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Abstract 

A novel statistical linearization based approach is proposed to derive effective linear 

properties (ELPs), namely damping ratio and natural frequency, for bilinear hysteretic SDOF 

systems subject to seismic excitation specified by an elastic response/design spectrum. First, 

an efficient numerical scheme is used to derive a power spectrum satisfying a certain 

statistical compatibility criterion with the given response spectrum. Next, the thus derived 

power spectrum is used in conjunction with a frequency domain higher-order statistical 

linearization formulation to replace the bilinear hysteretic system by a third order linear 

system by minimizing an appropriate error function in the least square sense. Then, this third-

order linear system is used to derive a second order linear oscillator possessing a set of ELPs 

by enforcing equality of certain response statistics of the two linear systems. The thus derived 

ELPs, are utilized to estimate the peak response of the considered nonlinear system in the 



context of linear response spectrum-based dynamic analysis. In this manner the need for 

numerical integration of the nonlinear equation of motion is circumvented. Numerical results 

pertaining to the European EC8 uniform hazard elastic response spectrum are presented to 

demonstrate the applicability and the usefulness of the proposed approach. These are further 

supported by Monte Carlo analyses involving an ensemble of 250 non-stationary artificial 

EC8 spectrum compatible accelerograms. It is believed that the proposed approach can be an 

effective tool in the preliminary aseismic design stages of yielding structures following either 

a force-based or a displacement-based methodology. 

Keywords: statistical linearization; seismic design spectrum; inelastic response spectrum; 

power spectrum; bilinear hysteretic systems; equivalent linear properties 

1. Introduction 

Aseismic code provisions define seismic severity via elastic uniform hazard spectra 

derived from probabilistic seismic hazard analysis (e.g. [1]) associated with the peak response 

of linear viscously damped single-degree-of-freedom (SDOF) oscillators. However, ordinary 

structures are designed to behave inelastically (i.e. to suffer structural damage) for the 

prescribed “design” seismic severity level. To account for this nonlinear/hysteretic behavior 

within a response spectrum-based analysis framework, inelastic design spectra of reduced 

coordinates by a strength reduction factor R are usually prescribed by regulatory agencies 

(e.g. [2,3]). These spectra provide the peak response of hysteretic SDOF systems with Tn 

natural period of small oscillations. The development of inelastic spectra relies either on a 

straightforward computation of the peak inelastic deformation or on R-μ-Tn relations, where 

μ is the ductility ratio. In both cases comprehensive Monte Carlo analyses involving 

numerical integration of the nonlinear equations governing the motion of the hysteretic 

systems exposed to ensembles of field recorded seismic accelerograms are required (e.g. 

[4,5]).  



Alternatively, approximate linearization techniques can be used to study the response of 

nonlinear systems (see e.g. [6-9] and references therein). These techniques approximate the 

peak inelastic response by considering the peak response of an equivalent linear SDOF 

oscillator (ELS) characterized by effective linear properties (ELPs), that is, damping ratio and 

natural frequency. A plethora of hysteretic constitutive laws is available. Nevertheless, the 

simple bilinear hysteretic law is the most extensively considered in such studies. Further, it is 

the most commonly assumed model in the everyday practice of earthquake resistant design of 

yielding structures. Most of the existing studies in the literature assume deterministic 

harmonic input to derive ELPs by averaging various quantities of interest over one cycle of 

the hysteretic response (e.g. [7,8]). Herein a recently proposed by the authors [10,11] 

statistical linearization based approach which is not restricted by the aforementioned 

limitation is extended to derive ELPs from bilinear hysteretic SDOF systems associated with 

any given elastic response spectrum. Notably, this is achieved without resorting to 

computationally demanding integration of the underlying nonlinear equation of motion. 

Furthermore, the need to select and scale accelerograms compatible with the given response 

spectrum is also circumvented. 

The adopted linearization approach seeks, first, a “quasi-stationary” stochastic seismic 

excitation process of finite duration derived via a computationally efficient numerical scheme 

to achieve compatibility with a given elastic (uniform hazard) response spectrum in a 

statistical sense. This process is defined in the frequency domain by means of a non-

parametric power spectrum. Next, the thus derived power spectrum is treated as the input 

spectrum to perform statistical linearization [12]. In this manner, an equivalent linear SDOF 

oscillator is determined whose properties depend both on the nonlinear system and on the 

given response spectrum.  



In [10, 11] an early statistical linearization formulation [13] assuming Gaussian narrow-

band response of the considered nonlinear system and relying on stochastic averaging over 

one period of oscillation has been sought to derive a second order ELS corresponding to a 

linear SDOF oscillator. Herein, an efficient frequency-domain statistical linearization 

solution procedure is formulated which replaces the bilinear hysteretic system by a third 

order linear system [14]. This statistical linearization formulation is based on less restrictive 

assumptions than the one adopted in [11] allowing for the treatment of bilinear hysteretic 

oscillators exhibiting strong nonlinear behavior (see also [12,15,16]). However, the thus 

derived third order ELS does not correspond to any particular physical system and cannot be 

readily related to a response spectrum pertaining to the peak response of linear SDOF 

oscillators. To this end, a novel step is introduced herein which considers an effective second 

order linear oscillator obtained by enforcing equality of its displacement and velocity 

response variances with those of the third order ELS. The reduced-order effective linear 

system corresponds to a SDOF linear oscillator characterized by an effective damping ratio 

and an effective natural frequency (ELPs). These properties are then used in conjunction with 

design spectra defined for various damping ratios to estimate the peak response of the 

underlying bilinear hysteretic oscillator.  

It is noted that the purpose of this work is not to propose an accurate statistical 

linearization formulation for the estimation of the peak response of nonlinear systems. This 

issue has been previously addressed in the literature by various researchers (e.g. [17,18]). 

Herein, the objective is to propose a computationally efficient approach for the task which 

can be readily incorporated in the everyday engineering practice to facilitate aseismic 

structural design at a preliminary stage. Statistical linearization is used as a “step” to achieve 

this goal. This point is further clarified in Fig. 1  which presents a flowchart of the proposed 

approach comprising three steps (circled). These include: a) The derivation of a response 
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2. Derivation of response spectrum compatible finite duration stationary stochastic 

processes 

 
Field recorded acceleration traces of strong ground motions associated with historic 

seismic events exhibit a time-decaying intensity after the initial period of growth. In many 

cases a well-defined time window of constant fully-developed intensity is observed in 

between the initial build-up and the final decaying parts of these time-histories. This 

observation has led several researchers to consider the representation of seismic action by 

means of a “quasi-stationary” zero-mean Gaussian acceleration stochastic process g(t) of 

finite duration Τs corresponding to the width of the aforementioned window (see e.g. [19,22-

24]). This process is conveniently represented in the domain of frequencies ω by a one-sided 

power spectrum G(ω). In relating G(ω) to a response spectrum the response statistics of a 

linear single-degree-of-freedom (SDOF) system with natural frequency ωj and ratio of critical 

damping ζ  base-excited by the process g(t) need to be considered. These statistics can be 

expressed in terms of the spectral response moments of order m of the SDOF system given by 

the equation (e.g. [25])  

 
( ) ( ) ( ) 2

, ,, ,
0

,m
s j m G sj m G

T G H T dλ λ ω ω ω ω
∞

= = ∫ . (1) 

In the above equation, H(ω,Τs) is the time-dependent transfer function of the considered 

system evaluated at a time equal to the duration of g(t). For the purposes of this study, the 

following mathematically convenient approximate formula is adopted for the squared 

modulus of this transfer function [19] 
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where  

 ( )1 exp 2j
j sT

ζζ
ζω

=
− −

. (3) 



The latter quantity is a fictitious duration-dependent ratio of critical damping to account for 

the fact that the response statistics of relatively lightly damped flexible SDOF oscillators may 

not reach their stationary (steady-state) values if the duration Ts is not long enough [19,22-

27]. Note that for ζj = ζ Eq. (2) coincides with the squared modulus of the well-known 

stationary transfer function of linear SDOF systems. In this case, Eq. (1) provides the 

response statistics of SDOF oscillators as if g(t) were a stationary process of infinite duration. 

In Fig. 2 the ratio ζj/ζ  is plotted versus the natural period of oscillation T= 2π/ωj for several 

damping ratios ζ and durations Ts to quantify numerically when the “corrective” damping ζj 

of Eq.(3) becomes important in the evaluation of the response statistics of linear SDOF 

systems.     

 
Fig. 2 Influence of duration Ts, damping ζ, and natural period T= 2π/ωj on the ratio ζj/ζ. 

 
Let Sα(T,ζ) denote an elastic response pseudo-acceleration seismic spectrum. The 

concept of a “peak factor” ηj can be used to establish a relation between Sα and the power 

spectrum G(ω) by relying on the equation [19]   

 2
,0,

2 , .a j j j G
j

S π ζ η ω λ
ω

⎛ ⎞
=⎜ ⎟⎜ ⎟

⎝ ⎠
 (4) 

In this regard, ηj can be defined as the ratio of the peak over the standard deviation σ= 

(λj,0,G)1/2 of the response deformation of a SDOF oscillator excited by g(t) evaluated at t= Ts. 



The exact determination of the peak factor requires a closed-form solution of the first passage 

problem of stochastically excited systems, namely what is the time instant for the response of 

the considered oscillator to reach/cross a specific level of intensity with probability p; no such 

solution is available in the literature. However, several researchers have proposed various 

semi-empirical expressions to obtain reliable estimates of the peak factor for various input 

stochastic processes (e.g. [19,24,28,29]). In determining the peak factor ηj appearing in Eq. 

(4) the following approximate semi-empirical expression is adopted herein [19]  

 ( )( ){ }1.22 ln 2 1 exp ln 2j j j jv q vη π⎡ ⎤= − −⎢ ⎥⎣ ⎦
, (5) 

where  
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Furthermore, the symbol *
sT  in Eq. (6) denotes a reduced “equivalent stationary response” 

duration which takes into account the transient nature of g(t) [19]. It is given by the following 

expression 

 

( )
( )

,0,*

,0,

exp 2 1
/ 2
s j G

s s
s j G

T
T T

T

λ

λ

⎛ ⎞⎛ ⎞
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⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
. (8) 

The ratio * /s sT T depends on the duration Ts and on the properties of the considered SDOF 

oscillator in a similar manner as the ratio ζj/ζ . Specifically, as the product ζωjΤs increases the 

ratio of the transient response variances included in Eq. (8) will tend to unity and thus 

*
s sT T→ .  Note in passing that other approaches to estimate the peak factor for non-stationary 

excitations have also been proposed in the literature (e.g. [28,29]). The herein approach due 

to Vanmarcke [19] has been adopted due to its relative simplicity which serves well the 

practical nature of the present work. 



By setting p= 0.5 in Eq. (6) the rhs of Eq. (4) estimates the level of the peak pseudo-

acceleration response of a SDOF oscillator excited by the process g(t) not to be exceeded 

with probability 50%. Therefore, Sa becomes the median pseudo-acceleration response 

spectrum satisfying the following criterion: considering an ensemble of realizations of the 

process g(t), half of the population of their response spectra will lie below Sa [19]. Given a 

(target) response spectrum Sa, a non-parametric estimate of the power spectrum G(ω) 

conforming with the aforementioned criterion can be recursively evaluated at a specific set of 

N equally spaced natural frequencies ωk= ω0+ (k-0.5)Δω; k= 1,2,…,N. This is achieved by 

using the equation [11,20] 
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In the last equation, ωΝ is a “cut-off” frequency above which G(ω) attains negligible values. 

Furthermore, ω0 is the lowest value of natural frequency for which Eq. (5) is defined, namely 

[11] 

 

( )( ){ }{ }1.2
0 min ln 2 1 exp ln 2 0

k
k k kv q v

ω
ω π⎡ ⎤= − − ≥⎢ ⎥⎣ ⎦

. (10) 

In implementing the recursive numerical scheme defined by Eq. (9) a stochastic process 

different than the (unknown) G(ω) needs to be assumed to evaluate the peak factors ηk. For 

this task, a viable candidate is a stationary white noise. Under this assumption, the peak 

factors ηk appearing in Eq. (9) can be determined by substituting in Eq.(5) [24] 

 ( )2 ln 0.5
s

k k
Tv ω

π
= − , (11) 

and 

 

2

1
2 2

1 21 1 tan
1 1
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ζ π ζ

−
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 Upon determining the discrete power spectrum G[ω] at ωk frequencies by Eq. (9), the 

associated pseudo-acceleration response spectrum D[ωk,ζ] can be approximated using Eqs. 

(1)~(8). This task involves the evaluation of the first three response spectral moments which 

can be efficiently accomplished by the formulae included in the Appendix A [30]. One can 

then compare the thus obtained spectrum D with the target spectrum Sa to assess the error 

induced by the various approximations discussed above. In this respect, extensive numerical 

experimentation, not included herein for brevity, has shown that for a damping ratio ζ=5%, 

which is the most common value adopted in earthquake resistant design applications, and for 

durations Ts≥15s, the stationary assumption in the evaluation of the peak factors ηk has a 

negligible impact on the effectiveness of Eq. (9) in yielding power spectra compatible with 

the target spectrum Sa. However, for lower damping values and/or shorter durations the 

transient nature of the assumed white noise process needs to be accounted for. This can be 

achieved by substituting in Eq. (12) the duration-dependent damping of Eq. (3) and by using 

the reduced duration *
sT  in Eq. (11) given, in the case of white noise, by the expression [19] 
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. The estimate of G obtained by Eqs. (9-12) using the white noise approximation may 

then be modified iteratively to improve the point-wise matching of the response spectrum 

D[2π/ωk,ζ] with the target spectrum by means of the following equation written at the Μ-th 

iteration [11, 22]  

 ( ) [ ] ( ) [ ] [ ]
( ) [ ]

2

1 2 / ,
2 / ,

M M a k
k k M

k

S
G G

D
π ω ζ

ω ω
π ω ζ

+
⎛ ⎞
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⎝ ⎠

. (14) 

In this manner, excellent accuracy between D and Sa is achieved within three to four 

iterations [11]. 



 As a final note of practical interest it is pointed out that the value of the assumed 

duration Ts will in general influence the response spectrum compatible power spectrum G(ω) 

as obtained from Eqs. (9) and (14). In dealing with response spectra corresponding to a 

specific field recorded accelerogram, Ts has the physical meaning of the time window 

corresponding to the “stationary” strong part of the ground motion as noted in the beginning 

of this section. In such cases, the choice of Ts requires careful consideration to represent 

realistically the underlying strong ground motion [22]. However, in this work the target 

response spectrum Sa is a “design” Uniform Hazard Spectrum (UHS) which does not 

correspond to any physical accelerogram. In this context, the process g(t) defined by its 

frequency domain representation G(ω) can be construed as a mathematical tool to represent 

the UHS spectrum in a convenient manner that allows for the application of statistical 

linearization as detailed in the following sections. Therefore, it is recommended to adopt a 

sufficiently large value for Ts depending on the considered damping ratio ζ to facilitate the 

numerical work involved in determining effective linear properties according to the proposed 

approach outlined in Fig. 1. To this aim, the data presented in Fig. 2 can serve as a guide for 

choosing appropriately the duration Ts; this point will be further elucidated in subsequent 

sections.  

The next step of the herein proposed methodology is to utilize the design spectrum 

compatible power spectrum G[ωk] obtained from Eqs. (9) or (14) in conjunction with the 

method of statistical linearization. This will lead to the determination of a third-order linear 

system associated with a specific bilinear hysteretic oscillator. The mathematical details of 

this step are described in the next section. 

 



3. Frequency-domain statistical linearization solution for bilinear hysteretic 

systems 

 

The inelastic behavior of yielding structures subject to strong ground motions is 

commonly modeled in various earthquake resistant design approaches by means of bilinear 

hysteretic viscously damped SDOF systems (e.g. [3,31]). The dynamic behavior of such a 

system is fully characterized by the following five properties: mass m, viscous damping 

coefficient c, pre-yield stiffness k, rigidity α (ratio of the post-yield over the pre-yield 

stiffness), and yielding deformation xy. Shown in Fig. 3(a) is a mechanical representation of 

the considered system base excited by the acceleration process g(t) [14]. It consists of two 

springs, a dashpot, and a Coulomb friction element which slips when the exerted force 

becomes greater than (1-α)kxy. A graph of the restoring force of the depicted system for zero 

damping is shown in Fig. 3(b) along with the definitions of certain response quantities of 

practical interest in the aseismic structural design (i.e. the strength reduction factor R and the 

ductility ratio μ). The motion of the bilinear hysteretic system of Fig. 3(a) is governed by the 

following system of differential equations with zero initial conditions [14,16] 
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In the above equations ωn is the pre-yielding natural frequency of the considered 

system, x is its response displacement process relative to the motion of the ground 

(deformation), and z is an additional “state” corresponding to the relative displacement of the 

Coulomb friction element as indicated in Fig. 3 [14]. Further, in the previous equations and 

hereafter, the dot over a symbol denotes differentiation with respect to time, and U{·} is the 

Heaviside step function, that is, U{v}=1 for v≥0, and U{v}=0 for v<0.  

 

Fig. 3 (a) Mechanical representation of a bilinear hysteretic SDOF system (b) Bilinear 
Restoring force-deformation and definitions of the strength reduction factor R and ductility μ. 

 
 It is noted that the expression in Eq. (17) ensures that z is bounded within the [-xy, xy] 

interval and thus the restoring force from the Coulomb element lies within ±(1-a)kxy [14,16]. 

Furthermore, the consideration of the z state renders it possible to mathematically express the 

bilinear perfectly elasto-plastic hysteretic behavior, corresponding to α=0, via the first order 

differential equation Eq. (16)  [32]. The latter equation reflects that the rate of change of z is 

equal to x  (no slip occurs) for |z|<xy and becomes zero for |z|=xy. More importantly, the 

consideration of the z state allows for the employment of a statistical linearization scheme 

proposed to treat stochastically excited non-linear multi-degree-of-freedom structural systems 

[12,33], based on the early work of Kazakov [34]. Application of this statistical linearization 



scheme to the system of the non-linear Eqs. (15) and (16) yields the system of linear 

differential equation [14] 

 ( ) ( ) ( ) ( ) ( ) ( )( ) ( )2 2
1 22 1n n nx t x t a x t a C x t C z t g tζω ω ω+ + + − + = −  (19) 

and 

 
( ) ( ) ( )3 4 0z t C x t C z t+ + = . (20) 

The four equivalent linear coefficients C1 to C4 appearing in the last two equations are 

determined by requiring minimization of the mean square error in replacing Eqs. (15) and 

(16) by Eqs. (19) and (20), respectively [12]. Implementing the procedure delineated in [12] 

the following expressions for the aforementioned coefficients are derived 
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in which 
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In the previous equations and henceforth E{ } denotes the mathematical expectation operator. 

Moreover, erf( ) and erfc( ) are the standard error and complementary error functions defined 

by the expressions 
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 From the Eqs. (21) to (25) it is seen that the equivalent linear coefficients C1 to C4 to 

be determined depend on the variance of the processes x and z, that is 2
xσ  and 2

zσ  , and on 

their cross-variance { }E xz . To this end, an efficient frequency domain formulation relying on 

the spectral input/output relations for linear systems is used to calculate these response 

moments [35]. This formulation is significantly different from the state-space approach 

commonly considered in the literature for the purpose [14,16]. It facilitates the numerical 

implementation of the herein considered approach in which the input spectrum G(ω) is given 

in a non-parametric form known at discrete frequencies as explained in the previous section. 

Specifically, the system of Eqs. (19) and (20) is first written in matrix form as 
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where 
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Next, the response power spectrum matrix of the system of Eqs. (27) is expressed as 
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in which 
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and the superscripts (*) and (-1) stand for complex matrix transposition and matrix inversion, 

respectively. Then, the required response variances are determined from the elements of the 

matrix B using the equations [35] 
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and 
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in which 1i = − ,and 
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Finally, the cross-variance term appearing in Eqs. (21) to (25) is determined by the equation 

 { } 24

3
z

CE xz
C

σ= − . (34) 

The latter equation is derived by multiplying Eq. (20) by z(t), taking the mathematical 

expectation and noting that ( ) ( ){ } 0E z t z t = , since z(t) is a stationary process. Note that the 

integrals appearing in the calculation of the response variances in Eqs. (31) and (32) can be 

approximated by a finite summation. This can be done by using the frequency domain 

discretization scheme introduced in the numerical evaluation of the input spectrum G(ω) at a 

set of ωk frequencies (Eq. (9)).The accuracy of this approximation depends on the 



discretization step Δω and can be readily improved, at will, by straightforward interpolation 

schemes. 

To this end, Eqs. (21)~(24), (31), (32), and (34) form a system of seven non-linear 

equations with seven unknowns, namely, C1~C4, 
2
xσ , 2

zσ , and { }E xz . This system can be 

readily written as a standard minimization problem and solved numerically by any 

appropriate optimization routine starting from a reasonable initial guess. In all of the ensuing 

numerical work a built-in optimization algorithm of MATLAB® using a trust region dog-leg 

search method is used to solve the aforementioned system of equations [36]. Furthermore, 

standard MATLAB® built-in routines are used for the numerical evaluation of the error and 

complementary error functions (Eq. (26)), and of the integral appearing in Eq. (22). 

Alternatively, the latter integral can be evaluated at each iteration required by the 

optimization algorithm using the series expansion reported in [14].  

Upon determination of the C1 to C4 coefficients, an “equivalent” linear third-order 

system (ELS) involving the x, x , and z states is established governed by the differential Eqs. 

(19) and (20). Note that it has been established in the literature [12,14-16], both theoretically 

and through numerical experimentation, that this ELS captures the response statistics of 

bilinear hysteretic systems exhibiting strong nonlinear behavior more accurately than a 

second-order ELS derived by the statistical linearization approach due to Caughey [12,13]. 

However, this third order ELS cannot be readily related to a response/design spectrum 

pertaining to the peak response of linear SDOF oscillators. To this end, in the next section a 

novel approach to reduce the system order is introduced by relying on a specific statistical 

criterion.    

 



4. Derivation of effective linear properties from the 3rd order equivalent linear 

system 

Let y be the normalized by xy deformation of an “auxiliary” linear SDOF oscillator of 

critical viscous damping ζeff and natural frequency ωeff base excited by the acceleration 

process g(t). The governing equation of motion of this auxiliary system reads as 

 ( ) ( ) ( ) ( )22 /eff eff eff yy t y t y t g t xζ ω ω+ + = − , (35) 

and zero initial conditions apply. For the purposes of this work, it is desired to relate the 

above second order linear system to the third order ELS of Eqs. (19) and (20). This can be 

accomplished by enforcing equality of the stationary variances of the processes x(t) and y(t). 

That is,   
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and of the stationary variances of the processes ( )x t  and ( )y t , that is, 
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The variance appearing in the lhs of Eq. (36) can be calculated by the expression 
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At this stage, the coefficients C1 to C4 are known from solving the nonlinear system of 

equations considered in the statistical linearization solution of the previous section. Thus, 2
xσ

is readily calculated numerically in the same manner as the variances in Eqs. (31) and (32). 

The variance appearing in the lhs of Eq. (37) is also a known quantity from the solution of the 

aforementioned system of equations. In this regard, Eqs. (36) and (37) define a system of two 



nonlinear equations which can be solved for the two unknown effective linear properties ζeff 

and ωeff corresponding to the considered auxiliary linear SDOF oscillator. To this aim, the 

same optimization algorithm used to obtain the statistical linearization solution can be 

employed. At each iteration of the optimization algorithm, the expressions included in the 

Appendix A are used to numerically evaluate the integrals in Eqs. (36) and (37) in a 

computationally efficient manner. 

 Note that in computing the response variances appearing in Eqs. (36)~(38) the fact 

that the duration Ts of the stationary process g(t) is finite has not been explicitly taken into 

account. However, as already suggested in section 2, it is possible to consider a long enough 

duration Ts in deriving the response spectrum compatible power spectrum G(ω) so that the 

effective pair of properties Teff= 2π/ωeff and ζeff  correspond to a point on the plots of Fig. 2 for 

which the corrective damping defined in Eq. (3) coincides with the value of ζeff. That is, exp(-

2 ζeff ωeff  Ts)≈0. Under this condition, it can be argued that the transient nature of the input 

process g(t) does not need to be taken into account and one can treat the response statistics of 

the linear systems defined by Eqs. (19) and (20), and by Eq. (35) as being stationary. 

Additional comments on this issue are provided in a following section in light of numerical 

data corresponding to a large range of bilinear hysteretic systems. 

 

5. Peak nonlinear response estimation using the effective linear properties 

The preceding three sections provided the theoretical background to derive effective 

linear properties (ELPs) (ζeff  and ωeff) for viscously damped bilinear hysteretic systems 

exposed to a given code-prescribed elastic response pseudo-acceleration spectrum Sα(Τ,ζ) 

following the proposed approach outlined in Fig. 1. The salient advantage of this approach is 

that these ELPs depend not only on the properties of the nonlinear systems considered, 

namely, damping ζ, pre-yield natural frequency ωn, yielding displacement xy, and rigidity 



ratio α, but also to the specified response spectrum Sα(Τ,ζ) [10,11]. In this regard, it can be 

argued that a reasonable estimate of the peak deformation of bilinear hysteretic oscillators 

can be determined by the expression 

 ( ){ } ( ) ( ) ( )
2 2

, , 5%
max ,a eff eff a eff

eff efft
eff eff

S T S T
x t B T

ζ ζ
ζ

ω ω

=
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That is, by using a family of response spectra corresponding to various damping ratios. Such 

response spectra are commonly defined in most of the earthquake resistant design 

applications by means of multiplying a “reference” design spectrum corresponding to ζ=5% 

by a reduction factor B. In general, it is known that this factor depends on the damping ratio 

and on the natural period of oscillation, and, thus, on the ELPs as suggested in the last 

equation (see e.g. [9,37]). In this manner, the need for numerically integrating the non-linear 

Eqs. (15) and (16) of motion for an ensemble of seismic accelerograms compatible with the 

considered response/design spectrum is by-passed.  

Obviously, the reliability of the estimated peak value will depend on the severity of the 

nonlinear response induced by the seismic action. Further, it will reflect the well-quantified 

approximations associated with the statistical linearization method [12,15]. Also, it will  

depend on the effectiveness of the adopted B factor to predict the peak response of linear 

SDOF oscillators for different ratios of critical damping which remains an issue of open 

research [9,37]. To this end, it is noted that in case dependable response spectra are not 

available for damping ratios other than ζ, an estimate of the peak non-linear response can be 

achieved by the equation  

 
( ){ }max eff xt

x t η σ≈ , (40) 

which relies on the concept of the peak factor and the fact that the variance of x(t) has been 

set equal to the variance of y(t) in Eq. (36). In the last equation, ηeff can be calculated from 



Eqs. (1)~(8) by setting p=0.5, ζ=ζeff, and ωj=ωeff and by considering the power spectrum G(ω) 

and the duration Ts used to obtain the ζeff  and ωeff pair of ELPs. 

 

6. Numerical application to the EC8 design spectrum 

6.1  EC8 compatible effective linear properties of bilinear hysteretic systems 

The elastic response (uniform hazard) spectrum of the current aseismic code provisions 

effective in Europe (EC8) [2] is considered herein as a paradigm of assessing the usefulness 

and applicability of the proposed approach. Specifically, the EC8 (target) pseudo-acceleration 

response spectrum for peak ground acceleration 0.36g (g= 981cm/sec2), ground type “B” and 

damping ratio ζ= 5% (gray thick line in Fig. 4(a)), is considered to represent the induced 

seismic action. The broken line of Fig. 4(b) corresponds to a discrete power spectrum 

compatible with the considered EC8 target spectrum computed by means of Eq. (9) assuming 

Ts= 20s, Δω= 0.1rad/s, and using Eqs. (11) and (12) to estimate the peak factors ηk. Further, 

this initial power spectrum is modified by performing four iterations using Eq. (14). The 

obtained modified spectrum is also shown in Fig. 4(b). The pseudo-acceleration response 

spectra associated with the two power spectra of Fig. 4(b) are plotted in Fig. 4(a) and 

compared with the target spectrum. These response spectra have been calculated analytically 

using Eqs. (1)~(8). It can be seen that the response spectrum corresponding to the initial 

power spectrum cannot trace closely the target spectrum near the “corner period” of 0.5s 

which signifies the end of the flat segment of constant spectral ordinates. However, the 

iteratively matched power spectrum characterized by a quite prominent spike at a frequency 

of 2π/0.5= 12.6 rad/s yields a significantly better matching with the target spectrum along the 

whole axis of natural periods. This is further confirmed by considering the median spectral 

ordinates of an ensemble of 2000 20s long stationary signals compatible with the iteratively 

modified spectrum (plotted as dots in Fig. 4(a)). These signals have been generated using a 



random field simulation technique based on an auto-regressive-moving-average filter [38]. 

The latter Monte Carlo-based simulation analysis ensures numerically that the criterion 

prescribed by Eq. (4) for p=0.5 is satisfied by the iteratively modified spectrum considered. 

 

Fig. 4 (a) Target EC8 spectrum, response spectra corresponding to the power spectra 
shown in panel (b) and median response spectrum from 2000 simulated signals. (b) Power 

spectra compatible with the EC8 spectrum of panel (a). 
  

Next, the iteratively modified power spectrum of Fig. 4(b) is used to obtain effective 

linear properties (ELPs) Teff= 2π/ωeff and ζeff via the statistical linearization-based method 

detailed in sections 3 and 4 for various bilinear hysteretic oscillators. In particular, the seven-

by-seven system of nonlinear Eqs. (21)~(24), (31), (32), and (34) is solved in series with the 

two-by-two system of nonlinear Eqs. (36) and (37) for viscously damped bilinear oscillators 

with ζ=5%, pre-yield natural period Tn=0.5s, 1.0s, 1.5s, and 2s (Tn= 2π/ωn), rigidity ratios α 

ranging from 0.5 to 0.05 and for several values of yielding deformation xy. The latter is 

treated as the “free” parameter to represent different levels of nonlinear behavior. The thus 

obtained ELPs are plotted in Fig. 5 against the “ductility” max|y| defined in Eq. (35) which 

quantifies the severity of the nonlinear response. These data serve to provide numerical 

evidence that the herein proposed approach yields results that are in reasonable agreement 

with engineering intuition.  



In general, the departure from the linear response quantified by larger values of max|y| 

yields “softer” effective linear systems characterized by longer natural periods. It is noted, 

however, that the ratio of Teff/Tn is not quite sensitive to changes in the pre-yield stiffness for 

a fixed rigidity α and ductility level (panels (a) and (c) in Fig. 5). This ratio appears to be 

more influenced by the rigidity α and increases at a significantly higher rate, as max|y| 

increases for bilinear systems closer to the ideal elasto-plastic one, that is, as α→0 (panels (e) 

and (g) in Fig. 5). Accordingly, the effective damping ratio increases with max|y| to account 

for the increased energy dissipation through more severe plastic/ hysteretic behavior of the 

corresponding nonlinear systems. Similar trends for ELPs of bilinear hysteretic oscillators 

subject to white noise excitation have been reported in the literature [e.g. 13, 39].  

Notably, it is observed that for all bilinear systems considered herein, reflecting a large 

range of systems pertinent to earthquake engineering applications, ζeff increases quite rapidly 

with ductility and at a much higher rate than Teff. Consequently, in all cases plotted in Fig. 5 

the product ωeffζeff tend to increase as stronger nonlinear behaviour is exhibited. It turns out 

that the quantity exp(-2ζeff ωeff Ts) for Ts=20s negligible in all cases considered in Fig. 5. 

Thus, by referring to Fig. 2, it is suggested that for bilinear systems with ζ=5% viscous 

damping and Tn≤2s choosing a duration of at least Ts=20s in deriving the response spectrum 

compatible power spectrum G(ω) circumvents the need to consider the transient nature of the 

response moments appearing in Eqs. (36)~(38). In this regard, the underlying process g(t) can 

be treated as stationary in the context of the proposed approach of Fig. 1. Clearly, if bilinear 

systems with smaller than 5% ratio of viscous damping are considered, a longer duration may 

be required to be adopted in treating g(t) as stationary. If for any practical reason this is not 

possible, then the transient nature of the response moments in Eqs. (36)~(38) can be 

accounted for by similar steps as those delineated in section 2. That is, by considering an 



increased fictitious damping ratio dependent on the duration and the natural frequency of the 

considered linear systems [19,22,23]. 

Note that in obtaining the plots in Fig. 1, the ductility max|y| has been estimated for 

each pair of effective linear properties by using the considered EC8 elastic spectrum without 

performing any numerical integration as detailed in the next sub-section. 

 



 

Fig. 5 Effective linear properties for various bilinear hysteretic systems. 
 
 

 



6.2 Estimation of peak nonlinear response using the effective linear properties  

In the preceding sub-section ELPs (ζeff  and ωeff) have been derived for several viscously 

damped bilinear hysteretic systems exposed to the EC8 response spectrum of Fig. 4(a) 

following the proposed approach outlined in Fig. 1. From the discussion included in section 5 

it is clear that these ELPs can be used in conjunction with the EC8 spectrum to estimate the 

peak nonlinear response of the considered systems. This is done by substituting in Eq. (39) 

the B factor for T=Teff and ζ=ζeff prescribed by EC8 which for ground type “B” reads as [2]  
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where ζ needs to be expressed as a percentage (i.e. ζ→5 for ζ=5%). The aforementioned 

nonlinear peak response estimation step can perhaps be better understood graphically as 

shown in Fig. 6 in terms of deformations (panels (b) and (d)) and in terms of psedo-

acceleration (panels (a) and (c)) for various bilinear hysteretic systems. In particular, consider 

a specific viscously damped bilinear hysteretic oscillator with damping ratio ζ= 5% and pre-

yield natural period Tn exposed to the EC8 elastic response spectrum (vertical broken lines). 

One can move, following the horizontal arrows, to a vertical solid line corresponding to an 

effective linear system characterized by Τeff and ζeff obtained by the statistical linearization 

based methodology herein adopted and “read” the related spectral ordinate. In this manner, an 

estimate of the peak response of the considered structural system is achieved without the need 

to have available suites of spectrum compatible accelerograms and to numerically integrate 

the governing nonlinear equation of motion.  



 

Fig. 6 Peak response estimation using the effective linear properties in conjunction with the 
EC8 elastic spectrum for various values of damping.   

 
As a final note, it is pointed out that the “ductility” in the plots of Fig. 5 and Fig. 6 has 

been computed by   
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6.3 Assessment of peak nonlinear response predictions via Monte Carlo simulation 

In this section the potential of the EC8 compatible ELPs plotted in Fig. 5 to provide 

reasonable estimates of the peak response of the corresponding bilinear hysteretic systems is 

assessed in a Monte Carlo simulation context. To this aim, an ensemble of 250 artificial non-

stationary accelerograms compatible with the EC8 spectrum of Fig. 4(a) are considered. 

These signals have been generated by a wavelet-based stochastic approach recently proposed 

by Giaralis and Spanos [40]. The time-history of an arbitrarily chosen accelerogram is plotted 

in Fig. 7 along with its velocity and displacement trace. Furthermore, pertinent statistics of 

the spectral ordinates of the considered accelerograms in terms of displacement and pseudo-



acceleration are included on the same figure and compared with the target EC8 spectrum. In 

particular, the average response spectrum of the 250 considered accelerograms practically 

coincides with the EC8 spectrum. Thus, these signals are consistent with the compatibility 

criterion utilized in deriving the input power spectrum G(ω) (see also Fig. 4) considered in 

obtaining the ELPs of Fig. 5. 

 

Fig. 7 Response spectra statistics and time-history traces of a sample of 250 non-stationary 
artificial accelerograms compatible with the EC8 spectrum of Fig. 4(a).   

 

Next, the aforementioned accelerograms are used to excite various bilinear hysteretic 

systems. The nonlinear response is obtained by numerical integration of the nonlinear Eqs. 

(15) and (16). The standard constant acceleration Newmark’s scheme, incorporating an 

iterative Newton-Raphson algorithm to treat locally the discontinuities of the piecewise linear 

force-deformation law, is used for the task [3]. In Fig. 8 the ductility of certain bilinear 

systems (dots of various shapes) computed from ensemble averaging of the systems’ 

nonlinear responses is plotted versus the strength reduction factor R (R-μ-Tn relationships); R 

is defined in Fig. 3(b) as the ratio of the peak demand in terms of elastic restoring force fel for 

a particular excitation over the yielding strength fy of the bilinear oscillator. In the same tigure 

the, thus, obtained R-μ-Tn relationships are examined vis-à-vis the peak response normalized 

by the yielding deformation xy (max|y|) of effective linear oscillators (curves of various kinds) 



whose properties (ELPs) have been derived as detailed in the previous sub-section from the 

considered nonlinear systems.  

In general, the quality of the achieved approximation of the peak nonlinear responses 

by the peak responses of the corresponding heavily damped linear oscillators deteriorates as 

the level of nonlinear behavior increases. That is, for smaller rigidity ratios α and for larger 

strength reduction factors R. This is expected and reflects the approximations involved in the 

statistical linearization step discussed in section 3 (see also [12,13]).  

 Overall, satisfactory matching of the average peak values for the considered ensemble 

of accelerograms is achieved for bilinear hysteretic systems of rigidity ratios as small as 

α=0.1~0.2 and for a wide range of strength reduction factors (Fig. 8 (a) and (b)). Further, Fig. 

8(c) provides a comparison of the accuracy achieved between the herein proposed approach 

and the earlier one of Giaralis and Spanos [11] which utilizes a second-order statistical 

linearization scheme based on the work of Caughey [13]. The latter is computationally less 

involved, requiring the solution of only one three-by-three system of nonlinear equations. 

However, the herein proposed approach yields significantly better results for bilinear systems 

with relatively small rigidity ratios and thus stronger nonlinear response. 

 



 
Fig. 8 Mean peak responses of various bilinear hysteretic and of their corresponding effective 

linear systems subject to the 250 EC8 compatible accelerograms considered in Fig. 7.     
 

 
7. Concluding Remarks 

A novel statistical linearization based approach has been proposed for deriving 

effective linear properties (damping ratio and natural frequency) (ELPs) corresponding to 

linear SDOF oscillators for viscously damped bilinear SDOF hysteretic systems subject to 

seismic excitation defined by a response/design spectrum. These ELPs are determined by 

solving one seven-by-seven system and one two-by-two system of non-linear equations. The 

first system of equations provides a frequency domain statistical linearization solution which 



replaces the bilinear system by a third order linear system. The second system of equations is 

associated with a system reduction step to capture certain of the response statistics of the 

third order linear system by a second order SDOF oscillator response statistics. Both 

solutions involve the employment of a numerically derived power spectrum representing in 

the frequency domain a “quasi-stationary” process of finite duration satisfying a certain 

probabilistic compatibility criterion with the given response spectrum. This criterion 

conforms with common aseismic code provisions for acceleration time-histories. That is, the 

average response spectrum of samples belonging to the considered process is close to the 

given response (uniform hazard) spectrum.  An efficient recursive formula has been used to 

determine the required power spectrum satisfying the aforementioned compatibility criterion.  

A salient feature of the thus obtained ELPs is that they are explicitly associated with both the 

pre-specified response spectrum and the considered bilinear system. In this respect, it is 

possible to obtain reliable estimates of the peak nonlinear response by utilizing the ELPs in 

conjunction with the given elastic response spectrum modified appropriately to account for 

different values of damping ratio. In this manner, the peak nonlinear response is obtained 

from heavily damped elastic response spectra without integrating the nonlinear equations of 

motion. This is done without considering ensembles of response spectrum compatible 

scaled/modified field recorded and/or artificially generated accelerograms. The potential of 

the ELPs to serve this purpose has been ascertained by pertinent numerical results associated 

with the elastic response uniform hazard spectrum prescribed by the aseismic code 

regulations effective in Europe (EC8). Specifically, EC8 compatible ELPs corresponding to 

various bilinear systems of different rigidity ratios, pre-yield stiffness, and yielding 

deformations have been obtained. Further, strength reduction-ductility-natural period (R-μ-T-

n) relationships have been derived for the considered hysteretic systems and for the associated 

effective linear ones within a Monte Carlo based analyses pertaining to an ensemble of 250 



EC8 compatible non-stationary time-histories obtained via a wavelet-based stochastic 

approach. For these time-histories reliable estimates of the nonlinear average peak response 

have been obtained for rigidity ratios of the order of 10~20% and for strength reduction 

factors of the order of 5. In this regard, it has been demonstrated that the proposed approach 

which employs a high-order (third-order) statistical linearization technique and a novel order 

reduction step provides significantly better compared to the earlier work of the authors in [11] 

estimates of the peak inelastic response of bilinear inelastic/hysteretic oscillators exhibiting 

strong nonlinear behavior. Further,  the  developed  approach  can  potentially  be  modified  to 

accommodate versatile smooth nonlinear systems whose hysteretic component can be represented 

by means of an additional differential equation, such as the Bouc‐Wen model [41]. 

 

Appendix A. 

 Consider a power spectrum G corresponding to a quasi-stationary stochastic process 

known at a set of discrete equally spaced frequencies ωq , that is G[ωq]= Gq, where ωq= ω0+ 

(q-0.5)Δω, with q= 1,2,…,M and ω0 is given by Eq (10). Using the “grid” ωp= ω0+ (p-1)Δω; 

p= 1,2,…,M+1, to discretize the frequency axis, the first three response spectral moments of 

Eqs. (1)~(3) can be numerically evaluated using the formula [30] 
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