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Abstract—Power system operations are becoming more chal- forecasts to forecast the solar power output. Hybrid models
lenging with the increasing penetration of renewable-based re- gre the combination of all aforementioned methods.
sources such as photovoltaic (PV) generation. In this regard, ob- . .
taining accurate solar power output forecasts allows a deepening  In this paper, we propose a framework that predicts the
penetration of renewable-based resources in a secure and reliable short-term solar power output based on the weather input data:
way. In this paper, we propose a probabilistic framework to temperature, zenith, azimuth, direct solar irradiance, diffused
predict short-term PV output taking into account the uncertainty  gq|5y jrradiance, and horizontal solar irradiance. We rst cate-

of weather data as well as the variability of PV output over time. ise the data into distinct based i fd d
To this end, we use datasets comprising of meteorological weather 90r1S€ the data Iinto distinct groups based on ume Or day an

data such as temperature, irradiance, zenith, and azimuth and Solar generation output using the k-means algorithm, which
solar power output. We cluster these data in categories and train is a prominent clustering technique. The rationale behind this
a Matérn 5/2 Gaussian Process Regression model for each clusterclustering is to gather similar data in clusters and determine
More speci cally, we cluster the data into one to eight different a forecast model for each cluster. The clustering technique

partitions by making use of the k-means algorithm. In order . d ¢ ith the inh ¢ abilit d
to identify the optimal number of clusters we use the Elbow 'S US€d as a way 10 cope wi € inherent variability an

and Gap methods. We compare the results obtained for the Sparsity of PV output over time at different days and seasons.
different number of clusters with the (i) 5-fold cross-validation; We use the Gaussian Process Regression (GPR) with@&rat
and (i) holding out 30 representative days as test data. The 5/2 kernel function (see, e.g., [9], [10]) to determine the
results showed that the optimal number of clusters is four, since s jinear relationship between the input weather data and solar
in comparison to higher number of clusters the increase in the . . .
forecast error was marginal. power output for each_ cluster. This methodology is swtgble
for modelling uncertainty sources of weather while being
exible to be implemented in time-series with a wide range
of variations over time [11]. GPR takes the advantages of a

Nowadays power systems are facing signi cant challeng§§mel function to map_the weather input dqta to solar power
from the increasing integration of renewable-based energytPut data. T_he selectlon_ of the ker_nel function plays ac_ru0|al
resources. The use of renewable-based generation to meef @2 in modelling the nonlinear relationship between the input
load contributes to a sustainable future (see, e.g., [1]). As su€gta and the solar output [12]. By using GPR, the uncertainty
many countries are trying to meet the majority of their demarti the_ input data is re ecteq to the output forecas';s since this
with environment friendly generation (see, e.g., [2], [3]). Howtechnigue assumes each input as a random variable with an

ever, doing so is challenging due to the inherent intermitten known distribution. This is true due to the Bayesian _nature
and uncertainty of weather characteristics on which the outfjtGPR. Details on the proposed method may be found in [13].

of such resources heavily relies on (see, e.g., [4], [5]). In The ef cacy of the proposed approach is a function of the
this regard, building an ef cient forecasting model is of vitahumber of GPR models that are trained for a given dataset.
importance. In order to determine the optimal number of clusters that
Photovoltaic (PV) output forecast models are built based dataset needs to be categorised, i.e., the number of GPR
on different techniques: (i) statistical methods; (ii) Arti cialmodels used for a given dataset, we use the Elbow and Gap
Intelligence (Al); (iii) physical models; and (iv) hybrid ap-tests (see, e.g., [14], [15]). The Elbow and Gap tests show
proaches [6]. The statistical methods are based on analysihgt the optimal number of clusters is four. To demonstrate
historical data while Al methods focus on the nonlineahe effect of different number of clusters in the performance of
relation between historical weather data and solar output ttee proposed forecasting methodology, we present the results
construct a probabilistic model [7]. Since the results th&r one to eight number of clusters. For each cluster we
belong in the second group are assessed by error metrics whisk the input weather data to train our GPR model and
are based on statistics, they can also be categorised in dieéermine the nonlinear relationship between the solar output
rst group [8]. Physical models are mainly established basehd the weather data. To validate our methodology we use two
on the monitoring of satellite images and numerical weathdatasets, which are based on two different locations at Denver

I. INTRODUCTION



and St. Lucia, and the 5-fold cross validation and holdingapid decline. When the number of clusters exce€édsSSE
out data techniques. More speci cally, to take into accoumbntinues to decline but with a slower rate. Usually the optimal
different days in different seasons we choose 30 random daysnber of cluster& is obtained graphically at the point that
as hold-out test dataset. looks like an “elbow”, i.e., at the largest in ection point down.
OnceK is determined then if the selected number of clusters
IIl. DATA CLUSTERING is less tharK , the SSE will be greatly reduced for every 1
Clustering is a machine learning technique used as migrease of the number of clusters. On the other hand, when
unsupervised pattern classi cation learning method to partitiqRe selected number of clusters is greater tKathe change
the similar data in the same group based on distance girthe SSE will not be so obvious for every 1 increase of the
dissimilarity function [16]. In this work, we use the k-meanselected number of clusters.

clustering algorithm to group the data based on time of day Il PROPOSEDGAUSSIAN PROCESSREGRESSION

and power output. Consider a st = fXy;Xo;:::; XN g With FRAMEWORK

N elements, where; 2 R" for all of i =1;:::;N; the data . )

point cluster numbe€ (i) 2f 1;::::Kg, i 2f1;:::;Ng; the Once the data are clustered irko groups we train a GPR
cluster centroid for clustek ¢ 2 R", k =1:::::K ; and the With a Maérn 5/2 kernel function to determine the nonlinear

output. GPR maps the input data into the solar output by
X X 2 de ning a covariance function, which plays a crucial role in
minimize Ny d“(xi; c); D)

the process.

Let the training setS = f(x(V;yM)gl., be a set of
whereNy is the number of points assigned to clusterThe random variables from some unknown distribution, whErie
performance of the k-means algorithm is greatly affected tiye period of available data with one hour resolutioft) 2 R°
the number of clusters. To determine the optimal number isfthe vector containing all input data at timeandy® 2 R
clusters, we use two popular statistical algorithms, namely, tHi PV output at observation With the use of a Gaussian
Gap and the Elbow (see, .e.g, [15], [17]). model we may relate the input with the output terms by:

The basic idea of Gap Statistic is to introduce reference y _ t D> 0. A i
datasets, which are generated with independent Monte Carloy( P2 RO+ )T+ O fort=100T (@)
simulations sampling from an empirical distribution and twhere () are i.i.d. “noise” variables with independent
calculate the sum of the squares of the Euclidean distaride(0; 2) distributions,f (x(¥)) is the mapping functioR® !
between two measurements in each cluster. To describe Bhandh(x() is a set of a xed basis function. The explicit use
Gap methodology we de ne the summation of all pairwisef basis functions is a way to specify a non-zero mean over
euclidegn distances for all datapoints in clusterto be f (x). In this work we assume th&(x()) is a6 1 vector
Dk = iiogc, d(xi;x?) ang the normalized sum of intra-whose all entries are equal to the constant value of one, and
cluster distances to ba/, = Ezl s+—D;. Then, we use the is the basis function coefciené 1 vector and is evaluated
following function to measure the Gkap value [15]: by maximising a likelihood function as described below. For
notational convenience, we_de ne: 5 3

Gap, (k) = Ej, [log(Wg)] log(Wy); 2 2 (x(l))3 y®d 3 @

whereE, [ ] denotes the expectation operator under a sample’of= g : £2R oy=§ : LorT; =9 : £2RT
sizen from the empirical distribution of the data. The optimal (x(M) y(M (M)
number of clusters based on the Gap statistic is the smallest 2 @ 3
numberk that satis es the following expression: F(x)

f=9 . L2RH=

Gap,(k) Gap,(k+1) sSks1; 3) f(x(M)

pP_— . . . .
Whler? Stk d_ . 1 +tﬁ_BStd(k3 '?j tge _S|E[T_1ula;|on fego;\ﬂan? IS wherels T is a6 by T matrix whose all elements are one.
calculated using the standard deviatieg(k) o ONt€ 11 matrix form we may rewrite (4) as

Carlo replicates, in this stud = 500, drawn from the

empirical distribution. y=f(X)+H> +: (5)
The Elbow technique uses the sum of squared errors (SSfgh assume a prior distribution over functioh€X ) as

which is the sum of the distances between the sample points

in each cluster and the centroid of the cluster as a performance f(X) N (O KX X)), (6)

indicator for a set number of clusters [18]. More speci callywhere0 is the mean valuek (X; X ) is the covariance matrix:

the SSE is calculated over a series number of clusters. If small K(x® xD) oo k(x@ (D

SSE values are obtained then that is an indication that each (X)) k(X

cluster is more convergent. When the number of clusters is set K (X;X) = : : ;

to approach the optimal number of clusté&s SSE shows a k(x(M;x®) 10 k(x(M;x(M)

K
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where k(; ) is the kernel function. By using the kernelWe rewrite the likelihood function for the subset of parameters,
function we aim to actively model the unknown relationship? and , by expressing as a function of the parameters of
between the input and the output variables. The kernel functiomierest and replacing them in the likelihood function. Thus,
is de ned based on the likely pattern that we can observe e have that the estimate offor given and 2 is:
the data. One assumption to model the kernel may be that

; ) o 2 =[HTKEGX] )+ 2] MH] T

the correlation between any two points in the input set, i.e., (15)

x0:x(t) 2 S with t;t°=1:::::T:t 6 t° decreases with H>[KGX )+ 2] ty:

increasing the euclidean distance between them. This me - :

that points with similar features behave similarly. Under thi%?/SSUbStItUtIngl (15) in (14) we have

assumption, in this work we use the Mat 5/2 as a kernel logP (yiX; "(; 2):: ?)= }(y HAG )T

function, which is parameterised as follows: b v 2 '
KOGXj)+ 211 My H'( %) (16)

P ey (19 20 (1) 5 (10
5d(x'";x )+5d (x 2,>< )

M.y = 2
k(x*;x%7) = ¢ 1+ | 3

1 1 . .
Zlog2  ZlogiK (X;Xj )+ 2l
p— 0 2 2

5d(x (1) x (17))

e [ ; (7) We now may determine the hyperparameters as the output of

0. ot , : the above optimisation problem.
whered(x(V; x(1) is the euclidean distance between any to' e the hyperparameters are evaluated we may use (10)
input observations<(V; x(t) 2 S as de ned in Section II;

) ' to predict the output of solar generation based on the input
i and ;, are two other kernel parameters which Sho‘ﬁfarameters.

respectively the characteristic length scale and the signal

standard deviation that both belong R§. The characteristic IV. NUMERICAL RESULTS

length scale | de nes how far the output(!) needs to be away  The proposed methodology presented in Section Il is

from the input features(!) to become uncorrelated. These Wemplemented in two datasets from different sites based on

parameters are greater than zero and are formulated as folloysilable lagged historical data we gathered from National
=10": ;=10 ' ®) Solar Radiation, lowa Environmental Mesonet (IEM) and

National Renewable Energy Laboratory and the University of
Queensland. We combined all the data from these resources
and built a consistent dataset. The two sites' details are given

We now de ne a new parameterto be:

1= log() 5 pe 2. (9) in Table I. To quantify the effect of the number of clusters on
f log( 1) the forecasts obtained by the proposed framework, we modify
From (5) we may write that the number of clusters, which are used in the development of
the GPR models, from one to eight and compare the forecast

yif (X)iX N (H”; 21+ K(X;X)); (10)  error metrics for the various numbers of clusters for Site A.

since b () and nave zero means.norder to detarning 12 1A% DTG semoesen mere we e © o
the distribution thaty follows, we need to determine three revalent test methods used in recent studies [20]. In 5-fold
parameters, i.e.,, 2 and . K (X;X ) is a function of as P '

may be seen in (7)<@)., 2, and are also known as the C'°SS validation the whole data is split into 5 folds: at each

. . ime, 4 folds are used as a training set and a one-fold as a
hyperparameters of the kernel function. In order to estimate t&?sting set, until all folds are used to build the forecast model.

parameters we maximise the following marginal log-likelihoo e randomly select 30 days of a year as hold-out data while

function the remaining data are used for training and testing using 5-
logP (yjf (X);X)=logP(yjX; ;; 2): (11) fold cross-validation.
Thus, the estimates of, , and 2 denoted by”, " and~2 A. Optimal number of clusters
are given by We apply the Gap and Elbow algorithms on the datasets
AN N2 logP (viX: - - 2): 12 as described in Section Il and nd that the optimal number
o T ar;g;mazx ogP (yjX; + ; ): (12) of clusters is four. As depicted in Fig. 1, four is the smallest
) number of clusters where the Gap value is higher than the
We may write from (10) and (11) that precedent and the subsequent value, and satis es (3). In Fig. 2,
P(yiX)= P(ViX: :: 2)= N (HT :K (X:X )+ 2I): the “elbow” of the curve which happens at the optimal number
%) ] ) ( ( ) (%3) of clusters is found ik = 4. As such it was shown with the

Thus, the marginal log-likelihood function is
2) -

(y H”) %Iogz %Iong(X;X)+ 21
(14)

I0gP (yiX; ; S0 HTOTIKOG)+ A1

Elbow method that the choice of four clusters means that if the

Site Location Size [MW] | Latitude [] [ Longitude []
A Denver Intl Airport 30 39.8561 N 104.6737 W
B St Lucia 0.433 27.498 S 153.013 E

Table I: Site description.



no.of | RMSE MAE RMSE MAE
1 ‘. ‘ ‘ ‘ ‘ ‘ clusters | [MW]  [MW] [%] [%]
; 8 090 034 272 102
o 08 | 7 080 026 243 078
% el 6 1.02  0.40 310 1.20
=N ! 5 1.18 049 358 148
B oal ; 4 129 036 391 108
& ; 3 153 047 463 143
O 0.2l ! 2 164  0.66 498  2.00
1 294 058 891  1.77
0 L 1 L L L L L
L2 3 4 5 6 7 8 9 10 Table II: Training set error metrics for various number of
number of clusters clusters.
Figure 1: Gap optimal number of clusters
. MAE= =y . (18)
selected number of clusters is less than four, the SSE value T, Y27
will be greatly reduced for every 1 increase of the number =l
of clusters. On the other hand, when the selected number of e ,
clusters is greater than four the change of the SSE value will MSE = 1 ORERV O (19)
not be so obvious for every 1 increase of the selected number ? o1
of clusters.

Whereyr(,f), is the prediction value for solar generation at time

B. Framework Implementation on Site A _ t, and by " the actual value at time; T» is the number
To show how the solar power forecast is affected by thg hourly intervals we are forecasting the solar output. We

number of clusters we apply the proposed framework on Sigay also normalise values of the above metrics with respect
A for one to eight clusters. More speci cally, in the case ofg peak value.

one cluster we only train one GPR model for the entire datasetne results of the forecast error metrics for the training

in the case of two clusters we train two GPR models one fgpq test sets for one to eight number of clusters are given in
each cluster; and so on until we have eight clusters and eigies |1, 111. The error metrics of the training data between the
GPR models. We use the 5-fold cross validation and hold 0atyal and the predicted values are based on the average error
validation techniques to obtain the forecast errors and be agf&| 5 folds for the training set. It should be noted that the test
to analyse the clustering effect on the accuracy of the sol@ksyits are expected to be different from the training set resullts,
power forecasting. o _ since 30 hold-out days are not shown to the model during the
_ For Site A the available historical data comprise of hourlyaining process. However, the results with any test set should
input weather data: diffused solar irradiance, horizontal solgg approximately the same as those obtained with the training
iradiance, direct solar irradiance, temperature, zenith, aggh as it may be seen in Tables II, lll. We notice that the
azimuth from 2006, i.e., we havé 8760 data points error metrics are usually improved as we increase the number
for weather input data and the solar generation output. We cjysters. However, at the same time a choice of a large
implement the proposed framework in one to eight numbgimber of clusters increases the computational complexity of
of clusters; and select 30 random days as hold-out datatgg model since for each cluster we build a GPR model. The

representative of different days of the year during differepfymper of clusters needs to balance the trade-off between two
seasons. Each cluster is trained by using@ab/2 GPR and ifferent objectives of minimum forecast error and minimum

tested by 5-fold cross-validation and hold-out techniques. TRgmper of clusters due to the computational complexity.
error metrics used are, de ned as follows: In this regard, we further study the effect of the number of

b1 NE ) clusters in the forecast error and depict in Figs. 3, 4, 5 the
RMSE=! — WO yﬁ_}) : (17) forecasts for the training set along with the actual values. As
T» t=1 seen in these gures the different patterns of solar generation

are better captured and modelled in the case of eight clusters.

) However, partitioning the data into four clusters also leads to
x10°

| no.of [ RMSE MAE RMSE MAE

clusters | [MW] [MW] [%] [%]
= 8 0.80 0.38 2.41 1.14
A 7 1.01 0.48 3.05 1.45
6 0.95 0.41 2.87 1.25
5 1.00 0.47 3.02 1.43
4 1.08 0.50 3.26 1.52
‘ ‘ ‘ ! t + . 3 1.46 0.65 4.43 1.97
1 2 3 4 5 6 7 8 9 10 2 1.44 0.68 4.36 2.05
number of clusters 1 2.75 1.16 8.35 3.53

Figure 2: Elbow optimal number of clusters Table Ill: Test set error metrics for various number of clusters.



- Predicted
- True response

1 61 121 181 241 301 335
Figure 5: Proposed framework predictions of the training data

Figure 3: Proposed framework predictions of the training daset for eight clusters.
set for one cluster.

RMSE[%] | MAE[%]
Proposed framework 3.48 1.85
good results in comparison to eight based on the results we can Fall 13.85 8.48
. . L Winter 7.67 4.16
see in Fig. 6, where the sensitivity on the number of clusters to (11] Spring 13.6 8.08
different normalised error metrics values is depicted. As such, Summer 16.43 10.73
we partition the data into four clusters and as seen in Fig. 7, [42] ELM 12.84 6.68
FFBPG 13.33 7.53

clusters two and three, represent the seasonal variations while
clusters one and four represent early morning and night tim@able IV: Forecast error metrics based on different method-
: . . . ologies for Site B.
C. Comparison with existing methodologies

To compare our results with the existing methodologies, we

use the same data as in [21], [22] which are available frOfgarn the relationship between the input weather data and the

University of Queensland. The temporal resolution of the d generation. GPR is a kernel based nonlinear nonparametric

in [21] is 1-minute; however since we are interested in hour)égression technique, in which the covariance function plays

zzggszc\;vl% Sde;ath:rlsttrc;rilﬁiﬂ d::% \glct)qghgl;:g f:)erstoétéili(r)]n. \_f_\;gecrucial role. In this work, we selected the Mat 5/2 as
9 9- covariance or kernel function. This function was selected

guthors of [.21]’ Categ.orlzed the data into fourdl_ﬁerent S€asOldder the assumption that the correlation between any two
i.e., fall, winter, spring and summer. Also, in [22], ELM

method and the traditional feed-forward back propagati rngnts in the input feature set decreases with increasing the

euclidean distance between them. We analysed the effect on
neural network (FFBPG) are used for forecast model. T f f h d f k of th b
results in Table IV, clearly show that the results of predictiotnfe Eer ormz?nce 0 T\/le propose ”ramewqr IO the ndum er
for one year is better than the results in [21], [22]. Of chosen clusters. More speci cally, we implemented two

statistical methods, namely Gap and Elbow, to identify the
V. CONCLUSION optimal number of clusters. The methods showed that four
In this work, we proposed a framework that predicts thié the optimal number of cluste_rs. In the numerical results'
short-term solar output based on weather input data: temp%?—cuon we used k-m_eans algorl_thm to clustgr the data based
ature, zenith, azimuth, direct solar irradiance, diffused solgF solar output and time of day Into one to e;ghft clusters and
irradiance. and horizontal solar irradiance. We clustered t Iculated error forecast metrics. This sensitivity study also
’ monstrated the improved framework performance when four

data in a given number of groups based on time of day. . _ :
then trained a model for each cluster using GPR in order ¢g'Sters are chosen in terms of balancing model complexity
and accuracy.

Figure 4: Proposed framework predictions of the training dakagure 6: Sensitivity study on the number of clusters by
set for four clusters. comparing different normalised error metrics values.
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Figure 7: 3D graph of four clusters. Different colours represelig]
different clusters.
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