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Gaussian Process Regression for Probabilistic

Short-term Solar Output Forecast
Fatemeh Najibi, Dimitra Apostolopoulou, and Eduardo Alonso

Abstract—With increasing concerns of climate change, renew-
able resources such as photovoltaic (PV) have gained popularity
as a means of energy generation. The smooth integration of such
resources in power system operations is enabled by accurate
forecasting mechanisms that address their inherent intermittency
and variability. This paper proposes a probabilistic framework to
predict short-term PV output taking into account the uncertainty
of weather. To this end, we make use of datasets that comprise
of power output and meteorological data such as irradiance,
temperature, zenith, and azimuth. First, we categorise the data
into four groups based on solar output and time by using k-means
clustering. Next, a correlation study is performed to choose the
weather features which affect solar output to a greater extent.
Finally, we determine a function that relates the aforementioned
selected features with solar output by using Gaussian Process
Regression and Matérn 5/2 as a kernel function. We validate our
method with five solar generation plants in different locations
and compare the results with existing methodologies. More
specifically, in order to test the proposed model, two different
methods are used: (i) a 5-fold cross validation; and (ii) holding
out 30 random days as test data. To confirm the model accuracy,
we apply our framework 30 independent times on each of the
four clusters. The average error follows a normal distribution,
and with 95% confidence level, it takes values between −1.6%
to 1.4%.

Index Terms—Short-term forecasting, photovoltaic, Gaussian
Processes Regression, k-means, feature selection.

I. INTRODUCTION

Over the past years many countries have opted to integrate

solar energy in the grid in order to increase the penetration

of environmental friendly resources [1]. For instance, Japan,

China, Germany, USA, and UK are able to meet 80% of their

demand from solar generation; and the total installed solar

energy capacity at the end of 2018 was more than 500 GW [2].

However, the inherent uncertainty of photovoltaic (PV) energy,

due to, e.g., irradiance, temperature and cloud conditions,

makes its smooth integration in power system operations a

formidable challenge. More specifically, the intermittency of

solar generation might cause issues in system stability, power

balance and frequency response, and reactive power generation

(see, e.g., [3], [4]). In this regard, building accurate forecast

models of solar generation is of vital importance.

PV output forecasting may be classified into four groups

based on the approach used to model solar panels and weather

behaviour, namely: (i) statistical methods; (ii) Artificial In-

telligence (AI); (iii) physical models; and (iv) hybrid ap-
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proaches [5]. Statistical approaches are based on available his-

torical measured meteorological and PV output data as well as

numerical weather forecasts. AI methods use machine learning

techniques such as Artificial Neural Networks (ANNs) to cap-

ture the non-linear relationship between weather data and solar

output and construct a probabilistic model [6]. These methods

may be classified in group (i) above if their performance is

judged by statistical metrics [7]. Physical models focus on

numerical weather forecasts and the use of satellite images to

predict weather parameters such as solar irradiation as input

to a PV model to determine the solar generation output. Last,

hybrid models combine the aforementioned approaches.

There are several advantages and disadvantages associated

with each group of methods. For instance, in physical models

where a detailed description of the panels based on the single

diode model is used, the stochastic nature of weather data is

neglected (see, e.g., [8]). Moreover, the output is based on a

PV datasheet, therefore the partial failure and down time of a

PV plant are not considered. As such, physical models usually

have less accuracy in their forecasts compared against AI

algorithms. Other studies pivot around statistical approaches or

hybrid models that incorporate machine learning and statistical

techniques. In [9] a probabilistic forecast model is proposed

as a linear programming model. The authors used Extreme

Machine Learning (ELM) and quantile regression to efficiently

develop a statistical approach to generate a confidence interval

on the forecasted power generation. In [10], [11], different

distribution functions are combined to predict a 15-minute

ahead probability distribution function of PV output based on

a higher-order Markov chain. This method has been recently

proved to improve generalisation in comparison to standard

back-propagation [12]. Although a plethora of contemporary

studies have focused on ANNs and Support Vector Regression

approaches in the context of forecasting [13], other machine

learning techniques such as regression trees can also be used

based on available historical data. According to [14], which

discusses the assessment of different forecasting techniques,

most ANNs and persistence models disregard the uncertainty

provoked by the random behaviour of meteorological data. On

the other hand, regression techniques incorporate uncertainty

and are able to build a probabilistic forecast model. For

example in [15], [16], the authors utilised a Support Vector

Machine (SVM) to predict PV output based on different

meteorological conditions.

Among all the approaches used to predict solar output,

Gaussian Process Regression (GPR) is one of the most pow-

erful due to its flexibility to be applied on a wide range of

time-series data [17]. GPR is a unique method for modelling

uncertainty in a probabilistic framework setup [18]. In mod-
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elling weather forecast, the uncertainty of input attributes are

taken into account by using GPR which treats input data as

random points with an unknown distribution function. There-

fore, the uncertainties are reflected into the output forecast

with a specific confidence interval. GPR is based on Bayesian

statistics, which help us model and quantify uncertainty in

the parameters. Moreover, the non-linear relationship between

solar output and meteorological weather parameters can be ex-

plicitly modelled by using an appropriate kernel function [19].

In comparison to other methods, GPR is more efficient for

prediction in time-series events with a wide range variation,

for each hour of a day over one year [20]. In addition, physical

models for PV forecasting need a large amount of accurate

equipment data that are hard to obtain due to measurement and

simulation errors [21]. On the other hand, AI techniques, such

as SVM and ANNs, are solely based on historical statistical

data for training [22]. GPR exploits the advantages of both

methods in the sense that it uses both historical data and

data fitting approaches to build a robust model [23]. It should

be noted that mathematical modelling of the uncertainties of

output as a function of uncertainties of input is outside the

scope of this work (see, e.g., [24]).

In this work, we propose a probabilistic solar output forecast

model using GPR with a Matérn 5/2 kernel function. First,

we partition the data into four groups based on time and

solar output with k-means clustering. Each hour of the day

is considered to be in one specific cluster if it is closer to

that cluster’s centroid than the three other centroids based

on the Euclidean distance. Next, in order to improve the

accuracy of the forecast and reduce computational complexity

we perform a correlation study to identify the features that

have a high impact on solar output. The features selected

are: direct solar irradiance, diffused solar irradiance, horizontal

solar irradiance, temperature, zenith, and azimuth. We use

GPR to relate solar output generation with the selected features

and train each cluster using Matérn 5/2 as a kernel function

for the forecasting model. To validate the proposed framework

we apply it to different datasets from different sites, i.e.,

Denver, New York, Dallas, San Francisco, and St. Lucia. We

validate the results by utilising both k-fold cross validation and

holding-out data techniques. We choose 30 random days from

the dataset as representatives of different weather conditions

as hold-out test data.

The remainder of the paper is organised as follows. In

Section II the data processing is described. More specifically,

in Section II-A the clustering of the dataset is described and

in Section II-B the correlation study to identify the features

that have a high impact on solar output is presented. In

Section III the proposed framework is developed. In particular,

in Section III-A the GPR with Matérn 5/2 as a kernel function

that relates the solar output with the input features is discussed

and in Section III-B the framework validation methodolo-

gies are presented. In Section IV, we illustrate the proposed

methodology through five different datasets. In Section V, we

summarise the results and make some concluding remarks.

II. DATA PROCESSING

In this section, we present the processing that needs to

be performed to the data in order to formulate the proposed

framework. In particular, we describe the clustering and fea-

ture selection methodologies.

A. Data Clustering

Clustering is an unsupervised pattern classification learning

technique used to partition data with high similarity into differ-

ent groups based on a distance or dissimilarity function [25]–

[27]. The key concepts and different clustering algorithms

are discussed in [28]. k-means is a very popular clustering

algorithm which is used to cluster data into different groups

while each point belongs to a cluster with the least Euclidean

distance to the centroid [29], [30]. In previous studies, k-means

is not employed to cluster output solar energy based on time

[31], while in our proposal the dataset is clustered based on

output and time. PV output has a huge amount of scattering

across both the time of day and the day of year.

k-means aims to partition the data into K categories in

a way that the sum of squares from points to the assigned

cluster centres is minimised. In each cluster, all cluster centres

are at the mean of the data points which belong to the

corresponding cluster. Consider a set X = {x1, x2, . . . , xN}
with N elements, where xi ∈ R

n for all of i = 1, . . . , N ; the

data point cluster number C(i) ∈ {1, . . . ,K}, i ∈ {1, . . . , N};

the cluster centroid for cluster k ck ∈ R
n, k = 1, . . . ,K;

and the Euclidean distance d(xi, ck) = ||xi − ck||, which

is the distance between xi and cluster centroid ck. Then k-

means clustering tries to minimize the following squared error

function:

minimize
{ck}K

k=1

K
∑

k=1

Nk

∑

C(i)=k

d2(xi, ck), (1)

where Nk is the number of points assigned to cluster k.

In our framework, the k-means clustering algorithm is used

to group the data based on time of day and power output. In

order to determine the number of clusters we perform a sensi-

tivity study and compare the increase in the accuracy against

the increase in the number of clusters. More specifically, we

select solar data from Denver International Airport PV, i.e.,

Site A (see Table III for more details) and cluster the data

into one to eight clusters. For each of the clusters we train a

GPR model, as discussed in Section III, and depict the error

between the forecasted and the actual values in Fig. 1. Let

us denote by y
(t)
⋆ , the forecasted value for solar generation at

time t, and by ỹ(t) the actual value at time t; the error metrics

are calculated as follows:

RMSE =

√

√

√

√

1

T⋆

T⋆
∑

t=1

(

ỹ(t) − y
(t)
⋆

)2

, (2)

MAE =
1

T⋆

T⋆
∑

t=1

∣

∣

∣
ỹ(t) − y

(t)
⋆

∣

∣

∣
, (3)

MSE =
1

T⋆

T⋆
∑

t=1

(

ỹ(t) − y
(t)
⋆

)2

, (4)

where T⋆ is the number of hourly intervals we are predicting

the solar output. We may also compute normalised values

of the above metrics. These metrics, compare how good the
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Figure 1: Sensitivity study on the number of clusters by

comparing different normalised error metrics values.

prediction of PV is with respect to the number of clusters. Each

bar shows the average prediction error for each experiment

with different number of clusters. A choice of a large number

of clusters increases the computational complexity of the

forecasting algorithm since one GPR model needs to be trained

for each distinct cluster. From the graph we can see that there

is big decrease in all error metrics when the number of clusters

is four. However, we notice that after increasing the number

of clusters from four to eight there is a marginal decrease in

the error metrics. Thus, the data are grouped into four clusters,

which are depicted in Fig. 2. Clusters 2 and 3 represent early

morning and night times. Clusters 1 and 4, represent seasonal

variations.

B. Features’ Selection

After clustering the data into four clusters, we carry out

a correlation study to identify the features which are highly

related to the output power. There are two different ways

to calculate the correlation coefficient: (i) Spearman, which

measures only the monotonic correlation between parameters;

and (ii) Pearson, which measures the linear relation between

power output and each individual feature [32]. Studies have

found that meteorological data such as temperature and solar

irradiance are the main features which affect the solar output

[33].

We wish to determine the features that affect the solar

generation output to the greatest extent. To this end, we

calculate the correlation coefficients of solar generation and

meteorological features of different datasets from Denver,

New York, Dallas, San Francisco, and St. Lucia that may be

found in National Solar Radiation (NSR), Iowa Environmental

Mesonet (IEM), and National Renewable Energy Laboratory

(NREL) databases. Let us assume, we have a collection of

PSfrag replacements
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Figure 2: 3D graph of four clusters. Different colours represent

different clusters.

Feature Correlation coefficient

Direct solar irradiance 0.71
Diffused solar irradiance 0.64

Horizontal solar irradiance 0.81
Temperature 0.27

Zenith -0.81
Azimuth 0.49

Sky cloud covering -0.03
Albedo -0.07

Table I: Correlation coefficients between solar output and

different features.

data over a period of T hours. We use the Pearson correlation,

which linearly measures the relation between solar output and

each feature, defined as a correlation coefficient. The Pearson

correlation coefficient between vectors a ∈ R
T and b ∈ R

T is

calculated by the following formulation [34]:

ρ(a, b) =
1

T − 1

T
∑

t=1

at − µa

σa

· bt − µb

σb

, (5)

where at (bt) is the value of vector a (b) at time t, µa and

σa (µb and σb) are respectively the mean and the standard

deviation of a (b).
We assume that we have data for different features for T

time intervals denoted as Xi ∈ R
T where i = 1, . . . ,M is

the index of each feature we perform the correlation study on

and Y ∈ R
T is the time-series solar output. More specifically,

meteorological weather data refer to direct solar irradiance,

diffused solar irradiance, horizontal solar irradiance, temper-

ature, sky cloud covering, zenith (angle between sun and

zenith), azimuth (angle between sun and the North), and

albedo, i.e., M = 8. We calculate the correlation coefficients

ρ(Xi, Y ) for i = 1, . . . ,M to determine which features affect

in a greater extent the solar output.

In Table I the correlation coefficient values for all attributes

are presented. As seen in this table, the value of correlation

coefficients for sky cloud covering and albedo are very small

in comparison to other features, therefore albedo was elimi-

nated from our feature sets. Although cloud covering has a

very small correlation with solar output generation, based on

National Aeronautics and Space Administration (NASA) [35]

research, the amount of sunlight that reaches the Earth can

be calculated by using cloud coverage data. In this regard,

cloud covering affects the temperature and the amount of

sunlight that reaches the Earth. We include cloud covering

as a feature to increase the interpretability of the model, i.e.,

the effect of amount of clouds in the sky is included since it

is more understandable for a human observer rather than other

measurements, e.g., zenith.

In weather studies, the sky is categorised into six groups

depending on the amount of clouds that are present. Generally,

cloud coverage is reported as the number of oktas, which is

Cloud coverage Value in oktas

No clouds 0
Few clouds 1-2

Scattered clouds 3-4
Broken clouds 5-7

Full cloud coverage 8
Sky is hidden from view 9

Table II: Cloud coverage categories.
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a measurement unit that stands for the amount of clouds in

the sky ranging between 0 to 9 [36]. In Table II the different

cloud coverage categories and value in oktas are given [36].

To sum up, based on the aforementioned analysis seven

features were identified as the parameters which affect more

prominently PV output generation, namely, direct solar irra-

diance, diffused solar irradiance, horizontal solar irradiance,

temperature, zenith, azimuth, and sky cloud covering. The

number of features whose relationship with solar generation

was originally studied was eight. Even though this was a

small change; the accuracy of the forecasts was better and the

computational complexity was reduced in the case of seven

selected features compared to eight.

III. PROPOSED FRAMEWORK

In this section, the stochastic framework for the short-

term forecast of PV output is presented. More specifically,

the formulation of the GPR is described and the validation

methodologies are discussed.

A. Gaussian Process Regression

In this work, a model is trained for each cluster using a GPR

model which is a supervised learning technique. In supervised

learning, we aim to learn a mapping function that relates the

input feature set data to the output data. In fact, GPR is a

kernel based nonlinear nonparametric regression technique, in

which the covariance function plays a crucial role in defining

the relation between input data and the responses.

Let the training set S = {(x(t), y(t))}Tt=1 be a set of i.i.d.

samples from some unknown distribution, where T is the

period of available data with one hour resolution; q stands

for the number of selected features, i.e., q = 7; x(t) ∈ R
q

is the vector containing all selected features at time t; and

y(t) ∈ R the solar output at observation t. With the use of a

Gaussian model we may relate the input with the output terms

by:

y(t) = f(x(t)) + h(x(t))
⊤
β + ǫ(t), for t = 1, . . . , T, (6)

where ǫ(t) are i.i.d. “noise” variables with independent

N (0, σ2) distributions, f(x(t)) is the mapping function R
q →

R and h(x(t)) is a set of a fixed basis function. The explicit use

of basis functions is a way to specify a non-zero mean over

f(x(t)). In this work we assume that h(x(t)) is a q× 1 vector

whose all entries are equal to the constant value of one, and β
is the basis function coefficient q × 1 vector and is evaluated

by maximising a likelihood function as described below. For

notational convenience, we define:

X =







(x(1))
...

(x(T ))






∈ R

T×q, y =







y(1)

...

y(T )






∈ R

T , ǫ =







ǫ(1)

...

ǫ(T )






∈ R

T ,

f =







f(x(1))
...

f(x(T ))






∈ R

T , H =
[

h(x(1)), . . . , h(x(T ))
]

= 1q×T ,

where 1q×T is a q by T matrix whose all elements are one.

In matrix form we may rewrite (6) as

y = f(X) +H⊤β + ǫ. (7)

We assume a prior distribution over functions f(X) as

f(X) ∼ N (0,K(X,X)), (8)

where 0 is the mean value; K(X,X) is the covariance matrix:

K(X,X) =







k(x(1), x(1)) . . . k(x(1), x(T ))
...

. . .
...

k(x(T ), x(1)) . . . k(x(T ), x(T ))






,

where k(·, ·) is the covariance or kernel function. By using

the kernel function we aim to actively model the unknown

relationship between the input and the output variables. The

kernel function is defined based on the likely pattern that we

can observe in the data. One assumption to model the kernel

may be that the correlation between any two points in our input

set, i.e., x(t), x(t′) ∈ S , with t, t′ = 1, . . . , T, t 6= t′, decreases

with increasing the euclidean distance between them. This

means that points with similar features behave similarly. Under

this assumption, in this work we use the Matérn 5/2 as a kernel

function, which is parameterised as follows:

k(x(t), x(t′)) = σ2
f

(

1 +
√
5d(x(t),x(t′))

σl
+ 5d2(x(t),x(t′))

3σ2
l

)

e
−

√
5d(x(t),x(t′))

σl , (9)

where d(x(t), x(t′)) is the euclidean distance between any two

input observations x(t), x(t′) ∈ S as defined in Section II-A;

σl and σf , are two other kernel parameters which show

respectively the characteristic length scale and the signal

standard deviation that both belong in R
q . The characteristic

length scale σl defines how far the response variable y(t) needs

to be away from the predictor x(t) to become uncorrelated.

These two parameters are greater than zero and are formulated

as follows:

σl = 10θl, σf = 10θf . (10)

We now define a new parameter θ to be:

θ =

[

θl
θf

]

=

[

log(σl)
log(σf )

]

∈ R
q×2. (11)

From (7) we may write that

y|f(X), X ∼ N (H⊤β, σ2I +K(X,X)), (12)

since both f(X) and ǫ have zero means. In order to determine

the distribution that y follows, we need to determine three

parameters, i.e., β, σ2 and θ. K(X,X) is a function of θ as

may be seen in (9)-(11). β, σ2, and θ are also known as the

hyperparameters of the kernel function. In order to estimate the

parameters we maximise the following marginal log-likelihood

function

logP (y|f(X), X) = logP (y|X, β, θ, σ2). (13)

Thus, the estimates of β, θ, and σ2 denoted by β̂, θ̂ and σ̂2

are given by

β̂, θ̂, σ̂2 = argmax
β,θ,σ2

logP (y|X, β, θ, σ2). (14)

We may write from (12) and (13) that

P (y|X) = P (y|X, β, θ, σ2) = N (HTβ,K(X,X) + σ2I).
(15)
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Figure 3: Diagram of k-fold cross-validation with k=5; the

grey boxes refer to testing the data and the white to training.

Thus, the marginal log-likelihood function is

logP (y|X, β, θ, σ2) = −1

2
(y −H⊤β)T [K(X,X) + σ2I] −1

(y −H⊤β)− 1

2
log 2π − 1

2
log|K(X,X) + σ2I|.

(16)

We concentrate the likelihood function for the subset of

parameters, σ2 and θ, by expressing β as a function of the

parameters of interest and replacing them in the likelihood

function. Thus, we have that the estimate of β for given θ and

σ2 is:

β̂(θ, σ2) = [H⊤[K(X,X |θ) + σ2I] −1H ] −1

H⊤[K(X,X |θ) + σ2I] −1y.
(17)

By substituting (17) in (16) we have

logP (y|X, β̂(θ, σ2), θ, σ2) = −1

2
(y −Hβ̂(θ, σ2))T

[K(X,X |θ) + σ2I] −1(y −Hβ̂(θ, σ2))

−1

2
log 2π − 1

2
log|K(X,X |θ) + σ2I|.

(18)

We now may determine the hyperparameters as the output of

the above optimisation problem.
Once the hyperparameters are evaluated we may use (12)

to predict the output of solar generation based on the input

parameters. More specifically, {x(t)
∗ }T∗

t=1 be a set of i.i.d.

input points of the features drawn from the same unknown

distribution; we will plug these values in (12) and the unknown

{y(t)∗ }T∗
t=1 can be calculated as the predicted solar output value

for the time period T∗. More details on GPR model may be

found in [24], [37].
After training our data and estimating the kernel parame-

ters for each of the four clusters we can use the proposed

framework for solar generation forecasting.

B. Framework Validation

To test the accuracy of the proposed method for solar

output forecasting, different tests and validation methods are

exploited. k-fold cross-validation and hold out validation are

the most prevalent test methods used in recent studies [38]. As

depicted in Fig. 3, in k-fold cross validation the whole data set

is split into k folds: at each time, k-1 folds are used as training

set and a one-fold as testing set, until all folds used to build

the forecast model, typical values for k range between 3 to

10 [39]. In addition, hold-out is used to avoid overfitting [40].

In this work both methods are used for test and validation.
In our implementation, 30 days of a year are randomly

selected as hold-out data while the remaining data are used

for training and testing using 5-fold cross validation.

Site Location Size [MW] Latitude [◦] Longitude [◦]

A Denver Intl Airport 30 39.8561 N 104.6737 W
B John F. Kennedy IntlAirport 30 40.6413 N 73.7781W
C Dallas Executive Airport 35 32.6807 N 96.8672 W
D San Francisco Intl Airport 30 37.6213 N 122.3790 W
E St Lucia 0.433 27.498 S 153.013 E

Table III: Site description.

IV. NUMERICAL RESULTS

In this section, results of the proposed framework at five

sites are given as well as comparisons with existing forecasting

methodologies in the literature. In Section IV-A, the five sites’

information is given; in Section IV-B detailed results and anal-

ysis of site A are given so that the reader better understands the

proposed framework. In Section IV-C, summarised results for

all sites are given as well as comparisons with other methods

to prove the efficiency of the proposed framework.

A. Dataset Information

To test the efficiency of the model, different datasets from

different sites are used based on available historical data from

National Solar Radiation, Iowa Environmental Mesonet (IEM)

and National Renewable Energy Laboratory. The five sites’

details are given in Table III.

B. Framework Implementation on Site A

The model is tested on the Denver International Airport PV

plant, i.e., site A. The dataset comprises of hourly attributes’

values from 2006, i.e., of 8760 data points for each feature

and the solar generation output. The experiments are run

30 independent times for each cluster; 30 random days are

selected as hold-out data that are representative of different

days of the year during different seasons. As described in

Sections II and III, the training set is partitioned into four

clusters and all clusters are trained using GPR Matérn 5/2 and

tested using 5-fold cross validation and hold-out methods.

We first train the GPR model with the available hourly

dataset of 335 (365-30=335) days and depict the predictions

of the training data set for the four different clusters in Fig. 4.

We use 5-fold cross validation as a test and validation method

for our training set which comprise hourly data-points of 335

days. As seen in Fig. 4, clusters represent the hourly points for

335 day of training dataset. Since clusters are partitioned based

on similarities between the points, as shown, each cluster

follows specific patterns which prove the similarity of the data

PSfrag replacements

E

Figure 4: Proposed framework predictions of the training data

set.
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Figure 5: Proposed framework hourly predictions of the train-

ing data set.

in them. Moreover, for each cluster a remarkable proximity

between the actual data and predicted values is seen. In order

to further understand the value of clustering in Fig. 5 the

hourly predictions of the testing data are depicted. It may be

seen that there are hours which belong to, e.g., three clusters,

that means that even the same hour patterns may be different

based on which cluster they are identified to be in. In other

words, different hours in different days even if the days are

in the same season, may behave completely different. It may

also be seen in Fig. 5 that Clusters 2 and 3 represent early

morning and night times and Clusters 1 and 4, represent

seasonal variations, as also mentioned in Section II-A.

In Fig. 6 the forecasts and actual values of the 30 hold-

out selected days, that are representative of different seasons,

are depicted. The x-axis of the figure has 30 days, that

correspond to 24-hour intervals for each day. As it may be

seen the two values are very close to each other. Another visual

representation of the same result, i.e., the daily hourly forecast

of the 30 days, may be seen in Fig. 7, where we notice that

the predicted and the actual values follow the same pattern.

In order to test the accuracy of the forecasts we use the

following statistical metrics: RMSE, and MAE, as defined in

(2) and (3). The statistical results for the training set and the

test set are summarised in Table IV. The error metrics of the

testing data between the actual data and the predicted values

are based on the average error of all 5 folds for the training

set. To interpret these values, notice that the higher RMSE

and MAE values, the less predictive the model is. It should

be noted that the test results are expected to be different from

the training set results, since 30 hold-out days are not shown

to the model during the training process. However, the results

with any test set should be approximately the same as those

obtained with the training set, as it may be seen in Table IV.

The error between the actual and the forecasted value for the

30 hold-out days is depicted in Fig. 8. The average prediction

error of the hold-out days for one cluster is fitted into a normal

distribution. In this figure, y-axis represents the percentage of

hours; it may be seen that 54% of the hours, i.e, 382 hours, that

the prediction error was less than 0.03 MW. In order to provide

a confidence certificate to the forecast we use the confidence

interval (CI) [41]. The selection of a confidence level for an

Site A RMSE (MW) MAE (MW) RMSE[%] MAE[%]

Training set 1.24 0.36 4.18 1.22
Test set 1.23 0.56 4.12 1.89

Table IV: Site A forecasts’ error metrics.

PSfrag replacements

E

Figure 6: 1-24 hour ahead prediction for 30 random days.

interval determines the probability that the confidence interval

produced will contain the true parameter value. Common

choices for the CI are 0.90, 0.95, and 0.99. The CI is defined

as follows:

CI =

(

ǭ− z∗
σǫ√
T⋆

, ǭ+ z∗
σǫ√
T⋆

)

, (19)

where ǭ is mean value of the errors, σǫ is the standard deviation

and T⋆ is the sample size of the errors. The value z⋆ represents

the point on the standard normal density curve such that the

probability of observing a value greater than z⋆ is equal to

p. The relationship between CI and p is p = (1 − CI)/2.

Thus, if we wish to have a CI of 95% then p = 0.025. The

value z⋆ such that P (Z > z⋆) = 0.025, or P (Z < z⋆) =
0.975, is equal to 1.96 as we may find in a standard normal

distribution table. As the level of confidence decreases, the

size of the corresponding interval will decrease. By fitting a

normal distribution in Fig. 8 we have mean value ǭ = 0.03
and a standard deviation σǫ = 0.50. Now, we may calculate

the CI for various confidence levels; for instance with 95%
confidence level, the difference between the actual data and the

prediction value of each point ranges between [−0.47, 0.43]
MW or [−1.6%, 1.4%].

C. Summary of results of all sites

In order to further validate our framework we have applied it

to the remaining four sites as given in Table III. Following the

same procedure as described in more details in Section IV-B

we have four clusters per site; from each dataset we hold-

out 30 representative days and train with the remaining data

a GPR model for each cluster. The results for each site are

summarised in Table V for the training dataset and in Table VI

for the test dataset.

PSfrag replacements

E

Figure 7: 30 random days 24-hour prediction with one hour

intervals, Denver.
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Figure 8: Probability distribution fitting of average error of

one sample model.

As seen above, the results for all datasets are approximately

in the same range, which means that the model may be applied

in any site under the assumption that the data of the selected

features are available.

To further prove the effectiveness of the proposed frame-

work we compare our results with other recent studies. In

order to make the comparison meaningful, we need to have

access to the same set of data. The work presented in [11],

[42] use the same data for site E, which are available from

University of Queensland. The temporal resolution of the data

in [42] is 1-minute; however since we are interested in hourly

values we select historical data with hourly resolution. We

used 2012 data for training and 2013 data for testing. The

authors in [42] calculate predictions for each of the four

seasons, i.e., fall, winter, spring and summer. In [11] the

authors calculate hourly forecasts using their proposed ELM

method and the traditional feed-forward back propagation

neural network (FFBPG). Yearly results are better than each

season prediction in [11], [42], as may be seen in Table VII.

The errors of the proposed framework are small since the

variation of solar output over different times of day and year

is taken into account with the use of k-means clustering. The

use of a clustering algorithm results in similar points that

belong in the same cluster being trained with a GPR model.

More specifically, k-means divides similar data in one group

which follows a distribution with specific characteristics which

makes training of each cluster more efficient with lower errors.

Moreover, the use of an appropriate kernel function that relates

the input features to output, improve the forecast. In this work

using Matérn 5/2 as a kernel function increase the accuracy of

Site RMSE [MW] MAE [MW] RMSE [%] MAE [%]
A 1.25 0.36 4.18 1.22
B 1.39 0.63 4.18 1.91
C 1.51 0.59 4.33 1.69
D 1.39 0.30 4.21 0.92
E 0.019 0.008 4.48 1.96

Table V: Training set error metrics for all sites.

Site RMSE [MW] MAE [MW] RMSE [%] MAE [%]

A 1.23 0.56 4.12 1.89
B 1.51 0.66 4.58 2.00
C 1.61 0.72 4.60 2.06
D 1.44 0.65 4.38 1.98
E 0.015 0.008 3.48 1.85

Table VI: Test set error metrics for all sites.

RMSE[%] MAE[%]

Proposed framework 3.48 1.85

[11]

Fall 13.85 8.48
Winter 7.67 4.16
Spring 13.6 8.08

Summer 16.43 10.73

[42]
ELM 12.84 6.68

FFBPG 13.33 7.53

Table VII: Forecast error metrics based on different method-

ologies for site E.

forecast due to the capability of the kernel in solving stochastic

problems.

V. CONCLUSION

In this paper, we proposed a probabilistic framework for

short-term photovoltaic forecasting. Since solar output relies

on solar irradiance, we clustered our data in four groups based

on day-time. Two clusters represent early morning and night

times; and the remaining two represent seasonal variations.

After clustering data into four clusters, we carried out a

correlation study to identify the features which are highly

related to solar output power. The seven selected features that

affected more prominently the PV output generation were:

direct solar irradiance, diffused solar irradiance, horizontal

solar irradiance, temperature, zenith, azimuth, and sky cloud

covering. We then trained a model for each of the four

clusters using GPR in order to learn the relationship between

the seven input features and the PV generation. GPR is a

kernel based nonlinear nonparametric regression technique,

in which the covariance function plays a crucial role. In this

work, we selected the Matérn 5/2 as a covariance or kernel

function. This function was selected under the assumption that

the correlation between any two points in the input feature

set decreases with increasing the euclidean distance between

them. To test the accuracy of the proposed method for solar

output forecasting, different tests and validation methods were

exploited, i.e., k-fold cross-validation and hold-out validation

methods.

In the case studies, we demonstrated the framework imple-

mentation in five different sites. For each site, the experiments

were run 30 independent times for each cluster, i.e., 30 random

days were selected as hold-out data that were representative of

different days of the year during different seasons. The largest

RMSE and MAE were 4.60 % and 2.06 % respectively, show-

ing the efficacy of the proposed framework. Furthermore, the

proposed framework was compared with existing forecasting

methodologies and it was found that its predictions were more

accurate based on statistical metrics.
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