t,ξ = α +βAICR j,t,ξ +η j,t,ξ , (1.18)

with j ∈ J, being J the set of 66 US companies, t the weekly observation, and ξ the binary
variable that takes value ξ = 1 for calls and ξ =−1 for puts. Firstly, these regressions serve
as a sanity check of the co-movements of the two measures of impact of credit risk. Secondly,
the residuals η j,t,ξ summarise the pricing information carried by CDS in determining the
ICRs which is not obtainable from option prices. Results are reported in Table 1.2. As
expected, the two measures strongly co-move and the loading coefficients have the predicted
sign.

The next step is assessing the different impact of credit risk on call and put options.
Different measures of leverage (book leverage, market model-implied leverage obtained from
the calibration on options only, market model-implied leverage using both options and CDSs)
can be used as proxies of credit risk. These measures of leverage are then regressed onto
AICR and AICR′ of calls and puts for each set of weekly observations. By common sense
and the model predictions, a higher leverage should induce a larger impact of credit risk on
the company’s securities. Put options are expected to show statistically significant positive
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loadings. More specifically, panel regressions are implemented with year- and industry-fixed
effects. These are

AICR j,t,ξ = αξ +µi,ξ +θy,ξ +βLEV j,t + ε j,t,i,y,ξ

AICR′
j,t,ξ = α

′
ξ
+µ

′
i,ξ +θ

′
y,ξ +β

′LEV j,t + ε
′
j,t,i,y,ξ . (1.19)

Year-fixed effects (θy,ξ and θ ′
y,ξ , with y = {2013, . . . ,2017}) should capture the time-series

variation in the volatility of the market, whilst the industry-fixed effects (µi,ξ and µ ′
i,ξ ,

with i ={Financials; Mining, Energy and Utilities; Manufacturing; Retail, Wholesale and
Services}) account for possible cross-sectional heterogeneity due to the sector the company
operates.

For the variable LEV , the market leverage defined as model-implied value of debt over
market value of equity (dotted-dashed line in Figure 1.10) is used. More specifically, after
estimating the asset volatility surface via a joint calibration on options and CDSs, the average
value σ̄V is used to compute the model implied asset value, that is the value of the firm
such that (1.9) holds. Subsequently, the model implied market value of debt is obtained.
Unreported results, available upon request, show that these findings are robust across other
measures of leverage.

The results are reported in Table 1.3. Remarkably, despite the two measures of credit
risk strongly co-move, in the case of call options, only AICR′ – the measure obtained by
adding the information carried by CDSs – is able to capture the credit risk of the company.
Since the main effect of default on equity is to reduce its value by a sizable amount, it is
understandable that credit risk has its minor impacts on these options. Therefore, the joint
calibration on options and CDS carries extra information that, especially for call options, is
relevant to capture default risk dynamics.

To stress this point further, the following regressions

η j,t,ξ = αξ +µi,ξ +θy,ξ +βLEV j,t + ε j,t,i,y,ξ , (1.20)

are estimated. Here, the left-hand side is constituted by the residuals obtained from regres-
sion (1.18). These residuals indeed capture the extra information provided by the calibration
on CDSs which is not accounted for by call options. As shown in Table 1.4, the residuals
obtained from regression (1.19) when call options are used are still strongly correlated with
leverage, even after having controlled for year-fixed and industry-fixed effects. Furthermore,
the relatively high adjusted R2 signals an undoubted explanatory power of leverage on those
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Regressand Adj–R2: 0.8804

AICR′
1

Regressors Coefficient Robust Standard Error t–stat p–value

AICR1 0.7813466 0.0053647 145.65 0.000 ***
α1 0.0015068 0.0000465 32.39 0.000 ***

(a): AICR′ regressed onto AICR (both constructed on calls).

Regressand Adj–R2: 0.5359

AICR′
−1

Regressors Coefficient Robust Standard Error t–stat p–value

AICR−1 0.5577679 0.0362096 15.40 0.000 ***
α−1 0.0003161 0.0001010 3.13 0.002 ***

(b): AICR′ regressed onto AICR (both constructed on puts).

Table 1.2 Estimation of regression (1.18).
(a): Estimates of the pooled panel regression of average AICR obtained from call options (ξ = 1) and CDS
regressed onto average AICR obtained from call options only. Number of observations: 15,470. F–stat:
21,212.88 (p–value: 0.0000).
(b): Estimates of the pooled panel regression of average AICR obtained from put options (ξ =−1) and CDS
regressed onto average AICR obtained from put options only. Number of observations: 15,027. F–stat: 237.28
(p–value: 0.0000).
A sandwich estimator for panel data is used to obtain robust standard errors. Significance levels: 10% (*), 5%
(**), 1% (***).
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Regressand Adj–R2: 0.0336

AICR1

Regressors Coefficient Robust Standard Error t–stat p–value

LEV 0.0030977 0.0041647 0.74 0.511
α1 -0.000620 0.0024973 -0.25 0.820

Industry-FE ✓
Year-FE ✓

(a): AICR (constructed on calls) regressed onto LEV .

Regressand Adj–R2: 0.1113

AICR′
1

Regressors Coefficient Robust Standard Error t–stat p–value

LEV 0.0128021 0.0027542 4.65 0.019 **
α1 -0.0020046 0.0014777 -1.36 0.268

Industry-FE ✓
Year-FE ✓

(b): AICR′ (constructed on calls and CDSs) regressed onto LEV .

Regressand Adj–R2: 0.4586

AICR−1

Regressors Coefficient Robust Standard Error t–stat p–value

LEV 0.0336547 0.0037234 9.04 0.003 ***
α−1 -0.0083151 0.0032709 -2.54 0.085 *

Industry-FE ✓
Year-FE ✓

(c): AICR (constructed on puts) regressed onto LEV .

Regressand Adj–R2: 0.5707

AICR′
−1

Regressors Coefficient Robust Standard Error t–stat p–value

LEV 0.0290758 0.0095415 3.05 0.056 *
α−1 -0.0085324 0.0078328 -1.09 0.356

Industry-FE ✓
Year-FE ✓

(d): AICR′ (constructed on puts and CDSs) regressed onto LEV .

Table 1.3 Estimation of regression (1.19)
(a): Estimates of the fixed-effects panel regression of market model-implied leverage LEV onto average AICR
calculated over call options only. Number of observations: 15,470.
(b): Estimates of the fixed-effects panel regression of market model-implied leverage LEV onto average AICR
calculated over call options and CDSs. Number of observations: 15,470.
(c): Estimates of the fixed-effects panel regression of market model-implied leverage LEV onto average AICR
calculated over put options only. Number of observations: 15,027.
(d): Estimates of the fixed-effects panel regression of market model-implied leverage LEV onto average AICR
calculated based on put options and CDSs. Number of observations: 15,027.
Standard errors are adjusted for four clusters based on industry. Significance levels: 10% (*), 5% (**), 1%
(***).

34



1.4 Empirical Results

residuals. Therefore, I conclude that CDS quotes carry extra information regarding the credit
risk of the companies when compared with pricing information embedded in call options.
The same conclusion does not hold for equity put options which share most of the pricing
information in terms of default with the CDS written on the same reference entity.

1.4.3 Sub-samples analysis

In order to investigate further the link between options and credit risk, the same regressions
in (1.19) are re-estimated over the four sub-samples based on industry (therefore, the industry-
fixed effect is removed, whilst the year-fixed effect is kept). Based on the findings in Carr
and Wu (2017), a cross-sectional diversity should emerge. Only put options are taken into
consideration as the impact of default risk on call options was shown to be insignificant.
Results are reported in Table 1.5.

As manufacturing companies usually invest in long-term assets, they tend to have the
same debt for a long period of time, without actively rebalancing their capital structure.
Therefore, their financial leverage varies passively with the stock price fluctuations. Also,
in addition to having a relatively small average AICR′

−1 (see Table 1.6), they also have
the smallest mean leverage across the categories. This is reflected into the results of the
regression: default does not play a major role in affecting the price of put options, displaying
a relatively low adjusted R2.

On the other hand, financial firms tend to actively manage their capital structures accord-
ing to changes in market conditions and, for banks, to satisfy regulatory requirements. The
results indeed capture the impact of credit risk to be driven by financial leverage (highest
adjusted R2 and significance). The same conclusion applies to companies operating in sales
and services, despite to a mush weaker extent: given an average leverage comparable to
manufacturing companies, they also show relatively small AICR′

−1. The regression adjusted
R2 is just a third of that obtained from financial companies. Similarly, put prices of utility
and energy companies seem to be influenced by credit risk as well. Operating in regulated
businesses and being strongly influenced by systemic factors as the state of the economy,
perhaps the regression fit could be enhanced accounting for macroeconomic factors.

Unreported results available upon request show that these findings across the four sub-
samples still hold after having accounted for a firm-fixed effect.
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Regressand Adj–R2: 0.6001

η1

Regressors Coefficient Robust Standard Error t–stat p–value

LEV 0.0103818 0.0021359 4.86 0.017 **
α1 -0.003027 0.0015659 -1.93 0.149

Industry-FE ✓
Year-FE ✓

(a): Extra-information provided by CDSs when calls are used to infer credit risk.

Regressand Adj–R2: 0.1503

η−1

Regressors Coefficient Robust Standard Error t–stat p–value

LEV 0.0103043 0.0076949 1.34 0.273
α−1 -0.0042105 0.0063554 -0.66 0.555

Industry-FE ✓
Year-FE ✓

(b): Extra-information provided by CDSs when puts are used to infer credit risk.

Table 1.4 Estimation of regression (1.20)
(a): Estimates of the fixed-effects panel regression of market model-implied leverage LEV onto the residuals
obtain from regression (1.18) (calls). Number of observations: 15,470.
(b): Estimates of the fixed-effects panel regression of market model-implied leverage LEV onto the residuals
obtain from regression (1.18) (puts). Number of observations: 15,027.
Standard errors are adjusted for four clusters based on industry. Significance levels: 10% (*), 5% (**), 1%
(***).

36



1.4 Empirical Results

Regressand Adj–R2: 0.6608

AICR′
−1

Regressors Coefficient Robust Standard Error t–stat p–value

LEV 0.0391051 0.0012387 31.57 0.000 ***
α−1 -0.0145449 0.0011321 -12.85 0.000 ***

Year-FE ✓

(a): Financials

Regressand Adj–R2: 0.2128

AICR′
−1

Regressors Coefficient Robust Standard Error t–stat p–value

LEV 0.0069186 0.0004261 16.24 0.000 ***
α−1 -0.0007640 0.0001489 -5.13 0.000 ***

Year-FE ✓

(b): Mining, Energy and Utilities

Regressand Adj–R2: 0.1173

AICR′
−1

Regressors Coefficient Robust Standard Error t–stat p–value

LEV 0.0014455 0.0000861 16.78 0.000 ***
α−1 -0.0000211 0.0000163 -1.29 0.197

Year-FE ✓

(c): Manufacturing

Regressand Adj–R2: 0.2450

AICR′
−1

Regressors Coefficient Robust Standard Error t–stat p–value

LEV 0.0075047 0.0009004 8.34 0.000 ***
α−1 -0.0007342 0.0001427 -5.14 0.000 ***

Year-FE ✓

(d): Retail, Wholesale and Services

Table 1.5 Estimation of regression (1.19) over the four sub-samples.
(a): Estimates of the year-fixed effect panel regression of market model-implied leverage LEV onto average
AICR calculated over put options and CDSs of Financials. Number of observations: 1,938. F–stat = 199.90
(p–value = 0.000).
(b): Estimates of the year-fixed effect panel regression of market model-implied leverage LEV onto average
AICR calculated over put options and CDSs of Mining, Energy and Utilities. Number of observations: 1,916.
F–stat = 73.60 (p–value = 0.000).
(c): Estimates of the year-fixed effect panel regression of market model-implied leverage LEV onto average
AICR calculated over put options and CDSs of Manufacturing. Number of observations: 6,515. F–stat = 80.21
(p–value = 0.000).
(d): Estimates of the year-fixed effect panel regression of market model-implied leverage LEV onto average
AICR calculated over put options and CDSs of Retail, Wholesale and Services. Number of observations: 4,658.
F–stat = 20.63 (p–value = 0.000).
A sandwich estimator for panel data is used to obtain robust standard errors. Significance levels: 10% (*), 5%
(**), 1% (***).
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Financials Energy and Utilities Manufacturing Sales and Services

LEV 0.9090 0.3791 0.1853 0.1905

AICR
′
−1 0.0148 0.0023 0.0003 0.0007

Table 1.6 Sub-sample averages for leverage and AICR obtained from put options and CDSs.

1.4.4 Explaining the Skew

Many attempts have been made in the literature in order to explain the shapes of the implied
volatilities obtained from options. It is well-known that inverting the Black-Scholes formula
to determine the value of the volatility which matches the observed price produces the so
called volatility smile or smirk, instead of a flat line (which would be expected if the Black-
Scholes model were correct). It is also well-documented that equity volatilities display more
often a smirk, that is the volatility is a decreasing and convex function of the moneyness of
the option. The negative slope of the implied volatility function is referred to as negative
skew.

The first works attempting to give a explanation for the observed skew are Black (1976)
and Christie (1982). Both attribute the negative slope to the possibility of the underlying to
default, the so-called leverage effect: if the underlying of the option can default, the left tail
of its distribution should be more sensitive to credit-related events which notoriously make
the value of the firm’s equity significantly drop. This increased probability of the underlying
falling due to default would be then reflected in the pricing of options. Also, as put options
protects the buyer against price falling, they should price both market and credit related
events. As shown in Section 1.4.2, put options indeed price credit risk (and doubtlessly price
market risk). However, some more recent works shed light on the drivers of the volatility
skew.

Carr and Wu (2017) show that the leverage effect can be generated by other sources than
leverage. As a matter of fact, the skew is also displayed by other assets, such as commodities
or indexes, which cannot default. In their work, they individuate three possible channels
influencing volatility: (1) return volatility increases with financial leverage; (2) positive
shocks to systematic risk generate a negative correlation between the market’s return and
its volatility, regardless of the magnitude of financial leverage; (3) large negative market
disruptions show self-exciting behaviours.

Their estimations show that the volatility feedback effect (2) reveals itself mainly in
the variations of short-term options, the self-exciting behaviour (3) affects both short-term
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and long-term option variations, and the financial leverage variation (1) has its largest
impact on long-dated options. Finally, when the model of Carr and Wu (2017) is applied
to individual companies, the three economic channels show up differently and to different
degrees according to the company’s specific business and capital structure. Therefore, their
work constitutes a valuable ruler in order to asses my model’s predictions and results.

From a different perspective, the shape of the volatility smile/smirk provides an insight
on how the Black-Scholes model prices risk under the presence of both market and credit risk,
and how the estimation of the implied volatility is affected by them. Figure 1.11 suggests
that the Black-Scholes implied volatility is an average of the implied volatility estimated
with a compound option model (which, instead, allows to account for the relative impact of
credit and market risk separately).

Evidently, the Black-Scholes averages across the surface the impact of credit risk. Let
µ ∈ {M,Q}. Analytically, the probabilities involved into the calculation of the option price
à la Black-Scholes13 are such as

µ (ξ ST > ξ K)

whilst those of the compound option model are of the type

µ (ξ ST > ξ K|τ > ti) .

By the law of total probability

µ (ξ ST > ξ K) = Eµ
[
µ (ξ ST > ξ K|τ > ti)

]
,

thus showing that the probabilities involved in the Black-Scholes model are an average of
the probability of the option expiring in-the-money conditional on the firm surviving at the
reimbursement dates. Therefore, the volatility smirk produced by Black-Scholes should lie
within the implied volatilities produced by the model. Figure 1.11 confirms it.

Inspecting Figure 1.11 , this averaging effect impacts mostly long-maturity options as
the underlying probability of defaulting increases with the time horizon. Interestingly, for
financial companies, despite displaying a negative slope for both short and long-term maturity
options, the skew is more likely to be associated with the leverage effect for long-maturity
options only (panel (b)). As a matter of fact, the compound option implied volatilities of the

13In the case of Black-Scholes, the probability measure M is intended as the stock-fund measure, that is
Φ(ξ d1).
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short-term maturity options of financial companies (panel (a)) replicate almost perfectly the
Black-Scholes implied volatility which does not accommodate for default risk explicitly.

More generally, the closer the two equity volatility estimates are, the lower the probability
of default and therefore the impact of credit risk (i.e. leverage effect) on the pricing of the
option. Notice also that, if ∑i Fi ↓ 0, the compound option model coincides with Black
and Scholes (1973). Therefore, the larger the firm’s financial leverage the farther the
Black-Scholes implied volatilities surface should be with respect to those estimated via
the compound option model. However, if the two models reproduce very similar volatility
skews even when the company is highly levered (e.g. financials), it can be argued that
‘apparent’ leverage effect is not driven by leverage and, therefore, financial leverage is not
a good proxy for default risk, at least in the short-term. This is exactly what Carr and Wu
(2017) document.

Moreover, having defined the equity as a compound call options allows to further motivate
why the skew is observed over the region constructed using put options. It is well-known that
the price of a call option is an increasing function of the volatility of its underlying; similarly,
it can be shown that the price of a compound call on call option is also an increasing function
of the volatility. By induction, it can be shown that also the price of a n-fold compound call
option is increasing of the underlying volatility.

Under Black and Scholes (1973), the Vega of a put option is an increasing function
of the volatility of the underlying equity. However, as equity is itself a compound call
option, an increase in the asset volatility causes an increase in the value of the equity which
ultimately makes the put options less likely to expire in-the-money. Therefore, the Vega
of in-the-money put options under the compound option model is negative. Figure 1.12
illustrates this aspect14.

So far the volatility skew was only described as the negative slope displayed by the graph
of the implied volatility plotted against moneyness. Following Carr and Wu (2017), the
volatility skew is formally defined as

Skew =
25∆PutσIV −25∆CallσIV

50∆PutσIV
, (1.21)

14Figure 1.12 clearly shows ∂γCO
−1 /∂σV < 0, for St < K. Therefore

∂γCO
−1

∂σV
=

∂γCO
−1

∂σS

∂σS

∂σV

implies ∂γCO
−1 /∂σS < 0, as ∂σS/∂σV > 0 (see Figure 1.5 panel(d)).
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Fig. 1.11 Volatility skews for different option maturities. The lines marked with circles are the implied volatility
estimates produced by the Black-Scholes model, whilst those marked with crosses are the estimates produced
by the compound option model. It is evident that the Black-Scholes estimates of the implied volatility lie within
the estimates produced by the model, thus suggesting the aforementioned averaging effect. This effect is more
pronounced for long-term maturity options (panels (b), (d), (f), (h)) than for options with shorter maturities
(panels (a), (c), (e), (g)), as the distance between the two lines is larger for T > 1.41
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Fig. 1.12 Put price as function of asset volatility. Conversely to Black-Scholes put price, the price of compound
put option on a call can be a decreasing function of the volatility. This is observed when the put option is deep
into-the-money, that is when price of equity is approaching zero (therefore, default becomes more likely). Here
K = 50, T = 0.5, F1 = F2 = F3 = 30, t1 = 1, t2 = 5, t3 = 10, r = 0.03 and ϖ = 0.05.

where x∆PutσIV is the implied volatility of the put option whose delta is −x%, and y∆CallσIV

is the implied volatility of the call with delta equal to y%. The proposed measure of skewness
is more positive when the risk-neutral return distribution is more negatively skewed (if the
implied volatility is downward sloping, the numerator of (1.21) is positive).

In order to investigate to what extent the displayed skew is driven by leverage, the
following panel regression are carried out

∆Skew j,t,T = αT +φ j,T +θy,T +βAICR j,t−1,−1,T + ε j,t,y,T , (1.22)

where AICR j,t−1,T,−1 is the average AICR of put options having time to maturity equal to T

observed in the previous week. Rather than using industry-fixed effect, a firm-fixed effect
(φ j) is estimated as, ultimately, I want to show the ability of this measure to forecast future
changes in the skew observed at the company level. If the skew is caused by the leverage
effect, a positive and statistically significant effect should be observed.

The variable ∆Skew is calculated based on (1.21). Call options are excluded, given the
results in Section 1.4.2. Also, ∆Skew is used rather than the contemporaneous level as the
time-series component of the latter is non-stationary for some companies (see Figure 1.13).

In particular, based on the previous findings, two sets of regression are estimated. As for
every day t, multiple maturities are observed, the skew of the shortest (minT : T < 1 year)
and longest (maxT : T > 1 year) maturity options is used in two separate sets of regressions.
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Fig. 1.13 Time-series of Skew extracted from short-term maturity options (T < 1, panel (a)) and from long-term
maturity options (T > 1, panel (b)) for AAPL. Both panels show that the time series of the levels of Skew
(dotted-dashed line) is non-stationary whilst the increments (solid line) are stationary.

Based on the different behaviour of the model for short and long term maturity options,
the skew should be driven by credit risk (here proxied as the ICR of out-of-the-money put
options) mostly for T > 1 rather than for T < 1.

The estimates are presented in Table 1.7. Consistently with economic intuition and the
empirical evidence in Carr and Wu (2011) and Carr and Wu (2017), only the changes in the
skew of long-maturity options are driven by the credit risk of the company. Also, the average
AICR of put options, is able, to some extent, to predict the future changes in the skew for
those options. The same variable is not able to explain the movements of the skew for options
with shorter maturities. Therefore, the high significance of the average AICR obtained from
put options, as well as the correct sign of its loading, points towards a connections between
the future changes of the negative skew and the today’s credit risk of the company. However,
the low fit can be attributed either to the presence of other factors driving the skew or to the
highly non-linear link between the movements of the skew and the impact of credit risk (or
both).

In the same spirit of the tests conducted in the previous section, the sample is further split
accordingly to industry classification and the regressions in (1.22) are re-estimated. As there
is no effect for short-maturity options, only long dated options are taken into consideration.
Results are reported in Table 1.8.

The four sets of regressions show industry differences in the ability of the measure of
credit risk to predict future changes in the option skew. Mirroring the results of previous
sections, a larger predictive power is associated with companies which are sensibly levered
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Regressand R2 (between): 0.0030

∆SkewT<1 R2 (within): 0.0007

Regressors Coefficient Robust Standard Error t–stat p–value

AICR′
−1,T<1 0.9772085 0.714567 1.37 0.176

αT<1 -0.0037777 0.0009448 -4.00 0.000 ***

firm-FE ✓
year-FE ✓

(a): Predictive regression for short-term skew.

Regressand R2 (between): 0.1958

∆SkewT>1 R2 (within): 0.0005

Regressors Coefficient Robust Standard Error t–stat p–value

AICR′
−1,T>1 0.353236 0.0784575 4.50 0.000 ***

αT>1 -0.0114802 0.0017093 -6.72 0.000 ***

firm-FE ✓
year-FE ✓

(b): Predictive regression for long-term skew.

Table 1.7 Estimation of regression (1.22).
(a): Predictive regression for short-term skew based on the average ICR calculated over short-term put options
and CDSs. Number of observations: 7,656. F–stat = 10.35 (p–value = 0.000).
(b): Predictive regression for long-term skew based on the average ICR calculated over long-term put options
and CDSs. Number of observations: 6,818. F–stat = 11.87 (p–value = 0.000).
A sandwich estimator for panel data is used to obtain robust standard errors. Significance levels: 10% (*), 5%
(**), 1% (***).
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Regressand R2 (between): 0.0816

∆SkewT>1 R2 (within): 0.0022

Regressors Coefficient Robust Standard Error t–stat p–value

AICR′
−1,T>1 0.3942216 0.1693359 2.33 0.048 **

αT>1 -0.0140584 0.0116132 -1.21 0.268

firm-FE ✓
year-FE ✓

(a): Financials.

Regressand R2 (between): 0.1803

∆SkewT>1 R2 (within): 0.0017

Regressors Coefficient Robust Standard Error t–stat p–value

AICR′
−1,T>1 0.2832847 0.0658556 4.30 0.004 ***

αT>1 -0.0194797 0.002694 -7.23 0.000 ***

firm-FE ✓
year-FE ✓

(b): Mining, Energy and Utilities.

Regressand R2 (between): 0.1266

∆SkewT>1 R2 (within): 0.0006

Regressors Coefficient Robust Standard Error t–stat p–value

AICR′
−1,T>1 -2.931313 2.452305 -1.20 0.247

αT>1 -0.0078513 0.0021041 -3.73 0.001 ***

firm-FE ✓
year-FE ✓

(c): Manufacturing.

Regressand R2 (between): 0.9001

∆SkewT>1 R2 (within): 0.0007

Regressors Coefficient Robust Standard Error t–stat p–value

AICR′
−1,T>1 0.4410598 0.0564674 7.81 0.000 ***

αT>1 -0.0105209 0.0026711 -3.94 0.001 ***

firm-FE ✓
year-FE ✓

(d): Retail, Wholesale and Services.

Table 1.8 Estimation of regression (1.22) over the four sub-samples.
(a): Predictive regression for short-term skew based on the average ICR calculated over long-term put options
and CDSs of Financials. Number of observations: 810. F–stat = 5.18 (p–value = 0.021).
(b): Predictive regression for short-term skew based on the average ICR calculated over long-term put options
and CDSs of Mining, Energy and Utilities. Number of observations: 791. F–stat = 32.75 (p–value = 0.000).
(c): Table 5b: Predictive regression for short-term skew based on the average ICR calculated over long-term put
options and CDSs of Manufacturing. Number of observations: 2,305 F–stat = 4.02 (p–value = 0.012).
(d): Predictive regression for short-term skew based on the average ICR calculated over long-term put options
and CDSs of Retail, Wholesale and Services. Number of observations: 2,912 F–stat = 38.71 (p–value = 0.000).
A sandwich estimator for panel data is used to obtain robust standard errors. Significance levels: 10% (*), 5%
(**), 1% (***).
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(see Table 1.8, panels (a) and (b)). Despite the average lower leverage, also the changes in the
skew of retail, wholesale and services companies is partially attributable to the credit risk of
the companies. On the other hand, the future changes in the negative skew of manufacturing
companies (which are the least levered in the sample, see Table 1.6) are not explained by the
level of credit risk and is likely to be driven by other factors. Finally, the weaker predictive
power of this measure for financial companies could be explained by their relatively large
probability of survival (despite being highly levered). This would mirror the graphical
evidence of the implied volatility of the compound option model being very close to the
implied volatility of the Black-Scholes model.

1.4.5 Robustness Tests

I first focus on how the compound option pricing model (CO) performs out-of-sample
compared to the Black-Scholes model (BS). Given the option dataset, the volatility surface
of equity (for BS) and asset (for CO) is estimated every week (in-sample). These estimates
are used to reprice the options traded the following week (out-of-sample). Then, the pricing
error is assessed as the absolute percentage error with respect to the market price, that is
|Pmarket −Pmodel|/Pmarket . The compound option model is implemented both using stock
and option price only, as well as with the triangulation stock-option-CDS, having assumed
LGD = {50,60,80}%. In addition to 50% assumed so far in the analysis, the loss given
default parameter is also set to 60% and 80%, being these values explicitly suggested by the
ISDA for the pricing of CDSs15. Results are reported in Tables 1.9 and 1.10.

I find that, in general, the Black-Scholes performs better out-of-sample than any com-
pound option model, both for call and put options. The average pricing error for put options is
though substantially lower than for call options, again pointing towards negligible sensitivity
of the latter with respect to credit events.

More specifically, the pricing error are analysed across the leverage, time-to-maturity and
moneyness dimension. The errors produced by the CO models are comparable in size with
those of BS for moderately levered firms (D/S ∈ (0,0.5]); however these tend to increase
with leverage. Only for highly levered firms (D/S ∈ (2,∞)), the pricing errors consistently
reduce for both call and put options. Both the BS and the CO models show increasing pricing
errors for options with longer maturities as well as for deep out-of-the-money options.

15Visit https://www.cdsmodel.com/cdsmodel/assets/cds-model/docs for the document ISDA
Standard CDS Contract Converter Specification - Sept 4, 2009.pdf. A market-wide loss
given default of 60% is also used by Collin-Dufresne et al. (2010).
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LEV ∈ (0,0.5]

T K/S BS CO CO50 CO60 CO80 N mC

[0.5,1)
(1,mC) 0.06 0.08 0.15 0.14 0.12

43,598 1.09[mC ,∞) 0.11 0.12 0.21 0.19 0.17

[1,1.5) (1,mC) 0.05 0.10 0.13 0.13 0.11 16,634 1.12[mC ,∞) 0.09 0.12 0.15 0.15 0.12

[1.5,2) (1,mC) 0.06 0.12 0.15 0.15 0.13 8,963 1.12[mC ,∞) 0.10 0.12 0.15 0.15 0.13

[2,∞)
(1,mC) 0.06 0.11 0.13 0.12 0.11

2,529 1.12[mC ,∞) 0.10 0.13 0.12 0.13 0.11

LEV ∈ (0.5,1]

T K/S BS CO CO50 CO60 CO80 N mC

[0.5,1)
(1,mC) 0.08 0.14 0.69 0.57 0.49

4,239 1.08[mC ,∞) 0.14 0.22 1.00 0.76 0.63

[1,1.5) (1,mC) 0.06 0.19 0.80 0.71 0.62 1,061 1.11
[mC ,∞) 0.14 0.32 0.94 0.78 0.65

[1.5,2) (1,mC) 0.08 0.31 0.79 0.72 0.64 653 1.11
[mC ,∞) 0.16 0.31 0.79 0.67 0.56

[2,∞)
(1,mC) 0.10 0.24 0.67 0.61 0.52

225 1.09[mC ,∞) 0.18 0.32 0.66 0.64 0.48

LEV ∈ (1,2]

T K/S BS CO CO50 CO60 CO80 N mC

[0.5,1)
(1,mC) 0.06 0.24 0.93 0.58 0.68

4,017 1.09[mC ,∞) 0.13 0.49 1.81 0.82 1.18

[1,1.5) (1,mC) 0.06 0.33 1.06 0.95 0.84 226 1.16
[mC ,∞) 0.19 0.72 1.89 1.68 1.25

[1.5,2) (1,mC) 0.10 0.32 0.92 0.87 0.71 119 1.16
[mC ,∞) 0.20 0.55 1.38 1.01 0.97

[2,∞)
(1,mC) 0.03 0.28 0.80 0.74 0.61

53 1.12[mC ,∞) 0.12 0.35 0.85 0.78 0.63

LEV ∈ (2,∞)

T K/S BS CO CO50 CO60 CO80 N mC

[0.5,1)
(1,mC) 0.06 0.18 1.29 0.93 0.98

1,038 1.12[mC ,∞) 0.15 0.47 2.47 1.21 1.70

[1,1.5) (1,mC) 0.34 8.38 7.32 12.76 15.58 14 1.36
[mC ,∞) 0.55 19.88 34.61 37.47 35.34

[1.5,2) (1,mC) 0.16 1.57 3.78 3.69 3.54 7 1.37
[mC ,∞) 0.40 5.98 8.93 9.05 9.05

[2,∞)
(1,mC) - - - - -

1 1.35[mC ,∞) 0.59 7.39 16.26 17.04 17.43

Table 1.9 Out-of-sample average absolute percentage pricing error using the Black-Scholes model versus
a compound option model for call options. The compound option model is either implemented via the joint
calibration stock and option price or via the triangulation stock-option-CDS spreads (having assumed LGD =
{50,60,80}%.) The errors are clustered based on progressively more leveraged firms (LEV ≡ D/S). Then, the
errors are analysed based on the time-to-maturity (T ) and the moneyness (K/S). The moneyness dimension
is further split into OTM, K/S ∈ (1,mC), and deep OTM, K/S ∈ [mC,∞), where mC is the median moneyness
in each cluster. N is the number of prices in each bucket. Both the Black-Scholes and the compound option
pricing errors increases with T and as the option becomes more and more OTM. The pricing error of the simple
compound option (CO) generally increases with leverage.
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LEV ∈ (0,0.5]

T K/S BS CO CO50 CO60 CO80 N mP

[0.5,1)
[mP ,1) 0.05 0.08 0.11 0.10 0.09

51,519 0.86(0,mP) 0.10 0.12 0.16 0.15 0.13

[1,1.5) [mP ,1) 0.04 0.09 0.11 0.11 0.09 20,469 0.83
(0,mP) 0.08 0.11 0.13 0.13 0.11

[1.5,2) [mP ,1) 0.04 0.11 0.12 0.12 0.10 12,042 0.81
(0,mP) 0.10 0.13 0.13 0.14 0.11

[2,∞)
[mP ,1) 0.06 0.14 0.13 0.14 0.13

3,554 0.79(0,mP) 0.15 0.18 0.18 0.19 0.17

LEV ∈ (0.5,1]

T K/S BS CO CO50 CO60 CO80 N mP

[0.5,1)
[mP ,1) 0.05 0.12 0.41 0.41 0.28

5,373 0.88(0,mP) 0.10 0.20 0.49 0.49 0.34

[1,1.5) [mP ,1) 0.04 0.36 0.32 0.42 0.23 1,928 0.85
(0,mP) 0.10 0.39 0.37 0.51 0.27

[1.5,2) [mP ,1) 0.05 0.36 0.33 0.42 0.26 1,280 0.83
(0,mP) 0.10 0.36 0.34 0.49 0.26

[2,∞)
[mP,1) 0.06 0.45 0.29 0.39 0.23

438 0.82(0,mP) 0.13 0.80 0.36 0.56 0.29

LEV ∈ (1,2]

T K/S BS CO CO50 CO60 CO80 N mP

[0.5,1)
[mP ,1) 0.06 0.18 0.49 0.57 0.38

2,532 0.81(0,mP) 0.20 0.44 0.68 0.73 0.60

[1,1.5) [mP ,1) 0.04 0.09 0.35 0.32 0.27 1,010 0.83
(0,mP) 0.08 0.13 0.44 0.39 0.37

[1.5,2) [mP ,1) 0.05 0.09 0.42 0.44 0.43 846 0.80
(0,mP) 0.11 0.16 0.41 0.39 0.38

[2,∞)
[mP ,1) 0.05 0.43 0.29 0.56 0.21

213 0.80(0,mP) 0.15 0.74 0.34 0.66 0.36

LEV ∈ (2,∞]

T K/S BS CO CO50 CO60 CO80 N mP

[0.5,1)
[mP ,1) 0.05 0.08 0.85 0.94 0.95

117 0.68(0,mP) 0.45 0.57 2.34 1.48 1.63

[1,1.5) [mP ,1) 0.04 0.06 0.56 0.56 0.60 221 0.83
(0,mP) 0.07 0.09 0.55 0.61 0.68

[1.5,2) [mP ,1) 0.05 0.05 0.41 0.42 0.54 188 0.83
(0,mP) 0.08 0.09 0.43 0.42 0.54

[2,∞)
[mP ,1) 0.06 0.50 0.87 0.88 0.99

44 0.81(0,mP) 0.14 0.57 1.05 1.01 1.15

Table 1.10 Out-of-sample average absolute percentage pricing error using the Black-Scholes model versus
a compound option model for put options. The compound option model is either implemented via the joint
calibration stock and option price or via the triangulation stock-option-CDS spreads (having assumed LGD =
{50,60,80}%.) The errors are clustered based on progressively more leveraged firms (LEV ≡ D/S). Then, the
errors are analysed based on the time-to-maturity (T ) and the moneyness (K/S). The moneyness dimension
is further split into OTM, K/S ∈ [mP,1), and deep OTM, K/S ∈ (0,mP), where mP is the median moneyness
in each cluster. N is the number of prices in each bucket. Both the Black-Scholes and the compound option
pricing errors increases with T and as the option becomes more and more OTM. The pricing error of the simple
compound option (CO) generally increases with leverage.
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1.4 Empirical Results

The only available reference to compare the out-of-sample analysis with is Geske et al.
(2016). There, the authors implement the Geske (1979) model and compare how a compound
option model performs with respect to the Black-Scholes model. My results are in sharp
contrast with their findings. On average, I obtain smaller pricing errors for the Black-Scholes
than in the case of the compound option model (for those instances in which the samples are
comparable). They document the opposite. Even more surprisingly, my errors (both for the
BS and the CO) are significantly smaller than what they report. However, several differences
in the approach proposed here are worth mentioning.

Firstly, their sample is formed by American call options only, with at most one year to
maturity. I instead focus on both American call and put options with maturity at least equal to
six months. Further, they model equity as a 1–fold compound option as they assume that the
firms have issued a zero-coupon bond with maturity equal to the duration of the firm’s debt.
As shown in Section 1.2.1, Figure 1.6, when debt is clustered at one future date only, it would
be optimal for shareholders to take on as much debt as possible as the positive sensitivity
of equity with respect to business risk increases with leverage. This does not happens in a
3–fold compound option model for equity. Also, their definition of firm debt is much broader
than the one used here (as instance, they also include accrued expense and deferred income
as well as deferred federal tax in their definition of debt).

Secondly, their calibration methodology is different as they estimate a term structure of
asset volatility (embedded in their model) using the three most at-the-money call options and
the stock price. In fact, they opt for having two different parameters for the volatility of the
assets, one for the duration of the firm’s debt and one for the maturity of the option. In order
to make a more appropriate comparison with the Black-Scholes model, I instead estimate the
asset volatility surface by ‘inverting’ the compound option pricing model in order to match
both the option and stock price (that is, in the same spirit the equity implied volatility is
extracted à la Black-Scholes). Also, my estimates are based on both out-of-the-money call
and put options.

Finally, they need to have four equations to calibrate the compound option model as they
opt for embedding a term structure of the asset volatility within their model. If, instead, the
volatility is assumed constant as in a geometric Brownian motion, the implied default barrier
(and the implied strike price in the asset space) are implicit functions of the (unique) asset
volatility (see Appendix E), which can be retrieved using two equations only, namely (1.9)
and (1.13). Also, they do not obtain pseudo-European option prices but consider only those
options which, retrospectively, did not pay dividends between the valuation day and the
maturity of the option. This information, however, is not usually available when the market
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participants trade options. Therefore, the proposed approach seems more parsimonious and
makes the comparison with the Black-Scholes model more straightforward.

A second robustness test is based on the comparison of the estimated option-implied
asset volatility obtained with and without the additional calibration on the risk-neutral
probabilities of default extracted from CDS spreads. Then, the absolute percentage errors
|σV −σ ′

V |/σV are computed, where σ ′
V and σV are the implied asset volatility obtained with

and without the CDS calibration for the values of LGD = {50,60,80}%. This allows to infer
the market-implied loss given default consistent with option prices. Table 1.11 reports the
results.

The smallest absolute percentage error is observed for LGD = 60%, both for calls and
puts, consistently with Collin-Dufresne et al. (2010). The errors are also smaller for put than
call options, and they appear to be increasing with leverage.

The robustness section is concluded by re-running the regressions in Sections 1.4.2
and 1.4.4 for alternative values of loss given default (again, 60% and 80%). The results are
reported in the tables in Appendix H. The overall conclusions in terms of insensitivity of call
options to credit events and the ability of the measure of impact of credit risk to predict the
future changes in the negative skew of equity options remain unchanged.

1.5 Conclusions

In this paper I investigate the effect of credit related events on the pricing of equity options.
Given a firm which has issued n≥ 1 defaultable coupon-bearing bonds, I generalise the results
in Merton (1974) and Geske (1977), and price the firm’s equity as an n–fold compound option
call option on the asset value struck at the face values of the bonds outstanding. Further, I
extend the pricing formula in Geske (1979) and show that European vanilla options on the
firm’s equity are (n+ 1)–fold compound options written on the value of the firm’s assets.
This frameworks constitutes the most natural environment to study the impact of credit risk
on equity options consistently with the structural approach to default.

I further explore the predictions of a compound option model on a sample of 66 US firms
from January, 2013 to December, 2017. These are the constituents of the S&P100 which
neither issued preferred equity nor engaged into extraordinary financial operations (such as
M&As) during the selected sample period.

Given the probabilistic implications of the model, a new measure of impact of credit
risk on options is constructed, thus allowing to rank the latter based on how much they are
exposed to credit-related events. Consistently with the economic intuition and the results
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LGD

Call Put

LEV 50% 60% 80% 50% 60% 80%

AAPL 0.09 0.035 0.010 0.031 0.018 0.007 0.017
ABT 0.11 0.124 0.042 0.106 0.077 0.021 0.075
ACN 0.00 0.000 0.000 0.000 0.000 0.000 0.000
ALL 0.23 0.097 0.089 0.062 0.048 0.037 0.033
AMGN 0.29 0.103 0.091 0.062 0.078 0.045 0.055
AMZN 0.05 0.081 0.068 0.062 0.070 0.044 0.057
BA 0.10 0.025 0.025 0.013 0.027 0.012 0.021
BAC 1.79 1.172 0.570 0.943 0.212 0.272 0.149
BMY 0.08 0.030 0.015 0.023 0.016 0.009 0.012
C 1.63 1.562 0.615 1.284 0.125 0.281 0.311
CAT 0.60 0.390 0.193 0.281 0.261 0.060 0.221
CL 0.10 0.043 0.027 0.032 0.028 0.016 0.020
CMCSA 0.40 0.115 0.102 0.109 0.103 0.064 0.072
COF 1.02 0.499 0.361 0.358 0.380 0.234 0.249
COP 0.37 0.178 0.158 0.113 0.114 0.078 0.072
COST 0.08 0.021 0.020 0.013 0.024 0.010 0.019
CSCO 0.16 0.072 0.045 0.050 0.044 0.023 0.034
CVS 0.21 0.105 0.067 0.075 0.060 0.035 0.043
CVX 0.14 0.130 0.061 0.104 0.048 0.024 0.038
DD 0.21 0.092 0.066 0.063 0.057 0.035 0.042
DIS 0.11 0.081 0.019 0.072 0.054 0.010 0.051
EMR 0.11 0.126 0.049 0.105 0.073 0.020 0.071
EXC 0.81 0.550 0.416 0.389 0.272 0.185 0.165
F 1.99 1.205 0.742 0.926 0.577 0.120 0.483
FDX 0.17 0.085 0.072 0.054 0.053 0.042 0.034
GD 0.08 0.015 0.017 0.008 0.023 0.010 0.018
GE 1.00 0.509 0.293 0.364 0.294 0.108 0.233
HAL 0.22 0.077 0.066 0.048 0.057 0.046 0.035
HD 0.13 0.040 0.034 0.025 0.027 0.017 0.019
IBM 0.24 0.182 0.078 0.146 0.103 0.029 0.087
INTC 0.12 0.047 0.037 0.030 0.035 0.021 0.026
JNJ 0.06 0.022 0.018 0.014 0.009 0.008 0.006
JPM 1.51 0.751 0.658 0.527 0.176 0.141 0.122
KO 0.14 0.063 0.053 0.040 0.029 0.025 0.019
LLY 0.09 0.034 0.029 0.022 0.018 0.015 0.012
LOW 0.21 0.064 0.054 0.041 0.031 0.026 0.019
MCD 0.18 0.076 0.064 0.049 0.039 0.033 0.024
MDT 0.26 0.111 0.093 0.071 0.052 0.043 0.032
MMM 0.09 0.029 0.024 0.018 0.012 0.010 0.007
MO 0.14 0.082 0.069 0.053 0.033 0.028 0.021
MON 0.14 0.068 0.058 0.044 0.033 0.028 0.021
MRK 0.15 0.020 0.017 0.013 0.009 0.008 0.006
MS 2.71 0.786 0.699 0.577 0.554 0.615 0.715
MSFT 0.09 0.027 0.023 0.017 0.015 0.013 0.010
ORCL 0.21 0.070 0.059 0.045 0.041 0.034 0.026
OXY 0.12 0.065 0.055 0.042 0.046 0.039 0.030
PEP 0.22 0.137 0.115 0.088 0.051 0.043 0.032
PFE 0.17 0.065 0.055 0.041 0.033 0.027 0.021
PG 0.10 0.044 0.037 0.028 0.016 0.014 0.010
PM 0.19 0.109 0.092 0.070 0.043 0.036 0.027
RTN 0.14 0.046 0.038 0.029 0.025 0.021 0.016
SLB 0.13 0.050 0.042 0.032 0.028 0.023 0.017
SO 0.68 0.632 0.537 0.417 0.209 0.172 0.127
SPG 0.47 0.451 0.388 0.304 0.207 0.173 0.130
T 0.51 0.506 0.432 0.335 0.208 0.173 0.129
TGT 0.35 0.150 0.127 0.097 0.072 0.060 0.045
TWX 0.36 0.171 0.145 0.111 0.105 0.087 0.065
TXN 0.08 0.033 0.028 0.021 0.015 0.013 0.010
UNH 0.20 0.078 0.066 0.050 0.037 0.031 0.023
UNP 0.16 0.036 0.031 0.025 0.023 0.019 0.014
USB 0.47 0.253 0.214 0.164 0.084 0.069 0.051
UTX 0.23 0.103 0.087 0.066 0.044 0.037 0.028
VZ 0.55 0.476 0.406 0.314 0.211 0.175 0.130
WFC 0.85 0.492 0.422 0.327 0.172 0.138 0.096
WMT 0.20 0.089 0.075 0.057 0.043 0.036 0.027
XOM 0.06 0.020 0.017 0.013 0.008 0.007 0.005

Mean 0.212 0.148 0.153 0.092 0.066 0.073

Table 1.11 Absolute percentage errors between the option-implied asset volatility obtained with and without
the CDS spreads calibration for LGD = {50,60,80}%. The average errors are reported at the company level
(where the time-average leverage is also reported). The last row display the overall average, thus suggesting a
market implied loss given default of 60%.

51



The Impact of Credit Risk on Equity Options

in Carr and Wu (2011) (who, instead, opt for a reduced-form approach to default), call and
put option prices account for the possibility of the company to default very differently. More
specifically, call options do not price credit risk, whilst the price of put options does embed it.
To the best of my knowledge, this is the first work which explores and rigorously assesses this
phenomenon using a large sample of options (both in the cross-section and the time-series
dimension).

I finally attempt at predicting the future changes in the negative skew displayed by equity
options. I show that the novel measure of credit risk constructed on put prices is able to
forecast future movements of the skew for long-maturity equity options. To the best of
my knowledge, this is the first work which tries to capture and predict the changes in the
option skew with a measure of credit risk. Further work is however required to capture these
movements more precisely. Factors based on the channels described in Carr and Wu (2017)
could be constructed in order to improve the fit of the proposed regressions.

The implications of this study are multifaceted. Given the importance of default risk for
those assets which are more sensitive to events occurring in the left tail of equity distribution
(e.g. put options), risk-management implications for those instruments are relevant, especially
when the underlying is the equity of either highly-levered or financially-distressed companies.

For example, hedge funds often take highly levered positions in corporate bonds while
hedging away interest rate risk by shorting treasuries. As a consequence, their portfolios
become extremely sensitive to changes in credit spreads rather than changes in bond yields. If
there is a nonnegligible probability of large negative jumps in firm value, then the appropriate
hedging tool for corporate debt may not be the firm’s equity, but rather deep out-of-the-money
puts on the firm’s equity. In turn, the writer of these options will need to hedge its short
position.

It is trivial to show that the Delta-hedge under the Black-Scholes model, which ignores
credit risk, is different than the hedge prescribed by a compound option model. Ignoring
dividends for simplicity, the Delta-hedges under the Black-Scholes and a compound option
model differ as such

∂PCO
ξ

∂S
=

∂PCO
ξ

/∂V

∂S/∂V
=

∆
(n)
P,ξ

∆
(n)
S

̸= ξ Φ
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ξ dM

1

)
=

∂PBS
ξ
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.

Figure 1.14 shows that the Black-Scholes hedge underestimates the number of units of
the underlying required to hedge the short option position when the option is out-of-the-
money. Conversely, it overestimates the delta-hedged position in the equity when the option
is in-the-money. This bias would apply to any other hedging strategy based on the Greeks of
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Fig. 1.14 Comparison of the delta of call and put options under the Black-Scholes model and a 3–fold compound
option model for the underlying. Pictures (a) and (b) show the effect of ignoring the possibility of default for a
low levered firm (F1 = F2 = F3 = 10), whilst pictures (c) and (d) show the same comparison for a company
which is more levered (F1 = F2 = F3 = 30). The optimal hedge ratio is obviously more distorted for the case of
highly-levered firms as they are naturally more exposed to credit-related events. Also here K = 100, T = 0.5,
t1 = 1, t2 = 5, t3 = 10, r = 0.03 and ϖ = 0.05.
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the option when credit risk is not modelled. Also, this distortion becomes more and more
severe for increasingly levered firms. A more in-depth analysis of this imperfect hedging
when default risk is not taken into account is though left for future research.

Furthermore, the countintuitive findings in Carr and Wu (2017) of increasing leverage for
increasing diffusive volatility can be easily reconciled with a model in which shareholders
maximise the firm value, based on a targeted leverage ratio, and equity is modelled as a
compound option. Optimal capital structure policies, however, are not explored in this work
and left for future research as well.
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Chapter 2

Credit Spreads, Leverage and Volatility:
a Cointegration Approach

Abstract

This work documents the existence of a cointegration relationship between credit spreads,
leverage and equity volatility for a large set of US companies. It is shown that accounting for
the long-run equilibrium dynamic between these variables is essential to correctly explain
credit spread changes. Using a novel structural model in which equity is modelled as a
compound option on the firm’s assets, a new methodology for estimating the unobservable
market value of the firm’s assets and volatility is developed. The proposed model allows
to significantly reduce the pricing errors in predicting credit spreads when compared with
several structural models. In terms of correlation analysis, it is shown that not accounting
for the long-run equilibrium equation embedded in an Error Correction Mechanism (ECM)
results into a misspesification problem when regressing a set of explanatory variables onto
the spread changes. Once credit spreads, leverage and volatility are correctly modelled, thus
allowing for a long-run equilibrium, the fit of the regressions sensibly increases if compared
to the results of previous research. It is further shown that most of the cross-sectional
variation of the spreads appears to be more driven by firm-specific characteristics rather than
systematic factors.

JEL classification: C58, C61, G13, G32, G33
MSC classification: 91G40, 91G50, 91G60
Keywords: credit spreads, financial leverage, asset volatility, cointegration, compound

options
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2.1 Introduction

Structural models of credit risk have faced several difficulties in explaining both the level
and changes of bond and CDS spreads observed in the data since its pioneering introduction
by Merton (1974). The early empirical work by Jones et al. (1983) shows that the Merton
model for callable coupon bonds overprices such bonds. This findings have motivated a
variety of extensions, such as allowing for default before the bond maturity, stochastic interest
rates, jumps, and strategic default. Despite these extension, the structural approach is still
questioned about its ability in explaining credit spreads (Huang and Huang 2012).

Academic research has taken mainly three routes in order to analyse and document this
surprising lack of accuracy of structural models. First, attempts to empirically implement
models on individual corporate bond spreads have failed (Eom et al. 2004). Mixed evidence
supporting the structural approach is instead documented for CDS spreads (Ericsson et al.
(2009), Zhang et al. 2009), thus suggesting liquidity and tax arguments for the lack of success
in case of bonds (Driessen 2005, Longstaff et al. 2005). Also, Elton et al. (2001) find that
expected losses account for a low fraction of spreads for investment grade bonds. Collin-
Dufresne et al. (2001) document that proxies for credit risk explain only a small portion of
changes in yield spreads and that the unexplained portion is driven mainly by factors that are
independent of both credit-risk and standard liquidity measures.

Secondly, efforts to calibrate models to observable moments including historical default
rates and Sharpe ratios have been unable to match average credit spreads levels (the so-
called credit spread puzzle). Huang and Huang (2012), testing over an extensive class of
structural models, show that credit risk accounts for only a small fraction of yield spreads
for investment-grade bonds of all maturities, with the fraction lower for bonds of shorter
maturities, but it accounts for a much higher fraction of yield spreads for high-yield bonds.
They calibrate each of the models on the historical default loss experienced and equity risk
premia, and demonstrate that different models (under)predict similar credit risk premia. In
partial conflict with these findings is Feldhütter and Schaefer (2018). In their work, the
authors argue that the appearance of a credit spread puzzle strongly depends on the period
over which historical default rates are measured and how default probabilities are estimated
from default rates. Developing a new estimation methodology, they are able to calibrate
the Black and Cox (1976) model to historical default rates and the equity risk premium, thus
matching the average level of investment grade spreads well. However, model spreads for
speculative-grade debt appear still too low and this underpricing is attributed to illiquidity.
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Finally, models have been unable to jointly explain dynamics of credit spreads and
equity volatilities. Within this framework of research, Campbell and Taksler (2003) find that
idiosyncratic volatility can explain one-third of yield spreads for investment grade bonds rated
below Aaa. An important recent development which examines potential links between the
credit spread puzzle and macroeconomic conditions using consumption-based asset-pricing
is Chen et al. (2009). The authors show that the Campbell and Cochrane (1999) pricing
kernel combined with some mechanism to match the countercyclical nature of defaults is
able to capture the level and time variation of Baa-Aaa spreads. However, they also show
that a pricing kernel that explains the equity premium with a constant Sharpe ratio cannot
explain the credit spread.

A very recent paper which tries to address all the above-mentioned failures of structural
models of default in explaining credit spreads is Du et al. (2019). In their paper, the authors
use the framework in Leland (1994) (i.e. the firm has issued a consol bond) in which the
unlevered asset process is modelled as in Heston (1993). Thus allowing for stochastic
volatility in firm value process and calibrating the variance risk premium consistently with
reasonable firm-level Sharpe ratios, they are first able to resolve the credit spread puzzle for
medium- to longer-term maturities for representative Baa- and Aa-rated firms. Secondly,
introducing jumps in the asset value process allows to fit shorter term credit spreads as well.
Moreover, their model succeeds at explaining the joint dynamics of credit spreads and equity
volatilities, and allows them to identify economically significant variance risk premia which
explain an important part of spread levels.

Based on the evidence that a time-varying volatility of the asset is needed in order to
explain the level of credit spread over medium- and long-term maturities, a novel estimation
technique of the volatility of the assets is introduced. The proposed model and estimation
technique is much simpler than the one in Du et al. (2019). As a matter of fact, their
calibration methodology relies on the Fortet’s Lemma, maximum likelihood and Chebychev
interpolation in the case of stochastic diffusive asset volatility (and, on top of those, on
simulated maximum likelihood when jumps are introduced). They have nine parameter, over
a total of twelve, to estimate. In this paper, even though the asset value process is assumed to
follow a geometric Brownian motion (thus asset volatility is not stochastic), the proposed
estimation methodology allows to retrace the time-series of the asset volatility for a given
firm. Moreover, the time-series of the equity volatility can be also estimated accordingly.

This work departs from the previous attempts to explain the level and changes of CDS
spreads as a new estimation technique is implemented for those variables which structural
models of default predict to be the drivers for the spreads. More specifically, a simple
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estimation which relies only on the joint calibration on the price of the equity and CDS
spreads (and, indirectly, by the book value of the firm’s debt) is proposed.

The choice of using CDS instead of bond spreads is motivated by the fact that former
constitute a more direct and clean signal for the underlying default risk. In fact, CDS spreads
provide relatively pure pricing of the default event of the underlying entity as they are
typically traded on standardised terms. In fact, unlike bonds, CDSs have a constant maturity,
the underlying instrument is always par valued, they concentrate liquidity in one instrument,
and are not affected by different taxation regimes; also, bond spreads are more likely to be
affected by differences in contractual arrangements, such as differences in seniority, coupon
rates, embedded options, and guarantees. Secondly, many corporate bonds are bought by
investors who simply hold them to maturity, and the secondary market liquidity is therefore
often poor. Furthermore, shorting bonds is even more difficult in the cash market as the
repo market for corporate bond is often illiquid, and the tenor of the agreement is usually
very short. CDS contracts instead allow investors to implement trading strategies to hedge
credit risk over a longer period of time at a known cost. Moreover, as shown by Blanco et al.
(2005), CDS spreads tend to respond more quickly than bond spreads to changes in credit
conditions in the short run.

The goodness of estimates of the market value of the asset and volatility of the firm
is fist tested as their own ability to predict the one-period ahead CDS spreads. Secondly,
an econometric analysis of the determinants of the credit spreads is conducted. Previous
works such as Collin-Dufresne et al. (2001), Cremers, Driessen, Meanhout and Weinbaum
(2008), Ericsson et al. (2009) and Zhang et al. (2009) investigate the link between credit
spreads and their determinants as predicted by structural models of default via regressions.
There, a set of variables (usually leverage, equity volatility and characteristics of the term
structure of interest rates) is regressed onto bond or CDS spreads in order to explain their level
and changes. This paper shows that use of such regressions to explain the level of the spreads
(either bonds or CDS) is intrinsically flawed. As shown later in the paper, the level of credit
spreads, as well as other variables entering the regressions, display a unit root. Therefore,
any regression analysis based on these variables would detect spurious correlations. Hence,
the only consistent way to tackle this problem is investigating the presence of a long-run
equilibrium equation between these variables using an Error Correction Mechanism (ECM),
as introduced by Engle and Granger (1987). If these variables are cointegrated (that is there
exists a linear combination of them which is stationary), an ECM can be estimated and the
economic relationship between them can be further investigated. If the variables are not
cointegrated, only the changes in spreads can be explained by regressing the first differences
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those variables onto the former (alternatively, a VAR can be used). The use of an ECM, when
possible, is more desirable as it allows to shed light on the economic, and not only statistical,
relationship between the variables.

It still appears surprising how previous works fully ignore a possible cointegration,
despite Blanco et al. (2005) develop a VECM to investigate the cointegration of bond and
CDS spreads. Such analysis is possible only if the time-series component of the spreads
is non-stationary. Here, instead, a cointegration analysis is conducted between the CDS
spreads and their determinants as predicted by the structural models of default. This leads to
a cointegrated system where credit spreads, financial leverage an the firm’s riskiness comove
adjusting to a long-run equilibrium. Empirical results discussed in this paper support the
existence of a cointegrating relationship between these variables

The rest of the paper is organised as follows. Section 2.2 discusses the compound option
structural model of default alongside the estimation methodology for the firm’s asset value
and volatility. Section 2.3 explains how the model is used out-of-sample to reprice the
spreads and its performance is compared with the one of other structural models. Section 2.4
models the cointegration relationship between the variables and the short-term adjustment is
estimated. Finally, Section 2.5 performs some robustness checks, and Section 2.6 concludes.

2.2 Estimation methodology and Data Description

In order to estimate the volatility of the asset, the following set of variables for each firm
are needed: (1) the value of the equity, (2) the term structure of the survival probability and,
(3) the face value of its debt as well as the time it due. The model employed is the same as
in Maglione (2019) in which equity is seen as a n–fold compound call option written on the
firm assets struck at the face value of the n bonds outstanding. Under this framework, default
times are defined as

τ := inf
i∈I

{ti : S⋆i (V )< Fi}

where I = {1, . . . ,n} and S⋆i (V ) is the continuation value of equity, which is a function of the
firm assets V . That is, the default time occurs the first time at which the value of the equity is
lower than the face value of the bond due; by model assumptions, the firm can default only at
discrete points in time.

More specifically, it can be shown that the value of the firm’s equity can be written as

S = e−ϖtnVM(τ ≥ tn)−
n

∑
i=1

e−rtiFiQ(τ ≥ ti) , (2.1)
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where V is the contemporaneous value of the assets, (Fi)1≤i≤n represent the sequence of the
face value of the bond issued due at time ti, ϖ the payout rate (reflecting both dividends and
coupons), r the constant continuously compounded risk-free rate, and Q(τ ≥ ti) (respectively
M(τ ≥ ti)) the probability of the firm surviving up to ti under the risk-neutral measure
(respectively the firm-value fund risk measure). If the asset value process follows a geometric
Brownian motion with volatility σV , the probabilities in (2.1) can be computed in terms of
multivariate Gaussian integrals, that is

S (V,σV ) = e−ϖtnV Φn

(
dM;ΓΓΓn

)
−

n

∑
i=1

e−rtiFiΦi
(
dQ

i ;ΓΓΓi
)

(2.2)

where dM :=
(
dM

i
)

1≤i≤n and dQ
i =

(
dM

j −σV
√

t j

)
1≤ j≤i

with

dM
i =

ln(V/V̄i)+
(
r−ϖ +σ2

V/2
)

ti
σV

√
ti

, ΓΓΓi =



1
√

t1
t2

√
t1
t3

. . .
√

t1
ti

1
√

t2
t3

. . .
√

t2
ti

. . . . . . . . . . . . . . .

1
√

ti−1
ti

1


,

and Φi(z;ΓΓΓ) the cumulative distribution function of a i-dimensional normal random vec-
tor with zero mean and covariance matrix ΓΓΓ calculated over the set×i

j=1(−∞,z j). Also,
(V̄i)1≤i≤n is the latent sequence of default thresholds embedded in the firm’s capital structure.

The unobservable parameters of the model are the value of the firm assets, V , and the asset
volatility, σV . As the sequence of risk-neutral probabilities Q(τ ≥ ti) can be estimated from
the CDS spreads in a model-free fashion(Brigo 2005), the following system of non-linear
equations can be employed to estimate both variables,S (V,σV ) = S

Φ
Q
i (V,σV ) = Φ̂

Q
i ∀i ∈ I.

(2.3)

Here, the functional form of S (V,σV ) and Φ
Q
i (V,σV ) = Φi

(
dQ

i (V,σV );ΓΓΓi
)

are obtained
from (2.2). S is the observed stock price, whist Φ̂

Q
i are the model-free risk neutral probability

of survival (for maturity ti) estimated from the CDS spread. Notice that, if i ≥ 2, the system
is overdetermined as there are more equations than unknowns; thus, the system can be solved
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with nonlinear least squares with Jacobian1. More specifically, the Jacobian of the problem
is given by an (i+1)×2 matrix such that

J =

 ∂S
∂V

∂S
∂σV

∂Φ
Q
i

∂V
∂Φ

Q
i

∂σV

=

[
∆S νS

∂Φ
Q
i

∂V
∂Φ

Q
i

∂σV

]

where ∆S and νS are the Delta and the Vega of the equity respectively. Analytical expressions
for the Jacobian are available in Appendix I. Once the estimates of V and σV are obtained,
the volatility of the equity and the firm’s leverage are calculated accordingly, that is

σS = σV
V
S

∆S,
D
S
=

Ve−ϖtn −S
S

. (2.4)

This novel estimation technique is applied to a set of 64 US companies, constituents
of the S&P100 during the period January 2013 – December 2017. Companies with either
preferred equity or subject to merges or acquisitions are excluded. Also, only companies for
which CDS spreads are available are included. Table 2.1 displays the complete name list,
alongside the SIC code, credit rating and industry in which the company operates in.

Data on stock prices, number of shares outstanding, dividends and the risk-free yield
curve (and other variables used in the next sections) are obtained from Bloomberg. CDS
spreads are from Thompson Reuters Datastream. Information relative to the firms’ capital
structures and cost of debt is gathered from Compustat and the 10-K documents. All the
observations are collected at weekly frequency frequency, over a total of 260 week, with the
exception of the information on the firm’s capital structure which is available at quarterly
frequency.

In order to implement the estimation in (2.3), the term-structure of the firm’s debt must
be known or approximated somehow. I opt for clustering the firm’s debt at three fixed point,
ti = {1,5,10} years, i = 1,2,3. This clustering mirrors the availability from Compustat of
short-term debt which is clustered at one year horizon; then the other fixed future dates are
chosen as the most liquid CDS contracts are those with 5– and 10–year maturities.

The face values of the bond due in t1 = 1 represents the company’s short-term debt and
is computed as the Compustat variable DD1Q (Long-Term Debt Due in One Year), that is
F1 = DD1Q. The remaining two bonds clustered at t2 = 5 and t3 = 10 are obtained from
DLTQ (Long-Term Debt Total), such that F2 +F3 = w ·DLTQ+(1−w) ·DLTQ. Ultimately, the

1Despite nonlinear least squares can also be implemented without knowing the Jacobian matrix, the use of
the latter reduces the number of iterations of about 66%, significantly improving speed and accuracy.
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Ticker SIC Division S&P Credit Rating

AAPL 3663 Manufacturing AA+
ABT 2834 Manufacturing A+
ALL 6331 Finance, Insurance and Real Estate A-
AMGN 2836 Manufacturing A
BA 3721 Manufacturing A
BAC 6020 Finance, Insurance and Real Estate A-
BMY 2834 Manufacturing A+
C 6199 Finance, Insurance and Real Estate BBB+
CAT 3531 Manufacturing A
CL 2844 Manufacturing AA-
CMCSA 4841 Transportation, Communications, Electric, Gas and Sanitary service A-
COF 6141 Finance, Insurance and Real Estate BBB
COP 1311 Mining A
COST 5399 Wholesale Trade A+
CSCO 3576 Manufacturing AA-
CVS 5912 Retail Trade BBB+
CVX 2911 Manufacturing AA-
DD 2821 Manufacturing A-
DIS 4888 Transportation, Communications, Electric, Gas and Sanitary service A
EMR 3823 Manufacturing A
EXC 4911 Transportation, Communications, Electric, Gas and Sanitary service BBB
F 3711 Manufacturing BBB-
FDX 4513 Transportation, Communications, Electric, Gas and Sanitary service BBB
GD 3721 Manufacturing A+
GE 4911 Transportation, Communications, Electric, Gas and Sanitary service AA+
HAL 1389 Mining A
HD 5211 Wholesale Trade A
IBM 7370 Services AA-
INTC 3674 Manufacturing A+
JNJ 2834 Manufacturing AAA
JPM 6020 Finance, Insurance and Real Estate A-
KO 2086 Manufacturing AA-
LLY 2834 Manufacturing AA-
LOW 5211 Wholesale Trade A-
MCD 5812 Retail Trade A
MDT 3845 Manufacturing A
MMM 2670 Manufacturing AA-
MO 2111 Manufacturing BBB+
MON 5169 Retail Trade BBB+
MRK 2834 Manufacturing AA
MS 6211 Finance, Insurance and Real Estate BBB+
MSFT 7372 Services AAA
ORCL 7370 Services AA-
OXY 1311 Mining A
PEP 2080 Manufacturing A
PFE 2834 Manufacturing AA
PG 2840 Manufacturing AA-
PM 2111 Manufacturing A
RTN 3812 Manufacturing A
SLB 1389 Mining AA-
SO 4911 Transportation, Communications, Electric, Gas and Sanitary service A-
SPG 6798 Finance, Insurance and Real Estate A
T 4812 Transportation, Communications, Electric, Gas and Sanitary service BBB+
TGT 5331 Wholesale Trade A
TWX 8748 Services BBB
TXN 3674 Manufacturing A+
UNH 6324 Finance, Insurance and Real Estate A+
UNP 4011 Transportation, Communications, Electric, Gas and Sanitary service A
USB 6020 Finance, Insurance and Real Estate A+
UTX 3724 Manufacturing A-
VZ 4812 Transportation, Communications, Electric, Gas and Sanitary service BBB+
WFC 6020 Finance, Insurance and Real Estate A
WMT 5331 Retail Trade AA
XOM 1311 Mining AAA

Table 2.1 List of the selected companies (ticker) and their SIC code. The sample is further divided into four
categories based on the industry/type or business: (a) Financial companies; (b) Mining, Energy and Utilities
companies; (c) Manufacturing; (d) Retail, Wholesale and Services. Credit ratings are obtained from Compustat
and the mode of the ratings over Jan-2013 to Dec-2017 is reported.
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weight is set as w = 1/3, as motivated in the next section. This results in an sequence of debt
outstanding which is increasing with maturities.

The choice of setting n = 3 is considered optimal as it is the smallest number of maturity
dates needed in order to match both the level, slope and curvature of the term structure of the
survival probabilities extracted from the CDSs. As a matter of fact, an effective calibration
of the model should aim at reproducing the aforementioned term structure as accurately as
possible. Furthermore, as shown in Appendix J, a 3–fold compound option model displays
some desirable properties in terms of leverage.

2.3 Model-implied Spreads and Probabilities of Survival

Consider the payoff of a CDS initiated at t0 = 0 with maturity t j and intermediate premium
payments at (ti)

j
i=1, j ∈N, and notional equal to one (Brigo and Mercurio (2006))

Π j(t)=DF(t,τ)(τ − t̄)s1{0<τ≤t j}+s
j

∑
i=1

DF(t, ti)(ti − ti−1)1{τ≥ti}−DF(t,τ)LGD1{0<τ≤t j}

with 0 ≤ t < t j, t̄ the last payments date before t, that is t̄ := sup1≤i≤ j {ti ≤ τ}, s the CDS
spread paid by the protection buyer (before default, if it happens), LGD the loss given
default, and DF(ti, t j) the (stochastic) discount factor between ti and t j. The first term
is the discounted accrued rate at default and represents the compensation the protection
seller receives for the protection provided from the last ti until default τ . The terms in the
summation represent the CDS rate premium payments if there is no default: this is the
premium received by the protection seller for the protection being provided. The final term is
the payment of protection at default, if this happens before final t j.

If default is assumed to happen only at reset dates (that is, accrued interests are ignored),
the first summand vanishes, and the t j-maturity CDS price in t0 = 0, according to risk-neutral
valuation, is

CDS j (s,LGD) = EQ [
Π j(0)

]
= s

j

∑
i=1

P(0, ti)(ti − ti−1)Q(τ ≥ ti)−LGD
∫ t j

0
P(0, t)dQ(τ ≥ t)

where P(ti, t j) is the ti-value of a zero-coupon bond with maturity t j ≥ ti. Following common
market practice, despite being the loss given default a random variable in (0,1), here it is
set as a known parameter. More specifically, the values that are commonly employed by the
literature and suggested by the ISDA are LGD = {0.5,0.6,0.8}.
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If the term structure of the risk-free interest rates is also known at inception (and assumed
as a deterministic function of the maturity only, rt := r0(t)), then the previous expression
simplifies as

CDS j (s,LGD) = s
j

∑
i=1

e−rti ti (ti − ti−1)Q(τ ≥ ti)−LGD
∫ t j

0
e−rt t dQ(τ ≥ t) .

The CDS spread for maturity t j is the value of s, say s j, which makes the price
the value of the CDS contract equal to zero when the contract is initiated, that is s j :={

s > rt j : CDS j (s,LGD) = 0
}

. Hence,

s j = LGD
∫ t j

0 e−rt t dQ(τ ≥ t)

∑
j
i=1 e−rti ti (ti − ti−1)Q(τ ≥ ti)

≈ LGD
∑

j
i=1 e−rti ti [Q(τ ≥ ti−1)−Q(τ ≥ ti)]

∑
j
i=1 e−rti ti (ti − ti−1)Q(τ ≥ ti)

(2.5)
Equation (2.5) is used to obtain the CDS spread based on the model-implied risk-neutral

probabilities of survival calculated via the estimated parameters (V,σV ) such that (2.3) is
met. The estimated asset value and volatility at time t are used to forecast both survival
probabilities and CSD spread are at t +1 (one week ahead).

As the probabilities of survival, and therefore the spread, depend on both the loss
given default parameter and the aggregation scheme of the firm’s capital structure, different
combinations are investigated. More specifically, different values of the weight w in F2+F3 =

w ·DLTQ+(1−w) ·DLTQ are tested. These are w = {1/2,1/3,2/3}.
Tables 2.2, 2.3 and 2.4 report the results on the pricing error of the 3–fold compound

option model for w equal to 1/2, 1/3 and 2/3 respectively. For each aggregation scheme, the
pricing error are obtained for LGD = {0.5,0.6,0.8}. The average CDS spread quoted by the
market is reported alongside the one implied by the model for different LGDs. Spreads are
expressed in basis points. The signed differences and percentage errors of the average market
and the model-implied CDS spreads are reported as well as the percentage error between the
model-free and model-implied risk-neutral probabilities of survival. Results are clustered
based on contractual maturities (1, 5 and 10 years) and on leverage.

The aggregation scheme in Table 2.2 (w = 1/2) underprices short-term spreads of low-
levered firms (as extensively documented in the literature for models without jumps) as well
as long-term spreads of medium- and high-levered firms. For low- and medium-levered firms,
pricing errors are small for short- and long-term CDS contracts (4 bps); the error increases
for highly levered firms and in the case of the 5-year spread (46 bps).
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Credit Spreads, Leverage and Volatility: a Cointegration Approach

The second aggregation scheme as in Table 2.3 (w = 1/3) further underpredicts short-
term spreads of all but highly-levered firms. This is driven by how the default barrier is
computed in the compound option model (and common sense): the more debt is due in the
distant future, the more likely is the firm to survive at shorter horizons. Seemingly as the
previous scheme, it underprices also the long-maturity spread of highly levered firms. The
pricing error in the instance of underpricing is around 6 bps; when the model overprices the
predicted spreads, the error is about 24 bps.

Finally, the last aggregation scheme in Table 2.4 (w = 2/3) consistently overprices short-
and medium-term spreads of about 46 bps, whilst underprices long-term spreads of 14 bps.
As explained above, this is due by the fact that if w = 2/3, the larger fraction of the firm’s
debt is due at year one and five.

The empirical performance of the compound option model in predicting the one-week-
ahead spread based on the selected aggregation scheme and level of loss given default is
summarised in Table 2.5. The smallest average absolute mean error (expressed in basis
points) is obtained for w = 1/3 and LGD = 50%. The same value of loss given default is
also employed by Duffie and Singleton (1999) and Huang and Huang (2012). Because most
of previous works focus on the 5–years CDS spread as it is the most actively traded in the
market, the same average error is checked for that sub-sample. The same conclusion upon
the best aggregation scheme is obtained.

In order to compare the ability of the compound option model to price credit spreads,
the results reported in Huang and Huang (2012) are used. There, the authors calibrate seven
different structural models of default with different desirable features. More specifically, they
analyse the performance of the following models: a baseline simple model with and without
stochastic interest rates (Longstaff and Schwartz 1995), a model with endogenous default
barrier (Leland and Toft 1996), a model with strategic default (Anderson and Sundaresan
1996, Mella-Barral and Perraudin 1997), a model with mean-reverting leverage ratios (Collin-
Dufresne and Goldstein 2001), a model with countercyclical market risk premium, and a
jump-diffusion model. All the models underpredict credit spreads. Average absolute mean
errors are reported in Table 2.6. Similarly, the compound option model (w = 1/3 and LGD =
50%) generally underpredicts the spread. However, the extent of the underpricing is much
smaller: the proposed model is able to reduce the underpricing to 9.58 bps, whist the pricing
errors of other structural models range from 83.19 to 105.67 bps.

Given the extent of the reduction in the pricing error, it is worth stressing further how
the model implied spreads were calculated. In terms of market variables, the model spread
depends (via the risk-neutral probabilities) on the equity value, the leverage of the company,
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2.3 Model-implied Spreads and Probabilities of Survival

the level of interest rates and the asset volatility. The proposed methodology is able to
estimate the asset volatility and value at time t using the known capital structure as well as
the stock price. Once this volatility is estimated, say σ⋆

V,t , it is then used one week ahead
to predict the spread. Therefore the spread at time t + 1 is essentially a function such as
ĈDSt+1 = f (St+1,rr+1,LEVt+1,σ

⋆
V,t), where the listed variables are the contemporaneous

stock price, level of interest rates, leverage and the previous-week asset volatility respectively.
As r and LEV are unlikely to vary substantially from week to week, the proposed estimation
shows how the equity, alongside the past volatility, is a sufficient statistic for predicting
spreads in a compound option model.

However, it may be argued that what is being shown is simply predicting the credit spread
at time t + 1 with the credit spread at time t. This issue might be very impactful on the
analysis as the CDS data do show a significant autoregressive component (which is indeed
modelled in the next section). In order to address this concern, the following variables are
calculated2:

Xt = CDSt −CDSt−1, Yt = CDSt − ĈDSt ,

where CDS is the observed market spread and ĈDS is the spread estimated with the proposed
methodology. If this analysis is actually using the past spread to predict the current one, the
distributions of X and Y should be, if not identical, relatively similar.

Thus, the two-sample Kolmogorov-Smirnov test is conducted on X and Y for each
company in the dataset. Under the null hypothesis X and Y have been drawn from the same
distribution. Table 2.7 reports the p-values for each company and for the three tenors (1–, 5–
and 10–year). In the case of 1– and 5–year spreads, the null hypothesis is always rejected; for
the 10–year spread, there are two companies (namely C and F) for which the test fails to reject
the null hypothesis at 5% significance level. Given these results, it can be fairly concluded
that the proposed model and estimation technique do not price the contemporaneous spread
as the spread realised in the previous period.

To conclude, the sensible reduction in terms of underpricing may suggest that the com-
pound option mechanism is better able at capturing default dynamics that previous models3.
Better fits are only obtained by Du et al. (2019); however, their model with stochastic asset
volatility and jumps is far more complicated to calibrate than the proposed compound option
model of default.

2Given the results discussed in the previous paragraphs, the test is conducted setting LGD = 50% and
w = 1/3.

3Huang and Huang (2012) explicitly decide not to analyse the compound option model in Geske (1977) as
“it is not analytically tractable for our calibration approach”.
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Credit Spreads, Leverage and Volatility: a Cointegration Approach

In the next section, the link between credit spreads and the variables which structural
models of default predict driving the spreads is investigated. Among these variables, market
leverage and equity volatility are used. Given the results of this section, the combination
w = 1/3 and LGD = 50% is used throughout. Different combinations of the parameters are
further tested as a robustness check in Section 2.5.

2.4 Estimating the Cointegration

When regressing credit spread changes on the changes of the variables which structural
models of default would predict to influence the spread (as in Collin-Dufresne et al. 2001),
if the levels the selected variables are non-stationary and cointegrated, these regressions
are misspecified. Moreover, regressions on non-stationary levels (as in Cremers, Driessen,
Meanhout and Weinbaum 2008, Ericsson et al. 2009 and Zhang et al. 2009) may lead to
spurious correlations. Therefore, it should not be surprising that the regressions on the levels
work ‘better’ than the ones on the changes: despite the OLS estimators being super-consistent,
the R2s and t-statistics are likely to be large even if the underlying variables are not truly
correlated. As a consequence, reliable inference cannot be made.

For illustration purposes, Figure 2.1 shows the 5-year CDS spreads, financial leverage and
equity volatility (estimated as in (2.4)) for four companies operating in different industries.
These variable are evidently non-stationary, also hinting at strong comovemnts. Unit root
tests confirm the non-stationarity of all the variables. Identical conclusions are drawn for
the other companies in the sample, also if the model-implied market leverage is replaced by
book leverage.

Despite the estimation technique for the equity volatility is new, the other variables still
display stochastic trends. Hence, if cointegration is present, the appropriate way to model the
level of credit spreads is an Error Correction Mechanism. Based on the structural approach of
default, the spread is likely to follow upon chances on the firm’s financial leverage (D/S) and
riskiness (σS) and not vice versa. Therefore, the model is implemented à la Engle-Granger
instead of using a VECM (that is, only one cointegrating vector is estimated).

Assume the long-run equilibrium equation to be

CDSi,t = θi,0 +θi,LLEVi,t +θi,V VOLi,t + εi,t , (2.6)

in which (CDS, LEV, VOL)i,t are, respectively, the CDS spread (for a given maturity), model-
implied market leverage (D/S) and equity volatility (σS) of firm i at time t. CDS is observed,
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2.4 Estimating the Cointegration

All maturities
LGD

w 0.50 0.60 0.80

1/2 11.86 24.51 30.00
1/3 9.58 20.14 25.86
2/3 20.99 44.80 55.85

5–year
LGD

w 0.50 0.60 0.80

1/2 24.96 49.43 59.25
1/3 16.85 37.66 49.78
2/3 44.08 90.14 110.80

Table 2.5 Average absolute mean errors (expressed in basis points). Considering both all maturities and the
5–year maturity only, which is the most liquid, the error is smallest for the aggregation scheme w = 1/3. Also,
setting LGD = 0.5 makes the pricing error smallest. As expected, the largest average pricing error is for the
scheme w = 2/3 which puts a lot of debt expiring in the short-term (which is unlikely to be for most of the
companies). Reported figures are weighted averages in which the weights are the number of company in each
leverage bucket.

Structural Model AAME

Baseline 89.49
Baseline plus stochastic interest rates 105.67
Endogenous default barrier 86.27
Strategic default 76.89
Mean-reverting leverage ratios 93.25
Countercyclical market risk premium 83.19
Jump-diffusion 84.78

Table 2.6 Average absolute mean errors (expressed in basis points) based on the results in Huang and Huang
(2012). There the authors analyse the ability of structural models of default to reproduce observed credit spreads.
They test: a simple baseline model with and without stochastic interest rates (Longstaff and Schwartz 1995),
a model with endogenous default barrier (Leland and Toft 1996), a model with strategic default (Anderson
and Sundaresan 1996, Mella-Barral and Perraudin 1997), a model with mean-reverting leverage ratios (Collin-
Dufresne and Goldstein 2001), a model with countercyclical market risk premium, and a jump-diffusion model.
A loss given default parameter of 48.69% is used by the authors for their calibration.
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Credit Spreads, Leverage and Volatility: a Cointegration Approach

1–year 5–year 10–year 1–year 5–year 10–year

AAPL 0.0000 0.0000 0.0000 LLY 0.0000 0.0000 0.0000
ABT 0.0000 0.0000 0.0000 LOW 0.0000 0.0000 0.0000
ALL 0.0000 0.0000 0.0000 MCD 0.0000 0.0000 0.0000
AMGN 0.0000 0.0000 0.0000 MDT 0.0000 0.0000 0.0000
BA 0.0000 0.0000 0.0000 MMM 0.0000 0.0000 0.0000
BAC 0.0000 0.0000 0.0003 MO 0.0000 0.0000 0.0000
BMY 0.0000 0.0000 0.0000 MON 0.0000 0.0000 0.0000
C 0.0000 0.0000 0.1693 MRK 0.0000 0.0000 0.0000
CAT 0.0000 0.0000 0.0000 MS 0.0000 0.0000 0.0000
CL 0.0000 0.0000 0.0000 MSFT 0.0000 0.0000 0.0000
CMCSA 0.0000 0.0000 0.0000 ORCL 0.0000 0.0000 0.0000
COF 0.0000 0.0000 0.0002 OXY 0.0000 0.0000 0.0000
COP 0.0000 0.0000 0.0000 PEP 0.0000 0.0000 0.0000
COST 0.0000 0.0000 0.0000 PFE 0.0000 0.0000 0.0000
CSCO 0.0000 0.0000 0.0000 PG 0.0000 0.0000 0.0000
CVS 0.0000 0.0000 0.0000 PM 0.0000 0.0000 0.0000
CVX 0.0000 0.0000 0.0000 RTN 0.0000 0.0000 0.0000
DD 0.0000 0.0000 0.0000 SLB 0.0000 0.0000 0.0000
DIS 0.0000 0.0000 0.0000 SO 0.0000 0.0000 0.0000
EMR 0.0000 0.0000 0.0000 SPG 0.0000 0.0000 0.0000
EXC 0.0000 0.0000 0.0019 T 0.0000 0.0000 0.0000
F 0.0000 0.0000 0.0767 TGT 0.0000 0.0000 0.0000
FDX 0.0000 0.0000 0.0000 TWX 0.0000 0.0000 0.0000
GD 0.0000 0.0000 0.0000 TXN 0.0000 0.0000 0.0000
GE 0.0000 0.0000 0.0000 UNH 0.0000 0.0000 0.0000
HAL 0.0000 0.0000 0.0000 UNP 0.0000 0.0000 0.0000
HD 0.0000 0.0000 0.0000 USB 0.0000 0.0000 0.0000
IBM 0.0000 0.0000 0.0000 UTX 0.0000 0.0000 0.0000
INTC 0.0000 0.0000 0.0000 VZ 0.0000 0.0000 0.0000
JNJ 0.0000 0.0000 0.0000 WFC 0.0000 0.0000 0.0002
JPM 0.0000 0.0000 0.0067 WMT 0.0000 0.0000 0.0000
KO 0.0000 0.0000 0.0000 XOM 0.0000 0.0000 0.0000

Table 2.7 p-values of the two-sample Kolmogorov-Smirnov test on X and Y in order to ascertain that the
proposed methodology does not predict CDSt+1 as CDSt . The null hypothesis of X and Y been drawn from the
same distribution is rejected for every company and tenor of the CDS, with the exception of two companies for
which the test fails to reject the null hypothesis at 5% significance level in the case of the 10-year spread.
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whist LEV and VOL are estimated as in (2.4). Unreported results, available upon request,
shows that the same conclusions discussed below are obtained using firms’ book leverage.
As, ultimately, default times are driven by the value of the equity at reimbursement dates, the
volatility of the equity is used in the cointegration equation.

These are the variables that structural models of default predict as determinants of
default probabilities and, therefore, credit spreads. If the variables are are random walks and
cointegrated, then the error term εi,t is stationary for all i. Figure 2.2 plots the residuals of the
regressions (2.6) for the same four companies taken into consideration in Figure 2.1. Visual
inspection, supported by unit root tests, confirms the presence of cointegration between the
CDS spreads, leverage, and volatility. This should not come as a surprise as structural model
of defaults identify these variables as the drivers of credit spreads. What comes as a surprise
is how previous research has never attempted at explaining this link via an Error Correction
Mechanism. Same conclusions regarding the existence of a cointegrating vector apply to the
whole sample of firms, as well as to CDS spreads for different maturities.

The autoregressive distributive lag, ARDL(1,1,1), dynamic panel specification of (2.6)
(with exogenous variables) is defined as

CDSi,t =αi+φiCDSi,t−1+βi,0LEVi,t +βi,1LEVi,t−1+γi,0VOLi,t +γi,1VOLi,t−1+ξξξ
⊤

∆Xt +ηi,t ,

(2.7)
and the error correction reparameterization of (2.7) is

∆CDSi,t = λi (CDSi,t−1 −θi,0 −θi,LLEVi,t−1 −θi,V VOLi,t−1)+βi,0∆LEVi,t + γi,0∆VOLi,t

+ξξξ
⊤

∆Xt +ηi,t

= λiεi,t−1 +βi,0∆LEVi,t + γi,0∆VOLi,t +ξξξ
⊤

∆Xt +ηi,t

(2.8)

where λi =−(1−φi), θi,0 =
αi

1−φi
, θi,L =

βi,0+βi,1
1−φi

, and θi,V =
γi,0+γi,1

1−φi
. The parameter λi is the

error-correcting speed of adjustment term. If λi = 0, then there would be no evidence for
a long-run relationship. This parameter is expected to be significantly negative under the
prior assumption that the variables show a return to a long-run equilibrium. Of particular
importance is the vector θθθ = (θL,θV ), which contains the long-run relationships between the
variables driving the spreads.

Following Collin-Dufresne et al. (2001), exogenous variables, in changes (∆X), are also
added. These are the change in level, slope and curvature of the term structure of interest
rates, the log-return on the S&P500, and the change in the CBOE Skew Index.
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2.4 Estimating the Cointegration
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Fig. 2.2 Cointegration equations (residuals of regression (2.6)) for four different companies: Capital One
Financial (Financials), Exelon (Mining, Energy and Utilities), Mcdonald’s (Retail, Wholesale and Services),
and United Technologies (Manufacturing). Visual inspection suggest stationarity, therefore cointegration of
CDS spreads, leverage, volatility and the Treasury yield. Unit root tests confirm the stationarity of the residuals.

The level of interest rates is defined as the Treasury yield for 5 years maturity. The slope
of the term structure is defined as the difference between between 5-year and 1-year Treasury
yields. Although the spot rate is the only interest-rate-sensitive factor that appears in the
firm value process, the spot rate process itself may depend upon other factors as well. For
example, Litterman and Scheinkman (1991) find that the two most important factors driving
the term structure of interest rates are the level and slope of the term structure. To capture
potential nonlinear effects due to convexity, the squared level of the 5-year spot rate is also
added as proxy for the curvature.

Similarly, the return on the S&P500 is used to proxy for the state of the economy. In
fact, even if the probability of default remains constant for a firm, changes in credit spreads
can occur due to changes in the expected recovery rate. The expected recovery rate in turn
should be a function of the overall business climate.

Lastly, adding the changes in the CBOE Skew Index aims at capturing the changes in
the probability and magnitude of a large negative systematic jump, which ultimately would
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affect the firm value. Recent research (Zhou 2001, Zhang et al. 2009, Du et al. 2019) has in
fact shown the crucial importance of allowing for jumps in the firm value process in order to
explain short-term credit spreads4.

The choice of the variables (both endogenous and exogenous) mirrors the ones in Collin-
Dufresne et al. (2001). However, three major differences need to be highlighted. First, here
an ECM is estimated thus adding an additional stationary variable (the long-run equilibrium
equation) to the regression in the spread changes. Secondly, the proposed calibration allows
to estimate a firm-specific volatility (of both assets and equity), whilst they need to rely on a
market-wide measure of volatility, namely the changes in the VIX index. Finally, the proxy
for the downward jump risk employed here is different5.

The linear relationship described in (2.6) serves as a first approximation for the link
between the variable mentioned above which, based on (2.2), is highly non-linear. Also, as
this analysis is going to be compared with other works in the literature that make use of linear
regression for investigating the link between credit spreads and the variables predicted by
structural models of default to influence the spread, it seems the most reasonable functional
form to implement. Unreported results show however that the same cointegrating mechanism
is also present for the several monotonically increasing transformations of the variables
(square, logarithm, etc). The purpose of the ECM analysis is to document the cointegration
between these variables which has been ignored in the literature so far without necessarily
claiming that the link between the variables is exactly linear.

The estimation of the coefficients in (2.8) is carried through using the PMG estimator
proposed by Pesaran et al. (1999) which allows for heterogeneous short-run dynamics and
common long-run equilibrium. Tables 2.8, 2.9 and 2.10 report the estimates of the long-run
equilibrium equation in (2.6) and the short-term adjustment in (2.8). All the coefficients
have the predicted sign and are highly statistically significant.

Most of the results are qualitatively identical when 1-, 5- and 10-year spreads are used.
For what concerns the long-run equilibrium, both volatility and leverage display a positive
and statistically significant loading: an increase in either VOL or LEV lead to a larger level
of the spread in the long-run. Focusing on the short-term adjustment, changes in both the
firm’s equity volatility and its financial leverage increase the change in the spread. In terms
of economic significance, an increase of 1% in the firm’s volatility increases the CDS spread

4CBOE Skew Index is a strike independent measure of the slope of the implied volatility curve that increases
as this curve tends to steepen. The index is calculated from the price of a tradable portfolio of out-of-the money
S&P 500 options, similar to the VIX Index.

5They autonomously calculate a measure of skew based on implied volatilities od options on the S&P 5000
futures. Here the CBOE Skew Index is used.
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1–year CDS spread

Long-run equilibrium
Coefficient t–stat p–value

VOL 0.0028 9.88 0.000 ***
LEV 0.0024 14.45 0.000 ***

Short-term adjustment
Coefficient t–stat p–value

ε −0.1005 −11.52 0.000 ***
∆VOL 0.0074 6.29 0.000 ***
∆LEV 0.0036 5.23 0.000 ***
∆Level −0.0566 −4.55 0.000 ***
∆Slope 0.0213 4.56 0.000 ***
∆Curvature 1.2409 3.77 0.000 ***
∆ ln(S&P500) −0.0013 −5.13 0.000 ***
∆Skew 5E-07 2.37 0.018 **
Constant −0.0001 −9.66 0.000 ***

Table 2.8 ECM for 1–year CDS spreads. All the variables which structural models predict to influence the
change in spreads are statistically significant and have the predicted signs. The loading on the cointegrating
equation (ε) is negative and statistically significant, thus confirming the existence of a long-term equilibrium
which spreads, volatility and leverage converge to. This model constrains the long-run coefficient vector to
be equal across panels while allowing for group-specific short-run and adjustment coefficients. The averaged
short-run parameter estimates are reported.
Number of observations: 16,640; number of groups: 64; observations per group: 260.
Significance levels: 10% (*), 5% (**), 1% (***).

5–year CDS spread

Long-run equilibrium
Coefficient t–stat p–value

VOL 0.0225 17.13 0.000 ***
LEV 0.0159 15.54 0.000 ***

Short-term adjustment
Coefficient t-stat p-value

ε −0.0293 −9.60 0.000 ***
∆VOL 0.0252 10.39 0.000 ***
∆LEV 0.0114 7.69 0.000 ***
∆Level −0.0975 −4.90 0.000 ***
∆Slope 0.0346 3.42 0.001 ***
∆Curvature 1.8381 3.69 0.000 ***
∆ ln(S&P500) −0.0025 −5.71 0.000 ***
∆Skew −6E-07 −1.84 0.065 *
Constant −0.0003 −9.75 0.000 ***

Table 2.9 ECM for 5–year CDS spreads. All the variables which structural models predict to influence the
change in spreads are statistically significant and have the predicted signs. The loading on the cointegrating
equation (ε) is negative and statistically significant, thus confirming the existence of a long-term equilibrium
which spreads, volatility and leverage converge to. This model constrains the long-run coefficient vector to
be equal across panels while allowing for group-specific short-run and adjustment coefficients. The averaged
short-run parameter estimates are reported.
Number of observations: 16,640; number of groups: 64; observations per group: 260.
Significance levels: 10% (*), 5% (**), 1% (***).
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10–year CDS spread
Long-run equilibrium

Coefficient t–stat p–value

VOL 0.0335 49.94 0.000 ***
LEV 0.0335 28.24 0.000 ***

Short-term adjustment
Coefficient t–stat p–value

ε −0.0275 −5.18 0.000 ***
∆VOL 0.0399 15.01 0.000 ***
∆LEV 0.0168 7.86 0.000 ***
∆Level −0.1129 −4.95 0.000 ***
∆Slope 0.0242 2.31 0.021 **
∆Curvature 2.2031 3.98 0.000 ***
∆ ln(S&P500) −0.0027 −5.41 0.000 ***
∆Skew −9E-07 −2.86 0.004 ***
Constant −0.0004 −5.31 0.000 ***

Table 2.10 ECM for 10–year CDS spreads. All the variables which structural models predict to influence the
change in spreads are statistically significant and have the predicted signs. The loading on the cointegrating
equation (ε) is negative and statistically significant, thus confirming the existence of a long-term equilibrium
which spreads, volatility and leverage converge to. This model constrains the long-run coefficient vector to
be equal across panels while allowing for group-specific short-run and adjustment coefficients. The averaged
short-run parameter estimates are reported.
Number of observations: 16,640; number of groups: 64; observations per group: 260.
Significance levels: 10% (*), 5% (**), 1% (***).

of 0.7, 2.5 and 4 bps for one, five and ten year’s maturity respectively. Similarly, an identical
change in the firm’s financial leverage induces the spread to increase of 0.4, 1.1 and 1.7 bps,
ceteris paribus. Thus, when considering the short-term adjustment, changes in the variable
driving the long-equilibrium have an impact on the spreads which increases with the maturity
of the CDS contract.

For what concerns the set of exogenous variables, all the variables display significant
coefficients. First, the changes in the level of interest rates have a negative impact on the
credit spread: as pointed out by Longstaff and Schwartz (1995), the static effect of a higher
spot rate is to increase the risk-neutral drift of the firm value process. A higher drift reduces
the probability of default, and in turn, reduces the credit spreads. Duffee (1998) obtain similar
results. Likewise, the positive coefficients of the changes on the slope and curvature of the
term structure are consistent with the findings of previous studies. As a decrease in yield
curve slope may imply a weakening economy, it is reasonable to believe that the expected
recovery rate might decrease in times of recession. Therefore, this would further decrease the
credit spreads. Also, positive returns in the S&P500 – which accounts for growing economy
and therefore an increasing expected recovery rate – have the effect to reduce the spread as
suggested by economic intuition.
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Finally, the coefficient reflecting the effect of systematic downward jumps (proxied as
changes in the CBOE Skew Index) is the only estimate whose sign differs between short-
versus medium- and long-term spreads. As shown in Zhou (2001), Zhang et al. (2009) and Du
et al. (2019), jumps are necessary to explain the level of short-term spreads: structural models
which account only for diffusive shocks in the asset value process imply zero instantaneous
probability of default and therefore cannot meet the observed level of 6-month and 1-year
spreads. Hence, the coefficient of ∆Skew is positive for 1-year spread changes as expected.

An increase in the probability of a negative systematic jump translates into larger shot-
term spreads. However, for longer maturities the the coefficient is negative. This apparently
countintuitive result can be easily explained by how systematic negative jumps affect firms.
If such event occurs, the ability of firms to repay its debt affects those liabilities expiring in
the immediate future. This is what is observed for spreads with 1-year maturity. Conversely,
if the firms survives the shot-term shock, it is more likely to be able to survive to futures
shocks. Thus medium- and long-term spreads lower. Also, it is worth highlighting that, in
the case of 5-year spreads, the impact of negative jumps is only marginally significant.

To conclude, a further analysis of the cointegration mechanism between spreads, volatility
and financial leverage is discussed. As expected, the estimated coefficient of the long-run
equation (ε) is negative, within the unit circle and statistically significant. The closer the
estimate is to zero, the slower is the adjustment6. As expected, the size of the coefficient is
larger, in absolute value, for shorter maturities: short-term spreads adjust faster to shocks in
the firm’s volatility and leverage. The associated t–statistic is also larger for 1–year spread
changes. Conversely, the degree of cointegration becomes stronger at longer horizons: the
t–statistics of the long-run equilibrium equation increase with the maturity of the CDS.

To quantify the speed of convergence towards the long-run equilibrium, half–life statistics
can be considered. The estimated negative loading of the cointegrating equation, λ̂ , in (2.8)
signifies that −100 · λ̂% of that disequilibrium is dissipated before the next time period and
−100 · (1− λ̂ )% remains. It is often of interest to estimate how long it will take for an
existing disequilibrium to be reduced by 50% (half–life of disequilibrium), that is

half–life =
ln(0.5)

ln(λ̂ −1)
.

The estimated half–lives are 6.5, 23.3 and 24.9 weeks for the 1–, 5– and 10–year CDS
spread respectively. This highlights a significantly different behaviour of the short versus the

6Symmetrically, the closer to −1 the faster the adjustment. If λ =−1, there is full correction in 1 period, and
if λ <−1 there is overshooting, that is an oscillatory adjustment dynamic. If λ > 0, there is not cointegration,
that is the disequilibrium expands.
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medium and long-term spreads: the short 1-year spreads reacts about four time faster than
the 5- and 10-year spreads in order to realign to equilibrium. This finding is not surprising as,
given the shorter maturity, the spread should be expected to vary as quickly as possible with
the changes in the firm’s leverage and volatility.

The cointegrating mechanism is also able to enhance the fit of the regressions on the
spreads as compared with Collin-Dufresne et al. (2001) and other studies. For each firm i, the
adjusted–R2s of the short-term adjustment is calculated and reported in Table 2.11. Average
adjusted–R2s of 69%, 45% and 30% are obtained for 1–, 5– and 10–years spread changes.
These numbers are significantly larger that the 26% (shot-maturity) and 21% (long-maturity)
obtained by Collin-Dufresne et al. (2001). The results in Cremers, Driessen, Meanhout and
Weinbaum (2008) are not directly comparable as the authors opt for regressing credit spread
levels instead of changes onto similar sets of variables (still in levels)7. As the goodness-to-fit
of the ECM model is evidently superior to the ones of a simple regression on changes, this
provides extra evidence of the importance of a long-run equilibrium dynamic which must be
taken into account to correctly identify how credit spreads change.

These promising results could be however driven by over-fitting: as the volatility is
obtained using the compound option model so to match the other market variables, the
cointegrating mechanism could have been induced by the estimation methodology. In order
to remove any doubt, the volatility estimated from the spread and the stock price is replaced
by the option-implied volatility. More specifically, for each date the option implied volatility
surface is obtained from the most liquid8 out-of-the-money put options, and its average is
used. The rational for focusing on put options is due to the fact part of the option skew
displayed by equity option is attributable to the leverage effect (Carr and Wu 2017). Therefore
the information conveyed by the implied volatility in the put region may have some relevance
for the pricing of credit risk (Carr and Wu 2011, Maglione 2019). Results are reported in
Tables 2.12, 2.13 and 2.14.

Even when the implied volatility is used, the triplet spread, leverage, volatility still shows
a statistically significant cointegration. However, using the average implied volatility of
put options has a significant impact in the short-term adjustment dynamics: changes in
the implied volatility are significant (at 10% significance level) only for the 1–year spread.
Considering that most of equity options available in the market have maturity less than one
year, the loss of significance for the 5– and 10–year spread should not surprise: the changes in

7Their adjusted–R2s are 33% (short-maturity) and 52% (long-maturity). However, having regressed non-
stationary variables, the goodness to fit is driven by the stochastic trends rather than a real correlation between
the variables.

8Only out-of-the-money put options with daily trading volume above the annual mean volume are selected.
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1–year 5–year 10–year 1–year 5–year 10–year

ticker adj–R2 Ticker adj–R2

AAPL 0.81 0.42 0.01 LLY 0.71 0.44 0.40
ABT 0.86 0.36 0.24 LOW 0.76 0.74 0.07
ALL 0.56 0.22 0.22 MCD 0.32 0.22 0.05
AMGN 0.62 0.38 0.30 MDT 0.92 0.88 0.79
BA 0.58 0.51 0.16 MMM 0.81 0.82 0.57
BAC 0.49 0.26 0.21 MO 0.65 0.41 0.19
BMY 0.71 0.29 0.15 MON 0.87 0.57 0.54
C 0.45 0.27 0.23 MRK 0.81 0.77 0.35
CAT 0.52 0.13 0.08 MS 0.63 0.53 0.50
CL 0.85 0.74 0.20 MSFT 0.90 0.59 0.15
CMCSA 0.57 0.20 0.13 ORCL 0.84 0.60 0.68
COF 0.87 0.72 0.73 OXY 0.71 0.33 0.14
COP 0.34 0.10 0.07 PEP 0.91 0.61 0.36
COST 0.89 0.89 0.87 PFE 0.64 0.43 0.19
CSCO 0.74 0.66 0.62 PG 0.86 0.82 0.20
CVS 0.75 0.57 0.24 PM 0.86 0.74 0.33
CVX 0.80 0.08 0.05 RTN 0.53 0.16 0.04
DD 0.66 0.39 0.43 SLB 0.36 0.12 0.05
DIS 0.77 0.46 0.32 SO 0.39 0.70 0.11
EMR 0.52 0.65 0.36 SPG 0.29 0.10 0.08
EXC 0.94 0.69 0.40 T 0.63 0.18 0.17
F 0.55 0.36 0.31 TGT 0.80 0.70 0.41
FDX 0.71 0.54 0.45 TWX 0.61 0.25 0.19
GD 0.81 0.81 0.76 TXN 0.81 0.40 0.44
GE 0.89 0.91 0.90 UNH 0.67 0.28 0.06
HAL 0.22 0.09 0.10 UNP 0.54 0.18 0.06
HD 0.79 0.55 0.33 USB 0.69 0.28 0.38
IBM 0.59 0.29 0.24 UTX 0.76 0.40 0.17
INTC 0.88 0.07 0.05 VZ 0.62 0.32 0.24
JNJ 0.77 0.50 0.47 WFC 0.62 0.53 0.52
JPM 0.57 0.41 0.39 WMT 0.71 0.33 0.09
KO 0.73 0.80 0.57 XOM 0.83 0.35 0.20

1–year 5–year 10–year

adj–R2

Mean 0.69 0.45 0.30
Median 0.71 0.41 0.24
Min 0.22 0.07 0.01
Max 0.94 0.91 0.90

Table 2.11 Adjusted R2s of the firm-specific time-series regressions in (2.8) (short-term adjustments). As
shown by both the mean and median adjusted R2, the explanatory power of the variables which should affect
credit spread changes as predicted by structural models diminishes with the maturity of the spread.
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1–year CDS spread

Long-run equilibrium
Coefficient t–stat p–value

IV 0.0008 3.77 0.000 ***
LEV 0.0025 12.18 0.000 ***

Short-term adjustment
Coefficient t–stat p–value

ε −0.1063 −9.79 0.000 ***
∆IV 0.0002 1.83 0.067 *
∆LEV 0.0012 1.42 0.156
∆Level −0.0390 −1.90 0.057 *
∆Slope 0.0318 3.17 0.002 ***
∆Curvature 0.5474 1.41 0.157
∆ ln(S&P500) −0.0020 −5.22 0.000 ***
∆Skew 4E-07 1.35 0.176
Constant 0.0001 2.31 0.000 ***

Table 2.12 ECM for 1–year CDS spreads using the average implied volatility of put options instead of σS.
Similar results are obtained; however, the implied volatility is significant only at the 10% significance level in
the short-term adjustment equation. Also ∆LEV, ∆Curvature and ∆Skew have become insignificant, and ∆Level
is significant at the 10% significance level only.
Number of observations: 16,640; number of groups: 64; observations per group: 260.
Significance levels: 10% (*), 5% (**), 1% (***).

5–year CDS spread

Long-run equilibrium
Coefficient t–stat p–value

IV 0.0147 8.67 0.000 ***
LEV 0.0038 7.18 0.000 ***

Short-term adjustment
Coefficient t-stat p-value

ε −0.0360 −10.68 0.000 ***
∆IV 0.0002 0.91 0.361
∆LEV 0.0027 1.93 0.053 *
∆Level −0.1099 −2.19 0.028 **
∆Slope 0.0886 2.71 0.007 ***
∆Curvature 1.1884 1.74 0.081 *
∆ ln(S&P500) −0.0045 −5.87 0.000 ***
∆Skew −1E-06 −1.90 0.057 *
Constant −6E-06 −0.49 0.623

Table 2.13 ECM for 5–year CDS spreads using the average implied volatility of put options instead of σS.
Similar results are obtained; however, the implied volatility is not significant in the short-term adjustment
equation. Also ∆LEV, ∆Curvature and ∆Skew are significant at the 10% significance level only, and ∆Level is
significant at the 5% significance level only.
Number of observations: 16,640; number of groups: 64; observations per group: 260.
Significance levels: 10% (*), 5% (**), 1% (***).
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10–year CDS spread
Long-run equilibrium

Coefficient t–stat p–value

IV 0.0312 11.43 0.000 ***
LEV 0.0285 17.22 0.000 ***

Short-term adjustment
Coefficient t–stat p–value

ε −0.0277 −5.82 0.000 ***
∆IV −2E-05 −0.09 0.931
∆LEV 0.0017 1.07 0.283
∆Level −0.1190 −2.24 0.025 **
∆Slope 0.0814 2.14 0.032 **
∆Curvature 1.6594 2.06 0.039 **
∆ ln(S&P500) −0.0055 −5.78 0.000 ***
∆Skew −2E-06 −2.31 0.021 **
Constant −0.0001 −5.43 0.000 ***

Table 2.14 ECM for 10–year CDS spreads using the average implied volatility of put options instead of σS.
Similar results are obtained; however, neither the implied volatility nor leverage are significant in the short-term
adjustment equation. Also ∆Level, ∆Slope, ∆Curvature and ∆Skew are significant at the 5% significance level
only.
Number of observations: 16,640; number of groups: 64; observations per group: 260.
Significance levels: 10% (*), 5% (**), 1% (***).

the (short-term) implied volatility does not explain the reversion to the long-run equilibrium
of medium and long term spreads. Nontheless, the cointegration among the variables is still
present even though the model-implied volatility is replaced by the option implied volatility.

These results, alongside the good pricing errors obtained via a compound option model
of default in Section 2.3, support the importance and ability of structural models in modelling
default as well as in explaining the level and changes of credit spreads.

2.5 Robustness Checks

Despite the proposed cointegration displays much larger adjusted R2s than previous works,
the goodness of this approach is further investigated via principal components analysis
(PCA), in a similar fashion of Cremers, Driessen, Meanhout and Weinbaum (2008). However,
it is worth highlighting that the PCA conducted herein is on the CDS spread changes,
whist Cremers, Driessen, Meanhout and Weinbaum (2008) do in on the levels. Based on the
same arguments on the non-stationary of credit spreads discussed in the previous section,
PCA should always be implemented on i.i.d. data (the changes) and not on random walks
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(the levels). Also, they look at raw credit spreads, whilst PCA requires demeaned variables
to be used9.

PCA aims at studying the extent to which the selected set of variables in (2.8) cap-
ture systematic credit-spread variations. PCA is in fact an effective tool for analysing the
cross-sectional variation of the spread changes, thus searching for common ‘factors’ (the
components) which should affect credit spread changes regardless of firm-specific character-
istics.

First, the first ten principal components (PCs) from the demeaned credit spreads changes
are extracted for both the 1-, 5-, and 10-year maturities. Figure 2.3 shows the scree plots for
the first ten components. The spread changes for different maturities have similar principal
components and display the kink around the 3rd/4th component. Overall, the first component
explains 25-35% of the total variance of the spread changes; the second component explains
around 15%; the third component explains around 10%; the forth component explains less
then 10%. That is, in total the first four component explain only about 60% of the total
variance of the CDS spread changes. The fact that the first four component explain relatively
little of the total variance points towards the possibility that variables influencing spread
changes are firm-specific (as leverage and firm’s volatility) rather than systematic. This,
alongside the successful cointegrating analysis, further support the validity of structural
model of default to explain credit spreads.

Secondly, credit spread changes for each company are regressed on an increasing set of
PCs. For each set of PCs, the average adjusted–R2 (and its standard deviation) are reported10.
Then, the same set of PCs is regressed onto the residuals of (2.8). If the variables used
to explain credit spread changes are not capturing systematic variations, large incremental
adjusted–R2 should be found from the regression of the residuals.

In general, average adjusted–R2s of the regressions of PCs on both the spread changes
and on the residual of the short-term adjustment (2.8) are around 10%, thus signalling a very
modest impact of systematic factors in explaining the cross-sectional variation of spread
changes. The presence of a systematic factor related to the first principal components appears
to be slightly more important for the medium- and long-term spreads. This could relate
to how jump risk affect CDS spread changes for longer maturities. Perhaps, using the
change in the CBOE Skew as a proxy for large jumps in the firms’ asset value is appropriate
only when considering short-term spreads. This conjecture is based on the fact the average

9For further details on PCA, see Jolliffe (2002).
10Cremers, Driessen, Meanhout and Weinbaum (2008) report simple R2 instead of its adjusted correction

for number of regressor. This is incorrect as adding extra regressor is likely to increase the R2, but not the
adjusted–R2, even when the variable (here the PC) is not statistically significant.
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(a) Scree plot for the first 10 PCs of the 1–year spread changes
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(b) Scree plot for the first 10 PCs of the 5–year spread changes
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(c) Scree plot for the first 10 PCs of the 10–year spread changes

Fig. 2.3 Scree plots for the first 10 PCs of the demeaned 1–, 5–, and 10–year CDS spread changes. The spread
changes for different maturities have similar principal components and display the kink around the 3rd/4th
component. Overall, the first component explains 25-35% of the total variance of the spread changes; the
second component explains around 15%; the third component explains around 10%; the forth component
explains less then 10%. The first 10 PCs are able to explain 80% of the total variance for 1– and 10–year spread
changes, and almost 90% of the total variance for the 5–year spread changes. However, the first four are able to
explain only about 60% of the total variance.
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adjusted R2 of the regression of the first component onto the 5-year residuals is actually larger
than the average adjusted R2 of the regression on the changes. Somehow, the short-term
adjustment regression induces systematic risk in the residuals: the main difference between
regression (2.8) estimated on the 5- and 10-year spread changes is the impact of jumps, whose
estimated coefficients also display the opposite sign. Alternatively, there is a systematic
factor which the model is ignoring11; however, it would account only for a very small fraction
of the cross-sectional variation of the CDS spread changes of longer maturities.

As last robustness check, the error correction parametrization in (2.8) is re-estimated for
different values of the loss given default. Table 2.16 reports the results. All the conclusions
obtained in the previous section remain valid.

2.6 Conclusions

This paper develops a new estimation technique for the unobservable firm’s asset value and
volatility which relies only on the observable equity value, risk-neutral probability of default
and the face value of the firm’s debt.

The estimated parameters are first used to test the ability of model to reprice CDS spreads
out-of-sample. The pricing errors produced by the compound option model of default are
then compared with those generated by the structural models in Huang and Huang (2012).
The compound option model sensibly outperforms the other models, being able to reduce the
pricing error by almost 90%.

Secondly, the estimated parameters are used to investigate the existence of cointegration
between credit spreads and those variables which structural models of default predict driving
their level. Estimations confirm the presence of an error-correction mechanism which leads
to a long-equilibrium between the level of the spreads, financial leverage and the volatility of
the firm’s equity. Once the cointegration equation is accounted for, the goodness-to-fit of
the regressions on the changes improves substantially compared to previous studies.Finally,
principal component analysis is employed to study the cross-sectional variation of credit
spread changes.

In conclusion, a structural model where equity is modelled as a compound option provides
substantial improvement in predicting spreads out-of-sample, thus suggesting its superior
ability in capturing firms’ default dynamics. Most importantly, this work is the first to
document the cointegration between CDS spreads, financial leverage and the firm’s risk in a
large panel of US firms. Once the cointegration equation is added to the regressions on credit

11This could be a liquidity factor for the CDS market.
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1–year CDS spread

∆CDS η

PCs mean adj–R2 st. dev. adj–R2 mean adj–R2 st. dev. adj–R2

1 0.089 0.202 0.068 0.166
2 0.087 0.211 0.068 0.182
3 0.110 0.261 0.086 0.220
4 0.071 0.189 0.079 0.209
5 0.073 0.200 0.085 0.224
6 0.062 0.189 0.069 0.205
7 0.059 0.179 0.069 0.220
8 0.047 0.165 0.065 0.207
9 0.039 0.153 0.069 0.219
10 0.032 0.141 0.062 0.200

5-year CDS spread

∆CDS η

PCs mean adj–R2 st. dev. adj–R2 mean adj–R2 st. dev. adj–R2

1 0.115 0.239 0.125 0.274
2 0.076 0.218 0.098 0.261
3 0.080 0.227 0.095 0.250
4 0.088 0.232 0.092 0.243
5 0.078 0.217 0.089 0.248
6 0.065 0.180 0.068 0.208
7 0.058 0.176 0.070 0.214
8 0.055 0.178 0.056 0.174
9 0.060 0.194 0.053 0.166
10 0.049 0.167 0.057 0.170

10-year CDS spread

∆CDS η

PCs mean adj–R2 st. dev. adj–R2 mean adj–R2 st. dev. adj–R2

1 0.118 0.248 0.100 0.215
2 0.096 0.243 0.086 0.225
3 0.102 0.263 0.093 0.233
4 0.091 0.243 0.080 0.213
5 0.096 0.252 0.084 0.217
6 0.065 0.208 0.069 0.192
7 0.065 0.207 0.071 0.184
8 0.055 0.199 0.063 0.182
9 0.047 0.178 0.057 0.167
10 0.047 0.176 0.058 0.165

Table 2.15 Regression of both changes in CDS spreads (left columns) and residuals of (2.8) (right columns)
onto an increasing set of principal components. Large average adjusted R2s in the first columns should would
translate a significant impact of systematic factors on spread changes. This does not appear to be the case.
The pattern of the average adjusted R2s obtained from regressing the PCs onto the residual of the ECM points
should detetect if some systematic factor could have been missed by (2.8). Mixed evidence is found regarding
the first PC in the case of 5– and 10–year spreads.
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2.6 Conclusions

spread changes, the selected variables do explain quite well their variation. Consistently with
previous findings and the economic intuition, it is shown that short-term spreads react more
quickly to shocks to the long-run equilibrium and that jumps affect short- and long-term
spreads differently. Also, most of the variation in the cross-section appears to be driven by
firm-specific characteristics rather than systematic factors.
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Chapter 3

The Option-implied Asset Volatility
Surface

Abstract

This paper provides a simple way to obtain an option-implied asset volatility surface. The
proposed estimation technique allows to estimate the unobservable asset volatility surface in
the same fashion of what is done when equity volatility is extracted from options. Given a
sample of 66 US firms, the asset volatility is first estimated at the firm level and then aggre-
gated in order to study the properties of the market-wide asset volatility surface. Principal
component analysis (PCA) is conducted on the weekly changes of the volatility surface both
across the moneyness and the time-to-maturity dimension, as well as on the overall surface.
Both across moneyness and maturity, the first three PCs are able to account for most of the
variation and can be identified as level, slope/smirk and curvature factors respectively. When
analysed in across the whole surface, the first two PCs account for most of the variation and
represent a level and a skew factor. Finally, the joint evolution of the smirk and the slope of
the surface is modelled as a Vector Autoregressive model with exogenous variables. Both
slope and smirk appear to be jointly autocorrelated and loading of the other market variables
display the predicted sign.

JEL classification: C58, C63, G12, G13, G32, G33
MSC classification: 91G20, 91G40, 91G50
Keywords: Asset volatility surface, leverage effect, compound options
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3.1 Introduction

Since the pioneer works of Black and Scholes (1973) and Merton (1974), contingent claim
analysis (CCA) has been successfully and extensively adopted for the valuation of financial
contracts. When applied to the modelling of credit risk, CCA is usually referred as structural
approach to default risk. Despite its potential and ability to directly link credit events to the
company’s fundamentals, structural models of default requires as inputs two unobservable
parameters: the market value of the assets and the volatility of its returns. On one hand, only
if both the company’s equity and the whole debt are publicly traded, the market value of the
assets is observable; however, the vast majority of listed companies have non-traded debt. On
the other hand, asset volatility is always unobservable. This paper develops a new estimation
procedure which relies only on the observable value of the firm’s equity and the prices of the
options written on the former.

One of the first attempt to use CCA to price contracts other than options is found in Ronn
and Verma (1986). There, a procedure for computing these two unknown variables is
proposed. Their solution is two find two equations (or restrictions) to estimate the two
unobservable variables. As the firm’s equity is priced as a call option on the value of the
assets, and its equity value can be observed, one restriction is placed on the two unknown
variables. The second restriction arises from the relationship between the asset and equity
volatilities, and the estimates for the asset value and asset volatility are obtained using a
numerical procedure to solve a nonlinear two-equation system.

The shortcoming of the Ronn and Verma (1986) is in the second restriction: there, equity
volatility is treated as a constant despite it should be stochastic as prescribed by the structural
approach. Duan (1994) corrects this drawback introducing a maximum likelihood estimation
procedure for asset value and volatility. Given the observable value of the equity (S), the
results in Merton (1974) make the latter a function of the asset value (V ) and volatility
(σV ), that is S = f (V,σV ). Since this function is invertible at any given asset volatility,
V = f−1(S,σV ) follows. Finally, the asset volatility is found as that value which maximises
the log-likelihood function of the equity.

Another popular approach for estimating the asset value and volatility is the proprietary
KMV model described in Crosbie and Bohn (1993). Despite the full algorithm is not known,
it essentially uses a modification of the Merton’s model and the unobservable asset value is
still estimated via the same numerical inversion. The volatility parameter is though inferred
from the time-series of the firm’s equity, performing some Bayesian adjustments for country,
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industry, and size of the firm1. The KMV model is also used by Vassalou and Xing (2004) to
assess the effect of default risk on equity returns, and by Bharath and Shumway (2008) to
analyse the relative ability of forecasting default by structural versus reduced-form models.
In a similar fashion, Bartram et al. (2015) estimate the asset volatility, as implied by the
model in Leland and Toft (1996), by minimising the squared deviations of predicted equity
volatility from realised volatility.

On a slightly different note, Schaefer and Strebulaev (2008) develop a model-free rela-
tionship between asset volatility and the volatility of equity and debt returns. Assuming the
firm does not pay dividends nor coupons or interests on its debt, then the return on the assets
can be decomposed as follows

dV
V

= (1−L)
dS
S
+L

dD
D

,

where S and D represent the market value of the equity and debt respectively, and L := D/V

is the debt-to-assets ratio. That is, the return on the assets is nothing buy the weighted average
of the return on equity and debt having used as weight the relative composition of equity and
debt in the firm’s capital structure. Further, the variance of asset returns can be decomposed
into

σ
2
V = (1−L)2

σ
2
S +L2

σ
2
D +2L(1−L)ρS,DσSσD

where and ρS,D is the correlation between equity and debt returns. However, this decom-
position is not operational as the volatility of the debt return is usually unobservable, and
assumes that leverage is measured instantaneously2. However, this estimation techniques is
not fully consistent with the CCA and and any structural model à la Merton3.

More recently, a couple of works have tried to address the estimation of the asset
volatility slightly departing from the usual setup of Merton (1974). Using complete pricing
data on equities and corporate debt, Choi and Richardson (2016) are able to estimate the
asset volatility and study its cross-sectional and time-series properties. They find that asset
volatility decreases with leverage, presumably because firms with low asset volatility exploit
the tax advantage of debt while maintaining a low cost of financial distress. Also, they show
that asset volatility is significantly less persistent and more symmetric than equity volatility
for levered firms.

1Duan et al. (2005) shows that the maximum-likelihood estimation in Duan (1994) and the KMV algorithm
– intended without the Bayesian adjustment – are equivalent.

2This decomposition is also used in Feldhütter and Schaefer (2018) to address the credit spread puzzle.
3It is easy to show that, as both equity and debt are functions of the value of the assets (and not vice versa),

by the virtue of Itô’s Lemma ρS,D must be set equal to one.
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Second, the work in Lovreta and Silaghi (2017) is the only attempt at estimating an
asset volatility surface rather than providing a point estimate. More specifically, using the
structural model in Forte (2011) and the estimation proposed in Forte and Lovreta (2012),
they exploit the pricing information in terms of default embedded in credit default swaps
(CDS): the term structure of implied firm’s asset return volatilities is backed-out from the
whole term structure of CDS spreads, however, being the moneyness dimension absent from
CDS quotes, they need to proxy it by the ratio of the default threshold to the asset value.

None of these works, however, is able to provide an estimation technique based on
observable quantities only. Here, instead, the two unobservable parameters are estimated by
solving a (non-linear) system of two equations. The first equation is again of the type

S = f (V,σV ) (3.1)

The second equation is instead obtained from equity options. In fact, it can be shown that in
a compound option model as in Geske (1979) and Maglione (2019), also

P = g(V,σV ) (3.2)

where P is the price of the option, either call or put, written on the firm’s equity. As each
option is quoted for a given maturity (T ) and moneyness (K/S), the solution this system of
equations allows to directly generate an asset volatility surface, σV (T,K/S). In fact, the asset
volatility surface is obtained in the same spirit of what is done when the equity volatility
surface is extracted by inverting the Black and Scholes (1973) pricing equation: the only
difference is that two, instead of one, equations are used. Furthermore, this approach does
not depend on any estimate of the equity volatility and on the ‘misused’ link between the
latter and asset volatility4.

As shown by Bartram et al. (2015), asset volatility accounts for about 85% of total
volatility for the representative nonfinancial US firm, and equity volatility is driven primarily
by economic risk factors. The impact of these factors should be reflected into the volatility of
the firm’s cash-flow, that is σV . Thus, having a market-based estimate of the asset volatility

4Crosbie and Bohn (1993), Vassalou and Xing (2004) Bharath and Shumway (2008), Schaefer and Strebulaev
(2008) and others estimate the asset volatility via

σS = σV
V
S

∂S
∂V

,

as if the equity volatility were deterministic. However, being V the state variable of any structural model, the
volatility of the firm’s equity is actually stochastic as pointed out by Duan (1994). The approach proposed
herein does not need σS as an input.
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surface appears to be very relevant for asset pricing. Also, Choi and Richardson (2016)
argue that more emphasis in research should be put on understanding the cross-sectional and
time-series behaviour of firm’s asset volatility. This paper tries to fill this gap.

The rest of the paper is organised as follows. In Section 3.2 briefly the pricing model is
presented and how the stock price and equity options depend on the unobservable parameters.
The dataset is described in Section 3.3. In Section 1.4 principal component analysis (PCA) is
performed to disentangle the cross-sectional and time-series variation of the firm-specif and
market-wide asset volatility surface. Further, the smirk and slope of the market asset volatility
surface are jointly modelled using a Vector Autoregressive (VAR) process. Section 3.5
concludes.

3.2 The model

In order to estimate the volatility of the asset, the following set of variables for each firm are
needed: (1) the value of the equity, (2) the face value of its debt as well as the time it due,
(3) a set of traded options written on the firm’s equity. The model employed is the same as
in Maglione (2019) in which equity is seen as a n–fold compound call option written on the
firm assets struck at the face value of the n bonds outstanding. Under this framework, default
times are defined as

τ := inf
i∈I

{ti : S⋆i (V )< Fi}

where I = {1, . . . ,n} and S⋆i (V ) is the continuation value of equity, which is a function of the
firm assets V . That is, the default time occurs the first time at which the value of the equity is
lower than the face value of the bond due; by model assumptions, the firm can default only at
discrete points in time.

More specifically, it can be shown that the value of the firm’s equity can be written as

S = e−ϖtnVM(τ ≥ tn)−
n

∑
i=1

e−rtiFiQ(τ ≥ ti) , (3.3)

where V is the contemporaneous value of the assets, (Fi)1≤i≤n represent the sequence of the
face value of the bond issued due at time ti, ϖ the payout rate (reflecting both dividends and
coupons), r the constant continuously compounded risk-free rate, and Q(τ ≥ ti) (respectively
M(τ ≥ ti)) the probability of the firm surviving up to ti under the risk-neutral measure
(respectively the firm-value fund risk measure). If the asset value process follows a geometric
Brownian motion with volatility σV , the probabilities in (3.3) can be computed in terms of
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multivariate Gaussian integrals, that is

S (V,σV ) = e−ϖtnV Φn

(
dM;ΓΓΓn

)
−

n

∑
i=1

e−rtiFiΦi
(
dQ

i ;ΓΓΓi
)

(3.4)

where dM :=
(
dM

i
)

1≤i≤n and dQ
i =

(
dM

j −σV
√

t j

)
1≤ j≤i

with

dM
i =

ln(V/V̄i)+
(
r−ϖ +σ2

V/2
)

ti
σV

√
ti

, ΓΓΓi =


1

√
t1
t2

. . .
√

t1
ti

. . . . . . . . . . . .

1
√

ti−1
ti

1

 ,

and Φi(z;ΓΓΓ) the cumulative distribution function of a i-dimensional normal random vec-
tor with zero mean and covariance matrix ΓΓΓ calculated over the set×i

j=1(−∞,z j). Also,
(V̄i)1≤i≤n is the latent sequence of default thresholds embedded in the firm’s capital structure.

Intuitively, as equity is an n–fold compound option, vanilla options are (n+ 1)–fold
compound options on the firm’s assets. The price of a European option with maturity
T ∈ (ti, ti+1), with 0 ≤ ti < ti+1 ≤ tn, and strike price K written on the firm’s equity is
computed as

Pξ = ξ

[
e−ϖtnVM(τ ≥ tn ∩ξ ST ≥ ξ K)−

n

∑
i=1

e−rtiFiQ(τ ≥ ti ∩ξ ST ≥ ξ K)− e−rT KQ(ξ ST ≥ ξ K)

]
,

where ξ =+1/−1 if pricing a call/put. If V follows a geometric Brownian motion, the price
is computed as

Pξ (V,σV ) = ξ

[
e−ϖtnV0Φn+1

(
dM

ξ
;ΓΓΓ

ξ

n+1

)
−

n

∑
k=i+1

e−rtkFkΦk+1
(
dQ

ξ ,k+1;ΓΓΓ
ξ

k+1

)
− e−rT KΦ

(
ξ dQ

T
)]
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Fig. 3.1 Histograms of time to maturities (left) and moneyness (right) of the options used throughout the
analysis. Time to maturity (T ) ranges from 6 days to 2.3 years, with vast majority of short-term options.
Moneyness (K/S) shows a more symmetric distribution.

Mean Median Mode IQR St. Dev. Skewness Kurtosis Min Max

T (years) 0.3656 0.1587 0.0278 0.4524 0.4565 1.9139 6.3573 0.0238 2.3452
K/S 0.9791 0.9884 1.0204 0.1148 0.1279 0.8192 15.4102 0.4274 2.5565

Table 3.1 Descriptive statistics of the variables time to maturity (T ) and moneyness (K/S) in the sample
under analysis.

with dM
ξ
=
((

dM
i
)k

i=1 ,ξ dM
T ,
(
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i
)n
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)
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√
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.

3.3 Estimation methodology and data description

Given the results in the previous section, observing the stock price Ŝ as well as an option
price P̂ξ , with maturity T and moneyness K/S, allows to estimate the asset implied volatility
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σ IV
V = σV (T,K/S) solving the systemŜ = S(V,σV )

P̂ξ = Pξ (V,σV ).
(3.5)

This novel estimation technique is applied to a set of 66 US companies, constituents
of the S&P100 during the period January 2013 – December 2017. Companies with either
preferred equity or subject to merges or acquisitions are excluded.

Data on stock prices, number of shares outstanding, dividends and the risk-free yield curve
(and other variables used in the next sections) are obtained from Bloomberg. Information
relative to the firms’ capital structures and cost of debt is gathered from Compustat and the
10-K documents. All the observations are collected at weekly frequency frequency, over a
total of 259 week, with the exception of the information on the firm’s capital structure which
is available at quarterly frequency. Therefore, it is assumed that the capital structure remains
fixed within quarters, having only adjusted the time to maturity of the firm’s debt due to the
passage of time. It appears a reasonable assumption given the empirical evidence on how
often US firms decide to rebalance their capital structures (see Strebulaev and Whited 2012).

In order to implement the estimation in (3.5), the term-structure of the firm’s debt must
be known or approximated somehow. I opt for clustering the firm’s debt at three fixed point,
ti = {1,5,10} years, i = 1,2,3. The choice of setting n = 3 is considered optimal as it is
the smallest number of maturity dates needed in order to match both the level, slope and
curvature of the observed term structure of credit spreads.

The face values of the bond due in t1 = 1 represents the company’s short-term debt and
is computed as the Compustat variable DD1Q (Long-Term Debt Due in One Year), that is
F1 = DD1Q. The remaining two bonds clustered at t2 = 5 and t3 = 10 are obtained from DLTQ

(Long-Term Debt Total), such that F2+F3 =w ·DLTQ+(1−w) ·DLTQ. The empirical findings
in Maglione (2020) suggest to set w = 1/3 for the model to reproduce a term-structure of
credit spread in line with the one observed empirically.

Given the large amount of option data, only the most liquid OTM call and put options
traded every Wednesdays with time-to-maturity greater than five days are taken into con-
sideration. To determine the most liquid traded options, those prices whose moneyness is
outside the 5th to 95th percentile range are firstly removed. Secondly, only those options
with volume above their annual median are kept.

The price of the option is defined as the average of the bid and ask price when both are
available; the observation is removed otherwise. Finally, options with zero trading volume
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and negative bid-ask spread are also excluded. The final sample counts 338,932 valid call
and 428,441 put options observations. Figure 3.1 shows the options’ distribution in terms of
moneyness and maturity. Table 3.1 summarises the distributional properties of the sample of
options.

One of the main disadvantage of working with equity options is that they are usually
American-style. This is the case in the analysed dataset and, in order to test and implement
the model, European quotes should be used. Hence, the de-Americanization procedure
introduced by Carr and Wu (2010) and further tested in Burkovska et al. (2018) is applied.
The aim of the de-Americanization is to find the corresponding European price (the so-called
pseudo-European price) for a given American price. That is, the price ought to be observed if
the contract would not allow to exercise the option before maturity. In a nutshell, a binomial
tree is used to price the American option. The volatility parameter such that the squared
difference between the market price and the price generated by the tree is minimised is set
as the option implied volatility. Once estimated, the pseudo-European price is found by
applying the Black-Scholes formula for European options.

The estimation procedure thus produces 259 asset volatility surfaces for each firm in
the sample. Once the firm-specific asset volatility surfaces are available, a market-wide
asset volatility surface can be constructed. The next section performs PCA on both the
cross-section of the firm-specific volatility surfaces as well as on several dimensions of the
market-wide asset volatility surface.

It should be noted that solving (3.5) to estimate the asset volatility allows to obtain a
surface as each option has different maturity (T ) and moneyness (K/S). However, as the
equity itself is modelled as a compound call option with (final) maturity tn, it is assumed that
the estimated σV (T,K/S) is not influenced by tn. Also being tn (usually equal to ten years)
far in the future with respect to the option maturity, I assume that the estimated surface (and
therefore the firm’s riskiness) reflects the effect of the (shorter) maturity of the option only.

Furthermore, it should be clear that solving (3.5) for each option produces a different
value of the firm’s assets V0(T,K/S). Unreported results, available upon request, show
that the estimated asset value is not very sensitive to changes in T and K/S. A possible
modification of this methodology could be solving (3.5) to obtain the corresponding asset
values V0, j,k =V0(Tj,(K/S)k), averaging those estimates to obtain V̄0 and then re-solve the
second equation in (3.5) as one equation in one unknown (σV ) having replaced V0 as V̄0.
However, as ultimately the market-wide asset volatility is studies (which value-averages the
obtained volatilities for each company) the change is likely to be negligible.
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(b) Moneyness

Fig. 3.2 Behaviour of the correlation between PC1 and the changes in the cross-sectional mean of asset volatility
(market volatility) with respect to time to maturity (Panel a) and moneyness (Panel b). Correlation appears
overall large and positive being the largest for options close to being at-the-money with short time to maturity.

Maturity Proportion Correlation N

Short term 32.94% 0.9491 687,362
Long term 80.21% 0.8153 80,011

Table 3.2 Systematic variation in firm-level volatility. The proportion of variance explained by the first
principal component is shown for PCA on the changes in firm-level implied asset volatilities for the sample of
66 individual firms. This analysis is performed separately for options with maturity less than 1 year (short-term)
and with maturity greater than 1 year (long-term). The correlation between changes in the cross-sectional mean
of firm-level volatilities and PC1 for changes in firm-level volatility is reported in the third column. The last
column reports the number of valid option observations within the relative bucket.

Finally, when naming the estimated σ IV
V (T,K/S) as option-implied asset volatility, I

mainly refer to the call and put options written on equity (and not the equity as an option
itself).

3.4 Empirical results

In this section, first the systematic variation in firm-level implied volatility for the sample
of 66 firms is analysed. Then, the market-wide asset volatility surface is constructed as the
value-weighted average of the firm-specific surfaces. The asset value is estimated as in (3.5)
and averaged across the moneyness and time-to-maturity dimension5. Once the market asset

5Empirical tests show that the variation in V due to different T and K/S is minimal.
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Moneyness Proportion Correlation N

(0,0.7] 34.86% 0.7306 19,707
(0.7,1] 23.79% 0.9566 408,734
(1,1.3] 20.94% 0.7714 330,073
(1.3,∞) 78.75% 0.2766 8,859

Table 3.3 Systematic variation in firm-level volatility. The proportion of variance explained by the first
principal component is shown for PCA on the changes in firm-level implied asset volatilities for the sample of 66
individual firms. This analysis is performed separately for options in different moneyness buckets (moneyness
is defined as K/S). The correlation between changes in the cross-sectional mean of firm-level volatilities and
PC1 for changes in firm-level volatility is reported in the third column. The last column reports the number of
valid option observations within the relative bucket.

Maturity Mean Median Mode St. Dev. Skewness Kurtosis Min Max

Short term 0.1784 0.1382 0.1759 0.0201 1.3591 6.0522 0.1382 0.2666
Long term 0.2045 0.1732 0.2043 0.0139 0.0980 2.1618 0.1732 0.2377

Moneyness Mean Median Mode St. Dev. Skewness Kurtosis Min Max

(0,0.7] 0.2828 0.2327 0.2787 0.0235 1.0726 5.5579 0.2327 0.4023
(0.7,1] 0.1954 0.1570 0.1905 0.0232 1.5254 6.1499 0.1570 0.2900
(1,1.3] 0.1477 0.1205 0.1451 0.0167 1.4447 6.1499 0.1205 0.2237
(1.3,∞) 0.2058 0.1508 0.2011 0.0249 0.9505 4.4877 0.1508 0.3117

Table 3.4 Descriptive statistics of the market-wide asset volatility. The majority of the observation are for
short-maturity options with moneyness around the the ATM region. The estimates of the asset volatility are in
line with previous research in which the volatility is not estimates using options.
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volatility surface is obtained, then PCA is conducted across the moneyness (smirk) and
time-to-maturity (slope) dimensions as well as across the whole surface.

Given the non-stationarity of the asset volatility6, changes in implied volatilities are used.
Moreover, this is in line with the literature on equity implied volatilities which has mainly
applied PCA to changes in equity implied volatility.

3.4.1 PCA on changes of firm-specific asset volatilities

PCA is performed on weekly changes in firm-level implied asset volatilities. The analysis is
carried across the time-to-maturity (T ) and moneyness (K/S) dimensions. Moneyness is fist
split across different buckets: K/S ∈ (0,0.7] (deep out-of-the money puts), K/S ∈ (0.7,1]
(out-of-the money puts), K/S ∈ (1,1.3] (out-of-the money calls), K/S ∈ (1.3,∞) (deep out-
of-the money calls). Second, time-to-maturities are clustered at short term (T < 1) and long
term (T ≥ 1).

Tables 3.2 and 3.3 show the explanatory power of the first principal component across
maturities and moneyness respectively. Interestingly, the explanatory power increases with
maturity and is larger for progressively more out-of-the money options. Secondly, this
systematic variation is well captured by the changes in the cross-sectional mean of firm-level
volatilities. The third column in Table 3.2 shows that the two variables are almost perfectly
correlated when looking at the time to maturity dimension. Across moneyness, the correlation
is stronger for options close to being at-the-money. Figure 3.2 shows the decreasing pattern
of the correlation based on maturity, and an hump-shaped behaviour with respect to the
moneyness dimension.

These findings suggest that the changes in the mean implied volatility for the whole
sample of firms is actually capturing the first principal component that drives the variation of
individual firm-level volatility. This average volatility is calculated as the value-weighted
average of weekly changes in firm-specific asset volatility. Hence, the subsequent analysis
focuses on the marked-wide asset volatility.

3.4.2 Market-wide asset volatility

Table 3.4 reports the descriptive statistics of the market-wide asset implied volatility over
different maturities and across moneyness. Figure 3.3 dissects the market-wide asset volatility
surface into the evolution of its term structure and across moneyness. First, asset volatility
is usually smaller in the short term than at longer horizons, being the two highly correlated.

6Lovreta and Silaghi (2017) document an order of integration ranging from 0.8 to 1.1.
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Maturity Correlation Matrix Moneyness Correlation matrix

Shot term 1 0.59 (0,0.7] 1 0.78 0.61 0.05
Long term 0.59 1 (0.7,1] 0.78 1 0.91 0.03

(1,1.3] 0.61 0.91 1 0.08
(1.3,∞) 0.05 0.03 0.08 1

Table 3.5 Correlation matrix for the asset volatility across different maturities and moneyness. The largest
correlation is observed between asset volatilities with moneyness in (0.7,1] and (1,1.3]. These option constitutes
the majority of the observation in the sample.

Second, the evolution of the mean asset volatility across moneyness shows the largest implied
asset volatility for deep out-of-the-money options consistent with the well-documented
leverage effect. On the other hand, at-the-money asset volatility ranges from 15% to 20% per
annum; deep out-of-the money calls display implied volatilities with similar magnitudes.

The only instances in which the short-term asset volatility is larger than the long-term
one is during the first months of 2016 when China’s stock market fell nearly 18%. Given
the interconnection between the US and Chinese markets, China’s crush seems to have
systematically affected the likelihood of US firms defaulting, especially in the short run. This
can be also observed looking at the model-implied default probabilities at different horizons.
Using the compound option model in (3.4), given the estimates of the market asset volatility
and leverage, the term-structure of default probabilities can be estimated. Figure 3.4 indeed
shows that the 1-year default probability is generally smaller than the 5-year ones, and that
both increased during the Chinese market crush. However, the largest impact is observed
on the short-term default probability, to the point to making default more likely in the short
run than for longer horizons. It appears that systematic shock in the Chines market had a
stronger impact on the short-term solvency of the US economy.

It is worth noting that lager default probabilities are associated with lower volatilities.
This apparently counterintuitive finding is well explained by how volatility works in a
compound option model of default. As the asset volatility increases, the option embedded in
the firm’s equity becomes more in-the-money and its value increases. This pushes the firm
away from the default boundary and the default probability decreases.
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Fig. 3.3 Time-series evolution of the market-wide asset volatility. Panel (a) represent the evolution of the
short-term (T < 1) and long-term (T ≥ 1) asset volatility. Panel (b) display the time-evolution of the asset
volatility across the moneyness dimension. In general, short term volatility is smaller than long-term volatility,
and deep OTM put options display the largest volatility, consistently with the leverage effect.
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Fig. 3.4 Market-wide implied risk-neutral default probabilities based on the average asset volatility across the
surface observed every week. Probabilities are obtained from (3.4). The size of 1-year default probability is
smaller than the 5-year; however, during the Chinese crush at the beginning of 2016, 1-year default probabilities
turned larger than the long-term ones. After the turmoil, the usual ordering is observed.

Maturity Proportion Cumulative Moneyness Proportion Cumulative

PC1 78.58% 78.58% PC1 54.55% 54.55%
PC2 20.34% 98.93% PC2 31.04% 85.59%
PC3 1.07% 100.00% PC3 12.99% 98.58%

Table 3.6 PCA on maturity (left table) and moneyness (right table) for changes in the market-wide asset
volatility. The first three components are able to account for almost the totality of the variation. They are
interpreted as: Level, Slope/Smirk in case of time-to-maturity/moneyness, and Convexity.
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(a) First three eigenvectors PCA on maturity
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(b) First three eigenvectors PCA on moneyness

Fig. 3.5 Both across time-to-maturity (panel a) and moneyness (panel b) the first PC is positive and can be
interpreted as level. The second PC for the variation of the term structure is a slope fact, whilst the second
PC across moneyness is a smirk factor. The convexity component affect more the smirk rather than the term
structure of the market-wide asset volatility surface.

3.4.3 PCA on market-wide asset volatility changes

Table 3.5 reports the correlation among implied volatilities at different time horizons and
across moneyness. Given the high correlation, this allows to use principal component analysis
to find the uncorrelated sources of risk which drive the evolution of asset implied volatilities.

I proceed as follows: PCA is firstly applied on the maturity dimension, analyzing the
term structure of asset implied volatilities. I then perform PCA on the second dimension,
moneyness. Finally, PCA is applied on the entire implied volatility surface, analyzing both
dimensions simultaneously.

PCA on time-to-maturity

The results of the PCA performed on the correlation matrices in Table 3.5 are shown in
Table 3.6. Both over the moneyness and the maturity dimensions, the first three principal
components are enough to account for the whole variability exhibited by the changes of the
market-wide asset volatility. In order to identify the effect of each component on the asset
volatility surface, the first three eigenvectors corresponding to the three largest eigenvalues
are computed. Figure 3.5, panel (a), displays the elements of each eigenvector.

Alongside the maturity dimension, all of the components of the first eigenvector are
positive. Thus a positive shock in the first principal component (an upward shift) induces
a roughly parallel shift in the term structure of the implied volatility, resulting in a global
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increase of all the implied volatilities. Therefore, the first principal component can be
interpreted as a ‘level’ or a ‘trend’ component of the implied volatility term structure. For the
overall sample period, 78.58% of the total variation in the term structure can be attributed to
(roughly) parallel shifts.

The factor weights on the second principal component change sign, increasing monotoni-
cally with maturity. Therefore, a positive shock in the second principal component leads to a
change in the slope of the term structure of implied volatilities, with short maturities moving
down and long ones moving up. Thus, the second principal component can be interpreted as
a ‘slope’ or ‘tilt’ component which explains 20.34% of the total variation. To confirm that the
second PC does represent the slope of the surface, the correlation between the former and the
latter can be computed. Defining the slope across the maturity dimension as the difference
between short and long-term asset implied volatility. I find a very strong correlation of 0.91.

The third eigenvector has a negative weight for the shortest maturity, with increasing and
positive weights for the medium-term volatilities, and negative and decreasing weights for
the longer maturities. Thus, the third principal component is interpreted as ‘convexity’ and
accounts for 1.07% of the total variation.

PCA on moneyness

Table 3.6 also report the explained variance of the PCs obtained through the moneyness
dimension. An upward shift in the first principal component leads to a near parallel shift in
the smirk of the implied volatility, being the volatility of deep OTM call options the most
sensitive to those changes. That is, parallel shifts tend to accentuate the smirk observed in
that region. Therefore, the first component can be interpreted as a ‘level’ component and
account for 54.55% of the variation in the smirk of the implied volatility.

The factor weights on the second principal component is positive except, again, for
deep OTM call options where it turns negative. The second component corresponds then
to a change in the slope of the asset volatility smirk, with volatilities corresponding to low
moneyness bins increasing and those corresponding to high ones moving down. That is, an
increase in the slope tend to reduce the smirk observed in the deep OTM call region. The
second component accounts for 31.04% of the total variation of the smirk. According to
the leverage effect, the slope of the smirk should be connected with increase in credit risk.
Hence, similar to the maturity dimension, the correlation between the second PC and change
in market leverage is computed. This correlation equals 0.58.

The third eigenvector however show a different impact over deep OTM put options. It
has a positive weight for the smallest moneyness, with increasing and negative weights for
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Surface Proportion Cumulative

PC1 87.16% 87.16%
PC2 11.47% 98.63%
PC3 0.95% 99.58%
PC4 0.42% 100.00%

Table 3.7 PCA on the whole surface for changes in the market-wide asset volatility. The first two components
are able to account for the almost the totality of the variation.

the medium and high levels of moneyness. Thus, the third principal component is interpreted
as a ‘convexity’. An increase in the convexity affects the most deep OTM put options
with their volatility being the one which increases the most. This last component account
for the remaining 12.99% of the variation in the smirk. It is worth highlighting that the
convexity component affect more the smirk rather than the term structure of the market-wide
asset volatility surface. Figure 3.6 shows the ‘typical’ shape of the asset volatility surface,
displaying the most curvature across the moneyness dimension.

Overall, the comparative PCAs documents a larger impact of the first two PCs on the
maturity dimension rather than on the moneyness. That is, the level and slope have a larger
impact at governing the term-structure of the market-wide asset volatility than they have in
affecting the volatility smirk. Conversely, the convexity factor have a larger impact on the
moneyness rather than the time-to-maturity dimension.

PCA on the whole surface

To complete this analysis, PCA is performed on the dynamics of the entire volatility surface.
Figure 3.6 plots the asset implied volatility surface as a function of moneyness and maturity.
The surface shows that asset implied volatilty decreases both across the moneyness bins
and across maturity. Since more indebted firms are more likely to be in a high moneyness
bin, the negative skew obtained could be explained by the negative relationship between
asset volatility and leverage. As Choi and Richardson (2016) suggest, firm’s asset volatility
decreases with leverage (and thus with moneyness) since firms with lower asset volatility can
probably better exploit the tax advantage of debt while maintaining a relatively low cost of
financial distress.

Alternatively, the shape of the asset implied volatility surface could be related to in-
vestors’ preference for lottery-like assets. In particular, Boyer and Vorkink (2014) find that
options trading out-of-the money offer substantially more skewness (a proxy for lottery-like
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Fig. 3.6 Typical shape of the option-implied market-wide asset volatility surface. Consistently with the leverage
effect, the largest volatilities are observed in the default region, i.e. for short-maturity deep OTM put options.
The convexity is more pronounced across the moneyness dimension rather than the term structure, despite
displaying a decreasing trend. Outside the default region, the asset volatility appears quite constant. This
surface was observed on October 11th 2017.

characteristics) than in-the-money options, especially as maturity decreases. This would,
in contrast, translate into higher buying pressure for option contracts at shorter maturities
and for lower moneyness bins (which are deeper out-of-the- money). However, both effects
would produce a downward sloping term structure and moneyness smirk, in line with our
shape of the asset volatility surface.

Comparing to the findings on equity volatility, a similar negative skew is found for equity
implied volatility (Cont and da Fonseca 2002, Andersen et al. 2015). However, a downward
sloping term structure of equity implied volatility is not common, especially during tranquil
periods.

In order to perform PCA on the entire data set, e maturity levels are pooled together. The
results of the PCA on the volatility surface are presented in Figure 3.7 and Table 3.7. The
factor loadings of the first principal component (PC1) of Figure 3.7 show an almost constant
effect on the entire volatility surface. That is, the first PC can be interpreted as ‘level’ and it
explains 87.16% of the surface total variation.
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Fig. 3.7 Principal components (modes) of the whole surface. PC1 explains 87.16% of the variance in the
changes in the surface, and appears to be a Level factor. PC2 is a skew factor as it affects the moneyness
dimension only and explains 11.47% of the variance. PC3 is a convexity factor which affects moneyness, and
PC4 appears to be a term factor as it acts in the time-to-maturity dimension. PC3 and PC4 explain together less
than 2% of the variation.
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The factor loadings of the second principal component (PC2) indicate that this is a skew
factor, with volatilities in low moneyness bins moving in the opposite direction from those in
higher moneyness bins, with little variation across maturity. This factor explains 11.47% of
the surface variation and exhibit positive correlation with changes in leverage. The correlation
with the second PC and changes in market leverage is equal to 0.14 when short-term options
are considered, but increase to 0.26 when long-term options are taken into account. This
result is consistent with Maglione (2019) in which credit risk factors are shown to affect
mostly long-maturity options rather than options with shorter maturities. The correlation is
however relatively small, thus suggesting that the second PC is only partially linked to credit
risk (also in line with the findings in Carr and Wu 2017 and Maglione 2019).

The factor loadings for the third principal component (PC3) appears to be a convexity fac-
tor affecting the moneyness dimension. Finally, the fourth factor (PC4) plotted in Figure 3.7
appears to be a curvature mode related to the term structure. Together, the first two principal
components explain 98.58% of the surface variation, thus showing that the convexity effects
are only marginally important in the evolution of the surface.

3.4.4 Time-series dynamics of Slope and Smirk

Given the results in the previous section, the dynamics of the asset implied volatility surface
is further investigated. As the second principal components for both the maturity and
moneyness analyses are highly correlated with changes in the slope of the empirical term
structure and moneyness smirk, respectively, the latter are used to study the evolution of the
surface across time. The variables Slope and Smirk are defined as follows7

Slopet = σV,t(long term)−σV,t(short term)

Smirkt = σV,t(DOOM call)−σV,t(DOOM put).

Figure 3.8, panel (a), shows the evolution of the term structure Slope. The term structure
is downward sloping during most the whole sample period. In panel (b) the Smirk is plotted
and is also mostly negative during the sample period. A downward sloping term structure is
also found by Lovreta and Silaghi (2017). This may come as a surprise as, in equity markets,
an upward sloping term structure is usually observed. This inversion in the slope is easily
explained by how default is driven in the compound option model. As previously stated, lager
default probabilities are associated with lower volatilities as increasing volatilities increase
the value of the firm’s equity, thus pushing the latter away from the default barrier. Observing

7DOOM stands for deep out-of-the-money.
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Fig. 3.8 Time-series variation of slope, smirk, market asset return (rM
V ), average volatility level (σ̄M

V ), and
change in market leverage (∆LEVM). All the signals are stationary according to the ADF test; therefore
Xt = (X1,X2)t = (Slope,Smirk)t can be modelled as a Vector Autoregressive process. Zt = (Z1,Z2,Z3)t =
(rM

V , σ̄M
V ,∆LEVM)t is added to the autoregressive structure as set of exogenous variables.
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(a) Slope (b) Smirk

Fig. 3.9 Correlograms of the variables Slope (left) and Smirk (right). Slope display a significant autocorrelation
of the first order, whilst Smirk shows an autocorrelation structure up to the second lag. Given these findings,
the bivariate process Xt is modelled as a vector autoregressive process of order two, VAR(2).

a downward sloping term structure is what should be normally expected when a compound
option model is used to estimate the asset volatility from the data.

In order to model the joint evolution of the slope and smirk of the market-wide asset
volatility, a Vector Autoregressive (VAR) model is used. Let Xt = (X1,X2)t = (Slope,Smirk)t

and a set of exogenous variables Zt = (Z1,Z2,Z3)t = (rM
V , σ̄M

V ,∆LEVM)t . The exogenous
variable rM

V,t = ln(V M
t )− ln(V M

t−1), where V M is the value-weighted market value of the assets,
is the market return on asset. The other two exogenous variables are the average level of
asset volatility and the change in market leverage respectively.

From the correlograms of Xt in Figure 3.9, the slope of the surface exhibit some autocor-
relation of the first order, whilst its smirk appears to have an autoregressive structure up to
the second lag. Based on these findings, a VAR(2) with exogenous variables is modelled,
that is

Xt = ααα +A1Xt−1 +A2Xt−2 +BZt + εεε t (3.6)

where ααα is the vector of intercepts, A1,A2 and B are matrices of loadings and εεε t is a zero
mean white noise vector process.

Table 3.8, left panel, reports the estimated parameters of the VAR. Confirming the
graphical pattern displayed by the correlograms, the slope of the surface observed at time t is
positively correlated with the surface observed the previous week. Lovreta and Silaghi (2017)
document also a similar autoregressive behaviour. The lagged slope affects also the present
smirk, being the two positively correlated. The slope lagged of two weeks does not have
any impact on either the present slope or smirk. On the contrary, the smirk lagged up to two
weeks display is positively correlated with both the present slope and smirk. The variable
Smirkt−2 does affect the present smirk only. Overall, the evolution of the asset volatility
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surface display a strong autoregressive component both in term of the variation across the
time-to-maturity and moneyness dimension.

The set of exogenous variables have also some explanatory power in describing the time-
series evolution of the surface. Consistently with the PCA conducted in the previous section,
the average level of the surface does explain both the slope and the smirk of the surface.
An increase in the average volatility reduces the slope thus becoming more negative. This
implies that the surface becomes steeper, suggesting that short term volatilities experience a
larger increase than the volatilities at longer horizons. On the other hand, a positive shock to
the average volatility translates into an increase of the smirk. Being the smirk mostly negative
across the sample, the positive loading on average volatility signals that, after a positive
shock, the surface flattens across the moneyness dimension. The volatilities of out-of-the
money calls appear to increase more than out-of-the-money puts, thus reducing the spread
between the two.

The second exogenous variable is represented by the contemporaneous asset return on
the market. This variable is positively correlated with both the slope and the smirk of the
surface. Being both Slope and Smirk mostly negative, this implies that an increasing market
is associated with a flatter surface. Conversely, negative market shocks make the surface
both steeper and more skewed. Therefore, option market participants adjust option prices to
negative shocks as theory would predict, demanding a larger risk-premium for those contracts
which are mostly affected. These are most likely short-term deep OTM put options. If the
market participants fear a negative temporary market shock, put prices increase more than
call prices and, then, surface becomes steeper and more skewed.

Finally, consistently with the leverage effect, changes in market leverage affects only the
evolution of the surface across moneyness. As the loading on ∆LEV is negative, an increase
in the market leverage, and therefore in the market-wide probability of defaults, reduce the
smirk making it more negative. This reduction is induced by the increase in the volatility of
DOOM puts which indeed are the contracts mostly affected by credit risk factors (Maglione
2019). Overall, the unrestricted VAR(2) is able to explain almost half of the variation of both
the slope and the smirk of the surface.

For completeness, a restricted VAR(2) is also estimated in Table 3.8, right panel. The
restricted VAR is obtained by setting to zero the coefficients of those loadings on variables
which are statistically insignificant. The restricted VAR does not significantly improve the
fit of the model. However, the F-test for restrictions has a p-value of 0.09, thus making the
restricted VAR more informative than the unrestricted at 10% significance level.
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Slopet Smirkt Slopet Smirkt

Slopet−1
0.143

***
0.352

*** Slopet−1
0.160

***
0.379

***(0.008) (0.000) (0.001) (0.000)

Slopet−2
0.056 0.087

Slopet−2
0 0

(0.295) (0.369) - -

Smirkt−1
0.068

**
0.367

*** Smirkt−1
0.075

**
0.383

***(0.034) (0.000) (0.006) (0.000)

Smirkt−2
0.166 0.184

*** Smirkt−2
0 0.162

***(0.604) (0.002) - (0.001)

σM
V,t

-1.413
***

1.876
*** σM

V,t
-1.417

***
1.87

***(0.000) (0.000) (0.000) (0.000)

rM
V,t

0.218 0.679
** rM

V,t
0 0.773

**(0.333) (0.098) - (0.051)

∆LEVM
t

0.396 -1.899
** ∆LEVM

t
0 -1.724

**(0.364) (0.018) - (0.026)

ααα
0.276

***
-0.422

*** ααα
0.274 *** -0.424

***(0.000) (0.000) (0.000) (0.000)

R2 0.48 0.46 R2 0.48 0.46

Table 3.8 Unrestricted VAR(2) (left) and restricted VAR(2) (right). The results show an autoregressive
structure of the first order for Slope and of the second order for Smirk. The set of exogenous variable affect the
surface as expected by the compound option model. The process of adding restrictions is conducted ‘step-by-
step’, that is the coefficients are set to zero one at a time and the VAR is then re-estimated. Then, the next most
insignificant coefficient is set to zero and so on, until the model on the left panel of Figure 3.8 is obtained.F-test
for restricted vs unrestricted has p-value 0.09, thus making the restricted model more informative than the
unrestricted at 10% significance level.
Significance levels: 10% (*), 5% (**), 1% (***).
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3.5 Conclusions

In this paper the surface of asset implied volatility is estimated and analysed, as a function of
maturity and moneyness. The firm’s asset volatility is estimated using a compound option
structural model of default on a sample of 66 US companies that belong to the S&P100
and spans over the 2013–2017 period. As both the stock and option prices are modelled as
function of the underlying asset value and volatility, a joint calibration allows to estimate
these two unobservable parameters. Because options are used, the estimated asset volatility
depends both on the option time-to-maturity and moneyness, thus generating a surface. To
the best of my knowledge, this is the first work which provides an option-implied asset
volatility surface. Only Lovreta and Silaghi (2017) develop an methodology for estimating
the asset volatility for CDSs which, however, require some extra assumptions for estimating
the volatility across moneyness. Here instead, both the maturity and moneyness dimensions
are naturally embedded in the estimation procedure.

Once the firm-specific surface is obtained, then the market-wide asset volatility surface
can be constructed. Principal component analysis on the changes in asset volatility over the
cross-section of firms shows that market-wide asset volatility is able to to explain most of
the cross-sectional variation. Therefore, PCA is conducted on the changes of the market
volatility surface across the time-to-maturity and moneyness dimension as well as across
the surface as whole. In terms of maturity, the first three PCs are able to explain all the
variability and are ascribed as a level, slope and curvature factors affecting the term structure.
Regarding the moneyness dimension, the first three PCs also explain the whole variation and
are associated to level, smirk and curvature. When analysed as a whole, the first two PC
(modes), interpreted as level and smirk are able to account almost the totality of the variation.
The third and fouth components together accounts to less than 2% of the variance and are
associated to a convexity related to the moneyness and to the term structure respectively.

The analysis also finds a downward sloping term structure of asset implied volatilities.
With respect to to moneyness, a negative skew is documented, in line with evidence on equity
implied volatility. In order to jointly model the slope and the smirk of the implied volatility
surface a Vector Autoregressive with exogenous variables is used. The proposed statistical
model is able to account for almost half of the variation exhibited by the asset volatility
surface, and document an autoregressive component for both the slope and the smirk of the
surface, being the smirk more persistent. The estimated parameters suggest that the term
structure gets steeper during crises and flatter in tranquil periods; also the skew gets steeper
during crises and is flatter for longer-term maturities.
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Appendix A

Notation and Abbreviation

If not differently specified, sets as well as univariate random variables are indicated as
upper case letters (X), scalars as lower case letters (x), vectors as lower case bold letters (x),
matrices as well as multivariate random vectors as upper case bold letters (X).

N= {1,2, . . .} set of natural number
R= (−∞,+∞) set of real number
R+ = [0,+∞) set of non-negative real number
Rn Euclidean n-dimensional space
M n

+ space of positive definite matrices
◦ composition of function (operator)
f ∈ o(g) as x → a limx→a f/g = 0
f ∈ O(g) as x → a limsupx→a | f/g|< ∞

f ∼ g as x → a limx→a f/g = 1
1A : X → [0,1] indicator function of a subset A of a set X
(Ω,F ,F,P) filtered probability space, with F := (Ft)t∈[0,T ]
S (F,P) vector space of semimartingales on (Ω,F ,F,P)
EP expectation under P
EP

t (or EP
k ) conditional expectation under P given Ft (or Ftk)

V variance
Cov covariance
Corr correlation
Qn tn-forward measure
Q risk-neutral measure
Q∼ P Q is equivalent with respect to P
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Notation and Abbreviation

PDF probability density function
CDF cumulative distribution function
X ∼ . . . X is distributed as . . .
n(·; µ,σ) PDF of X ∼ N (µ,σ)

nm(·; µµµ,ΣΣΣ) PDF of X ∼ Nm (µµµ,ΣΣΣ)

N(·; µ,σ) CDF of X ∼ N (µ,σ)

Nm(·; µµµ,ΣΣΣ) CDF of X ∼ Nm (µµµ,ΣΣΣ)

φ(·) PDF of X ∼ N (0,1)
φm(·;ΓΓΓ) PDF of X ∼ Nm (0,ΓΓΓ) with γii = 1, ∀i ≤ m
Φ(·) CDF of X ∼ N (0,1)
Φn(·;ΓΓΓ) CDF of X ∼ Nm (0,ΓΓΓ) with γii = 1, ∀i ≤ m
Φn(·) CDF of X ∼ Nm (0,I) with I the m×m identity matrix
Xt− (or Xi−) lims↑t Xs (or lims↑ti Xs)

rt instantaneous spot rate at time t
Bt = exp

(∫ t
0 rs ds

)
value of a bank account at time t

DF(t,T ) = Bt
BT

discount factor between time t and T
τ default time
LGD loss given default
Vt market value of the firm at time t
St market value of the firm’s equity at time t
Dt,T market value of the firm’s debt with maturity T at time t
Elx(y) elasticity of y with respect to x
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Appendix B

Further Description of the Data and
Construction of the Variables

In order implement the calibration described in Section 1.3, one of the most crucial aspects
is to effectively and efficiently represent the firms’ capital structures. In particular, every
firm can actually have n ≥ 0 bonds outstanding; however, it is virtually impossible to solve
for the unobservable (V0,σV ) if n is very large, as the calibration involves the solution of an
n-dimentional integral equation. Moreover, the estimation of the asset value and its volatility
involes the inversion of the multivariate normal CDF, which is implemented in Matlab via the
function mvncdf. For bivariate and trivariate distributions, mvncdf uses adaptive quadrature
on a transformation of the t density, based on methods developed in Genz (2004). For four or
more dimensions, mvncdf uses a quasi-Monte Carlo integration algorithm based on methods
developed by Genz and Bretz (1999) and Genz and Bretz (2002). As a matter of fact, for
n ≥ 4, the algorithm becomes much slower due to the quasi-Monte Carlo integration.

In addition, as each company have a different n, it is extremely impractical not to have a
‘standard framework’ of valuation. Also, for US firms detailed data about individual bonds
outstanding is available only at yearly frequency in the 10-K document (and the face value of
the bonds are to be collected manually). On the other hand, in order to homogenise different
capital structures and construct a standard framework for the implementation, the number of
bond outstanding is set such that n ≤ 3 as described below.

From Compustat, the variables DLTTQ (Long-Term Debt – Total) and DD1Q (Long-Term
Debt Due in One Year) are downloaded every quarter. DLTTQ represents debt obligations due
more than one year from the company’s Balance Sheet date or due after the current operating
cycle, whilst DD1Q represents the current portion of long-term debt. They proxy as long-term
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Further Description of the Data and Construction of the Variables

and short-term debt respectively. Finally, the three synthetic bonds are defined as

F1 =
DD1Q
CSHO

, F2 = F3 = 0.5 · DLTTQ
CSHO

,

with {t1, t2, t3}= {1,5,10} and CSHO the number of common share outstanding. Those are
reset at each quarter, and the time to maturity is adjusted accordingly for the effect of passage
of time when the estimates of the implied volatility of the assets are carried out.

The choice of t1 = 1 is trivial and given by the definition of the variables; t2 = 5 is chosen
as it is well-documented that the most actively traded CDS is the 5-year contract (which is
used for the calibration). Also t3 is set at 10 years in order not to rely on CDS with very long
maturities (such as 20 or 30-years contracts) as they could be very illiquid.

Unfortunately, the variable DD1Q can either be not available at quarterly frequency or is not
reported at all (the latter is usually observed for banks and energy companies). Under these
cases, the variable is estimated using the quarterly variable Debt in Current Liabilities (DLCQ)
which is always available. Notice that DD1Q (when available) is a fraction of DLCQ. Therefore,
in case of missing observation, the last available DD1Q/DLCQ ratio is used to determine
the contemporaneous DD1Q. Finally, if DD1Q is never reported, the average DD1Q/DLCQ of
comparable companies based on Division/Sub-division (see Table B.1) is estimated and DD1Q

is projected accordingly.
Moreover, I believe that the choice of setting n = 31 constitutes the optimal number

of bonds such that both level, slope and curvature of the term structure of the survival
probabilities extracted from CDS are matched by the model. As a matter of fact, the
calibration procedure to be effective relies on the ability of the structural model of default to
reproduce the aforementioned term structure.

For completeness, I report the composition of DD1Q and DLTTQ.
DD1Q includes:

1. Current portion of any item defined as long-term debt (for example, the current portion
of a long-term lease obligation);

2. Instalments on a loan;

3. Sinking fund payments.

This item excludes:
1There are instances where n < 3 as the company does not have either short-term or long-term debt; however

the most frequent capital structures have n = 3.
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1. Current portions of debt that do not reflect discounts on long term debt;

2. Debt that includes interest payments due;

3. Demand notes;

4. Debt in default if there is no associated long term debt reported as part of the long term
liabilities;

5. Estimated claims and other liabilities under Chapter XI or other bankruptcy proceed-
ings;

6. Interest on capitalized lease obligations.

DLTTQ includes:

1. Advances to finance construction;

2. Bonds, mortgages, and similar debt;

3. ESOP loan guarantees;

4. Extractive industries’ advances for exploration and development;

5. Forestry and paper companies’ timber contracts;

6. Gold and bullion loans;

7. Guaranteed Preferred Beneficial Interests in Corporation’s Junior Subordinated De-
ferred Interest Debentures;

8. Indebtedness to affiliates;

9. Industrial revenue bonds;

10. Instalment Obligations – nonrecourse;

11. Line of credit, when reclassified as a non-current liability;

12. Loans;

13. Loans on insurance policies;

14. Long-term lease obligations (capitalized lease obligations);
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Further Description of the Data and Construction of the Variables

15. Mandatorily Redeemable Capital Securities of Subsidiary Trust;

16. Notes payable, due within one year to be refunded by long-term debt when carried as
noncurrent liability;

17. Obligations called“note” or“deb” whether or not they are interest-bearing;

18. Obligations requiring interest payment that are not specified by type;

19. Production payments and advances for exploration and development;

20. Publishing companies’ royalty contracts payable;

21. Purchase obligations and payments to officers (when listed as long-term liabilities);

22. Unamortized debt discount.

This item excludes:

1. Accounts payable due after one year (included in Liabilities – Other);

2. Accrued interest on long-term debt (included in Liabilities – Other);

3. Chapter XI bankruptcy terms;

4. Current portion of long-term debt (included in Current Liabilities);

5. Customers’ deposits on bottles, kegs, and cases (included in Liabilities – Other);

6. Deferred compensation;

7. Subsidiary preferred stock (included in Minority Interest).

Finally, the payout ratio is calculated as the weighted average cost of capital for the company.
The cost of equity (i.e. dividend yield, q) is estimated as the average dividend yield over the
previous year. These data are downloaded from Bloomberg. The cost of debt is calculated as

c = min
{

∑
n
i=1 ciFi

F
, ln
(

1+
XINT

F

)}
,

where F = ∑
n
i=1 Fi and ci the continuously compounded debt payout rate. XINT is the

Compustat variable Interest and Related Expense – Total. The individual rates ci are observed
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at yearly frequency and manually collected from the 10-K documents. Eventually, the payout
rate is estimated every year as

ϖ =
cF +qS
F +S

,

where S is the value of the equity at the beginning of the year and q the dividend yield
estimated as described above.
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Further Description of the Data and Construction of the Variables

Table B.1 List of the selected companies and their SIC code.

Ticker SIC Division

AAPL 3663 Manufacturing
ABT 2834 Manufacturing
ACN 8742 Services
ALL 6331 Finance, Insurance and Real Estate
AMGN 2836 Manufacturing
AMZN 5961 Wholesale Trade
BA 3721 Manufacturing
BAC 6020 Finance, Insurance and Real Estate
BMY 2834 Manufacturing
C 6199 Finance, Insurance and Real Estate
CAT 3531 Manufacturing
CL 2844 Manufacturing
CMCSA 4841 Transportation, Communications, Electric, Gas and Sanitary service
COF 6141 Finance, Insurance and Real Estate
COP 1311 Mining
COST 5399 Wholesale Trade
CSCO 3576 Manufacturing
CVS 5912 Retail Trade
CVX 2911 Manufacturing
DD 2821 Manufacturing
DIS 4888 Transportation, Communications, Electric, Gas and Sanitary service
EMR 3823 Manufacturing
EXC 4911 Transportation, Communications, Electric, Gas and Sanitary service
F 3711 Manufacturing
FDX 4513 Transportation, Communications, Electric, Gas and Sanitary service
GD 3721 Manufacturing
GE 4911 Transportation, Communications, Electric, Gas and Sanitary service
HAL 1389 Mining
HD 5211 Wholesale Trade
IBM 7370 Services
INTC 3674 Manufacturing
JNJ 2834 Manufacturing
JPM 6020 Finance, Insurance and Real Estate
KO 2086 Manufacturing
LLY 2834 Manufacturing
LOW 5211 Wholesale Trade
MCD 5812 Retail Trade
MDT 3845 Manufacturing
MMM 2670 Manufacturing
MO 2111 Manufacturing
MON 5169 Retail Trade
MRK 2834 Manufacturing
MS 6211 Finance, Insurance and Real Estate
MSFT 7372 Services
ORCL 7370 Services
OXY 1311 Mining
PEP 2080 Manufacturing
PFE 2834 Manufacturing
PG 2840 Manufacturing
PM 2111 Manufacturing
RTN 3812 Manufacturing
SLB 1389 Mining
SO 4911 Transportation, Communications, Electric, Gas and Sanitary service
SPG 6798 Finance, Insurance and Real Estate
T 4812 Transportation, Communications, Electric, Gas and Sanitary service
TGT 5331 Wholesale Trade
TWX 8748 Services
TXN 3674 Manufacturing
UNH 6324 Finance, Insurance and Real Estate
UNP 4011 Transportation, Communications, Electric, Gas and Sanitary service
USB 6020 Finance, Insurance and Real Estate
UTX 3724 Manufacturing
VZ 4812 Transportation, Communications, Electric, Gas and Sanitary service
WFC 6020 Finance, Insurance and Real Estate
WMT 5331 Retail Trade
XOM 1311 Mining
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Appendix C

Gaussian Integrals

Theorem 1. Given a binary variables ξ taking values ±1, a ∈R, and b,c ∈Rm then

ξ

∫
ξ ∞

a
n(x; µ,σ)Φm

(
bx+ c; Γ̃ΓΓ

)
dx = Φm+1

(
ξ

µ −a
σ

,d;ΓΓΓξ

)
, (C.1)

for d ∈Rm : di =
biµ+ci√
1+b2

i σ2
,

ΓΓΓξ =

(
Γ̃ΓΓ γγγξ

γγγ⊤
ξ

1

)
,

and γγγξ ∈Rm : γi,ξ = ξ
biσ√

1+b2
i σ2

.

Proof. For notational convenience, define

Iξ := ξ

∫
ξ ∞

a
n(x; µ,σ)Φm

(
bx+ c; Γ̃ΓΓ

)
dx.

I distinguish the two cases ξ = 1 and ξ =−1 (for convenience of notation the dependence
on the distributions’ parameters such as µ , σ and Γ̃ΓΓ is omitted).

1. Consider first ξ = 1, that is

I1 =
∫

∞

a
n(x)

∫ b1x+c1

−∞

· · ·
∫ bmx+cm

−∞

1√
(2π)m det Γ̃ΓΓ

exp

(
−y⊤Γ̃ΓΓ

−1y
2

)
dm y

dx

=
∫

D0

1√
2πσ

exp

(
−1

2

(
x−µ

σ

)2
)

1√
(2π)m det Γ̃ΓΓ

exp

(
−y⊤Γ̃ΓΓ

−1y
2

)
dm ydx
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Gaussian Integrals

where D0 := {x ∈R,y ∈Rm : x ≥ a,
⋂m

i=1 {yi ≤ bix+ ci}}.

Consider the transformation T1 :Rm+1 →Rm+1

T1 :=

{
x = µ −σw

y = y

with Jacobian

J1 =


−σ 0 . . . 0
0 1 . . . 0
. . . . . . . . . . . .

0 0 . . . 1

=

(
−σ 0⊤

0 I

)

where 0 is the null column vector in Rm and I the m×m identity matrix.

Furthermore, D1 :=D0(T1)=
{

w ∈R,y ∈Rm : w ≤ µ−a
σ

,
⋂m

i=1 {yi ≤−biσw+biµ + ci}
}

.
Hence the integral becomes

I1 =
∫

D1

n(µ −σw)
1√

(2π)m det Γ̃ΓΓ

exp

(
−y⊤Γ̃ΓΓ

−1y
2

)
|detJ1|dmydw

=
∫

D1

φ (w)
1√

(2π)m det Γ̃ΓΓ

exp

(
−y⊤Γ̃ΓΓ

−1y
2

)
dmydw.

Consider another transformation T2 :Rm+1 →Rm+1

T2 :=

{
w = w

y = ΛΛΛ(z− γγγw)

with

ΛΛΛ :=



1√
1−γ2

1
0 . . . 0

0 1√
1−γ2

2
. . . 0

. . . . . . . . . . . .

0 0 . . . 1√
1−γ2

m

 , γγγ :=


γ1

γ2

. . .

γm

 ,
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where γi ∈ (−1,1), for all i ≤ m, are parameters that will be determined later. The
corresponding Jacobian is

J2 =


1 0 . . . 0

− γ1√
1−γ2

1

1√
1−γ2

1
. . . 0

. . . . . . . . . . . .

− γm√
1−γ2

m
0 . . . 1√

1−γ2
m

 .

Furthermore,

D2 : = D1(T2) =

{
w ∈R,z ∈Rm : w ≤ µ −a

σ
,

m⋂
i=1

{
zi ≤

(
γi −biσ

√
1− γ2

i

)
w+(biµ + ci)

√
1− γ2

i

}}
.

Hence

I1 =
∫

D2

φ (w)
1√

(2π)m det Γ̃ΓΓ

exp

(
−(ΛΛΛ(z− γγγw))⊤ Γ̃ΓΓ

−1
(ΛΛΛ(z− γγγw))

2

)
|detJ2|dmzdw

=
∫

D2

φ (w)
1√

(2π)m ∏
m
i=1
(
1− γ2

i
)

det Γ̃ΓΓ

exp

(
−(z− γγγw)⊤ΛΛΛ

⊤
Γ̃ΓΓ
−1

ΛΛΛ(z− γγγw)
2

)
dmzdw.

Noticing that ∏
m
i=1
(
1− γ2

i
)
= det

(
ΛΛΛ
−1
)2

, then

I1 =
∫

D2

φ (w)
1√

(2π)m det Γ̂ΓΓ

exp

(
−(z− γγγw)⊤ Γ̂ΓΓ

−1
(z− γγγw)

2

)
dmzdw

=
∫

D2

φ (w)nm(z|W )dmzdw

with Γ̂ΓΓ
−1

:= ΛΛΛ
⊤

Γ̃ΓΓ
−1

ΛΛΛ, and Z|W ∼ Nm

(
γγγW, Γ̂ΓΓ

)
. This means that i j-element of the

covariance matrix Γ̂ΓΓ is given by

γ̂i j = γ̃i j

√(
1− γ2

i
)(

1− γ2
j

)
with γ̃ii = 1.
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Furthermore, by setting γi−biσ

√
1− γ2

i = 0, that corresponds to γi =
biσ√

1+b2
i σ2

, the re-

gion of integration reduces to D2 =

{
w ∈R,z ∈Rm : w ≤ µ−a

σ
,
⋂m

i=1

{
zi ≤ biµ+ci√

1+b2
i σ2

}}
,

and the expression for the generic element of Γ̂ΓΓ reduces to

γ̂i j =
γ̃i j√(

1+b2
i σ2
)(

1+b2
jσ

2
) .

Finally, using the result in Greene (2008) (pag. 1013), I1 can be written as

I1 =
∫

D2

n(z̃)dm+1z̃ = Φm+1

µ −a
σ

,
b1µ + c1√
1+b2

1σ2
, . . . ,

bmµ + cm√
1+b2

mσ2
;ΓΓΓ1


with Z̃⊤ :=

(
Z W

)
∼ Nm+1 (0,ΓΓΓ1); the correlation matrix ΓΓΓ1 after proving the

case ξ =−1.

2. Consider ξ =−1, that is

I−1 =
∫ a

−∞

n(x)

∫ b1x+c1

−∞

· · ·
∫ bmx+cm

−∞

1√
(2π)m det Γ̃ΓΓ

exp

(
−y⊤Γ̃ΓΓ

−1y
2

)
dmy

dx

=
∫

D0

1√
2πσ

exp

(
−1

2

(
x−µ

σ

)2
)

1√
(2π)m det Γ̃ΓΓ

exp

(
−y⊤Γ̃ΓΓ

−1y
2

)
dmydx

where D0 := {x ∈R,y ∈Rm : x ≤ a,
⋂m

i=1 {yi ≤ bix+ ci}}. The derivation follows the
same steps as in the previous case, with the only difference that in the transformation
T1 the change of variable is x = µ +σw. Consequently

I−1 =
∫

D2

n(z̃)dm+1 z̃ = Φm+1

a−µ

σ
,

b1µ + c1√
1+b2

1σ2
, . . . ,

bmµ + cm√
1+b2

mσ2
;ΓΓΓ−1



where D2 =

{
w ∈R,z ∈Rm : w ≤ a−µ

σ
,
⋂m

i=1

{
zi ≤ biµ+ci√

1+b2
i σ2

}}
, and Z̃⊤ :=

(
Z W

)
∼

Nm+1 (0,ΓΓΓ−1).

134



Finally the general solution of the integral can be written in compact way as

ξ

∫
ξ ∞

a
n(x)Φm

(
bx+ c; Γ̃ΓΓ

)
dx = Φm+1

(
ξ

µ −a
σ

,d;ΓΓΓξ

)
.

where d ∈Rm : di =
biµ+ci√
1+b2

i σ2
.

In order to determine the covariance matrix of Z̃, the relationship between Γ̂ΓΓ and Γ̃ΓΓ

provided in Greene (2008) (pag. 1013) can be used, that is

Γ̂ΓΓ = Γ̃ΓΓ− γγγξ γγγ
⊤
ξ
, (C.2)

where γγγξ ∈Rm is a vector which needs to be determined. Having constructed the correlation
matrix ΓΓΓξ as

ΓΓΓξ =

(
Γ̃ΓΓ γγγξ

γγγ⊤
ξ

1

)
,

(C.2) can be solved as

γ̃i j√(
1+b2

i σ2
)(

1+b2
jσ

2
) = γ̃i j − γi,ξ γ j,ξ ,

γi,ξ γ j,ξ = γ̃i j

1− 1√(
1+b2

i σ2
)(

1+b2
jσ

2
)
 ,

if i = j, then

γi,ξ = ξ
biσ√

1+b2
i σ2

.

Theorem 2. Given a binary variables ξ taking values ±1, a ∈R, and b,c ∈Rm then

ξ

∫
ξ ∞

a
exn(x; µ,σ)Φm

(
bx+ c; Γ̃ΓΓ

)
dx = eµ+σ2

2 Φm+1

(
ξ

µ +σ2 −a
σ

, f;ΓΓΓξ

)
, (C.3)
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for f ∈Rm : fi =
bi(µ+σ2)+ci√

1+b2
i σ2

,

ΓΓΓξ =

(
Γ̃ΓΓ γγγξ

γγγ⊤
ξ

1

)
,

and γγγξ ∈Rm : γi,ξ = ξ
biσ√

1+b2
i σ2

.

Proof. For notational convenience, define

Jξ := ξ

∫
ξ ∞

a
exn(x; µ,σ)Φm

(
bx+ c; Γ̃ΓΓ

)
dx.

I distinguish the two cases ξ = 1 and ξ =−1 (for convenience of notation the dependence
on the distributions’ parameters such as µ , σ and Γ̃ΓΓ is omitted).

1. Consider first ξ = 1, that is

J1 =
∫

∞

a
exn(x)

∫ b1x+c1

−∞

· · ·
∫ bmx+cm

−∞

1√
(2π)m det Γ̃ΓΓ

exp

(
−y⊤Γ̃ΓΓ

−1y
2

)
dmy

dx

=
∫

D0

ex 1√
2πσ

exp

(
−1

2

(
x−µ

σ

)2
)

1√
(2π)m det Γ̃ΓΓ

exp

(
−y⊤Γ̃ΓΓ

−1y
2

)
dmydx

where D0 := {x ∈R,y ∈Rm : x ≥ a,
⋂m

i=1 {yi ≤ bix+ ci}}.

Consider the transformation T1 :Rm+1 →Rm+1

T1 :=

{
x = µ +σw

y = y

with Jacobian

J1 =


σ 0 . . . 0
0 1 . . . 0
. . . . . . . . . . . .

0 0 . . . 1

=

(
σ 0⊤

0 I

)

where 0 is the null column vector in Rm and I the m×m identity matrix. Furthermore,
D1 := D0(T1) =

{
w ∈R,y ∈Rm : w ≥ a−µ

σ
,
⋂m

i=1 {yi ≤−biσw+biµ + ci}
}

. Hence
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the integral becomes

J1 =
∫

D1

eµ+σwn(µ +σw)
1√

(2π)m det Γ̃ΓΓ

exp

(
−y⊤Γ̃ΓΓ

−1y
2

)
|detJ1|dmydw

= eµ+σ2
2

∫
D1

1√
2π

e−
(w−σ)2

2
1√

(2π)m det Γ̃ΓΓ

exp

(
−y⊤Γ̃ΓΓ

−1y
2

)
dmydw.

Consider another transformation T2 :Rm+1 →Rm+1

T2 :=

{
w =−v+σ

y = ΛΛΛ(z− γγγv)

with

ΛΛΛ :=



1√
1−γ2

1
0 . . . 0

0 1√
1−γ2

2
. . . 0

. . . . . . . . . . . .

0 0 . . . 1√
1−γ2

m

 , γγγ :=


γ1

γ2

. . .

γm

 ,

where γi ∈ (−1,1), for all i ≤ m, are parameters that will be determined later. The
corresponding Jacobian is

J2 =


−1 0 . . . 0

− γ1√
1−γ2

1

1√
1−γ2

1
. . . 0

. . . . . . . . . . . .

− γm√
1−γ2

m
0 . . . 1√

1−γ2
m

 .

and

D2 : = D1 (T2)

=

{
v ∈R,z ∈Rm : v ≤ µ +σ2 −a

σ
,

m⋂
i=1

{
zi ≤

(
γi −biσ

√
1− γ2

i

)
v+
[
bi
(
µ +σ

2)+ ci
]√

1− γ2
i

}}
.
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Hence

J1 = eµ+σ2
2

∫
D2

φ (v)
1√

(2π)m det Γ̃ΓΓ

exp

(
−(ΛΛΛ(z− γγγv))⊤ Γ̃ΓΓ

−1
(ΛΛΛ(z− γγγv))

2

)
|detJ2|dmzdv

= eµ+σ2
2

∫
D2

φ (v)
1√

(2π)m ∏
m
i=1
(
1− γ2

i
)

det Γ̃ΓΓ

exp

(
−(z− γγγv)⊤ΛΛΛ

⊤
Γ̃ΓΓ
−1

ΛΛΛ(z− γγγv)
2

)
dmzdv.

Noticing that ∏
m
i=1
(
1− γ2

i
)
= det

(
ΛΛΛ
−1
)2

, then

J1 = eµ+σ2
2

∫
D2

n(v)
1√

(2π)m det Γ̂ΓΓ

exp

(
−(z− γγγv)⊤ Γ̂ΓΓ

−1
(z− γγγv)

2

)
dmzdv

= eµ+σ2
2

∫
D2

n(v)nm(z|V )dmzdv

with Γ̂ΓΓ
−1

:= ΛΛΛ
⊤

Γ̃ΓΓ
−1

ΛΛΛ, and Z|V ∼ Nm

(
γγγV, Γ̂ΓΓ

)
. This means that the i j-element of the

covariance matrix Γ̂ΓΓ is given by

γ̂i j = γ̃i j

√(
1− γ2

i
)(

1− γ2
j

)
with γ̃ii = 1.

Furthermore, by setting γi−biσ

√
1− γ2

i = 0, that corresponds to γi =
biσ√

1+b2
i σ2

, the re-

gion of integration reduces to D2 =

{
v ∈R,z ∈Rm : v ≤ µ+σ2−a

σ
,
⋂m

i=1

{
zi ≤

bi(µ+σ2)+ci√
1+b2

i σ2

}}
,

and the expression for the generic element of Γ̂ΓΓ reduces to

γ̂i j =
γ̃√(

1+b2
i σ2
)(

1+b2
jσ

2
) .

Finally, using the result in Greene (2008) (pag. 1013), J1 can be written as

J1 = eµ+σ2
2

∫
D2

n(z̃)dm+1z̃

= eµ+σ2
2 Φm+1

µ +σ2 −a
σ

,
b1
(
µ +σ2)+ c1√

1+b2
1σ2

, . . . ,
bm
(
µ +σ2)+ cm√
1+b2

mσ2
;ΓΓΓ1


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with Z̃⊤ :=
(

Z W
)
∼ Nm+1 (0,ΓΓΓ1); the correlation matrix ΓΓΓ1 after proving the

case ξ =−1.

2. Consider ξ =−1, that is

J−1 =
∫ a

−∞

exn(x)

∫ b1x+c1

−∞

· · ·
∫ bmx+cm

−∞

1√
(2π)m det Γ̃ΓΓ

exp

(
−y⊤Γ̃ΓΓ

−1y
2

)
dmy

dx

=
∫

D0

ex 1√
2πσ

exp

(
−1

2

(
x−µ

σ

)2
)

1√
(2π)m det Γ̃ΓΓ

exp

(
−y⊤Γ̃ΓΓ

−1y
2

)
dmydx

where D0 := {x ∈R,y ∈Rm : x ≤ a,
⋂m

i=1 {yi ≤ bix+ ci}}. The derivation follows the
same steps as in the previous case, with the only difference that in the transformation
T1 the change of variable is x = µ +σw. Consequently

J−1 = eµ+σ2
2 Φm+1

a−µ −σ2

σ
,
b1
(
µ +σ2)+ c1√

1+b2
1σ2

, . . . ,
bm
(
µ +σ2)+ cm√
1+b2

mσ2
;ΓΓΓ−1



where D2 =

{
v ∈R,z ∈Rm : v ≤ a−µ−σ2

σ
,
⋂m

i=1

{
zi ≤

bi(µ+σ2)+ci√
1+b2

i σ2

}}
, and Z̃⊤ :=

(
Z W

)
∼

Nm+1 (0,ΓΓΓ−1).

Thus the general solution of the integral can be written in compact way as

ξ

∫
ξ ∞

a
exn(x)Φm

(
bx+ c; Γ̃ΓΓ

)
dx = eµ+σ2

2 Φm+1

(
ξ

µ +σ2 −a
σ

, f;ΓΓΓξ

)
,

where f ∈Rm : fi =
bi(µ+σ2)+ci√

1+b2
i σ2

.

The correlation coefficients of ΓΓΓξ are the same of Theorem 1.
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Appendix D

Estimating the Model-Free Risk Neutral
Probability of Survival

The estimation of risk-neutral probabilities of survival from CDS spreads presented herein
is based on Brigo (2005) and Brigo and Mercurio (2006). This constitute a model-free
technique to estimate those quantities.

The t-payoff of a CDS initiated at t0 = 0 with maturity t j and intermediate premium
payments at (ti)

j
i=1, j ∈N, and notional set to one is given by

Π j(t) = DF(t,τ)(τ − t̄)s1{0<τ≤t j}+ s
j

∑
i=1

DF(t, ti)αi1{τ≥ti}−DF(t,τ)LGD1{0<τ≤t j}

with 0 ≤ t < t j, t̄ the last payments date before t, that is t̄ := sup1≤i≤ j {ti ≤ τ}, αi the year
fraction between ti−1 and ti, s the CDS spread paid by the protection buyer (before default, if
it happens), and LGD the loss given default. The first term is the discounted accrued rate
at default and represents the compensation the protection seller receives for the protection
provided from the last ti until default τ . The terms in the summation represent the CDS rate
premium payments if there is no default: this is the premium received by the protection seller
for the protection being provided. The final term is the payment of protection at default, if
this happens before final t j.

The t j-maturity CDS price in t0 = 0 according to risk-neutral valuation is

CDS j (s,LGD) = EQ [
Π j(0)

]
.

For computing the expectation is more convenient to separate the payments made by the
protection buyer from the ones made by the protection seller. Also, it is assumed that default
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Estimating the Model-Free Risk Neutral Probability of Survival

can occur at reset dates only, that is the first summand can be ignored (there are no accrued
interests). Following Brigo and Mercurio (2006), the expected value of premium leg is equal
to

PremiumLeg j (s) = EQ

[
s

j

∑
i=1

DF(0, ti)αi1{τ≥ti}

]
= s

[
j

∑
i=1

P(0, ti)αiQ(τ ≥ ti)

]
,

where P(ti, t j) is the ti-value of a zero-coupon bond with maturity t j ≥ ti, under the assumption
of independence between the discount factor and the default time. From the perspective of
the protection seller,

ProtecLeg j (LGD) = EQ
[
DF(0,τ)LGD1{0<τ≤t j}

]
= LGD

∫ t j

0
P(0, t)dQ(τ ≥ t)

Hence the value of the CDS in t0 = 0 is given by

CDS j (s,LGD) = PremiumLeg j (s)−ProtecLeg j (LGD)

= s

[
j

∑
i=1

P(0, ti)αiQ(τ ≥ ti)

]
−LGD

∫ t j

0
P(0, t)dQ(τ ≥ t)

If we assume that in t0 the term structure of the risk-free interest rates is known and a
deterministic function of the maturity only, r0(t), then the previous expression simplifies as

CDS j (s,LGD) = s

[
j

∑
i=1

e−r0(ti)tiαiQ(τ ≥ ti)

]
−LGD

∫ t j

0
e−r0(t)t dQ(τ ≥ t) .

At time t0, provided that default has not occurred yet, the market sets the spread s to a
value, sMID

j , which makes the CDS fair at time t0 that is

sMID
j :=

{
s > r0(t j) : CDS j (s,LGD) = 0

}
for different maturities t j. Having assigned a level of loss given default (usually LGD =

{0.5,0.6,0.8}), the set of equations

PremiumLeg j
(
sMID

j ,Q(τ ≥ t)
)
= ProtecLeg j (LGD,Q(τ ≥ t))

can be solved in Q, starting from the CDS quotation with shortest tenor, and recursively
solving for the spread with longer maturities. Therefore, the market implied risk-neutral
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Fig. D.1 Term-structure of risk-neutral survival probabilities for COP on 28/05/2015, LGD = 60%.

survival probabilities Q(τ ≥ t),with t ∈ (t j, t j+1], can be found. Figure D.1 displays the
term-structure of the risk neutral probability of survival for ConocoPhillips (COP) observed
on May, 28th 2015.

The data on corporate CDS spreads are usually available for maturities t j ∈{6m,1y,2y,5y,7y,10y,20y,30y}.
The extraction of the risk-neutral probability of surviving is therefore conducted as follows:

• start from t j = 6m and estimate the market implied survival probability Q(τ ≥ t), with
t ∈ (0,0.5] years;

• insert the estimated value into CDS legs formulas for t j = 1y, and solve the same type
of equation with t j = 1y to find the market implied survival probability Q(τ ≥ t), with
t ∈ (0.5,1] years;

• repeat the same recursive procedure for all the tenors up to t j = 30 years.

For further details see Brigo (2005).
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Appendix E

Estimating the Endogenous Default
Barrier

The implied default barrier pays a crucial role in the compound option model dynamics and
its value ultimately defines the default region in the asset value space. Given the risk-free
and payout rates as well as the firm’s capital structure, the values of the default thresholds
are functions of the (unknown) volatility of the assets only. They are defined as

V̄i(σV ) := {v ∈R+ : S⋆i (v,σV ) = Fi} . (E.1)

with i ∈ I = {1, . . .n} where n is the number of bonds outstanding. That is, the implied
barrier at ti is defined as the value of the asset such that the continuation value of the equity,
S⋆i , is at least as large as the bond due, Fi. In order to determine the values of the sequence
(V̄i)i∈I , the problem must be solved starting from the latest maturity tn and backwardly to the
first payment date t1.

As the most common instance for the given data is a company with three bond outstanding,
I are going to present the estimation for the case n = 3. Trivially

V̄3 = F3,

as in Merton (1974). This is the only default threshold that does not depend on the asset
volatility (or any other model parameter). According to (E.1), as the continuation value of
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the equity is also a compound call option, the previous default point is defined as

V̄2(σV ) = {v ∈R+ : S⋆2(v,σV ) = F2}

=
{

v ∈R+ : e−ϖ(t3−t2)vΦ

(
dM

3,2

)
− e−r(t3−t2)F3Φ

(
dQ

3,2
)
= F2

}
with

dM
3,2 =

ln(v/F3)+
(
r−ϖ +σ2

V/2
)
(t3 − t2)

σV
√

t3 − t2
dQ

3,2 = dM
3,2 −σV

√
t3 − t2.

This notation should make clear that different values of V̄2 are obtained for different values
of σV

1. Ultimately, if σV is known, estimating the barrier is equivalent to just solving a
nonlinear integral equation2.

Similarly, the value of the barrier at the first reimbursement date is

V̄1(σV ) = {v ∈R+ : S⋆1(v,σV ) = F1}

=
{

v ∈R+ : e−ϖ(t3−t1)vΦ2

(
dM

2,1,d
M
3,1;ΓΓΓ

)
−e−r(t3−t1)F3Φ2

(
dQ

2,1,d
Q
3,1;ΓΓΓ

)
− e−r(t2−t1)F2Φ

(
dQ

2,1
)
= F1

}
with

dM
2,1 =

ln(v/V̄2)+
(
r−ϖ +σ2

V/2
)
(t2 − t1)

σV
√

t2 − t1
dQ

2,1 = dM
2,1 −σV

√
t2 − t1.

dM
3,1 =

ln(v/F3)+
(
r−ϖ +σ2

V/2
)
(t3 − t1)

σV
√

t3 − t1
dQ

3,1 = dM
3,1 −σV

√
t3 − t1.

and

ΓΓΓ =

 1
√

t2−t1
t3−t1√

t2−t1
t3−t1

1

 .

Again, V̄1 is found as the solution of a nonlinear equation which involves double integrals.
The same procedure can be applied for n > 3; however, the computational cost becomes
progressively more severe with increasing the number of bond outstanding3.

1The same is true for different values of r, ϖ , . . . . However those parameters are assumed to be known and
estimated with no error.

2I refer it as integral equation as the integration interval/hyperrectangular depends on v.
3The main reason being that the function Φn is calculated relying on Monte Carlo simulation for n ≥ 4.
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If the value of σV were known, the entire default barrier could be easily computed and the
today-value of the assets could be easily found calibrating on the today-value of the equity,

S0 = e−ϖtnV0Φn

(
dM(V0,σV );ΓΓΓn

)
−

n

∑
k=1

e−rtkFkΦk
(
dQ

k (V0,σV );ΓΓΓk
)
. (E.2)

However, as both asset volatility and value are not observable, (E.2) can be seen as an
equation in the two unknowns σV and V0. In order to solve for those values, the dependence
of the barrier on σV is reversely engineered in order to determine the implied asset volatility.
Similarly to the computation of the Black-Scholes implied volatility, the observable option
price

P0,ξ = ξ

[
e−ϖtnV0Φn+1

(
dM

ξ
(V0,σV );ΓΓΓn+1,ξ

)
−

n

∑
k=i+1

e−rtkFkΦk+1
(
dQ

ξ ,k+1(V0,σV );ΓΓΓk+1,ξ
)

−e−rT KΦ
(
ξ dQ

T (V0,σV )
)]

(E.3)

is used as second equation in order to determine the asset implied volatility and the corre-
sponding asset value. Notably, only the value of the option and the equity are needed to
determine the implied volatility of the assets σV = σV (K,T ) and construct the term-structure
of the asset volatility’s surface.

In addition, in order to make computations more efficient, (E.2) can be replaced by

S0 = e−ϖtnV0Φn

(
dM(V0,σV );ΓΓΓn

)
−

n

∑
k=1

e−rtkFkQ̂(τ > tk) , (E.4)

where Q̂(τ > tk) are the estimates of the risk-neutral probability of survival extracted from
the CDS written on the same reference entity. These are estimated as in Appendix D, in
which a simple model-free estimation procedure is provided.

Using (E.4) instead of (E.2) speeds up computation and serves as an indirect test on the
integration of the CDS and option markets. If the two estimates of the implied volatility of
the asset – obtained with and without the calibration on the CDS – are consistent, it can be
inferred that options market participants incorporate information on default-related events
into option prices consistently with the price of default quoted by CDS market participants.

At first glance, deriving the sensitivity of the default barrier with respect to volatility
is not trivial for n ≥ 2, as Vi(σV ) is implicitly defined via the integral equation (E.1). For
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illustrative purposes, consider the case of n = 2, where V̄2 = F2 and

V̄1(σV ) =
{

v ∈R+ : e−ϖ(t2−t1)vΦ

(
d+

2,1

)
− e−r(t2−t1)F2Φ

(
d−

2,1
)
= F1

}
with

d+
2,1 =

ln(v/F2)+
(
r−ϖ +σ2

V/2
)
(t2 − t1)

σV
√

t2 − t1
d−

2,1 = d+
2,1 −σV

√
t2 − t1.

Let σV = x and V̄1 = y. In order to determine y′(x), the Implicit Function Theorem can be
used. Associating the curve

Ξ(x,y) = e−ϖ(t2−t1)yΦ

(
d+

2,1(x,y)
)
− e−r(t2−t1)F2Φ

(
d−

2,1(x,y)
)
−F1 = 0

the derivative of the implicit function is

y′(x) =−Ξx

Ξy
(x,y(x)).

Notice that the numerator is nothing but the Vega (see Appendix G) of the continuation value
of the equity S⋆1 (as a function of the asset volatility and the barrier) whilst the denominator
is its Delta with respect the default threshold V̄1 (see Appendix F). That is

V̄ ′
1 =−

ν
(1)
S⋆

∆
(1)
S⋆

=−
φ

(
d+

2,1

)
Φ

(
d+

2,1

)V̄1
√

t2 − t1.

The same reasoning applies to any n ≥ 2, and in general4

V̄ ′
i =

−ν
(i)
S⋆ /∆

(i)
S⋆ if i < n

0 if i = n.

4It can be also shown that

V ′′ =−Delta2 ·Volga−2 ·Delta ·Vega ·Vanna+Vega2 ·Gamma
Delta3 .

Notice that νS⋆ is obtained as the Vega of the equity in Appendix F having set the sensitivity of the barrier to
zero.
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It can be shown numerically that, provided a reasonable set of parameters5, the function
V̄ (σV ) is positive and decreasing, displaying an inflation point. See Figure E.1 and E.2 for
graphical inspection. The reason why the barrier lowers as σV increases can be intuitively
explained as follows. As equity is a compound call option, by standard option pricing
arguments, an increase in the volatility leads to an increase of the option premium, i.e. the
equity value, which ultimately makes the firm ‘safer’. As default events are measured based
on the distance between the continuation value of the equity and the face value of the bond
expiring, an increase in volatility lowers the default threshold as the equity has increased
accordingly. This is a structural property of using a geometric Brownian motion for the
dynamics of the assets and the equity as a compound call option on the value of the assets.
The model in Merton (1974) displays similar features.

Additional references are Geske (1977) and Geske et al. (2016).

5That is for σV ∈ (0,1) and F2 < 10 ·F1.
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(f) F1 = F3 = 10,F2 = 50

Fig. E.1 V̄i(σV ), i = {1,2,3}, for t1 = 1, t2 = 5, t3 = 10, r = 0.03 and ϖ = 0.05.

150



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-30

-25

-20

-15

-10

-5

0

(a) F1 = F2 = F3 = 10

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-120

-100

-80

-60

-40

-20

0

(b) F1 = F2 = 10,F3 = 50

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-200

-180

-160

-140

-120

-100

-80

-60

-40

-20

0
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(f) F1 = F3 = 10,F2 = 50

Fig. E.2 V̄ ′
i (σV ), i = {1,2,3}, for t1 = 1, t2 = 5, t3 = 10, r = 0.03 and ϖ = 0.05.
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Appendix F

The Delta of the Equity

In order to compute the sensitivity of the equity with respect to changes in the asset value
(herein, delta of the equity), the following result is needed.

Theorem 3. Let

Φk (d(x);ΓΓΓ) =
∫

ϒ(x)
φk(y1, . . . ,yi, . . . ,yk;ΓΓΓ)dy1 . . .dyi . . .dyk

with ΓΓΓ ∈ M k
+ and ϒ(x) =

⋂k
i=1{yi ∈ R : yi ≤ di(x)}, with d(x) : R+ → Rk, di(x) = lnx+ai

bi

with ai ∈R and bi ∈R+. Then

∂Φk (d(x);ΓΓΓ)

∂x
=

1
x

k

∑
i=1

1
bi

∫
ϒ̄i(x)

φk(y1, . . . ,di(x), . . . ,yk;ΓΓΓ)dy1 . . .dyk,

where ϒ̄i(x) = ϒ(x)\{yi ≤ di(x)}.

Proof. Let zi = di(x), with i = {1, . . . ,k}. Applying the chain rule, it follows

∂Φk(z1, . . . ,zk)

∂x
=

k

∑
i=1

∂Φk

∂ zi

∂ zi

∂x

and by the virtue of the fundamental theorem of calculus

∂Φk

∂ zi
=
∫ z1

−∞

· · ·
∫ zi−1

−∞

∫ zi+1

−∞

· · ·
∫ zk

−∞

φk(y1, . . . ,yi−1,zi,yi+1, . . . ,yk;ΓΓΓ)dy1 . . .dyi−1dyi+1 . . .dyk.

As
∂ zi

∂x
=

1
bix

,
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The Delta of the Equity

the result follows.

Given n bond outstanding, the value of the equity s = S(v) is given by (1.9), that is

s = e−ϖtnvΦn

(
dM(v);ΓΓΓn

)
−

n

∑
k=1

e−rtkFkΦk

(
dQ

k (v);ΓΓΓk

)
where dM(v) :=

(
dM

i (v)
)

1≤i≤n and dQ
k (v) =

(
dM

i (v)−σV
√

ti
)

1≤i≤k with

dM
i =

ln(v/V̄i)+
(
r−ϖ +σ2

V/2
)

ti
σV

√
ti

and ΓΓΓk =



1
√

t1
t2

√
t1
t3

. . .
√

t1
tk

1
√

t2
t3

. . .
√

t2
tk

. . . . . . . . . . . . . . .

1
√

tk−1
tk

1


.

Therefore, the delta of the equity is generally defined as

∆
(n)
S :=

∂ s
∂v

= e−ϖtn

(
Φn

(
dM(v);ΓΓΓn

)
+ v

∂Φn
(
dM(v);ΓΓΓn

)
∂v

)
−

n

∑
k=1

e−rtkFk
∂Φk

(
dQ

k (v);ΓΓΓk
)

∂v
.

The derivation of a semi-closed formula for the computation of the delta for a generic n is not
straightforward. However, I explicitly develop analytical expressions for n = {1,2,3} (which
suffice for the actual calculations present in the paper). Also, despite ∆

(n)
S :R+ → (0,1), for

all n ∈N, its numerical computation becomes progressively more intensive (as n grows).
For convenience of notation, the dependence on v in the integration intervals (the d’s and

related expressions) is omitted.
If n = 1 (also, let t1 = t and F1 = F)

s = e−ϖtvΦ(dM)− e−rtFΦ(dQ)

with

dM =
ln(v/F)+

(
r−ϖ +σ2

V/2
)

t
σV

√
t

dQ = dM−σV
√

t.
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Obviously, the delta is the same of Black and Scholes (1973). In fact

∂ s
∂v

= e−ϖt
(

Φ(dM)+ v
∂Φ(dM)

∂v

)
− e−rtF

∂Φ(dQ)

∂v

= e−ϖt
(

Φ(dM)+ vφ(dM)
1

vσV
√

t

)
− e−rtFφ(dQ)

1
vσV

√
t

as
φ(dQ) = φ(dM−σV

√
t) =

ve−ϖt

Fe−rt φ(dM).

it follows
∆
(1)
S = e−ϖt

Φ(dM) .

See Figures F.1a and F.1b for a graphical analysis of the delta in the case of one bond
outstanding.

For n = 2

s = e−ϖt2vΦ2

(
dM;ΓΓΓ

)
− e−rt1F1Φ

(
dQ

1
)
− e−rt2F2Φ2

(
dQ

2 ;ΓΓΓ
)

with

ΓΓΓ =

(
1 γ

γ 1

)
and γ =

√
t1
t2

dM =
(

dM
1 dM

2

)
=

(
ln v

V̄1
+

(
r−ϖ+

σ2
V
2

)
t1

σV
√

t1

ln v
F2
+

(
r−ϖ+

σ2
V
2

)
t2

σV
√

t2

)

dQ
2 =

(
dQ

1 dQ
2

)
=

(
ln v

V̄1
+

(
r−ϖ−σ2

V
2

)
t1

σV
√

t1

ln v
F2
+

(
r−ϖ−σ2

V
2

)
t2

σV
√

t2

)
.

Here the delta is

∂ s
∂v

= e−ϖt2

(
Φ2

(
dM;ΓΓΓ

)
+ v

∂Φ2
(
dM;ΓΓΓ

)
∂v

)
− e−rt1F1

∂Φ
(
dQ

1
)

∂v
− e−rt2F2

∂Φ2
(
dQ

2 ;ΓΓΓ
)

∂v
.

In order to effectively compute the delta of the equity for n = 2, I need to find an expression
for the partial derivative of the bivariate CDF. Based on Theorem 3 (for convenience of
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The Delta of the Equity

notation the dependence on the measure is also omitted), it follows

∂Φ2 (d;ΓΓΓ)

∂v
=

∂Φ2 (d;ΓΓΓ)

∂d1

∂d1

∂v
+

∂Φ2 (d;ΓΓΓ)

∂d2

∂d2

∂v

=
1
v

(
1

σV
√

t1

∫ d2

−∞

1

2π
√

1− γ2
exp
(
−1

2
x2 −2γd1x+d2

1
1− γ2

)
dx

+
1

σV
√

t2

∫ d1

−∞

1

2π
√

1− γ2
exp
(
−1

2
d2

2 −2γd2y+ y2

1− γ2

)
dy

)

=
1
v

 1
σV

√
t1

exp
(
−d2

1
2

)
√

2π

∫ d2

−∞

1√
2π(1− γ2)

exp

(
−1

2
(x− γd1)

2

1− γ2

)
dx

+
1

σV
√

t2

exp
(
−d2

2
2

)
√

2π

∫ d1

−∞

1√
2π(1− γ2)

exp

(
−1

2
(y− γd2)

2

1− γ2

)
dy


=

1
v

(
φ(d1)

σV
√

t1
Φ

(
d2 − γd1√

1− γ2

)
+

φ(d2)

σV
√

t2
Φ

(
d1 − γd2√

1− γ2

))
.

Setting

dM2 :=
dM

2 − γdM
1√

1− γ2
=

ln V̄1
F2
+
(

r−ϖ +
σ2

V
2

)
(t2 − t1)

σV
√

t2 − t1

dQ2 :=
dQ

2 − γdQ
1√

1− γ2
= dM2 −σV

√
t2 − t1

(F.1)

and1

dM1 :=
dM

1 − γdM
2√

1− γ2
=

ln
(

v
V̄1

)
t2 − ln

(
v

F2

)
t1

σV
√

t1t2(t2 − t1)
=

dQ
1 − γdQ

2√
1− γ2

:= dQ1 (F.2)

1Just notice that
dQ

1 − γdQ
2√

1− γ2
=

dM
1 − γdM

2√
1− γ2

as
dM

1 −dQ
1 = γ

(
dM

2 −dQ
2

)
σV

√
t1 =

√
t1
t2

σV
√

t2.
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it follows

∂ s
∂v

= e−ϖt2

(
Φ2

(
dM;ΓΓΓ

)
+

φ(dM
1 )

σV
√

t1
Φ

(
dM2

)
+

φ(dM
2 )

σV
√

t2
Φ

(
dM1

))
− e−rt1 F1

vσV
√

t1
φ(dQ

1 )− e−rt2 F2

v

(
φ(dQ

1 )

σV
√

t1
Φ
(
dQ2
)
+

φ(dQ
2 )

σV
√

t2
Φ
(
dQ1
))

.

Finally, using

φ(dQ
1 )= φ(dM

1 −σV
√

t1)=
ve−ϖt1

V̄1e−rt1
φ(dM

1 ) and φ(dQ
2 )= φ(dM

2 −σV
√

t2)=
ve−ϖt2

F2e−rt2
φ(dM

2 )

and (F.2), the previous expression can be written as

∆
(2)
S = e−ϖt2

[
Φ2

(
dM;ΓΓΓ

)
+

φ(dM
1 )

σV
√

t1

(
Φ

(
dM2

)
− F2e−r(t2−t1)

V̄1e−ϖ(t2−t1)
Φ
(
dQ2
))]

− e−rt1 F1

vσV
√

t1
φ(dQ

1 )

See Figures F.1c and F.1d for a graphical analysis of the delta in the case of two bonds
outstanding.

Finally, if n = 3

s = e−ϖt3vΦ3

(
dM;ΓΓΓ333

)
− e−rt1F1Φ

(
dQ

1
)
− e−rt2F2Φ2

(
dQ

2 ;ΓΓΓ222
)
− e−rt3F3Φ3

(
dQ

3 ;ΓΓΓ333
)

with

ΓΓΓ333 =

 1 γ12 γ13

γ12 1 γ23

γ13 γ23 1

 , ΓΓΓ222 =

(
1 γ12

γ12 1

)
and γi j =

√
ti
t j
, with i ≤ j

dM =
(

dM
1 dM

2 dM
3

)
=

(
ln v

V̄1
+

(
r−ϖ+

σ2
V
2

)
t1

σV
√

t1

ln v
V̄2

+

(
r−ϖ+

σ2
V
2

)
t2

σV
√

t2

ln v
F3
+

(
r−ϖ+

σ2
V
2

)
t3

σV
√

t3

)
and

dQ
3 =

(
dQ

2 dQ
3

)
=
(

dQ
1 dQ

2 dQ
3

)
=

(
ln v

V̄1
+

(
r−ϖ−σ2

V
2

)
t1

σV
√

t1

ln v
V̄2

+

(
r−ϖ−σ2

V
2

)
t2

σV
√

t2

ln v
F3
+

(
r−ϖ−σ2

V
2

)
t3

σV
√

t3

)
.
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The Delta of the Equity

Here the delta is equal to

∂ s
∂v

= e−ϖt3

(
Φ3

(
dM;ΓΓΓ333

)
+ v

∂Φ3
(
dM;ΓΓΓ333

)
∂v

)
− e−rt1F1

∂Φ
(
dQ

1
)

∂v
− e−rt2F2

∂Φ2
(
dQ

2 ;ΓΓΓ222
)

∂v

− e−rt3F3
∂Φ3

(
dQ

3 ;ΓΓΓ333
)

∂v
.

Again, to compute the delta of the equity for n = 3, I need to find an expression for the partial
derivative of the trivariate CDF. Using Theorem 3, it follows

∂Φ3 (d;ΓΓΓ)

∂v
=

∂Φ3 (d;ΓΓΓ)

∂d1

∂d1

∂v
+

∂Φ3 (d;ΓΓΓ)

∂d2

∂d2

∂v
+

∂Φ3 (d;ΓΓΓ)

∂d3

∂d3

∂v

=
1
v

(
1

σV
√

t1

∫ d2

−∞

∫ d3

−∞

1√
(2π)3 detΓΓΓ

exp
(
−

τ1x2 + τ4y2 + τ9d2
1 +2τ2xy+2τ6d1y
2

)
dxdy

+
1

σV
√

t2

∫ d1

−∞

∫ d3

−∞

1√
(2π)3 detΓΓΓ

exp
(
−

τ1x2 + τ4d2
2 + τ9z2 +2τ2d2x+2τ6d2z

2

)
dxdz

+
1

σV
√

t3

∫ d1

−∞

∫ d2

−∞

1√
(2π)3 detΓΓΓ

exp
(
−

τ1d2
3 + τ4y2 + τ9z2 +2τ2d3y+2τ6yz

2

)
dydz

)

=
1
v

(
I1

σV
√

t1
+

I2

σV
√

t2
+

I3

σV
√

t3

)

where detΓΓΓ = (t2−t1)(t3−t2)
t2t3

and

ΓΓΓ
−1 =


t2

t2−t1
−

√
t1t2

t2−t1
0

−
√

t1t2
t2−t1

t2(t3−t1)
(t2−t1)(t3−t2)

−
√

t2t3
t3−t2

0 −
√

t2t3
t3−t2

t3
t3−t2

=

τ1 τ2 0
τ2 τ4 τ6

0 τ6 τ9

 .

All the double integrals can be computed recognising appropriate bivariate Gaussian random
vector and re-expressing the integrals as an appropriate bivariate normal CDF, i.e.

∫ a

−∞

∫ b

−∞

1

2πσ1σ2
√

1−ρ2
exp

−

(
w1−µ1

σ1

)2
+
(

w2−µ2
σ2

)2
−2ρ

(
w1−µ1

σ1

)(
w2−µ2

σ2

)
2(1−ρ2)

dw1 dw2.
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Solution of I1

In order to find the appropriate random vector W1 ∼ N (µµµ111,ΣΣΣ111), I need to determine
Θ1 = {µµµ111,ΣΣΣ111}= {µ1,µ2,σ1,σ2,ρ} such that(

w1−µ1
σ1

)2
+
(

w2−µ2
σ2

)2
−2ρ

(
w1−µ1

σ1

)(
w2−µ2

σ2

)
1−ρ2 = τ1w2

1 + τ4w2
2 +2τ2w1w2 +2τ6d1w2 + ã1

(F.3)
and re-express the density as normalised based on its covariance matrix (notice that ã1 is a
free parameter). Expanding the left-hand side of (F.3)

1
1−ρ2

[
w2

1
σ2

1
+

w2
2

σ2
2
−2

ρ

σ1σ2
w1w2 +

2
σ1

(
ρ

µ2

σ2
− µ1

σ1

)
w1 +

2
σ2

(
ρ

µ1

σ1
− µ2

σ2

)
w2

+

(
µ1

σ1

)2

+

(
µ2

σ2

)2

−2ρ
µ1µ2

σ1σ2

]

the following conditions must be met

1
(1−ρ2)σ2

1
= τ1

1
(1−ρ2)σ2

2
= τ4

− ρ

(1−ρ2)σ1σ2
= τ2

1
(1−ρ2)σ1

(
ρ

µ2

σ2
− µ1

σ1

)
= 0

1
(1−ρ2)σ2

(
ρ

µ1

σ1
− µ2

σ2

)
= τ6d1

1
1−ρ2

[(
µ1

σ1

)2

+

(
µ2

σ2

)2

−2ρ
µ1µ2

σ1σ2

]
= ã1.

The first three conditions allow to find σ1, σ2 and ρ as

ρ =− τ2√
τ1τ4

σ
2
1 =

1
τ1 (1−ρ2)

=
τ4

τ1τ4 − τ2
2

σ
2
2 =

1
τ4 (1−ρ2)

=
τ1

τ1τ4 − τ2
2
.

The forth condition, imposes
µ1

σ1
= ρ

µ2

σ2
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which can be substituted into the fifth condition to find µ2 as

µ2 =−τ6σ
2
2 d1 =− τ6

τ4 (1−ρ2)
d1 =− τ1τ6

τ1τ4 − τ2
2

d1.

Finally, µ1 is found as

µ1 = ρ
µ2σ1

σ2
=

τ2τ6

τ1τ4(1−ρ2)
d1 =

τ2τ6

τ1τ4 − τ2
2

d1,

and

ã1 =
τ1τ2

6

τ1τ4 − τ2
2

d2
1 .

Therefore

I1 =

√
detΣΣΣ111

detΓΓΓ

exp
(
− τ9d2

1−ã1
2

)
√

2π

∫ d2

−∞

∫ d3

−∞

1
2π

√
detΣΣΣ111

exp

(
−
(w1 −µµµ111)

⊤ΣΣΣ
−1
111 (w1 −µµµ111)

2

)
dw1

=

√
detΣΣΣ111

detΓΓΓ
φ (

√
a1d1)N2 (d2,d3; µµµ111,ΣΣΣ111)

with

a1 = τ9 −
τ1τ2

6

τ1τ4 − τ2
2

and
detΣΣΣ111 = σ

2
1 σ

2
2
(
1−ρ

2)= 1
τ1τ4 − τ2

2
.

Solution of I2

The second integral is simpler to solve as there is no xz term. In fact, it can be expressed
as the CDFs of two univariate Gaussian (independent) random variables as

I2 =
∫ d1

−∞

∫ d3

−∞

1√
(2π)3 detΓΓΓ

exp
(
−

τ1x2 + τ4d2
2 + τ9z2 +2τ2d2x+2τ6d2z

2

)
dxdz

=
σxσz√
detΓΓΓ

exp
(
−a2d2

2
2

)
√

2π

∫ d1

−∞

1√
2πσx

exp

(
−1

2

(
x−µx

σx

)2
)

dx
∫ d3

−∞

1√
2πσz

exp

(
−1

2

(
z−µz

σz

)2
)

dz

with
µx =−τ2d2

τ1
, σ

2
x =

1
τ1
,

µz =−τ6d2

τ9
, σ

2
z =

1
τ9
,
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a2 = τ4 −
τ2

2
τ1

−
τ2

6
τ9
, ΣΣΣ222 =

(
σ2

x 0
0 σ2

z

)
.

Therefore

I2 =

√
detΣΣΣ222

detΓΓΓ
φ (

√
a2d2)Φ

(
τ1d1 + τ2d2√

τ1

)
Φ

(
τ9d3 + τ6d2√

τ9

)
with

detΣΣΣ222 = σ
2
x σ

2
z =

1
τ1τ9

.

Alternatively, the integral can also be expressed as

I2 =

√
detΣΣΣ222

detΓΓΓ
φ (

√
a2d2)N2 (d1,d3; µµµ222,ΣΣΣ222) ,

where µµµ222 =
(

µx µy

)⊤
.

Solution of I3

The procedure to solve the last integral is the same used for I1. Consider the random
vector W3 ∼ N (µµµ333,ΣΣΣ333). Again, I need to determine Θ3 = {µµµ333,ΣΣΣ333}= {µ1,µ2,σ1,σ2,ρ}
such that(

w1−µ1
σ1

)2
+
(

w2−µ2
σ2

)2
−2ρ

(
w1−µ1

σ1

)(
w2−µ2

σ2

)
1−ρ2 = τ4w2

1 + τ9w2
2 +2τ2d3w1 +2τ6w1w2 + ã3.

Thus, the following conditions must be met

1
(1−ρ2)σ2

1
= τ4

1
(1−ρ2)σ2

2
= τ9

− ρ

(1−ρ2)σ1σ2
= τ6

1
(1−ρ2)σ1

(
ρ

µ2

σ2
− µ1

σ1

)
= τ2d3

1
(1−ρ2)σ2

(
ρ

µ1

σ1
− µ2

σ2

)
= 0

1
1−ρ2

[(
µ1

σ1

)2

+

(
µ2

σ2

)2

−2ρ
µ1µ2

σ1σ2

]
= ã3.
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The first three conditions allow to find σ1, σ2 and ρ as

ρ =− τ6√
τ4τ9

σ
2
1 =

1
τ4 (1−ρ2)

=
τ9

τ4τ9 − τ2
6

σ
2
2 =

1
τ9 (1−ρ2)

=
τ4

τ4τ9 − τ2
6
.

The fifth condition, imposes
µ2

σ2
= ρ

µ1

σ1

which can be substituted into the forth condition to find µ1 as

µ1 =−τ2σ
2
1 d3 =− τ2

τ4 (1−ρ2)
d3 =− τ2τ9

τ4τ9 − τ2
6

d3.

Finally, µ2 is found as

µ2 = ρ
µ1σ2

σ1
=

τ2τ6

τ4τ9(1−ρ2)
d3 =

τ2τ6

τ4τ9 − τ2
6

d3,

and

ã3 =
τ9τ2

2
τ4τ9 − τ2

6
d2

3 .

Therefore

I3 =

√
detΣΣΣ333

detΓΓΓ

exp
(
− τ1d2

3−ã3
2

)
√

2π

∫ d1

−∞

∫ d2

−∞

1
2π

√
detΣΣΣ333

exp

(
−
(w3 −µµµ333)

⊤ΣΣΣ
−1
333 (w3 −µµµ333)

2

)
dw3

=

√
detΣΣΣ333

detΓΓΓ
φ (

√
a3d3)N2 (d1,d2; µµµ333,ΣΣΣ333)

with

a3 = τ1 −
τ9τ2

2
τ4τ9 − τ2

6

and
detΣΣΣ333 = σ

2
1 σ

2
2
(
1−ρ

2)= 1
τ4τ9 − τ2

6
.

Hence, the delta of the equity in the case n = 3 is

∂ s
∂v

= e−ϖt3

(
Φ3

(
dM;ΓΓΓ333

)
+

IM1
σV

√
t1
+

IM2
σV

√
t2
+

IM3
σV

√
t3

)
− e−rt3 F3

v

(
IQ1

σV
√

t1
+

IQ2
σV

√
t2
+

IQ3
σV

√
t3

)

− e−rt2 F2

v

(
φ(dQ

1 )

σV
√

t1
Φ
(
dQ2
)
+

φ(dQ
2 )

σV
√

t2
Φ
(
dQ1
))

− e−rt1 F1

vσV
√

t1
φ(dQ

1 )
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Writing the three integrals explicitly, it follows

∆
(3)
S = e−ϖt3

(
Φ3

(
dM;ΓΓΓ333

)
+

1
σV

√
detΓΓΓ333

3

∑
i=1

√
detΣΣΣiii

ti
φ

(√
aidM

i

)
N2

(
dM \dM

i ; µµµ
M
iii ,ΣΣΣiii

))

− e−rt3 F3

v
1

σV
√

detΓΓΓ333

3

∑
i=1

√
detΣΣΣiii

ti
φ
(√

aid
Q
i
)
N2
(
dQ

3 \dQ
i ; µµµ

Q
iii ,ΣΣΣiii

)
− e−rt2 F2

v

(
φ(dQ

1 )

σV
√

t1
Φ
(
dQ2
)
+

φ(dQ
2 )

σV
√

t2
Φ
(
dQ1
))

− e−rt1 F1

vσV
√

t1
φ(dQ

1 ),

where d\di must be intended as the vector obtained from d by removing the element di (and
keeping the order of the other elements unchanged). See Figures F.1e and F.1f for a graphical
analysis of the delta in the case of three bonds outstanding.
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(a) σV = 0.2, t1 = 1
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(b) F1 = 50, t1 = 1
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(c) σV = 0.2, t1 = 1, t2 = 5
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(d) F1 = F2 = 25, t1 = 1, t2 = 5
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(e) σV = 0.2, t1 = 1, t2 = 5, t3 = 10
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(f) F1 =F2 =F3 = 50/3, t1 = 1, t2 = 5, t3 = 10

Fig. F.1 Sensitivity of equity with respect to financial leverage (left) and asset volatility (right). r = 0.03,
ϖ = 0.05 throughout.
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Appendix G

The Vega of the Equity

In order to study the vega of the equity, the following result is needed.

Theorem 4. Let

Φk (d(x);ΓΓΓ) =
∫

ϒ(x)
φk(y1, . . . ,yi, . . . ,yk;ΓΓΓ)dy1 . . .dyi . . .dyk

with ΓΓΓ ∈ M k
+ and ϒ(x) =

⋂k
i=1{yi ∈R : yi ≤ di(x)}, with d(x) :R+ →Rk, di(x) = bix± ai

x

with ai :R+ →R and bi ∈R+. Then

∂Φk (d(x);ΓΓΓ)

∂x
=

k

∑
i=1

(
bi ∓

ai(x)
x2

)∫
ϒ̄i(x)

φk(y1, . . . ,di(x), . . . ,yk;ΓΓΓ)dy1 . . .dyk,

where ϒ̄i(x) = ϒ(x)\{yi ≤ di(x)}.

Proof. It follows by the same arguments of Theorem 3 with

∂di

∂x
= bi ∓

ai(x)
x2 .

Given n bond outstanding, the value of the equity s = S(σV ) is given by (1.9), that is

s = e−ϖtnV0Φn

(
dM(σV );ΓΓΓn

)
−

n

∑
k=1

e−rtkFkΦk
(
dQ

k (σV );ΓΓΓk
)
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The Vega of the Equity

where dM(σV ) :=
(
dM

i (σV )
)

1≤i≤n and dQ
k (σV ) =

(
dM

i (σV )−σV
√

ti
)

1≤i≤k with

dM
i =

ln(V0/V̄i)+
(
r−ϖ +σ2

V/2
)

ti
σV

√
ti

and ΓΓΓk =



1
√

t1
t2

√
t1
t3

. . .
√

t1
tk

1
√

t2
t3

. . .
√

t2
tk

. . . . . . . . . . . . . . .

1
√

tk−1
tk

1


,

and
V̄i := {v ∈R+ : S⋆i (v) = Fi} .

The vega of the equity is defined in genaral as

ν
(n)
S :=

∂ s
∂σV

= e−ϖtnV0
∂Φn

(
dM(σV );ΓΓΓn

)
∂σV

−
n

∑
k=1

e−rtkFk
∂Φk

(
dQ

k (σV );ΓΓΓk
)

∂σV
.

In the same fashion of Appendix F, I calculate the vega of the equity for n = {1,2,3}. For
convenience of notation, the dependence on σV in the integration intervals (the d’s and related
expressions) is omitted.

If n = 1 (also, let t1 = t and F1 = F)

s = e−ϖtV0Φ(dM)− e−rtFΦ(dQ)

with

dM =
ln(V0/F)+

(
r−ϖ +σ2

V/2
)

t
σV

√
t

dQ = dM−σV
√

t.

Obviously, the vega is the same of Black and Scholes (1973). In fact

∂ s
∂σV

= e−ϖtV0
∂Φ(dM)

∂σV
− e−rtF

∂Φ(dQ)

∂σV

= e−rtV0φ

(
dM
)(

−dQ

σV

)
− e−ϖtFφ

(
dQ
)(

−dM

σV

)
= e−ϖtV0φ

(
dM
)

σV
√

t −dM

σV
+ e−rtFφ

(
dQ
) dM

σV

as
φ(dQ) = φ(dM−σV

√
t) =

V0e−ϖt

Fe−rt φ(dM).
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it follows
ν
(1)
S = e−ϖt

φ(dM)V0
√

t .

See Figures G.1a and G.1b for a graphical analysis of the vega in the case of one bond
outstanding.

For n = 2

s = e−ϖt2V0Φ2

(
dM;ΓΓΓ

)
− e−rt1F1Φ

(
dQ

1
)
− e−rt2F2Φ2

(
dQ

2 ;ΓΓΓ
)

with

ΓΓΓ =

(
1 γ

γ 1

)
and γ =

√
t1
t2

dM =
(

dM
1 dM

2

)
=

(
ln V0

V̄1
+

(
r−ϖ+

σ2
V
2

)
t1

σV
√

t1

ln V0
F2
+

(
r−ϖ+

σ2
V
2

)
t2

σV
√

t2

)

dQ
2 =

(
dQ

1 dQ
2

)
=

(
ln V0

V̄1
+

(
r−ϖ−σ2

V
2

)
t1

σV
√

t1

ln V0
F2
+

(
r−ϖ−σ2

V
2

)
t2

σV
√

t2

)
.

Here the delta is

∂ s
∂σV

= e−ϖt2V0
∂Φ2

(
dM;ΓΓΓ

)
∂σV

− e−rt1F1
∂Φ
(
dQ

1
)

∂σV
− e−rt2F2

∂Φ2
(
dQ

2 ;ΓΓΓ
)

∂σV
.

In order to effectively compute the vega of the equity for n = 2, I need to find an expression
for the partial derivative of the bivariate CDF. Furthermore, notice that V̄1 is an implicit
function of σV . Analytical expression for ∂V̄1/∂σV = V̄ ′

1 are available in Appendix E. Based
on Theorem 4 (for convenience of notation the dependence on the measure is written as
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{M,Q}= {+,−}), it follows

∂Φ2 (d±;ΓΓΓ)

∂σV
=

∂Φ2 (d±;ΓΓΓ)

∂d±
1

∂d±
1

∂σV
+

∂Φ2 (d±;ΓΓΓ)

∂d±
2

∂d±
2

∂σV

=− 1
σV

[(
d∓

1 +
V̄ ′

1
V̄1
√

t1

)∫ d±
2

−∞

1

2π
√

1− γ2
exp

(
−1

2
x2 −2γd±

1 x+d±
1

2

1− γ2

)
dx

+d∓
2

∫ d±
1

−∞

1

2π
√

1− γ2
exp

(
−1

2
d±

2
2 −2γd±

2 y+ y2

1− γ2

)
dy

]

=− 1
σV

(d∓
1 +

V̄ ′
1

V̄1
√

t1

) exp
(
−d±

1
2

2

)
√

2π

∫ d±
2

−∞

1√
2π(1− γ2)

exp

(
−1

2

(
x− γd±

1
)2

1− γ2

)
dx

+d∓
2

exp
(
−d±

2
2

2

)
√

2π

∫ d±
1

−∞

1√
2π(1− γ2)

exp

(
−1

2

(
y− γd±

2
)2

1− γ2

)
dy



=− 1
σV

[(
d∓

1 +
V̄ ′

1
V̄1
√

t1

)
φ
(
d±

1
)

Φ

(
d±

2 − γd±
1√

1− γ2

)
+d∓

2 φ
(
d±

2
)

Φ

(
d±

1 − γd±
2√

1− γ2

)]
.

Using (F.1) and (F.2), and rearranging, it follows

ν
(2)
S =

1
σV

[
e−rt2F2

((
dM

1 +
V̄ ′

1
V̄1
√

t1

)
φ
(
dQ

1
)
Φ
(
dQ2
)
+dM

2 φ
(
dQ

2
)
Φ
(
dQ1
))

− e−ϖt2V0

((
dQ

1 +
V̄ ′

1
V̄1
√

t1

)
φ

(
dM

1

)
Φ

(
dM2

)
+dQ

2 φ

(
dM

2

)
Φ

(
dM1

))
+e−rt1F1

(
dM

1 +
V̄ ′

1
V̄1
√

t1

)
φ
(
dQ

1
)]

See Figures G.1c and G.1d for a graphical analysis of the delta in the case of two bonds
outstanding.

Finally, if n = 3

s = e−ϖt3V0Φ3

(
dM;ΓΓΓ333

)
− e−rt1F1Φ

(
dQ

1
)
− e−rt2F2Φ2

(
dQ

2 ;ΓΓΓ222
)
− e−rt3F3Φ3

(
dQ

3 ;ΓΓΓ333
)
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with

ΓΓΓ333 =

 1 γ12 γ13

γ12 1 γ23

γ13 γ23 1

 , ΓΓΓ222 =

(
1 γ12

γ12 1

)
and γi j =

√
ti
t j
, with i ≤ j

dM =
(

dM
1 dM

2 dM
3

)
=

(
ln V0

V̄1
+

(
r−ϖ+

σ2
V
2

)
t1

σV
√

t1

ln V0
V̄2

+

(
r−ϖ+

σ2
V
2

)
t2

σV
√

t2

ln V0
F3
+

(
r−ϖ+

σ2
V
2

)
t3

σV
√

t3

)
and

dQ
3 =

(
dQ

2 dQ
3

)
=
(

dQ
1 dQ

2 dQ
3

)
=

(
ln V0

V̄1
+

(
r−ϖ−σ2

V
2

)
t1

σV
√

t1

ln V0
V̄2

+

(
r−ϖ−σ2

V
2

)
t2

σV
√

t2

ln V0
F3
+

(
r−ϖ−σ2

V
2

)
t3

σV
√

t3

)
.

Here the vega is equal to

∂ s
∂σV

= e−ϖt3V0
∂Φ3

(
dM;ΓΓΓ333

)
∂σV

− e−rt1F1
∂Φ
(
dQ

1
)

∂σV
− e−rt2F2

∂Φ2
(
dQ

2 ;ΓΓΓ222
)

∂σV
− e−rt3F3

∂Φ3
(
dQ

3 ;ΓΓΓ333
)

∂σV
.

Again, to compute the delta of the equity for n = 3, I need to find an expression for the
partial derivative of the trivariate CDF. Using Theorem 4 (for convenience of notation the
dependence on the measure is written as {M,Q}= {+,−}),it follows

∂Φ3 (d±;ΓΓΓ)

∂σV
=

∂Φ3 (d±;ΓΓΓ)

∂d±
1

∂d±
1

∂σV
+

∂Φ3 (d±;ΓΓΓ)

∂d±
2

∂d±
2

∂σV
+

∂Φ3 (d±;ΓΓΓ)

∂d±
3

∂d±
3

∂σV

=− 1
σV

[(
d∓

1 +
V̄ ′

1
V̄1
√

t1

)∫ d±
2

−∞

∫ d±
3

−∞

1√
(2π)3 detΓΓΓ

exp

(
−

τ1x2 + τ4y2 + τ9d±
1

2
+2τ2xy+2τ6d±

1 y
2

)
dxdy

+

(
d∓

2 +
V̄ ′

2
V̄2
√

t2

)∫ d±
1

−∞

∫ d±
3

−∞

1√
(2π)3 detΓΓΓ

exp

(
−

τ1x2 + τ4d±
2

2
+ τ9z2 +2τ2d±

2 x+2τ6d±
2 z

2

)
dxdz

+d∓
3

∫ d±
1

−∞

∫ d±
2

−∞

1√
(2π)3 detΓΓΓ

exp

(
−

τ1d±
3

2
+ τ4y2 + τ9z2 +2τ2d±

3 y+2τ6yz
2

)
dydz

]

=− 1
σV

[(
d∓

1 +
V̄ ′

1
V̄1
√

t1

)
I1 +

(
d∓

2 +
V̄ ′

2
V̄2
√

t2

)
I2 +d∓

3 I3

]

where detΓΓΓ = (t2−t1)(t3−t2)
t2t3

and

ΓΓΓ
−1 =


t2

t2−t1
−

√
t1t2

t2−t1
0

−
√

t1t2
t2−t1

t2(t3−t1)
(t2−t1)(t3−t2)

−
√

t2t3
t3−t2

0 −
√

t2t3
t3−t2

t3
t3−t2

=

τ1 τ2 0
τ2 τ4 τ6

0 τ6 τ9

 .
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All the double integrals can computed in the same fashion described in Appendix F.
Solution of I1

I1 =

√
detΣΣΣ111

detΓΓΓ
φ
(√

a1d±
1
)

N2
(
d±

2 ,d±
3 ; µµµ

±
111 ,ΣΣΣ111

)
with

ΣΣΣ111 =
1

τ1τ4 − τ2
2

(
τ4 −τ2

−τ2 τ1

)
, µµµ

±
111 =−detΣΣΣ111

(
−τ2τ6

τ1τ6

)
d±

1 and a1 = τ9−detΣΣΣ111τ1τ
2
6

Solution of I2

I2 =

√
detΣΣΣ222

detΓΓΓ
φ
(√

a2d±
2
)

N2
(
d±

1 ,d±
3 ; µµµ

±
222 ,ΣΣΣ222

)
=

√
detΣΣΣ222

detΓΓΓ
φ
(√

a2d±
2
)

Φ

(
τ1d±

1 + τ2d±
2√

τ1

)
Φ

(
τ9d±

3 + τ6d±
2√

τ9

)
.

with

ΣΣΣ222 =
1

τ1τ9

(
τ9 0
0 τ1

)
, µµµ

±
222 =−detΣΣΣ222

(
τ2τ9

τ1τ6

)
d±

2 and a2 = τ4 −detΣΣΣ222
(
τ

2
2 τ9 + τ1τ

2
6
)
.

Solution of I3

I1 =

√
detΣΣΣ333

detΓΓΓ
φ
(√

a3d±
3
)

N2
(
d±

1 ,d±
2 ; µµµ

±
333 ,ΣΣΣ333

)
with

ΣΣΣ333 =
1

τ4τ9 − τ2
6

(
τ9 −τ6

−τ6 τ4

)
, µµµ

±
333 =−detΣΣΣ333

(
τ2τ9

−τ2τ6

)
d±

1 and a3 = τ1−detΣΣΣ333τ
2
2 τ9.

Hence, the vega of the equity in the case n = 3 is

∂ s
∂σV

=
1

σV

[
e−rt3F3

((
dM

1 +
V̄ ′

1
V̄1
√

t1

)
IQ1 +

(
dM

2 +
V̄ ′

2
V̄2
√

t2

)
IQ2 +dM

3 IQ3

)

− e−ϖt3V0

((
dQ

1 +
V̄ ′

1
V̄1
√

t1

)
IM1 +

(
dQ

2 +
V̄ ′

2
V̄2
√

t2

)
IM2 +dQ

3 IM3

)
+ e−rt2F2

((
dM

1 +
V̄ ′

1
V̄1
√

t1

)
φ
(
dQ

1
)
Φ
(
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Writing the three integrals explicitly, it follows
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,

where d \ di must be intended as the vector obtained from d by removing the element di

(and keeping the order of the other elements unchanged) and V̄ ′
3 = 0 (by construction).

See Figures G.1e and G.1f for a graphical analysis of the delta in the case of three bonds
outstanding.
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The Vega of the Equity
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(b) F = 50, t = 1
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(c) V0 = 100, t1 = 1, t2 = 5
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(d) F1 = F2 = 25, t1 = 1, t2 = 5
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(e) V0 = 100, t1 = 1, t2 = 5, t3 = 10
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(f) F1 =F2 =F3 = 50/3, t1 = 1, t2 = 5, t3 = 10

Fig. G.1 Sensitivity of equity with respect to asset volatility under different aggregation schemes for debt (left)
and leverage (right). r = 0.03, ϖ = 0.05 throughout.
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Appendix H

Robustness checks

Regressand Adj–R2: 0.9433

AICR′
1

Regressors Coefficient Robust Standard Error t–stat p–value

AICR1 0.7748793 0.0052173 148.52 0.000 ***
α1 0.0007165 0.0000297 24.13 0.000 ***

(a): LGD = 60%

Regressand Adj–R2: 0.8788

AICR′
−1

Regressors Coefficient Robust Standard Error t–stat p–value

AICR−1 0.9196883 0.0242480 37.93 0.000 ***
α−1 0.0001626 0.0000705 2.31 0.021 **

(b): LGD = 60%

Regressand Adj–R2: 0.9484

AICR′
1

Regressors Coefficient Robust Standard Error t–stat p–value

AICR1 0.7647910 0.0056719 134.84 0.000 ***
α1 0.0008249 0.0000275 29.99 0.000 ***

(c): LGD = 80%

Regressand Adj–R2: 0.5552

AICR′
−1

Regressors Coefficient Robust Standard Error t–stat p–value

AICR−1 0.6130806 0.0379853 16.14 0.000 ***
α−1 0.0005543 0.0001077 5.15 0.000 ***

(d): LGD = 80%

Table H.1 Estimation of regression (1.18) for different values of LGD.
(a): Estimates of the pooled panel regression of average AICR obtained from call options (ξ = 1) and CDS regressed onto average AICR
obtained from call options only. Number of observations: 15,470. F–stat: 22,058.80 (p–value: 0.0000).
(b): Estimates of the pooled panel regression of average AICR obtained from put options (ξ =−1) and CDS regressed onto average AICR
obtained from put options only. Number of observations: 15,027. F–stat: 1,438.57 (p–value: 0.0000).
(c): Estimates of the pooled panel regression of average AICR obtained from call options (ξ = 1) and CDS regressed onto average AICR
obtained from call options only. Number of observations: 15,470. F–stat: 18,181.34 (p–value: 0.0000).
(d): Estimates of the pooled panel regression of average AICR obtained from put options (ξ =−1) and CDS regressed onto average AICR
obtained from put options only. Number of observations: 15,027. F–stat: 260.50 (p–value: 0.0000).
A sandwich estimator for panel data is used to obtain robust standard errors. Significance levels: 10% (*), 5% (**), 1% (***).
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Robustness checks

Regressand Adj–R2: 0.0590

AICR′
1

Regressors Coefficient Robust Standard Error t–stat p–value

LEV 0.0075571 0.0032449 2.33 0.102
α1 -0.001002 0.0019052 -0.53 0.635

Industry-FE ✓
Year-FE ✓

(a): LGD = 60%

Regressand Adj–R2: 0.5676

AICR′
−1

Regressors Coefficient Robust Standard Error t–stat p–value

LEV 0.0365895 0.0057882 6.32 0.008 ***
α−1 -0.0112664 0.0051351 -2.19 0.116

Industry-FE ✓ - 0.379
Year-FE ✓ - - - -

(b): LGD = 60%

Regressand Adj–R2: 0.0622

AICR′
1

Regressors Coefficient Robust Standard Error t–stat p–value

LEV 0.0076758 0.002566 2.99 0.058 *
α1 -0.0011136 0.0013743 -0.81 0.477

Industry-FE ✓
Year-FE ✓

(c): LGD = 80%

Regressand Adj–R2: 0.5980

AICR′
−1

Regressors Coefficient Robust Standard Error t–stat p–value

LEV 0.0303678 0.0093729 3.24 0.048 **
α−1 -0.0086424 0.0082499 -1.05 0.372

Industry-FE ✓
Year-FE ✓

(d): LGD = 80%

Table H.2 Estimation of regression (1.19) for different values of LGD.
(a): Estimates of the fixed-effects panel regression of market model-implied leverage LEV onto average AICR
calculated over call options and CDSs, with LGD = 60%. Number of observations: 15,470.
(b): Estimates of the fixed-effects panel regression of market model-implied leverage LEV onto average AICR
calculated over put options and CDSs, with LGD = 60%. Number of observations: 15,027.
(c): Estimates of the fixed-effects panel regression of market model-implied leverage LEV onto average AICR
calculated over call options and CDSs, with LGD = 80%. Number of observations: 15,470.
(d): Estimates of the fixed-effects panel regression of market model-implied leverage LEV onto average AICR
calculated over put options and CDSs, with LGD = 80%. Number of observations: 15,027.
Standard errors are adjusted for four clusters based on industry. Significance levels: 10% (*), 5% (**), 1%
(***).
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Regressand Adj–R2: 0.3653

η1

Regressors Coefficient Robust Standard Error t–stat p–value

LEV 0.0051749 0.0025327 2.04 0.134
α1 -0.0012296 0.0020341 -0.60 0.588

Industry-FE ✓
Year-FE ✓ -

(a): LGD = 60%

Regressand Adj–R2: 0.0923

η−1

Regressors Coefficient Robust Standard Error t–stat p–value

LEV 0.0054215 0.0026694 2.03 0.135
α−1 -0.0028967 0.0023997 -1.21 0.314

Industry-FE ✓
Year-FE ✓

(b): LGD = 60%

Regressand Adj–R2: 0.4673

η1

Regressors Coefficient Robust Standard Error t–stat p–value

LEV 0.0054288 0.001427 3.80 0.032 **
α1 -0.0014958 0.0010836 -1.38 0.261

Industry-FE ✓
Year-FE ✓ -

(c): LGD = 80%

Regressand Adj–R2: 0.1645

η−1

Regressors Coefficient Robust Standard Error t–stat p–value

LEV 0.0105748 0.0075426 1.40 0.255
α−1 -0.0040323 0.0067281 -0.60 0.591

Industry-FE ✓
Year-FE ✓

(d): LGD = 80%

Table H.3 Estimation of regression (1.20) for different values of LGD.
(a): Estimates of the fixed-effects panel regression of market model-implied leverage LEV onto the residuals
obtain from regression (1.18) (calls), for LGD = 60%. Number of observations: 15,470.
(b): Estimates of the fixed-effects panel regression of market model-implied leverage LEV onto the residuals
obtain from regression (1.18) (puts), for LGD = 60%. Number of observations: 15,027.
(c): Estimates of the fixed-effects panel regression of market model-implied leverage LEV onto the residuals
obtain from regression (1.18) (calls), for LGD = 80%. Number of observations: 15,470.
(d): Estimates of the fixed-effects panel regression of market model-implied leverage LEV onto the residuals
obtain from regression (1.18) (puts), for LGD = 80%. Number of observations: 15,027.
Standard errors are adjusted for four clusters based on industry. Significance levels: 10% (*), 5% (**), 1%
(***).
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Robustness checks

Regressand Adj–R2: 0.6608

AICR′
−1

Regressors Coefficient Robust Standard Error t–stat p–value

LEV 0.0391051 0.0012387 31.57 0.000 ***
α−1 -0.0145449 0.0011321 -12.85 0.000 ***

Year-FE ✓

(a): Financials, LGD = 60%

Regressand Adj–R2: 0.2128

AICR′
−1

Regressors Coefficient Robust Standard Error t–stat p–value

LEV 0.0069186 0.0004261 16.24 0.000 ***
α−1 -0.0007640 0.0001489 -5.13 0.000 ***

Year-FE ✓

(b): Mining, Energy and Utilities, LGD = 60%

Regressand Adj–R2: 0.1173

AICR′
−1

Regressors Coefficient Robust Standard Error t–stat p–value

LEV 0.0014455 0.0000861 16.78 0.000 ***
α−1 -0.0000211 0.0000163 -1.29 0.197

Year-FE ✓

(c): Manufacturing, LGD = 60%

Regressand Adj–R2: 0.2450

AICR′
−1

Regressors Coefficient Robust Standard Error t–stat p–value

LEV 0.0075047 0.0009004 8.34 0.000 ***
α−1 -0.0007342 0.0001427 -5.14 0.000 ***

Year-FE ✓

(d): Retail, Wholesale and Services, LGD = 60%

Table H.4 Estimation of regression (1.19) over the four sub-samples for LGD = 60%.
(a): Estimates of the year-fixed effect panel regression of market model-implied leverage LEV onto average
AICR calculated over put options and CDSs of Financials. Number of observations: 1,938. F–stat = 199.90
(p–value = 0.000).
(b): Estimates of the year-fixed effect panel regression of market model-implied leverage LEV onto average
AICR calculated over put options and CDSs of Mining, Energy and Utilities. Number of observations: 1,916.
F–stat = 73.60 (p–value = 0.000).
(c): Estimates of the year-fixed effect panel regression of market model-implied leverage LEV onto average
AICR calculated over put options and CDSs of Manufacturing. Number of observations: 6,515. F–stat = 80.21
(p–value = 0.000).
(d): Estimates of the year-fixed effect panel regression of market model-implied leverage LEV onto average
AICR calculated over put options and CDSs of Retail, Wholesale and Services. Number of observations: 4,658.
F–stat = 20.63 (p–value = 0.000).
A sandwich estimator for panel data is used in order to obtain robust standard errors. Significance levels: 10%
(*), 5% (**), 1% (***).
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Regressand Adj–R2: 0.6608

AICR′
−1

Regressors Coefficient Robust Standard Error t–stat p–value

LEV 0.0391051 0.0012387 31.57 0.000 ***
α−1 -0.0145449 0.0011321 -12.85 0.000 ***

Year-FE ✓

(a): Financials, LGD = 80%

Regressand Adj–R2: 0.2128

AICR′
−1

Regressors Coefficient Robust Standard Error t–stat p–value

LEV 0.0069186 0.0004261 16.24 0.000 ***
α−1 -0.0007640 0.0001489 -5.13 0.000 ***

Year-FE ✓

(b): Mining, Energy and Utilities, LGD = 80%

Regressand Adj–R2: 0.1173

AICR′
−1

Regressors Coefficient Robust Standard Error t–stat p–value

LEV 0.0014455 0.0000861 16.78 0.000 ***
α−1 -0.0000211 0.0000163 -1.29 0.197

Year-FE ✓

(c): Manufacturing, LGD = 80%

Regressand Adj–R2: 0.2450

AICR′
−1

Regressors Coefficient Robust Standard Error t–stat p–value

LEV 0.0075047 0.0009004 8.34 0.000 ***
α−1 -0.0007342 0.0001427 -5.14 0.000 ***

Year-FE ✓

(d): Retail, Wholesale and Services, LGD = 80%

Table H.5 Estimation of regression (1.19) over the four sub-samples for LGD = 80%.
(a): Estimates of the year-fixed effect panel regression of market model-implied leverage LEV onto average
AICR calculated over put options and CDSs of Financials. Number of observations: 1,938. F–stat = 199.90
(p–value = 0.000).
(b): Estimates of the year-fixed effect panel regression of market model-implied leverage LEV onto average
AICR calculated over put options and CDSs of Mining, Energy and Utilities. Number of observations: 1,916.
F–stat = 73.60 (p–value = 0.000).
(c): Estimates of the year-fixed effect panel regression of market model-implied leverage LEV onto average
AICR calculated over put options and CDSs of Manufacturing. Number of observations: 6,515. F–stat = 80.21
(p–value = 0.000).
(d): Estimates of the year-fixed effect panel regression of market model-implied leverage LEV onto average
AICR calculated over put options and CDSs of Retail, Wholesale and Services. Number of observations: 4,658.
F–stat = 20.63 (p–value = 0.000).
A sandwich estimator for panel data is used in order to obtain robust standard errors. Significance levels: 10%
(*), 5% (**), 1% (***).

177



Robustness checks

Regressand Adj–R2: 0.0005

∆SkewT<1

Regressors Coefficient Robust Standard Error t–stat p–value

AICR′
−1,T<1 1.479315 0.9954766 1.49 0.142

αT<1 -0.0038017 0.0009416 -4.04 0.000 ***

firm-FE ✓
year-FE ✓

(a): Predictive regression for short-term skew, LGD = 60%

Regressand Adj–R2: 0.0004

∆SkewT>1

Regressors Coefficient Robust Standard Error t–stat p–value

AICR′
−1,T>1 0.3945692 0.1372269 2.88 0.005 ***

αT>1 -0.0106972 0.0017378 -6.16 0.000 ***

firm-FE ✓
year-FE ✓

(b): Predictive regression for long-term skew, LGD = 60%

Regressand Adj–R2: 0.0007

∆SkewT<1

Regressors Coefficient Robust Standard Error t–stat p–value

AICR′
−1,T<1 1.567852 1.051431 1.49 0.141

αT<1 -0.0038733 0.000953 -4.06 0.000 ***

firm-FE ✓
year-FE ✓

(c): Predictive regression for short-term skew, LGD = 80%

Regressand Adj–R2: 0.0005

∆SkewT>1

Regressors Coefficient Robust Standard Error t–stat p–value

AICR′
−1,T>1 0.4403912 0.1533718 2.87 0.006 ***

αT>1 -0.011145 0.0018258 -6.10 0.000 ***

firm-FE ✓
year-FE ✓

(d): Predictive regression for long-term skew, LGD = 80%

Table H.6 Estimation of regression (1.22) for different values of LGD.
(a): Predictive regression for short-term skew based on the average AICR calculated over short-term put options
and CDSs (LGD = 60%). Number of observations: 7,656. F–stat = 8.72 (p–value = 0.000).
(b): Predictive regression for long-term skew based on the average AICR calculated over long-term put options
and CDSs (LGD = 60%). Number of observations: 6,818. F–stat = 11.47 (p–value = 0.000).
(c): Predictive regression for long-term skew based on the average AICR calculated over short-term put options
and CDSs (LGD = 80%). Number of observations: 7,656. F–stat = 8.73 (p–value = 0.000).
(d): Predictive regression for long-term skew based on the average AICR calculated over long-term put options
and CDSs (LGD = 80%). Number of observations: 6,818 F–stat = 11.54 (p–value = 0.000).
A sandwich estimator for panel data is used to obtain robust standard errors. Significance levels: 10% (*), 5%
(**), 1% (***).
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Regressand Adj–R2: 0.0018

∆SkewT>1

Regressors Coefficient Robust Standard Error t–stat p–value

AICR′
−1,T>1 0.3746640 0.1414883 2.65 0.029 **

αT>1 -0.0116986 0.0109631 -1.07 0.317

firm-FE ✓
year-FE ✓

(a): Long-term skew of Financials, LGD = 60%

Regressand Adj–R2: 0.0014

∆SkewT>1

Regressors Coefficient Robust Standard Error t–stat p–value

AICR′
−1,T>1 0.5889985 0.6279188 0.94 0.379

αT>1 -0.0164705 0.0029668 -5.55 0.001 ***

firm-FE ✓
year-FE ✓

(b): Long-term skew of Mining, Energy and Utilities, LGD = 60%

Regressand Adj–R2: 0.0007

∆SkewT>1

Regressors Coefficient Robust Standard Error t–stat p–value

AICR′
−1,T>1 -4.338104 3.015046 -1.44 0.166

αT>1 -0.0073019 0.0022992 -3.18 0.005 ***

firm-FE ✓
year-FE ✓

(c): Long-term skew of Manufacturing, LGD = 60%

Regressand Adj–R2: 0.0006

∆SkewT>1

Regressors Coefficient Robust Standard Error t–stat p–value

ICR′
−1,T>1 1.2258928 0.8286194 1.48 0.151

αT>1 -0.0107916 0.0027597 -3.91 0.001 ***

firm-FE ✓
year-FE ✓

(d):Long-term skew of Retail, Wholesale and Services, LGD = 60%

Table H.7 Estimation of regression (1.22) over the four sub-samples for LGD = 60%.
(a): Predictive regression for short-term skew based on the average AICR calculated over long-term put options
and CDSs of Financials. Number of observations: 810. F–stat = 10.99 (p–value = 0.002).
(b): Predictive regression for short-term skew based on the average AICR calculated over long-term put options
and CDSs of Mining, Energy and Utilities. Number of observations: 791. F–stat = 24.87 (p–value = 0.000).
(c): Table 5b: Predictive regression for short-term skew based on the average AICR calculated over long-term
put options and CDSs of Manufacturing. Number of observations: 2,305 F–stat = 4.17 (p–value = 0.010).
(d): Predictive regression for short-term skew based on the average AICR calculated over long-term put options
and CDSs of Retail, Wholesale and Services. Number of observations: 2,912 F–stat = 5.78 (p–value = 0.001).
A sandwich estimator for panel data is used to obtain robust standard errors. Significance levels: 10% (*), 5%
(**), 1% (***).
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Robustness checks

Regressand Adj–R2: 0.0022

∆SkewT>1

Regressors Coefficient Robust Standard Error t–stat p–value

AICR′
−1,T>1 0.4297893 0.1668369 2.58 0.033 **

αT>1 -0.0145834 0.0121469 -1.20 0.264

firm-FE ✓
year-FE ✓

(a): Predictive regression for long-term skew of Financials, LGD = 80%

Regressand Adj–R2: 0.0017

∆SkewT>1

Regressors Coefficient Robust Standard Error t–stat p–value

AICR′
−1,T>1 0.2832847 0.0658556 4.30 0.004 ***

αT>1 -0.0194797 0.002694 -7.23 0.000 ***

firm-FE ✓
year-FE ✓

(b): Long-term skew of Mining, Energy and Utilities, LGD = 80%

Regressand Adj–R2: 0.0006

∆SkewT>1

Regressors Coefficient Robust Standard Error t–stat p–value

ICR′
−1,T>1 -2.560192 2.574604 -0.99 0.333

αT>1 -0.0078215 0.0022739 -3.44 0.003 ***

firm-FE ✓
year-FE ✓

(c): Long-term skew of Manufacturing, LGD = 80%

Regressand Adj–R2: 0.0006

∆SkewT>1

Regressors Coefficient Robust Standard Error t–stat p–value

ICR′
−1,T>1 1.310575 0.6199556 2.11 0.044 **

αT>1 -0.0110623 0.0027377 -4.04 0.000 ***

firm-FE ✓
year-FE ✓

(d): Long-term skew of Retail, Wholesale and Services, LGD = 80%

Table H.8 Estimation of regression (1.22) over the four sub-samples for LGD =80%.
(a): Predictive regression for short-term skew based on the average AICR calculated over long-term put options
and CDSs of Financials. Number of observations: 810. F–stat = 7.63 (p–value = 0.007).
(b): Predictive regression for short-term skew based on the average AICR calculated over long-term put options
and CDSs of Mining, Energy and Utilities. Number of observations: 791. F–stat = 32.75 (p–value = 0.000).
(c): Table 5b: Predictive regression for short-term skew based on the average AICR calculated over long-term
put options and CDSs of Manufacturing. Number of observations: 2,305 F–stat = 4.04 (p–value = 0.011).
(d): Predictive regression for short-term skew based on the average AICR calculated over long-term put options
and CDSs of Retail, Wholesale and Services. Number of observations: 2,912 F–stat = 6.77 (p–value = 0.000).
A sandwich estimator for panel data is used to obtain robust standard errors. Significance levels: 10% (*), 5%
(**), 1% (***).
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Appendix I

Jacobian in the Non-Linear Least
Squares Algorithm

Here, the formulas for the Jacobian of the optimization problem in (2.3) are listed. All the
results are obtained from Maglione (2019).

If n = 1, that is F1 due at t1 > 0, the Jacobian is given by

J(V,σV ) =
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If n = 2, that is (F1,F2) due at (t1, t2) (with 0 < t1 < t2), the Jacobian is given by
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Jacobian in the Non-Linear Least Squares Algorithm

with

∆
(2)
S = e−pt2

[
Φ2

(
dM

2 ;ΓΓΓ222

)
+

φ(dM
1 )

σV
√

t1

(
Φ

(
dM2 (γ12)

)
− F2e−r(t2−t1)

V̄1e−p(t2−t1)
Φ
(
dQ2 (γ12)

))]

− e−rt1 F1

V
φ(dQ

1 )

σV
√

t1

ν
(2)
S =

1
σV

[
e−rt2F2

((
dM

1 +
V̄ ′

1
V̄1
√

t1

)
φ
(
dQ

1
)
Φ
(
dQ2 (γ12)

)
+dM

2 φ
(
dQ

2
)
Φ
(
dQ1 (γ12)

))
− e−pt2V0

((
dQ

1 +
V̄ ′

1
V̄1
√

t1

)
φ

(
dM

1

)
Φ

(
dM2 (γ12)

)
+dQ

2 φ

(
dM

2

)
Φ

(
dM1 (γ12)

))
+e−rt1F1

(
dM

1 +
V̄ ′

1
V̄1
√

t1

)
φ
(
dQ

1
)]

∂Φ
Q
1

∂V
=

1
V

φ(dQ
1 )

σV
√

t1
∂Φ

Q
1

∂σV
=− 1

σV

(
dM

1 +
V̄ ′

1
V̄1
√

t1

)
φ
(
dQ

1
)

∂Φ
Q
2

∂V
=

1
V

(
φ(dQ

1 )

σV
√

t1
Φ
(
dQ2 (γ12)

)
+

φ(dQ
2 )

σV
√

t2
Φ
(
dQ1 (γ12)

))
∂Φ

Q
2

∂σV
=− 1

σV

((
dM

1 +
V̄ ′

1
V̄1
√

t1

)
φ
(
dQ

1
)
Φ
(
dQ2 (γ12)

)
+dM

2 φ
(
dQ

2
)
Φ
(
dQ1 (γ12)

))
and

dM
1 =

ln V
V̄1
+
(
r− p+σ2

V/2
)

t1
σV

√
t1

, dM
2 =

ln V
F2
+
(
r− p+σ2

V/2
)

t2
σV

√
t2

,

dQ
1 = dM

1 −σV
√

t1, dQ
2 = dM

2 −σV
√

t2

dM
2 =

(
dM

1 dM
2

)
, ΓΓΓ222 =

(
1 γ12

γ12 1

)
=

(
1

√
t1/t2√

t1/t2 1

)

dM1 (γ12)=
dM

1 − γ12dM
2√

1− γ2
12

, dQ1 (γ12)=
dQ

1 − γ12dQ
2√

1− γ2
12

, dM2 (γ12)=
dM

2 − γ12dM
1√

1− γ2
12

, dQ2 (γ12)=
dQ

2 − γ12dQ
1√

1− γ2
12

If n = 3, that is (F1,F2,F3) due at (t1, t2, t3) (with 0 < t1 < t2 < t3), the Jacobian in given
by

J(V,σV ) =


∆
(2)
S ν

(2)
S

∂Φ
Q
1 /∂V ∂Φ

Q
1 /∂σV

∂Φ
Q
2 /∂V ∂Φ

Q
2 /∂σV

∂Φ
Q
3 /∂V ∂Φ

Q
3 /∂σV


182



with

∆
(3)
S = e−pt3

(
Φ3

(
dM

3 ;ΓΓΓ333

)
+

IM1
σV

√
t1
+

IM2
σV

√
t2
+

IM3
σV

√
t3

)
− e−rt3 F3

v

(
IQ1

σV
√

t1
+

IQ2
σV

√
t2
+

IQ3
σV

√
t3

)

− e−rt2 F2

v

(
φ(dQ

1 )

σV
√

t1
Φ

(
dQ2 (γ12)

)
+

φ(dQ
2 )

σV
√

t2
Φ

(
dQ1 (γ12)

))
− e−rt1 F1

vσV
√

t1
φ(dQ

1 )

ν
(3)
S =

1
σV

[
e−rt3F3

((
dM

1 +
V̄ ′

1
V̄1
√

t1

)
IQ1 +

(
dM

2 +
V̄ ′

2
V̄2
√

t2

)
IQ2 +dM

3 IQ3

)

− e−pt3V0

((
dQ

1 +
V̄ ′

1
V̄1
√

t1

)
IM1 +

(
dQ

2 +
V̄ ′

2
V̄2
√

t2

)
IM2 +dQ

3 IM3

)
+ e−rt2F2

((
dM

1 +
V̄ ′

1
V̄1
√

t1

)
φ
(
dQ

1
)
Φ
(
dQ2 (γ12)

)
+

(
dM

2 +
V̄ ′

2
V̄2
√

t2

)
φ
(
dQ

2
)
Φ
(
dQ1 (γ12)

))
+e−rt1F1

(
dM

1 +
V̄ ′

1
V̄1
√

t1

)
φ
(
dQ

1
)]

∂Φ
Q
1

∂V
=

1
V

φ(dQ
1 )

σV
√

t1
∂Φ

Q
1

∂σV
=− 1

σV

(
dM

1 +
V̄ ′

1
V̄1
√

t1

)
φ
(
dQ

1
)

∂Φ
Q
2

∂V
=

1
V

(
φ(dQ

1 )

σV
√

t1
Φ
(
dQ2 (γ12)

)
+

φ(dQ
2 )

σV
√

t2
Φ
(
dQ1 (γ12)

))
∂Φ

Q
2

∂σV
=− 1

σV

((
dM

1 +
V̄ ′

1
V̄1
√

t1

)
φ
(
dQ

1
)
Φ
(
dQ2 (γ12)

)
+

(
dM

2 +
V̄ ′

2
V̄2
√

t2

)
φ
(
dQ

2
)
Φ
(
dQ1 (γ12)

))
∂Φ

Q
3

∂V
=

1
V

(
IQ1

σV
√

t1
+

IQ2
σV

√
t2
+

IQ3
σV

√
t3

)
∂Φ

Q
3

∂σV
=− 1

σV

[(
dM

1 +
V̄ ′

1
V̄1
√

t1

)
IQ1 +

(
dM

2 +
V̄ ′

2
V̄2
√

t2

)
IQ2 +dM

3 IQ3

]
and

dM
1 =

ln V
V̄1
+
(
r− p+σ2

V/2
)

t1
σV

√
t1

, dM
2 =

ln V
V̄2
+
(
r− p+σ2

V/2
)

t2
σV

√
t2

, dM
3 =

ln V
F3
+
(
r− p+σ2

V/2
)

t3
σV

√
t3

dQ
1 = dM

1 −σV
√

t1, dQ
2 = dM

2 −σV
√

t2, dQ
3 = dM

3 −σV
√

t3, dM
3 =

(
dM

1 dM
2 dM

3

)

183



Jacobian in the Non-Linear Least Squares Algorithm
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Appendix J

The leverage and volatility effect in a
compound option model of default

As credit events are dictated by the level of the equity, it is crucial to have a clear vision on
how equity reacts to changes in the value of the assets and its riskiness in order to understand
what drives default in the model. Also, understanding the properties of the market value of
debt adds extra insight to the implications of the model.

Assume the asset value process follows a geometric Brownian motion

dVt = (r−ϖ)Vt dt +σVVt dWQ
t , (J.1)

where ϖ is the continuously compounded payout rate (reflecting both dividends and coupon
payments), σV the instantaneous volatility of the assets, and WQ

t a Q-standard Brownian
motion.

Let Λ ∈ {S,D}, where S the market value of the equity and D the market value of debt.
As both equity and debt are functions of the firm value and time only, Itô’s Lemma can be
used to determine their risk-neutral dynamics. Under (J.1), the residual claimΛ evolves as

dΛt = α
Q
Λ
(Vt , t)Λt dt +σΛ(Vt , t)Λt dWQ

t , (J.2)

with

α
Q
Λ
(Vt , t) :=

1
Λt

(
∂Λ

∂ t
+

∂Λ

∂V
(r−ϖ)Vt +

1
2

∂ 2Λ

∂V 2 σ
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and σΛ(Vt , t) := σV
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The leverage and volatility effect in a compound option model of default

Therefore, neither the dynamics of the equity nor the ones of the market value of debt are
log-normal (no matter what is the distribution of Vt), displaying both stochastic drift and
volatility.

Focusing on the firm’s equity, it is worth highlighting that the process does not only have
stochastic volatility, but it is also a model of local volatility in the sense of Dupire (1994). In
fact,

σS = σS(St , t).

Remarkably, the equity process is also able to combine both the dependence of the equity
volatility on its level, S, (and its sensitivities), and on the model state variable, V . Local
volatility models where the volatility depends also on other variables than S are usually
referred as hybrid local stochastic volatility models. These are widely-used in the industry to
estimate the implied volatility surface extracted from options, the most common being the
model in Heston (1993) plus local volatility. In fact, it is well known that a stochastic volatility
model with time-homogeneous parameters only (as Heston) cannot fit market prices. For a
more comprehensive discussion on pros and cons of stochastic volatility models, see Gatheral
(2006). Thus, the proposed model appears to be the most natural way to construct an hybrid
local volatility model consistent with the structural approach to default.

For convenience of notation, let t = 0 and the time subscripts be omitted. By model
assumptions, the accounting identity

e−ϖtnV = S+D (J.3)

holds, where the left-hand side can be thought as the net asset value1. Based on it, some
identities regarding the sensitivity of equity and debt with respect to the state variables can
be derived as well. In particular, I can link the Delta (i.e. partial derivative with respect to the
asset value) and Vega (i.e. partial derivative with respect to the asset volatility) of equity and
debt via (J.3). Setting ∆Λ := ∂Λ/∂V and νΛ := ∂Λ/∂σV , it follows

∆D = e−ϖtn −∆S and νD =−νS.

Notice that these sensitivities depends on the number of bond outstanding n. The analytical
expression for ∆

(n)
S and ν

(n)
S are available in Maglione (2019). The analogous counterparts

for debt can be found using the expressions above. Also, as σΛ = σV
V
Λ

∆Λ, the following

1Net of all the future payments to either shareholders and bondholders.
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accounting relationship holds for volatilities,

e−ϖtnσV =
SσS +DσD

S+D
,

where σS and σD are obviously stochastic and time-varying. Also, by applying Itô’s Lemma,

σS = σV
V
S

∆S and σD = σV
V
D

∆D. (J.4)

Therefore, the model allows to interpret the volatility of the firm’s claims (equity or debt)
in terms of the riskiness of the firm (σV ), its (inverse) debt-to-equity ratio in case of equity
(debt), and the sensitivity of the claim with respect to changes in the asset value (Delta).

Figure J.1 shows how equity, debt, and their respective volatilities react when either the
leverage decreases (that is V increases) or the firm’s riskiness changes. Whereas the Black
and Scholes (1973) model assumes that the variance of the stock return is not a function of the
stock price, here the variance of the return on the equity is inversely related to the stock price.
As the asset value falls (rises), the value of the equity falls (rises) too, the firm’s debt-equity
ratio rises (falls), and this increased (decreased) risk is reflected by a rise (fall) in the variance
of the returns on the stock. Also, if the riskiness of the whole firm increases, the volatility
of the equity increases too. Furthermore, it can be shown that if V and σV simultaneously
increases, the overall effect result in an increase of the equity volatility. Similar dynamics
are observed for debt despite the impact is much smaller, consistently with the empirical
evidence that publicly traded debt is much less volatile than equity.

Furthermore, the volatility of the equity can also be written as

σS = σV

(
∂S
S
/

∂V
V

)
= σV ElS(V, t)

where ElS(Vt , t) is the elasticity of the equity with respect to changes in the asset value.
Evidently, the elasticity of variance is not constant but a stochastic function of the state
variable V . Moreover, the elasticity is always greater than one (being one for v ↑ ∞ or in
the trivial case V = S). That is, a x% change in the value of the assets induces the equity to
change more than x% (i.e. equity is elastic with respect to asset value). See Figure J.2 for a
graphical analysis of the elasticity.

A well-known process where the elasticity of equity drives its volatility is the Cox (1996)
Constant Elasticity of Variance (CEV). The dynamics in (J.2) can be seen as a possible
generalisation of it. In fact, without loss of generality, setting ElS(Vt , t) = S−γ(Vt ,t), and
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Fig. J.1 Fi = 10, ti = {1,5,10}, r = 0.03, p = 0.05. When leverage is fixed (left column), σV = 0.2; when the
firm’s riskiness is fixed (right column), V = 100.
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Fig. J.2 Fi = 10, ti = {1,5,10}, r = 0.03, p = 0.05. When leverage is fixed (left), σV = 0.2; when the firm’s
riskiness is fixed (right), V = 100.

defining

β (V, t) := 1− γ(V, t) = 1+
lnElS(V, t)

lnS
then the dynamic of the equity reads as

dSt = α
Q
S (Vt , t)St dt +σV Sβ (Vt ,t)

t dWQ
t , (J.5)

thus resembling the equation governing the CEV2. Being the elasticity stochastic, the process
will be referred as Stochastic Elasticity of Variance (SEV).

Furthermore, a closer inspection to (J.5) reveals that the stochastic function β (Vt , t) is
indeed related to the elasticity of the quadratic variation of the stock returns3 with respect to
the stock price by

El
σ2

dS/S
(V, t) =

∂σ2
dS/S

σ2
dS/S

/
∂S
S

= 2(β (V, t)−1) .

Figure J.2 shows that the elasticity of the instantaneous variance of the stock returns behaves
similarly to ElS, tending to infinity as the value of the asset drops (that is as financial leverage
increases). Increasing the riskiness of the firm lowers both ElS and El

σ2
dS/S

, despite the effect
being modest. Overall, this dynamic allows to explain many stylised facts observed in equity
markets, namely the increase of the return variance as the stock price drops and relatively

2In the CEV both the drift and β are constant parameters.
3More formally, the quadratic variation of the stochastic logarithm of S.
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The leverage and volatility effect in a compound option model of default

stable riskiness for mature companies. In fact, (1.10) is able to account for increases in
the instantaneous variance (as well as in the elasticity of the instantaneous variance) when
the stock price falls. On the other hand, when the firm is mature and ‘safe’ company, the
elasticity of the instantaneous variance approaches zero, thus making the value of the stock
insensitive to changes in the firm value. In the first case (bankruptcy) the equity become
progressively more and more sensitive to changes in the value of the assets; in the second
case (safety) the firm is so far from default that changes in the firm value do not affect the
value of the equity.

To some extent this process produces similar trajectories to the reduced-form default-
extended CEV process in Carr and Linetsky (2006). The main difference between the two
approaches is that their process is only able to statistically reproduce the patterns caused by
the leverage effect, while here the the statistical properties of the SEV are directly attributable
to the firm’s capital structure.

On a different note, a compound option default model is able to explain some of the
‘puzzling’ findings in Carr and Wu (2017). They document that, contrary to conventional
wisdom, financial leverage does not always decline with increased business risk. Instead,
the financial leverage can increase with increasing business risk if the risk increase is due to
small, diffusive market movements4. Surprisingly, their finding is what our model predicts.
In order to understand how equity, and thus leverage, reacts to increase in business risk (that
is, σV ), the sensitivity of the equity with respect to asset volatility can be looked at.

If the volatility of the company increases, every structural model à la Merton would
predict that the value of its equity increases too as displayed in Figure J.1 (b). Also, in
line with common sense, Figure J.1 (a), (c) and (e) shows that the firm equity and debt are
increasing in the asset value (but they display opposite concavity), and that the volatility of
equity and debt both tend to decline as the firm becomes safer due to a larger asset value.
The same applies for the debt to equity ratio. On the other hand, panels (d) and (f) can
help shedding some light on the counter-intuitive findings in Carr and Wu (2017). If the
choice of rebalancing the capital structure to hit a targeted leverage ratio is not modelled (i.e.
the capital structure is insensitive to changes in the business risk), the company’s financial
leverage drops (panel (f)). Instead, in a model where the firm can react to changes in its
business risk and adjust its capital structure accordingly, as the riskiness of the firm increases,
it would be optimal to take on more debt given the rise in equity so that the leverage ratio
remains constant. Also, it would make sense to take in a larger fraction of debt than the

4Only when the ‘self-exciting’ downside jump risk increases do companies become concerned and start the
deleveraging process.
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Fig. J.3 Sensitivity of equity with respect to asset volatility under the Merton (panel (a)) and a compound option
model (panel (b)) (r = 0.03, p = 0.05). In panel (a): F1 = 50, t1 = 1; in panel (b): F1 = F2 = F3 = 50/3; t1 = 1,
t2 = 5, t3 = 10. Panel (a) shows how ν

(1)
S reacts to changes in the riskiness of the firm: it is optima for equity

holders to increase leverage, as this makes equity more sensitive to further changes in volatility. Panel (b) shows
how ν

(3)
S reacts to increasing business risk: pushing leverage is optimal as long as the sensitivity of equity

starts decreasing. The sensitivity of a highly-levered (dashed) company falls between the sensitivities of the
medium-levered (dotted) and low-levered (dotted-dashed) companies for plausible value of σV ∈ (0,0.3) p.a..

percentage increase of the value of equity, being debt less volatile than equity (panel (d)).
Thus, the findings in Carr and Wu (2017) of increasing leverage for increasing diffusive
volatility can be easily reconciled with a model in which shareholders maximise the firm
value, based on a targeted leverage ratio, and where equity is seen as a compound option.

Furthermore, in order to understand how equity, and thus leverage, reacts to increase
in business risk (that is, σV ), the sensitivity of the equity with respect to asset volatility,
ν
(n)
S (i.e. the ‘Vega’ of the equity), can be looked at. Figure J.3 shows how equity reacts to

volatility changes over different capital structures and aggregation schemes. It also provides
a valid motivation for preferring a compound option model with respect to the Merton model.
Panel (a) shows the sensitivity of the equity under the Merton model (where the whole firm’s
debt is clustered at unique date in the future); panel (b) shows how the same sensitivity
displays a different behaviour by having allowed for a more realistic aggregation scheme of
the company’s capital structure (debt is clustered at three future dates).

Comparing the two panels, it is evident that the effect of leverage is exacerbated in a
compound option model: the equity of moderately-levered firms changes more severely in
panel (b). For reasonable combinations of asset volatility and leverage, there is an incentive
by the shareholders to increase the leverage. Considering plausible values of the asset
volatility (say between 5% and 40% p.a.), panel (b) in Figure J.3 shows that equityholders
of the ‘dashed company’ would be better off increasing leverage to become the ‘dotted
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company’. However, increasing leverage further, that is turning into the ‘dotted-dashed
company’, would reflect into a reduction on the sensitivity of the equity. Notice that the
Merton model is not able to reproduce this pattern: it is always optimal for shareholders to
increase leverage further.
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