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Abstract: The parametric model introduced by Lee and Carter in 1992 for modeling mortality rates in
the USA was a seminal development in forecasting life expectancies and has been widely used since
then. Different extensions of this model, using different hypotheses about the data, constraints on the
parameters, and appropriate methods have led to improvements in the model’s fit to historical data
and the model’s forecasting of the future. This paper’s main objective is to evaluate if differences
between models are reflected in different mortality indicators’ forecasts. To this end, nine sets of
indicator predictions were generated by crossing three models and three block-bootstrap samples
with each of size fifty. Later the predicted mortality indicators were compared using functional
ANOVA. Models and block bootstrap procedures are applied to Spanish mortality data. Results show
model, block-bootstrap, and interaction effects for all mortality indicators. Although it was not our
main objective, it is essential to point out that the sample effect should not be present since they must
be realizations of the same population, and therefore the procedure should lead to samples that do
not influence the results. Regarding significant model effect, it follows that, although the addition of
terms improves the adjustment of probabilities and translates into an effect on mortality indicators,
the model’s predictions must be checked in terms of their probabilities and the mortality indicators
of interest.

Keywords: Lee-Carter models; block-bootstrap; functional ANOVA; forecasting; mortality indicators

1. Introduction

In the context of rapid recent demographic changes, such as the finding that “human
senescence has been delayed by a decade” in [1], the development of new models for fitting
and projecting life tables is a key major direction of research for demographers, actuaries,
epidemiologists and other biomedical researchers. Even if new proposals such as [2] are
emerging, different extensions of the seminal Lee-Carter model introduced by [3] are still
being developed. Thus recently, [4] compared three probability models (Poisson, Negative
Binomial and Binomial) based on the Generalized Linear Model (GLM) framework of the
Lee-Carter model. In fact, the majority of the existing models proposed in the actuarial
and demographic literature fall into an age/period/cohort framework that builds on the
Lee-Carter model [5].

It is also essential to have an appropriate set of indicators for studying these phe-
nomena, including life expectancy, the Gini index, and the modal age at death [6,7]. All
of these indicators can be projected using the predictions of annual age-specific mortality
probabilities, qxt, obtained from different methodologies, which are based, in this paper,
on Lee-Carter models. The errors associated with these estimations can be calculated
employing a block-bootstrap methodology [8], and confidence intervals can be provided.
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This paper aims to evaluate whether improvement in models will be reflected in
significant differences between the projections of these mortality indicators. Therefore,
we consider the Lee-Carter model with one or two temporal terms, and we also consider
the addition of a cohort effect. Authors such as [9,10] find there is little change in the
ability to forecast life expectancy in comparison with the original Lee-Carter model. There
has been extensive work on the number of components to be included in Lee-Carter type
models. [11] conclude that there is no real penalty for adding extra terms and recommend
using six components, using the results of [12] for providing some theoretical reasons
for this conclusion. [13–15] are extensive studies which compared many models and
countries. Consequently, using only two-period components in Lee-Carter type models
could seem inadequate in the light of these empirical and theoretical results, but we aim to
investigate the statistical methodology for comparing the forecasts of mortality indicators.
The methodology can be extended to any forecasting results.

Our study provides two important innovations which are significant contributions to
the existing literature on mortality modelling. First, we use the block-bootstrap technique
of [8] to produce the confidence intervals for the mortality indicators allowing for parameter
error. We extend this by testing whether the forecasts are affected using the block-bootstrap
from fitting mortality models other than those used to forecast the indicator. Our second
methodological innovation is the use of functional analysis techniques to detect differences
between the projections of the mortality indicators. This is important because the projec-
tions of an indicator over time will consist of correlated values, which requires either the
use of longitudinal data techniques or functional data methods to analyze precisely.

The paper is structured as follows. Material and methods are described in Section 2.
Then, Section 2.1 gives a brief summary of Lee-Carter models and Section 2.2 discusses
the indicators of mortality used in this analysis. The following Section 2.3 introduces
the block-bootstrap techniques for estimating prediction intervals. Functional data anal-
ysis techniques allowing the comparison of mortality indicators are then discussed in
Section 2.4. Later, in Section 3 we present results of our analysis of Spanish mortality data
by means of the methods and indicators discussed previously. Finally, Section 4 draws
conclusions from these results and summarises our findings.

2. Materials and Methods

Mortality is one of the demographic components that began to be studied as early
as the 17th century in England, but today it presents challenges that are more relevant
than ever. The main tool to study mortality is the life tables. Mortality rates are often
presented in the form of life tables, giving the probabilities of dying at each age (conditional
on survival to that age) for a population. There are two types of life tables: cohort and
period tables. The cohort life table presents the mortality experience of a specific cohort
(born in the same year), and hence it reflects the actual mortality rates experience from
birth until all individuals in the cohort have died. In contrast, the period life table presents
what would happen to a synthetic cohort if it experienced the mortality conditions of a
particular time period throughout its entire life. Cohort tables therefore require data over
many years and will only be complete on exhaustion of the cohort. Because of this, we
normally use mortality indicators based on the period life table.

Crude mortality probabilities at age x and time t are typically based on the corre-
sponding number of deaths recorded, dxt, relative to the population aged x last birthday at
the start of the calendar year, i.e., the initial exposure-to-risk, Ext. Typically, it is assumed
that these crude probabilities are random realisations of a smooth underlying function of
age, period and birth cohort, which can be found by statistical analysis. Static life tables
assume that the mortality probabilities do not change with time and so are functions of
age only. In contrast, dynamic life tables are rectangular arrays of mortality probabilities,
(qxt), with each column in this array representing the period life table for year t (Figure 1).
See [16] for a more detailed discussion of dynamic life tables.
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Figure 1. Illustration of age, cohort and period dimensions.

2.1. Lee-Carter Models

The Lee-Carter model was introduced in [3] and has become the standard model
for projecting dynamic life tables. The model was used with the logarithm of the annual
age-specific central mortality rates, mxt, which are equivalent to the force of mortality, µxt,
under the assumption that µxt is constant over integer ages and years. For the calculation
of mortality indicators, the projected central mortality rates are converted into annual
age-specific probabilities of death using standard formulae. In contrast, this paper models
the annual age-specific probability of death, qxt. Therefore, this approach has the advantage
that the indicators studied in this paper can be calculated directly.

In [3], least-squares estimation via singular value decomposition of the matrix of
the log age-specific central mortality rates was used to fit the model. This implicitly
assumed that the death counts are homoscedastic across ages and years. In contrast, the
maximum-likelihood method, assuming that death counts follow the Poisson distribution,
avoids this drawback [17]. However, using the Poisson model for the death counts is
inconsistent with our desire to model the age-specific probabilities of death, and so instead
we model death counts as binomial random variables. In addition, [18] compared Poisson
models for the force of mortality and binomial models for probabilities of death for six
different countries and, in most of them, the binomial models outperform the Poisson
ones. However, the results using the binomial model and probabilities of death show
evidence of overdispersion, since the deviance statistic is greater than the degrees of
freedom in the model. Therefore, in this study, the quasi-binomial family model is used to
model the probabilities of death, which overcomes this problem. To do this, we use the
extended version [19,20] of the Lee-Carter predictor structure in conjunction with the logit
transformation of the probability of death, qxt, i.e., we use

ln
(

qxt

1− qxt

)
= ax +

r

∑
i=1

b(i)x k(i)t + εxt. (1)

In our application with Spanish mortality data, we have used (Equation (1)) with r = 1
(i.e., the classical Lee-Carter structure) and r = 2 (as investigated in [20]), and consequently
the corresponding models will be denoted LC1 and LC2, respectively. The estimation of
the parameters for these models is carried out by means of maximum likelihood methods
assuming the quasi-binomial distribution for the death counts, using the gnm library published
by [21] in R [22]. A detailed description of these models and the alternative method to fit
them to data can be found in [23]. Besides, the fitting procedure of a range of different
extensions to the Lee-Carter model using the gnm library from [21] can be found in [18].

In addition to extending the Lee-Carter model with additional age/period terms,
various authors have proposed modifying the Lee-Carter model to include the influence of
the year of birth (cohort) c = t− x. In [24], a model H1 is analyzed and recommended as
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the simplest version of the Lee-Carter model with a cohort term [25]. We use this H1 model
with the logit transformation of the probability of death qxt to give,

ln
(

qxt

1− qxt

)
= ax + bxkt + γt−x + εxt,

which will also be referred to as H1 in this paper.
To forecast qxt, we first model k(i)t , i = 1, 2 and γt−x as time series using the Box-

Jenkins methodology. Separate univariate ARIMA processes are applied to the first two-
period components of the LC2 model, due to the underlying assumption that k(1)t and k(2)t
are independent. This is a consequence of using an orthogonal decomposition [26].

Finally, we note that many studies (for instance [10,18,27]) have found that although
the introduction of a cohort term to the Lee-Carter models generally leads to an improve-
ment in overall fit, models may become less robust when fitting it to data and cause
problems when forecasting mortality rates. To overcome this, we have implemented in
Section 3.1 a two stage fitting procedure, as suggested in [25]. According to [28] the
two-stage approach will generally lead to more imperfect fits to the available data than a
one-stage approach and are therefore not proper maximum likelihood estimates. However,
the potential loss of goodness of fit of the two-stage approach may be justified if it gives a
model that is more robust to changes in the data [29].

2.2. Mortality Indicators

When projecting dynamic life tables, it is important to be able to summarise the
changes in mortality rates across different ages. In previous studies, such as [10,13,14,24],
the key indices of interest have been mortality rates, life expectancies and discounted
annuity values. The last two of these are indicators related to the typical life span, and are
especially important in an actuarial context. However, for an accurate assessment of risk,
measures of the dispersion of life spans are also important. In this paper, we study three
period-based mortality indicators: life expectancy and modal age of death (which are both
measures of typical life span in a population) and the Gini index (to measure the dispersion
of life span). Each of these mortality indicators can be calculated from a dynamic period
life table, as described in [6], and they are briefly described here below.

The life expectancy for individuals with age x is given by

ext =
Txt

lxt
,

where lxt is the hypothetical number of people alive from the synthetic cohort experiencing
mortality rates for year t at the beginning of the age interval [x, x + 1) and Txt is the
total number of years lived by this synthetic cohort during and after this age interval. In
Section 3, we calculate life expectancies at birth and at age 65, i.e., e0t and e65t, respectively

The modal age of death is age-associated with the maximum frequency of death from
the synthetic cohort experiencing mortality rates for year t. Its expression according to [30] is,

M(t) = {x|max[dxt] for x > 5}.

This indicator’s choice is justified because it can reflect changes in the probability of
death qxt, which are not detected with life expectancy [31].

However, life expectancy and the modal age of death are both measures of the “typical”
length of life of the synthetic cohort, and so do not provide any information about whether
changes in mortality apply equally to different age groups. In contrast, the Gini coefficient
can be used as a measure of inequality in the length of life, as discussed in [32], as well as
being the most common statistical index of diversity or inequality for other variables in the
social sciences. Other indices such as the Interquartile range (IQR), which also allow the
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measurement of this unequal contribution, do not have some desirable basic properties for
measuring inequality [32].

The Gini index is calculated using the area underneath the Lorenz curve for the
distribution of time of death, which is the curve obtained when we plot the proportion of
our synthetic cohort who have died before age x, fxt, given by

fxt =
l0t − lxt

l0t
= 1− lxt

l0t
,

on the x-axis, and the cumulative proportion of the years lived by this (deceased) popula-
tion compared with the total for the synthetic cohort, gxt, given by

gxt =
T0t − Txt − xlxt

T0t
,

on the y-axis. By definition, 0 ≤ fxt ≤ 1 and 0 ≤ gxt ≤ 1, with f0t = g0t = 0 and
fωt = gωt = 1, where ω is the oldest age in the life table. Furthermore, the Lorentz curve is
always below the diagonal fxt = gxt with equality only in the case where the entire cohort
dies at one specific age. For discrete life tables, one of the most widely used approaches for
estimating the Gini index is,

IGt =

(ω−1)

∑
x=0

( fxt − gxt)

(ω−1)

∑
x=0

fxt

,

where ω is the last age observed.
Hence, the Gini index measures the dispersion of deaths in the synthetic cohort across

the age range. It varies from 0, meaning that all individuals die at the same age, to 1, where
almost the entire cohort dies at birth except one individual who dies at age ω. [7] found it
to be an excellent indicator to discriminate European Union countries.

2.3. Block-Bootstrap Prediction Intervals

Forecasts of the mortality indicators in the future are highly uncertain. Therefore, we
illustrate this uncertainty by calculating confidence intervals for the forecast indicators. To
consider parameter error, several different bootstrapping procedures have been proposed
in [33,34].

In the case where the residuals from the fitting model have dependence across two-
dimensions (i.e., age, and time), the ordinary bootstrap in [34] is not valid. Therefore, we
use a residual-based block-bootstrap of the fitted residuals, as proposed in [8], because this
technique partially retains the underlying dependence structure observed in the residuals
and hence generates more realistic resamples [35].

The models in this paper are fitted using the quasi-binomial model. Therefore, the
deviance residuals from fitting the model to data are given by expression (Equation (2))

rxt = sign(dxt − d̂xt)

√
2
[

dxt log
(

dxt

d̂xt

)
+ (Ext − dxt) log

(
Ext − dxt

Ext − d̂xt

)]
, (2)

where dxt is the observed and d̂xt is the fitted number of deaths for age x and year t.
The block-bootstrap procedure starts with the rectangular array of deviance residuals,

rxt, with age x in rows, and calendar time t in columns. To obtain a new artificial set of
residuals, r̂(n)xt , we partition an empty rectangular array, with the same dimensions as the
original matrix of residuals, into smaller, non-overlapping rectangular blocks. Each block is
then filled by a randomly selected block of residuals from the original array. This randomly
selected block consists of all residuals in the rectangle to the southeast from a randomly
selected element from the original matrix.
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To select the appropriate block size, in the absence of firm theoretical guidance, [8]
plot correlograms and contour maps of the original residuals and compare these with the
resampled residuals. If these plots match reasonably well, this suggests that there is a
similar underlying dependence structure in the resampled residuals and in the original set.
In this paper, our initial guesses are based on the dependence structure observed for the
contour maps of variograms or covariance function of the raw residuals. The observation of
these maps allows us to identify the distance in years and age from which we can admit the
independence between the residuals, and these values define the dimensions of the block.
Further details can be found in [10]. These resampled residuals, r̂(n)xt , are then combined
with the fitted death counts, d̂xt, from the original model, by solving

(r̂(n)xt )2 = 2
[

dxt log
(

dxt

d̂xt

)
+ (Ext − dxt) log

(
Ext − dxt

Ext − d̂xt

)]
, (3)

to give resampled “observations” of the death counts, the modified d(n)xt . These resampled
death counts are then fitted using one of the three mortality models being considered,
providing new estimates of the model parameters.

However, it should not be essential that the model used to fit these resampled death
counts is the same as the original model used to generate the residuals and fitted mortality
rates. Therefore, there are nine possible combinations of models given by the three models
used to generate the residuals and fitted mortality rates used by the block-bootstrap
technique. The process is repeated to give N bootstrap samples of death counts, which, in
turn, provide N resampled sets of model parameters. For each of these, the k(i)t s and γt−xs
are projected on the basis of an ARIMA model selected using the Box-Jenkins procedure.
Hence, we obtain predictions for the mortality rates and the corresponding mortality
indicators for desired future years allowing fully for parameter error. The 95% confidence
intervals, IC95, for the different mortality indicators are obtained by selecting the 2.5%
and 97.5% percentiles of the projected indicators for the desired future years, for example,
ICe0,2020

95 = [pe0,2020
0.025 , pe0,2020

0.975 ] represents the 95% confidence interval for period life expectancy
at birth in 2020, based on the 2.5% and 97.5% percentiles of the projected distribution for
this indicator.

2.4. ANOVA for Functional Data Analysis

The experimental design we have just described is a two fixed factor design: the
model used for fitting, and the sample obtained from the residual used for resampling. Its
structure is shown in Table 1.

Table 1. Experimental design for comparison of functional indicators.

Model

LC1 LC2 H1

LC1 N N N
Sample RLC2 N N N

RH1 N N N

It is a balanced design with the same number of repetitions in each cell, N, equal to
the number of block-bootstrap samples. Each of these repetitions is 20 values, the projected
mortality indicator corresponding to the years 2013 to 2032. The factor model has three
categories, the Lee-Carter with one time-dependent term, LC1, the Lee-Carter with two
time-dependent terms, LC2, and the Lee-Carter with one time-dependent term and one
cohort term, H1. In turn, the factor sample also has three categories reflecting the origin
of the fitted and residuals used in the bootstrap process, RLC1, RLC2 and RH1 according
to whether they were obtained from the fitting of the original data with the LC1, LC2 or
H1 model.
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As mentioned at the beginning, we aim to check differences among the projections
obtained with each combination of model and block-bootstrap sample. A classic ANOVA
method should not be applied in this context. We have to deal with functional data, and
the use of functional data analysis methods is a natural way to proceed. Several authors
have dealt with the development of ANOVA techniques for these kinds of data, but not all
of these methods can be used in a design with two fixed factors. Some of them address a
single factor [36,37] and others address mixed-effects [38,39]. Therefore, we will resort to
the method proposed by [40], which is an effective, flexible, and easy to compute technique
able to deal with complicated ANOVA designs requiring no normality assumptions and as
few additional hypotheses as possible. The method uses random projections to transform
functional data into univariate data, solves the ANOVA problem in this simple situation,
and obtains conclusions for the functional data by collecting the information from several
projections. Following [40], we can decompose any functional data Xmod,sam

i (t) as,

Xmod,sam
i (t) = m(t) + f mod(t) + gsam(t) + hmod,sam(t) + εmod,sam

i (t), (4)

where m is non-random and describes the overall shape of the projections, i = 1, . . . , N,
and the functions f mod, gsam and hmod,sam account for the main effect and interaction of
model and sample. Finally, εmod,res

i are independent and identically distributed random
trajectories centered on the mean.

3. Results

The data used in this analysis come from the life tables published by the Spanish
National Institute of Statistics (INE) and are available on its web page www.ine.es (accessed
on 15 May 2020). In particular, we have worked with the crude estimates of probabilities
of death, qxt, obtained using the methodology proposed by [41], based on [42]. This more
recent Spanish dataset is computed using micro-mortality data, based on individual dates
of death, and with no smoothing procedure applied at the oldest ages. Therefore, this
dataset is more accurate than those provided by the Human Mortality Database [41]. Also,
this paper describes the steps that are taken, and R-packages are quoted for the sake of
replicability and reproducibility.

3.1. Model Fitting

The models described in Section 2.1 (i.e., the LC1, LC2 and H1 models) have been
used to fit mortality data for Spain for the period 1991–2012 and ages 0 to 99. As discussed
in Section 2.1, the estimation of the parameters for these models is carried out by means
of maximum likelihood methods assuming the quasi-binomial distribution for the death
counts, using the gnm R-package [21].

However, the models proposed in Section 2.1 are over-parameterised, and require
additional identifiability constraints in order to obtain unique estimates of the parameters.
The model LC1 is usually fitted with the location constraint ∑t k(1)t = 0 and the scale

constraint ∑ b(1)x = 1 [3,27]. However, in this paper, we use the alternative constraints
k(1)t0

= 0 and ∑ b(1)0 = 1, because these are simple to be specified using the gnm function
with the additional constrain and constrainTo inputs. In addition, we have used the residSVD
function to provide initial estimates of the parameters, to speed up and ensure convergence
of the fitting algorithm.

In a similar manner, the LC2 model can be fitted with the gnm library using the
instances function. For consistency with the LC1 model, we apply the restrictions k(1)t0

= 0,

∑ b(1)0 = 1, k(2)t0
= 0 and ∑ b(2)0 = 1.

For the H1 model, the issue of identifiability constraints becomes more difficult due to
the relationship between the factors, cohort = period− age, as noted by [25]. To overcome

www.ine.es
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this, [24] propose carrying the estimation out in two stages . First, ax is fixed, in a similar
manner as was originally done in [3], i.e.,

âx =

∑
t

ln
(

qxt

1− qxt

)
T

. (5)

Then, the remaining parameters can be estimated with the fixed values of ax by using
the offset term in the gnm function. In this paper, for the H1 model, we further impose
the constraints k(1)t0

= 0, ∑ b(1)0 = 1 to identify the model and an additional constraint,

b(1)x > 0 ∀x , to ensure that mortality rates are positively correlated across the age range.
Furthermore, we have set the weight of the first and last five cohorts to zero, as done in [24],
to avoid estimating parameters for which we have very little data.

For the sake of brevity, we have only fitted data for males and have not reproduced
our results for females. Figure 2a–c show the behaviour of the logit of the crude mortality
rates according to age x, period t and cohort t− x, respectively, by grouping the crude mor-
tality rates by the factors age, period and cohort and plotting box-and-whisker diagrams
them. We note that Figure 2c shows outliers for cohorts born in 1990 until 2009, which
correspond to the high rates of mortality at birth. The goodness of fit of these models to
the data is evaluated using the total deviance, which is shown for all three models with the
corresponding number of parameters in Table 2.
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Figure 2. Behaviour of the logit of the crude mortality rates. (a) for age, (b) time and (c) cohort.

Additionally, [25] suggest carrying out diagnostic checks on the fitted model by
plotting residuals. Figure 3a–c show the underlying dependence structure in the deviance
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residuals given by expression (Equation (2)) for LC1, LC2 and H1, respectively. As can be
seen in Figure 3c, the inclusion of the cohort effect for model H1 has partially eliminated
the diagonal effect appearing in the other two models. However, the residuals for any of
the models still show significant two-dimensional dependence.

Table 2. Goodness-of-fit measures for the different models.

LC1 LC2 H1

Deviance 2911.45 2136.05 2192.48
Number of parameters 100 + 22 + 100 100+ 22× 2+ 100× 2 100 + 22 + 100 + 121
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Figure 3. Residuals for age-period for each model for males. (a) LC1, (b) LC2 and (c) H1.

3.2. Prediction Intervals for Mortality Indicators

As discussed in Section 2.3, the standard bootstrap of [34] is not valid in the case
where the residuals show two-dimensional dependence, since it is based on simple random
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sampling. Instead, use the block-bootstrap technique suggested by Liu [8]. To determine
the optimum block sizes, we analyse the dependence structure observed for the residuals
in Figure 3a–c using a variogram [10]. These plots show large patches of positive and
negative values (some of which are of very large magnitude), which is suggestive of a high
degree of two-dimensional dependence and so requires the use of large block sizes.

Therefore, we use block sizes of 3× 9, 3× 9 and 3× 14 for LC1, LC2 and H1, respec-
tively. As described in Section 2.3, we then use these resampled death counts from the
bootstrapping procedure to refit the models and then forecast confidence intervals for the
mortality indicators for the period 2013–2032. In general, these confidence intervals show
that life expectancy at birth, residual life expectancy at age 65, and the modal age of death
continue to increase, and the forecast Gini index decreases.

Table 3 shows the INE estimations and the corresponding confidence intervals for LC1
for predicted life expectancy at birth and at 65, noting that the LC1 model furnishes the
highest values and the values closest to the INE ones.

Confidence intervals for forecasted Spanish life expectancy at birth for the period
2013–2032 are shown in Figure 4 where the interval corresponding to LC2 model is the
widest. In addition, life expectancies for the period 2013–2019 published by INE are outside
of all intervals for the first two years (2013 and 2014).
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Figure 4. Confidence intervals for forecasted Spanish life expectancy for the period 2013–2032. (a)
LC1, (b) LC2 and (c) H1.

Confidence intervals for forecasted Gini index for the period 2013–2032 are shown
in Figure 5 where the interval corresponding to the H1 model is the widest. Also, the H1
model shows the Gini index with greatest decrease.
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Figure 5. Confidence intervals for forecasted Gini index for the period 2013–2032. (a) LC1, (b) LC2
and (c) H1.

Table 3. Confidence intervals for forecasted Spanish life expectancy for the period 2013–2032 using LC1 only for men.

Life Expectancy at Birth Life Expectancy at 65

RLC1 RLC2 RH1 RLC1 RLC2 RH1

Year INE p0.025 p0.975 p0.025 p0.975 p0.025 p0.975 INE p0.025 p0.975 p0.025 p0.975 p0.025 p0.975

2013 79.93 79.46 79.73 79.49 79.68 79.49 79.71 18.92 18.59 18.76 18.62 18.72 18.62 18.74
2014 80.12 79.64 79.90 79.70 79.84 79.65 79.89 19.06 18.71 18.86 18.73 18.82 18.72 18.86
2015 79.92 79.87 80.14 79.92 80.08 79.90 80.12 18.79 18.84 19.01 18.87 18.97 18.87 19.00
2016 80.31 80.06 80.35 80.13 80.29 80.10 80.33 19.14 18.97 19.14 19.00 19.10 18.99 19.14
2017 80.37 80.27 80.57 80.34 80.50 80.31 80.55 19.12 19.10 19.27 19.13 19.24 19.12 19.27
2018 80.46 80.47 80.77 80.54 80.71 80.51 80.76 19.22 19.23 19.41 19.26 19.37 19.25 19.41
2019 80.85 80.66 80.98 80.74 80.92 80.72 80.97 19.52 19.35 19.55 19.39 19.50 19.38 19.54
2020 80.86 81.19 80.94 81.12 80.92 81.18 19.48 19.68 19.52 19.63 19.51 19.67
2021 81.05 81.39 81.14 81.32 81.12 81.38 19.61 19.82 19.64 19.77 19.64 19.81
2022 81.24 81.59 81.33 81.52 81.31 81.58 19.73 19.95 19.77 19.90 19.76 19.94
2023 81.43 81.78 81.53 81.72 81.50 81.77 19.86 20.09 19.90 20.03 19.89 20.07
2024 81.62 81.98 81.72 81.91 81.69 81.97 19.98 20.22 20.02 20.16 20.02 20.20
2025 81.80 82.17 81.91 82.10 81.88 82.16 20.11 20.35 20.15 20.29 20.14 20.33
2026 81.99 82.37 82.10 82.29 82.07 82.36 20.23 20.49 20.27 20.42 20.27 20.46
2027 82.17 82.56 82.28 82.47 82.25 82.54 20.35 20.62 20.40 20.55 20.39 20.59
2028 82.35 82.75 82.46 82.66 82.43 82.73 20.48 20.75 20.52 20.67 20.51 20.72
2029 82.52 82.93 82.64 82.84 82.61 82.92 20.60 20.88 20.64 20.80 20.64 20.85
2030 82.70 83.11 82.81 83.02 82.79 83.10 20.72 21.00 20.77 20.93 20.76 20.98
2031 82.87 83.29 82.99 83.20 82.96 83.28 20.84 21.13 20.89 21.05 20.88 21.11
2032 83.04 83.47 83.16 83.37 83.14 83.46 20.96 21.26 21.01 21.18 21.00 21.23



Int. J. Environ. Res. Public Health 2021, 18, 2204 12 of 16

3.3. ANOVA for Functional Data Analysis

We use the functional ANOVA procedure to test differences in the behavior of the mor-
tality indicators for the nine different combinations of the model and the block-bootstrap
sample. Thus, we expect a model effect, but no sample or interaction effects since the
samples represent the same population regardless of the model that generated them.

Using Equation (4), we test the following null hypotheses

Hmod
0 : f LC1 = f LC2 = f H1 = 0

Hsam
0 : gRLC1 = gRLC2 = gRH1 = 0

Hmod,sam
0 : hmodel,sample = 0, model = {LC1, LC2, H1},

residual = {RLC1, RLC2, RH1}.

for each indicator, the alternative hypothesis being that some of the equalities are not
true. As discussed in Section 2.4, the technique we use to do this was introduced by [40].
These authors have also developed an R-package [43], which obtains p-values by three
different approaches: the Bonferroni method, the false discovery rate method and the
bootstrap method. As [43] point out, the Bonferroni correction is conservative. In contrast,
the bootstrap method is time consuming, and requires proofs to show that it is appropriate
in the specific contexts in which it is applied to. Therefore, the we use the false discovery
rate (FDR) method, proposed by [44].

Table 4 summarizes the result of the functional ANOVA obtained with the False
Discovery Rate method, where NR stands for the non-rejection of the null hypothesis and
R for rejection.

Table 4. Rejection (R) or non-rejection (NR) of null hypothesis with functional ANOVA with FDR.

Model Residual Model × Residual

Indicator Hmod
0 Hsam

0 Hmod,sam
0

e0t R R R
e65t R R R

Gini index R R R
Modal age R R R

We have also performed multiple comparisons to establish whether there are homoge-
neous groups among the categories of the main factors tested above. The results of these
are shown in Table 5. Figures 6 and 7 help us to understand the results in Table 5. From
Figure 6a, we note that LC1 model provides greater projections of the life expectancy than
the other two models, and Figure 6b displays small but significant differences between
the bootstrap samples. As regards the Gini index, the LC1 and LC2 models show a similar
trend over time, but there is a more pronounced decrease corresponding to the H1 model
(Figure 7a). For the sample factor, the lowest values of the Gini index corresponds to the
RLC1 sample of residuals whose projections are significantly different from the other two
(Figure 7b). The equivalent graphs for the other two indicators (life expectancy at age 65
and modal age at death) are not reproduced here for the sake of brevity. The interaction
between the model and the residuals deserves particular comment.

Table 5. Multiple comparison for Models and Samples.

Model

f LC1 = f LC2 f LC1 = f H1 f LC2 = f H1

e0t R R R
e65t R R R

Gini index R R R
Modal age R R R
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Table 5. Cont.

Sample

gRLC1 = gRLC2 gRLC1 = gRH1 gRLC2 = gRH1

e0t R R R
e65t R R R

Gini index R R R
Modal age R R R
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Figure 6. Average forecasting estimations for life expectancy. (a) Model (b) Sample.
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Figure 7. Average forecasting functions for the Gini index. (a) Model (b) Sample.

4. Conclusions

In terms of the key indices of interest for mortality forecasting, specially in an actuarial
context, refs. [10,13,14,24,45,46] considered death rates, life expectancies and discounted
annuity values. This paper evaluates if differences between three different extensions of
the Lee-Carter model are reflected in the forecasts of different mortality indicators. The
three mortality indicators used are the life expectancy and modal age of death (which are
measures of typical life span in a population) and the Gini index (which is a measure of
the dispersion of life span). As far as we are aware, there are no previous studies to date
on the impact of model risk on forecasting of the Gini index. To illustrate the uncertainty
in our forecasts, we calculate confidence intervals for the forecast indicators using the
block-bootstrap technique proposed in [8] for the fitted residuals.
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To evaluate whether the differences in the forecast mortality indicators between the
different mortality models are statistically significant, we have used functional ANOVA
to test the two-factor design resulting from crossing models and block-bootstrap samples,
as discussed in Sections 2.3 and 2.4. In Table 4, we show a statistically significant model,
sample, and interaction effects between these two factors for all of the mortality indicators
under consideration. Although it was not our main objective, it is essential to point out
that the sample effect should not be present since they must be realizations of the same
population, and therefore the procedure should lead to samples that do not influence the
results. Most authors test their models with the samples derived from their fit, leading to
biased conclusions from their results.

We find that our predictions for e0t and e65t with Spanish mortality data are higher than
those obtained in previous studies [6,10,23]. Also, there are significant differences in the
forecasts of all of the indicators between the different models which we investigate in this
study. These differences in forecasts between models is a key component of the “longevity
risk”, as identified by the IMF in [47]. Larger predictions may be more realistic than those
obtained previously and may represent a better response to the financial challenge that
“longevity risk” implies, as noted by the IMF in a recent report [47]. Therefore, in terms
of longevity risk, when different models disagree, the preferred model could be the one
with the greatest predicted life expectancy, which in our case is LC1. Although the addition
of further terms improves the adjustment of probabilities and translates into an effect on
any derived mortality indicators, the models’ predictions must be checked in terms of their
probabilities and the mortality indicators obtained.

In this study, we use the functional ANOVA to provide an objective criterion for measur-
ing the impact of different techniques for forecasting mortality indicators. This technique is
complementary to measures such as goodness-of-fit statistics, as used in [13,14,24]. Although
the conclusions that we reach are based on the dataset for Spanish males, the use of the
block-bootstrap and the statistical tools proposed provide a framework for investigating a
wide range of mortality modeling hypotheses. However, we leave it to future work to look
at other datasets to examine whether our conclusions are consistent for other populations
and to draw more general conclusions about the impact of model risk on the forecasting of
mortality indicators.
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