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Abstract

Solitons provide a window into regimes of integrable quantum field theories

not directly accessible by the perturbative degrees of freedom. In this thesis

we develop techniques for the semiclassical analysis of string solitons on two of

the AdS3 backgrounds with maximal amount of supersymmetry, AdS3×S
3×T4

and AdS3×S
3×S3×S1. As the main application of these techniques, we ex-

plicitly construct the four and two fermion zero modes for the mixed-flux

AdS3 generalization of the Hofman-Maldacena giant magnon, and show how

to match the semiclassically quantized zero modes to the odd generators of the

centrally extended psu(1|1)4 and su(1|1)2 off-shell residual symmetry algebras.

We further obtain explicit formulas for the eight bosonic and eight fermionic

fluctuations around the mixed-flux magnon, confirming that the semiclassical

quantization of these fluctuations leads to a vanishing one-loop correction to

the magnon energy, as expected from symmetry based arguments. Lastly, we

consider the fermion zero modes for an AdS3 × R string soliton and a simple

scattering state of two magnons, confirming the relation between fermion zero

modes and representations of the residual algebras.
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Chapter 1

Introduction

One of the fundamental challenges of theoretical physics in the last 50 years has

been to understand strongly coupled quantum systems, arising for example in

the description of nuclear forces (QCD) or condensed-matter systems. Despite

all of its successes, the framework of perturbative QFT has been unable to

provide analytical results away from the weakly coupled (high-energy) regime,

and we have had to rely on numerical methods to investigate important non-

perturbative effects, such as the confinement of quarks. A new and promising

development in this direction is in terms of gauge/string dualities, stating the

equivalence of certain strongly coupled gauge theories to higher dimensional

quantum gravity. In broad terms, string theories may provide insight and a

new set of tools for understanding strongly coupled quantum systems.

In 1997 Maldacena conjectured a special class of gauge/gravity dualitiy,

the AdS/CFT correspondence [3], which relates string theories on backgrounds

that contain the anti-de Sitter space-time AdSd+1 as a factor, and strongly cou-

pled conformal field theories (CFTs) formulated on the d-dimensional confor-

mally flat boundary of the AdSd+1. The duality provides a dictionary between

the two theories, for example by matching the scaling dimensions of gauge-

invariant operators to energies of the corresponding closed string states [4].

A more general class of dualities is often referred to as holography [5], where

processes in the bulk space are encoded on the boundary. AdS/CFT is a con-

crete example of holography, where both sides of the duality are well-defined,

specific theories, and Maldacena’s derivation in terms a decoupling limit of

D-branes gives an explanation as to why and how the duality holds.

1.1 AdS5/CFT4

The most renowned example, with maximal amount of supersymmetry, is

AdS5/CFT4, the equivalence of four-dimensional N = 4 super Yang-Mills

1



CHAPTER 1. INTRODUCTION

(SYM) theory [6] with gauge group SU(N) to type IIB supersting theory on1

AdS5 × S5. The parameters of the gauge theory are the ’t Hooft coupling2

λ = g2
YMN and the number of colors N (which is effectively same as the rank

N − 1 of the gauge group for large N), while on the string side we have the

effective string tension h = R2/2πα′ (where α′ is the string tension and R

is the radius of the AdS space) and the string coupling gs. The AdS/CFT

correspondence relates the two sets of parameters by

λ = 4π2h2 ,
1
N

= gs

4π2h2 . (1.1)

At the core of the duality is the equivalence of the string partition function

with vertex operator sources φ, taking value J on the boundary of AdSd+1, to

the CFTd partition function with sources J for local operators

Zstring[φ|∂AdS = J ] = ZCFT[J ]. (1.2)

The CFT, however, is fully determined by the scaling dimensions of gauge

invariant superconformal primary operators and three-point correlators, all

other observables being computable using operator product expansions. The

spectrum of the CFT consists of the scaling dimensions ∆, which are the

eigenvalues of the dilatation operator D, one of the Casimirs of the 3 + 1

dimensional conformal algebra SO(2, 4)

DÔ(x) = ∆(λ,N)Ô(x). (1.3)

The duality then relates these to the spectrum energies on the string side

Hstring |O〉 = E(h, gs) |O〉 , (1.4)

according to

∆(λ,N) = E(h, gs), (1.5)

1 The geometry of AdS5×S5 and its Green-Schwartz string action is reviewed in chapter
2.

2 Naively gYM and N are the expansion parameters of N = 4 SYM, but this rearrange-
ment is customary due to the fact that the large-N limit allows an expansion in 1/N if one
keeps λ fixed [7]. This planar limit is explained below.

2



CHAPTER 1. INTRODUCTION

where the parameters are related by (1.1).

From the gauge theory perspective the region of small λ is generally called

the weak coupling regime, and is exactly where perturbative QFT with its

Feynman diagrams provides reliable results. Higher loop calculations might

give more accurate results for small finite values of the coupling, but conven-

tional methods only allow for the calculation of the first handful of terms in

practice, and loop-expansions cannot capture large-λ (non-perturbative) ef-

fects. Perturbative string theory, on the other hand, applies in the region

around the point h =∞ and gs = 0. Even though the strings here are weakly

coupled, this region is called the strong coupling regime, referring to λ = ∞.

The double expansion around this point is characterised by the two directions:

finite λ accuracy is increased by adding quantum corrections to the worldsheet

sigma model (curvature expansion or “worldsheet loops”), while finite gs cor-

rections are obtained with a genus expansion of the worldsheet itself (“string

loops”). Just like in the gauge theory, both expansions are highly non-trivial,

and give unreliable results far away from the point λ =∞, gs = 0.

We see that the perturbative regimes of the two models do not overlap,

AdS/CFT is a weak/strong duality. This is a very exciting premise, enabling

us to understand non-perturbative phenomena on each side in terms of per-

turbative calculations on the other. At the same time, it makes verifying the

duality a daunting task. In the early years tests of the conjecture were only

possible for a limited class of operators. Superconformal chiral primaries (pro-

tected by supersymmetry from renormalisation) and their descendants were

investigated with regard to both their anomalous dimensions [4, 8] and three-

point functions [9, 10]. It was also argued that operators with large global

charges are dual to semiclassical string states [11, 12].

Planar limit. Keeping λ fixed, N = 4 SYM admits an expansion in 1/N [7].

Feynman diagrams in the perturbative expansion can be grouped according to

their genus: graphs that can be drawn on a plane without crossing are called

planar, and the ones with crossing lines are suppressed. On the string side

this is a weak coupling expansion gs ∼ λ/N , and in the planar limit

N →∞ , λ = 4π2h2 fixed, (1.6)

3



CHAPTER 1. INTRODUCTION

we get a free string theory. And as for the duality in this limit, we can be

encouraged by the natural appearance of two-dimensional surfaces on which

the diagrams are drawn on the gauge side, reminescent of the string worldsheet.

Despite the technical difficulties arising from the weak/strong nature of the

duality, it turns out that in the planar limit we can find the spectrum exactly

(to all loops) on both sides, with the help of integrability, a sort of hidden

symmetry.

A key indicator of integrability is the presence of a sufficient, in the case

of field theories infinite, number of conserved quantities in involution3. In the

context of the AdS/CFT correspondence, quantum integrabilty (i.e. integra-

bilty at all loops) is a computational tool-kit for planar SYM at arbitrary cou-

pling, predicting the spectrum of scaling dimension for local gauge-invariant

operators as a function of λ. This opens the way for robust tests of the conjec-

ture: in the weak coupling regime one can check agreement with perturbative

gauge theory results, while in the strong coupling regime comparison to per-

turbative string spectrum is possible. Ultimately, integrability can give us

valuable insights into a truly quantum gauge and/or string theory at interme-

diate coupling strengths.

1.1.1 Integrability on the gauge side: spin-chain description

The full symmetry group of N = 4 SYM is PSU(2, 2|4), also known as the

N = 4 superconformal group. The superalgebra psu(2, 2|4) has 16 fermionic

supercharges, and the bosonic subalgebra is su(2, 2) ⊕ su(4). The su(2, 2) '

so(2, 4) factor is the four dimensional conformal algebra, and su(4) ' so(6)

is the R-symmetry. Note that SO(2, 4) and SO(6) correspond to the global

isometry groups of AdS5 and S5 on the string side. This PSU(2, 2|4) symmetry

is unbroken by quantum corrections, putting significant constraints on the

theory.

Operators fall into representations of the global symmetry group, labelled

by the 6 Casimir eigenvalues

(∆, S1, S2; J1, J2, J3), (1.7)
3 Phase space functions f and g are said to be in involution if their Poisson bracket

vanishes: {f, g} = 0, and a quantity is conserved if it is in involution with the Hamitonian.

4



CHAPTER 1. INTRODUCTION

where Ji are the 3 angular momenta of SO(6), (S1, S2) are spins of SO(2, 4)

which has a third Casimir, the dilatation operator D, whose eigenvalues are

the scaling dimensions. The highest weight state in each multiplet has the

lowest dimension4, and is called primary. The task of finding the spectrum is

equivalent to diagonalizing the dilatation operator, which can be written as

an expansion in λ

D =
∞∑
n=0

λnD(2n). (1.8)

The eigenvalue of D(0) is the bare (classical) dimension ∆0, while the relation

∆ = ∆0 + γ(λ) defines the anomalous scaling dimension γ. In general D

introduces operator mixing, but this only occurs between operators with the

same R-charges, spins and bare dimensions, since the D(2n) commute with

D(0) as well as all other Casimirs. This fact can be used to show the existence

of closed sectors. One such sector consists of operators made up from two

complex scalars X,Z with classical charges (1, 0, 0; 1, 0, 0) and (1, 0, 0; 0, 1, 0),

often called the SU(2) sector, since X and Z form a doublet of an SU(2)

subgroup of the global SO(6).

In N = 4 SYM the gauge invariant local operators can be constructed

as products of traces of the fields that transform covariantly under the gauge

group. Furthermore, in the large N limit the dimension of a product of single

trace operators is equal to the sum of the individual dimensions, and it is

sufficient to understand the spectrum of single trace operators

O(x) = Tr[χ1(x)χ2(x)...χL(x)] , (1.9)

where χi(x) refers to any covariant field. Conformal symmetry fixes the form

of two-point correlators

〈O(x)O(y)〉 ≈ 1
|x− y|2∆ , (1.10)

and in the perturbative approach (λ � 1) the dilatation operator can be

diagonalized by computing the Feynman diagrams for these correlators.

4 In a unitary quantum field theory all operators (apart from the identity) must have
positive dimension, and elements of the algebra change the scaling dimension in quantized
units, hence there is an operator of lowest dimension in each multiplet.

5



CHAPTER 1. INTRODUCTION

The first hint that planar N = 4 SYM might be integrable was discovered

by Minahan and Zarembo [13]. They showed that the 1-loop spectral problem

of single-trace scalar operators (forming the so(6) sector) is equivalent to a

spin chain with nearest neighbour interactions. The length L of the chain

is given by the bare dimension of the operators5, and the 1-loop dilatation

operator is identified with the spin-chain Hamiltonian

Dplanar = L+ λ

4π2 H+O(λ2). (1.11)

The spectrum of (1-loop) anomalous dimensions is then equivalent to the en-

ergy spectrum of this spin-chain Hamiltonian. Importantly, the spin chain is

integrable, hence the planar spectrum is efficiently solvable by the correspond-

ing Bethe Ansatz (BA) [14] (for a modern formulation see [15]).

Let us review this method for the simpler su(2) sector, where we only have

the scalars X and Z inside the trace. Since these two fields transform in a

doublet of su(2), we can label them as spin up (X = ↑) and spin down (Z = ↓)

O = tr(XXZX · · ·XZX) ⇔ |Ψ〉 = |↑↑↓↑ · · · ↑↓↑〉 . (1.12)

As we have already seen, mixing must preserve the global charges, so a single

trace operator made up of of L −M X fields and M Z fields, with classical

charges (1.7) (L, 0, 0;L−M,M, 0) will only mix with operators having the ex-

act same number of X and Z fields, possibly rearranged. This is also reflected

in the (1-loop) spin-chain Hamiltonian

Hsu(2) = 1
2

L∑
`=1

(1− P`,`+1) , (1.13)

where P`,`+1 exchanges the spins at sites ` and ` + 1. The ground state for

this Hamiltonian is

|0〉 = |↑↑↑ · · · ↑〉 ⇔ tr(XL) , (1.14)

with zero energy. This is in fact a superconformal chiral primary operator,

i.e it commutes with half of the supercharges of psu(2, 2|4), and transforms
5 The bare dimension of a single trace operator made up of scalar fields is equal to the

number of fields in the trace.

6



CHAPTER 1. INTRODUCTION

in a short representation. From general theorems about non-renormalization

of short multiplets [10], it follows that this state is protected from quantum

corrections, leading to vanishing anomalous dimension to all loop orders (while

the spin chain argument only guarantees this at 1-loop).

Let us now diagonalize the Hamiltonian restricting to the case of a single

down spin. For such a state the Hamiltonian (1.13) acts like a constant plus

a hopping term, moving the down spin one site either to the left or the right

Hsu(2) |↑ · · · ↑
`
↓↑ · · · ↑〉

= 1
2

(
2 |↑ · · · ↑

`
↓↑ · · · ↑〉 − |↑ · · ·

`−1
↓ ↑↑ · · · ↑〉 − |↑ · · · ↑↑

`+1
↓ · · · ↑〉

)
.

(1.15)

It is then easy to see that the eigenstates are

|p〉 = 1√
L

L∑
`=1

eip` |↑ · · · ↑
`
↓↑ · · · ↑〉 (1.16)

with
Hsu(2) |p〉 = ε(p) |p〉 , ε(p) = λ

2π2 sin2 p
2 . (1.17)

The state |p〉 is called a single magnon with momentum p. Invariance under

the shifts `→ `+L (i.e. periodicity of the spin chain) implies the quantization

condition
eipL = 1. (1.18)

Due to the cyclicity of single trace operators, we also need to impose invariance

under single shifts `→ `+1, and we find that the only physical single-magnon

state is the trivial one, with p = 0.

The simplest nontrivial physical state has two down spins. The trick is

then to suppose that we have a chain of infinite length L → ∞, where we

can consider the scattering of two (mostly) well-separated asymptotic magnon

states

|p1, p2〉 =
∑
`1<`2

eip1`1+ip2`2 |· · ·
`1
↓ · · ·

`2
↓ . . .〉

+ eiφ
∑
`1>`2

eip1`1+ip2`2 |· · ·
`2
↓ · · ·

`1
↓ . . .〉 ,

(1.19)

7



CHAPTER 1. INTRODUCTION

where we assume that p1 > p2. The first term represents the incoming

magnons, and the second, outgoing term appears with the phase factor eiφ,

which is the S-matrix S12 for their scattering. Requiring that this is an eigen-

state we get

eiφ = S12 = − e
ip1+ip2 − 2eip2 + 1
eip1+ip2 − 2eip1 + 1

. (1.20)

Back on the cyclic spin chain of length L, the trace condition imposes zero

total momentum

p1 + p2 = 0. (1.21)

The two-particle state should also be invariant under transporting the first

magnon around the chain once. In this process we pick up a phase eiφ when

passing the second magnon, and the periodicity condition becomes

eip1LS12 = 1. (1.22)

Zero total momentum in (1.20) gives eiφ = e−ip1 , and the allowed quantized

momenta are p1 = 2πn/(L− 1), with total anomalous dimension

γ = λ

π2 sin2 πn

L− 1 . (1.23)

For multi-particle states it is convenient to define rapidity variables uj

eipj =
uj + i/2
uj − i/2

, (1.24)

leading to the simple form of two-particle S-matrices and dispersion relations

Sjk =
uj − uk − i
uj − uk + i

, ε(u) = λ

8π2
1

u2 + 1/4
. (1.25)

Writing out the M-particle analogue of (1.19) one can show that the multi-

particle S-matrices factorize into two-particle S-matrices, so the Bethe equa-

tions and cyclicity condition become

(
uj + i/2
uj − i/2

)L
=

M∏
k 6=j

uj − uk + i

uj − uk − i
,

M∏
j=1

uj + i/2
uj − i/2

= 1 , (1.26)

8
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The 1-loop anomalous dimension of such an M-particle states is

γ =
M∑
j=1

ε(uj). (1.27)

The initial observation [13] was restricted to the so(6) scalar sector of oper-

ators at one loop. However, shortly after, strong evidence was found that

integrability extends to higher loops, with the interaction range of the corre-

sponding spin chain Hamiltonian increasing with loop order [16], and also to

the full N = 4 theory (not just its subsectors), first at one loop [17], and later

to all loops in the asymptotic limit [18].

1.1.2 Integrability on the string side: coset sigma-model

In a parallel, intertwined development integrable structures were observed

in the worldsheet theory of strings on AdS5 × S5. With 32 supercharges,

this is one of the three maximally supersymmetric type IIB 10-d superstring

backgrounds, along with flat Minkowski space and the plane-wave background

[19]. The group of superisometries for AdS5 × S5 string theory is PSU(2, 2|4),

the same as the full symmetry group of N = 4 SYM, which is most explicit

in the Metsaev-Tseytlin formulation [20, 21], where the action is written as a

sigma-model on the coset superspace

PSU(2, 2|4)
SO(1, 4)× SO(5) . (1.28)

Note that the bosonic subspace is isomorphic to AdS5 × S5

SO(2, 4)
SO(1, 4) ×

SO(6)
SO(5) ' AdS5 × S5 . (1.29)

It is important to realize that rather than any details of the geometry, it is

the Z4 grading [22] of the supercoset that guarantees integrability [23].

Let us review the construction of the Metsaev-Tseytlin action and its in-

tegrability. A semi-symmetric superspace is a coset G/H0 of a supergroup G

over a bosonic subgroup H0, such that the Lie algebra g admits a Z4 decom-

position. This is equivalent to the existence of an order-four automorphism

9
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Ω : g→ g that satisfies

[Ω(X),Ω(Y )} = Ω([X,Y }), Ω4 = id. (1.30)

The worldsheet embedding in G/H0 is parameterized by a coset representative

g(x) ∈ G, up to the gauge transformations g(x) → g(x)h(x) with h(x) ∈ H0.

The left-invariant current

Ja = g−1∂ag = J (0)
a + J (1)

a + J (2)
a + J (3)

a (1.31)

maps to the superalgebra, where the grading is given by

Ω(J (n)
a ) = inJ (n)

a . (1.32)

The fermion number is the Z4 charge mod 2, i.e. J (0)
a , J (2)

a describe the

bosonic degrees of freedom, while J (1)
a , J (3)

a describe fermions. Under gauge

transformations J (0)
a transforms as a connection J (0)

a → h−1J (0)
a h + h−1∂ah,

while all other fields transform in the adjoint representation J (i)
a → h−1J (i)

a h.

In terms of these matter fields, the action is given by6

S = 1
2

∫
d2x Str

(√
−γγabJ (2)

a J
(2)
b + κ εabJ (1)

a J
(3)
b

)
, (1.33)

while the gauge field J (0)
a is absent. It turns out that one needs to take κ = 1

in order to have κ-symmetry. Varying the action with respect to g, one finds

the equations of motion

∂aΛa − [Ja,Λ
a] = 0, where Λa = γabJ

(2)
b − 1

2ε
ab
(
J

(1)
b − J (3)

b

)
. (1.34)

Expanding these, and the Mauer-Cartan equations

∂aJb − ∂bJa − [Ja, Jb] = 0, (1.35)

6 Here Str(· ·) denotes the G and Z4 invariant bilinear form on g.

10
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in terms of the Z4 components we get

2Da

(√
−γγabJ

(2)
b

)
− εab[J (1)

a , J
(1)
b ] + εab[J (3)

a , J
(3)
b ] = 0,(√

−γγab + εab
)

[J (2)
a , J

(1)
b ] = 0,(√

−γγab − εab
)

[J (2)
a , J

(3)
b ] = 0,

εab
(
2DaJ

(2)
b + [J (1)

a , J
(1)
b ] + [J (3)

a , J
(3)
b ]
)

= 0,

εab
(
DaJ

(1)
b + [J (2)

a , J
(3)
b ]
)

= 0,

εab
(
DaJ

(3)
b + [J (2)

a , J
(1)
b ]
)

= 0,

Fab + [J (2)
a , J

(2)
b ] + [J (1)

a , J
(3)
b ] + [J (3)

a , J
(1)
b ] = 0,

(1.36)

where Da = ∂a + [J (0)
a , ·] and Fab = ∂aJ

(0)
b − ∂bJ

(0)
a + [J (0)

a , J
(0)
b ]. These

equations are equivalent to the flatness of the Lax connection [23]

La = J (0)
a + x2 + 1

x2 − 1
J (2)

a − 2x

x2 − 1
γabε

bc
√
−γ

J (2)
c +

√
x + 1
x− 1 J

(1)
a +

√
x− 1
x + 1 J

(3)
a ,

(1.37)

where the spectral parameter x is an arbitrary complex number x 6= ±1. If

the currents Ja satisfy the equations of motion, the Lax connection is flat

∂aLb − ∂bLa − [La, Lb] = 0, (1.38)

and conversely, if La is flat for all values of x, the currents satisfy the equations

of motion.

It is a requirement for classical integrability that there are an infinite num-

ber of conserved charges. As a consequence of the zero curvature condition

(1.38), the monodromy matrix, i.e. path ordered exponential (or Wilson loop)

of the Lax connection La(σ, τ, x)

T (τ, x) = Pexp
∫ 2π

0
dσ L1(σ, τ, x) (1.39)

satisfies the equation

∂0T (τ, x) = [L0, T (τ, x)]. (1.40)

11
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Therefore its eigenvalues, which depend on the complex spectral parameter,

are independent of τ , and form an infinite set of conserved quantities.

Given this Lax connection, Kazakov, Marshakov, Minahan and Zarembo

used the finite-gap method to write the spectral problem for (classical) string

states in the compact sector in terms of a simpler set of integral equations

[24], and this construction was later generalized to non-compact sectors [25].

In fact the same integral equations can be obtained from the spin chain, by

taking the thermodynamic limit of its Bethe Equations. In an attempt to

find the quantum spectrum of the sigma-model, an all-loop BA was reversed

engineered from the finite-gap equations, and an approximate S-matrix was

proposed in [26]. The finite-gap method proved to be an indispensable tool

in the AdS/CFT integrability machinery, and it did not take long until the

complete classical algebraic curve for AdS5× S5 string theory was understood

[27].

While the coset action emphasizes the underlying geometry of superisome-

tries in the most elegant form, it is also important to understand the symplectic

structure of string theory. To this end, the Hamiltonian of the classical bosonic

string propagating on AdS5 × S5 was shown to be integrable by constructing,

in a special gauge, the corresponding Lax representation [28].

1.1.3 Shifting focus to the S-matrix

Quantum integrability is deeply tied to the concept of diffractionless, factorized

scattering [14, 15]. It means that the elementary excitations of a quantum

many-body system interact only through a sequence of two-body scattering

processes which may lead to the exchange of quantum numbers and momenta,

but do not alter the magnitudes of the latter. This is the next-best thing

to a free system: the only effect of interactions is the permutation of a fixed

set of momenta (and other quantum numbers). As we have seen above the

early results strongly suggest that both sides of the duality are integrable, and

motivated by this, Staudacher proposed that the key to solving the problem

is not necessarily to find and diagonalise the full dilatation operator (which

was increasingly harder at higher loops), but instead to concentrate on the S-

matrix for elementary excitations [29]. On very long operators one can define

12
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asymptotic states consisting of magnons at distances exceeding the interaction

range, and write down an asymptotic Bethe Ansatz (ABA).

Subsequently, Beisert showed, assuming integrability, that the spin-chain

S-matrix is completely determined by the SU(2|2)× SU(2|2) symmetries7, up

to an overall phase [30, 31]. In relativistic theories this dressing phase is

determined by unitarity and crossing symmetry, which relates scattering of

particles to scattering of their antiparticle partners [32]. Adapting this argu-

ment to the non-Lorentzian case of AdS5/CFT4, Janik wrote down the cross-

ing equations for Beisert’s undetermined phase [33]. The physically relevant

solution to Janik’s equations is given by the Beisert-Eden-Staudacher (BES)

phase [34, 35], whose pole structure can also be explained on physical grounds

[36]. On the string side semiclassical (AFS) [26] and 1-loop Hernandez-Lopez

(HL) [37] dressing phases were established using the algebraic curve, and were

found to be in agreement with the expansion of the all-loop BES phase [35].

The off-shell symmetry algebra and S-matrix were also reproduced for the

AdS5 × S5 (asymptotic) worldsheet excitations, using the Green-Schwarz for-

malism [38, 39].

1.1.4 Giant magnons

Based on supersymmetry, the BMN limit and periodicity in the momentum p

of the excitations, the all-loop dispersion relation for the spin-chain magnon

was determined to be [40]

ε =
√

1 + 4h2 sin2 p
2 , (1.41)

where 4π2h2 = λ. This formula is a BPS bound saturation condition, and must

be valid for all values of the gauge coupling λ. In particular at strong coupling,

where semiclassical string theory is a good description of the integrable theory,

we expect to find a classical string configuration with this energy. This solution

is the R × S2 giant magnon, found by Hofman and Maldacena [41], with

dispersion relation

ε = 2h sin p
2 (1.42)

7 Subgroup of the PSU(2, 2|4) symmetry group preserved by the spin-chain vacuum.
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in agreement with the large h limit of (1.41). On the spin chain side a single

magnon is only a physical state in the asymptotic limit, while on the string

theory side the giant magnon is an open string state on the decompactified

worldsheet, and physical states satisfying the level-matching condition (1.21)

can be built by adding other magnons “at infinity”. In other words, a closed

string can be constructed by gluing together giant magnons with zero total

momentum. The periodic dependence on the momentum is natural on a dis-

crete spin chain, and quite interestingly, for the giant magnon it is related to

the opening angle between the endpoints on S2. A detailed presentation of

the HM giant magnon can be found in chapter 2.

The asymptotic spectrum of the spin-chain contains an infinite tower of

BPS states [42], labelled by a positive integer Q and their momentum p. They

have the dispersion relation

ε =
√
Q2 + 4h2 sin2 p

2 , (1.43)

where Q = 1 corresponds to the elementary magnon (1.41), while states with

Q > 1 are bound states of these elementary magnons. The classical strings

dual to these states are generalizations of the HM giant magnon with an extra

angular momentum on the S5 [43]. These dyonic giant magnons live on R×S3

and satisfy the dispersion relation

E − J1 =
√
J2

2 + 4h2 sin2 p
2 . (1.44)

Moreover, after semiclassical quantization J2 takes integer values, and we re-

produce the bound state spectrum (1.43). Let us also mention that there is an

interesting S-duality based argument for the non-renormalization of the J2 = 1

single-magnon disperison relation [44]. The giant magnon was further gener-

alized to other configurations with various non-zero R-charges [45, 46, 47, 48].

There are a number of calculations one can perform to check that the giant

magnon is indeed the large coupling limit of the elementary excitation of the

quantum theory. In an integrable theory the multi-particle S-matrix factor-

izes, and this was explicitly shown for magnon bound-states on the spin chain

[49], dyonic giant magnons on the worldsheet [50], and general light-cone gauge
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string excitations [51]. A semiclassical analysis of the worldsheet scattering of

dyonic giant magnons [52] shows that their 1-loop S-matrix agrees with the

Hernandez-Lopez phase [34], and also that the 1-loop correction to the giant

magnon energy vanishes. From an algebraic perspective the magnon is a BPS

state of the su(2|2)2
c.e. superalgebra, and accordingly, must be part of a 16

dimensional short multiplet [31]. As a consequence the giant magnon should

have eight fermionic zero modes, as Hofman and Maldacena argued in [41].

These zero modes were explicitly constructed by Minahan [53], starting from

the quadratic fermionic part of the Green-Schwarz action expanded around

the giant magnon. Quantizing these modes he was also able to reproduce

the odd generators of the residual algebra. Subsequently, building on Mina-

han’s work, an explicit basis of the magnon’s fluctuation spectrum was found

by Papathanasiou and Spradlin [54], once again confirming that the disper-

sion relation receives no 1-loop corrections. In chapter 2 we present both the

fermion zero modes and the complete fluctuation spectrum of the AdS5 × S5

giant magnon.

1.2 AdS3/CFT2

Remarkably, integrability persists to other, less symmetric classes of AdS/CFT

duals. With less supersymmetry, these models have more realistic properties

and understanding them is likely to teach us more general lessons about the

equivalence of gauge and gravity theories. One example is AdS4/CFT3, the

duality between ABJM Super Chern-Simons gauge theory [55, 56] and type IIA

string theory on AdS4×CP
3 [57, 58, 59] with 24 supersymemtries, for a review

and more references see [60]. The main focus of this thesis is AdS3/CFT2,

and in particular two8 backgrounds with maximal supersymmetry allowed for

such geometries (16 supercharges), AdS3 × S3 × T4 and AdS3 × S3 × S3 × S1.

While the moduli of T4 and S1 are free parameters, supergravity equations for

8 There is a third maximally supersymmetric AdS3 background, AdS3 × S3 × K3. It
should be possible to apply integrable methods to this background, at least in the orbifold
limit of K3, and then it would be interesting to see what the effect of turning on the blow-up
modes is.
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AdS3 × S3 × T4 constrain the radii of AdS3 and S3 to be equal

RAdS3
= RS3 , (1.45)

while for AdS3 × S3 × S3 × S1 the AdS radius R and the radii of the two

3-spheres R± satisfy [61]
1
R2

+
+ 1
R2
−

= 1
R2 . (1.46)

This allows for the parametrization of the radii

R2

R2
+
≡ cos2ϕ = α ,

R2

R2
−
≡ sin2ϕ = 1− α . (1.47)

by an angle ϕ ∈ (0, π2 ), or α ∈ (0, 1). In fact the ϕ → 0 limit of this

parametrization covers the AdS3 × S3 × T4 geometry too, once the blown

up sphere is compactified on a torus.

Historically, these backgrounds were considered in two different settings:

either supported by Ramond-Ramond (R-R) or Neveu–Schwarz-Neveu–Schwarz

(NS-NS) three-form fluxes. The pure NS-NS theory is relatively well under-

stood, the free string spectrum can be solved using a chiral decomposition

[62, 63, 64]. No such method exists for the pure R-R case, where the spectrum

is believed9 to be best described by an integrable machinery similar to the

AdS5 case. The type IIB supergravity equations also allow these backgrounds

to be supported by a mixture of R-R and NS-NS fluxes

F = 2q̃
(

Vol(AdS3) + cosϕVol(S3
+) + sinϕVol(S3

−)
)
,

H = 2q
(

Vol(AdS3) + cosϕVol(S3
+) + sinϕVol(S3

−)
)
,

(1.48)

where q ∈ [0, 1] and q̃ =
√

1− q2. This mixed-flux background interpolates

between the qualitatively different pure R-R theory at q = 0 and the pure

NS-NS theory at q = 1. String theory on the above AdS3 backgrounds was

shown to be classically integrable both in the pure R-R [69, 70, 71] and mixed

flux [72] cases.

9 Although it is worth noting that there have been attempts to understand the pure R-R
theory using the hybrid formalism of Berkovits, Vafa and Witten [65, 66, 67, 68].
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1.2.1 Brane picture and CFT duals

The pure R-R AdS3 × S3 × T4 background arises as a near-horizon limit of a

stack of N1 D1- and N5 D5-branes, with the D5 containing the D1, and the

remaining four transverse directions of the D5 branes compactified on a T4

[3]. The AdS3 and S3 radii, as well as the volume of the torus are fixed to be

R2
AdS3

= R2
S3 =

√
N1N5 , Vol

(
T4) = N1

N5
. (1.49)

On the brane intersection this results in a 1+1 dimensional U(N1) × U(N5)

supersymmetric gauge theory. With the 16 supercharges chirally decomposed

under the so(1,1) symmetry algebra of boosts along the intersection, the the-

ory has N = (4, 4) supersymmetry. In contrast to N = 4 SYM this gauge

theory has, in addition to the adjoint-valued vector multiplet, a number of

fundamental- and adjoint-valued hypermultiplets. While this UV gauge the-

ory is not conformal, it flows to a two-dimensional CFT in the low energy

limit.

The moduli space of the UV theory has two branches: the Coulomb branch

[73] and the Higgs branch [74], with non-zero vacuum expectation of the scalars

in the vector- and hyper-multiplets, respectively. In the UV description the

Higgs branch represents the dynamics of D1 branes inside the D5 branes,

while on the Coulomb branch the D1 branes separate from the D5 branes. In

the low energy limit the Higgs branch CFT can be understood in terms of

the D1-branes becoming instantons (of instanton number N1) in the SU(N5)

gauge theory living on the D5 branes [75]. The CFT is then given by a sigma-

model on the instanton moduli space, which is a deformation of the symmetric

product orbifold [76, 74, 77, 78]

(T4)N1N5/SN1N5
, (1.50)

where SN is the symmetic group. This CFT is conjectured to be dual to string

theory on AdS3 × S3 × T4.

Similarly to N = 4 SYM, the Higgs branch CFT admits a ’t Hooft ex-

pansion, now in powers of λ = N1
N5

, with non-planar diagrams suppressed by
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factors of 1/N2
1 [79]. In the planar limit

N1 →∞ , λ = N1
N5

= fixed (1.51)

integrability manifests in terms of a spin chain description, as one would ex-

pect from AdS5/CFT4. It was found that in the scalar sector, the 1-loop

dilatation operator of single-trace operators corresponds to the Hamiltonian

of an integrable homogeneous so(4) spin-chain.

Much less is known about the gauge theory duals beyond the pure R-R case.

AdS3 × S3 × T4 with pure NS-NS flux is the near-horizon limit of a F1/NS5

brane system, and for the special case of k = 1, i.e. the smallest amount

of quantized NS-NS charge, it was recently argued that the CFT dual is a

symmetric product orbifold [80, 81, 82, 83]. The conventional interpretation

of the mixed-flux AdS3 × S3 × T4 background is in terms of the near-horizon

limit of bound states of D1/D5- and F1/NS5-branes carrying R-R and NS-

NS charges, respectively [84]. However, [85] offers an alternative picture: the

mixed-flux action is equivalent to the pure NS-NS theory with an R-R modulus

turned on, upon identifying q and q̃ as

q = k
α′

R2 , q̃ = −gsc0k
α′

R2 . (1.52)

where k is quantized in integer units and c0 is continuous.

Finding the CFT2 dual of IIB strings on AdS3 × S3 × S3 × S1 also proved

to be a difficult problem [86, 87]. The R-symmetry of AdS3 × S3 × S3 × S1 is

su(2)4, and the superconformal algebra is enhanced to a large N = (4, 4), as

opposed to the small N = (4, 4) algebra of AdS3 × S3 ×T4 with R-symmetry

su(2)2 [88]. The most promising candidate is based on a brane system with

N = (0, 4) supersymmetry. The IR fixed-point of the corresponding gauge

theory is conjectured to be a CFT with large N = (4, 4) superconformal

symmetry, and a central charge matching that of the holographic dual of

AdS3 × S3 × S3 × S1 [89]. More recently it was proposed that, for a special

case of the brane charges, the dual CFT is of symmetric orbifold type [90, 91].
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1.2.2 Coset models and Integrability

Encouraged by the success of the integrability approach for AdS5/CFT4, it is

natural to ask whether Bethe ansatz techniques could be used to calculate the

quantum spectrum of AdS3 theories. As we have seen above, integrability, at

least at the classical level, follows from the formulation of string theory as a

supercoset sigma-model [92] with a Z4 grading (1.31) [23]. It turns out that for

a special class of cosets, where the superisometry group is the direct product

of two identical supergroups G ∼= H ×H, there is a natural Z4 automorphism

of the Lie superalgebra g = h⊕h, given by a combination of the fermion parity

operator (−1)F and the permutation of the two factors [69]:

Ω =

 0 id

(−1)F 0

 . (1.53)

Furthermore, we see that the invariant subspace is the diagonal bosonic sub-

algebra, which is isomorphic to the bosonic part of a single factor

h0 = {(X,X)|X ∈ hbos} ∼= hbos . (1.54)

Consequently, the bosonic sector of such a supercoset is isomorphic to the

bosonic subgroup of a single factor

(H ×H/H0)bos
∼= Hbos ×Hbos/Hbos ∼= Hbos . (1.55)

In fact, the maximally supersymmetric AdS3 string theories can be written

as supercoset sigma-models of this direct product type. String theory on

AdS3×S3×T4 gives rise to the small N = (4, 4) superconformal algebra with

rigid part psu(1, 1|2)2 [78], while string theory on AdS3 × S3 × S3 × S1 leads

to the large N = (4, 4) superconformal algebra, whose rigid part is d(2, 1;α)2

[86, 61], with the parameter determined by the geometry α = cos2ϕ. We have

already pointed out that in the ϕ → 0 limit one of the spheres is blown up,

and after recompactification on a torus we get the AdS3×S3×T4 background.

It is worth mentioning that this limit has a clear interpretation in terms of

the superisometry algebras: the α → 1 degeneration of d(2, 1;α) contracts to

psu(1, 1|2) plus some abelian factors.
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This motivates the formulation of superstring theory on AdS3 × S3 as a

supersymmetric coset model on [93, 92]

PSU(1, 1|2)× PSU(1, 1|2)
SU(1, 1)× SU(2) , (1.56)

while the equivalent description of AdS3 × S3 × S3 strings is in terms of the

coset representation [69]

D(2, 1;α)×D(2, 1;α)
SU(1, 1)× SU(2)× SU(2) . (1.57)

As a quick check, we see that the bosonic subspaces, or equivalently the man-

ifolds of the bosonic subgroups of a single factor (1.55), are isomorphic to

SU(1, 1)× SU(2)
(
× SU(2)

)
' AdS3 × S3

(
×S3

)
. (1.58)

Note that in view of the AdS3/CFT2 duality, this is not surprising: the two-

dimensional conformal algebra is a two-fold tensor product of independent

algebras acting on left-, and right-movers, hence we expect all appropriate

cosets to be of this two-fold product form.

Missing modes. It is not immediately clear if the supercoset models (1.56),

(1.57) are capable of describing the type IIB Green-Schwarz superstring on

the ten-dimensional AdS3 backgrounds, because of the missing flat directions.

These missing bosonic modes have to be added by hand, by way of an in-

dependent worldsheet CFT on top of the coset sigma-model. In the hybrid

formalism, assuming conformal gauge, this is permitted as long as the total

central charge vanishes [65]. In the general GS action, however, two issues

arise. Firstly, a priori all (10d) bosons couple to all fermions through the

kinetic term, hence the bosons corresponding to the flat directions must de-

couple in a non-trivial way. Secondly, there are 16 fermions (twice the number

of supercharges in the psu(1, 1|2) or d(2, 1;α) superalgebras) in either of the

supercosets compared to the 32 fermions in the ten-dimensional type IIB GS

action.
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The solution to both of these problems lies in realising that, because of

the fermionic κ-symmetry, half of the 32 GS fermions are unphysical anyway.

In a paper essentially kicking off the analysis of AdS3/CFT2 integrability,

Babichenko, Stefanski and Zarembo showed that in a special κ-gauge the S1

factor decouples from the rest of AdS3 × S3 × S3 × S1 and the resulting κ-

fixed GS action is equivalent to the coset (1.57) plus one free boson [69]. The

corresponding result for AdS3× S3×T4 can be obtained by taking the α→ 1

limit.

Mixed flux. A special property of AdS3 string theories, when compared to

their higher dimensional counterparts, is that the three-form preventing AdS3

from collapse can be an arbitrary combination of R-R and NS-NS fluxes. In

the sigma-model action the NS-NS flux should correspond to a topological

Wess-Zumino (WZ) term [94, 95]. We have seen that the Z4-grading of the

coset ensures integrability, however, this alone will not guarantee that the WZ

action can be defined [96].

A superspace is called a permutation coset if its bosonic section is also a

group manifold, and in this case the WZ term can always be constructed [72].

As we have seen above, the supercosets for both AdS3 backgrounds are of

two-fold product form, and the bosonic subspace is isomorphic to the bosonic

subgroup of a single factor (1.55), therefore it is indeed a group manifold. The

WZ term that one needs to add to the coset action (1.33) takes the form

SWZ = q

∫
B
d3x εabc Str

(2
3J

(2)
a J

(2)
b J (2)

c + J (1)
a J

(3)
b J (2)

c + J (3)
a J

(1)
b J (2)

c

)
,

(1.59)

where B is a three-dimensional manifold whose boundary is the string world-

sheet. It was shown by Cagnazzo and Zarembo [72] that the sigma-model

remains integrable10 after the addition of the Wess-Zumino term to the action

if the parameters satisfy

κ2 + q2 = 1 . (1.60)

Moreover, the conditions for integrability, κ-symmetry and conformal invari-

10 For integrability to hold in the more general Z4-invariant sense, one needs to slightly
modify the definition of the supertrace [97]. This is explained in more detail a few paragraphs
below.
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ance are equivalent to each other. From here on we will use the more customary

mixed-flux notation for this specific κ value

κ = q̃ ≡
√

1− q2. (1.61)

1.2.3 Massive and massless modes

A novel feature of AdS3 string theories is the presence of massless as well as

massive excitations. Near-BMN expansion [69] reveals that string theory on

AdS3 × S3 × T4 has elementary excitations with masses m = 0, 1, while for

the AdS3 × S3 × S3 × S1 background one finds states of masses m = 0, sin2ϕ,

cos2ϕ, 1. The massless bosons of AdS3×S3×T4 come from the T4 directions,

while for the AdS3 × S3 × S3 × S1 theory one massless boson comes from the

S1 and the other results from the freedom of choosing a relative angle between

the three-spheres at which the light-like BMN geodesic is taken.

Massive modes. As techniques allowing for incorporation of the massless

modes into the the AdS3 integrability scheme were not immediately available,

initial efforts were limited to the more straightforward adaptation of well-

established AdS5 methods for the massive modes of the spectrum. For the

pure R-R AdS3 × S3 × S3 × S1 background, the (massive) finite-gap equations

were derived entirely in terms of the group-theory data [69]. Building on this,

an all-loop BA was proposed for strings on AdS3 × S3 × S3 × S1, valid for all

values α, and also for AdS3 × S3 × T4 [70]. In the same paper, investigating

the weakly-coupled limit of these BAs, short-range integrable d(2, 1;α)2 and

psu(1, 1)2 spin-chains were constructed. These spin-chains are alternating and

homogeneous, respectively, and provide valuable hints about the CFT2 duals
11.

The all-loop S-matrix (for massive modes) of the alternating d(2, 1;α)2

spin-chain can be bootstrapped from its symmetries [98]. This procedure is

conceptually very similar to the construction for N = 4 SYM in AdS5/CFT4

[30], the main difference being that the spin-chain vacuum in this case has

a (centrally extended) residual su(1|1)2 symmetry algebra. In fact the S-

matrix and representations are just projections from su(2|2) to su(1|1)2. Then,
11 As opposed to the AdS5 case, these spin-chains are not derived from the actual CFTs

(in the planar limit), but rather conjectured from the symmetries.
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using this all-loop S-matrix, a set of modified quantum Bethe equations were

proposed for the system [99]. Both the S-matrix and the BA involve four

undetermined scalar factors that play a role similar to the dressing phase of

AdS5×S5. Imposing crossing symmetry it was found that these scalar factors

must differ from the BES dressing phase [35], but in the semiclassical limit they

reduce to a suitable generalisation of the AFS phase [26]. Furthermore, these

phases introduce non-trivial processes between magnons of different masses,

a feature unaccounted for in [69, 70]. It is important to mention that these

all-loop results are in agreement with the semiclassical calculations using the

d(2, 1;α) algebraic curve of [69]. In particular, it was found that the one-loop

S-matrix agrees with the non-perturbative result [98], and so does the one-loop

dressing phase [100, 101] with the outcome of [99].

In a similar manner, the all-loop S-matrix and Bethe equations for the

massive modes of IIB string theory on AdS3 × S3 × T4 were derived from the

symmetries of the homogeneous psu(1, 1|2)2 spin-chain, up to two antisym-

metric scalar factors in [102]. These dressing phases were then determined by

solving the crossing relations and studying their singularity structure [103].

Just like for the d(2, 1;α) spin-chain, the solutions differ from the BES phase,

but at strong coupling to leading order they both reduce to the AFS phase. At

next-to-leading order, however, they differ from one-another, only their sum

reproducing the HL phase [37].

While integrability of AdS3 string theories with mixed flux was demon-

strated in [72], the WZ term (1.59) brakes the explicit Z4 symmetry, obscuring

the generalisation of standard integrability techniques, such as the algebraic

curve and the finite-gap equations, to these backgrounds. A way around this

issue is to introduce a non-dynamic, yet Z4-graded factor into the supercoset

action, such that the Lax connection still obeys standard Z4 relations [97],

allowing for the construction of finite-gap equations for the massive sector of

mixed-flux AdS3 × S3 × T4. In the same paper an all-loop BA was proposed

using the massive worldsheet S-matrix of [104], and taking the thermodynamic

limit, this BA was shown to reproduce the finite-gap equations. Using semi-

classical quantisation of the algebraic curve, the one-loop dressing phases were

also predicted.
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The fact that the coset sigma-model only describes the AdS3 GS actions

in a specific fermionic gauge [69] somewhat obscures the universality of inte-

grability. In fact, it was found that the non-gauge fixed AdS3 × S3 × S3 × S1

GS string is also integrable to quadratic order in fermions, by constructing the

flat Lax connection from the worldsheet Noether currents [71]. Subsequently,

the direct worldsheet calculation of the S-matrix [105] was found to be in

agreement with the exact results [98], while for the dressing phase it man-

aged to reproduce the results of [101]. However, comparing the perturbative

(worldsheet) results of [106, 101, 105] to the exact dressing phases of [103], one

finds a discrepancy. This was later argued to be due to the effect of wrapping

interactions12 of massless modes [107]. Although the exact difference was not

reproduced, this is a remarkable thought: it is necessary to include massless

particles in order to understand the massive sector in the quantum theory.

Perturbative worldsheet calculations were also carried out for the mixed-

flux backgrounds. Assuming that integrability holds at the quantum level,

Hoare and Tseytlin first calculated the tree-level S-matrix for the massive

spectrum of mixed-flux AdS3×S
3×T4 in uniform light-cone gauge [108], then,

by analysing the constraints of symmetry, they proposed an exact massive

worldsheet S-matrix [104], generalising the results of [102] to q 6= 0.

Massless modes. Massless excitations move at the speed of light on the

worldsheet, therefore scattering between particles of the same chirality cannot

take place, and in general a relativistic treatment requires a more abstract

notion of an S-matrix [109]. This difficulty in incorporating massless modes

into the integrability scheme presented an early challenge to understanding the

complete AdS3/CFT2 duality using integrable methods. Initial speculations

focused on the α→ 0 limit of the alternating d(2, 1;α)2 spin-chains [70, 110],

since in this limit two of the light modes of the AdS3 × S3 × S3 × S1 theory

(from the worldsheet sigma model perspective at least) smoothly transform

into massless modes of AdS3 × S3 × T4.

It turns out that the traditional way in which the Virasoro constraint had

12 These interactions “wrap around” the spin-chain. In the decompactification limit they
are exponentially supressed for massive modes, but (surprisingly) sub-leading order for the
massless sector.
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been imposed in the finite gap construction [69] is indeed too strict. After

identifying a precise, yet less restrictive condition, the massless modes were

successfully incorporated into the finite-gap equations [111]. For strings on

AdS5 × S5 this new condition reduces to the old one previously used in the

literature. With this revised d(2, 1;α) algebraic curve, it became possible to

study not only spinning string configurations probing the flat directions of

AdS3 × S3 × S3 × S1, but also the massless fermions [112].

Complete spectrum. The method that managed to fit both massive and

massless excitations into the integrability machinery was the (worldsheet) off-

shell symmetry algebra construction for the string S-matrix. Based on the

work of Arutyunov, Frolov and Zamaklar for AdS5 × S5 [38, 39], it was first

applied to the pure R-R AdS3 × S3 × T4 in [113, 114]. Instead of using the

coset sigma model, the starting point of this construction is the full GS action,

which automatically includes the massless modes. The off-shell (i.e. lifting the

level-matching condition that would rule out single-magnon states) symmetry

algebra is constructed from the worldsheet Noether currents, and from this

symmetry it is then possible to determine the non-perturbative S-matrix, up

to four independent dressing factors. This analysis was further extended to

AdS3 × S3 × T4 with mixed three-form flux in [115].

The corresponding calculations for strings on mixed-flux AdS3 × S3 ×

S3 × S1 were carried out in [116]. Fixing light-cone gauge results in the cen-

trally extended psu(1|1)2
c.e. off-shell symmetry algebra, from which the non-

perturbative S-matrix of worldsheet excitations can be derived, as usual, up

to a number of phase factors satisfying the crossing equations. In contrast to

the AdS3 × S3 × T4 theory, the presence of lighter excitations (m = α, 1− α)

prompts the question whether the heavy modes (m = 1) could be bound states

or composites. In fact, this question has not been satisfactorily answered to

date.

1.2.4 Giant magnons

Quantum integrability, as we mentioned before, is characterised by diffraction-

less factorised scattering of asymptotic excitations on the string worldsheet.
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From this perspective, giant magnons in AdS3/CFT2 were first investigated by

David and Sahoo [117]. They noted that the AdS5×S
5 classical string solution

of Hofman and Maldacena [41] is also a solution on AdS3 × S3 (as long as the

latter is supported purely by R-R flux through the 3-sphere), since they only

require an R× S2 subspace that is available in both geometries. Arguing that

it is a BPS states in a centrally extended su(1|1)2 superalgebra, they found the

giant magnon dispersion relation, which was periodic in the worldsheet mo-

mentum. In a follow-up paper [118] they derived, from the symmetries of the

system, the S-matrix for magnon scattering up to a phase. Using semiclassical

methods this phase was calculated to sub-leading order in the strong coupling

expansion, also demonstrating in the process that the dispersion relation is

one-loop exact, in accordance with the BPS nature of the giant magnons.

The giant magnon on mixed-flux AdS3 backgrounds will be presented in

great technical detail in chapter 2, here we just give a brief summary of the

relevant literature. Similarly to the AdS5/CFT4 duality, the symmetry algebra

can be used to determine both the S-matrix and the all-loop magnon disperison

relation [102, 104, 115]

ε± =

√(
m± q

√
λ

p
2π

)2
+ 4 q̃2 h2 sin2 p

2 . (1.62)

One of the main differences compared to AdS5/CFT4 is that the coupling h

will receive quantum corrections, and

h =
√
λ

2π (1.63)

only in the classical string limit. The excitations are of mass m = 1, 0 for

AdS3×S3×T4 and m = 0, sin2ϕ, cos2ϕ, 1 for AdS3×S3×S3×S1. The mixed-

flux AdS3 × S3 × T4 dyonic giant magnon was found by Hoare, Stepanchuk

and Tseytlin [119], with the dispersion relation

E − J1 =
√

(J2 ± qhp)2 + 4 q̃2 h2 sin2 p
2 , (1.64)

where E is the spacetime energy and J1, J2 are two angular momenta on the S3.

They also noted that upon semiclassical quantization J2 takes integer values,
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and the lowest J2 = 1 matches the quantum dispersion relation (1.62) if we

take the classical value for h. Just like in the AdS5 case, there are a number of

semiclassical checks on these string solutions. The 1-loop worldsheet S-matrix

has been determined from multi-soliton scattering states in [120], in agreement

with the finite-gap calculations of [97], and the unitarity-cut based conjectures

for the 1-loop phases in [121, 122]. The 1-loop correction to the magnon energy

can also be calculated from the algebraic curve [123], or directly from the GS

action [71, 124].

The off-shell residual symmetry algebras of AdS3 × S3 × T4 and AdS3 ×

S3 × S3 × S1 are the centrally extended psu(1|1)4 [102, 114, 113, 115] and

the centrally extended su(1|1)2 [98, 116], and as a BPS state, the magnon

must transform in 4 and 2 dimensional short multiplets of these superalgebras,

respectively. Therefore, the mixed-flux magnon on AdS3×S3×T4 and AdS3×

S3×S3×S1 should have 4 and 2 fermion zero modes. In chapter 3 we are going

to adapt the arguments of Miinahan [53] to the mixed-flux AdS3 backgrounds

to find these fermion zero modes, and use them to construct the odd generators

of the residual algebras. In chapter 4 we consider the complete spectrum of

fluctuations around the mixed-flux magnon, similar to the AdS5 calculations

of [54].

1.2.5 Recent developments

The AdS3/CFT2 duality is an area of active research with many open ques-

tions. Our understanding of the CFT duals, especially beyond the pure R-R

case, is still somewhat lacking, for the pure NS-NS theory with smallest quan-

tized charge (k = 1) they have only recently been argued to be symmetric

product orbifolds [80, 81, 82, 83]. Semiclassical methods continue to be useful

in probing the string theory side, present thesis being one example, or the

calculation of one-loop corrections to rigid spinning string dispersion relations

in [125], it seems, however, that massless modes cannot be captured in the

semiclassical limit. Instead, to understand these elusive modes we need non-

perturbative methods, like the low-energy integrable massless S-matrix and

TBA for AdS3 × S3 × T4 [126, 127, 128], based on the earlier observation of

non-trivial massless scattering in the BMN limit [129].
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There have been recent advances in our understanding of the protected

spectrum of AdS3/CFT2 using integrable methods [130, 131]. The protected

spectrum for AdS3 × S3 × T4 agrees with the older results of [132], while the

AdS3 × S3 × S3 × S1 case was independently derived using supergravity and

WZW methods in [133].
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Solitons of integrable
AdS/CFT theories

Solitons are particle-like solutions of integrable field theories, whose dynamics

can be captured by a small number of collective degrees of freedom. Quanti-

zation of these collective coordinates [134, 135, 136, 137] provides a window

into regimes of the quantum theory not directly accessible to perturbation

methods. Our main focus in this chapter will be the giant magnon, a classical

string solution corresponding to the massive elementary excitations in various

instances of AdS/CFT. The chapter is structured as follows.

In section 2.1 we present a detailed semiclassical analysis of the Hofman-

Maldacena giant magnon [41], a soliton of the integrable AdS5×S5 worldsheet

sigma-model [20], together with its fermion zero modes and complete fluctua-

tion spectrum. This serves as a basis of comparison for section 2.2, where we

give a classical description of the giant magnon on mixed-flux AdS3× S3×T4

and AdS3×S
3×S3×S1 backgrounds. The semiclassical analysis of this mixed-

flux AdS3 magnon is the main topic of this dissertation, and will be presented

in subsequent chapters.

2.1 AdS5/CFT4

In this section we first review the symmetries of AdS5/CFT4, paying particu-

lar attention to the representations of the off-shell residual symmetry algebra.

We then write down the type IIB superstring action on AdS5 × S5, and after

a short general discussion of its classical solutions, move on to the detailed

presentation of the giant magnon of Hofman and Maldacena [41]. Finally, we

give a summary of two important papers dealing with the semiclassical quan-

tization of the giant magnon: the fermion zero mode analysis of Minahan [53],

and the calculation of the complete perturbation spectrum, carried out by

Papathanasiou and Spradlin [54].
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2.1.1 Symmetries

The full symmetry algebra of AdS5/CFT4 is psu(2, 2|4), but in the excita-

tion picture, considering asymptotic states in the infinite spin limit, the spin-

chain/BMN vacuum is manifestly invariant only under the residual subalge-

bra psu(2|2)2 nR. The excitations transform in a (2|2) representation of each

psu(2|2) factor, which we will write down below. It turns out, however, that

psu(2|2)2 n R is too limited to describe these off-shell single-particle states.

We can get around this problem by enlarging the residual algebra by two

unphysical central charges (that will vanish on-shell), essentially introducing

a free continuous degree of freedom into the (2|2) representation, capturing

the arbitrary momentum of an off-shell particle [30]. An excellent review of

this construction can be found in [138], below we just present the centrally

extended su(2|2)2 algebra and its short representations.

The centrally extended su(2|2) algebra

The superalgebra su(2|2)2 consists of the su(2) × su(2) rotation generators

Rab, Lαβ, the supersymmetry generators Qαb, Saβ, and the central charge C,

and its non-trivial commutators are

[Rab,Jc] = εcbJa − 1
2εabJc ,

[Lαβ,Jγ ] = εγβJα − 1
2εαβJγ ,

{Qαa,Sbβ} = εαβRab − εabLαβ − εαβεabC ,

(2.1)

where J is any generator with the appropriate index. We can extend this

algebra by two additional central charges P, P† to get su(2|2) nR

{Qαa,Qβb} = εαβεabP ,

{Saα,Sbβ} = εαβεabP
† .

(2.2)

Short representation. The su(2|2)2
c.e. superalgebra has a 2|2-dimensional

representation with two bosons |φa〉 and two fermions |ψα〉 transforming as

Rab |φc〉 = εcb |φa〉 − 1
2εab |φc〉 , Lαβ |ψγ〉 = εγβ |ψα〉 − 1

2εαβ |ψγ〉 ,

Qαa |φb〉 = a εba |ψα〉 , Qαa |ψβ〉 = b εαβ |φa〉 ,

Saα |φb〉 = c εab |ψα〉 , Saα |ψβ〉 = d εβα |φa〉 ,

(2.3)
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where the closure of the algebra further requires ad − bc = 1. For all four

states χ = φa, ψα the eigenvalues of the central charges are

C |χ〉 = 1
2(ad+ bc) |χ〉 ,

P |χ〉 = ab |χ〉 ,

P† |χ〉 = cd |χ〉 ,

(2.4)

and they satisfy the shortening condition

C2 −PP† = 1
4 . (2.5)

On physical states, transforming under the su(2|2) algebra, the central charges

P,P† have zero eigenvalues, i.e. ab = cd = 0. The two solutions satisfying

these conditions have C = ±1
2 , which is too restrictive to capture asymptotic

states. However, multiparticle states built from these off-shell excitations can

easily be made physical, since only the overall action of P,P† must be trivial.

Representation coefficients. Using the fact that total momentum of phys-

ical states vanishes, it can be shown that the values of the central charges for

an off-shell one-particle representation are given by [30]

P = ςh
2
(
e−ip − 1

)
,

P† = h
2ς
(
e+ip − 1

)
,

(2.6)

where p is the momentum, and h is the effective string tension, and ς is an

arbitrary complex factor, which can be scaled away for single-particle rep-

resentations, but plays an important role for multi-particle tensor-product

representations. Then, from the shortening condition (2.5) we get

C = ±1
2

√
1 + 4h2 sin2 p

2 . (2.7)
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Noting that C is half the Hamiltonian in the full theory, this is equivalent to

the celebrated magnon disperison relation

ε =
√

1 + 4h2 sin2 p
2 . (2.8)

These formulas can also be derived from the light-cone gauge AdS5 × S5 su-

perstring with the level matching condition relaxed [38].

The centrally extended su(2|2)2 algebra

The centrally extended su(2|2)2 algebra consists of two copies of su(2|2)2
c.e.

(2.1)–(2.2) sharing the same three central charges

{
Rab,Lαβ,Qαb,Saβ,Rȧḃ,Lα̇β̇,Qα̇ḃ,Sȧβ̇,C,P,P

†}. (2.9)

In other words

su(2|2)2
c.e. ' psu(2|2)2 nR3 . (2.10)

It has 16 dimensional short representations that are tensor products of two

copies of (2.3), sharing C,P and P†. The construction of a similar tensor

product representation will be presented for the AdS3×S
3×T4 off-shell residual

algebra psu(1|1)4
c.e. in section 2.2.1.

2.1.2 Bosonic string action

As we discussed in chapter 1, the AdS5 × S5 Green-Schwarz action [139] can

be written in the explicitly PSU(2, 2|4)-symmetric Metsaev-Tseytlin formula-

tion [20], as a sigma model on the supercoset

PSU(2, 2|4)
SO(1, 4)× SO(5) . (2.11)

While the explicit integrability of this formalism allows one to describe a

large class of (finite-gap) classical string solutions in terms of the associated

spectral curve [24, 27], it also somewhat obscures the physical interpretation

of the solutions. It is therefore useful to look directly at the Green-Schwartz

action, its symmetries and solutions. This is the aim of this subsection.
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Geometry of AdS5 and S5

Before we write down the action let us look at the definition of AdS5 and S5

geometries, and their coordinate parametrizations.

AdS5. The five dimensional anti-de Sitter space can be represented as a

hyperboloid

ηµνY
µY ν = −Y 2

0 + Y 2
1 + Y 2

2 + Y 2
3 + Y 2

4 − Y
2

5 = −1, (2.12)

in R2,4 with the metric

ds2 = ηµν dY µdY ν , ηµν = diag(−1,+1,+1,+1,+1,−1), (2.13)

or equivalently in C3

(Z0, Z1, Z2) = (Y5 + iY0, Y1 + iY2, Y3 + iY4) : |Z0|
2 − |Z1|

2 − |Z2|
2 = 1.

(2.14)

It is useful to solve this in terms of 5 independent global coordinates

Z0 = cosh ρ eit, Z1 = sinh ρ cos γ eiψ1 , Z2 = sinh ρ sin γ eiψ2 , (2.15)

where (γ, ψ1, ψ2) have standard S3 periodicities, and AdS radius takes values

ρ ∈ [0,∞). Note that t ∈ [0, 2π) already covers the hyperboloid once, and

in the context of AdS/CFT it is standard to decompactify the t direction to

avoid closed time-like curves. In other words we cut the AdS space open and

take t ∈ (−∞,∞). For the simpler case of AdS2 this is depicted in Figure 2.1.

With these coordinates the metric becomes

ds2 = dρ2 − cosh2ρ dt2 + sinh2ρ
(
dγ2 + cos2γ dψ2

1 + sin2γ dψ2
2
)
. (2.16)
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Figure 2.1: Image of a sphere and universal cover of AdS space

S5. The 5-sphere is the hypersurface

ηijX
iXj = X2

1 +X2
2 +X2

3 +X2
4 +X2

5 +X2
6 = 1, (2.17)

in R6 with the metric

ds2 = ηij dX
idXj , ηij = diag(+1,+1,+1,+1,+1,+1). (2.18)

Equivalently, in C4 it is given by

(Z1, Z2, Z3) = (X1 + iX2, X3 + iX4, X5 + iX6) : |Z1|
2 + |Z2|

2 + |Z3|
2 = 1,

(2.19)

which can be solved in terms of the Hopf coordinates

Z1 = sin θ cosϕ eiφ1 , Z2 = sin θ sinϕ eiφ2 , Z3 = cos θ eiφ3 , (2.20)

where the ranges of θ and ϕ are both [0, π/2], and (φ1, φ2, φ3) all take values

in [0, 2π). With these coordinates the metric becomes

ds2 = dθ2 + cos2θ dφ2
3 + sin2θ

(
dϕ2 + cos2ϕ dφ2

1 + sin2ϕ dφ2
1
)
. (2.21)

Bosonic action

The general form of the bosonic string sigma-model action is

SB = −h
2

∫
M

dσdτ
√
−γγabGMN (X) ∂aX

M∂bX
N , (2.22)
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where XM (τ, σ), M = 0, . . . , 9 are the embedding coordinates, GMN is the

target space metric with signature (−,+, . . . ,+), and γab is the independent

2d metric on the worldsheet M with signature (−,+). The ranges of σ and

τ are taken to be (−π, π) and (−∞,∞) respectively, with periodic boundary

conditions on σ.

Equations of motion for γab are equivalent to a vanishing worldsheet energy-

momentum tensor and give the Virasoro constraints

T ab = − 1√
−γ

δSB
δγab

= h
2
(
gab − 1

2γ
abγcdg

cd
)

= 0,

gab ≡ GMN∂aY
M∂bY

N .

(2.23)

Conformal gauge. The action (2.22) is invariant under diffeomorphisms

(σ, τ)→ (σ̃, τ̃) and this is a gauge symmetry of the worldsheet sigma-model. It

is a unique feature of 2-dimensional (Lorentzian or Riemannian) manifolds that

there exist diffeomorphisms transforming the metric to a globally conformally

flat form1

γab(σ, τ) = Ω2(σ, τ)ηab,

√
−γγab = ηab.

(2.24)

This choice is referred to as conformal gauge.

Conformal gauge action. Fixing conformal gauge, the action (2.22) for

AdS5 × S5 bosonic strings can be written as

S = −h
2

∫
M

d2x
[
ηab∂aY

µ∂bYµ + Λ̃ (Y 2 + 1)
]

+
[
ηab∂aX

i∂bXi + Λ (X2 − 1)
]
,

(2.25)

where ηab = diag(−1,+1), and the Lagrange multipliers Λ̃,Λ enforce the em-

bedding coordinates Y ∈ R4,2, X ∈ R6

Y 2 = −1, X2 = 1, (2.26)

1 This can be understood heuristically by noting that γab, being symmetric, has three
functions’ worth of information, while a diffeomorphisms has two functions’ worth. One can
be used to eliminate the off-diagonal part of γab while the other might fix the ratio of the
diagonal elements, leaving us with a single functional degree of freedom, Ω2(σ, τ).
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to lie on AdS5 and S5 respectively. The solutions must satisfy the sigma-model

equations of motion

(∂2 − Λ̃)Y = (∂2 − Λ)X = 0,

Λ̃ = −Y · ∂2Y,

Λ = +X · ∂2X,

(2.27)

and the conformal gauge Virasoro constraints (2.23)

(∂0Y )2 + (∂1Y )2 + (∂0X)2 + (∂1X)2 = 0,

∂0Y · ∂1Y + ∂0X · ∂1X = 0.
(2.28)

Closed strings are defined on a cylinder, with periodic boundary conditions

Y µ(τ, σ + 2π) = Y µ(τ, σ), Xi(τ, σ + 2π) = Xi(τ, σ). (2.29)

The action (2.25) is invariant under the SO(2, 4) rotations of Y µ and SO(6)

rotations of Xi with conserved charges

Sµν = h
∫ π

−π
dσ
(
YµẎν − Yν Ẏµ

)
, Jij = h

∫ π

−π
dσ
(
XiẊj −XjẊi

)
, (2.30)

There is a natural choice for the Cartan basis of SO(2, 4)×SO(6), correspond-

ing to the 3+3 linear isometries of the AdS5 × S5 metric (2.16), (2.21)

E = S50, S1 = S12, S2 = S34,

J1 = J12, J2 = J34, J3 = J56,
(2.31)

namely E is the spacetime energy for translations in t, Si are AdS5 spins for

rotations in ψi, and Ji are S5 angular momenta corresponding to φi.

Strings on R ×S3. We will mostly be interested in strings moving on the

R×S3 subspace of AdS5×S5, where R refers to AdS3 time t, and S3 is a great

3-sphere within S5. It turns out that there is a residual gauge freedom even

after fixing conformal gauge (2.24), corresponding to conformal rescalings of

the metric, which in this case we can use to fix (for some constant κ)

t = κτ. (2.32)
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This is often referred to as static gauge, and with Hopf coordinates for S3 the

action can be written as

S = −h
2

∫
M

d2σ
[
∂aθ∂

aθ + sin2θ ∂aφ1∂
aφ1 + cos2θ ∂aφ2∂

aφ2
]
. (2.33)

The equations of motion read

θ̈ − θ′′ − sin θ cos θ
(
φ̇2

1 − φ
′2
1 − φ̇

2
2 + φ′22

)
= 0 ,

sin2θ
(
φ̈1 − φ

′′
1
)

+ 2 sin θ cos θ
(
θ̇φ̇1 − θ

′φ′1
)

= 0 ,

cos2θ
(
φ̈2 − φ

′′
2
)
− 2 sin θ cos θ

(
θ̇φ̇2 − θ

′φ′2
)

= 0 ,

(2.34)

which need to be supplemented with the Virasoro constraints

θ̇2 + θ′2 + sin2θ(φ̇2
1 + φ′21 ) + cos2θ(φ̇2

2 + φ′22 ) = κ2 ,

θ̇θ′ + sin2θ φ̇1φ
′
1 + cos2θ φ̇2φ

′
2 = 0 .

(2.35)

The energy E of R×S3 solutions is fixed by the static gauge condition (2.32)

E = 2πhκ, (2.36)

and the conserved angular momenta J1, J2 are given by

J1 = h
∫ π

−π
dσ sin2θ φ̇1, J2 = h

∫ π

−π
dσ cos2θ φ̇2. (2.37)

BMN string. The BMN geodesic is a point-like string moving along a great

circle of S3

θ = π

2 , φ1 = κτ, φ2 = 0, (2.38)

with conserved charges

E = J1 = 2πhκ, J2 = 0. (2.39)
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This solution can be regarded as the classical string vacuum, above which the

giant magnons represents the elementary excitations. It satisfies

E − J1 = 0, (2.40)

corresponding to zero energy2 in the excitation picture.

Approaches to constructing solutions. The simplest way of finding solu-

tions to the string equations (2.27) is to start with certain natural ansatze. The

semiclassical analysis of rigid multi-spin strings constructed using this method

served as a useful early test of the AdS/CFT correspondence [140, 141], and

in fact this is how Hofman and Maldacena first found the giant magnon [41].

There are also a number of integrability based methods for finding classical

strings. A large class of finite gap solutions can be constructed in terms of

theta-functions [142] using the spectral curve of the theory [24, 27]. From a

given (simple) solution one might generate new non-trivial ones using either

the dressing method3 [143], or Bäcklund transformations [144]. Examples

include scattering and bound states of giant magnons with several spins [145,

146], or single-spike strings [147, 148] and their scattering states with multiple

spikes [149].

Yet another approach to construct AdS5×S5 bosonic strings is to use their

equivalence to generalized sine-Gordon (non-abelian Toda) theories based on

the Pohlmeyer-reduction [150, 151, 152, 153, 154]. The basic idea is to intro-

duce, instead of the embedding coordinates (Y µ, Xi), a set of current-type vari-

ables that by their definition solve the Virasoro constraints (2.27). Given well-

studied solitonic solutions of these integrable generalized sine-Gordon models,

one can then invert the currents to find the corresponding string solution. For

example, the Pohlmeyer-reduced model for R × S3 is the complex SG model,

while AdS5 strings are equivalent to generalized sinh-Gordon models. The

two-spin generalization of the giant magnon was first found using this method

[43], but various other examples (scattering and bound states, spiky strings)

2 In uniform light-cone gauge the Hamiltonian is given by E − J1. This argument is
presented in section 2.2.2 for the more complicated case of mixed-flux AdS3, where the
action also includes a Wess-Zumino term.

3 A detailed explanation of the dressing method can be found in section 2.2.3.
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can also be obtained via Pohlmeyer-reduction [151, 155, 156, 157, 158, 159].

2.1.3 Giant magnon

As we have explained in section 1.1.4, the giant magnon is the string dual

of the elementary magnon excitation of the spin-chain. A single magnon is

only a physical state in the asymptotic limit, which on the string theory side

corresponds to the the Hofman-Maldacena limit [41]

E, J1 →∞ , E − J1, J2 = fixed , (2.41)

with decompactified worldsheet coordinates4

x = κσ , t = κτ , κ→∞ , x ∈ (−∞,+∞) . (2.42)

Changing to these coordinates, we can write the finite combinations of R× S3

charges as

E − J1 = h
∫ ∞
−∞

dx
(
1− sin2θ ∂tφ1

)
,

J2 = h
∫ ∞
−∞

dx cos2θ ∂tφ2.

(2.43)

Hofman-Maldacena giant magnon

The Hofman-Maldacena giant magnon is the R× S2 solution given by

Z1 = eit [b+ i tanhX ]√
1 + b2

, Z2 = sechX√
1 + b2

, (2.44)

or in terms of the Hopf coordinates

θ = arccot

 sechX√
1 + b2

 , φ1 = t+ arctan
[tanhX

b

]
, φ2 = 0, (2.45)

where

4 Slightly abusing notation, the target-space time coordinate is functionally the same as
the rescaled worldsheet time.
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X = γ(x− ut), T = γ(t− ux), γ = 1√
1− u2

, (2.46)

and the parameters are related by

b = uγ. (2.47)

The magnon is a kink moving on the worldsheet with speed u ∈ (0, 1). De-

compactification opens up the string, and the two endpoints of the magnon

move on the equator at the speed of light

x→ ±∞ : Z1 → exp
(
it± i∆φ1

2
)
, Z2 → 0 , (2.48)

where

∆φ1 = 2 arctan b−1 ∈ (0, π) (2.49)

is the angle between the string endpoints. A light-cone gauge argument, which

we will present for the mixed-flux AdS3 strings in section 2.2.2, shows that this

opening angle is in fact the worldsheet momentum of the magnon p = ∆φ1,

and the magnon can also be written as

Z1 = eit
[
cos p

2 + i sin p
2 tanhX

]
,

Z2 = sin p
2 sechX .

(2.50)

Conserved charges. Substituting the solution (2.45) into (2.43) we get

E − J1 = 2h√
1 + b2

, J2 = 0. (2.51)

Which we can express in terms of the opening angle/worldsheet momentum

(2.49)

E − J1 = 2h | sin p
2 | . (2.52)

This agrees with the dispersion relation (2.8) derived from supersymmetry,

exactly in the strong coupling, i.e. classical string limit.
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Dyonic giant magnon

Generalizing the HM giant magnon to have a second non-zero angular mo-

mentum on R× S3, we get the dyonic giant magnon [43]

Z1 = eit [b+ i tanhU ]√
1 + b2

, Z2 = eiV sechU√
1 + b2

, (2.53)

where, using the boosted coordinates (2.46)

U = cos ρX , V = sin ρ T , b = uγ sec ρ. (2.54)

The conserved charges (2.43) are

E − J1 = 2hγ sec ρ sin2 p
2 , J2 = 2h tan ρ sin2 p

2 . (2.55)

The extra parameter ρ ∈ (0, π2 ) controls the amount of J2 angular momentum,

and eliminating it we get the dispersion relation

E − J1 =
√
J2

2 + 4h2 sin2 p
2 . (2.56)

Upon semiclassical quantization5 J2 takes integer values, and we recover the

exact dispersion relation (2.8).

2.1.4 Fermion zero modes of the giant magnon

In this subsection we review the construction and semiclassical quantization

of the fermion zero modes of the AdS5 × S5 giant magnon, following [53].

The conformal gauge quadratic action describing fermion fluctuations about

classical string configurations is given by6 [160]

SF = h
∫

d2σ LF , LF = i
(
ηabδIJ − εabσIJ3

)
ϑ̄IρaDb ϑ

J , (2.57)

5 The argument is the same, up to trivial modifications, as the semiclassical quantization
of the second angular momentum J2 for the mixed-flux AdS3 magnon, which we present in
section 2.2.4.

6 For clarity, here we adopt the action as written in [53], which is related to the action in
[160] by a linear redefinition of the two spinors ϑ1

, ϑ
2. In later chapters, when considering

fermions of the AdS3 superstring, we take the action as given in [160] .
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where I, J = 1, 2, the ϑI are ten-dimensional Majorana-Weyl spinors, and ρa
are projections of the ten-dimensional Dirac matrices

ρa ≡ e
A
a ΓA , eAa ≡ ∂aX

µEAµ (X) . (2.58)

Xµ are the coordinates of AdS5 for µ = 0, 1, 2, 3, 4 and the coordinates of S5

for µ = φ, θ, 7, 8, 9, as evaluated on the magnon solution (2.45). The covariant

derivative is given by

Daϑ
I =

(
Daδ

IJ − i

2ε
IJΓ∗ρa

)
ϑJ , Γ∗ ≡ iΓ01234, Γ2

∗ = 1, (2.59)

where Da = ∂a + 1
4ω

AB
a ΓAB, and ωABa ≡ ∂aX

µωABµ is the spin connection

pulled back to the worldsheet. Changing coordinates to

X = γ(x− ut), T = γ(t− ux), (2.60)

the equations of motion for (2.57) become

(ρ0 − ρ1)
[
(1− u)γ

(
D + ∂T

)
ϑ1 − i

2Γ∗(ρ0 + ρ1)ϑ2
]

= 0 ,

(ρ0 + ρ1)
[
(1 + u)γ

(
D̃ − ∂T

)
ϑ2 − i

2Γ∗(ρ0 − ρ1)ϑ1
]

= 0 ,
(2.61)

where

D = ∂X + 1
2G Γφθ, D̃ = ∂X + 1

2G̃ Γφθ,

G = (1 + u) cosh2X − 1 + u2

sinh2X + u2 sechX ,

G̃ = −(1− u) cosh2X − 1 + u2

sinh2X + u2 sechX .

(2.62)

Fixing kappa symmetry. Kappa symmetry [161] is a local fermionic sym-

metry of the Green-Schwarz superstring action [139], ensuring supersymmetry

of the physical spectrum. As a result, half of the fermions in the action (2.57)

are unphysical. It can be shown that the nilpotent operators

(ρ0 + ρ1)2 = (ρ0 − ρ1)2 = 0 , (2.63)
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are exactly half rank, and commute with the covariant derivatives

[(ρ0 − ρ1), D] = [(ρ0 + ρ1), D̃] = 0. (2.64)

Consequently, they can be used to fix kappa-symmetry7. The spinors

Ψ1 = i(ρ0 − ρ1)ϑ1, Ψ2 = i(ρ0 + ρ1)ϑ2, (2.65)

have only half the degrees of freedom of ϑ1, ϑ2, but capture all the dynamics

in (2.61) as

(1− u)γ
(
D + ∂T

)
Ψ1 − i

2Γ∗(ρ̄0 − ρ0)Ψ2 = 0 ,

(1 + u)γ
(
D̃ − ∂T

)
Ψ2 − i

2Γ∗(ρ̄0 − ρ0)Ψ1 = 0 ,
(2.66)

where ρ̄0 = Γ∗ρ0Γ∗ = −ρ†0.

Normalizable zero modes. The zero mode solutions satisfy ∂T ΨJ = 0.

Inverting the first equation for Ψ2, and substituting back into the second, we

get the compact expression

( 1
tanhX D

)2
Ψ1 −Ψ1 = 0. (2.67)

Since kappa-fixing commutes with the covariant derivative (2.1.4), this is

equivalent to

(ρ0 − ρ1)
(( 1

tanhX D

)2
ϑ1 − ϑ1

)
= 0. (2.68)

In other words, we can first solve the equation without worrying about κ-

symmetry, and impose the projection Ψ1 = i(ρ0 − ρ1)ϑ1 at the end of the

calculation, to get the kappa-fixed normalizable zero modes

Ψ1 = i sechX
4
√

1− u

((
eiχΓ0 + e−iχΓφ

)
U+ +

(
e−iχΓ0 + eiχΓφ

)
U−
)
,

Ψ2 = − i sechX
4
√

1 + u
Γ∗Γφ

((
eiχ̃Γ0 + e−iχ̃Γφ

)
U+ +

(
e−iχ̃Γ0 + eiχ̃Γφ

)
U−
)
,

(2.69)

7 Kappa symmetry is discussed in much more detail in chapter 3, in relation to the fermion
zero modes of the AdS3 magnon.
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where the constant spinors satisfy ΓφθU± = ±iU±, and the phases are given

by

eiχ =
(sinhX + iu

sinhX − iu

)1/4
(tanhX + i sechX )1/2 ,

eiχ̃ =
(sinhX − iu

sinhX + iu

)1/4
(tanhX + i sechX )1/2 .

(2.70)

Zero mode quantization. The Majorana condition implies U− = U∗+, and

we can parametrize the solution in terms of the single Majorana-Weyl spinor

U = 1√
2(U+ +U−). Letting U depend on T , substituting the zero modes (2.69)

back into the action (2.57), and integrating over X we get the zero mode action

SF,0 = hγ
∫

dT
(
− i4U

T (Γ0 + Γφ)T (Γ0 + Γφ)∂T U
)
. (2.71)

The zero modes are parametrized by U . A general unconstrained 10-d MW

spinor has 16 real degrees of freedom, but U further satisfies the light-cone con-

dition (Γ0−Γφ)U = 0, which means that there are 8 real fermion zero modes,

as expected from representation theory. Writing U in terms of the SU(2|2)2

representations preserved by the the light cone condition, we can group its

components as Uαa and Ũα̇ȧ where the α, α̇ correspond to the SU(2)× SU(2)

isometry of the transverse piece of AdS5, while the indices a, ȧ correspond to

the SO(4) ' SU(2)× SU(2) symmetry of the transverse part of S5. Quantiza-

tion of these modes leads to the anti-commutators

{Uαa, Uβb} = 1
hγ εαβεab,

{Ũα̇ȧ, Ũβ̇ḃ} = 1
hγ εα̇β̇εȧḃ,

{Uαa, Ũβ̇ḃ} = 0.

(2.72)

It is then possible to construct the odd generators of the off-shell residual

algebra su(2|2)2
c.e. from these quantized zero modes. For the first su(2|2)c.e.

we can take

Qαa = ς1/2
(
A− B(−1)F

)
Uαa,

Saα = −ς−1/2
(
A+ B(−1)F

)
Uαa,

(2.73)
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where F is the fermion number operator,

A = h√
2

√ γ2

4h2 + 1 + 1

1/2

, B = h√
2

√ γ2

4h2 + 1− 1

1/2

. (2.74)

In agreement with (2.6) the central charges take the values8

P = ςh sin p
2 , P† = ς−1h sin p

2 , (2.75)

and of course

C = 1
2

√
1 + 4h2 sin2 p

2 . (2.76)

The generators for the other su(2|2)c.e. can be constructed from Ũα̇ȧ in the

same way.

2.1.5 Semiclassical quantization of the giant magnon

We finish the semiclassical analysis of the AdS5 × S5 giant magnon by pre-

senting explicit formulas for its complete spectrum of bosonic and fermionic

perturbations, as found in [54]. We will also discuss how these solutions can

be used to show that the one-loop correction to the magnon energy vanishes.

Bosonic fluctuations

We start from the AdS5 × S5 bosonic action in the form (2.25)

S = −h
2

∫
M

d2x
[
ηab∂aY

µ∂bYµ + Λ̃ (Y 2 + 1)
]

+
[
ηab∂aX

i∂bXi + Λ (X2 − 1)
]
,

(2.77)

where the embedding coordinates Y ∈ R4,2, X ∈ R6 satisfy the equations of

motion

(∂2 − Λ̃)Y = 0, Y 2 = −1,

(∂2 − Λ)X = 0, X2 = 1,
(2.78)

and the Lagrange multipliers take the classical values

Λ̃ = −Y · ∂2Y, Λ = +X · ∂2X. (2.79)
8 Note that the arbitrary scalings ς are different in (2.6) and (2.75).
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The giant magnon. As our bosonic background solution we take the Hofman-

Maldacena giant magnon (2.44), but with a general polarization vector ~n in the

transverse part of S5. We choose Y 0 and Y 5 to be the the timelike directions

on R4,2, take the equator of S5 along which the endpoints of the magnon move

to lie in the X5 −X6 plane, and denote the transverse coordinates X1, ..., X4

by the vector ~X. The magnon solution then takes the form

Y 0 + iY 5 = eit,

~X = ~n sin p
2 sechX ,

Z ≡ X5 + iX6 = eit
[
cos p

2 + i sin p
2 tanhX

]
,

(2.80)

where the magnon’s speed on the worldsheet is u = cos p
2 and the boosted

coordinates are

X =
(
x− t cos p

2
)

csc p
2 , T =

(
t− x cos p

2
)

csc p
2 . (2.81)

The Lagrange multipliers (2.79) evaluate to the classical values

Λ̃ = 1, Λ = 1− 2 sech2X . (2.82)

AdS5 fluctuation spectrum. For a classical solution Y , let us write the

perturbed solution as
Y + δ ỹ, (2.83)

where δ � 1 and the perturbation ỹ ∈ R4,2 is a bounded function of the

worldsheet coordinates. Substituting into (2.78), (2.79), the terms first order

in δ give us the perturbation equation

(∂2 − 1) ỹµ + (Y · ∂2ỹ)Y µ = 0, (2.84)

subject to the orthogonality constraint (to preserve the norm)

Yµ ỹ
µ = 0. (2.85)

For the giant magnon (2.80), orthogonality is automatic if we restrict to the

transverse coordinates in AdS5, and the equations become
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(∂2 − 1) ~̃y = 0, (2.86)

giving four free bosons of mass m = 1. Besides these, we find a fifth solution

along the time-like directions, satisfying

ỹ0 = −f sin t, ỹ5 = f cos t, ∂2f = 0. (2.87)

This massless mode, together with a similar S5 mode, is analogous to longi-

tudinal fluctuations in light-cone gauge, and in a proper quantization of the

AdS5× S5 action (2.77) these would be cancelled by ghosts. For our purposes

it is sufficient to simply omit them.

S5 fluctuation spectrum. Substituting the perturbed solution X+δ x̃ into

(2.78) we get the perturbation equation

(
∂2 − 1 + 2 sech2Y

)
x̃i − (X · ∂2x̃)Xi = 0, (2.88)

subject to
Xi x̃

i = 0. (2.89)

We will write the solutions in terms of the transverse perturbation vector ~̃x

and two complexified fluctuations

z = x̃5 + ix̃6, z̄ = x̃5 − ix̃6, (2.90)

where z̄ is not necessarily the complex conjugate of z, since x̃i can themselves

be complex. The fluctuations are of the plane-wave form

eikX−iωT f(X ), (2.91)

where f(Y) is a bounded profile, moving together with the magnon. Instead

of solving the equations (2.88) directly, the authors of [54] suggest that one

can construct the fluctuations using the dressing method9 [143, 144, 145]. A

magnon-breather scattering state may be constructed by dressing the breather

9 The dressing method will be presented in detail in section 2.2.3.
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solution, and expanding this scattering state in the breather momentum, we

get the perturbation as the subleading term.

One of the plane-wave solutions is the massless

~̃x = eikX−iωT ~n
(
k + ω cos p

2
)

sechX tanhX ,

z = −ieikX−iωT e+it [k − ω sinhX sinh(X + ip
2 )
]
sech2X ,

z̄ = +ieikX−iωT e−it
[
k − ω sinhX sinh(X − ip

2 )
]
sech2X ,

(2.92)

with dispersion relation
ω2 = k2. (2.93)

This mode, as explained beneath (2.87), will be omitted in string theory. The

remaining four physical fluctuations are parametrized by a polarization vector

~m in the transverse R4, and are given by

~̃x = eikX−iωT
[
~m(k + i tanhX )− ~n(n ·m)

(
k + ω cos p

2
)

sech2X
]
,

z = −ieikX−iωT e+it(n ·m)
[
k sinhX + ω sinh(X + ip

2 ) + i coshX
]
sech2X ,

z̄ = +ieikX−iωT e−it(n ·m)
[
k sinhX + ω sinh(X − ip

2 ) + i coshX
]
sech2X ,

(2.94)

with dispersion relation
ω2 = 1 + k2. (2.95)

Fermionic fluctuations

The fermion fluctuations are described by the same action (2.57) and equations

of motion (2.61) that we wrote down in section 2.1.4. The derivation of fermion

fluctuations deviates from the zero mode calculation after the equation (2.66)

for kappa-fixed spinors

Ψ1 = i(ρ0 − ρ1)ϑ1, Ψ2 = i(ρ0 + ρ1)ϑ2, (2.96)

which we present here as our starting point

(1− u)γ
(
D + ∂T

)
Ψ1 − i

2Γ∗(ρ̄0 − ρ0)Ψ2 = 0 ,

(1 + u)γ
(
D̃ − ∂T

)
Ψ2 − i

2Γ∗(ρ̄0 − ρ0)Ψ1 = 0 .
(2.97)
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Since all operators and covariant derivatives in these equations are explic-

itly independent of T , the simplification of (2.67) persists even for the case of

∂T ΨJ 6= 0, and we get the second order PDE

(ρ0 − ρ1)
[ 1

tanhX (D − ∂T ) 1
tanhX (D + ∂T )ϑ1 − ϑ1

]
= 0. (2.98)

Just like for the zero modes, kappa-fixing commutes with this equation, so we

can find solutions ϑ1 first, and apply the projection (2.96) at the very end.

Solving the equation for ϑ1. To solve the unprojected equation

1
tanhX (D − ∂T ) 1

tanhX (D + ∂T )ϑ1 − ϑ1 = 0, (2.99)

we transform it into a first order system

1
tanhX (D + ∂T )ϑ1 = ϑ̃1,

1
tanhX (D − ∂T ) ϑ̃1 = ϑ1,

(2.100)

where we intorduced a new field ϑ̃1. Making a Fourier ansatz for the T -

dependence ϑ1

ϑ̃1

 = e−iωT Θ(X ), (2.101)

and decomposing Θ into Γφθ eigenspinors

Θ = Θ+ + Θ−, ΓφθΘ± = ±iΘ±, (2.102)

the equations (2.100) can be written in the matrix form

(∂X −A±)Θ± = 0, A± =

i(ω ∓ G
2 ) tanhX

tanhX i(ω ± G
2 )

 , (2.103)

where G was defined in (2.62). The trick is to find an invertible transformation

Θ± → Θ′± = SΘ± (2.104)

such that the transformed equation
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(∂X −A
′
±)Θ′± = 0, A′± = (∂XS + SA±)S−1, (2.105)

has a diagonal A′±. For the details of this calculation the reader is referred to

the discussion in [54], here we just mention that, remarkably, there is a choice

of S that diagonalizes both A′+ and A′−

A′± =

i(ω ∓ G
2 ) 0

0 i(ω ∓ G
2 )

 , (2.106)

and the most general solution to (2.100) is

ϑ1 = sechX
√
ω cosh 2X + k eiα

[
e+iχU+ + e−iχU−

]
, (2.107)

where U± are constant Weyl spinors satisfying ΓφθU± = ±iU±, χ is the same

as (2.70), α is given in (2.110), and the dispersion relation is

ω2 = 1 + k2. (2.108)

The κ-fixed solution. After applying the projection (2.96) and substituting

back into (2.97) we get

Ψ1 = i csc p
4
√
ω + k sechX

√
ω cosh 2X + k eiα

[
e+iχΓ0 + e−iχΓφ

]
PU,

Ψ2 = sec p
4
√
ω − k sechX

√
ω cosh 2X − k eiβΓ∗Γφ

[
e+iχ̃Γ0 + e−iχ̃Γφ

]
PU,

(2.109)

where the phases χ, χ̃ can be found in (2.70), α and β are given by

eiα = eikX−iωT
(1 + iω sinh 2X

1− iω sinh 2X
1− ik tanh 2X
1 + ik tanh 2X

)1/4
,

eiβ = eikX−iωT
(1− iω sinh 2X

1 + iω sinh 2X
1− ik tanh 2X
1 + ik tanh 2X

)1/4
,

(2.110)

the dispersion relation is still

ω2 = 1 + k2, (2.111)

and half of the 16 (complex) degrees of freedom of the constant Weyl spinor

U are projected out by
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P = 1
2
[
(1− iΓφθ)− Γ0Γφ(1 + iΓφθ)

]
. (2.112)

It is shown in [54] that the Majorana condition can be consistently applied,

leaving in total 8 different kinds of fermionic fluctuations (each an infinite

family parametrized by the wavenumber k).

The 1-loop functional determinant

Using the explicit form of the fluctuations we can calculate the leading order

quantum correction to the classical magnon energy, based on well-established

techniques for the semiclassical quantization of solitons [162, 137, 136, 163].

The classical energy of the giant magnon is

εcl =
√
λ

π
| sin p

2 |, (2.113)

and expanding the exact relation

ε =
√

1 + λ

π2 sin2 p
2 = εcl (1 +O(1/λ)) (2.114)

we see that the first O(1/
√
λ) correction is zero, and we should expect a

vanishing one-loop correction from our fluctuation calculation.

The semiclassical one-loop correction comes from evaluating the functional

determinant ln det |δ2S| around the classical background, and can be calcu-

lated as
1
2
∑
i,k

(−1)F νi, (2.115)

where F is the fermion number operator, and νi are frequencies of small oscil-

lations around the classical solution, also called stability angles. We can cal-

culate these by following the method of Dashen, Hasslacher and Neveu [162].

Putting the system in a box of length L � 1, with periodic boundary con-

ditions x ∼= x + L, we see that our magnon solution will also be periodic in

worldsheet time, with period T = L/u, and the stability angle of a generic

fluctuation δφ can be read off from

δφ(t+ T, x) = e−iνδφ(t, x). (2.116)
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It is then a straightforward to determine the stability angles for the four

massive AdS5 bosons ỹ (these are simple plane waves eikX−iωT )

νk(ỹ) = L

u

ω + uk√
1− u2

, (2.117)

four physical S5 bosons x̃ (2.94)

νk(x̃) = L

u

ω + uk√
1− u2

+ 2 cot−1 k, (2.118)

and 8 fermion fluctuations Ψ (2.109)

νk(Ψ) = L

u

ω + uk√
1− u2

+ cot−1 k. (2.119)

Summing these, with a minus sign for fermions, gives the expected result that

the one-loop correction to the magnon energy is zero

∑
i

(−1)F νi = 4 νk(ỹ) + 4 νk(x̃)− 8 νk(Ψ) = 0. (2.120)

2.2 AdS3/CFT2

The first half of this section is structured similarly to section 2.1. We start by

reviewing the symmetries of AdS3/CFT2, and write down the IIB superstring

action on mixed-flux AdS3×S3×T4 and AdS3×S3×S3×S1. We then present

the dressing method, a systematic way of generating soliton solutions of these

integrable string theories. Applying the dressing method we construct the

AdS3 × S3 × T4 mixed-flux giant magnon, first found by Hoare, Stepanchuk

and Tseytlin [119], and also a string soliton on AdS3 × S1. The only original

contribution in this chapter is the identification of a one-parameter restriction

of the mixed-flux magnon, that we call stationary. This stationary magnon

can be considered the mixed-flux generalization of the HM giant magnon, and

will be the starting point of the semiclassical analysis performed in subsequent

chapters. Finally, we outline how these solutions can be put on AdS3 × S3 ×

S3 × S1.
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2.2.1 Symmetries

The symmetry algebra of AdS3×S
3×T4 string theory is psu(1, 1|2)2 [78], while

superstrings on AdS3×S
3×S3×S1 possess a d(2, 1;α)2 symmetry [86, 61]. Just

like in the AdS5 case, the elementary excitations transform under the off-shell

residual symmetry algebras: the centrally extended su(1|1)2 superalgebra for

AdS3 × S3 × S3 × S1 [116], and centrally extended psu(1|1)4 superalgebra for

AdS3×S3×T4 [114]. Here we review these algebras, together with their short

representations.

The su(1|1) algebra

To build up the (centrally extended) su(1|1)2
c.e., we start with the simple

psu(1|1) algebra, consisting of two anticommuting supercharges Q and S.

Adding the central charge H, i.e. introducing the non-trivial anticommutation

relation

{Q,S} = H , (2.121)

we get the su(1|1) algebra. In its simplest non-trivial representation a bosonic

state |φ〉 and a fermionic state |ψ〉 transform under the charges according to

Q |φ〉 = a |ψ〉 , S |φ〉 = 0 , H |φ〉 = H |φ〉 ,

Q |ψ〉 = 0 , S |ψ〉 = b |φ〉 , H |ψ〉 = H |ψ〉 .
(2.122)

For closure of the algebra the eigenvalue of the central charge must be H =

ab. In fact the representation is labelled by H alone, the ratio of a and b is

physically irrelevant, it only parametrizes the difference in normalization of

the states |φ〉 and |ψ〉. Let us denote this representation by (1|1)H .

The su(1|1)2 algebra

In the direct product of two su(1|1) algebras we have two copies (left and

right) of each charge, satisfying

{QL,SL} = HL, {QL,QR} = 0, {QL,SR} = 0,

{QR,SR} = HR, {SL ,SR } = 0, {QR,SL} = 0.
(2.123)
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When coupling these two systems, we can introduce the total Hamiltonian H

and the angular momentum M

H = HL + HR, M = HL −HR. (2.124)

In terms of these generators we have

{QL,SL} = 1
2 (H + M) , {QR,SR} = 1

2 (H−M) . (2.125)

Representations. Irreducible representations will be tensor products of a

left-moving and a right-moving part, since the algebra is a direct product. For

later convenience we take SL and QR to be raising operators, while QL and

SR will be lowering operators. A highest weight state then satisfies

SL |h.w.〉 = 0, QR |h.w.〉 = 0. (2.126)

In a short representation a highest weight state will be annihilated by addi-

tional supercharges. For the su(1|1)2 algebra the two shortening conditions

are HL = 0 and HR = 0. A representation where the h.w. state has vanishing

HR, and is therefore annihilated by SR, is called a left-moving representation.

The simplest non-trivial example is given by (1|1)H ⊗ 1, with a bosonic state

|φ〉 and a fermionic state |ψ〉 transforming as

QL |φ〉 = a |ψ〉 , SL |φ〉 = 0 , HL |φ〉 = H |φ〉 ,

QL |ψ〉 = 0 , SL |ψ〉 = b |φ〉 , HL |ψ〉 = H |ψ〉 ,

QR |φ〉 = 0 , SR |φ〉 = 0 , HR |φ〉 = 0 ,

QR |ψ〉 = 0 , SR |ψ〉 = 0 , HR |ψ〉 = 0 .

(2.127)

with H = ab. We also have right-moving representations with HL = 0, whose

highest weight states are annihilated by QL. An example is 1 ⊗ (1|1)H , in

which the right generators act on the two states |φ̄〉 and |ψ̄〉 as in (2.122), and

all the left generators annihilate them.
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The centrally extended su(1|1)2 algebra

We can extend the su(1|1)2 algebra by introducing two additional central

charges C and C. These appear in anticommutators between the two sectors,

and we take the choice10

{QL,SL} = HL , {QL,QR} = C , {QL,SR} = 0 ,

{QR,SR} = HR , {SL ,SR } = C , {QR,SL} = 0 .
(2.128)

Note that su(1|1)2
c.e. is not of direct product form, i.e. we cannot construct its

irreducible representations from irreps of the two sectors. To make connection

to the physics, from now on we use the subscript p on the states and repre-

sentation parameters, indicating that these depend on the momentum of the

excitation. Let us now consider the short representations of this algebra.

The left-moving representation. The generalization of (2.127) compati-

ble with the above deformation is given by

%L :

QL |φ
L
p〉 = ap |ψ

L
p〉 , QL |ψ

L
p〉 = 0,

SL |φ
L
p〉 = 0, SL |ψ

L
p〉 = bp |φ

L
p〉 ,

QR |φ
L
p〉 = 0, QR |ψ

L
p〉 = cp |φ

L
p〉 ,

SR |φ
L
p〉 = dp |ψ

L
p〉 , SR |ψ

L
p〉 = 0,

(2.129)

with central charges

HL |φ
L
p〉 = apbp |φ

L
p〉 , C |φL

p〉 = apcp |φ
L
p〉 ,

HR |φ
L
p〉 = cpdp |φ

L
p〉 , C |φL

p〉 = bpdp |φ
L
p〉 .

(2.130)

The highest weight state |φL
p〉 is annihilated by the raising operators SL and

QR, but also satisfies the condition

(HRQL −CSR) |φL
p〉 = (apcpdp − apcpdp) |ψ

L
p〉 = 0. (2.131)

10 Alternatively we could have taken {QL,SR} = C, but this deformation was ruled out
for the case of AdS3/CFT2, by considering the length-changing effects on the spin-chain [98].
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Since this particular combination of the lowering operators QL and SR anni-

hilates the h.w. state, the representation is short. The state |φL
p〉 must also be

annihilated by the anticommutator {SL,HRQL − CSR} = HLHR − CC, but

this is a central charge, implying that

(HLHR −CC) |χL
p〉 = 0 (2.132)

for all states χL
p = φL

p, ψ
L
p in the representation. This shortening condition,

when applied to physical states, will play the role of the dispersion relation.

The right-moving representation For this representation the role of QL,

QR and SL, SR is exchanged, and the right-movers |φR
p 〉 and |ψ

R
p 〉 transform

according to

%R :

QR |φ
R
p 〉 = ap |ψ

R
p 〉 , QR |ψ

R
p 〉 = 0,

SR |φ
R
p 〉 = 0, SR |ψ

R
p 〉 = bp |φ

R
p 〉 ,

QL |φ
R
p 〉 = 0, QL |ψ

R
p 〉 = cp |φ

R
p 〉 ,

SL |φ
R
p 〉 = dp |ψ

R
p 〉 , SL |φ

R
p 〉 = 0,

(2.133)

with the central charges acting as

HL |φ
R
p 〉 = cpdp |φ

R
p 〉 , C |φR

p 〉 = apcp |φ
R
p 〉 ,

HR |φ
R
p 〉 = apbp |φ

R
p 〉 , C |φR

p 〉 = bpdp |φ
R
p 〉 .

(2.134)

The highest weight state, which is |ψR
p 〉 in this case, again satisfies the condition

(HRQL −CSR) |ψR
p 〉 = 0, (2.135)

and the representation is short. The state |ψR
p 〉 must also be annihilated by

the anticommutator {SL,HRQL−CSR} = HLHR−CC, and we have the same

shortening condition in terms of the central charges as for the left-movers

(HLHR −CC) |χR
p 〉 = 0 (2.136)

for all states χR
p = φR

p , ψ
R
p .
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The centrally extended psu(1|1)4 algebra

If we take two copies of the su(1|1)2
c.e. algebra (2.128) that share the four

central charges, we get the centrally extended psu(1|1)4 [102] with generators

{
Q ȧ

L ,SLȧ,QRȧ,S
ȧ

R ,HL,HR,C,C
}
ȧ=1,2 (2.137)

satisfying the anticommutation relations

{Q ȧ
L ,SLḃ} = δȧḃ HL , {Q ȧ

L ,QRḃ} = δȧḃ C ,

{QRȧ,S
ḃ

R } = δ ḃ
ȧ HR , {SLȧ ,S

ḃ
R } = δ ḃ

ȧ C .
(2.138)

In other words,

psu(1|1)4 ' psu(1|1)4 n u(1)4 . (2.139)

Equivalently, we can consider a tensor product of two copies of (2.128)

Q 1
L = QL ⊗ 1 , SL1 = SL ⊗ 1 ,

QR1 = QR ⊗ 1 , S 1
R = SR ⊗ 1 ,

Q 2
L = 1⊗QL , SL2 = 1⊗ SL ,

QR2 = 1⊗QR , S 2
R = 1⊗ SR ,

(2.140)

also for the central elements

H 1
L = HL ⊗ 1 , H 2

L = 1⊗HL ,

H 1
R = HR ⊗ 1 , H 2

R = 1⊗HR ,

C 1 = C⊗ 1 , C 2 = 1⊗C ,

C 1 = C⊗ 1 , C 2 = 1⊗C .

(2.141)

After identifying the central charges as

H 1
L = H 2

L , H 1
R = H 2

R , C1 = C2, C1 = C2, (2.142)

and consequently dropping the indices 1, 2, we are left with psu(1|1)4
c.e.. Look-

ing at the algebra this way will be helpful in constructing its short represen-

tations.
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Bi-fundamental representations. It was shown, first for the spin-chain

and later for the AdS3 × S3 × S3 × S1 superstring, that the massive off-shell

excitations in both of the left- and right-moving sectors transform in short

(four-dimensional) bi-fundamental representations of the centrally extended

psu(1|1)4. That is, we can obtain the relevant representations by tensoring

the fundamental representations %L (2.129) and %R (2.133) of su(1|1)2
c.e..

Left module. Borrowing notation from [114], the four left-movers can be

written as

Y L = φL ⊗ φL , ZL = ψL ⊗ ψL ,

ηL1 = ψL ⊗ φL , ηL2 = φL ⊗ ψL ,
(2.143)

and they transform under the tensor product of two left-moving representa-

tions %L:

%L ⊗ %L :

Q ȧ
L |Y

L
p 〉 = ap |η

Lȧ
p 〉 , Q ȧ

L |η
Lḃ
p 〉 = εȧḃ ap |Z

L
p 〉 ,

SLȧ |Z
L
p 〉 = −εȧḃ bp |η

Lḃ
p 〉 , SLȧ |η

Lḃ
p 〉 = δ ḃ

ȧ bp |Y
L
p 〉 ,

QRȧ |Z
L
p 〉 = −εȧḃ cp |η

Lḃ
p 〉 , QRȧ |η

Lḃ
p 〉 = δ ḃ

ȧ cp |Y
L
p 〉 ,

S ȧ
R |Y

L
p 〉 = dp |η

Lȧ
p 〉 , S ȧ

R |η
Lḃ
p 〉 = εȧḃ dp |Z

L
p 〉 .
(2.144)

The representation coefficients of the two %L must match, since the central

charges are shared, and we get a minus sign when charges of the second type

act on a state with a fermion in the first part of the tensor product. Each

central charge acts uniformly across all states

HL |χ
L〉 = apbp |χ

L〉 , C |χL〉 = apcp |χ
L〉 ,

HR |χ
L〉 = cpdp |χ

L〉 , C |χL〉 = bpdp |χ
L〉 .

(2.145)

Right module. Similarly we can introduce the right-moving excitations

Y R = φR ⊗ φR , ZR = ψR ⊗ ψR ,

ηR
1 = ψR ⊗ φR , ηR

2 = φR ⊗ ψR ,
(2.146)

and these will transform in the representation
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%R ⊗ %R :

QRȧ |Y
R
p 〉 = εȧḃ ap |η

Rḃ
p 〉 , QRȧ |η

Rḃ
p 〉 = δ ḃ

ȧ ap |Z
R
p 〉 ,

S ȧ
R |Z

R
p 〉 = bp |η

Rȧ
p 〉 , S ȧ

R |η
Rḃ
p 〉 = −εȧḃ bp |Y

R
p 〉 ,

Q ȧ
L |Z

R
p 〉 = cp |η

Rȧ
p 〉 , Q ȧ

L |η
Rḃ
p 〉 = −εȧḃ cp |Y

R
p 〉 ,

SLȧ |Y
R
p 〉 = εȧḃ dp |η

Rḃ
p 〉 , SLȧ |η

Rḃ
p 〉 = δ ḃ

ȧ dp |Z
R
p 〉 ,
(2.147)

and for all right-movers

HL |χ
R〉 = cpdp |χ

R〉 , C |χR〉 = apcp |χ
R〉 ,

HR |χ
R〉 = apbp |χ

R〉 , C |χR〉 = bpdp |χ
R〉 .

(2.148)

Shortening condition. Naturally extending the choice made for su(1|1)2,

we take SLȧ and QRȧ as our raising operators, while Q ȧ
L and S ȧ

R will be

lowering operators. The highest weight states for %L⊗%L and %R⊗%R are |Y L
p 〉

and |ZR
p 〉 respectively, but they are also annihilated by two combinations of

lowering operators, as should be the case for short representations

(HRQ ȧ
L −CS ȧ

R ) |Y L
p 〉 = (apcpdp − apcpdp) |η

Rȧ
p 〉 = 0 ,

(HRQ ȧ
L −CS ȧ

R ) |ZR
p 〉 = (apbpcp − apbpcp) |η

Rȧ
p 〉 = 0 .

(2.149)

Similarly to the case of su(1|1)2
c.e., the anticommutator of this with SLḃ still

annihilates the highest weight states, and in fact any state across both sectors,

since it is a central element of the algebra

(HLHR −CC) |χL,R
p 〉 = 0. (2.150)

Note that this is the same as (2.132) and (2.136).

59



CHAPTER 2. CLASSICAL SOLITONS

Representation coefficients

Similarly to the case of AdS5/CFT4, an argument based on supersymmetry,

physical state conditions and quantization determines the values of the central

charges in terms of the momentum p of the off-shell particle [115]

C = ςh
2
(
e+ip − 1

)
,

C = h
2ς
(
e−ip − 1

)
,

M = m+ q
√
λ

p
2π ,

(2.151)

where h is the effective string tension, λ is the ’t Hooft coupling, and ς is an

arbitrary complex factor, which can be scaled away for single-particle repre-

sentations. From the shortening conditions (2.132), (2.150) we get

H =

√(
m+ q

√
λ

p
2π

)2
+ 4 q̃2 h2 sin2 p

2 . (2.152)

In the classical limit

h =
√
λ

2π , (2.153)

and we have the dispersion relation

ε =
√

(m+ qhp)2 + 4 q̃2 h2 sin2 p
2 . (2.154)

The masses of elementary excitations are m = 1, 0 for AdS3 × S3 × T4, and

m = 0, sin2ϕ, cos2ϕ, 1 for AdS3 × S3 × S3 × S1.

2.2.2 Bosonic string action

Supergravity equations fix the AdS3 and S3 radii to be equal for the AdS3 ×

S3×T4 background, and for AdS3×S
3×S3×S1 they relate the the AdS radius

R and the radii of the two 3-spheres R± by [61]

1
R2

+
+ 1
R2
−

= 1
R2 . (2.155)
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Setting unit radius for AdS3, this geometry can be parametrized by an angle

ϕ ∈ (0, π2 )
1
R2

+
= cos2ϕ = α,

1
R2
−

= sin2ϕ = 1− α. (2.156)

The ϕ→ 0 limit blows up the second sphere, which can be compactified on a

torus to recover the AdS3×S3×T4 geometry. For this reason in the following

discussion we mostly focus on the AdS3 × S3 × S3 × S1 bosonic action.

The main difference compared to AdS5×S5, apart from the appearance of

flat directions, is that the AdS3 backgrounds can be supported by a mixture of

Ramond-Ramond (R-R) and Neveu–Schwarz-Neveu–Schwarz (NS-NS) fluxes

F = 2q̃
(

Vol(AdS3) + cosϕVol(S3
+) + sinϕVol(S3

−)
)
,

H = 2q
(

Vol(AdS3) + cosϕVol(S3
+) + sinϕVol(S3

−)
)
,

(2.157)

where q ∈ [0, 1] and q̃ =
√

1− q2. The maximally supersymmetric AdS3 is in

fact a two-parameter family of theories, providing both richness compared to

AdS5, and, as we will see, technical challenges when trying to derive analogous

semiclassical results.

Geometry of AdS3 and S3

Although AdS3 and S3 are simple subspaces of AdS5 and S5, both described in

section 2.1.2, let us, for completeness, write down their coordinate parametriza-

tions again, this time together with their vielbein and spin-connection, both

of which will appear in the fermionic perturbation equations in the follow-

ing chapters. For a manifold with metric gµν the vielbein are (non-uniquely)

defined by

EAµE
B
ν ηAB = gµν , (2.158)

where A, B are tangent-space indices and ηAB is the flat (Minkowski or Eu-

clidean) metric. The vielbein provides the most tractable construction of

curved-space Dirac matrices Γµ from those of flat space ΓA:

Γµ ≡ E
A
µ ΓA ⇒ {Γµ,Γν} = EAµE

B
ν {ΓA,ΓB}︸ ︷︷ ︸

2ηAB

= 2gµν , (2.159)
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hence its appearance in the fermionic Lagrangian. Another object of similar

importance is the spin connection ωABµ , as it appears in the construction of

the covariant derivative for spinors. It is given by the formula

ωABµ = EAν ∂µE
νB + EAν ΓνσµE

σB , (2.160)

where the Greek indices are raised by the inverse metric gµν , and the Christoffel

symbols are given by the usual Γνσµ = 1
2g
νρ (∂σgµρ + ∂µgσρ − ∂ρgσµ

)
.

AdS3. Embedded in flat Y ∈ R2,2, the AdS3 space can be parametrized as

Y3 + iY0 = cosh ρ eit, Y1 + iY2 = sinh ρ eiψ, (2.161)

where ρ ∈ [0,∞), ψ ∈ [0, 2π) and the temporal direction t is cut open t ∈

(−∞,∞), exactly as explained below (2.15). Ordering the coordinates as

(t, ρ, ψ), the metric is

gµν = diag(− cosh2ρ, 1, sinh2ρ) , (2.162)

from which we can immediately read off the natural choice of the vielbein

EAµ = diag(cosh ρ, 1, sinh ρ). (2.163)

A straightforward calculation gives the non-trivial Christoffel symbols

Γττρ = Γτρτ = tanh ρ , Γψψρ = Γψρψ = coth ρ , Γρττ = −Γρψψ = cosh ρ sinh ρ ,

(2.164)

and non-zero spin connection components

ω01
τ = −ω10

τ = sinh ρ , (2.165)

ω21
ψ = −ω12

ψ = cosh ρ , (2.166)

where the tangent space indices 0, 1, 2 correspond to the directions t, ρ, ψ re-

spectively.
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S3. We parametrize the X ∈ R4 embedding of the 3-sphere by the Hopf

coordinates

X1 + iX2 = sin θ eiφ1 , X3 + iX4 = cos θ eiφ2 , (2.167)

where θ ∈ [0, π/2] and φ1, φ2 take values in [0, 2π). Ordering the coordinates

as (θ, φ1, φ2), the metric and vielbein are

gµν = diag(1, sin2θ, cos2θ),

EAµ = diag(1, sin θ, cos θ).
(2.168)

It is then a simple exercise to obtain the non-trivial Christoffel symbols

Γφ1
φ1θ

= Γφ1
θφ1

= cot θ, Γφ2
φ2θ

= Γφ2
θφ2

= − tan θ, Γθφ1φ1
= −Γθφ2φ2

= − cos θ sin θ,

(2.169)

and non-zero spin connection

ω12
φ1

= −ω21
φ1

= − cos θ, (2.170)

ω31
φ2

= −ω13
φ2

= − sin θ, (2.171)

where the tangent space components 1, 2, 3 correspond to the directions θ, φ1, φ2

respectively.

Bosonic action

The mixed-flux AdS3 bosonic sigma-model action

SB = −h
2

∫
M

dσdτ
(√
−γγabGMN + εabBMN

)
∂aX

M∂bX
N (2.172)

differs from the AdS5 action (2.22) only in the Wess-Zumino term, encoded by

the antisymmetric tensor BMN , related to the three-form NS-NS flux (2.157)

by
H = dB. (2.173)

The worldsheet metric γab doesn’t couple to the NS-NS flux, and we can fix

conformal gauge γab = ηab in much the same way, with unchanged Virasoro

constraints (2.23).
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Using Hopf coordinates11 (2.161) for AdS3 and (2.167) for the two spheres

S3
±

Ω̃(x) =
(
T (τ, σ), ρ(τ, σ), ψ(τ, σ)

)
,

Ω±(x) =
(
θ±(τ, σ), φ±1 (τ, σ), φ±2 (τ, σ)

)
,

(2.174)

and omitting the flat S1, the mixed-flux AdS3×S
3×S3 conformal gauge action

is

SB = SAdS[Ω̃] + 1
cos2ϕ

SS[Ω+] + 1
sin2ϕ

SS[Ω−] , (2.175)

with unit-radius AdS3 and S3 components

SAdS[Ω̃] = −h
2

∫
M

d2σ
[
− cosh2ρ ∂aT ∂

aT + ∂aρ ∂
aρ+ sinh2ρ ∂aψ ∂

aψ

+ q(cosh 2ρ+ c̃)(Ṫψ′ − ψ̇T ′)
]
,

SS[Ω] = −h
2

∫
M

d2σ
[
∂aθ∂

aθ + sin2θ ∂aφ1∂
aφ1 + cos2θ ∂aφ2∂

aφ2

+ q(cos 2θ + c)(φ̇1φ
′
2 − φ̇2φ

′
1)
]
.

(2.176)

The indices a = 0, 1 correspond to τ, σ, with derivatives ˙ = ∂τ ,
′ = ∂σ, and

the c-terms, first introduced in [119], are total derivatives that drop out of

the equations of motion, but change the value of conserved charges for string

solutions with non-periodic boundary conditions, e.g. the giant magnon. The

equations of motion for AdS3 are

cosh2ρ
(
T̈1 − T

′′
)

+ 2 sinh ρ cosh ρ
(
Ṫ ρ̇− T ′ρ′ + q

(
ρ̇ψ′ − ρ′ψ̇

))
= 0 ,

ρ̈− ρ′′ + sinh ρ cosh ρ
(
Ṫ 2 − T ′2 − ψ̇2 + ψ′2 + 2q

(
Ṫψ′ − ψ̇T ′

))
= 0 ,

sinh2ρ
(
ψ̈ − ψ′′

)
+ 2 sinh ρ cosh ρ

(
ρ̇ψ̇ − ρ′ψ′ + q

(
ρ̇T ′ − ρ′Ṫ

))
= 0 ,

(2.177)

11 We use T for the temporal coordinate on AdS3, to avoid confusion with the decom-
pactified worldsheet coordinate t = κτ , since we are relaxing the static gauge condition
T = κτ .
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while Ω± both satisfy

θ̈ − θ′′ − sin θ cos θ
(
φ̇2

1 − φ
′2
1 − φ̇

2
2 + φ′22 + 2q

(
φ̇1φ

′
2 − φ̇2φ

′
1
))

= 0 ,

sin2θ
(
φ̈1 − φ

′′
1
)

+ 2 sin θ cos θ
(
θ̇φ̇1 − θ

′φ′1 + q
(
θ̇φ′2 − θ

′φ̇2
))

= 0 ,

cos2θ
(
φ̈2 − φ

′′
2
)
− 2 sin θ cos θ

(
θ̇φ̇2 − θ

′φ′2 + q
(
θ̇φ′1 − θ

′φ̇1
))

= 0 .

(2.178)

The equations for the three components decouple due to the block-diagonal

spacetime metric, but they are connected via the Virasoro constraints

Ṽ1[Ω̃] + 1
cos2ϕ

V1[Ω+] + 1
sin2ϕ

V1[Ω−] = 0 ,

Ṽ2[Ω̃] + 1
cos2ϕ

V2[Ω+] + 1
sin2ϕ

V2[Ω−] = 0 ,
(2.179)

where

Ṽ1[Ω̃] ≡ − cosh2ρ (Ṫ 2
1 + T ′2) + ρ̇2 + ρ′2 + sinh2ρ (ψ̇2 + ψ′2) ,

Ṽ2[Ω̃] ≡ − cosh2ρ ṪT ′ + ρ̇ρ′ + + sinh2ρ ψ̇ψ′ .

V1[Ω] ≡ θ̇2 + θ′2 + sin2θ (φ̇2
1 + φ′21 ) + cos2θ (φ̇2

2 + φ′22 ) ,

V2[Ω] ≡ θ̇θ′ + sin2θ φ̇1φ
′
1 + cos2θ φ̇2φ

′
2 .

(2.180)

We get six conserved charges from the symmetries of the action: the space-

time energy E due to invariance in AdS time T , an AdS spin J0 for translations

in ψ and two angular momenta J1 and J2 on each sphere, due to invariance

under shifts in φ1 and φ2

E = h
∫ π

−π
dσ
[
cosh2ρ Ṫ + q

2(cosh 2ρ+ c̃)ψ′
]
,

J0 = h
∫ π

−π
dσ
[
sinh2ρ ψ̇ + q

2(cosh 2ρ+ c̃)T ′
]
,

J±1 = R2
± h

∫ π

−π
dσ
[
sin2θ± φ̇±1 −

q

2(cos 2θ± + c)φ±2
′]
,

J±2 = R2
± h

∫ π

−π
dσ
[
cos2θ± φ̇±2 + q

2(cos 2θ± + c)φ±1
′]
.

(2.181)
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BMN string

The AdS3 × S3 × S3 × S1 BMN string is a point-like solution moving at some

angle along the equators of S3×S3. Suppose that this motion is generated

by AJ +
1 + BJ −1 , where the charges J ±1 generate (unit) shifts along φ±1 . On

the classical level the only requirement is that the trajectory is a light-cone

geodesic, i.e. that the R1,2 vector (δt, R+δφ
+
1 , R−δφ

−
1 ) = δt(1, AR+, BR−) is

null
A2

cos2ϕ
+ B2

sin2ϕ
= 1 . (2.182)

The above construction also gives the definition of the physical BMN angular

momentum

J1 = AJ+
1 +BJ−1 . (2.183)

Explicitly, the AdS3 × S3 × S3 × S1 BMN geodesic is given by

T = κτ, ρ = 0, ψ = 0,

θ± = π

2 , φ+
1 = Aκτ, φ+

1 = Bκτ, φ±2 = 0,
(2.184)

and (2.182) is the Virasoro constraint for the BMN string. The conserved

charges (2.181)

E = 2πhκ, J+
1 = 2πhAκ

cos2ϕ
, J−1 = 2πhBκ

cos2ϕ
, J0 = J±2 = 0 (2.185)

satisfy the dispersion relation

E − J1 = 0, (2.186)

just like the R×S3 BMN string (2.40), further justifying the definition (2.183)

for the physical angular momentum.

Maximally SUSY BMN vacuum. While we found a family of light-cone

geodesics, the true BMN vacuum of the theory preserves maximal amount of

supersymmetry, and the excitations above this true vacuum transform under

the residual symmetry algebra. This condition leads to the (up to signs) unique
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choice [69]

A = cos2ϕ, B = sin2ϕ, (2.187)

which is often referred to as the maximally SUSY BMN solution.

BMN angle. Below we will use a light-cone gauge argument to show that

the worldsheet momentum of an off-shell (open) string is related to the opening

of BMN angle between the two endpoints. In the R× S3 case (2.38) the BMN

angle is simply φ = φ1, and here we find its generalisation φ(φ+
1 , φ

−
1 ) to the

R ×S3 ×S3 geometry. The momenta p
φ
±
1
, conjugate to the angles φ±1 , are

related to the conserved charges (2.181) by

J±1 =
∫ π

−π
dσ p

φ
±
1
. (2.188)

We want a canonical transformation such that the BMN momentum pφ cor-

responds to the physical angular momentum (2.183)

J1 = AJ+
1 +BJ−1 =

∫ π

−π
dσ pφ . (2.189)

This fixes
pφ = Ap

φ
+
1

+B p
φ
−
1
, (2.190)

and we need to find the BMN angle conjugate to this momentum

φ = C+φ
+
1 + C−φ

−
1 . (2.191)

For the transformation to be canonical, the Poisson brackets need to be un-

changed, imposing

AC+ +BC− = 1 . (2.192)

The complete transformation of course includes another, orthogonal pair of

phase-space coordinates (φ̃, pφ̃), and there is a unique (up to rescalings) canon-

ical choice consistent with the definition of φ and pφ:

φ̃ = B φ+
1 −Aφ

−
1 , pφ̃ = C−pφ+

1
− C+pφ−1

. (2.193)

67



CHAPTER 2. CLASSICAL SOLITONS

To fix C± we require that the total angular momentum corresponding to φ̃

should vanish for the BMN string (2.185)

∫ π

−π
dσ pφ̃ = C−J

+
1 − C+J

−
1 = A

cos2ϕ
C− −

B

sin2ϕ
C+ = 0 . (2.194)

Recalling the Virasoro constraint (2.182), the solution to (2.192), (2.194) is

C+ = A

cos2ϕ
, C− = B

sin2ϕ
, (2.195)

the BMN angle becomes

φ = A

cos2ϕ
φ+

1 + B

sin2ϕ
φ−1 , (2.196)

and in particular for the maximally SUSY case (2.187)

φ = φ+
1 + φ−1 . (2.197)

Worldsheet momentum

To understand the relation between the worldsheet momentum and opening

angle of off-shell string solutions, we need to consider the bosonic string in

light-cone gauge, as described in [45, 164] and for q 6= 0 in [116]. We start

with the Green-Schwarz action12 with WZ-term (2.172)

SB = −h
2

∫ r

−r
dσdτ

(√
−γγabGMN + εabBMN

)
∂aX

M∂bX
N . (2.198)

To fix light-cone gauge we must first rewrite this action in Hamiltonian form.

Introducing the conjugate momenta

pM = δS

δẎM
= −hγ0bGMN∂bX

N − hBMNX
′N , (2.199)

the bosonic action takes the first-order form

SB =
∫ r

−r
dσdτ

(
pMẊ

M + γ01

γ00C1 + 1
2hγ00C2

)
, (2.200)

12 Here we take σ ∈ (−r, r) instead of (−π, π), and fix r later from the consistency of
conserved charges.
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with

C1 = pMX
′M ,

C2 = GMNpMpN + h2GMNX
′MX ′N + 2hGMNBNKpMX

′K

+ h2GMNBMKBNLX
′KX ′L .

(2.201)

Reparametrisation invariance (i.e. vanishing variation under changes in γab)

leads to the Virasoro constraints, now written as

C1 = 0 , C2 = 0 . (2.202)

Assuming the invariance of the string action under shifts of the time coordinate

T and BMN angle φ we have the conserved Noether charges

E = −
∫ r

−r
dσ pT , J =

∫ r

−r
dσ pφ. (2.203)

Let us introduce light-cone coordinates and momenta13

x− = φ− T , x+ = T , p− = pφ , p+ = pφ + pT , (2.204)

with all other (transverse) directions xi unchanged. Note that this is a canon-

ical transformation, hence the from of the action is unchanged

S =
∫ r

−r
dσdτ

(
p+ẋ

+ + p−ẋ
− + piẋ

i + γ01

γ00C1 + 1
2hγ00C2

)
, (2.205)

where

C1 = p+x
′+ + p−x

′− + pix
′i , (2.206)

and C2 is a quadratic polynomial in p+. Using the definitions (2.203), the

light-cone gauge momenta are

P− =
∫ r

−r
dσ p− = J , P+ =

∫ r

−r
dσ p+ = J − E . (2.207)

13 In fact, one might consider a one-parameter family of light-cone gauges with x
+ =

(1− a)t+ aφ and p− = (1− a)pφ− apt. For a = 1
2 this reduces to the usual light-cone gauge

x+ = 1
2 (t+ φ) = τ , however, in this section we restrict our attention to the a = 0 case.
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We then fix the uniform light-cone gauge by imposing

x+ = τ , p− = 1 , (2.208)

where “uniform” refers to the uniform distribution of light-cone momentum

along the string. Consistency of this gauge fixes the value of r

r = 1
2P− . (2.209)

Gauge fixing completely determines the dynamics in the light-cone direc-

tions. The first Virasoro constraint can be solved for

x′− = −pix
′i, (2.210)

then substituting this into C2 = 0 we obtain p+ = p+(pi, x
i, x′i). The gauge-

fixed action is

S =
∫ r

−r
dσdτ

(
piẋ

i −H
)
, (2.211)

where
H = −p+(pi, x

i, x́i) (2.212)

is the worldsheet Hamiltonian density depending only on the physical (trans-

verse) fields. Note that the light-cone gauge worldsheet Hamiltonian is, as we

mentioned before, given by the difference of space-time energy and angular

momentum

H =
∫ r

−r
dσ H = E − J . (2.213)

Closed string solutions should satisfy periodicity in the transverse direc-

tions: xi(r) = xi(−r) and an additional level-matching condition:

∆x− =
∫ r

−r
dσx′− = −

∫ r

−r
dσpix

′i = 2πm , (2.214)

where the winding number m is integer-valued since φ is an angular coordi-

nate. Invariance of the gauge-fixed action under the shifts of the worldsheet

coordinate σ results in the conservation of worldsheet momentum14

14 Deriving the expression for the worldsheet momentum is greatly simplified if one makes
use of the Hamiltonian field equations ẋi = δH

δpi
, ṗi = − δH

δx
i .
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pws = −
∫ r

−r
dσpix

′i = ∆x− . (2.215)

In the zero-winding sector the level-matching condition implies a vanishing

worldsheet momentum for physical, closed string states pws = 0. However, the

giant magnon is a solution in the decompactification limit, where P+ → ∞

with h kept fixed. This naturally opens up the worldsheet (r → ∞) and

the closed string level-matching can be relaxed to give non-zero worldsheet

momentum

p = ∆x− = ∆φ−∆T . (2.216)

For AdS3×S
3×S3×S1 with maximally SUSY BMN angle (2.197) this becomes

p = ∆x− = ∆φ+
1 + ∆φ−1 −∆T . (2.217)

Note that for solutions in static gauge, e.g. the giant magnon, ∆T = 0 and p

is simply the opening angle, but we will also consider AdS3 × S1 solitons with

∆T 6= 0.

AdS3 × S3 × S3 strings from AdS3 × S3 solutions

One can construct AdS3 × S3 × S3 × S1 strings from simple AdS3 × S3 ×

T4 solutions, by combining them with appropriate scaling of the wordlsheet

coordinates. This method will be applied below, where we generate AdS3 ×

S3 ⊂AdS3× S3×T4 solitons using the dressing method, and write down their

AdS3 × S3 × S3 × S1 generalizations.

If Ω̃0(x) is a solution on AdS3× S1 with point-like BMN motion along the

S1, i.e. it satisfies (2.177) and

Ṽ1[Ω̃0] = −κ2, Ṽ2[Ω̃0] = 0, (2.218)

and Ω1(x), Ω2(x) are solutions on R ×S3 with point-like BMN motion along

R, i.e. they satisfy (2.178) and

V1[Ωi] = κ2, V2[Ωi] = 0 , (2.219)
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the configuration

(
Ω̃,Ω+,Ω−

)
=
(
Ω̃0(x),Ω1(Ax),Ω2(Bx)

)
(2.220)

will be a valid solution on AdS3×S3×S3, as long as the constants A,B satisfy

the combined Virasoro constraint

A2

cos2ϕ
+ B2

sin2ϕ
= 1. (2.221)

In the simplest application of this prescription one can take Ω̃0,Ω1,Ω2 all to be

the AdS3× S3 BMN solution, and get the AdS3× S3× S3 BMN string (2.184)

as a result, noting that the conditions (2.221) and (2.182) are the same.

2.2.3 Dressing method

In this subsection we review the dressing method [143, 144] for the construction

of solitons of classically integrable systems, following the discussion of Spradlin

and Volovich [145]. A mixed-flux generalization of the dressing method is

presented in [120], however, in a form that breaks down at the special point

q = 1. Below we present a slight variation that is capable of handling the pure

NS-NS case. We consider strings moving on the AdS3 × S3 subspace of the

AdS3 × S3 ×T4 background, which then can be lifted to AdS3 × S3 × S3 × S1

using (2.220).

The SU(1, 1)× SU(2) principal chiral model

Conformal gauge bosonic string theory on mixed-flux AdS3 × S3 is equivalent

to the principal chiral model with Wess-Zumino term on SU(1, 1)×SU(2) with

action

S = SPCM[gAdS] + SPCM[gS], (2.222)

where, in terms of the left currents Ja = g−1∂ag

SPCM[g] = −h
2
[ ∫
M

d2σ 1
2tr(J̄ J)− q

∫
B
d3σ 1

3ε
abctr(JaJbJc)

]
. (2.223)

72



CHAPTER 2. CLASSICAL SOLITONS

Here M is the string worldsheet, B is a 3d manifold with boundary M, and

J = g−1∂g, J̄ = g−1∂̄g, where the partial derivatives are with respect to

z = 1
2(τ−σ) and z̄ = 1

2(τ+σ). Also introducing the right current Ka = ∂agg
−1,

the PCM equations of motion can be written in the two equivalent forms

(1 + q)∂J̄ + (1− q)∂̄J = 0,

(1− q)∂K̄ + (1 + q)∂̄K = 0.
(2.224)

These are the equations for both matrix fields g = gAdS(z, z̄) ∈ SU(1, 1) and

g = gS(z, z̄) ∈ SU(2), and need to be supplemented by the conformal gauge

Virasoro constraints
tr
[
J2

AdS
]
− tr

[
J2

S
]

= 0 ,

tr
[
J̄2

AdS
]
− tr

[
J̄2

S
]

= 0 .

(2.225)

Equivalence to the coordinate space GS action (2.176) can be established via

the embedding

gAdS =

Z1 −iZ2

iZ̄2 Z̄1

 ∈ SU(1, 1), gS =

 Z3 −iZ4

−iZ̄4 Z̄3

 ∈ SU(2),

(2.226)

and Hopf coordinates

Z1 = cosh ρ eiT , Z2 = sinh ρ eiψ ,

Z3 = sin θ eiφ1 , Z4 = cos θ eiφ2 .

(2.227)

From the action we get the left-invariant and right-invariant conserved

currents

La = Ja − qεabJ
b , Ra = Ka + qεabK

b , ∂aL
a = ∂aR

a = 0 , (2.228)

which give rise to the conserved charges

QL = h
∫

dσ (J0 + qJ1) , QR = h
∫

dσ (K0 − qK1) , (2.229)

again, both for SU(1, 1) and SU(2).
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From a given solution g to the equations (2.224) the dressing method allows

us to generate a new solution g′ by

g → g′ = χg (2.230)

for some appropriately chosen χ(z, z̄). We might apply this method to either

(or both) of the SU(1, 1) and SU(2) components independently, as long as the

resulting solution still satisfies the Virasoro constraints. Most of the discussion

below holds for both SU(1, 1) and SU(2), any differences will be explicitly

pointed out.

Auxiliary problem

The construction starts by considering the system of equations for the matrix

field Ψ(λ)

∂̄Ψ = AΨ
1 + (1 + q)λ, ∂Ψ = BΨ

1− (1− q)λ, (2.231)

where the matrices A and B are independent of the complex auxiliary variable

λ, also known as the spectral parameter. This is an overdetermined system,

whose compatibility (∂∂̄Ψ = ∂̄∂Ψ) is guaranteed for all values of λ by the

conditions

∂A− ∂̄B + [A,B] = 0,

(1− q)∂A+ (1 + q)∂̄B = 0.
(2.232)

The dressing method exploits the following relation between the principal

chiral model (2.224) and the auxiliary problem (2.231). Given any solution g

to (2.224)

A = ∂̄g g−1, B = ∂g g−1 (2.233)

will satisfy the compatibility conditions (2.232), and we can solve (2.231) to

find Ψ(λ) subject to

Ψ(0) = g. (2.234)

Conversely, for any any collection (Ψ(λ), A,B) satisfying (2.231) for all values

of λ, g = Ψ(0) satisfies (2.224), as a direct consequence of (2.232). We further
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impose the unitarity constraint15

Ψ†(λ̄)MΨ(λ) = M (2.235)

with

M =

1 0

0 −1

 for SU(1, 1) and M =

1 0

0 1

 for SU(2). (2.236)

Dressed solution

Consider the analogue of the “gauge” transformation (2.230) for the auxiliary

system (2.231), now with a λ-dependent matrix field χ(λ),

Ψ→ Ψ′ = χΨ,

A→ A′ = χAχ−1 + i(1 + (1 + q)λ)∂̄χχ−1,

B → B′ = χBχ−1 + i(1− (1− q)λ)∂χχ−1.

(2.237)

If we can find a χ(λ) such that the transformed A′ and B′ continue to be

independent of λ, then the triplet (Ψ′(λ), A′, B′) is another legitimate solution

of (2.231), and g′ = Ψ′(0) is a new solution of the principal chiral model with

WZ term.

The λ-independence of A′ and B′ can be easily achieved by imposing con-

straints on the analytic properties of χ(λ) in the complex λ-plane. We start

by requiring that χ(λ) is meromorphic, and that16 χ(λ) → 1 as λ → ∞. In

order to preserve the unitarity condition (2.235), χ(λ) should satisfy

χ†(λ̄)Mχ(λ) = M. (2.238)

The simplest such χ(λ) has a single pole at some location λ1, and is fixed, up

to a constant phase, by the above conditions to be

χ(λ) = 1 + λ1 − λ̄1
λ− λ1

P, (2.239)

15 By this notation we mean Ψ†(λ̄) = (Ψ(λ̄))†, which is a function of λ only.
16 Any constant matrix could have been chosen as the limit at infinity, all being an un-

physical field-redefinition away from our convenient choice of the unit matrix.
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where the projector P satisfies P 2 = P and P † = MPM . Since A′ and

B′ asymptotically become A and B, a standard theorem in complex analysis

guarantees their λ-independence if they have no poles. The only possible

locations for poles are λ1 or λ̄1, but one can check that the residues at these

putative poles vanish if we choose

P = v1v
†
1M

v†1Mv1
, v1 = Ψ(λ̄1)e (2.240)

for a constant vector e. The overall scale of e drops out of (2.240), and we

can take

e = (w, 1/w) (2.241)

for some complex parameter w. The dressing factor (2.239) has the determi-

nant

detχ(λ) = λ− λ̄1
λ− λ1

. (2.242)

Requiring that the dressed solution χ(0)Ψ(0) has unit determinant fixes the

constant phase in front of χ(λ) to be (λ1/λ̄1)1/2. With this, the dressed

solution is

g′ =
√
λ1
λ̄1

(
1−

(
1− λ̄1

λ1

)
P

)
g . (2.243)

Below we apply both the SU(2) and SU(1, 1) dressing method to the BMN

string, to get the mixed flux giant magnon on R ×S3 and another soliton on

AdS3 ×S
1.

2.2.4 Mixed-flux AdS3 giant magnon

The Hofman-Maldacena giant magnon (2.45) is, quite naturally, also a solution

on the R×S3 subspace of AdS3×S3×T4 with pure R-R background flux. Its

mixed-flux generalization was first found by Hoare, Stepanchuk and Tseytlin

[119], using a clever q-deformation of the SU(2) currents. The same solution

can be obtained from a rigidly rotating string ansatz [165], and using the

dressing method [120]. In this subsection we apply the SU(2) dressing method,

as presented above, to construct the mixed-flux magnon.
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Dressing the giant magnon

We dress the BMN vacuum

Z1 = eit, Z2 = 0, (2.244)

for which the auxiliary system (2.231) reads

g0 =

e−i(z−z̄) 0

0 ei(z−z̄)

 , A0 = −B0 =

−1 0

0 1

 . (2.245)

The solution to this system, subject to (2.234), is

Ψ0(λ) =

e−iZ(λ) 0

0 eiZ(λ)

 ,

Z(λ) = z

1− (1− q)λ −
z̄

1 + (1 + q)λ.

(2.246)

To fix the projector (2.240) we need to specify e ∈ P1, which we can parametrize

as

e = (w, 1/w) (2.247)

for w ∈ C∗. Since e only appears in the projector as part of

Ψ0(λ̄1)e =

w e−iZ(λ̄1)

1
w e

+iZ(λ̄1)

 , (2.248)

any non-trivial w just amounts to a shift Z(λ̄1) → Z(λ̄1) − i logw, which is

equivalent to a translation of the worldsheet coordinates. This will not result

in a physically different solution, and without loss of generality we can set

w = 1. With this, the projector becomes

P = 1
1 + e2i(Z(λ̄1)−Z(λ1))

 1 e−2iZ(λ1)

e+2iZ(λ̄1) e2i(Z(λ̄1)−Z(λ1))

 , (2.249)
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and, including the phase factor explained under (2.242), the dressed one-

soliton solution is

Ψ1(λ) =
√
λ1
λ̄1

[
1 + λ1 − λ̄1

λ− λ1
P

]
Ψ0(λ). (2.250)

Plugging in the vacuum (2.246), we can read off the solution from (2.226)

Z1 = e+it

|λ1|
λ1e

2iZ(λ̄1) + λ̄1e
2iZ(λ1)

e2iZ(λ1) + e2iZ(λ̄1)
,

Z2 = e−it

|λ1|
i(λ̄1 − λ1)

e2iZ(λ1) + e2iZ(λ̄1)
.

(2.251)

If we rewrite the location of the pole

λ1 = reip/2, (2.252)

and introduce
U = i

(
Z(λ̄1)− Z(λ1)

)
,

V = −Z(λ̄1)− Z(λ1)− t,

(2.253)

the solution (2.251) can be expressed as

Z1 = eit
[
cos p

2 + i sin p
2 tanhU

]
,

Z2 = eiV sin p
2 sechU.

(2.254)

From

x→ ±∞ : Z1 → exp
(
it± i∆φ1

2
)
, Z2 → 0 , (2.255)

we can read off the opening angle between the string endpoints ∆φ1 = p,

and see that p is indeed the worldsheet momentum (2.217) of the mixed-flux

magnon. Further substituting (2.252) and (2.246) into (2.253) we get

U = cos % q̃ γ(x− ut),

V = sin % q̃ γ(t− ux)− qx,
(2.256)
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where q̃ =
√

1− q2, γ = (1− u2)−1/2, and

u =
−q(1− q̃2r2) + 2q̃2r cos p

2
1 + q̃2r2 ,

cot % =
2r sin p

2
1− q̃2r2 + 2qr cos p

2
.

(2.257)

This solution agrees with the mixed-flux dyonic giant magnon found by Hoare,

Stepanchuk and Tseytlin [119], if one rewrites the magnon speed u as

u = v − q
1− qv . (2.258)

Conserved charges and dispersion relation

Defining

b = cot p
2 = q̃ γu sec %+ q tan %, (2.259)

we can write the magnon (2.254) in Hopf coordinates

θ = arccos

sech [q̃ cos %X ]√
1 + b2

 ,
φ1 = t+ arctan

(
b−1 tanh [q̃ cos %X ]

)
, φ2 = q̃ sin % T − qx ,

X = γ(x− ut), T = γ(t− ux).

(2.260)

In the decompactification limit (2.41), (2.42), the R × S3 conserved charges

(2.181) are

E − J1 = h
∫ ∞
−∞

dx
(
1−

[
sin2θ ∂tφ1 −

q

2(cos 2θ + c)∂xφ2
])
,

J2 = h
∫ ∞
−∞

dx
[

cos2θ ∂tφ2 + q

2(cos 2θ + c)∂xφ1
]
.

(2.261)

For the magnon solution (2.260) these integrals evaluate to

E − J1 = 2h

√
1− q2 + (b cos %− q sin %)2

(1 + b2) cos %
+ 1

2hq(c− 1)∆φ2 , (2.262)
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J2 = M + 1
2(c+ 1)hq∆φ1 , M = 2htan %− qb

1 + b2
, (2.263)

where the opening angles ∆φi = φi(x =∞)− φi(x = −∞) are

∆φ1 = 2 arccot b,

∆φ2 = − cos % (q cos %+ b sin %) x
∣∣∞
−∞.

(2.264)

We see that ∆φ2 is divergent, and the only way to keep E − J1 finite is to fix

the total derivative ambiguity in the Wess-Zumino term (2.176)

c = 1. (2.265)

With this choice, and recalling that ∆φ1 is the worldsheet momentum, the

charges become

E − J1 = 2hq̃γ sec % sin2 p
2 ,

J2 = M + hqp, M = 2h sin2 p
2
(
tan %− q cot p

2
)
,

(2.266)

and the mixed-flux magnon satisfies the disperison relation

E − J1 =
√

(J2 − hqp)2 + 4h2q̃2 sin2 p
2 . (2.267)

Semiclassical quantization of J2. The similarity between (2.267) and the

quantum dispersion relation (2.154) derived from the symmetries of the action

can be taken one step further by considering the semiclassical quantization

of the second angular momentum J2, as presented in [119]. The mixed-flux

magnon solution (2.260) is time-periodic in φ2, assuming the shift in t is

compensated by a shift in x so that θ is kept constant. In fact, we might treat

θ as a spatial coordinate (cos θ changes from zero to its maximal value then

back) and write the other two angles as a function of t and θ

φ1(t, θ) = t+ arctan
[
b−1

√
1− (1 + b2) cos2θ

]
,

φ2(t, θ) = wt+ r arccosh
[ (√

1 + b2 cos θ
)−1]

,

(2.268)

80



CHAPTER 2. CLASSICAL SOLITONS

w = q̃ sin %
γ
− qu , Tφ2

≡ 2π
|w|

, (2.269)

r = w
q + b tan %
qb− tan % , (2.270)

where Tφ2
is the period of the motion. This periodicity implies the existence

of an associated action variable which takes integer values upon semiclassical

quantisation. Applying Liouville’s theory of integrable Hamiltonian systems,

the action variable I is given by

2πI = S − Tφ2

∂S

∂Tφ2

∣∣∣∣
p
, (2.271)

where S = S(Tφ2
, p) is the light-cone gauge string action for the giant magnon17

computed over one period Tφ2
. Since the string action is reparametrization-

invariant we can evaluate S(Tφ2
, p) in conformal gauge coordinates, over

t ∈ [0,Tφ2
] and x ∈ (−∞,∞). Substituting (2.260) back into (2.175) we

get

S = 2πh
[
− 2(1− q2)

tan %− qb̃
+ 1

2q(c+ 1)∆φ1 −
1

4πTq(c− 1)∆φ2
]
, (2.272)

Since ∆φ2 is divergent we need c = 1 for the action finite, a choice consistent

with the finiteness of E − J1 (2.265). Eliminating % this becomes

S

2πh =
2q̃2
√

1− w2

qb

√
1− w2 −

(
q̃2 + b2 −

[√
q̃2(1 + b2)(1− w2)− qwb

]2)1/2 + qp ,

(2.273)

and from (2.271) we find that the action variable conjugate to φ2 is indeed the

second angular momentum (2.262)

I = J2 . (2.274)

We conclude that upon semiclassical quantization J2 takes integer values, and

for J2 = 1 the dispersion relation (2.267) exactly matches (2.154).

17 Note that for this calculation one needs to express the parameters % and b in terms of
Tφ2

and p.
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Stationary magnon on R×S3

What made the the fermion zero mode calculation [53] for the AdS5 magnon

relatively simple is the fact that the shape of the HMmagnon is time-independent,

unlike the dyonic magnon (2.53), which is T -dependent for general values of %.

We want to make the same simplification before attempting the semiclassical

analysis of the mixed-flux magnon. Requiring that φ2 in (2.260) only depends

on X fixes the value of %

sin % = qu√
1− q2

√
1− u2

= γuq

q̃
, (2.275)

and we get the stationary mixed-flux magnon

Z1 =
eit
[
b+ i tanh

(
γ
√
q̃2 − u2X

)]
√

1 + b2
,

Z2 =
e−iqγX sech

(
γ
√
q̃2 − u2X

)
√

1 + b2
, b = u√

q̃2 − u2
.

(2.276)

For this solution the dispersion relation (2.267) takes the simpler form

E − J1 = 2hq̃ sin p
2 , (2.277)

much like the dispersion relation of the HM giant magnon (2.52), further

pointing to the special role our stationary magnon plays among mixed-flux

magnons.

Parameter ranges Since u is the worldsheet speed of the magnon, one

might expect it to take values in the range (−1, 1). This is certainly true

for the general solution (2.260), but the stationary condition (2.275) further

restricts

sin2 % ≤ 1 ⇒ |u| ≤ q̃. (2.278)

It might look like some solutions are missing, but we do have a stationary

magnon for all values of the worldsheet momentum p, a fact that becomes
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clear once the condition (2.275) is rewritten using (2.259) as

u = q̃ cos p
2 , tan ρ = q cot p

2 . (2.279)

Mixed-flux giant magnon on AdS3 × S3 × S3 × S1

We can construct the AdS3 × S3 × S3 × S1 mixed-flux magnon using the pre-

scription (2.220), by putting the magnon (2.260) on S3
+ and the BMN string

on S3
−. In Hopf coordinates for the two spheres S3

±

Z±1 = sin θ± eiφ
±
1 , Z±2 = cos θ± eiφ

±
2 , (2.280)

the solution is given by

θ+ = arccos

sech [A cos % q̃X ]√
1 + b2

 ,

φ+
1 = At+ arctan

(
b−1 tanh [A cos % q̃X ]

)
, φ+

2 = A sin % q̃ T −Aqx ,

θ− = π

2 , φ−1 = Bt , φ−2 = 0 .

γ2 = 1
1− u2 , b = q̃ γu sec ρ+ q tan % , u ∈ (0, 1) ,

(2.281)

where the parameters A, B satisfy the Virasoro constraint (2.221)

A2

cos2ϕ
+ B2

sin2ϕ
= 1 . (2.282)

Noether charges. Recalling that the physical combination of first angular

momenta is J1 = AJ+
1 + BJ−1 (2.183), the conserved charges (2.181) for the

AdS3 × S3 × S3 × S1 mixed-flux magnon become

E − J1 = A

cos2ϕ
2hq̃γ sec % sin2 p

2 ,

J2 = 1
cos2ϕ

(M + hqp) , M = 2h sin2 p
2
(
tan %− q cot p

2
)
,

(2.283)
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with dispersion relation

E − J1 = A

cos2ϕ

√(
cos2ϕJ2 − hqp

)2
+ 4h2q̃2 sin2 p

2 . (2.284)

There are two conclusions to be made. Firstly, to match the correct disper-

sion relation derived from symmetry (2.154) we need to take A = cos2ϕ, in

agreement with the maximal SUSY condition (2.187). Secondly, an argument

similar to (2.274) shows that J2 is quantized in integer units, and (2.281) rep-

resent one of the light magnons with mass m = cos2ϕ. We can get the other

light magnon of mass sin2ϕ by switching the two spheres, but this construc-

tion doesn’t give us the massless (m = 0) or heavy (m = 1) classical string

excitations.

Stationary magnon. As discussed above (2.275), for the purposes of the

semiclassical analysis we will focus on the maximally SUSY AdS3×S
3×S3×S1

generalization of the stationary magnon (2.276)

θ+ = arccos

 sechY√
1 + b2

 ,

φ+
1 = cos2ϕ t+ arctan

(
b−1 tanhY

)
, φ+

2 = − q Y√
q̃2 − u2

,

θ− = π

2 , φ−1 = sin2ϕ t , φ−2 = 0 .

γ2 = 1
1− u2 , b = u√

q̃2 − u2
, u ∈ (−q̃, q̃) ,

(2.285)

where we further defined the scaled and boosted worldsheet coordinate

Y = cos2ϕ γ

√
q̃2 − u2X . (2.286)

Double magnon. Another simple application of (2.220) is to put an R×S3

magnon on both of the spheres, corresponding to the diffractionless scattering

of of two light magnons with different masses. Since this state is not in a short

representation of the residual algebra, comparing its fermion zero modes to

those of the single magnon reveals some key differences between short and long
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representations. In chapter 6 we perform this analysis for a highly symmetric

special case of the double magnon solution, where the two spheres have equal

radius
cos2ϕ = sin2ϕ = 1

2 , (2.287)

and the two magnons are stationary with the same speed, i.e.

θ+ = θ− = arccos

 sechY√
1 + b2

 ,

φ+
1 = φ−1 = 1

2 t+ arctan
(
b−1 tanhY

)
, φ+

2 = φ−2 = − q Y√
q̃2 − u2

,

γ2 = 1
1− u2 , b = u√

q̃2 − u2
, u ∈ (−q̃, q̃) ,

(2.288)

with
Y = 1

2γ
√
q̃2 − u2X . (2.289)

2.2.5 Mixed-flux AdS3 × S1 soliton

The mixed magnon from section 2.2.4 is an R×S3 string solution, but one can

equally consider solitons living on the AdS3 × S1 subspace of either AdS3 ×

S3 ×T4 or AdS3 × S3 × S3 × S1. For AdS5 such a solution was first described

as part of a three-spin giant magnon [166], that is also a valid string state

on the pure R-R AdS3 backgrounds. Using a rigidly rotating string ansatz,

the corresponding mixed-flux solutions were later found in [165, 167]. The

dispersion relation of these 3-spin magnons is consistent with the fact that

they are made up of two particles: a dyonic giant magnon on S3, and an

AdS3 soliton. In this subsection we study this mixed-flux AdS3×S1 soliton in

isolation.

Dressing

We can construct the AdS3 × S1 soliton by applying the SU(1, 1) dressing

method, as presented in section 2.2.3, to the BMN-vacuum. The auxiliary

system is the same as for the SU(2) case (2.245), with solution
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Ψ0(λ) =

e−iZ(λ) 0

0 eiZ(λ)

 ,

Z(λ) = z

1− (1− q)λ −
z̄

1 + (1 + q)λ.

(2.290)

As explained above (2.249), without loss of generality we can take

e = (1, 1), (2.291)

and this fixes the projector (2.240)

P = 1
1− e2i(Z(λ̄1)−Z(λ1))

 1 −e−2iZ(λ1)

e+2iZ(λ̄1) −e2i(Z(λ̄1)−Z(λ1))

 . (2.292)

The dressed soliton can be read off from

Ψ1(λ) =
√
λ1
λ̄1

[
1 + λ1 − λ̄1

λ− λ1
P

]
Ψ0(λ), (2.293)

at zero spectral parameter

Ψ1(0) =

Z1 −iZ2

iZ̄2 Z̄1

 , (2.294)

as

Z1 = e+it

|λ1|
λ̄1e

2iZ(λ1) − λ1e
2iZ(λ̄1)

e2iZ(λ1) − e2iZ(λ̄1)
,

Z2 = e−it

|λ1|
i(λ1 − λ̄1)

e2iZ(λ1) − e2iZ(λ̄1)
.

(2.295)

Using the parametrization (2.252), (2.253), the solution can be written as

Z1 = eit
[
cos p

2 + i sin p
2 cothU

]
,

Z2 = eiV sin p
2 cschU,

(2.296)

where
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U = cos % q̃ γ(x− ut),

V = sin % q̃ γ(t− ux)− qx,
(2.297)

q̃ =
√

1− q2, γ = (1− u2)−1/2, and u is the soliton speed on the worldsheet.

Conserved charges and dispersion relation

Let us write the AdS3 × S1 soliton (2.297) in Hopf coordinates

ρ = arcsinh

 cschU√
1 + b2

 ,
T = t+ arctan

(
b−1 cothU

)
, ψ = V − qx

θ = π

2 , φ1 = t, φ2 = 0,

(2.298)

where the parameters are related by

b = q̃ γu sec %+ q tan %. (2.299)

In the decompactification limit the charges (2.181) of a general AdS3 × S1

solution are

E − J1 = h
∫ ∞
−∞

dx
[
cosh2ρ Ṫ + q sinh2ρ ψ′ − 1

]
+ 1 + c̃

2 hq∆ψ,

J0 = h
∫ ∞
−∞

dx
[
sinh2ρ ψ̇ + q cosh2ρ T ′

]
− 1− c̃

2 hq∆T.

(2.300)

For the solution (2.298) the difference in AdS time between the string end-

points is

∆T = 2 arctan b−1, (2.301)

while ∆ψ is infinite. Calculating the conserved charges (2.300) we find both

IR and UV divergences. The IR divergence, which is essentially the same as

for the R × S3 magnon, appears due to the infinite worldsheet volume, and

can be easily removed by adjusting the boundary term to

c̃ = −1, (2.302)
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since the only IR divergent term in (2.300) is ∆ψ. The UV divergence is the

result of the string (2.298) stretching to the boundary of AdS3 at U = 0, and

can be removed using a simple cutoff regularization as prescribed in [166].

After regularization we have

E − J1 = −2h q̃γ sec %
1 + b2

,

J0 = −2htan ρ− qb
1 + b2

− hq∆T,

(2.303)

and recalling that the wordsheet momentum is p = −∆T (2.217) we get the

dispersion relation

E − J1 = −
√

(J0 − hqp)2 + 4h2q̃2 cos2 p
2 . (2.304)

This expression is similar to the dispersion relation of the R × S3 magnon

(2.267), with the main differences being the negative sign and the appearance

of cos p
2 instead of sin p

2 .

Semiclassical quantization

Similarly to the second angular momentum J2 of the giant magnon, the AdS

spin J0 of the AdS3 × S1 soliton will be quantized. Treating ρ as a spatial

coordinate (ρ goes from zero to infinity then back), we can rewrite (2.298) in

the form

T (t, ρ) = t± arctan
[
b−1

√
1 + (1 + b2) sinh2ρ

]
,

ψ(t, ρ) = wt+ r arcsinh
[ (√

1 + b2 sinh ρ
)−1]

,

(2.305)

w = q̃ sin %
γ
− qu , Tψ ≡

2π
|w|

, (2.306)

r = w
q + b tan %
qb− tan % , (2.307)

where the ± correspond to to the sign of ρ. In particular, we see that the

solution is time-periodic in the ψ direction, assuming x − ut thus ρ is kept

fixed, with period Tψ. Note that the periodicity of the solution is even more
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explicit in light-cone coordinates x+ = (1 − a)T + aφ1, x− = φ1 − T , where,

with a = 1, we fix x+ = t and x− only depends on ρ. This periodicity has an

associated action variable I

2πI = S − Tψ
∂S

∂Tψ

∣∣∣∣
p
, (2.308)

which should take integer values upon semiclassical quantization. Here S =

S(Tψ, p) is the action evaluated on the ranges t ∈ [0,Tψ] and x ∈ (−∞,∞).

Substituting (2.298) back into (2.175) we get

S = −hq̃2 cos2%
(
1 + b2

) ∫ Tψ

0
dt
∫ ∞
−∞

dx sinh2ρ

+ 2πh
(1− c̃

2 q∆T −
Tψ

2π
1 + c̃

2 q∆ψ
)
.

(2.309)

Just like the conserved charges (2.300), this expression exhibits both IR and

UV divergences. The IR divergence is easily removed by setting c̃ = −1

(agreeing with our choice above), while the integral needs to be UV regularized.

Changing coordinates to z = cosh ρ, we have

∫ ∞
−∞

dx sinh2ρ = 2
∫ ∞

1
dz
(
∂z

∂x

)−1 (
z2 − 1

)

= 2

q̃γ cos %
√

1 + b2

∫ ∞
1

dz z√
z2 − z2

0

,

(2.310)

with z0 = b/

√
1 + b2. Introducing a simple cutoff (i.e. not letting the string

reach the boundary of AdS space) this integral evaluates to

2

q̃γ cos %
√

1 + b2

(
Λ−

√
1− z2

0

)
, (2.311)

which we regularize by subtracting the infinite term, leading to

S = 2πh
(

2q̃2

tan %− qb + q∆T
)
. (2.312)
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After eliminating % and recalling that b = cot ∆T
2 = − cot p

2 , we obtain

S

2πh =
2q̃2
√

1− w2(
q̃2 + b2 −

[√
q̃2(1 + b2)(1− w2)− qwb

]2)1/2
− qb

√
1− w2

− qp .

(2.313)

Substituting back into (2.308) we get

I = J0, (2.314)

i.e. upon semiclassical quantization J0 takes integer values, and (2.304) can

be interpreted as an excitation of unit mass m = 1.

Shape of the solution

The target-space shape of the AdS3 × S1 soliton is not immediately obvious

from (2.298), since it is not in static gauge. Eliminating t in favour of T , and

using (2.305), we have

φ1(T, ρ) = T ∓ arctan
[
b−1

√
1 + (1 + b2) sinh2ρ

]
,

ψ(T, ρ) = wT ∓ w arctan
[
b−1

√
1 + (1 + b2) sinh2ρ

]
+ r arcsinh

[ (√
1 + b2 sinh ρ

)−1]
,

(2.315)

where the ∓ signs correspond to positive/negative values of ρ. As we traverse

the string, U ∈ (−∞,∞), we have ρ going from 0 to −∞, then from ∞ back

to 0. For fixed T , ψ winds around ρ = 0 infinitely many times at both ends

of the string, while at ρ → ±∞ there are two fixed asymptotic angles. The

BMN angle φ1 takes a topological kink form, but with a jump at the middle

(ρ =∞). The opening angle is related to (2.301) by

∆φ1 = −∆T, (2.316)

giving more physical meaning to the worldsheet momentum p = −∆T = ∆φ1.

A typical configuration is shown in Figure 2.2. Letting T evolve, this string

rotates18 in both φ1 and ψ, such that the endpoints move along the BMN
18 Unless w = 0, in which case ψ is stationary, see the solution (2.318).
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geodesic at the speed of light.

Figure 2.2: Spacetime image of a typical AdS3 × S1 soliton configuration for
fixed T . The two ends of the string are in purple and red, while green represents
the middle. On the left we see part of the AdS3 space with embeddingX+iY =
sinh ρ eiψ, Z = cosh ρ. The picture on the right shows φ1 as a function of the
target-space coordinate ρ.

Stationary soliton

An important special case of (2.298) is the stationary AdS3×S1 soliton, which

has a time-independent shape. Setting w = 0 in (2.305) fixes the value of %

sin % = γuq

q̃
. (2.317)

This is the exact same condition we had for the R × S3 stationary magnon

(2.275). We can write the stationary AdS3×S1 soliton in Hopf coordinates as

ρ = arcsinh

 cschY√
1 + b2

 , T = t+ arctan
(cothY

b

)
, ψ = − q Y√

q̃2 − u2
,

(2.318)

where
Y = γ

√
q̃2 − u2X , b = u√

q̃2 − u2
. (2.319)

The AdS3 spin satisfies J0 + hq∆T = 0, and the dispersion relation takes the

simpler form

E − J1 = −2hq̃ cos p
2 . (2.320)
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The parameter range is restricted to

sin2 % ≤ 1 ⇒ |u| ≤ q̃, (2.321)

but in fact we have a stationary soliton for all values of p, since

u = −q̃ cos p
2 . (2.322)

AdS3 × S1 × S1 stationary soliton. We can put the AdS3 × S1 soliton

(2.298) on AdS3 × S3 × S3 × S1, by applying (2.220), with the BMN string

on both S3
+ and S3

−. The physically relevant case is of course the maximally

SUSY solution with A = cos2ϕ, B = sin2ϕ, given by the Hopf coordinate

parametrization

ρ = arcsinh

 cschY√
1 + b2

 ,
T = t+ arctan

(
b−1 cothY

)
, ψ = − q Y√

q̃2 − u2
,

φ+
1 = cos2ϕ t, φ−1 = sin2ϕ t,

θ± = π

2 , φ±2 = 0, b = u√
q̃2 − u2

,

(2.323)

with scaled and boosted worldsheet coordinate

Y = γ

√
q̃2 − u2X . (2.324)

In chapter 6 we find the fermion zero modes of this mixed-flux stationary

AdS3 × S1 × S1 soliton, and see that they are consistent with the string state

being part of a short representation. The semiclassical quantization of J0 is

unchanged compared to (2.314), and the AdS3 × S1 × S1 soliton has mass

m = 1.
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Chapter 3

Fermion zero modes for the
mixed-flux AdS3 giant magnon

The residual (off-shell) symmetry algebra of the BMN ground state of AdS3×

S3 × T4 superstring theory is the centrally extended psu(1|1)4 superalgebra

[102, 114, 113, 115], while on AdS3 × S3 × S3 × S1 the elementary excitations

transform under the centrally extended su(1|1)2 algebra [98, 116]. The giant

magnon is a BPS state, i.e. part of the 4 and 2 dimensional short multiplets1 of

psu(1|1)4
c.e. and su(1|1)2

c.e., respectively. To reproduce these representations,

the mixed-flux giant magnon on AdS3 × S3 × T4 and AdS3 × S3 × S3 × S1

should have 4 and 2 fermion zero modes. These numbers come from the broken

supersymmetries of the BMN vacuum, and can also be argued by matching

the quantized zero modes to the odd generators of the residual algebra, see

appendix A. This chapter presents our original work [1], where we explicitly

construct these fermion zero modes, based on the AdS5 calculation of Minahan

[53].

As the starting point of the fermion zero mode analysis we take the mixed-

flux AdS3 stationary magnon, which can be considered the mixed-flux gener-

alization of the HM giant magnon. A detailed classical analysis of this string

solution can be found in section 2.2.4, here we just repeat the Hopf-coordinate

form (2.285)

θ+ = arccos

 sechY√
1 + b2

 ,

φ+
1 = cos2ϕ t+ arctan

(
b−1 tanhY

)
, φ+

2 = − q Y√
q̃2 − u2

,

θ− = π

2 , φ−1 = sin2ϕ t , φ−2 = 0 .

γ2 = 1
1− u2 , b = u√

q̃2 − u2
, u ∈ (−q̃, q̃) ,

(3.1)

1 A detailed description of the su(1|1)2
c.e. and psu(1|1)4

c.e. Lie superalgebras and their short
representations can be found in section 2.2.1.
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where, in terms of the boosted worldsheet coordinates

X = γ(x− ut), T = γ(t− ux), (3.2)

we have

Y = cos2ϕ γ

√
q̃2 − u2X , (3.3)

and the speed u of the magnon is related to the worldsheet momentum p by

u = q̃ cos p
2 . (3.4)

The rest of this chapter is structured as follows.

In section 3.1 we discuss the quadratic fermionic action, which is obtained

from the GS action by considering perturbations around the giant magnon as

background. We will look at the zero mode condition and kappa-gauge fixing,

before arriving at the zero mode equations of motion. These equations are

then solved in section 3.2, to get the expected number of normalizable zero

modes. After semiclassical quantization, we construct the fermionic generators

of the corresponding superalgebras.

In section 3.3 we consider the special case of q = 1. In agreement with

the chiral nature of the background, we find that all of the zero modes are

non-normalizable. Since the notion of stationary magnon breaks down, we

cannot simply take the q → 1 limit of the zero modes found for q < 1, and the

issue of semiclassical quantization also needs further attention. We conclude

in section 3.4 and present some of the more technical details in appendices.

3.1 Fermion zero mode equations

In this section we look at the equations of motion describing fermion pertur-

bations around the stationary giant magnon (3.1). Note that this treatment

includes both the AdS3×S
3×S3×S1 and AdS3×S

3×T4 (for ϕ = 0) cases. We

explain what is meant by zero modes, and describe in some detail the fixing

of fermionic kappa-gauge. Finally, we write down the zero mode equations for

kappa-fixed spinors, that will be solved in the next section.

94



CHAPTER 3. FERMION ZERO MODES FOR THE MAGNON

3.1.1 Fermionic equations of motion

The quadratic fermionic action in conformal gauge is given by [160]

SF = h
∫

d2σ LF , LF = −i
(
ηabδIJ + εabσIJ3

)
ϑ̄IρaDb ϑ

J , (3.5)

where I, J = 1, 2, the ϑI are ten-dimensional Majorana-Weyl spinors, and ρa
are projections of the ten-dimensional Dirac matrices

ρa ≡ e
A
a ΓA , eAa ≡ ∂aX

µEAµ (X) . (3.6)

Xµ are the coordinates of the target spacetime AdS3 × S3 × S3 × S1. The

giant magnon solution has non-constant components for µ = t, θ+, φ+
1 , φ

+
2 , φ

−
1

corresponding to the tangent space components A = 0, 3, 4, 5, 7 respectively.

The covariant derivative is given by

Daϑ
I =

(
Daδ

IJ + 1
48
/Fρaσ

IJ
1 + 1

8
/Haσ

IJ
3
)
ϑJ , (3.7)

where Da = ∂a + 1
4ω

AB
a ΓAB with the pullback of the spin connection ωABa ≡

∂aX
µωABµ . For a detailed review of the vielbein and spin connection the

reader is referred to section 2.2.2, while explicit expressions for the pullbacks

eAa , ω
AB
a can be found in appendix B. The tangent space components of the

fluxes (2.157) are given by

F012 = 2q̃ , F345 = 2q̃ cosϕ , F678 = 2q̃ sinϕ , (3.8)

H012 = 2q , H345 = 2q cosϕ , H678 = 2q sinϕ . (3.9)

Introducing Γ∗ ≡ Γ012 , (Γ∗)
2 = 1 , (3.10)

Γ+ ≡ Γ345 , (Γ+)2 = −1 , (3.11)

Γ− ≡ Γ678 , (Γ−)2 = −1 , (3.12)

the contractions of the fluxes with the Dirac matrices are

/F = 12q̃
(
Γ∗ + cosϕ Γ+ + sinϕ Γ−

)
,

/H = 12q
(
Γ∗ + cosϕ Γ+ + sinϕ Γ−

)
.

(3.13)
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The equations of motion derived from (3.5) are

(ρ0 + ρ1)(D0 −D1) ϑ1 = 0 ,

(ρ0 − ρ1)(D0 +D1) ϑ2 = 0 .
(3.14)

After expanding the covariant derivatives Da we get

(ρ0 + ρ1)
[
(D1 −D0) ϑ1 − 1

48
/F (ρ0 − ρ1) ϑ2 − 1

8( /H0 − /H1) ϑ1
]

= 0 ,

(ρ0 − ρ1)
[
(D1 + D0) ϑ2 + 1

48
/F (ρ0 + ρ1) ϑ1 − 1

8( /H0 + /H1) ϑ2
]

= 0 .

(3.15)

At this point it is natural to change variables to the scaled and boosted world-

sheet coordinates (3.3)

Y = cos2ϕ ζX , S = cos2ϕ ζT , ζ = γ

√
q̃2 − u2, (3.16)

satisfying

∂1 ∓ ∂0 = cos2ϕ ζ(1± u)γ(∂Y ∓ ∂S). (3.17)

With this, the equations become

(ρ0 + ρ1)
[
ζ(1 + u)γ

(
D − ∂S

)
ϑ1 +Oϑ2

]
= 0 ,

(ρ0 − ρ1)
[
ζ(1− u)γ

(
D̃ + ∂S

)
ϑ2 + Õϑ1

]
= 0 ,

(3.18)

where

O = − 1
48 cos2ϕ

/F (ρ0 − ρ1) , Õ = 1
48 cos2ϕ

/F (ρ0 + ρ1) , (3.19)

and the fermion derivatives are

D = ∂Y + 1
2G Γ34 + 1

2Q Γ35 −
(1− u)γ

48 cos2ϕ ζ

(
/H(ρ0 − ρ1) + (ρ0 − ρ1) /H

)
,

D̃ = ∂Y + 1
2G̃ Γ34 + 1

2Q Γ35 −
(1 + u)γ

48 cos2ϕ ζ

(
/H(ρ0 + ρ1) + (ρ0 + ρ1) /H

)
.

(3.20)

A detailed derivation can be found in appendix D, together with explicit ex-
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pressions for the scalar functions G, G̃,Q in (D.5).

The operators in front of the equations (3.18) are nilpotent

(ρ0 + ρ1)2 = (ρ0 − ρ1)2 = 0 . (3.21)

If we further define

ρ̄0 ≡ e
0
0 Γ0 − e

3
0 Γ3 − e

4
0 Γ4 − e

5
0 Γ5 + e7

0 Γ7 , (3.22)

which turns out to be ρ̄0 = −ρ†0 for the gamma matrices described in appendix

C, we get another set of nilpotent operators (ρ̄0 + ρ1)2 = (ρ̄0 − ρ1)2 = 0.

However, the two sets differ by the nonsingular operator ρ̄0−ρ0, which squares

to

(ρ̄0 − ρ0)2 = 4 cos2ϕ q̃−2
(
ζ2 tanh2Y + q2u2γ2

)
1 . (3.23)

The kernel of a 2m-dimensional nilpotent operator is of at least m dimensions

since all its eigenvalues are zero. If the sum of two nilpotent operators is full-

rank, as above, the kernels must be disjoint, therefore the sum of their nullities

is at most the full 2m. From this we see that the (ρ0 ± ρ1) are half-rank, an

important observation for subsection 3.1.3.

3.1.2 Zero mode condition

Note that the fermion Lagrangian (3.5) has a dependence on the worldsheet

coordinates only through the vielbein and spin connection. These quantities,

on the other hand, depend only on Y, i.e. the Lagrangian is independent of

the temporal coordinate S

LF = LF
(
Y, ϑJ , ∂ã ϑ

J
)
, (3.24)

where ã = 0, 1 correspond to the variables S and Y, respectively.

Translations in S can be equivalently described as a transformations of the

fields

δϑJ = ε ∂Sϑ
J , δ(∂ã ϑ

J) = ε ∂S(∂ã ϑ
J) , (3.25)
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and accordingly

δLF = ε

∂LF

∂ϑJ
∂Sϑ

J + ∂LF

∂
(
∂ã ϑ

J
)∂S(∂ã ϑ

J)

 (3.26)

= ε ∂SLF = ε ∂ã
(
δã0̃LF

)
. (3.27)

The change in the Lagrangian is a total derivative, and applying Noether’s

theorem we get a conserved current

jã = ∂LF

∂
(
∂ã ϑ

J
) ∂S ϑJ − δã0̃LF , (3.28)

where summation over J = 1, 2 is understood. However, for the fermionic

action we have LF = 0 on-shell, and the current simply reduces to

jã = ∂LF

∂
(
∂ã ϑ

J
) ∂S ϑJ , (3.29)

The explicit form of this current is unimportant for the present argument.

Since S is a time-like worldsheet coordinate, we might interpret the corre-

sponding conserved quantity as the energy of the fermionic perturbation above

the giant magnon background

EF =
∫

dX j0̃ =
∫

dX ∂LF

∂
(
∂S ϑ

J
) ∂S ϑJ . (3.30)

Zero modes, by definition, are zero energy fluctuations above the giant magnon,

i.e. EF = 0. Henceforth, we will take the zero mode condition to be

∂S ϑ
J = 0 , (3.31)

and with this, the equations for the fermion zero modes are

(ρ0 + ρ1)
[
ζ(1 + u)γD ϑ1 +Oϑ2

]
= 0 ,

(ρ0 − ρ1)
[
ζ(1− u)γD̃ ϑ2 + Õϑ1

]
= 0 .

(3.32)
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3.1.3 Fixing kappa symmetry

The Green-Schwarz superstring has a local fermionic symmetry, the so-called

kappa-symmetry, that ensures spacetime supersymmetry of the physical spec-

trum. Let us take another look at the quadratic fermionic Lagrangian (3.5)

LF = −i
(
ηabδIJ + εabσIJ3

)
ϑ̄IρaDb ϑ

J , (3.33)

= i ϑ̄1(ρ0 + ρ1)(D0 −D1)ϑ1 + i ϑ̄2(ρ0 − ρ1)(D0 +D1)ϑ2 , (3.34)

= −i cos2ϕ ϑ̄1(ρ0 + ρ1)
(
ζ(1 + u)γ

(
D − ∂S

)
ϑ1 +Oϑ2

)

+ i cos2ϕ ϑ̄2(ρ0 − ρ1)
(
ζ(1− u)γ

(
D̃ + ∂S

)
ϑ2 + Õϑ1

)
,

(3.35)

where D, D̃,O and Õ are defined in (3.19) –(3.20). We see the nilpotent

operators (ρ0± ρ1) acting on the conjugate spinors: components of ϑ1 and ϑ2

that are projected out by (ρ0+ρ1) and (ρ0−ρ1), respectively, do not contribute

to the action, we can consider them non-dynamical.

To fully fix kappa-gauge, however, not only do we need to project out non-

dynamical degrees of freedom, but also specify what happens to the rest, i.e.

we need actual projectors:

K1 = 1
2Π(ρ0 + ρ1) , K2 = 1

2Π(ρ0 − ρ1) , (3.36)

for some invertible Π, that has to satisfy a number of conditions. A straight-

forward, albeit somewhat cumbersome,2 calculation gives [ρ0 + ρ1, D] = [ρ0 −

ρ1, D̃] = 0 , so we have

[K1, D] = 0 , [K2, D̃] = 0 , (3.37)

provided [Π, D] = [Π, D̃] = 0. Another condition of course, is that the KJ

have to be genuine projectors — i.e. K2
J = KJ — , which, with (3.19), would

2 One can easily convince themselves that it is sufficient to check the Γ3, Γ4 and Γ5
components of the operator equations, simplifying matters a great deal.
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imply that

O = OK2 , Õ = ÕK1 . (3.38)

The most obvious choice would be Π = Γ0, but taking this route one

encounters technical difficulties when considering the AdS3 × S3 × S3 × S1

geometry, arising from the appearance of Γ7 in (ρ0 ± ρ1). Noting that in

both of these operators Γ7 only appears in the combination Γ0 + sinϕΓ7, it is

tempting to “rotate” our gamma matrices in the 0-7 directions

Γ̂0 = secϕ
(
Γ0 − sinϕ Γ7

)
, Γ̂7 = secϕ

(
Γ7 − sinϕ Γ0

)
, (3.39)

leaving unchanged all the others Γ̂A = ΓA, A 6= 0, 7. One can easily check

that these satisfy the Clifford algebra. We lower the index on Γ̂A with the

Minkowski metric, in particular Γ̂0 = −Γ̂0 = secϕ(Γ0 + sinϕ Γ7) soaks up all

the Γ7 dependence in (ρ0 ± ρ1)

ρ0 ± ρ1 = cosϕ
(
Γ̂0 + ê3

± Γ̂3 + ê4
± Γ̂4 + ê5

± Γ̂5
)

(3.40)

where êA± = secϕ (eA0 ± e
A
1 ). All of this is good motivation for the choice of

Π = secϕ Γ̂0, which can be easily shown to satisfy our conditions. Henceforth,

we will take

K1 = 1
2 secϕ Γ̂0(ρ0 + ρ1) , K2 = 1

2 secϕ Γ̂0(ρ0 − ρ1) . (3.41)

The advantages of this choice will become obvious in the next subsection.

If we take a basis of gamma matrices such that Γ̂A have definite hermiticity,

e.g. the one described in appendix C, the projectors are Hermitian K†J = KJ .

Furthermore, in such a basis the Hermitian conjugate intertwiner (see app. C)

is given by Γ̂0, hence the Dirac conjugate is ϑ̄ = ϑ† Γ̂0. With this, and the

properties listed above, we can write the Lagrangian as

LF = −2i cos3ϕ (Ψ1)†
(
ζ(1 + u)γ

(
D − ∂S

)
Ψ1 +OΨ2

)

+ 2i cos3ϕ (Ψ2)†
(
ζ(1− u)γ

(
D̃ + ∂S

)
Ψ2 + ÕΨ1

)
,

(3.42)
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where we introduced the notation ΨJ = KJϑ
J for the projected spinors, and

we indeed see that only these components are dynamical.

Using the kappa-projectors, the zero mode equations (3.32) can be written

as
K1

[
ζ(1 + u)γD ϑ1 +Oϑ2

]
= 0 ,

K2
[
ζ(1− u)γD̃ ϑ2 + Õϑ1

]
= 0 .

(3.43)

For the kappa-fixed spinors ΨJ = KJϑ
J , using (3.37) –(3.38), these equations

become

ζ(1 + u)γD Ψ1 +K1OΨ2 = 0 ,

ζ(1− u)γD̃ Ψ2 +K2ÕΨ1 = 0 .
(3.44)

3.1.4 Zero mode equations

With the choice of kappa projectors (3.41) we get a commuting 6d chirality

projector for free3

P± = 1
2
(
1± Γ̂∗Γ̂+

)
, [P±,KJ ] = 0 . (3.45)

Using this we can rewrite the contraction of the background fluxes /F , /H (3.13)

Γ∗ + cosϕ Γ+ + sinϕ Γ− = cosϕ
( (

secϕ Γ0 + tanϕ Γ1268 Γ7
)

Γ12 + Γ+
)

= cosϕ
(
Γ̂0Γ12 + Γ+

)
− 2 cosϕ ∆ Γ12

= 2 cosϕ
(
Γ̂∗ P+ −∆ Γ̂12

)
, (3.46)

where

∆ = −1
2 tanϕ

(
Γ̂1268 + 1

)
Γ7 ≡ ∆0 Γ̂0 + ∆7 Γ̂7 , (3.47)

with

∆0 = −1
2 tan2ϕ

(
Γ̂1268 + 1

)
, ∆7 = cscϕ∆0 . (3.48)

3 In any spinor operator M , replace ΓA by Γ̂A to get M̂ .
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Even though ∆0 and ∆7 are matrices, we can essentially treat them as scalars,

since they commute with the equations of motion.

Recalling ρ̄0 from (3.22), which also satisfies ρ0 Γ̂0 = Γ̂0 ρ̄0, we can define

an invertible operator from (3.23)

R = 1
2Ã

Γ̂∗(ρ̄0 − ρ0) : R2 = −q̃−2
(
ζ2 tanh2Y + q2u2γ2

)
1 . (3.49)

With all of this, the fermion derivatives (3.20) can be rewritten as (see ap-

pendix D)

D = ∂Y + 1
2G Γ̂34 + 1

2Q Γ̂35 + q(1− u)γ
ζ

(
RP− − (R+ Γ̂12)P+ + ∆0 Γ̂12

)
,

D̃ = ∂Y + 1
2G̃ Γ̂34 + 1

2Q Γ̂35 + q(1 + u)γ
ζ

(
RP− − (R+ Γ̂12)P+ + ∆0 Γ̂12

)
,

(3.50)

however, these expressions are only valid when acting on kappa-fixed spinors,

i.e. in the form DK1 and D̃K2. As for the terms (3.19) mixing the two spinors

in the equations of motion, we have

O = −q̃
(
Γ̂12P− + ∆ Γ̂∗

)
K2 ,

Õ = q̃
(
Γ̂12P− + ∆ Γ̂∗

)
K1 .

(3.51)

Using the nilpotency relations (ρ0 ± ρ1)2 = 0, it is easy to see that

Γ12K1K2 = −RK2 , Γ12K2K1 = −RK1 , (3.52)

and the equations of motion (3.44) become

ζ(1 + u)γD Ψ1 + q̃
(
R P− −K1∆ Γ̂∗

)
Ψ2 = 0 ,

ζ(1− u)γD̃ Ψ2 − q̃
(
R P− −K2∆ Γ̂∗

)
Ψ1 = 0 .

(3.53)

Equations for ∆ = 0

Equation (3.46) might seem arbitrary at first, so let us elaborate on the ad-

vantages of this rearrangement. Our goal was to have (Γ̂∗+ Γ̂+) — instead of

102



CHAPTER 3. FERMION ZERO MODES FOR THE MAGNON

/F — in the equations, since P± commutes with KJ . After this rewriting we

are left with an extra term K∆K, which does not in general commute with

P±. However, in the following two cases we have ∆ = 0

• ϕ = 0 : corresponding to the AdS3 × S3 ×T4 geometry.

• “Γ̂1268 = −1” : i.e. the AdS3 × S3 × S3 × S1 geometry, restricted

to the −1 eigenspace of Γ1268. Note that this is compatible with the

equations, since Γ̂1268 commutes with all the terms.

Assuming ∆ = 0, the fermion derivatives take the simpler form

D = ∂Y + 1
2G Γ̂34 + 1

2Q Γ̂35 + q(1− u)γ
ζ

(
RP− − (R+ Γ̂12)P+

)
,

D̃ = ∂Y + 1
2G̃ Γ̂34 + 1

2Q Γ̂35 + q(1 + u)γ
ζ

(
RP− − (R+ Γ̂12)P+

)
.

(3.54)

Also note that the equations of motion have no explicit dependence on ϕ, only

an implicit one via the rescaled variable Y (3.16). In other words, the following

equations apply in both geometries

ζ(1 + u)γD Ψ1 + q̃ R P−Ψ2 = 0 ,

ζ(1− u)γD̃ Ψ2 − q̃ R P−Ψ1 = 0 .
(3.55)

as long as we impose the extra condition Γ̂1268ϑJ = −ϑJ in the S1 geometry.

The case of ∆ 6= 0

As we have seen above, we can treat the AdS3 × S3 × S3 × S1 fermion zero

modes in much the same way as those of the AdS3 × S3 × T4 giant magnon,

provided ∆ = 0. In section 3.2 this will allow us to find solutions for both

geometries and general values of q in a single calculation. However, we need

to make sure there are no zero modes that we are missing by restricting to

∆ = 0.

We can get an intuition for why this must be the case by looking at the

fermion fluctuations around the BMN string on AdS3 × S3 × S3 × S1. In

appendix E we show that the mass of near-BMN fermions is determined by

their Γ1235 and Γ1268 eigenvalues, with m = cos2ϕ corresponding to Γ1235 =
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+1, Γ̂1268 = Γ1268 = −1. Taking the BMN limit of the fermion zero modes

themselves, they must become superpartners of the magnon, with all the same

mass m = cos2ϕ, hence definite chirality Γ̂1268 = −1. This is equivalent to

∆ = 0, and we expect no zero modes for ∆ 6= 0 (Γ̂1268 = +1). In appendix F

we show that there are in fact no normalizable solutions to (3.53) for ∆ 6= 0.

3.2 Mixed-flux fermion zero modes

In this section we find exact solutions for the (∆ = 0) zero mode equations

(3.55). Our main aim is to write down the normalizable solutions, representing

the perturbative zero modes over the giant magnon background. Using these

normalizable zero modes, we then perform semiclassical quantization, and

reproduce the the algebra that the fermion excitations must satisfy.

3.2.1 Fixing kappa-gauge

We start by noting that the kappa-projectors (3.41) can be written as

K1 = 1
2
(
1− sin(2χ) cos υ+ Γ̂03 − cos(2χ) cos υ+ Γ̂04 + sin υ+ Γ̂05

)
,

K2 = 1
2
(
1 + sin(2χ̃) cos υ− Γ̂03 + cos(2χ̃) cos υ− Γ̂04 − sin υ− Γ̂05

)
,

(3.56)

where

χ(Y) = 1
2

arccot
(
u cschY

q̃

)
− arcsin

 tanhY√
1−Q2

+ sech2Y

 ,

χ̃(Y) = 1
2

arccot
(
u cschY

q̃

)
+ arcsin

 tanhY√
1−Q2

− sech2Y

 ,

(3.57)

and we also introduced

Q± =
q
√
q̃2 − u2

q̃(1± u) , υ± = arcsin (Q± sechY) . (3.58)
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Ansatz. Since KJ , Γ̂12 and Γ̂∗Γ̂+ all mutually commute, as our starting

point we can take shared eigenvectors U

Γ̂12U
J = λ12U

J , Γ̂∗Γ̂+U
J = λPU

J , (3.59)

where λ12 = ±i, and λP = ±1 correspond to the P± projections. Accordingly,

there are no restrictions on these eigenvalues for the kappa-fixed spinor. The

operator Γ̂34 does not commute with KJ , hence a suitable combination of

its opposite eigenvectors makes a good candidate for the general gauge-fixed

spinor. This motivates the further restriction of Γ̂34U
J = iUJ and the ansatz

ΨJ =
(
αJ+(Y) + αJ−(Y) Γ̂45

)
UJ (3.60)

Solution. Substituting this into the equations K1Ψ1 = Ψ1, and using the

various eigenvector relations of U1, we get

λe2iχ cos υ+ α
1
− − λ sin υ+ α

1
+ = α1

+ ,

λe−2iχ cos υ+ α
1
+ + λ sin υ+ α

1
− = α1

− ,

(3.61)

where λ = iλ12λP = ±1. What we have here are two equations for the single

variable α−/α+, corresponding to the fact that the norm of the eigenvector is

not fixed. The equations are consistent, and a symmetric solution is given by

α1
+ = eiχ

√
1− λQ+ sechY , α1

− = e−iχλ
√

1 + λQ+ sechY . (3.62)

A similar calculation gives

α2
+ = eiχ̃

√
1 + λQ− sechY , α2

− = −e−iχ̃λ
√

1− λQ− sechY . (3.63)

Written in a single expression, the most general gauge-fixed spinors are

Ψ1 =
∑
λ=±

(
eiχ
√

1− λQ+ sechY + e−iχλ
√

1 + λQ+ sechY Γ̂45
)
U1
λ ,

Ψ2 =
∑
λ=±

(
eiχ̃
√

1 + λQ− sechY − e−iχ̃λ
√

1− λQ− sechY Γ̂45
)
U2
λ ,

(3.64)
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where Γ̂34U
J
± = +iUJ± and iΓ̂12Γ̂∗Γ̂+U

J
± = iΓ̂0345U

J
± = ±UJ±. The above

analysis shows that these are kappa eigenvectors, and by counting the degrees

of freedom (components of UJ) we see that there are no others.

3.2.2 Zero mode solutions

The projectors P± commute with the equations of motion (3.55), therefore we

can consider solutions of definite P± “chirality”. In the following we obtain

solutions on the two subspaces in turn, by letting UJ± depend on Y, and sub-

stituting (3.64) into the equations. The identities listed in appendix G were

useful in simplifying some of the more complicated expressions.

Solutions on the P+ subspace

For this projection the spinors decouple

D Ψ1 = 0 , D̃ Ψ2 = 0 , (3.65)

and we get ∑
λ=±

(
α1

+ + α1
− Γ̂45

)
(∂Y + C+)U1

λ = 0 ,

∑
λ=±

(
α2

+ + α2
− Γ̂45

)
(∂Y + C−)U2

λ = 0 ,
(3.66)

with c-numbers

C± = iλq

2
√
q̃2 − u2

+
iλQ±

√
1−Q2

±

2
(
cosh2Y −Q2

±
) , (3.67)

and this simple form of the equations is a consequence (or proof in itself) of

the fact that kappa-fixing commutes with the fermion derivative operators.

The solution is

U1
λ = e

− iλq

2
√
q̃

2−u2
Y− i

2λ arctan
(
Q+ tanhY√

1−Q2
+

)
V 1
λ ,

U2
λ = e

− iλq

2
√
q̃

2−u2
Y− i

2λ arctan
(
Q− tanhY√

1−Q2
−

)
V 2
λ ,

(3.68)

where V J are (independent) constant MW spinors with Γ̂34V
J
± = +iV J

± ,

Γ̂12V
J
± = ∓iV J

± and P+V
J
± = V J

± . However, with these, the spinors (3.64)

are not normalizable and we discard them as perturbative zero modes.
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Solutions on the P− subspace

The equations on this subspace become

ζ(1 + u)γD Ψ1 + q̃R Ψ2 = 0 ,

ζ(1− u)γD̃ Ψ2 − q̃R Ψ1 = 0 ,
(3.69)

with fermion derivatives

D = ∂Y + 1
2G Γ̂34 + 1

2Q Γ̂35 + q(1− u)γ
ζ

R ,

D̃ = ∂Y + 1
2G̃ Γ̂34 + 1

2Q Γ̂35 + q(1 + u)γ
ζ

R .

(3.70)

After substitution, and a considerable amount of simplification, we get

∑
λ=±

(
α1

+ + α1
− Γ̂45

) [
(∂Y + C11)U1

λ + C12U
2
λ

]
= 0 ,

∑
λ=±

(
α2

+ + α2
− Γ̂45

) [
(∂Y + C21)U2

λ + C22U
1
λ

]
= 0 ,

(3.71)

with

C11 = − iλq(1− 2u)

2
√
q̃2 − u2

+
iλQ+

√
1−Q2

+

2
(
cosh2Y −Q2

+
) ,

C21 = − iλq(1 + 2u)

2
√
q̃2 − u2

+
iλQ−

√
1−Q2

−

2
(
cosh2Y −Q2

−
) ,

C12 = (1− u)γ e
∫

(C21−C11)dY e+i2λξY (λ tanhY − iξ) ,

C22 = (1 + u)γ e
∫

(C11−C12)dY e−i2λξY (λ tanhY + iξ) ,

(3.72)

where we also defined

ξ = qu√
q̃2 − u2

. (3.73)

The motivation for writing C12 and C22 in the above form becomes clear

once we make the ansatz

U1
λ = e−

∫
C11dY

√
1 + u

Ũ1
λ = 1√

1 + u
e

iλq(1−2u)

2
√
q̃

2−u2
Y− i

2λ arctan
(
Q+ tanhY√

1−Q2
+

)
Ũ1
λ , (3.74)
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U2
λ = e−

∫
C12dY

√
1− u

Ũ2
λ = 1√

1− u
e

iλq(1+2u)

2
√
q̃

2−u2
Y− i

2λ arctan
(
Q− tanhY√

1−Q2
−

)
Ũ2
λ , (3.75)

and the equations in brackets (3.71) reduce to

∂Y Ũ
1
λ + e+i2λξY (λ tanhY − iξ) Ũ2

λ = 0 ,

∂Y Ũ
2
λ + e−i2λξY (λ tanhY + iξ) Ũ1

λ = 0 .
(3.76)

Inverting the first equation and substituting into the second we get a second-

order ODE for Ũ1
λ

∂2
Y Ũ

1
λ −

(
2iλξ + sech2Y

tanhY − iλξ

)
∂Y Ũ

1
λ −

(
tanh2Y + ξ2

)
Ũ1
λ = 0 (3.77)

with solutions

Ũ1
λ =

(
sechY Vλ + (coshY − iλξ sinhY − iλξ Y sechY) Ṽλ

)
eiλξY . (3.78)

Taking Ṽλ = 0, we obtain the normalizable solutions

Ũ1
λ = sechY eiλξY Vλ , Ũ2

λ = λ sechY e−iλξY Vλ , (3.79)

and the (kappa-fixed) fermion zero modes are given by

Ψ1 =
∑
λ=±

sechY
4
√

1 + u
eiλω+

(
eiχ
√

1− λQ+ sechY +

e−iχλ
√

1 + λQ+ sechY Γ̂45

)
Vλ ,

Ψ2 =
∑
λ=±

λ sechY
4
√

1− u
eiλω−

(
eiχ̃
√

1 + λQ− sechY −

e−iχ̃λ
√

1− λQ− sechY Γ̂45
)
Vλ ,

(3.80)

where

ω±(Y) = q Y

2
√
q̃2 − u2

− 1
2 arctan

Q± tanhY√
1−Q2

±

 , (3.81)

and the constant MW spinors V± satisfy P−V± = V±, Γ̂34V± = +iV±, and

Γ̂12V± = ±iV±.
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Counting the zero modes. The normalizable zero mode solutions above

are parametrized by the constant spinor V = V+ + V−. An unconstrained

10-d MW spinor has 16 real degrees of freedom, but kappa-fixing (which in

our parametrisation translates to Γ̂34V = +iV ) and 6d-chirality (P−V =

V ) both reduce the number of components by half. Recalling the further

restriction Γ̂1268V = −V for the S1 case, we conclude that there are 4 and

2 normalizable solutions for the AdS3 × S3 × T4 and AdS3 × S3 × S3 × S1

backgrounds, respectively, i.e. we get the expected number of fermion zero

modes.

3.2.3 Zero mode action

Now letting V = V+ +V− depend on T and substituting these zero modes into

(3.42) we get

LF,0 = 2i cosϕ (1 + u)γΨ1†∂T Ψ1 + 2iÃ(1− u)γΨ2†∂T Ψ2 , (3.82)

= i cosϕγ
2 sech2Y V †∂T V , (3.83)

where, going to the second line, we implicitly used the fact that V = 1
2(1 −

iΓ34)V , and (1− iΓ34)Γ45(1− iΓ34) = 0. Integrating over X we get the zero

mode action

SF,0 = hγ̃ secϕ
∫

dT
(
i V †∂T V

)
, (3.84)

with
γ̃ = γ

ζ
= 1√

q̃2 − u2
. (3.85)

We can further simplify this by considering a Majorana basis, where all

(rotated) gamma-matrices are purely imaginary Γ̂∗A = −Γ̂∗A, and the Majorana

condition reduces to reality of the spinors ΨI∗ = ΨI . Applying this to the

solutions (3.80), we get

V− = V+
∗ ⇒ V ∗ = V , (3.86)
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and the zero mode action becomes

SF,0 = hγ̃ secϕ
∫

dT
(
i V T∂T V

)
. (3.87)

As we have noted above, there are 2 and 4 real fermion zero modes for

the giant magnons on AdS3 × S3 × S3 × S1 and AdS3 × S3 × T4 respectively.

Quantization of these real fermions leads to the anticommutators

{Vαa, Vβb} = δαβ δab
cosϕ
hγ̃ , (3.88)

where a, α = 1, 2, and for ϕ 6= 0 only the a = 1 modes are present. After

complexifying

VLa = 1√
2

(V1a + i V2a) , VRa = 1√
2

(V1a − i V2a) , (3.89)

the only non-trivial zero-mode anticommutator is

{VLa, VRb} = δab
cosϕ
hγ̃ . (3.90)

In the remaining part of this section we will see, for both geometries, how the

symmetry superalgebra of the ground state (BMN vacuum) arises from these

zero modes.

3.2.4 Zero-mode algebra for AdS3 × S3 × S3 × S1

By considering the corresponding spin-chain, it was argued that the funda-

mental excitations transform in the 2 dimensional short representations of the

centrally extended su(1|1)2 algebra [98]. This superalgebra has 4 fermionic

generators and 4 central charges satisfying4

{QL,SL} = HL , {QL,QR} = C ,

{QR,SR} = HR , {SL ,SR } = C .
(3.91)

Consequently, the symmetry algebra of light-cone gauge superstring theory on

AdS3 × S3 × S3 × S1 was shown to take the same form, after lifting the level-

4 For a detailed description of su(1|1)2
c.e. and its representations see section 2.2.1.
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matching condition [116]. Thus, it is important to see how the supercharges

of the algebra can be constructed from the zero modes (3.90).

For an off-shell one-particle representation the values of the central charges

are given by
HL = 1

2(ε+M) , C = hς
γ̃
,

HR = 1
2(ε−M) , C = h

γ̃ς
,

(3.92)

where M = m± qhp, with mass m, ε is the energy of the magnon

ε =

√√√√M2 + 4h2

γ̃2 , (3.93)

and ς can be removed by rescaling for a one-particle state, but plays an im-

portant role in constructing multi-particle representations [39]. Note that the

momentum of the excitation enters into these expressions through (3.4)

(q̃γ̃)−1 = sin p2 . (3.94)

These values satisfy the shortening condition HLHR−CC = 0, therefore on

this representation the supercharges must be related to each other. Assuming

only {QL,QR} = hς
γ , it is not too hard to justify5 that the rest of (3.91) will

follow from

SL,R = ς−1

√ γ̃2M2

4h2 + 1 + γ̃M

2h (−1)F
 QR,L , (3.95)

where F is the fermion number operator, i.e. (−1)F anticommutes with the

supercharges. This leaves us with the task of expressing QL,R in terms of the

zero modes. We can make the general ansatz

QL,R = ς1/2
(
A− B(−1)F

)
VL,R , (3.96)

where A and B are some c-numbers, and (3.90) guarantees that the condition

{QL,QR} = hς
γ̃ will be satisfied as long as A2 − B2 = secϕh2. Our freedom in

5 In doing so, one might find useful the fact that acting on the short representation, the
supercharges satisfy: [QL,QR] = −(−1)FC, [SL,SR] = (−1)FC.
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choosing A is just basis dependence, and a symmetric identification is given

by

A =

√
secϕh2

2

√ γ̃2M2

4h2 + 1 + 1

1/2

,

B =

√
secϕh2

2

√ γ̃2M2

4h2 + 1− 1

1/2

,

(3.97)

with the supercharges taking the form

QL,R = ς1/2
(
A− B(−1)F

)
VL,R ,

SL,R = ς−1/2
(
A+ B(−1)F

)
VR,L .

(3.98)

3.2.5 Zero-mode algebra for AdS3 × S3 ×T4

The off-shell symmetry algebra of superstring theory on this background is

the centrally extended psu(1|1)4 [115], which is essentially a tensor product of

two su(1|1)2
c.e. algebras with matching central charges.6 The giant magnon is

part of a 4 dimensional short representation, and we should be able to match

the supercharges to the zero modes.

Having noted the tensor product structure of the algebra, the construction

is trivial, since (3.90) gives us two non-interacting copies of UL,R. The central

charges take the same values as in (3.92), hence everything from the previous

subsection holds for each copy of su(1|1)2
c.e., and the supercharges of psu(1|1)4

c.e.

are simply
QL,R a = ς1/2

(
A− B(−1)F

)
VL,R a ,

SL,R a = ς−1/2
(
A+ B(−1)F

)
VR,L a .

(3.99)

where A and B are still given by (3.97).

3.2.6 Zero modes in the α→ 0, 1 limits

The parameter α ∈ [0, 1] determines the radii of the 3-spheres in the AdS3 ×

S3 × S3 × S1 geometry (1.47), and in the limits α→ 0, 1, blowing up either of

the spheres, we are left with—up to compactification of the flat directions—

AdS3 × S3 × T4. It is interesting to see what happens to the fermion zero

6 See section 2.2.1 for the construction and short representations of psu(1|1)4
c.e..
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modes (3.80) in the process.

Taking α → 1 (or ϕ → 0) blows up S3
−, the sphere on which we have the

BMN-like leg of the magnon (3.1). In this limit Y → γ
√
q̃2 − u2X , i.e. the

magnon becomes the T4 magnon, and the zero modes reduce to two of the

four real T4 zero modes, the ones on the Γ1268 = −1 subspace. The remaining

two we will find on the Γ1268 = +1 eigenspace, where ∆ also becomes zero

(3.47).

On the other hand, α → 0 (or ϕ → π
2 ) blows up S3

+ with the stationary

magnon on it, and the bosonic solution becomes a BMN string on S3
−. Since

the rescaled coordinate

Y = cos2ϕγ
√
q̃2 − u2X → 0 (3.100)

for all points on the string, the zero mode solution (3.80) reduces to constant

spinors. The highest weight state of the massless magnon is fermionic [115]

and should correspond to the limit of our fermion fluctuations, but it appears

we are unable to learn more about these modes from a semiclassical analysis.

This shows that some aspects of the massless modes can only be captured by

exact in α′ results, in agreement with similar findings in the spin chain limit

[110].

3.3 Fermion zero modes for q = 1

In this section we take a look at the special case of q = 1, as there are some

subtleties not captured by our general discussion. The q = 1 fermion zero

modes on the two AdS3 backgrounds are more closely related than for q < 1,

hence we will first focus on the AdS3 × S3 ×T4 case, then briefly describe the

differences for AdS3 × S3 × S3 × S1.

3.3.1 Bosonic solution

For q = 1, the giant magnon

Z1 = eit
[
cos p

2 + i sin p
2 tanhU

]
,

Z2 = eiV sin p
2 sechU,

(3.101)
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found in [119] is still a valid solution, but the magnon speed on the world-

sheet is actually fixed to be the speed of light, and we will use a different

parametrization7

U = cos ρ β (x+ t),

V = sin ρ β (x+ t)− x,
(3.102)

where β > 0, ρ ∈ [0, 2π), and the parameters are related via

b ≡ cot p
2 = sin ρ− β

cos ρ . (3.103)

Already from this representation of the solution it seems like the main

dependence is on the light-cone coordinate x+ = 1
2(t+x). This is hinting at the

magnon having a definite chirality, not completely unexpectedly considering

that bosonic theory reduces to the conformal WZW model at q = 1. This

statement will be made more precise shortly.

Conserved charges. For the above solution the conserved charges are

E − J1 = M = 2h sin2 p
2
(
tan ρ− cot p

2
)
,

J2 = M + hp,
(3.104)

with dispersion relation

E − J1 = J2 − hp. (3.105)

The SU(2) principal chiral model for q = 1. The SU(2) PCM with WZ

term (see section 2.2.3) simplifies significantly for the case of q = 1, with the

equations of motion (2.224) now reading

∂−J+ = 0 , ∂+K− = 0 . (3.106)

The degrees of freedom separate based on chirality: the left-movers are de-

scribed by J+(x+), while K−(x−) describes right-movers. Looking at the

magnon’s SU(2) currents, listed in appendix H, we note that K− is in fact

7 In the q → 1 limit the parameter v of [119] is meaningless, instead we will use β =
√

1−v
1+v .
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constant with no dynamical information (i.e. it can be gauged away). It is in

this sense that the classical bosonic solution has a definite chirality.

3.3.2 Zero mode equations for AdS3 × S3 ×T4

The derivation of the fermion equations of motion is analogous to the q ∈ [0, 1)

case presented in section 3.1, and we omit the details here. In terms of the

light-cone coordinates x± = 1
2(t± x), we have

(
∂− − 2β cos ρM(x+)

)
Ψ1 = 0 ,

(
∂+ + 2β cos ρ M̃(x+)

)
Ψ2 = 0 ,

(3.107)

with

M = 1
2β cos ρ

(1
2G Γ34 + 1

2Q Γ35 +RP− − (R+ Γ12)P+

)

M̃ = 1
2β cos ρ

(1
2G̃ Γ34 + 1

2Q̃ Γ35 +RP− − (R+ Γ12)P+

) (3.108)

where all the dependence is on x+ via

Y = 2β cos ρ x+ . (3.109)

The expressions for G, G̃,Q and Q̃, along with the pullbacks of the vielbein and

spin connection can be found in Appendix I. These equations are the q = 1

versions of (3.18), but also after commuting the kappa projectors through.

Note however, that they cannot be obtained as limits of the q < 1 analogues.

In this general setting for q = 1 surely not (there are two parameters β, ρ here

versus the one parameter u in section 3.1), but not even for any special case,

since there is no q = 1 stationary magnon (see towards the end of this section).

Zero mode condition. As we have seen above, the bosonic background is

itself chiral (∂−J+ = 0), and it is reasonable to expect this to carry through to

the fermionic zero modes, i.e. ∂−ϑ
J = 0. This can be viewed as the extension

of the zero mode condition for q ∈ [0, 1), and forces the first spinor to be trivial

Ψ1 = 0 . (3.110)
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Changing to the variable Y, the remaining equation for Ψ2 reads

(
∂Y + M̃

)
Ψ2 = 0 . (3.111)

3.3.3 Zero mode solutions for AdS3 × S3 ×T4

We can find the solutions for Ψ2 in much the same way we did in section

3.2. First we solve for the general kappa-fixed spinor, then substituting it into

(3.111) we get a set of simpler equations on the P± subspaces, that we can

easily solve.

Fixing kappa-gauge. The projector can be written as

K2 = 1
2 (1 − cos υ Γ04 − sin υ Γ05) , (3.112)

with

υ = arcsin

 sechY√
1 + b2

 . (3.113)

Making the ansatz

Ψ2 = (α+(Y) + α−(Y) Γ45)U , (3.114)

with Γ34U = iU and iΓ12Γ∗Γ+U = λU , the equation K2Ψ2 = Ψ2 reduces to

λ sin υ α+ + λ cos υ α− = α+ ,

λ cos υ α+ − λ sin υ α− = α− .

(3.115)

A symmetric solution is given by

α+ =
√

1 + λ sin υ , α− = λ
√

1− λ sin υ , (3.116)

and the most general gauge-fixed spinor is

Ψ2 =
∑
λ=±

(√
1 + λ sin υ + λ

√
1− λ sin υ Γ45

)
Uλ , (3.117)

where still Γ34U± = +iU± and iΓ12Γ∗Γ+U± = iΓ0345U± = ±U±.
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Solutions on the P± subspaces. Now letting Uλ depend on Y and substi-

tuting (3.117) into the P± projections of (3.111), after a considerable amount

of simplification, we get

∑
λ=±

(α+ + α− Γ45) (∂Y + C+)Uλ = 0 on P+ ,

∑
λ=±

(α+ + α− Γ45) (∂Y + C−)Uλ = 0 on P− ,

(3.118)

with the scalars8

C± = − iλ4

(
2b sech2Y

b2 + tanh2Y
± sec2ρ

b− tan ρ + 2 tan ρ
)
. (3.119)

It is now a simple exercise to arrive at the solutions Ψ2+,Ψ2− on the P+ and

P− subspaces, respectively,

Ψ2± =
∑
λ=±

eiλω±(Y)
(√

1 + λ sin υ + λ
√

1− λ sin υ Γ45
)
V ±λ , (3.120)

where

ω±(Y) = 1
2 arctan

(tanhY
b

)
+ 1

4

(
2 tan ρ± sec2ρ

b− tan ρ

)
Y , (3.121)

and the constant spinors V a
λ satisfy Γ34V

a
λ = +iV a

λ , P±V
±
λ = V ±λ and iΓ0345V

a
± =

±V a
±. Starting with 16 (unconstrained) real MW spinors, these conditions

leave us with 4+4 real zero modes on the P+ and P− subspaces. We see that

none of the solutions are normalizable, which is to be expected given the chi-

ral nature of the background. However, only looking at the solutions, and not

extrapolating from the q < 1 case, it is unclear which 4 of these should be

included in semiclassical quantization and the construction of the algebra.

3.3.4 Zero modes for AdS3 × S3 × S3 × S1

We can put the magnon (3.101) on AdS3×S3×S3×S1 using the prescription

from section 2.2.2. Just like above, the zero modes satisfy Ψ1 = 0 and

(
∂Y + M̃

)
Ψ2 = 0 , (3.122)

8 Note that these are different from (3.67).
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where, similarly to (3.50)

M̃ = 1
2β cos ρ

(1
2G̃ Γ̂34 + 1

2Q̃ Γ̂35 +RP− − (R+ Γ̂12)P+ + ∆0 Γ̂12

)
.

(3.123)

The boosted worldsheet coordinate is Y = 2 cos2ϕβ cos ρ x+, the scalar func-

tions G, G̃,Q, Q̃ are still as given in Appendix I, and from (3.47)

∆0 = −κ
2

2
(
Γ̂1268 + 1

)
, κ ≡ tanϕ . (3.124)

Γ̂1268 = −1. On the −1 eigenspace of Γ̂1268 the solutions are the same as

for AdS3 × S3 × T4 (3.120), with all ΓA replaced by Γ̂A (including P± =
1
2(1± Γ̂∗Γ̂+)) and imposing the extra condition Γ̂1268V a

λ = −V a
λ .

Γ̂1268 = +1. On this subspace ∆0 = −κ2, and after making the ansatz

(3.117) we get

(
∂Y + C+ + iλκ2

2β cos ρ

)
Uλ = 0 on P+ ,

(
∂Y + C− −

iλκ2

2β cos ρ

)
Uλ = 0 on P− .

(3.125)

The zero mode solutions are

Ψ2± =
∑
λ=±

eiλω̃±(Y)
(√

1 + λ sin υ + λ
√

1− λ sin υ Γ45
)
V ±λ , (3.126)

where

ω̃±(Y) = 1
2 arctan

(tanhY
b

)
+ 1

4

(
2 tan ρ± (1 + κ2) sec2ρ

b− tan ρ

)
Y , (3.127)

and Γ34V
a
λ = +iV a

λ , P±V
±
λ = V ±λ , iΓ0345V

a
± = ±V a

±, Γ̂1268V a
λ = +V a

λ .

We have 8 real solutions in total, 2+2 for P± on each eigenspace of Γ̂1268.

Once again, all of these zero modes are non-normalizable, and without extrapo-

lating from the q < 1 analysis, we have not been able to find any distinguishing

features of the 2 that would enter into canonical quantization.
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3.3.5 The q → 1 limit

We can go from the q < 1 dyonic magnon (2.260) to the q = 1 solution (3.101)

by taking
q̃ → 0, u→ −1, with q̃γ = β fixed. (3.128)

However, to compare the zero modes above to those found in section 3.2, we

need the q = 1 version of the stationary magnon (3.1) we used as a background

for the q < 1 fermions. There are two natural ways of taking the q → 1 limit,

let us look at them in turn.

Our first instinct would be to take the same limit (3.128) for the stationary

magnon (3.1), but this is not compatible with the condition (3.4), restricting

|u| ≤ q̃. Equivalently, we cannot make V in (3.102) only depend on x+ (tech-

nically one could take β → ∞, but this results in a discontinuous bosonic

solution).

Alternatively, we can impose the second form of the stationary condition,

and require the SU(2) chargeM to be zero. This would mean β = 0, and then

U ≡ 0, with the endpoints not on the equator any more. Furthermore, the

parameter p in (3.101) would not be the worldsheet momentum, as ∆φ1 = 0.

Lacking a suitable generalization of the Hofman-Maldacena magnon for

q = 1, it is not immediately clear how we can apply the analysis of previous

sections. It would be interesting to further investigate the relation between

the q → 1 limit of zero modes found in section 3.2, to the q = 1 fermion

fluctuations found here.

3.4 Chapter conclusions and outlook

In this chapter we have seen how the fermion zero mode equations of the mixed-

flux stationary AdS3 giant magnon can be solved explicitly by exploiting the

symmetries of the system. We found that there are 4 and 2 zero modes for the

AdS3 × S3 ×T4 and AdS3 × S3 × S3 × S1 magnons, respectively, in agreement

with the algebraic structure. We also showed how to get the generators of the

centrally extended psu(1|1)4 and su(1|1)2 algebras from the semiclassically

quantized fermion zero modes.

We treated the q = 1 limit separately, and found that there is no stationary
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magnon in this case. As expected from the chiral nature of the magnons at

the q = 1 point, all of the zero modes we found are non-normalizable. We have

the same number of fermionic generators in the off-shell algebra as for q < 1,

and with the excess number of solutions, the issue of canonical quantization

needs to be further addressed.

Another interesting question was whether we can learn something about

the massless modes from this semiclassical analysis. Considering that in the

T4 theory the massless modes’ highest weight state is a fermion [114], taking

the α → 0 limit of the fermion zero modes might have been a good way to

arrive at the solutions. The fact that this did not work indicates that the

fermionic massless mode is inherently non-perturbative in nature. This is also

in agreement with [110], where it was found that the α → 0 limit fails to

capture the massless mode at the spin chain point (i.e. at the opposite limit

of the duality). To understand this elusive mode we need non-perturbative

methods, like the low-energy integrable massless S-matrix and TBA for AdS3×

S3 × T4 [126, 127, 128].

There are a number of natural directions for future research. Given the

lack of stationary magnon for q = 1, we need to better understand the pure

NS-NS classical string solitons, and their fermion zero modes. As we have

seen, the fermion zero modes tie in nicely with the residual symmetry algebra

in the decompactification limit, and it would be interesting to perform a sim-

ilar analysis for the finite size giant magnons, either on AdS5 × S5 [45, 168]

or the mixed-flux AdS3 backgrounds [169, 170]. Lastly, in this chapter we

restricted our attention to the zero energy fluctuations, and an obvious next

step would be to consider the full fluctuation spectrum, along the lines of the

AdS5 calculation [54]. In fact, we have carried out this analysis [2], and the

results are presented in the next chapter.
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Chapter 4

Semiclassical quantization
of the mixed-flux AdS3
giant magnon

Having found the zero mode solutions to the perturbation equations of the

mixed-flux AdS3 giant magnon in chapter 3, we now present the derivation

of the complete fluctuation spectrum [2], based on the AdS5 calculation [54].

The fluctuations can be used to determine the 1-loop correction to the soliton

energy [162, 137, 136, 163], and showing that this correction is zero provided

a simple check on the explicit AdS5 fluctuation solutions. The same is going

to be true for AdS3, although with an important difference. The dispersion

relation determined from symmetry [102, 104, 115]

ε± =

√(
m± q

√
λ

p
2π

)2
+ 4 q̃2 h2 sin2 p

2 (4.1)

does receive quantum corrections, it is only in the classical string limit that

h =
√
λ

2π , (4.2)

and other physical inputs are necessary to determine the expansion of h(λ). A

more detailed discussion can be found in section 4.4. This chapter is structured

as follows.

In section 4.1 we first review the mixed-flux stationary giant magnon on

AdS3 × S3 × S3 × S1, then write down the spectrum of small bosonic fluctua-

tions around the classical solution. Although the perturbation equations are

rather complicated, one can construct explicit solutions algebraically using the

dressing method, which we adapt to be more suited to the fluctuation analysis.

In section 4.2 we find the fermionic fluctuations, closely following the meth-

ods developed in [53, 1] extended to non-zero angular frequencies. Using the

symmetries of the system and an explicit kappa-fixed ansatz, the full 2 × 32
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component spinor equations are reduced to a 4 dimensional system, which we

can solve explicitly.

Finally in section 4.3 we read off the stability angles of the fluctuations,

and use them to evaluate the 1-loop functional determinant around the soliton

background, following the method of Dashen, Hasslacher and Neveu [162]. We

find that, in agreement with our expectations based on the superalgebra, the

leading order quantum correction vanishes. We conclude in section 4.4 and

present some of the lengthier or more technical details in appendices.

4.1 Bosonic sector

In this section we review the mixed-flux AdS3 stationary magnon, and solve for

its bosonic fluctuations using a similar approach employed to study the AdS5

magnon in [54]. We consider the case of the AdS3 × S3 × S3 × S1 background

in our calculations, and comment on how the AdS3 × S3 × T4 modes can be

obtained at the end of the section.

We start by rewriting the conformal gauge bosonic action (2.175) in the

form

S = S̃[Y ] + 1
cos2ϕ

S+[X+] + 1
sin2ϕ

S−[X−], (4.3)

with AdS3 and S3
± components

S̃[Y ] = −h
2

∫
M

d2x
[
ηab∂aY

i∂bYi + Λ̃ (Y 2 + 1)
]

− hq
3

∫
B
d3x εabcεµνρσY

µ∂aY
ν∂bY

ρ∂cY
σ

S±[X] = −h
2

∫
M

d2x
[
ηab∂aX

i∂bXi + Λ± (X2 − 1)
]

− hq
3

∫
B
d3x εabcεijklX

i∂aX
j∂bX

k∂cX
l

(4.4)

where ηab = diag(−1,+1), the embedding coordinates Y ∈ R2,2, X± ∈ R4 are

enforced to lie on the unit-radius surfaces

Y 2 = −1, (X±)2 = 1 (4.5)
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by the Lagrange multipliers Λ̃,Λ±, and the Wess-Zumino term is defined on

a 3d manifold B such that its boundary is the worldsheet ∂B = M. The

equations of motion

(∂2 − Λ̃ )Yµ − q K̃µ = 0, K̃µ = εabεµνρσY
ν∂aY

ρ∂bY
σ,

(∂2 − Λ±)X±i − q K
±
i = 0, K±i = εabεijklX

±
j ∂bX

±
k ∂cX

±
l ,

(4.6)

need to be supplemented by the conformal gauge Virasoro constraints

(∂0Y )2 + (∂1Y )2 + 1
cos2ϕ

(
(∂0X

+)2 + (∂1X
+)2

)
+ 1

sin2ϕ

(
(∂0X

−)2 + (∂1X
−)2

)
= 0,

∂0Y · ∂1Y + 1
cos2ϕ

∂0X
+ · ∂1X

+ + 1
sin2ϕ

∂0X
− · ∂1X

− = 0.

(4.7)

Taking scalar products of (4.6) with Y,X±, it follows from (4.5) and

Y µK̃µ = 0, X± iK±i = 0, (4.8)

that the Lagrange multipliers take the classical values

Λ̃ = −Y · ∂2Y, Λ± = X± · ∂2X±. (4.9)

4.1.1 The stationary giant magnon

Just like in chapter 3, we take the classical background to be the stationary

mixed-flux magnon (2.285), written in terms of the embedding coordinates as

Y 0 + iY 1 = eit

X−1 + iX−2 = ei sin
2
ϕ t

Z1 ≡ X
+
1 + iX+

2 = ei cos2
ϕ t [cos p

2 + i sin p
2 tanhY

]
Z2 ≡ X

+
3 + iX+

4 = e
− i q√

q̃
2−u2

Y
sin p

2 sechY

(4.10)
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where the scaled and boosted worldsheet coordinate is

Y = cos2ϕ γ

√
q̃2 − u2X , X = γ(x− ut) (4.11)

and

q̃ =
√

1− q2, γ2 = 1
1− u2 . (4.12)

The parameter u, restricted to u ∈ (−q̃, q̃), can be regarded as the velocity of

the magnon. The worldhseet momentum p ∈ [0, 2π) is not a Noether charge

of the action, rather a topological charge of the soliton, corresponding to the

longitudinal distance between the two endpoints of the magnon on the equator

of S3
+ (Z2 = 0). The parameters further satisfy

u = q̃ cos p
2 . (4.13)

This is a special case of the dyonic mixed-flux magnon, which was first

constructed in [119] for the AdS3×S
3×T4 background. The stationary magnon

was identifed in [1] as the mixed-flux equivalent of the Hofman-Maldacena

magnon [41], as compared to the more general AdS5 dyonic magnon of [43].

The dispersion relation1

E − J1 = 2hq̃ sin p
2 , (4.14)

bears witness to this analogy, to be compared to the similarly simple E−J1 =

2h sin p
2 for the q = 0 HM magnon. The Lagrange multipliers (4.9) evaluate

to the classical values

Λ̃ = 1, Λ− = − sin4ϕ, Λ+ = cos4ϕ
(
1− 2 q̃−2γ2(q̃2 − u2) sech2Y

)
. (4.15)

4.1.2 AdS3 fluctuation spectrum

Let us now determine the spectrum of fluctuations around the mixed-flux

magnon (4.10), starting with the AdS3 bosons. We denote the perturbed

solution by

Y + δ ỹ (4.16)

1
E is the spacetime energy, J1 is the angular momentum corresponding to the maximally

supersymmetric geodesic along the equators of S3
±.

124



CHAPTER 4. SEMICLASSICAL QUANTIZATION

where Y is the classical solution, δ � 1 and the perturbation ỹ ∈ R2,2 is

bounded. Substituting into the equation (4.6) and expanding to first order in

δ (note that Λ̃ also receives corrections) we get the perturbation equation

(∂2 − 1) ỹµ + (Y · ∂2ỹ + qK̃ · ỹ)Yµ − qk̃µ = 0 (4.17)

where K̃µ is as in (4.6) and

k̃µ = εabεµνρσ (ỹν∂aY
ρ∂bY

σ + 2Y ν∂aỹ
ρ∂bY

σ) . (4.18)

Furthermore, to preserve the norm (4.5), the perturbation must be orthogonal

to the classical solution

Yµỹ
µ = 0. (4.19)

These equations have one massless and two massive solutions. To get the

massless perturbation we make the ansatz

ỹ0 = −f sin t, ỹ1 = f cos t, (4.20)

for which (4.17) reduces to the free wave equation

∂2f = 0 ⇒ f = eikx−iωt (4.21)

satisfying the massless dispersion relation ω2 = k2. The remaining two massive

solutions lie in the transverse directions (ỹ0 = ỹ1 = 0) of AdS3, automatically

satisfying (4.19). A simple plane-wave ansatz gives

ỹ2 = eikx−iωt, ỹ3 = ∓ieikx−iωt, ω2 = (1± qk)2 + q̃2k2. (4.22)

Note that this is the small p, fixed k = hp limit of the mixed-flux AdS3×S3×

S3 × S1 dispersion relation [115]

ε± =
√

(m± qhp)2 + 4 q̃2 h2 sin2 p
2 . (4.23)

with mass m = 1.
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4.1.3 S3
− fluctuation spectrum

The S3
− fluctuations are very similar to the ones on AdS3. Substituting the

perturbed solution
X− + δ x̃− (4.24)

into (4.6), we get the first order equations

(∂2 + sin4ϕ) x̃−i + (X− · ∂2x̃− − qK− · x̃−)Xi − qk
−
i = 0 (4.25)

where K−i is as in (4.6) and

k−i = εabεijkl
(
x̃−j ∂bX

−
k ∂cX

−
l + 2X−j ∂bx̃

−
k ∂cX

−
l

)
, (4.26)

which needs to be supplemented by X−i x̃
−i = 0 to preserve the norm. Just

like on AdS3, these equations admit a massless solution

x̃−1 = −eikx−iωt sin
(
sin2ϕt

)
,

x̃−2 = eikx−iωt cos
(
sin2ϕt

)
, ω2 = k2,

(4.27)

and two perturbations of mass m = sin2ϕ

x̃−3 = eikx−iωt,

x̃−4 = ∓eikx−iωt, ω2 = (sin2ϕ± qk)2 + q̃2k2.
(4.28)

4.1.4 S3
+ fluctuation spectrum

For the S3
+ perturbed solution we write

X+ + δ x̃+, (4.29)

and also introduce the complex coordinates

z1 = x̃+
1 + ix̃+

2 , z2 = x̃+
3 + ix̃+

4 , (4.30)

so that the perturbed S3
+ component of (4.10) can be written as

Z1 + δ z1, Z2 + δ z2. (4.31)
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The equations of motion for the S3
+ fluctuations read

(
∂2 − cos4ϕ

(
1− 2 q̃−2γ2(q̃2 − u2) sech2Y

))
x̃+
i

+ (X+ · ∂2x̃+ − qK+ · x̃+)Xi − qk
+
i = 0

(4.32)

where K+
i is as in (4.6),

k+
i = εabεijkl

(
x̃+
j ∂bX

+
k ∂cX

+
l + 2X+

j ∂bx̃
+
k ∂cX

+
l

)
, (4.33)

and to preserve the embedding norm

X+
i x̃

+i = 0. (4.34)

These equations have two different classes of solutions.

Firstly, there are the zero modes, representing collective coordinates of the

magnon. The BMN limit fixes the orientation of the magnon in the (X+
1 , X

+
2 )

plane, but there is a rotational freedom in traverse coordinates (X+
3 , X

+
4 )

leading to the zero mode

z1 = 0,

z2 = ie
− i q√

q̃
2−u2

Y
sechY.

(4.35)

Furthermore, the magnon breaks the x-translation symmetry of the BMN

vacuum, leading to the zero mode

z1 = iei cos2
ϕ tsech2Y,

z2 = −e
− i q√

q̃
2−u2

Y
sechY tanhY.

(4.36)

These two normalizable zero modes are presented for completeness, but will

not play any further role in our analysis.

The solutions we are interested in are plane-wave fluctuations of the form

eikx−iωtf(Y), (4.37)

where f(Y) is a bounded profile that is stationary in the magnon’s frame.

The equations are too complicated for us to find solutions by substituting
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the plane-wave ansatz into (4.32), we need to look for another strategy. The

authors of [54] suggest using the dressing method [143, 144, 145] to construct

the scattering state of a magnon and a breather, only then to expand this

solution in the breather momentum to find the fluctuation as the subleading

term. We find, instead, that it is simpler to apply the dressing method to the

perturbed BMN vacuum, i.e. the point-like string moving along the equator

together with fluctuations like (4.27)–(4.28), which results in the perturbed

magnon. The details of this calculation can be found in appendix J, here

we just present the solutions. As further confirmation of the validity of our

approach, we show in appendix K that applying our method in the ϕ = q = 0

limit we recover the expected subset of the AdS5 × S5 fluctuations found in

[54].

The massles plane-wave solution is given by

z1 = −ieikx−iωte+i cos2
ϕ t
(
q̃k − ω cos p

2

− i sin p
2 tanhY

(
ω − q̃k cosh(Y + ip

2 ) sechY
) )
,

z̄1 = ieikx−iωte−i cos2
ϕ t
(
q̃k − ω cos p

2

+ i sin p
2 tanhY

(
ω − q̃k cosh(Y − ip

2 ) sechY
) )
,

z2 = ieikx−iωt sin p
2 e
− i q√

q̃
2−u2

Y
sechY

(
qk − iq̃k sin p

2 tanhY
)
,

z̄2 = −ieikx−iωt sin p
2 e

+ i q√
q̃

2−u2
Y

sechY
(
qk + iq̃k sin p

2 tanhY
)
,

(4.38)

with

ω2 = k2. (4.39)

Here z̄i are not the complex conjugates of zi, rather
2

z̄1 = x̃+
1 − ix̃

+
2 , z̄2 = x̃+

3 − ix̃
+
4 , (4.40)

2 To preserve the (relative) simplicity of the formulas we consider x̃+
i to be complex

themselves. Real solutions to (4.32) can be readily obtained by taking the real parts of these
fluctuations.
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The two massive modes both have m = cos2ϕ. One of them is

z1 = −ieikx−iωte
i q√
q̃

2−u2
Y
e+i cos2

ϕ t sin p
2 sechY×(

ω + cos2ϕ+ qk − q̃k cosh(Y + ip
2 ) sechY

)
,

z̄1 = −ieikx−iωte
i q√
q̃

2−u2
Y
e−i cos2

ϕ t sin p
2 sechY×(

ω − cos2ϕ− qk − q̃k cosh(Y − ip
2 ) sechY

)
,

z2 = ieikx−iωt
(
q̃k sin2 p

2 sech2Y − 2(q̃k − ω cos p
2 )−

2i(cos2ϕ+ qk) sin p
2 tanhY

)

z̄2 = ieikx−iωte

2i q√
q̃

2−u2
Y
q̃k sin2 p

2 sech2Y,

(4.41)

with

ω2 = (cos2ϕ+ qk)2 + q̃2k2, (4.42)

while the other one is

z1 = −ieikx−iωte
− i q√

q̃
2−u2

Y
e+i cos2

ϕ t sin p
2 sechY×(

ω + cos2ϕ− qk − q̃k cosh(Y + ip
2 ) sechY

)
,

z̄1 = −ieikx−iωte
− i q√

q̃
2−u2

Y
e−i cos2

ϕ t sin p
2 sechY×(

ω − cos2ϕ+ qk − q̃k cosh(Y − ip
2 ) sechY

)
,

z2 = ieikx−iωte
− 2i q√

q̃
2−u2

Y
q̃k sin2 p

2 sech2Y,

z̄2 = ieikx−iωt
(
q̃k sin2 p

2 sech2Y − 2(q̃k − ω cos p
2 )−

2i(cos2ϕ− qk) sin p
2 tanhY

)

(4.43)

with

ω2 = (cos2ϕ− qk)2 + q̃2k2. (4.44)

4.1.5 Bosonic modes in AdS3 × S3 × S3 × S1 string theory

In addition to the fluctuations we found above, there is of course the massless

S1 mode

eikx−iωt ω2 = k2. (4.45)
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However, in a proper quantization of AdS3 × S3 × S3 × S1 string theory the

sigma-model action (4.3) would need to be supplemented by ghosts, cancelling

the massless AdS3 mode (4.21), and also a combination of the massless S3
±

modes (4.27), (4.38), corresponding to the S3
+ × S3

− leg of the BMN geodesic.

These are analogous to the longitudinal modes in light-cone gauge, and in our

semiclassical analysis we will simply omit them [140, 171].

In summary, the AdS3×S3×S3×S1 magnon has two massless modes (one

on the flat S1 and another one perpendicular to the BMN angle on S3
+ × S3

−),

two m = 1 fluctuations on AdS3, two m = cos2ϕ modes on S3
+, and two

m = sin2ϕ modes on S3
−, all with the dispersion relations

ω2 = (m± qk)2 + q̃2k2. (4.46)

4.1.6 Bosonic modes in AdS3 × S3 ×T4 string theory

Taking the ϕ→ 0 limit of AdS3 × S3 × S3 × S1 blows up the S3
− factor, which

we can recompactify on a T3 to get the AdS3×S3×T4 geometry. In this limit

the AdS3 and S1 fluctuations are unchanged, the S3
+ modes take the same

form but become m = 1, while on S3
− the massless mode becomes the one

unaffected by the ghosts, and the two m = sin2ϕ modes become massless T4

modes. In summary, the AdS3 × S3 × T4 magnon has four massless, and four

mass 1 bosonic fluctuations.

4.2 Fermionic sector

In this section we solve for the complete fermion fluctuation spectrum around

the mixed-flux stationary magnon (4.10). Our approach will be very similar

to chapter 3, but rather than normalizable zero modes, we will be looking for

solutions with plane-wave asymptotes. The leading order (quadratic) action

for fermion fluctuations around a general bosonic string solution Xµ(t, x) is

given by [160]

SF = h
∫

d2x LF , LF = −i
(
ηabδIJ + εabσIJ3

)
ϑ̄IρaDb ϑ

J . (4.47)
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The ϑI are two ten-dimensional Majorana-Weyl spinors, σIJ3 is the Pauli ma-

trix diag(+1,−1), and ρa are projections of the ten-dimensional Dirac matrices

ρa ≡ e
A
a ΓA , eAa ≡ ∂aX

µEAµ (X) . (4.48)

Note the difference in notation compared to the previous section, Xµ are now

the curved space coordinates of AdS3×S
3×S3×S1, and not coordinates of a flat

embedding space. For the remainder of this section we use Hopf coordinates,

where the only non-constant components of the stationary magnon are along

µ = t, θ+, φ+
1 , φ

+
2 , φ

−
1 corresponding to the tangent space components A =

0, 3, 4, 5, 7, respectively. The covariant derivative is

Daϑ
I =

(
δIJ
(
∂a + 1

4ω
AB
µ ∂aX

µΓAB
)

+ 1
48σ

IJ
1 /Fρa + 1

8σ
IJ
3 /Ha

)
ϑJ , (4.49)

where ωABµ is the usual spin-connection,

/Ha ≡ eAaHABCΓBC = 1
6(ρa /H + /Hρa) , (4.50)

and the contracted 3-form fluxes are

/F = 12q̃
(
Γ012 + cosϕ Γ345 + sinϕ Γ678) ,

/H = 12q
(
Γ012 + cosϕ Γ345 + sinϕ Γ678) . (4.51)

4.2.1 The fluctuation equations

The equations of motion for (4.47) are

(ρ0 + ρ1)(D0 −D1) ϑ1 = 0,

(ρ0 − ρ1)(D0 +D1) ϑ2 = 0,
(4.52)

We proceed by changing variables to the more natural scaled and boosted

worldsheet coordinates (4.11) of the magnon

Y = cos2ϕ ζX , S = cos2ϕ ζT , ζ = γ

√
q̃2 − u2, (4.53)
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yielding

(ρ0 + ρ1)
[
ζ(1 + u)γ

(
D − ∂S

)
ϑ1 +Oϑ2

]
= 0,

(ρ0 − ρ1)
[
ζ(1− u)γ

(
D̃ + ∂S

)
ϑ2 + Õϑ1

]
= 0.

(4.54)

Here we defined the mixing operators

O = − 1
48 cos2ϕ

/F (ρ0 − ρ1) , Õ = 1
48 cos2ϕ

/F (ρ0 + ρ1) , (4.55)

and fermion derivatives

D = ∂Y + 1
2G Γ34 + 1

2Q Γ35 −
(1− u)γ

48 cos2ϕ ζ

(
/H(ρ0 − ρ1) + (ρ0 − ρ1) /H

)
,

D̃ = ∂Y + 1
2G̃ Γ34 + 1

2Q Γ35 −
(1 + u)γ

48 cos2ϕ ζ

(
/H(ρ0 + ρ1) + (ρ0 + ρ1) /H

)
,

(4.56)

with

G = q̃2(1− u) cosh2Y − q̃2 + u2

q̃
(
q̃2 sinh2Y + u2

) sechY ,

G̃ = − q̃
2(1 + u) cosh2Y − q̃2 + u2

q̃
(
q̃2 sinh2Y + u2

) sechY ,

Q = − q

q̃
√
q̃2 − u2

√
q̃2 sinh2Y + u2 sechY .

(4.57)

The full Green-Schwarz superstring has a local fermionic symmetry (κ-

symmetry), that we need to fix for physical solutions. Noting that the opera-

tors (ρ0±ρ1) are half-rank, nilpotent and commute with the fermion derivatives

D and D̃, it is clear that the projectors

K1 = 1
2 secϕ Γ̂0(ρ0 + ρ1) , K2 = 1

2 secϕ Γ̂0(ρ0 − ρ1) , (4.58)

can be used to fix κ-gauge. Here we introduced a set of “boosted” gamma

matrices

Γ̂0 = secϕ
(
Γ0 − sinϕ Γ7

)
, Γ̂7 = secϕ

(
Γ7 − sinϕ Γ0

)
, Γ̂A = ΓA (A 6= 0, 7),

(4.59)
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that simplify the notation in what follows. The kappa-fixed spinors ΨJ =

KJϑ
J then satisfy

ζ(1 + u)γ
(
D − ∂S

)
Ψ1 +K1OΨ2 = 0,

ζ(1− u)γ
(
D̃ + ∂S

)
Ψ2 +K2ÕΨ1 = 0.

(4.60)

Introducing the 6d chirality projector

P± = 1
2
(
1± Γ̂012345

)
, [P±,KJ ] = 0, (4.61)

and, with ρ̄0 = −Γ̂0 ρ0 Γ̂0, the invertible matrix

R = 1
2 secϕ Γ̂012 (ρ̄0 − ρ0) , (4.62)

we can rewrite the equations, using the boosted gamma matrix basis

ζ(1 + u)γ
(
D − ∂S

)
Ψ1 + q̃

(
RP− −K1∆ Γ̂012

)
Ψ2 = 0,

ζ(1− u)γ
(
D̃ + ∂S

)
Ψ2 − q̃

(
RP− −K2∆ Γ̂012

)
Ψ1 = 0.

(4.63)

The fermion differential operators are

D = ∂Y + 1
2G Γ̂34 + 1

2Q Γ̂35 + q(1− u)γ
ζ

(
RP− − (R+ Γ̂12)P+ + ∆0 Γ̂12

)
,

D̃ = ∂Y + 1
2G̃ Γ̂34 + 1

2Q Γ̂35 + q(1 + u)γ
ζ

(
RP− − (R+ Γ̂12)P+ + ∆0 Γ̂12

)
,

(4.64)

and we define

∆ = −1
2 tanϕ

(
Γ̂1268 + 1

)
Γ7 ≡ ∆0 Γ̂0 + ∆7 Γ̂7 , (4.65)

with

∆0 = −1
2 tan2ϕ

(
Γ̂1268 + 1

)
, ∆7 = cscϕ∆0 . (4.66)

Note that the only source of structural difference between the equations for

AdS3× S3× S3× S1 and AdS3× S3×T4 is a non-zero ∆, and in fact this was

our main reason to introduce the boosted gamma matrix basis. A much more
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detailed derivation of these equations, together with a thorough explanation

of κ-gauge fixing, can be found in chapter 3.

4.2.2 Ansatz and reduced equations

To reduce the seemingly complicated (4.63) to a more manageable set of

equations we will make an ansatz that reflects the symmetries of the sys-

tem. Firstly, all of Γ̂012345, Γ̂12, Γ̂68 commute with the kappa projectors (4.58),

so the kappa-fixed spinors can be written as

ΨJ =
∑

λP ,λ12,λ68∈{±}
KJ(λPλ12)V J

λP ,λ12,λ68
(S,Y), (4.67)

where the eigenvalues of V J
λP ,λ12,λ68

under Γ̂12, Γ̂68 and Γ̂012345 are iλ12, iλ68

and λP , respectively. Note that λ12, λ68, λP all take values in ±1. There are

multiple ways to make the above ansatz satisfy KJΨJ = ΨJ , in chapter 3 we

chose to impose the additional constraint3 Γ̂34V J = +iV J and found

K1(λ) = e+iχ
√

1 + λQ+ sechY − λe−iχ
√

1− λQ+ sechY Γ̂45,

K2(λ) = e+iχ̃
√

1− λQ− sechY + λe−iχ̃
√

1 + λQ− sechY Γ̂45,
(4.68)

where
Q± =

q
√
q̃2 − u2

q̃(1± u) , (4.69)

and

χ(Y) = 1
2

arccot
(
u cschY

q̃

)
− arcsin

 tanhY√
1−Q2

+ sech2Y

 ,

χ̃(Y) = 1
2

arccot
(
u cschY

q̃

)
+ arcsin

 tanhY√
1−Q2

− sech2Y

 .
(4.70)

While the zero modes are time-independent in the magnon’s frame ∂SΨJ = 0,

for the S-dependence of the non-zero modes we make a Fourier ansatz

V J(S,Y) = e−iω̃SV J(Y). (4.71)

3 Note that kappa-fixing reduces the degrees of freedom by half, and in our ansatz this
is done at the level of the projections Γ̂34

V
J = +iV J , since KJ(λ) are invertible.
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As opposed to the kappa-projectors, the equations of motion (4.63) only

commute with Γ̂12 and Γ̂68, and the solutions will not have definite chirality

under Γ̂012345, unless ∆ = 0, i.e. for the AdS3 × S3 × T4 background, or on

the Γ̂1268 = −1 spinor subspace for the AdS3×S3×S3×S1 background. With

this in mind, we take the general ansatz

ΨJ = e−iω̃S
(
fJ(Y) KJ(−λ12) + gJ(Y) KJ(λ12)Γ̂07

)
U, (4.72)

where the constant Weyl4 spinor U , that is shared between Ψ1 and Ψ2, has

eigenvalues iλ12, iλ68,+i,−1 under Γ̂12, Γ̂68, Γ̂34, Γ̂012345, respectively. The

P− part of the solution is represented by the scalar functions f1, f2, while

g1, g2 correspond to the P+ components. The validity of such an ansatz is

further justified by a quick counting of the degrees of freedom. A general

Weyls spinor has 16 complex components, and after 4 mutually commuting

projections, there is a single free component left, hence we can capture the

Y-dependence with a single function fJ multiplying U . Substituting (4.72)

into (4.63), after a considerable amount of simplification we get

e−iω̃S
[((

∂Y + Cf1f1

)
f1 + Cf1f2

f2 + Cf1g2
g2

)
K1(−λ12)

((
∂Y + Cg1g1

)
g1 + Cg1g2

g2 + Cg1f2
f2

)
K1(λ12)Γ̂07

]
U = 0 ,

e−iω̃S
[((

∂Y + Cf2f2

)
f2 + Cf2f1

f1 + Cf2g1
g1

)
K2(−λ12)

((
∂Y + Cg2g2

)
g2 + Cg2g1

g1 + Cg2f1
f1

)
K2(λ12)Γ̂07

]
U = 0 ,

(4.73)

with coefficients C.. listed in appendix L. The matrix structure matches that

of the general kappa-fixed spinors, confirming that the kappa-projectors com-

4 We postpone the analysis of the Majorana condition until later, see the discussion
around (4.102).
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mute with the fermion derivatives D, D̃. Further substituting

f1 = 1√
1 + u

e
i

λ12q√
q̃

2−u2

(
1
2 +p1268 tan2

ϕ

)
Y
e
− i

2λ12 arctan
(
Q+ tanhY√

1−Q2
+

)
f̃1,

g1 = iλ12√
1 + u

e
i

λ12q√
q̃

2−u2

(
1
2 +p1268 tan2

ϕ

)
Y
e

+ i
2λ12 arctan

(
Q+ tanhY√

1−Q2
+

)
g̃1,

f2 = λ12√
1− u

e
i

λ12q√
q̃

2−u2

(
1
2 +p1268 tan2

ϕ

)
Y
e
− i

2λ12 arctan
(
Q− tanhY√

1−Q2
−

)
f̃2,

g2 = i√
1− u

e
i

λ12q√
q̃

2−u2

(
1
2 +p1268 tan2

ϕ

)
Y
e

+ i
2λ12 arctan

(
Q− tanhY√

1−Q2
−

)
g̃2,

(4.74)

where p1268 is the eigenvalue of the projector 1
2(1 + Γ̂1268)

p1268 = 1
2(1− λ12λ68), (4.75)

and defining

ξ = qu√
q̃2 − u2

, (4.76)

we arrive at the reduced equations

∂Y f̃1 + i(ω̃ + (1 + p1268 tan2ϕ)λ12ξ)f̃1

+ (1 + p1268 tan2ϕ)(tanhY − iλ12ξ)f̃2

− λ12 p1268 tanϕ secϕ sechY g̃2 = 0,

(4.77)

∂Y f̃2 − i(ω̃ + (1 + p1268 tan2ϕ)λ12ξ)f̃2

+ (1 + p1268 tan2ϕ)(tanhY + iλ12ξ)f̃1

+ λ12 p1268 tanϕ secϕ sechY g̃1 = 0,

(4.78)

∂Y g̃1 + i(ω̃ + p1268 tan2ϕλ12ξ)g̃1

+ λ12 p1268 tanϕ secϕ sechY f̃2

+ p1268 tan2ϕ(tanhY + iλ12ξ)g̃2 = 0,

(4.79)
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∂Y g̃2 − i(ω̃ + p1268 tan2ϕλ12ξ)g̃2

− λ12 p1268 tanϕ secϕ sechY f̃1

+ p1268 tan2ϕ(tanhY − iλ12ξ)g̃1 = 0.

(4.80)

4.2.3 Solutions
Let us first find the solutions for ϕ > 0, i.e. for the AdS3 × S3 × S3 × S1

geometry. For p1268 = 0 the P+ components g̃1 and g̃2 decouple, and we have

the two solutions

g̃1 = eik̃Y , g̃2 = 0, k̃ = −ω̃, (4.81)

g̃2 = eik̃Y , g̃1 = 0, k̃ = +ω̃, (4.82)

while on the P− subspace we have the equations

∂Y f̃1 + i(ω̃ + λ12ξ)f̃1 + (tanhY − iλ12ξ)f̃2 = 0,

∂Y f̃2 − i(ω̃ + λ12ξ)f̃2 + (tanhY + iλ12ξ)f̃1 = 0,
(4.83)

with the two solutions

f̃1 = eik̃Y
(
tanhY − i(k̃ − ω̃)

)
,

f̃2 = eik̃Y
(
tanhY − i(k̃ + ω̃)

)
,

k̃ = ±
√
ω̃2 + 2λ12ξω̃ − 1.

(4.84)

The case of p1268 = 1 is a bit more complicated, but solving the first two equa-

tions of (4.77) for g̃J and substituting into the second two, we get two second

order differential equations for f̃1, f̃2. The difference of those two equations is

∂2
Y
(
f̃1 − f̃2

)
+
(
ω̃2 + 2λ12ξ sec2ϕ ω̃ − sec4ϕ

) (
f̃1 − f̃2

)
= 0, (4.85)

which is easily solved, and inserting the solution into the
(
f̃1 + f̃2

)
equation

we find
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f̃1 = eik̃Yλ12 tanϕ secϕ sechY,

f̃2 = eik̃Yλ12 tanϕ secϕ sechY,

g̃1 = −eik̃Y
(
tan2ϕ tanhY + i(k̃ − ω̃)

)
,

g̃2 = eik̃Y
(
tan2ϕ tanhY + i(k̃ + ω̃)

)
,

k̃ = ±
√
ω̃2 + 2λ12ξ tan2ϕω̃ − tan4ϕ,

(4.86)

and

f̃1 = eik̃Y
(
sec2ϕ tanhY − i(k̃ − ω̃)

)
,

f̃2 = eik̃Y
(
sec2ϕ tanhY − i(k̃ + ω̃)

)
,

g̃1 = eik̃Yλ12 tanϕ secϕ sechY,

g̃2 = −eik̃Yλ12 tanϕ secϕ sechY,

k̃ = ±
√
ω̃2 + 2λ12ξ sec2ϕ ω̃ − sec4ϕ.

(4.87)

Dispersion relation. The observant reader might have already noted that

all of the these solutions come with a plane-wave factor eik̃Y−iω̃S , satisfying

k̃2 = ω̃2 ± 2ξ(sec2ϕm) ω̃ − (sec2ϕm)2, (4.88)

with masses m = 0, cos2ϕ, sin2ϕ, and 1. This is not quite the expected disper-

sion relation, and there are two reasons why. Firstly, (S,Y) are scaled versions

of the boosted worldsheet coordinates (T ,X ), but more importantly, the dis-

persion relation (4.46) is not relativistically invariant. We therefore need to

rewrite the fermion fluctuations in the form

eik̃Y−iω̃Sϑ(Y) = ei(k̃+α)Y−iω̃Se−iαYϑ(Y) = eikx−iωte−iαYϑ(Y), (4.89)

where α will be necessary to match (4.46). From (4.53) it follows that

k̃ = sec2
ϕ√

q̃
2−u2 (k − uω)− α, ω̃ = sec2

ϕ√
q̃

2−u2 (ω − uk), (4.90)
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and substituting these into (4.88) we get the expected relation

ω2 = (m± qk)2 + q̃2k2, (4.91)

provided that
α = sec2

ϕ√
q̃

2−u2λ12q m. (4.92)

Using this transformation we can parametrize the fluctuations by their wavenum-

ber k, and we find that for a given wavenumber there are two positive fre-

quency, and two negative frequency solutions of each mass,m = 0, cos2ϕ, sin2ϕ,

and 1. Further defining

ŵ± = 1
2 arctan

Q± tanhY√
1−Q2

±

 , (4.93)

we collect these solutions below.

Fermion fluctuations with m = 0. The massless perturbations are some-

what special, with the positive and negative frequency solutions exciting only

one of the two spinors ΨJ . Writing the solutions as

ΨJ = eikx−iωtĝJ(Y) KJ(λ)Vλ, (4.94)

the positive and negative frequency fluctuations are

ĝ2 = e

1
2

i λq√
q̃

2−u2
Y
eiλŵ− , ĝ1 = 0, ω = +k,

ĝ1 = e

1
2

i λq√
q̃

2−u2
Y
eiλŵ+ , ĝ2 = 0, ω = −k,

(4.95)

and the eigenvalues of the (k-dependent) constant Weyl spinor Vλ under

Γ̂34, Γ̂12, Γ̂68 and Γ̂012345 are +i, iλ, iλ and +1, respectively.

Fermion fluctuations with m = cos2ϕ. These solutions live on the same

subspace as the normalizable zero modes (λP = −1, λ12λ68 = 1) and are given

by
ΨJ = eikx−iωtf̂J(Y) KJ(−λ)Uλ, (4.96)

where
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f̂1 = 1√
1 + u

(
tanhY − i sec2

ϕ√
q̃

2−u2

(
(1 + u)(k − ω)− λq cos2ϕ

))
×

e
− 1

2
i λq√
q̃

2−u2
Y
e−iλŵ+ ,

f̂2 = λ√
1− u

(
tanhY − i sec2

ϕ√
q̃

2−u2

(
(1− u)(k + ω)− λq cos2ϕ

))
×

e
− 1

2
i λq√
q̃

2−u2
Y
e−iλŵ− ,

w = ±
√

(cos2ϕ− λqk)2 + q̃2k2,

(4.97)

and the (k-dependent) constant Weyl spinor Uλ has eigenvalues +i, iλ, iλ and

−1 under Γ̂34, Γ̂12, Γ̂68 and Γ̂012345, respectively.

Fermion fluctuations with m = sin2ϕ. These fluctuations live on the

Γ̂1268 = 1 subspace, and do not have a definite chirality under P±

ΨJ = eikx−iωt
(
f̂J(Y) KJ(−λ) + ĝJ(Y) KJ(λ)Γ̂07

)
Wλ, (4.98)

f̂1 = 1√
1 + u

tanϕ secϕ sechY e

1
2

i λq√
q̃

2−u2
Y
e−iλŵ+ ,

f̂2 = λ√
1− u

tanϕ secϕ sechY e

1
2

i λq√
q̃

2−u2
Y
e−iλŵ−

ĝ1 = i√
1 + u

(
tan2ϕ tanhY + i sec2

ϕ√
q̃

2−u2

(
(1 + u)(k − ω)− λq sin2ϕ

))
×

e

1
2

i λq√
q̃

2−u2
Y
eiλŵ+ ,

ĝ2 = −iλ√
1− u

(
tan2ϕ tanhY + i sec2

ϕ√
q̃

2−u2

(
(1− u)(k + ω)− λq sin2ϕ

))
×

e

1
2

i λq√
q̃

2−u2
Y
eiλŵ− ,

ω = ±
√

(sin2ϕ− λqk)2 + q̃2k2,

(4.99)

and the eigenvalues of the (k-dependent) constant Weyl spinor Wλ under

Γ̂34, Γ̂12, Γ̂68 and Γ̂012345 are +i, iλ,−iλ and −1, respectively.
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Fermion fluctuations with m = 1. Finally, the heaviest fermions are

ΨJ = eikx−iωt
(
f̂J(Y) KJ(−λ) + ĝJ(Y) KJ(λ)Γ̂07

)
Wλ, (4.100)

with

f̂1 = 1√
1 + u

(
sec2ϕ tanhY − i sec2

ϕ√
q̃

2−u2 ((1 + u)(k − ω)− λq)
)
×

e
− 1

2
i λq√
q̃

2−u2
Y
e−iλŵ+ ,

f̂2 = λ√
1− u

(
sec2ϕ tanhY − i sec2

ϕ√
q̃

2−u2 ((1− u)(k + ω)− λq)
)
×

e
− 1

2
i λq√
q̃

2−u2
Y
e−iλŵ−

ĝ1 = −i√
1 + u

tanϕ secϕ sechY e
− 1

2
i λq√
q̃

2−u2
Y
eiλŵ+ ,

ĝ2 = iλ√
1− u

tanϕ secϕ sechY e
− 1

2
i λq√
q̃

2−u2
Y
eiλŵ− ,

ω = ±
√

(1− λqk)2 + q̃2k2,

(4.101)

and the constant spinor Wλ satisfies the same conditions as for m = sin2ϕ.

Majorana condition. In a Majorana basis (Γ̂A)∗ = −Γ̂A and the Majorana

condition is (ΨJ)∗ = ΨJ . To impose this condition we need to consider lin-

ear combinations of two solutions (from the same mass group) such that the

wavenumbers are k and −k, the frequencies are of opposite sign (apart from

the massless case), and so are the λ eigenvalues. Noting that the dispersion

relation is invariant under (k → −k, λ→ −λ), and

K1(λ)∗ = −λK1(−λ)Γ̂45, K2(λ)∗ = λK2(−λ)Γ̂45, (4.102)

it follows that (ΨJ)∗ = ΨJ will simply relate the constant spinor multipliers of

the two components. We show explicitly how to construct solutions satisfying

the Majorana condition in the massless case. Analogous expressions for the

massive modes can also be found, but these are quite lengthy. Since they do

not play any role in the subsequent analysis we do not write them explicitly

here. We start with the linear combination
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Ψ1 = e+ik(x+t)e
+ 1

2
i q√
q̃

2−u2
Y
e+iŵ+ K1(+1)V 1

+

+ e−ik(x+t)e
− 1

2
i q√
q̃

2−u2
Y
e−iŵ+ K1(−1)V 2

−,

(4.103)

where the two components have opposite k, ω, λ. Its complex conjugate is

(Ψ1)∗ = −e−ik(x+t)e
− 1

2
i q√
q̃

2−u2
Y
e−iŵ+ K1(−1)Γ̂45(V 1

+)∗

+ e+ik(x+t)e

1
2

i q√
q̃

2−u2
Y
e+iŵ+ K1(+1)Γ̂45(V 2

−)∗,
(4.104)

and (ΨJ)∗ = ΨJ as long as

Γ̂45(V 1
+)∗ = −V 2

− and Γ̂45(V 2
−)∗ = V 1

+. (4.105)

These two conditions are equivalent, and consistent with the Γ̂34, Γ̂12, Γ̂68 and

Γ̂012345 eigenvalues of V 1
+ and V 2

−. We have found an explicit Majorana solu-

tion.

Solutions for AdS3 × S3 × T4. Again, this geometry corresponds to the

ϕ→ 0 limit, the reduced equations (4.77) decouple for the P± subspaces, and

all of the solutions are the same form as the p1268 = 0 fluctuations above. In

particular, we have four massless fermions

ΨJ = eikx−iωtĝJ(Y) KJ(λ)Vλ,

ĝ2 = e

1
2

i λq√
q̃

2−u2
Y
eiλŵ− , ĝ1 = 0, ω = +k,

ĝ1 = e

1
2

i λq√
q̃

2−u2
Y
eiλŵ+ , ĝ2 = 0, ω = −k,

(4.106)

and four massive fermions

ΨJ = eikx−iωtf̂J(Y) KJ(−λ)Uλ, ω = ±
√

(1− λqk)2 + q̃2k2,

f̂1 = 1√
1 + u

(
tanhY − i 1√

q̃
2−u2 ((1 + u)(k − ω)− λq)

)
e
− 1

2
i λq√
q̃

2−u2
Y
e−iλŵ+ ,

f̂2 = λ√
1− u

(
tanhY − i 1√

q̃
2−u2 ((1− u)(k + ω)− λq)

)
e
− 1

2
i λq√
q̃

2−u2
Y
e−iλŵ− ,

(4.107)
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where under the operators Γ̂34, Γ̂12 and Γ̂012345 the constant spinor Vλ has

eigenvalues +i, iλ and +1, while Uλ has eigenvalues +i, iλ and−1, respectively.

The difference compared to (4.95), (4.97) is that the Γ̂68 eigenvalues of Uλ, Vλ
are no longer constrained.

4.3 The 1-loop functional determinant

Using the fluctuations found in the previous two sections we now calculate

the leading order quantum corrections to the energy of the stationary gi-

ant magnon. We follow a similar argument in [54], which is based on well-

established quantization techniques for solitons [162, 137, 136, 163]. By energy

we mean the Noether charge combination E − J1, where E is the conserved

charge associated with translations in global AdS3 time, while J1 is the U(1)

charge associated with rotations along the BMN geodesic. In light-cone gauge,

the quantity E − J1 can be identified with the (transverse) Hamiltonian of

physical string excitations [140]. In conformal gauge the sigma-model action

has to be supplemented by ghosts to cancel two unphysical bosons, however,

for the purposes of our semiclassical analysis it is sufficient to simply omit two

of the massless bosonic modes, as disucssed in Section 4.1.

A detailed presentation of the mixed-flux AdS3 magnon can be found in

chapter 2, here we just recall that the classical conserved charges satisfy

E − J1 =
√(

cos2ϕJ2 − hqp
)2

+ 4h2q̃2 sin2 p
2 , (4.108)

where cos2ϕ is the mass of the magnon and J2 is its second angular momentum.

Remarkably, this classical expression is in agreement with the exact dispersion

relation of elementary excitations

ε =
√

(m± qhp)2 + 4 q̃2 h2 sin2 p
2 , (4.109)

determined from supersymmetry [102, 104, 115], hence we expect no quantum

corrections. The one-loop correction to the energy can be calculated as the

functional determinant ln det |δ2S| around the classical background, and is
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given by
1
2
∑
i,k

(−1)F νi, (4.110)

where F is the fermion number operator, νi are the so-called stability angles,

frequencies of small oscillations around the classical solution, and the sum is

over excitations i and wavenumbers k. For a non-static soliton, like the giant

magnon, we can apply the method of Dashen, Hasslacher and Neveu [162] to

calculate these stability angles. We put the system in a box of length L� 1,

with periodic boundary conditions x ∼= x+L. It is clear from the form of the

solution (4.10) that the system is also periodic in worldsheet time, with period

T = L/u. Then, the stability angle ν of a generic fluctuation δφ can be read

off from

δφ(t+ T, x) = e−iνδφ(t, x). (4.111)

Although we had to write the oscillations in the original worldsheet coor-

dinates (x, t) to get the correct dispersion relations, the magnon’s stationary

frame (X , T ) is better suited to the analysis of stability angles. In Sections

4.1 and 4.2 we found fluctuations with oscillatory terms

eikx−iωt (4.112)

parametrized by mass m and an additional eigenvalue λ = ±1, and satisfying

dispersion relations

ω =
√

(m− λqk)2 + q̃2k2. (4.113)

Rewriting the plane-wave terms as5

eikx−iωt = eik̂X−iω̂T eiλqmγX , (4.114)

the new frequency and wavenumber satisfy

ω̂ = −λquγm+
√
q̃2m2 + k̂2, (4.115)

while eiλqmγX can be absorbed into the rest of the Y-dependent solution.

5 Note that this is the inverse of the transformation (4.89) that we applied to the fermion
fluctuations.
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4.3.1 1-loop correction in AdS3 × S3 × S3 × S1 string theory

For each excitation, the stability angle can be further decomposed as

νi(m,λ) = ν
(0)
i (m,λ) + ν

(1)
i (m,λ) + λν

(2)
i (m), (4.116)

where ν(0)
i comes from the pure plane-wave eik̂X−iω̂T , ν(2)

i from terms like

eiλf(Y) and ν(1)
i corresponds to the rest. Since we have exactly one boson and

one fermion for each of the 8 combinations of (m,λ), and the first terms are

the same

ν
(0)
bos(m,λ) = ν

(0)
ferm(m,λ) = L

u
γ
(
ω̂ + uk̂

)
, (4.117)

the contribution form these terms vanishes even before integrating over k̂

∑
m,λ

ν
(0)
bos(m,λ)− ν(0)

ferm(m,λ) = 0. (4.118)

Furthermore, summing over λ = ±1 pairs of the same excitation the ν(2)
i terms

cancel, leaving us with the total correction

∑
i,k

(−1)F νi =
∫

dk̂
∑
m,λ

(
ν

(1)
bos(m,λ)− ν(1)

ferm(m,λ)
)
. (4.119)

Under the transformation (4.114) we have

k = γ(k̂ + uω̂) + λqγ2m, ω = γ(ω̂ + uk̂) + λquγ2m, (4.120)

and it is then straightforward to read off the ν(1)
i stability angles for the fluc-

tuations in sections 4.1 and 4.2. The excitations with non-zero ν(1)
i are the

two m = cos2ϕ bosons (4.41), (4.43) with

eν
(1)
bos(cos2

ϕ,λ) = Ebos(cos2ϕ, λ), (4.121)

and six massive fermions (4.97), (4.99), (4.101) with

eν
(1)
ferm(cos2

ϕ,λ) = Eferm(cos2ϕ, λ),

eν
(1)
ferm(sin2

ϕ,λ) = 1/Eferm(sin2ϕ, λ),

eν
(1)
ferm(1,λ) = Eferm(1, λ),

(4.122)
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where we have defined

Ebos(m,λ) =
k̂ − q

2
u

q̃
2−u2 ω̂ + λqγm+ i

(
γ
√
q̃2 − u2m− λq√

q̃
2−u2 (k̂ + uω̂)

)
k̂ − q

2
u

q̃
2−u2 ω̂ + λqγm− i

(
γ
√
q̃2 − u2m− λq√

q̃
2−u2 (k̂ + uω̂)

) ,

Eferm(m,λ) =
k̂ − ω̂ + iγ

√
q̃2 − u2m

k̂ − ω̂ − iγ
√
q̃2 − u2m

.

(4.123)

With these, the integrand of (4.119) becomes

∑
m,λ

(
ν

(1)
bos(m,λ)− ν(1)

ferm(m,λ)
)

=

− i log

 ∏
λ=±1

Ebos(cos2ϕ, λ)Eferm(sin2ϕ, λ)
Eferm(cos2ϕ, λ)Eferm(1, λ)

 . (4.124)

Since
Ebos(m,+1)Ebos(m,−1)(

Eferm(m,+1)Eferm(m,−1)
)2 = 1 (4.125)

holds for general m, (4.119) simplifies to

∑
i,k

(−1)F νi = −i
∫

dk̂ log

 ∏
λ=±1

Eferm(cos2ϕ, λ)Eferm(sin2ϕ, λ)
Eferm(1, λ)

 . (4.126)

Further noting that

Eferm(m,+1)Eferm(m,−1) =
k̂ + iγ

√
q̃2 − u2m

k̂ − iγ
√
q̃2 − u2m

(4.127)

it is clear that the integrand is antisymmetric in k̂. Moreover, we have the

asymptotic expansion around k̂ = ±∞

∏
λ=±1

Eferm(cos2ϕ, λ)Eferm(sin2ϕ, λ)
Eferm(1, λ) =

1 + i

2γ
3(q̃2 − u2)3/2 sin22ϕ 1

k̂3 +O

( 1
k̂5

)
,

(4.128)

and taking logarithm, the integrand of (4.126) is O
(
k̂−3

)
, hence the integral

itself is bounded and well-defined. We conclude that the integral is zero,
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and, in agreement with our expectations, the giant magnon energy receives no

corrections at one loop, providing another check on our results.

4.3.2 1-loop correction in AdS3 × S3 ×T4 string theory

On AdS3 × S3 × T4 the situation is even simpler. We have two bosons and

two fermions for each of the 4 combinations of m = 0, 1, λ = ±1. Paring

these up, the ν(0)
i contribution vanishes, while the ν(2)

i terms cancel between

λ = ±1 pairs. With two of the massive bosons and four of the massive fermions

contributing, the integrand of (4.119) becomes

∑
λ

(
ν

(1)
bos(1, λ)− 2ν(1)

ferm(1, λ)
)

=

− i log
(

Ebos(1,+1)Ebos(1,−1)(
Eferm(1,+1)Eferm(1,−1)

)2
)
,

(4.129)

which is the same as the ϕ → 0 limit of (4.124). Using (4.125) we arrive at

the expected zero one-loop correction result even before integrating over k̂.

4.4 Chapter conclusions and outlook

In this chapter we found the full spectrum of fluctuations around the mixed-

flux AdS3 stationary giant magnon, the q > 0 generalisation of the Hofman-

Maldacena giant magnon. To obtain the non-trivial bosonic fluctuations, we

adapted the method used in [54]. Rather than dressing the vacuum twice to

get a complicated breather-soliton superposition (only then to expand in small

breather momentum), we dress the perturbed BMN vacuum once, keeping

terms up to subleading order throughout the calculation. The leading order

term in the dressed solution is the giant magnon, so the subleading term must

be its perturbation. The fermionic fluctuations are obtained as solutions of

the equations derived from the quadratic fermionic action, using the formalism

presented in chapter 3, which builds on the original developments of [53] for

AdS5.

We find that all of the fluctuations can be written in the form

eikx−iωtf(x− ut) (4.130)
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where u is the magnon’s speed on the worldsheet (4.13), and k, ω satisfy

ω2 = (m± qk)2 + q̃2k2, (4.131)

which is the small-momentum limit of the exact dispersion relation (4.1). Fur-

thermore, the fluctuations can be arranged into short multiplets of the residual

symmetry algebras, according to mass and chirality (± sign in the disper-

sion relation). On AdS3 × S3 × T4 there are four 4 dimensional multiplets of

psu(1|1)4
c.e. with two bosons and two fermions, while AdS3 × S3 × S3 × S1 has

eight 2 dimensional multiplets of su(1|1)2
c.e., with a boson and a fermion each.

Finally, from the explicit form of each fluctuation we read off the so called

stability angles, which sum to the one-loop functional determinant. In both

of the geometries we were able to show that this one-loop determinant is zero,

or in other words, the one-loop correction to the magnon energy vanishes. It

is interesting to compare this result with other calculations of the one-loop

correction to energies of AdS3 string states. The expansion of the coupling h

around the classical string limit

h(λ) =
√
λ

2π + c+O
( 1√

λ

)
, (4.132)

is equivalent to the expansion of the energy (4.1)

ε = ε0 +
4 q̃2 h2

0 sin2 p
2

h0ε0
c+O

( 1√
λ

)
, (4.133)

where the subscript 0 refers to the classical (string) values, and we see that

our results translate to c = 0 for both geometries. The one-loop correction

to the giant magnon energy on AdS3 × S3 × S3 × S1 with pure R-R flux was

derived in [71] directly from the GS action, and in [123] from the algebraic

curve. They both found that the correction is dependent on the chosen regu-

larisation scheme, with two naturally emerging prescriptions: in the physical

regularisation the cutoff is at the same mode number for all excitations, while

in the new prescription the cutoff is proportional to the mass of the polarisa-

tion. The two prescriptions both give zero correction cphys = cnew = 0 on the
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AdS3 × S3 × T4 background, but differ for the AdS3 × S3 × S3 × S1 theory

cphys = α logα+ (1− α) log(1− α)
2π , cnew = 0. (4.134)

For the mixed-flux AdS3×S
3×T4 background the direct GS action calculation

[124] shows that there is no one-loop correction, c = 0, and the same conclusion

can be drawn by considering the worldsheet scattering of giant magnons [120].

Our results are in agreement with the new prescription, although it is not clear

that we work in either of the regularisation schemes, as in (4.126) we have an

implicit cutoff6 on the mode numbers k̂ in the magnon’s frame.

There are a number of interesting directions for future research. The above

calculations only apply to q < 1, and one could extend these results to the pure

NS-NS backgrounds, although our understanding of the solitons of the q = 1

theory is somewhat limited. One could also, instead of the infinite-spin giant

magnon, consider the finite-size magnon [169, 170] as the bosonic background

and attempt a similar fluctuation analysis.

6 The integrals should be computed separately for each mass before summing, instead we
first sum, then compute the integral, which is equivalent to having the same cutoff on k̂ for
each mass.
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Chapter 5

Fermion zero modes for other
AdS3 classical strings

The semiclassical analysis of chapters 3 and 4 focused exclusively on the mixed-

flux R×S3×S3 magnon, and although the giant magnon is, arguably, the most

important string soliton in any AdS string theory, it is instructive to perform

the same calculations for other solutions. In this chapter we explicitly con-

struct the fermion zero modes for two more classical strings of the mixed flux

AdS3 backgrounds, both of which we described in chapter 2. The methods

developed in chapter 3 are directly applicable, although with a few key differ-

ences.

In section 5.1 we take the mixed-flux AdS3 × R soliton (2.323) as the

bosonic background. Stretching to the boundary of AdS3, this string has

infinite target space length, and we have to be careful when removing the

resulting UV divergences. Once these are taken care of, we find the same

number of zero modes as for the magnon (4 and 2 on AdS3 × S3 × T4 and

AdS3 × S3 × S3 × S1 respectively), implying that the AdS3 × R soliton also

transforms in a short multiplet of the residual algebra, although the particle

interpretation in this case is not so straightforward.

In section 5.2 we obtain the fermion zero modes of the AdS3×S3×S3×S1

double magnon (2.288), which is a simple (and tractable) special case of the

more general scattering state of two magnons, one on each S3. We find 4 zero

modes, twice as many as for the magnon, in line with the fact that scattering

states do not transform in short multiplets, or alternatively, that the double

magnon breaks all residual supersymmetries of the BMN vacuum. Concluding

remarks are in section 5.3, and some of the more technical details are presented

in the appendices. The contents of this chapter have not been published.
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5.1 Fermion zero modes for the mixed-flux

AdS3 × R soliton

In this section we find the fermion zero modes for the stationary mixed-flux

AdS3 × S1 soliton (2.318)

ρ = arcsinh

 cschY√
1 + b2

 ,
T = t+ arctan

(
b−1 cothY

)
, ψ = − q Y√

q̃2 − u2
,

(5.1)

φ+
1 = cos2ϕ t, φ−1 = sin2ϕ t,

θ± = π

2 , φ±2 = 0, b = u√
q̃2 − u2

.

where
Y = γ

√
q̃2 − u2X , (5.2)

with boosted worldsheet coordinates

X = γ(x− ut), T = γ(t− ux), (5.3)

and the parameters are related to the worldsheet momentum p via

u = −q̃ cos p
2 . (5.4)

A detailed classical analysis of this solution is presented in section 2.2.5.

5.1.1 Fermion zero mode equations

The quadratic action of fermion perturbations, as presented at the beginning

of section 3.1.1, is valid for any mixed-flux AdS3× S3× S3× S1 bosonic string

background, and to avoid repeating ourselves, here we just write down the

equations of motion (3.15)

(ρ0 + ρ1)
[
(D1 −D0) ϑ1 − 1

48
/F (ρ0 − ρ1) ϑ2 − 1

8( /H0 − /H1) ϑ1
]

= 0 ,

(ρ0 − ρ1)
[
(D1 + D0) ϑ2 + 1

48
/F (ρ0 + ρ1) ϑ1 − 1

8( /H0 + /H1) ϑ2
]

= 0 .

(5.5)
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The pull-back of the Dirac matrices ρa = eAa ΓA and the covariant derivatives

Da = ∂a + 1
4ω

AB
a ΓAB are given in terms of the pull-back of the vielbein and

spin-connection to the worldsheet

eAa ≡ ∂aX
µEAµ (X), ωABa ≡ ∂aX

µωABµ . (5.6)

These expressions need be evaluated on the classical solution (5.1), which has

non-constant components for µ = T, ρ, ψ, φ+
1 , φ

−
1 corresponding to the tangent

space indices A = 0, 1, 2, 4, 7, respectively. The spacetime vielbein EAµ and

spin-connection ωABµ can be found in section 2.2.2, and the pull-backs eAa , ω
AB
a

for this specific classical background are presented in appendix M. Changing

variables to the scaled and boosted worldsheet coordinates (5.2)

Y = ζX , S = ζT , ζ = γ

√
q̃2 − u2, (5.7)

the equations can be written as

(ρ0 + ρ1)
[
ζ(1 + u)γ

(
D − ∂S

)
ϑ1 +Oϑ2

]
= 0 ,

(ρ0 − ρ1)
[
ζ(1− u)γ

(
D̃ + ∂S

)
ϑ2 + Õϑ1

]
= 0 ,

(5.8)

where the mixing terms are

O = − 1
48
/F (ρ0 − ρ1) , Õ = 1

48
/F (ρ0 + ρ1) , (5.9)

and we introduced the fermion derivatives

D = ∂Y + 1
2G Γ01 + 1

2Q Γ12 −
(1− u)γ

48ζ
(
/H(ρ0 − ρ1) + (ρ0 − ρ1) /H

)
,

D̃ = ∂Y + 1
2G̃ Γ01 + 1

2Q Γ12 −
(1 + u)γ

48ζ
(
/H(ρ0 + ρ1) + (ρ0 + ρ1) /H

)
.

(5.10)

For a detailed derivation see appendix N, where we also list explicit expressions

for G, G̃,Q in (N.4).
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Zero mode condition. One can consider solutions to (5.8) oscillating at

various frequencies, but we will focus on the zero-frequency modes, zero modes

for short, which are time-independent in the magnon’s frame

∂S ϑ
J = 0 . (5.11)

Hence, the zero mode equations are

(ρ0 + ρ1)
[
ζ(1 + u)γD ϑ1 +Oϑ2

]
= 0 ,

(ρ0 − ρ1)
[
ζ(1− u)γD̃ ϑ2 + Õϑ1

]
= 0 .

(5.12)

A more in-depth analysis of the zero mode condition can be found in chapter

3.

Fixing kappa symmetry

Let us rotate the gamma matrices, aligning them with the BMN geodesic,

Γ̂4 = cosϕΓ4 + sinϕΓ7, Γ̂7 = cosϕΓ7 − sinϕΓ4, (5.13)

and Γ̂A = ΓA for the rest. With this we have

ρ0 = Γ̂4 + e0
0 Γ̂0 + e1

0 Γ̂1 + e2
0 Γ̂2, ρ1 = ê0

1 Γ̂0 + e1
1 Γ̂1 + e2

1 Γ̂2, (5.14)

and just like in chapter 3, the operators in front of the equations (5.12) are

nilpotent

(ρ0 + ρ1)2 = (ρ0 − ρ1)2 = 0 . (5.15)

In fact, (ρ0 ± ρ1) both have half maximal rank. To see this first define

ρ̄0 ≡ Γ̂4 − e
0
0 Γ̂0 − e

1
0 Γ̂1 − e

2
0 Γ̂2, (5.16)

giving another pair of nilpotent operators (ρ̄0± ρ1)2 = 0. However, the differ-

ence (ρ̄0 − ρ0) between the two sets is non-singular

(ρ̄0 − ρ0)2 = −4q̃−2
(
ζ2 coth2Y + q2u2γ2

)
1 , (5.17)
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which can only be the case if the nilpotent operators are exactly half rank.

Kappa-symmetry is a fermionic gauge symmetry of the Green-Schwarz su-

perstring action ensuring spacetime SUSY of the physical spectrum. Half of

the fermionic degrees of freedom are projected out in fixing kappa-gauge, mak-

ing the half-rank (ρ0±ρ1) good candidates for this role. In fact, they commute

with the corresponding covariant derivatives [ρ0+ρ1, D] = [ρ0−ρ1, D̃] = 0, and

appear in the right mixing operators (5.9), so that the components of ϑ1 and

ϑ2 projected out by (ρ0 + ρ1) and (ρ0 − ρ1), respectively, are non-dynamical.

Also considering the matrix structure of (5.14), we take the kappa-projectors

to be

K1 = 1
2Γ̂4(ρ0 + ρ1) , K2 = 1

2Γ̂4(ρ0 − ρ1) , (5.18)

satisfying K2
J = KJ ,

[K1, D] = 0 , [K2, D̃] = 0 , (5.19)

O = OK2 , Õ = ÕK1 . (5.20)

We can write the zero mode equations (5.12) for the kappa-fixed spinors ΨJ =

KJϑ
J as

ζ(1 + u)γDΨ1 +K1OΨ2 = 0 ,

ζ(1− u)γD̃Ψ2 +K2ÕΨ1 = 0 .
(5.21)

Zero mode equations

The kappa projectors (5.18) commute with the 6d chirality projector1

P± = 1
2
(
1± Γ̂∗Γ̂+

)
, [P±,KJ ] = 0 . (5.22)

We can rewrite the contracted fluxes /F , /H (3.13), relating them to this new

projector

Γ∗ + cosϕ Γ+ + sinϕ Γ− = Γ̂∗ + Γ̂+ + sinϕΓ7Γ35
(
1 + Γ3568

)
= 2

(
Γ̂+ P+ −∆ Γ̂35

)
,

(5.23)

1 Replacing all gamma matrices with their hatted versions Γ̂∗ = Γ̂012, Γ̂+ = Γ̂345.
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where

∆ = −1
2 sinϕ

(
1 + Γ̂3568

)
Γ7 ≡ ∆4 Γ̂4 + ∆7 Γ̂7 , (5.24)

with

∆4 = −1
2 sin2ϕ

(
1 + Γ̂3568

)
, ∆7 = cotϕ∆4 . (5.25)

Note that we can essentially treat ∆4 and ∆7 as scalars, since they commute

with the equations of motion.

Recalling the relation (5.17), we define the invertible operator

R = 1
2Γ̂+(ρ̄0 − ρ0) : R2 = −q̃−2

(
ζ2 coth2Y + q2u2γ2

)
1 . (5.26)

Then, the fermion derivatives can be written as (see appendix N)

D = ∂Y + 1
2G Γ̂01 + 1

2Q Γ̂12 + q(1− u)γ
ζ

(
RP− − (R− Γ̂35)P+ + ∆4 Γ̂35

)
,

D̃ = ∂Y + 1
2G̃ Γ̂01 + 1

2Q Γ̂12 + q(1 + u)γ
ζ

(
RP− − (R− Γ̂35)P+ + ∆4 Γ̂35

)
,

(5.27)

while, using the relations

Γ35K1K2 = RK2 , Γ35K2K1 = RK1 , (5.28)

the mixing terms (5.9) become

K1O = q̃
(
RP− −K1∆ Γ̂+

)
K2 ,

K2Õ = −q̃
(
RP− −K2∆ Γ̂+

)
K1 .

(5.29)

The final form of the kappa-fixed zero mode equations (5.21) is therefore

ζ(1 + u)γDΨ1 + q̃
(
R P− −K1∆ Γ̂+

)
Ψ2 = 0 ,

ζ(1− u)γD̃Ψ2 − q̃
(
R P− −K2∆ Γ̂+

)
Ψ1 = 0 .

(5.30)
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Equations for ∆ = 0. From a technical perspective, the difference between

∆ = 0 and ∆ 6= 0 is that P± only commutes with the equations for ∆ = 0.

From a physical point of view ∆ = 0 corresponds to either

• ϕ = 0, i.e. the AdS3 × S3 ×T4 geometry, or

• “Γ̂3568 = −1” : i.e. the AdS3×S
3×S3×S1 geometry, with fermions

restricted to the −1 eigenspace of Γ̂3568.

In these cases the covariant derivatives take the simpler form

D = ∂Y + 1
2G Γ̂01 + 1

2Q Γ̂12 + q(1− u)γ
ζ

(
RP− − (R− Γ̂35)P+

)
,

D̃ = ∂Y + 1
2G̃ Γ̂01 + 1

2Q Γ̂12 + q(1 + u)γ
ζ

(
RP− − (R− Γ̂35)P+

)
,

(5.31)

and there equations become

ζ(1 + u)γD Ψ1 + q̃ R P−Ψ2 = 0 ,

ζ(1− u)γD̃ Ψ2 − q̃ R P−Ψ1 = 0 .
(5.32)

Note that these apply in both geometries as long as we impose Γ̂3568ΨJ = −ΨJ

on the solutions in the AdS3 × S3 × S3 × S1 case.

The case of ∆ 6= 0. In section 5.1.2 we will show that the ∆ = 0 equations

give the right number of normalizable zero modes for a short representation,

and indeed there are no normalizable solutions at all for ∆ 6= 0, as we argue

in appendix P. To get some intuition about the importance of ∆, we can look

at the fermion fluctuations around the BMN string on AdS3×S3×S3×S1. In

appendix E we find that them = 1 fermions live on the eigenspace Γ1235 = +1,

Γ1268 = +1. If one accepts that in the BMN limit the zero modes of the

AdS3 × R soliton should converge to these m = 1 fermions (although this is

less clear than the similar argument for the giant magnon), then it follows

that Γ3568 = Γ̂3568 = +1 for the zero modes, corresponding to ∆ = 0.
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5.1.2 Mixed-flux fermion zero modes

In this section we find the normalizable solutions for the (∆ = 0) equations

(5.32), representing the perturbative zero modes above the AdS3 × R soliton.

Just like in chapter 3, the trick is to reduce the degrees of freedom of the

problem by first fixing kappa-gauge with a suitable ansatz. After removing

the UV divergences, we also see that the quantized zero modes can be mapped

onto the odd generators of the residual algebra.

Fixing kappa-gauge

Due to the nilpotency of (ρ0 ± ρ1) we can parametrize the kappa-projectors

(5.18) as

K1 = 1
2
(
1− cosh(2χ) cosh υ+ Γ̂04 − sinh(2χ) cosh υ+ Γ̂14 + sinh υ+ Γ̂24

)
,

K2 = 1
2
(
1− cosh(2χ̃) cosh υ− Γ̂04 − sinh(2χ̃) cosh υ− Γ̂14 − sinh υ− Γ̂24

)
.

(5.33)

Using the exponential identities presented in appendix O, and introducing

Q± =
q
√
q̃2 − u2

q̃(1± u) , (5.34)

the parameters are found to be

υ± = arcsinh (Q± cschY) , (5.35)

χ(Y) = 1
2

arctanh
(
u sechY

q̃

)
− arccosh

 cothY√
1 +Q2

+ csch2Y

 ,

χ̃(Y) = 1
2

arctanh
(
u sechY

q̃

)
+ arccosh

 cothY√
1 +Q2

− csch2Y

 .

(5.36)
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Ansatz. We take the kappa-fixed ansatz to be

ΨJ =
(
αJ+(Y) + αJ−(Y) Γ̂02

)
UJ , (5.37)

where UJ satisfies

Γ̂01U
J = +UJ , Γ̂35U

J = iλ35U
J , Γ̂∗Γ̂+U

J = λPU
J , (5.38)

with λ35, λP ∈ {±1}. First of all, the definite Γ̂35 and Γ̂∗Γ̂+ eigenvalues are

motivated by the fact that these operators mutually commute with KJ , so we

can take the shared eigenvector UJ as a starting point to the ansatz. Then,

to capture the Y-dependent projection of the KJ , we project U down to the

+1 eigenspace of Γ̂01, relating it to the complement eigenspace at the level of

Ψ via the operator Γ̂02. Note that there is some freedom in this construction,

instead of Γ̂01 and Γ̂02 we could have chosen any two anti-commuting operators

that do not commute with KJ .

Solution. Substituting the ansatz (5.37) into K1Ψ1 = Ψ1, we get an equa-

tion on each eigenspace of Γ̂01

iλ sinh υ+ α
1
+ + iλe+2χ cosh υ+ α

1
− = α1

+ ,

−iλ sinh υ+ α
1
− − iλe

−2χ cosh υ+ α
1
+ = α1

− ,

(5.39)

where λ = λ35λP = ±1. Since the overall scale of eigenvectors are unfixed,

both of these equations are for the single variable α−/α+. They are consistent,

with a symmetric solution

α1
+ = eχ

√
1− iλQ+ cschY , α1

− = iλe−χ
√

1 + iλQ+ cschY . (5.40)

The same analysis for Ψ2 gives

α2
+ = eχ̃

√
1 + iλQ+ cschY , α2

− = iλe−χ̃
√

1− iλQ+ cschY . (5.41)
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The most general form of the gauge-fixed spinors is therefore

Ψ1 =
∑

λ35,λP

(
eχ
√

1− iλQ+ cschY +

iλe−χ
√

1 + iλQ+ cschY Γ̂02
)
U1 ,

Ψ2 =
∑

λ35,λP

(
eχ̃
√

1 + iλQ+ cschY +

iλe−χ̃
√

1− iλQ+ cschY Γ̂02
)
U2 ,

(5.42)

where Γ̂01U
J = +UJ , Γ̂35U

J = iλ35U
J , and P+U

J = 1+λP
2 UJ . The derivation

above tells us that these are kappa-fixed, and with a simple counting of the

degrees of freedom we can convince ourselves that there are no others.

Reduced zero mode equations

Due to the symmetries of (5.32), we can find solutions on smaller invariant

subspaces. Starting with 32 complex components in total for the two Weyl-

spinors ϑ1 and ϑ2 (not worrying about the Majorana condition for now), first

we make the kappa-fixed ansatz (5.37) that leaves us with the 16 physical

degrees of freedom. Then, the operators Γ̂35, Γ̂68 and Γ̂∗Γ̂+ all mutually

commute with the equations, and we can consider solutions on their mutual

eigenspaces. Each of these symmetries reduce dimensionality by half, leaving

us with a reduced ODE system that only involves 2 complex scalar functions.

Therefore the ansatz we make is

Ψ1 =
(
α1

+ + α1
− Γ̂02

)
f1(Y)V,

Ψ2 =
(
α2

+ + α2
− Γ̂02

)
f2(Y)V,

(5.43)

where the constant spinor V has eigenvalues iλ35, λP and +1 under Γ̂35, Γ̂∗Γ̂+

and Γ̂01, respectively. It turns out, the Γ̂68 eigenvalue does not enter into the

reduced equations for T4, while on the S1 geometry it is fixed in terms of λ35,

since we have Γ̂3568 = −1 for ∆ = 0. Substituting (5.43) into (5.32), and

after a considerable amount of simplification, using identities like the ones in

appendix O, we get
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(
α1

+ + α1
− Γ̂02

) [
(∂Y + C11) f1 + C12f2

]
V = 0 ,

(
α2

+ + α2
− Γ̂02

) [
(∂Y + C22) f2 + C21f1

]
V = 0 ,

(5.44)

with

C11 = i

2
λ35q (1− (1− λP )u)√

q̃2 − u2
− i

2
λ35λP Q+

√
1−Q2

+

sinh2Y +Q2
+

,

C22 = i

2
λ35q (1 + (1− λP )u)√

q̃2 − u2
− i

2
λ35λP Q−

√
1−Q2

−

sinh2Y +Q2
−

,

(5.45)

C12 = iλ35
1− λP

2 (1− u)γ e
∫

(C22−C11)dY e−2iξY (cothY + iξ) ,

C21 = −iλ35
1− λP

2 (1 + u)γ e
∫

(C11−C22)dY e+2iξY (cothY − iξ) ,
(5.46)

where we also defined

ξ = λ35 qu√
q̃2 − u2

. (5.47)

Note the kappa-fixing factors (αJ+ + αJ− Γ̂02) multiplying (5.44) from the left,

once again confirming that kappa-projection commutes with the equations of

motion. We have already written the mixing terms C12, C21 in a form that

lends itself to the substitution

f1 = 1√
1− u

e−
∫
C11dY f̃1 = 1√

1 + u
e
− iλ35q(1−(1−λP )u)

2
√
q̃

2−u2
Y+ i

2λ35λP arccot
(
Q+ cothY√

1−Q2
+

)
f̃1 ,

f2 = −iλ35√
1− u

e−
∫
C22dY f̃2 = −iλ35√

1− u
e
− iλ35q(1+(1−λP )u)

2
√
q̃

2−u2
Y+ i

2λ35λP arccot
(
Q− cothY√

1−Q2
−

)
f̃2 ,

(5.48)

upon which the equations in brackets (5.44) reduce to

∂Y f̃1 + 1− λP
2 e−2iξY (cothY + iξ) f̃2 = 0 ,

∂Y f̃2 + 1− λP
2 e+2iξY (cothY − iξ) f̃1 = 0 .

(5.49)
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Solutions on the P+ subspace. On the P+ subspace (λP = +1) the two

spinors decouple, and at the level of the reduced equations (5.49) the solution

is simply

f̃1 = c1, f̃2 = c2, (5.50)

for some constants ci. With this, the spinors (5.43) are not normalizable, and

we can not interpret them as perturbative zero modes.

Solutions on the P− subspace. Setting λP = −1 in (5.49) we can invert

the first equation for f̃2, and substitute into the second equation to get the

second-order ODE

∂2
Y f̃1 +

(
2iξ + csch2Y

cothY + iξ

)
∂Y f̃1 +

(
coth2Y + ξ2

)
f̃1 = 0, (5.51)

with solutions

f̃1 =
(
c1 cschY + c2(sinhY + iξ coshY − iξ Y cschY)

)
e−iξY . (5.52)

Picking the solution that is normalizable as Y → ±∞, we have

f̃1 = cschY e−iξY , f̃2 = cschY e+iξY . (5.53)

and the kappa-fixed normalizable fermion zero modes are given by

Ψ1 =
∑

λ35=±

cschY
4
√

1 + u
eiω+

(
α1

+ + α1
− Γ̂02

)
Vλ35

,

Ψ2 =
∑

λ35=±
−iλ35

cschY
4
√

1− u
eiω−

(
α2

+ + α2
− Γ̂02

)
Vλ35

,

(5.54)

where

ω± = − q λ35Y

2
√
q̃2 − u2

− λ35
2 arccot

Q± cothY√
1−Q2

±

 , (5.55)

the constant MW spinors V± satisfy P−V± = V±, Γ̂01V± = V±, Γ̂35V± = ±iV±,

and the factors of 4 have been introduced for later convenience.

Counting the zero modes. The degrees of freedom of the normalizable

zero modes are encoded in the constant spinor V = V+ +V−, which has eigen-
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values −1 and +1 under Γ̂∗Γ̂+ and Γ̂01, respectively. These projections leave

4 of the 16 real components of an unconstrained 10-d MW spinor. Recalling

that we further need to impose Γ̂3568V = −V for the S1 case, we conclude that

there are 4 and 2 normalizable fermion zero modes for the AdS3 × S1( × S1)
soliton on the AdS3×S

3×T4 and AdS3×S
3×S3×S1 backgrounds, respectively.

Zero mode action

We can rewrite the fermion Lagrangian (3.5), similarly to (5.8), as

LF = i ϑ̄1(ρ0 + ρ1)(D0 −D1)ϑ1 + i ϑ̄2(ρ0 − ρ1)(D0 +D1)ϑ2 , (5.56)

= −i ϑ̄1(ρ0 + ρ1)
(
ζ(1 + u)γ

(
D − ∂S

)
ϑ1 +Oϑ2

)
+ i ϑ̄2(ρ0 − ρ1)

(
ζ(1− u)γ

(
D̃ + ∂S

)
ϑ2 + Õϑ1

)
.

(5.57)

In a basis where the (rotated) gamma matrices have definite hermiticity, the

kappa-projectors satisfy Γ̂04KJ = K†J Γ̂04. Furthermore, the Hermitian conju-

gate intertwiner is Γ̂0, hence ϑ̄ = ϑ† Γ̂0. We then have

LF = −2i (Ψ1)† Γ̂04
(
ζ(1 + u)γ

(
D − ∂S

)
Ψ1 +OΨ2

)
+ 2i (Ψ2)† Γ̂04

(
ζ(1− u)γ

(
D̃ + ∂S

)
Ψ2 + ÕΨ1

)
.

(5.58)

Letting V = V+ + V− depend on T , and substituting the zero modes (5.54)

into the above Lagrangian, we get

LF,0 = 2i(1 + u)γΨ1† Γ̂04 ∂T Ψ1 + 2i(1− u)γΨ2† Γ̂04 ∂T Ψ2 , (5.59)

= − i2γ csch2Y V †∂T V , (5.60)

Integrating over X , we run into the same UV divergences that we mentioned

during the classical analysis in section 2.2.5. We can regularize by changing

variables to z = cosh ρ

∫ ∞
−∞

dX csch2Y = 2
∫ ∞

1
dz
( dz
dX

)−1
csch2Y

= 2 ζ−1
√

1 + b2
∫ ∞

1
dz z√

z2 − z2
0

,

(5.61)
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where z0 = b/

√
1 + b2, and applying a simple cutoff so that the integral eval-

uates to

2 ζ−1
√

1 + b2
(

Λ−
√

1− z2
0

)
. (5.62)

Removing the divergent term we get

(∫ ∞
−∞

dX csch2Y
)

reg
= −2 ζ−1, (5.63)

and the regularized zero mode action is

(
SF,0

)
reg = hγ̃

∫
dT

(
i V †∂T V

)
, (5.64)

with
γ̃ = γ

ζ
= 1√

q̃2 − u2
. (5.65)

To apply the Majorana condition, let us consider a Majorana basis, where

all gamma matrices are purely imaginary Γ̂∗A = −Γ̂∗A. In such a basis the

Majorana-spinors satisfy the reality condition ΨI∗ = ΨI , which, after exam-

ining the solutions (5.54), reduces to

V− = V+
∗ ⇒ V ∗ = V , (5.66)

and the zero mode action becomes

SF,0 = hγ̃
∫

dT
(
i V T∂T V

)
. (5.67)

Comparing this action to (3.87), it is clear that the zero mode quantization

argument from chapter 3 applies here in the exact same way. In particular, the

semiclassically quantized zero modes can be matched to the odd generators of

the residual symmetry algebra.
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5.2 Fermion zero modes for the double magnon

Lastly, we consider the fermion zero modes of the double magnon, an R×S3×S3

string on the mixed-flux AdS3 × S3 × S3 × S1 background with equal 3-sphere

radii, i.e. cos2ϕ = sin2ϕ = 1/2, given in Hopf coordinates by (2.288)

θ+ = θ− = arccos

 sechY√
1 + b2

 ,

φ+
1 = φ−1 = 1

2 t+ arctan
(
b−1 tanhY

)
, φ+

2 = φ−2 = − q Y√
q̃2 − u2

,

γ2 = 1
1− u2 , b = u√

q̃2 − u2
, u ∈ (−q̃, q̃) ,

(5.68)

where

Y = 1
2γ
√
q̃2 − u2X , X = γ(x− ut), T = γ(t− ux). (5.69)

5.2.1 Fermion zero mode equations

Just like in the previous section, we start with the fermion perturbation equa-

tions (3.15) for the ten-dimensional Majorana-Weyl spinors ϑ1, ϑ2

(ρ0 + ρ1)
[
(D1 −D0) ϑ1 − 1

48
/F (ρ0 − ρ1) ϑ2 − 1

8( /H0 − /H1) ϑ1
]

= 0 ,

(ρ0 − ρ1)
[
(D1 + D0) ϑ2 + 1

48
/F (ρ0 + ρ1) ϑ1 − 1

8( /H0 + /H1) ϑ2
]

= 0 .

(5.70)

The worldsheet Dirac matrices and covariant derivatives

ρa = eAa ΓA, eAa ≡ ∂aX
µEAµ (X),

Da = ∂a + 1
4ω

AB
a ΓAB, ωABa ≡ ∂aX

µωABµ ,
(5.71)

should be evaluated on the classical solution (5.68), which has non-constant

components for µ = t, θ+, φ+
1 , φ

+
2 , θ

−, φ−1 , φ
−
2 , corresponding to the tangent

space indices A = 0, 3, 4, 5, 6, 7, 8. The vielbein and spin-connection were de-

scribed in section 2.2.2, while their pull-backs eAa , ω
AB
a for the double magnon
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can be found in appendix Q. Changing variables to (5.69)

Y = 1
2 ζX , S = 1

2 ζT , ζ = γ

√
q̃2 − u2, (5.72)

the equations become

(ρ0 + ρ1)
[
ζ(1 + u)γ

(
D − ∂S

)
ϑ1 +Oϑ2

]
= 0 ,

(ρ0 − ρ1)
[
ζ(1− u)γ

(
D̃ + ∂S

)
ϑ2 + Õϑ1

]
= 0 ,

(5.73)

where

O = − 1
24
/F (ρ0 − ρ1) , Õ = 1

24
/F (ρ0 + ρ1) , (5.74)

and the fermion derivatives are

D = ∂Y + 1
2G (Γ34 + Γ67) + 1

2Q (Γ35 + Γ68)

− (1− u)γ
24ζ

(
/H(ρ0 − ρ1) + (ρ0 − ρ1) /H

)
,

D̃ = ∂Y + 1
2G̃ (Γ34 + Γ67) + 1

2Q (Γ35 + Γ68)

− (1 + u)γ
24ζ

(
/H(ρ0 + ρ1) + (ρ0 + ρ1) /H

)
.

(5.75)

Details of this calculation can be found in appendix R, together with explicit

expression for the scalar functions G, G̃,Q in (R.3).

Zero mode condition. Zero modes are stationary perturbations, in other

words, they are time-independent in the magnon’s frame

∂S ϑ
J = 0 . (5.76)

With this, the fermion zero mode equations are

(ρ0 + ρ1)
[
ζ(1 + u)γD ϑ1 +Oϑ2

]
= 0 ,

(ρ0 − ρ1)
[
ζ(1− u)γD̃ ϑ2 + Õϑ1

]
= 0 .

(5.77)

A more detailed explanation of the zero mode condition can be found in section

3.1.2.
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Rotated gamma matrices

Due to the symmetry of the bosonic background between the two spheres, the

fermion perturbation equations (at least structurally) simplify if we introduce

a set of rotated gamma matrices

Γ̂3 = 1√
2

(
Γ3 + Γ6

)
, Γ̂6 = 1√

2

(
Γ6 − Γ3

)
,

Γ̂4 = 1√
2

(
Γ4 + Γ7

)
, Γ̂7 = 1√

2

(
Γ7 − Γ4

)
,

Γ̂5 = 1√
2

(
Γ5 + Γ8

)
, Γ̂8 = 1√

2

(
Γ8 − Γ5

)
,

(5.78)

with Γ̂A = ΓA left unchanged for A = 0, 1, 2, 9. Noting that

e3
a = e6

a, e4
a = e7

a, e5
a = e8

a, (5.79)

and defining êAa =
√

2eAa , we have

ρa = e0
a Γ̂0 + ê3

a Γ̂3 + ê4
a Γ̂4 + ê5

a Γ̂5, (5.80)

i.e. the symmetric combinations appear naturally.

Fixing kappa symmetry

Once again, the operators in front of the equations (5.73) are nilpotent

(ρ0 + ρ1)2 = (ρ0 − ρ1)2 = 0 , (5.81)

and in fact half-rank. Kappa-gauge can be fixed with the projectors

K1 = 1
2Γ̂0(ρ0 + ρ1) , K2 = 1

2Γ̂0(ρ0 − ρ1) , (5.82)

satisfying K2
J = KJ ,

[K1, D] = 0 , [K2, D̃] = 0 , (5.83)

and, using (5.74)
O = OK2 , Õ = ÕK1 . (5.84)
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Introducing the kappa-fixed spinors ΨJ = KJϑ
J , the zero mode equations

(5.77) are equivalent to

ζ(1 + u)γD Ψ1 +K1OΨ2 = 0 ,

ζ(1− u)γD̃ Ψ2 +K2ÕΨ1 = 0 .
(5.85)

Zero mode equations

The kappa projectors (5.82) come with the commuting 6d chirality projectors2

P± = 1
2
(
1± Γ̂∗Γ̂+

)
, [P±,KJ ] = 0 , (5.86)

and the contracted fluxes /F , /H can be written as

Γ∗ + 1√
2 Γ+ + 1√

2 Γ− = Γ̂∗ (P+ + Π+) = (P− + Π−) Γ̂∗, (5.87)

where

Π± = 1
2
(
1± Γ̂∗

(
Γ̂378 + Γ̂648 + Γ̂675

) )
. (5.88)

With this, we can write

D = ∂Y + 1
2G (Γ̂34 + Γ̂67) + 1

2Q (Γ̂35 + Γ̂68)

− q(1− u)γ
ζ

Γ̂12
(

(P− + Π−)K2 + (1−K2) (P+ + Π+)
)
,

D̃ = ∂Y + 1
2G̃ (Γ̂34 + Γ̂67) + 1

2Q (Γ̂35 + Γ̂68)

− q(1 + u)γ
ζ

Γ̂12
(

(P− + Π−)K1 + (1−K1) (P+ + Π+)
)

(5.89)

the fermion derivatives (5.75), and

O = −q̃ Γ̂12 (P− + Π−)K2 ,

Õ = q̃ Γ̂12 (P− + Π−)K1

(5.90)

2 With hatted indices Γ̂∗ = Γ̂012, Γ̂+ = Γ̂345.
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for the mixing terms (5.74), and the equations of motion for the kappa-fixed

zero modes (5.85) become

ζ(1 + u)γD Ψ1 − q̃ Γ̂12K1 (P− + Π−) Ψ2 = 0 ,

ζ(1− u)γD̃ Ψ2 + q̃ Γ̂12K2 (P− + Π−) Ψ1 = 0 .
(5.91)

5.2.2 Mixed-flux fermion zero modes

In this section we find the normalizable solutions for equations (5.91), rep-

resenting the perturbative zero modes over the double magnon background.

We first construct a kappa-fixed ansatz, which is then substituted into the

zero-mode equations. Identifying further (Y-independent) symmetries of these

equations, we obtain a minimal set of coupled ODEs, which are simple enough

to solve.

Fixing kappa-gauge

The kappa-projectors (5.82) are exactly the same form (although with Γ̂A

defined differently) as for the single-magnon (3.56)

K1 = 1
2
(
1− sin(2χ) cos υ+ Γ̂03 − cos(2χ) cos υ+ Γ̂04 + sin υ+ Γ̂05

)
,

K2 = 1
2
(
1 + sin(2χ̃) cos υ− Γ̂03 + cos(2χ̃) cos υ− Γ̂04 − sin υ− Γ̂05

)
,

(5.92)

with

χ(Y) = 1
2

arccot
(
u cschY

q̃

)
− arcsin

 tanhY√
1−Q2

+ sech2Y

 ,

χ̃(Y) = 1
2

arccot
(
u cschY

q̃

)
+ arcsin

 tanhY√
1−Q2

− sech2Y

 ,

υ± = arcsin (Q± sechY) , Q± =
q
√
q̃2 − u2

q̃(1± u) .

(5.93)

For a detailed construction of the kappa-fixed spinors ΨJ , satisfying KJΨJ =

ΨJ for J = 1, 2, the reader is referred to section 3.2.1, here we just present
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the most general kappa-fixed ansatz3

ΨJ =
∑

λ12,λP

(
αJ+(Y) + αJ−(Y) Γ̂45

)
UJλ12,λP

, (5.94)

where

α1
+ = eiχ

√
1 + λQ+ sechY , α1

− = −λe−iχ
√

1− λQ+ sechY ,

α2
+ = eiχ̃

√
1− λQ− sechY , α2

− = λe−iχ̃
√

1 + λQ− sechY ,

(5.95)

the spinors have eigenvalues

Γ̂12U
J
λ12,λP

= iλ12U
J
λ12,λP

,

Γ̂∗Γ̂+U
J
λ12,λP

= λPU
J
λ12,λP

,

Γ̂34U
J = +iUJ ,

(5.96)

and we defined λ = λPλ12. The sums in (5.94) are over λ12, λP = ±1.

Reduced zero mode equations

Our aim is to reduce the equations (5.91) to a system of ODEs involving

the smallest number of (complex) scalar functions possible. We start with 16

complex components for each of the Weyl-projected spinors ϑ1 and ϑ2 (not

worrying about the Majorana condition for now). The operators Γ̂12 and Γ̂∗Γ̂+

both commute with the equations, and we can consider solutions with definite

λ12, λP , reducing dimensionality by a factor of 2 each, leaving us with 4+4

components. Making the kappa-fixed ansatz (5.94), this is further reduced

to a system of 2+2=4 ODEs. For the single-magnon in chapter 3 we had an

additional symmetry, namely Γ̂68 commuting with the equations, and the final

minimal coupled system had 2 degrees of freedom, but for the double-magnon

it can be shown that this is not possible with a Y-independent transformation.

Putting all of this into practice, we make the ansatz

Ψ1 =
(
α1

+ + α1
− Γ̂45

) (
f1(Y) + g1(Y) Γ̂78

)
U,

Ψ2 =
(
α2

+ + α2
− Γ̂45

) (
f2(Y) + g2(Y) Γ̂78

)
U,

(5.97)

3 Note that the definition of λ12 is different to the one used in chapter 3, resulting in a
sign change λ→ −λ in the kappa-fixed ansatz.
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where the shared constant spinor U has eigenvalues iλ12, λP ,+i and +i under

Γ̂12, Γ̂∗Γ̂+, Γ̂34 and Γ̂67, respectively. In effect, these projections (to eigenspaces

of mutually commuting operators) leave a single free (complex) component in

U , which we can normalize, since the physical degrees of freedom are carried

by the four scalar functions f1, g1, f2, g2.

Substituting (5.97) into (5.91), after a considerable amount of simplifica-

tion we get

(
α1

+ + α1
− Γ̂45

) [((
∂Y + Cf1f1

)
f1 + Cf1g1

g1 + Cf1f2
f2 + Cf1g2

g2

)
((

∂Y + Cg1g1

)
g1 + Cg1f1

f1 + Cg1g2
g2 + Cg1f2

f2

)
Γ̂78

]
U = 0 ,

(
α2

+ + α2
− Γ̂45

) [((
∂Y + Cf2f2

)
f2 + Cf2g2

g2 + Cf2f1
f1 + Cf2g1

g1

)
((

∂Y + Cg2g2

)
g2 + Cg2f2

f2 + Cg2g1
g1 + Cg2f1

f1

)
Γ̂78

]
U = 0 ,

(5.98)

where the coefficients C.. are listed in appendix S. It is worth noting that

we have overall kappa-fixing by K1 and K2, again confirming the fact that

the kappa-projectors commute with the fermion derivatives D, D̃. Further

substituting

f1 = 1√
1 + u

e
i

λ12q√
q̃

2−u2
Y
e

i
2λ12λP arctan

(
Q+ tanhY√

1−Q2
+

)
e

+ i
2 arccot

(
u cschY

q̃

)
f̃1,

g1 = i√
1 + u

e
i

λ12q√
q̃

2−u2
Y
e

i
2λ12λP arctan

(
Q+ tanhY√

1−Q2
+

)
e
− i

2 arccot
(
u cschY

q̃

)
g̃1,

f2 = 1√
1− u

e
i

λ12q√
q̃

2−u2
Y
e

i
2λ12λP arctan

(
Q− tanhY√

1−Q2
−

)
e

+ i
2 arccot

(
u cschY

q̃

)
f̃2,

g2 = i√
1− u

e
i

λ12q√
q̃

2−u2
Y
e

i
2λ12λP arctan

(
Q− tanhY√

1−Q2
−

)
e
− i

2 arccot
(
u cschY

q̃

)
g̃2,

(5.99)

the equations become

171



CHAPTER 5. ZERO MODES FOR OTHER STRINGS

∂Y f̃1 + iM+
1 f̃1 +M2g̃1 +M+

3 f̃2 +
(1

2 + λPλ12M2

)
g̃2 = 0,

∂Y g̃1 + iM−1 g̃1 − M̄2f̃1 +M−3 g̃2 +
(1

2 − λPλ12M̄2

)
f̃2 = 0,

∂Y f̃2 − iM
+
1 f̃2 −M2g̃2 + M̄+

3 f̃1 +
(1

2 − λPλ12M2

)
g̃1 = 0,

∂Y g̃2 − iM
−
1 g̃2 + M̄2f̃2 + M̄−3 g̃1 +

(1
2 + λPλ12M̄2

)
f̃1 = 0,

(5.100)

with

M±1 = 1
2 (λ12(2− λP )ξ ± q̃ sechY) ,

M2 = −q

2
√
q̃2 − u2

(q̃ sechY − iu tanhY) ,

M±3 = λ12
2 (2− λP ) tanhY + iλPλ12M

±
1 .

(5.101)

An exhaustive list of solutions to these equations can be found in appendix T,

here we just present the normalizable ones, all of which are on the P− subspace

(λP = −1)

f̃1 = sechY
(
c1e
− i

2 arctan(sinhY) + c2e
+ i

2 arctan(sinhY)
)
,

g̃1 = iλ12 sechY
(
c1e

+ i
2 arctan(sinhY) − c2e

− i
2 arctan(sinhY)

)
,

f̃2 = λ12 sechY
(
c1e
− i

2 arctan(sinhY) + c2e
+ i

2 arctan(sinhY)
)
,

g̃2 = i sechY
(
c1e

+ i
2 arctan(sinhY) − c2e

− i
2 arctan(sinhY)

)
,

(5.102)

for some integration constants c1, c2. Consequently, we can write the normal-

izable zero mode solutions to (5.91) as

Ψ1 =
∑

λ12,λ67

sechY
8
√

1 + u
eiω+

(
α1

+ + α1
− Γ̂45

) (
eiω̂ − λ12e

−iω̂ Γ̂78
)
Vλ12,λ67

,

Ψ2 =
∑

λ12,λ67

λ12
sechY

8
√

1− u
eiω−

(
α2

+ + α2
− Γ̂45

) (
eiω̂ − λ12e

−iω̂ Γ̂78
)
Vλ12,λ67

,

(5.103)
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where

ω± = q λ12Y

2
√
q̃2 − u2

− λ12
2 arctan

Q± tanhY√
1−Q2

±

 ,

ω̂ = −1
2 arctan (sinhY) + λ67

2 arccot
(
u cschY

q̃

)
,

(5.104)

the constant MW spinors Vab satisfy P−Vab = Vab, Γ̂34Vab = +iVab, Γ̂12V±λ =

±iV±λ, Γ̂67Vλ± = ±iVλ±, and the factors of 8 have been introduced for later

convenience.

Counting the zero modes. A general MW spinor has 16 real degrees of

freedom, but Vab in (5.103) is further constrained to have eigenvalues −1,+i

under Γ̂∗Γ̂+ and Γ̂34. These leave 4 degrees of freedom, one for each pair of

the indices a, b, i.e. each combination of λ12 and λ67. The double magnon has

a total of 4 fermion zero modes.

Zero mode action

Let us write the quadratic fermionic Lagrangian (3.5) as

LF = −i
(
ηabδIJ + εabσIJ3

)
ϑ̄IρaDb ϑ

J , (5.105)

= i ϑ̄1(ρ0 + ρ1)(D0 −D1)ϑ1 + i ϑ̄2(ρ0 − ρ1)(D0 +D1)ϑ2 , (5.106)

= − i2 ϑ̄
1(ρ0 + ρ1)

(
ζ(1 + u)γ

(
D − ∂S

)
ϑ1 +Oϑ2

)

+ i

2 ϑ̄
2(ρ0 − ρ1)

(
ζ(1− u)γ

(
D̃ + ∂S

)
ϑ2 + Õϑ1

)
.

(5.107)

Taking a basis of gamma matrices such that Γ̂A have definite hermiticity, the

kappa-projectors will be Hermitian K†J = KJ , and the Hermitian conjugate

intertwiner is given by Γ̂0, i.e. the Dirac conjugate is ϑ̄ = ϑ† Γ̂0. With this,

LF = −i (Ψ1)†
(
ζ(1 + u)γ

(
D − ∂S

)
Ψ1 +OΨ2

)

+ i (Ψ2)†
(
ζ(1− u)γ

(
D̃ + ∂S

)
Ψ2 + ÕΨ1

)
.

(5.108)
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Now letting V = V++ + V+− + V−+ + V−− depend on T and substituting the

zero modes (5.103) into the above Lagrangian we get

LF,0 = 2i(1 + u)γΨ1†∂T Ψ1 + 2i(1− u)γΨ2†∂T Ψ2,

= i

4γ sech2Y
(
V †∂T V

− i tanhY
∑

λ12,λ67

λ12 V
†
λ12,λ67

Γ̂78 ∂T Vλ12,−λ67

)
.

(5.109)

Integrating over X we arrive at the zero mode action

SF,0 = hγ̃
∫

dT
(
i V †∂T V

)
, (5.110)

where
γ̃ = γ

ζ
= 1√

q̃2 − u2
. (5.111)

To apply the Majorana condition, in Majorana basis where Γ̂∗A = −Γ̂∗A, we

need to impose reality of the spinors ΨI∗ = ΨI . For the solutions (5.103) this

is equivalent to

V−b = V+b
∗ ⇒ V ∗ = V , (5.112)

and the zero modes action takes the real form

SF,0 = hγ̃
∫

dT
(
i V T∂T V

)
. (5.113)

Quantizing the corresponding Poisson brackets, we get the zero-mode anti-

commutators

{Vαa, Vβb} = δαβ δab
1

hγ̃ , (5.114)

where a, α = 1, 2. After complexifying

VLa = 1√
2

(V1a + i V2a) , VRa = 1√
2

(V1a − i V2a) , (5.115)

the only non-zero anticommutator is

{VLa, VRb} = δab
1

hγ̃ . (5.116)
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We can in fact match these 4 quantized zero modes to the 4 odd generators

of the residual symmetry algebra su(1|1)2
c.e., using the general prescription

described in appendix A.

5.3 Chapter conclusions

In this chapter we wrote down the fermion zero modes for the mixed-flux

AdS3 ×R soliton and the R× S3 × S3 double magnon. For the AdS3 ×R soli-

ton we found 4 and 2 zero modes on AdS3× S3×T4 and AdS3× S3× S3× S1,

respectively, which would imply that the corresponding quantum state trans-

forms in a short representations of the off-shell residual symmetry algebras

psu(1|1)4
c.e. and su(1|1)2

c.e.. After removing the UV divergence, stemming from

the infinite length of the string, we managed to match the quantized zero

modes to the odd generators of the residual algebras, just like for the giant

magnon in chapter 3. Since the AdS spin J0 is quantized in integer units, the

dispersion relation (2.304)

E − J1 = −
√

(J0 − hqp)2 + 4h2q̃2 cos2 p
2 (5.117)

is reminiscent of the energy of an m = 1 magnon. An important difference,

though, is the negative sign (which is the result of the UV regularization), and

in fact the AdS3 ×R soliton does not represent a physical state of the theory,

neither does it reduce to the BMN string in the zero momentum limit. Such

a solution would, however, be physical in the mirror theory [172], and these

results might be applicable to the study of supersymmetries there.

For the AdS3 × S3 × S3 × S1 double magnon we found 4 fermion zero

modes, as expected, since the scattering state transforms in a long multiplet

of su(1|1)2
c.e.. This two-magnon solution and its perturbations encode infor-

mation about mixed-mass scattering on AdS3 × S3 × S3 × S1, and could be

compared to the expansion of the exact S-matrix.
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Conclusions

The AdS/CFT duality offers a completely new perspective on strongly coupled

gauge theories and quantum gravity, stating that these seemingly very different

theories actually describe the same physics. In the maximally supersymmetric

case of AdS5 × S5 integrability proved to be an invaluable tool, allowing one

to explicitly calculate the energies of closed string states, or equivalently the

anomalous dimensions of gauge theory operators, at all values of the coupling.

Although integrability is unlikely to explain the inner workings of generic

gauge/gravity dualities, there are valuable lessons to be learnt from instances

of AdS/CFT that are less supersymmetric than AdS5/CFT4, but still inte-

grable. In this thesis we focussed on the string theory side of AdS3/CFT2,

and in particular on two backgrounds with 16 supercharges, AdS3 × S3 × T4

and AdS3 × S3 × S3 × S1. On the classical level, these string backgrounds

were observed to be integrable when supported by pure R-R [69, 70, 71] or

mixed R-R and NS-NS fluxes [72]. One can approach the richness of these

theories compared to AdS5 from many angles. Firstly, less (super)symmetry

usually leaves more room for non-trivial behaviour in the quantum theory, and

a prominent example of this is the (quantum) dispersion relations of elemen-

tary excitations in the two theories. In AdS5/CFT4, supersymmetry and the

BMN limit determine the all-loop magnon dispersion relation to be [40]

ε =

√
1 + λ2

π2 sin2 p
2 , (6.1)

while for the mixed-flux AdS3 backgrounds [102, 104, 115]

ε =

√(
m± q

√
λ

p
2π

)2
+ 4 q̃2 h2 sin2 p

2 , (6.2)

where h =
√
λ

2π only in the classical string limit, and in general h will receive

quantum corrections. Secondly, AdS3 has massless modes, for which the very
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core of the integrable machinery had the be revised [111]. And lastly, the AdS3

theories we consider have two continuous parameters, the angle ϕ describing

the relative radii of the three-spheres of AdS3 × S3 × S3 × S1 (also capturing

AdS3 × S3 × T4 in the ϕ → 0 limit), and q ∈ [0, 1] corresponding to the

strength of the NS-NS flux. Even if we assume some kind of similarity between

AdS5×S5 and the pure R-R AdS3×S3×T4 background, turning on these two

extra parameters provides both richness, and as we have seen in this thesis,

technical challenges when carrying out analogous calculations.

Understanding AdS3/CFT2 is an ambitious project, and we devoted this

thesis only to a small segment of it, the semiclassical analysis of its string

solitons. The quantization of these particle-like solutions of integrable field

theories [134, 135, 136, 137] provides a window into regimes of the quantum

theory not directly accessible to perturbation methods. Without a doubt,

the most important soliton of the AdS5 × S5 worldsheet sigma-model is the

Hofman-Maldacena giant magnon [41], and as a BPS state of the off-shell

residual algebra su(2|2)2
c.e., it should have 8 fermion zero modes. These were

explicitly constructed by Minahan [53], who also managed to match the quan-

tized zero modes to the odd generators of the algebra. Subsequently, a basis

of the complete fluctuation spectrum of the magnon was found by Papathana-

siou and Spradlin [54], and from these fluctuations the 1-loop correction to the

magnon energy was confirmed to be zero, in agreement with (6.1). The main

goal of this thesis had been to perform these two calculations for the mixed-flux

AdS3 giant magnon. Importantly, we first had to identify the right classical

background for the analysis. In chapter 2 we found that among all the 2-spin

magnons, the stationary magnon (2.285) can be regarded as the mixed-flux

generalization of the HM magnon, and as such, represents a suitable classical

background.

The off-shell residual symmetry algebras of AdS3 × S3 × T4 and AdS3 ×

S3 × S3 × S1 are the centrally extended psu(1|1)4, and the centrally extended

su(1|1)2, and the BPS magnon should transform in the 4 and 2 dimensional

short representations of these superalgebras, respectively. We confirmed this

in chapter 3 by explicitly constructing the 4 and 2 fermion zero modes of

the stationary mixed-flux magnon on these backgrounds. Furthermore, we
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managed to match the odd generators of the residual algebras to the semi-

classically quantized fermion zero modes. In chapter 5 we performed the same

zero mode analysis on two other classical solutions. It turns out that, just

like the stationary magnon, the AdS3 × S1 soliton has 4 and 2 fermion zero

modes, confirming that it transforms in short representations, while for the

AdS3×S3×S3×S1 double magnon we found 8 zero modes, in agreement with

the fact that general scattering states are part of long representations.

In chapter 5 we wrote down the full spectrum of fluctuations around the

mixed-flux AdS3 stationary magnon. For the fermions we used the techniques

developed in chapter 3 extended to the case of non-zero frequencies, and we ap-

plied the dressing method to construct the bosons. The fluctuations naturally

arrange into short multiplets of the residual symmetry algebras, according to

mass and chirality. Reading off the stability angle of each fluctuation, we deter-

mined that the one-loop functional determinant vanishes for both geometries,

or in other words, that

h(λ) =
√
λ

2π +O
( 1√

λ

)
(6.3)

and the subleading O(1) correction to the dispersion relation (6.2) is zero.

This result is in agreement with the 1-loop corrections calculated directly

from the GS action [71, 124], using the algebraic curve [123], or considering

the worldsheet scattering of giant magnons [120].

In chapter 3 we found that the stationary magnon cannot be defined in

the q = 1 limit, and the only zero modes we managed to construct were

not normalizable. The pure NS-NS string theory has been long known to be

solvable using a chiral decomposition [62, 63, 64], but it would be interesting to

see a soliton/integrability based analysis of these backgrounds. In more recent

developments, the CFT dual of the k = 1 WZWmodel, i.e. AdS3×S
3×T4 with

minimal quantized NS-NS flux, has been identified as a symmetric product

orbifold [80, 81, 82, 83].

Semiclassical methods continue to provide valuable insight into the string

theory side of the AdS3/CFT2 duality, this thesis being one example, or the

calculation of 1-loop corrections to the rigid spinning string dispersion relations
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[125]. Where they seem to fail is the description of massless modes. In the

α→ 0 limit our zero modes and fluctuations simply reduce to the plane-wave

perturbations of the BMN vacuum, shedding no further light on the nature of

the massless soliton of the theory, in agreement with the fact that the α→ 0

limit of the spin-chain fails to capture these inherently non-perturbative modes

on the other side of the duality [110]. Furthermore, massless modes render a

perturbative computation of wrapping corrections impossible, once the theory

is put on a compactified worldsheet1 [107]. Instead, wrapping corrections

may be computed from a non-perturbative TBA using an alternative low-

momentum expansion [126, 127, 128], based on the earlier observation of non-

trivial massless scattering in the BMN limit [129].

Our semiclassical calculations probe the giant magnon in the decompacti-

fication limit, expanded in powers of 1/
√
λ for large h. If instead we want stay

in the classical limit, but consider the theory on a closed worldsheet we need

to introduce another type of corrections, often referred to as finite size. As

we have seen, the fermion zero modes of the magnon on the decompactified

worldsheet can be matched to the residual symmetries, and it would be inter-

esting to perform a similar analysis for the finite size giant magnons, either on

AdS5 × S5 [45, 168] or the mixed-flux AdS3 backgrounds [169, 170].

Yet another direction for future research would be to consider semiclassical

soliton analysis on other, even less supersymmetric AdS theories. An inter-

esting example is the string theory on AdS3×
(
S3× S3× S1

)
/Z2 [174]. This

background can be obtained from AdS3 × S3 × S3 × S1 by orbifolding the Z2

action that exchanges the two three-spheres and simultaneously reflects the

circle. At the level of the supercharges of the large N = 4 superconformal

algebra, this orbifold projection can be taken to either reduce the spacetime

supersymmetry to N = 3 or N = 1. This is independently true for the left-

and right-movers, and the orbifolded theory admits N = (3, 3), N = (3, 1),

N = (1, 3), or N = (1, 1) supersymmetry. Due to its richness and tractability

(non-maximal but still sufficient SUSY) the N = (3, 3) case was further exam-

ined in [175], where its CFT2 dual was proposed to be the symmetric product

orbifold SymN (S0/Z2).
1 This is to be compared with the finite-size AdS5 giant magnon, where wrapping inter-

actions give the right correction to the dispersion relation [45, 173].
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Fermion zero modes and the
off-shell residual algebra

An important piece in the fermion zero mode puzzle is the relation between

the (quantized) zero modes and the off-shell residual symmetry algebra of the

(BMN) ground state. In this section we focus on AdS3 × S3 × S3 × S1, with

residual algebra su(1|1)2
c.e., the case of AdS3 × S3 × T4 is a trivial extension

from the algebraic perspective, its residual algebra being the direct product of

two copies of su(1|1)2
c.e. with matching central charges.

The normalizable fermion zero modes represent fermionic collective coor-

dinates of the bosonic solution, and the corresponding quantized fermion zero

mode operators transform the bosonic state into fermions in the same mul-

tiplet. This multiplet forms a representation of su(1|1)2
c.e., and we should be

able to recover the generators of this algebra from the zero mode operators.

The su(1|1)2
c.e. has 4 odd generators and 4 even central charges satisfying

{QL,SL} = HL , {QL,QR} = C ,

{QR,SR} = HR , {SL ,SR } = C ,
(A.1)

and, accordingly, we expect at most 4 fermion zero modes. In a general long

representation of su(1|1)2
c.e. there are four states, two bosons and two fermions,

and we do in fact need 4 fermion operators1 to generate the multiplet. In a

short representation, however, there are only two states, and the generators

satisfy the shortening condition

HLHR −CC = 0. (A.2)

It is reasonable to expect that capturing the action of the algebra on such a

representation does not require the full set of 4 independent generators. In

1 Two to annihilate the highest weight state boson, and one each to transform it into the
two independent fermions.
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the rest of this section we show how to construct (A.1) for general central

charges using 4 fermion operators, and at the same time demonstrate that for

a short representation, i.e. when (A.2) holds, one only needs 2 odd operators

to reproduce the algebra.

We start with 4 odd (zero mode) operators VLa,VRa (a = 1, 2), normalized

such that

{VLa,VRb} = δab , (A.3)

and make the ansatz

QL = x1 VL1 + x2 VL2 , SL = x3 VR2 + x4 VR1 ,

QR = y1 VR1 + y2 VR2 , SR = y3 VL2 + y4 VL1 .
(A.4)

The zero anti-commutators {QL,SR} = {QR,SL} = 0 are automatically satis-

fied, and (A.1) are equivalent to

x1x4 + x2x3 = HL , x1y1 + x2y2 = C ,

y1y4 + y2y3 = HR , x3y3 + x4y4 = C̄ ,
(A.5)

where HL, HR, C and C̄ are the eigenvalues of the central charges parametrizing

the representation. Assuming2 CC̄ 6= 0 and making the ansatz symmetric

x̂1 ≡ x1C
−1/2 = x3C

+1/2 , x̂2 ≡ x2C
−1/2 = x4C

+1/2 ,

ŷ1 ≡ y1C̄
+1/2 = y3C̄

−1/2
, ŷ2 ≡ y2C̄

+1/2 = y4C̄
−1/2

,
(A.6)

we are left with the equations

x̂1ŷ1 + x̂2ŷ2 =
√
CC̄ ,

2x̂1x̂2 = HL ,

2ŷ1ŷ2 = HR .

(A.7)

This system is still under-determined, but imposing the additional constraint

x̂2
x̂1

= ŷ2
ŷ1

(A.8)

2 This is going to be the case for the the magnon solutions we consider. It is a simple
exercise to write down solutions for the case CC̄ = 0, but we omit further discussion on this
point.
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leads to the solution

x̂2
1 =

√
HL

HR

√
CC̄ +

√
D

2 , x̂2
2 =

√
HL

HR

√
CC̄−

√
D

2 ,

ŷ2
1 =

√
HR

HL

√
CC̄ +

√
D

2 , ŷ2
2 =

√
HR

HL

√
CC̄−

√
D

2 ,

(A.9)

where
D = CC̄−HLHR. (A.10)

In terms of this solution the generators (A.4) can be written as

QL = x̂1C
+1/2

(
VL1 + x̂2

x̂1
VL2

)
, SL = x̂2C

−1/2
(

VR1 + x̂1
x̂2

VR2

)
,

QR = ŷ1C̄
−1/2

(
VR1 + ŷ2

ŷ1
VR2

)
, SR = ŷ2C̄

+1/2
(

VL1 + ŷ1
ŷ2

VL2

)
.

(A.11)

For a short representation D = 0,

x̂2
1 = x̂2

2 = HL

2 , ŷ2
1 = ŷ2

2 = HR

2 , (A.12)

and we can write

QL =

√
HLC

2 (VL1 + VL2) , SL =

√
HL

2C (VR1 + VR2) ,

QR =

√
HR

2C̄
(VR1 + VR2) , SR =

√
HRC̄

2 (VL1 + VL2) .

(A.13)

Note that only the combinations (VL1 + VL2) and (VR1 + VR2) appear, in

other words, acting on a short representation, the algebra can indeed be con-

structed from 2 zero modes.

In conclusion, a long representation requires four, while a short represen-

tation requires two fermion zero modes to reproduce the residual symmetry

algebra. The giant magnon is the string dual of the elementary magnon excita-

tions transforming in a short representation, and we expect it to have exactly

two fermion zero modes on AdS3×S3×S3×S1. On AdS3×S3×T4 the resid-

ual algebra is the direct product of two su(1|1)2
c.e. algebras, and accordingly,

the giant magnon on this background should have exactly four fermion zero

modes.
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Pullback of the vielbein and
spin connection for the
mixed-flux R×S3 magnon

Putting the giant magnon (3.1) as background, one finds the following com-

ponents for the pulled-back vielbein eAa = EAµ (X)∂aX
µ

e0
0 = 1 , e7

0 = sinϕ ,

e3
0 = − cosϕ

uγ2
(
q̃2 − u2

)
tanhY√

q̃2 sinh2Y + u2
,

e4
0 = cosϕ

(
q2u2γ2 + q̃2 sinh2Y

)
sechY

q̃
√
q̃2 sinh2Y + u2

,

e5
0 = cosϕ

quγ2
√
q̃2 − u2 sechY
q̃

,

(B.1)

e0
1 = 0 , e7

1 = 0 ,

e3
1 = cosϕ

γ2
(
q̃2 − u2

)
tanhY√

q̃2 sinh2Y + u2
,

e4
1 = cosϕ

uγ2
(
q̃2 − u2

)
sechY

q̃
√
q̃2 sinh2Y + u2

,

e5
1 = − cosϕ

qγ2
√
q̃2 − u2 sechY

q̃
,

(B.2)

while the only non-zero components of the spin connection (pulled back to the

worldsheet) are
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ω34
0 = −ω43

0 = −
cos2ϕ

√
q̃2 − u2

q̃

(
q2u2γ2 + q̃2 sinh2Y

)
sechY

q̃2 sinh2Y + u2 ,

ω34
1 = −ω43

1 = −
cos2ϕuγ2

(
q̃2 − u2

)3/2

q̃

sechY
q̃2 sinh2Y + u2 ,

ω35
0 = −ω53

0 = cos2ϕ quγ2

q̃

√
q̃2 sinh2Y + u2 sechY,

ω35
1 = −ω53

1 = −cos2ϕ qγ2

q̃

√
q̃2 sinh2Y + u2 sechY.

(B.3)
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Gamma matrices for the
mixed-flux R×S3 magnon

In chapter 3 we use a set of boosted gamma matrices, related to the original

10d Dirac matrices ΓA, A = 0, 1, ..., 9, by

Γ̂0 = secϕ
(
Γ0 − sinϕ Γ7

)
, Γ̂7 = secϕ

(
Γ7 − sinϕ Γ0

)
,

Γ̂A = ΓA for A 6= 0, 7 .
(C.1)

We pick the representation of ΓA that yields the following forms for Γ̂A:

Γ̂µ = σ1 ⊗ γµ ⊗ 1⊗ σ2 ⊗ 1 , µ = 0, 1, 2

Γ̂n = σ1 ⊗ 1⊗ 1⊗ σ1 ⊗ γn , n = 3, 4, 5

Γ̂ṅ = σ1 ⊗ 1⊗ γṅ ⊗ σ3 ⊗ 1 , ṅ = 6, 7, 8

Γ̂9 = −σ2 ⊗ 1⊗ 1⊗ 1⊗ 1 ,

(C.2)

where, in terms of the Pauli matrices σi

γµ = (−iσ3, σ1, σ2) ,

γn = (σ1, σ2, σ3) ,

γṅ = (σ2,−σ3,−σ1) .

(C.3)

In this basis,
Γ̂ = σ3 ⊗ 1⊗ 1⊗ 1⊗ 1 ,

Γ̂12 = 1⊗ (iσ3)⊗ 1⊗ 1⊗ 1 ,

Γ̂68 = 1⊗ 1⊗ (iσ3)⊗ 1⊗ 1 ,

Γ̂012345 = 1⊗ 1⊗ 1⊗ σ3 ⊗ 1 ,

Γ̂34 = 1⊗ 1⊗ 1⊗ 1⊗ (iσ3) ,

Γ̂35 = 1⊗ 1⊗ 1⊗ 1⊗ (−iσ2) ,

(C.4)
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and in particular we see that Γ̂ (Weyl matrix), Γ̂12, Γ̂68 and the projectors

P̂± = 1
2

(
1± Γ̂012345

)
are simultaneously diagonalized.

Note that in this representation, instead of ΓA, it is Γ̂A that have defi-

nite hermiticity: Γ̂0 is anti-hermitian, while Γ̂i is hermitian for i = 1, 2, ..., 9.

Accordingly, for the intertwiners B, T and C, defined by the relations1

(ΓA)∗ = B ΓA B−1,

(ΓA)† = −T ΓA T−1,

(ΓA)T = −C ΓA C−1,

(C.5)

we have

B = Γ1469, T = Γ̂0, C = T B. (C.6)

1 These relations must hold for ΓA, not the rotated Γ̂A.
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Fermion derivatives for the
mixed-flux R×S3 magnon

Looking at equation (3.15) we can define the following fermion derivatives

D = (1− u)γ
cos2ϕ ζ

(
D1 −D0 −

1
8( /H0 − /H1)

)
∂S→0

,

D̃ = (1 + u)γ
cos2ϕ ζ

(
D1 + D0 −

1
8( /H0 + /H1)

)
∂S→0

,

(D.1)

where Da = ∂a + 1
4ω

AB
a ΓAB, and Aζ(1 ± u)γ were introduced to normalize

the ∂Y term. The NS-NS flux appears as /Ha ≡ eAaHABCΓBC , which we can

rewrite

/Ha = 1
3HABC

(
eAa ΓBC + eBa ΓCA + eCa ΓAB

)

=
∑
ABC

1
6HABC

(
eAa (ΓAΓABC + ΓBCAΓA) + eBa (ΓBΓBCA + ΓCABΓB)

+ eCa (ΓCΓCAB + ΓABCΓC)
)

=
∑
ABC

1
6HABC

∑
D∈A,B,C

eDa (ΓDΓABC + ΓABCΓD)

= 1
6HABC

∑
D

eDa (ΓDΓABC + ΓABCΓD)

= 1
6(ρa /H + /Hρa) .

(D.2)

On the first line we used the antisymmetry of H, going to the second that

ΓAΓA = 1 (no summation), on the third the antisymmetry of ΓABC , and

lastly on the fourth line the fact that for D /∈ {A,B,C}

ΓDΓABC + ΓABCΓD = 0 . (D.3)
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Hence we have

D = ∂Y + 1
2G Γ34 + 1

2Q Γ35 −
(1− u)γ

48 cos2ϕ ζ

(
/H(ρ0 − ρ1) + (ρ0 − ρ1) /H

)
,

D̃ = ∂Y + 1
2G̃ Γ34 + 1

2Q Γ35 −
(1 + u)γ

48 cos2ϕ ζ

(
/H(ρ0 + ρ1) + (ρ0 + ρ1) /H

)
,

(D.4)

G = ω34
1 − ω

34
0

cos2ϕ ζ(1 + u)γ
= q̃2(1− u) cosh2Y − q̃2 + u2

q̃
(
q̃2 sinh2Y + u2

) sechY ,

G̃ = ω34
1 + ω34

0

cos2ϕ ζ(1− u)γ
= − q̃

2(1 + u) cosh2Y − q̃2 + u2

q̃
(
q̃2 sinh2Y + u2

) sechY ,

Q = ω35
1 ∓ ω

35
0

cos2ϕ ζ(1± u)γ
= − q

q̃
√
q̃2 − u2

√
q̃2 sinh2Y + u2 sechY .

(D.5)

The next step is to take (3.46)

/H = 24q cosϕ
(
Γ̂∗ P+ −∆ Γ̂12

)
(D.6)

and substitute into (D.4), with the further restriction that the derivatives act

on kappa fixed spinors, as in (3.44). For DK1 the relevant term is

1
48 cos2ϕ

(
/H(ρ0 − ρ1) + (ρ0 − ρ1) /H

)
K1

= − 1
24 cosϕ

(
/HΓ̂0K2 + Γ̂0K2 /H

)
K1

= −q
(
Γ̂∗P+Γ̂0K2K1 + Γ̂0K2Γ̂∗P+K1

−∆Γ̂12Γ̂0K2K1 − Γ̂0K2∆Γ̂12K1
)

(D.7)

= q
(
P−Γ̂12K2K1 + (−K2 + 1)P+Γ̂12K1

−
(
∆0 + ∆7 Γ̂07

)
Γ̂12K2K1

+
(
∆0 + ∆7 Γ̂07

)
Γ̂12K2K1 −∆0 Γ̂12K1

)

= −q
(
RP− −

(
R+ Γ̂12

)
P+ + ∆0 Γ̂12

)
K1,
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where we have also used the definition of the kappa projectors (3.41), the form

of ∆ in (3.47), the relation KJ Γ̂0 = −Γ̂0KJ + Γ̂0, and (3.52). Similarly, for

D̃K2 we have

1
48 cos2ϕ

(
/H(ρ0 + ρ1) + (ρ0 + ρ1) /H

)
K2 (D.8)

= −q
(
RP− −

(
R+ Γ̂12

)
P+ + ∆0 Γ̂12

)
K2, (D.9)

and with this, the fermion derivatives take the final form

D = ∂Y + 1
2G Γ̂34 + 1

2Q Γ̂35 + q(1− u)γ
ζ

(
RP− − (R+ Γ̂12)P+ + ∆0 Γ̂12

)
,

D̃ = ∂Y + 1
2G̃ Γ̂34 + 1

2Q Γ̂35 + q(1 + u)γ
ζ

(
RP− − (R+ Γ̂12)P+ + ∆0 Γ̂12

)
.

(D.10)

Let us stress one last time, that these forms are only valid when acting on

kappa-fixed spinors.
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Fermions fluctuations around
the AdS3 BMN vacuum

In this appendix we are going to derive the fermion perturbation spectrum

around the maximally SUSY AdS3 × S3 × S3 × S1 BMN string

θ± = π

2 , φ+
1 = cos2ϕ t, φ−1 = sin2ϕ t, φ±2 = 0. (E.1)

Fermion equations and kappa-fixing. For this simple bosonic background

all spin-connections are zero, ωABa = 0, and

ρ0 = Γ0 + cosϕΓ4 + sinϕΓ7, ρ1 = 0. (E.2)

With this, the fluctuation equations (3.15) simplify to

ρ0

[
(∂0 − ∂1) ϑ1 + 1

48(ρ0 /H + /Hρ0) ϑ1 + 1
48
/Fρ0 ϑ

2
]

= 0 ,

ρ0

[
(∂0 + ∂1) ϑ2 − 1

48(ρ0 /H + /Hρ0) ϑ2 + 1
48
/Fρ0 ϑ

1
]

= 0 .

(E.3)

We further note that ρ2
0 = 0, and

K = 1
2 Γ0ρ0 = 1

2
(
1 + cosϕ Γ04 + sinϕ Γ07

)
(E.4)

can be used as a kappa-projector for both ϑ1 and ϑ2, leading to the equations

(∂0 − ∂1) Ψ1 + 1
24 K /H Γ0K Ψ1 + 1

24 K /F Γ0K Ψ2 = 0 ,

(∂0 + ∂1) Ψ2 − 1
24 K /H Γ0K Ψ2 + 1

24 K /F Γ0K Ψ1 = 0 ,

(E.5)

for the kappa-fixed spinors ΨJ = KϑJ .
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Invariant subspaces. Next, we introduce the 4 projectors

Pab = 1
4
(
1 + aΓ1235

) (
1 + bΓ1268

)
(E.6)

for a, b = ±1. These commute with the equation of motion, therefore we can

look for solutions restricted to each of the 4 subspaces, i.e. ΨJ = PabΨ
J . It is

a simple exercise to show that on these subspaces

1
24K

/H Γ0K Pab = q mab Γ12K Pab,
1
24K

/F Γ0K Pab = q̃ mab Γ12K Pab,

(E.7)

with constants (as we will later see, masses)

m++ = 1, m+− = cos2ϕ, m−+ = sin2ϕ, m−− = 0. (E.8)

We can further restrict ΨJ with definite Γ12 eigenvalue. In other words, we

have the equations

(∂0 − ∂1) Ψ1 + i q mab λ12 Ψ1 + i q̃ mab λ12 Ψ2 = 0 ,

(∂0 + ∂1) Ψ2 − i q mab λ12 Ψ2 + i q̃ mab λ12 Ψ1 = 0 ,
(E.9)

where PabΨ
J = ΨJ and Γ12ΨJ = iλ12ΨJ (λ12 = ±1).

Solutions. We look for plane-wave solutions of the form ei(ωt−kx). There

are two qualitatively distinct scenarios, determined by whether the equations

for Ψ1 and Ψ2 decouple or not. Let us first consider the decoupled case,

which happens for q = 1 or mab = 0, implying q mab = mab and q̃ mab = 0.

Substituting the plane-wave ansatz we get the solutions

ω = ∓(k + λ12mab), (E.10)

with the ∓ signs corresponding to the Ψ1 and Ψ2 solutions, respectively.

In all other cases we can invert the first equation for Ψ2

Ψ2 = iλ12
q̃ mab

(∂0 − ∂1 + i q mab λ12) Ψ1 , (E.11)
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and substitute into the second equation to get a second order PDE for Ψ1

(∂1 + ∂0 − i q mab λ12) (∂1 − ∂0 − i q mab λ12) Ψ1 − q̃2m2
ab Ψ1 = 0. (E.12)

Equivalently,

∂2Ψ1 −m2
ab Ψ1 − 2i q mab λ12 ∂1Ψ1 = 0, (E.13)

which is a q-deformed version of the massive wave equation, with solutions

satisfying

ω2 = m2
ab + k2 + 2λ12 q mab k. (E.14)

Finally, let us note that (E.10) and (E.14) together can be written as

ω2 = (mab ± q k)2 + q̃2k2 (E.15)

in agreement with the dispersion relation of elementary AdS3 × S3 × S3 × S1

excitations of masses m = 1, cos2ϕ, sin2ϕ, 0.

Conclusion. We have found that the fermion perturbations around the

BMN string correspond to the elementary fermion excitations of masses mab

living on the 4 subspaces with projectors

Pab = 1
4
(
1 + aΓ1235

) (
1 + bΓ1268

)
. (E.16)

The corresponding masses are m++ = 1, m+− = cos2ϕ, m−+ = sin2ϕ, and

m−− = 0.
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No normalizable solutions for
∆ 6= 0

In section 3.2 we found the expected number of normalizable solutions in an

analytic form for ∆ = 0. However, to complete the counting argument for

fermion zero modes, it is necessary to demonstrate that there are no normal-

izable solutions at all for ∆ 6= 0 . This happens for the maximally SUSY

AdS3 × S3 × S3 × S1 giant magnon, on the Γ1268 = +1 spinor subspace:

∆ = − tan2ϕ Γ̂0 − tanϕ secϕ Γ̂7 =
(
κ2 − κκ̃ Γ̂07

)
Γ̂0 ,

κ = tanϕ , κ̃ =
√

1 + κ2 = secϕ .

(F.1)

The equations of motion are

ζ(1 + u)γD Ψ1 + q̃
(
R P− −K1∆ Γ̂∗

)
Ψ2 = 0 ,

ζ(1− u)γD̃ Ψ2 − q̃
(
R P− −K2∆ Γ̂∗

)
Ψ1 = 0 .

(F.2)

with fermion derivatives

D = ∂Y + 1
2G Γ̂34 + 1

2Q Γ̂35 + q(1− u)γ
ζ

(
RP− − (R+ Γ̂12)P+ − κ

2 Γ̂12
)
,

D̃ = ∂Y + 1
2G̃ Γ̂34 + 1

2Q Γ̂35 + q(1 + u)γ
ζ

(
RP− − (R+ Γ̂12)P+ − κ

2 Γ̂12
)
.

(F.3)

Our approach will be similar to section 3.2. First we write down general

kappa-fixed spinors, which we then substitute into the equations of motion to

get a system of simpler ODEs.

Kappa fixing. The main difference from ∆ = 0 is that the solutions will

not have definite P± chirality, since ∆ mixes the P+ and P− subspaces. Ac-

cordingly, the kappa-fixed ansatz generalizing (3.60) will have to relate the
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two projections. This is achieved by

ΨJ =
∑
λ=±

[(
αJ+ + αJ− Γ̂45

)
fJ(Y) +

(
ᾱJ+ + ᾱJ− Γ̂45

)
gJ(Y) Γ̂07

]
Uλ , (F.4)

where the constant spinor Uλ is shared between I = 1 and 2, and has eigen-

values Γ34Uλ = +iUλ, P−Uλ = Uλ and Γ̂12Uλ = iλUλ. The functions fJ , gJ
represent the parts of the solution on the P− and P+ subspaces respectively,

and Γ̂07 transforms Uλ between the two. We take αJ± to be defined by (3.62),

(3.63), and

ᾱJ± ≡ αJ±|λ→−λ . (F.5)

This is because the definition of λ here differs from that in section 3.2, the

two agree on the P− subspace, while on P+ they are related by a minus sign.

The K∆Γ̂∗ terms. For the most part, substitution yields equations that are

familiar from section 3.2, the only new terms being K1∆ Γ̂∗Ψ
2 and K2∆ Γ̂∗Ψ

1.

It is easy to see that

∆ Γ̂∗Ψ
J =

∑
λ=±

[ (
αJ+ + αJ− Γ̂45

)
iλ
(
κ2 − κκ̃ Γ̂07

)
fJ (F.6)

+
(
ᾱJ+ + ᾱJ− Γ̂45

)
iλ
(
κ2 Γ̂07 − κκ̃

)
gJ

]
Uλ . (F.7)

On the other hand, from (3.56) and the definitions (3.62)–(3.63) one can derive

the action of the kappa-projectors on a general spinor V = V+ + V− on the

P− subspace, with components Γ̂34V± = ±iV±

K1V =
(
α1

+ + α1
− Γ̂45

)[1
2e
−iχ
√

1− λQ+ sechY V+

− 1
2λe

iχ
√

1 + λQ+ sechY Γ̂45V−

]
,

K2V =
(
α2

+ + α2
− Γ̂45

)[1
2e
−iχ̃
√

1 + λQ− sechY V+

+ 1
2λe

iχ̃
√

1− λQ− sechY Γ̂45V−

]
.

(F.8)
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The corresponding expressions for the P+ subspace are obtained by sending

λ→ −λ. Putting these together we get

K1∆ Γ̂∗Ψ
2 =

∑
λ=±

[ (
α1

+ + α1
− Γ̂45

) [
iλq̃κ2δ1 f2 − iλq̃κκ̃δ2 g2

]
+
(
ᾱ1

+ + ᾱ1
− Γ̂45

) [
iλq̃κ2δ̄1 g2 − iλq̃κκ̃δ̄2 f2

]
Γ̂07

]
Uλ ,

K2∆ Γ̂∗Ψ
1 =

∑
λ=±

[ (
α2

+ + α2
− Γ̂45

) [
−iλq̃κ2δ̄1 f1 − iλq̃κκ̃δ2 g1

]
+
(
ᾱ2

+ + ᾱ2
− Γ̂45

) [
−iλq̃κ2δ1 g1 − iλq̃κκ̃δ̄2 f1

]
Γ̂07

]
Uλ ,

(F.9)

with

δ1 = 1
2

(
ei(χ̃−χ)

√
(1− λQ+ sechY) (1 + λQ− sechY)

− e−i(χ̃−χ)
√

(1 + λQ+ sechY) (1− λQ− sechY)
)
,

δ2 = 1
2

(
ei(χ̃−χ)

√
(1− λQ+ sechY) (1− λQ− sechY)

+ e−i(χ̃−χ)
√

(1 + λQ+ sechY) (1 + λQ− sechY)
)
,

(F.10)

and δ̄J = δJ |λ→−λ.

Reduced equations. Substituting (F.4) into (F.2) we get

∑
λ=±

[ (
α1

+ + α1
− Γ̂45

) [
∂Yf1 +

(
C11 − iλqκ

2 (1− u)γ
ζ

)
f1

+
(
C12 − iλq̃κ

2δ1
(1− u)γ

ζ

)
f2 + iλq̃κκ̃δ2

(1− u)γ
ζ

g2

]

+
(
ᾱ1

+ + ᾱ1
− Γ̂45

) [
∂Yg1 −

(
C+ + iλqκ2 (1− u)γ

ζ

)
g1

+ iλq̃κκ̃δ̄2
(1− u)γ

ζ
f2 − iλq̃κ

2δ̄1
(1− u)γ

ζ
g2

]
Γ̂07

]
Uλ = 0 ,

(F.11)
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∑
λ=±

[ (
α2

+ + α2
− Γ̂45

) [
∂Yf2 +

(
C21 − iλqκ

2 (1 + u)γ
ζ

)
f2

+
(
C22 − iλq̃κ

2δ̄1
(1 + u)γ

ζ

)
f1 − iλq̃κκ̃δ2

(1 + u)γ
ζ

g1

]

+
(
ᾱ2

+ + ᾱ2
− Γ̂45

) [
∂Yg2 −

(
C− + iλqκ2 (1 + u)γ

ζ

)
g2

− iλq̃κκ̃δ̄2
(1 + u)γ

ζ
f1 − iλq̃κ

2δ1
(1 + u)γ

ζ
g1

]
Γ̂07

]
Uλ = 0 ,

(F.12)

where C± and Cij are as defined in (3.67), (3.72). If we make the ansatz

f1 = e−
∫
C11dY

√
1 + u

f̃1 , g1 = e
∫
C+dY

√
1 + u

g̃1 ,

f2 = e−
∫
C21dY

√
1− u

f̃2 , g2 = e
∫
C−dY

√
1− u

g̃2 ,

(F.13)

we get the following four equations

(
∂Y − iλqκ

2 (1− u)γ
ζ

)
f̃1 + iλq̃κκ̃

δ2
ζ
e
∫

(C11+C−)dY g̃2

+
(
e+i2λξY (λ tanhY − iξ)− iλq̃κ2 δ1

ζ
e
∫

(C11−C21)dY
)
f̃2 = 0 ,

(F.14)

(
∂Y − iλqκ

2 (1 + u)γ
ζ

)
f̃2 − iλq̃κκ̃

δ2
ζ
e
∫

(C21+C+)dY g̃1

+
(
e−i2λξY (λ tanhY + iξ)− iλq̃κ2 δ̄1

ζ
e
∫

(C21−C11)dY
)
f̃1 = 0 ,

(F.15)

(
∂Y − iλqκ

2 (1− u)γ
ζ

)
g̃1 + iλq̃κκ̃

δ̄2
ζ
e−
∫

(C21+C+)dY f̃2

− iλq̃κ2 δ̄1
ζ
e
∫

(C−−C+)dY g̃2 = 0 ,

(F.16)

(
∂Y − iλqκ

2 (1 + u)γ
ζ

)
g̃2 − iλq̃κκ̃

δ̄2
ζ
e−
∫

(C11+C−)dY f̃1

− iλq̃κ2 δ1
ζ
e
∫

(C+−C−)dY g̃1 = 0 .
(F.17)

The first thing to observe is that setting κ = 0 the functions f̃1, f̃2 decouple

from g̃1, g̃2, and indeed we recover the ∆ = 0 solutions found in section 3.2.
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Pure R-R background. We have not been able to find exact solutions at

general values of q and κ, nonetheless, we can give an argument for their non-

normalizability if we consider an expansion in powers of q and κ. It turns out

we can already see non-normalizability at leading order in q, i.e. at q = 0,

with the equations simplifying to

∂Y f̃1 + λκ̃2 tanhY f̃2 + i λκκ̃ sechY g̃2 = 0 ,

∂Y f̃2 + λκ̃2 tanhY f̃1 − i λκκ̃ sechY g̃1 = 0 ,

∂Y g̃1 + λκ2 tanhY g̃2 + i λκκ̃ sechY f̃2 = 0 ,

∂Y g̃2 + λκ2 tanhY g̃1 − i λκκ̃ sechY f̃1 = 0 .

(F.18)

Zeroth order in κ. The first thing to observe is that setting κ = 0 leads to

a significant simplification of the equations. f̃1, f̃2 decouple from g̃1, g̃2, and

the solutions take the form

f̃1 = c1sechY + c2 coshY , g̃1 = c3 ,

f̃2 = λc1sechY − λc2 coshY , g̃2 = c4 .

(F.19)

This limit corresponds to the case of ∆ = 0, and the solutions match those

found in section 3.2, after we set q = 0. Let us denote the only normalizable

solution in the κ→ 0 limit by

f̃
(0)
1 = C0 sechY , g̃

(0)
1 = 0 ,

f̃
(0)
2 = λC0 sechY , g̃

(0)
2 = 0 .

(F.20)

Expansion in κ. Introducing the vector notation f = (f̃1, f̃2, g̃1, g̃2)>, the

equations above, for general values of κ, can be written as

∂Y f +Mκ(Y)f = 0 . (F.21)

Since Mκ(Y) is regular at κ = 0, we can make the ansatz

f =
∞∑
n=0

κnf (n) , (F.22)
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where f (n) = (f̃ (n)
1 , f̃

(n)
2 , g̃

(n)
1 , g̃

(n)
2 )> are independent of κ. Substituting this

into the equations, then expanding in κ, we get a system of ODEs for each

power of κ: for all n the f (n) equations will have the same homogeneous part

as the κ = 0 system, and the forcing terms will be given by some linear

combination of lower order solutions

∂Y f (n) +M0(Y)f (n) =
n−1∑
k=0

Fnk f (k) . (F.23)

We need to solve these order-by-order, and for normalizability at generic values

of κ, we would need all f (n) to be normalizable.

First order in κ. At zeroth order we simply have the homogeneous κ = 0

equations, and the normalizable f (0) solution is (F.20). The first subleading

solution f (1) is obtained from (F.23) with

F 1
0 = iλ sechY



0 0 0 −1

0 0 1 0

0 −1 0 0

1 0 0 0


, (F.24)

and is given by

f̃
(1)
1 = c3sechY + c4 coshY , g̃

(1)
1 = c1 − i C0 tanhY ,

f̃
(1)
2 = c3sechY − c4 coshY , g̃

(1)
2 = c2 − iλ C0 tanhY .

(F.25)

The terms with C0 are fixed, they are the response to the zeroth order (κ = 0)

solution (F.20), while the integration constants cj for j = 1, ..., 4 parametrize

the homogeneous solution. We see that there is no combination of cj that

would make all components normalizable, in particular, g̃(1)
J can be chosen to

decay at either Y → ∞ or Y → −∞, but not both.

It is already impossible to find a decaying solution at first order in κ, and

we conclude that there are no normalizable solutions for ∆ 6= 0.
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Phase identities for the mixed-
flux R×S3 magnon

The following formulae are useful when deriving the reduced equations of

motion (3.66) and (3.71). Using simple trigonometric and hyperbolic identities

and Euler’s formula it is easy to see that

ei arccot(α cschY) = i

(sinhY − iα
sinhY + iα

)1/2
, (G.1)

e
i arcsin

(
tanhY√

1−α2 sech2Y

)
= i

tanhY − i
√

1− α2sechY√
1− α2 sech2Y

, (G.2)

and with these we have

eiχ =
(
q̃ sinhY − iu
q̃ sinhY + iu

)1/4
tanhY + i

√
1−Q2

+sechY√
1−Q2

+ sech2Y

1/2

,

eiχ̃ = i

(
q̃ sinhY − iu
q̃ sinhY + iu

)1/4
tanhY − i

√
1−Q2

−sechY√
1−Q2

− sech2Y

1/2

,

(G.3)

where, as defined in (3.57),

χ = 1
2

arccot
(
u cschY

q̃

)
− arcsin

 tanhY√
1−Q2

+ sech2Y

 ,

χ̃ = 1
2

arccot
(
u cschY

q̃

)
+ arcsin

 tanhY√
1−Q2

− sech2Y

 .

(G.4)
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SU(2) currents for the q = 1
giant magnon

Using the usual SU(2) embedding (2.226), it is a relatively simple exercise to

derive the left- and right-currents for the q = 1 giant magnon (3.101):

J+ =

 ia b

−b∗ −ia

 , J− =

 ic d

−d∗ −ic

 ,

K+ =

 ie f

−f∗ −ie

 , K− =

i 0

0 −i

 ,

(H.1)

where

a = 1− 2β2 sin2 p
2 sech2Y ,

b = 2iβ sin2 p
2 sechY(sec ρ− β tan ρ− iβ tanhY)e−2i(1−β sin ρ)x+

,

c = 1− 2 sin2 p
2 sech2Y ,

d = 2i sin p
2 sechY

√
1− sin2 p

2 sech2Ye−2i(1−β sin ρ)x+−i arctan
(
tan p2 tanhY

)
,

e = 1− 2 cos2ρ sech2Y ,

f = 2 cos2ρ sechY(tanhY − i tan ρ)e2i
(
β sin ρx++x−

)
.

(H.2)
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Terms appearing in the q = 1
fermion equations for the
R×S3 magnon

With the bosonic solution from section 3.3 as background, the following are

the components of the pulled-back vielbein eAa = EAµ (X)∂aX
µ

e0
0 = 1 ,

e3
0 = β cos ρ tanhY√

b2 + (1 + b2) sinh2Y
, e5

0 = β sin ρ sechY√
1 + b2

,

e4
0 = bβ cos ρ+ b2 + (1 + b2) sinh2Y√

b2 + (1 + b2) sinh2Y

sechY√
1 + b2

,

(I.1)

e0
1 = 0 ,

e3
1 = β cos ρ tanhY√

b2 + (1 + b2) sinh2Y
, e5

1 = (β sin ρ− 1) sechY√
1 + b2

,

e4
1 = bβ cos ρ√

b2 + (1 + b2) sinh2Y

sechY√
1 + b2

,

(I.2)

while the only non-zero components of the spin connection (pulled back to the

worldsheet) are

ω34
0 = −ω43

0 = −bβ cos ρ+ b2 + (1 + b2) sinh2Y
b2 + (1 + b2) sinh2Y

sechY√
1 + b2

,

ω34
1 = −ω43

1 = − bβ cos ρ
b2 + (1 + b2) sinh2Y

sechY√
1 + b2

,

ω35
0 = −ω53

0 = β sin ρ
√
b2 + (1 + b2) sinh2Y sechY√

1 + b2
,

ω35
1 = −ω53

1 = (β sin ρ− 1)
√
b2 + (1 + b2) sinh2Y sechY√

1 + b2
.

(I.3)

207



APPENDIX I

Note that Y = 2β cos ρ x+ and the three parameters are related by β =

−(b cos ρ− sin ρ). The combinations appearing in the fermion derivatives are

G = ω34
1 − ω

34
0 = sechY√

1 + b2
,

Q = ω35
1 − ω

35
0 = −

√
b2 + (1 + b2) sinh2Y sechY√

1 + b2
,

G̃ = ω34
1 + ω34

0 = −2bβ cos ρ+ b2 + (1 + b2) sinh2Y
b2 + (1 + b2) sinh2Y

sechY√
1 + b2

,

Q̃ = ω35
1 + ω35

0 = (2β sin ρ− 1)
√
b2 + (1 + b2) sinh2Y sechY√

1 + b2
.

(I.4)
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Dressing the perturbed BMN
string

In this appendix we apply the SU(2) dressing method [143, 144, 145] to per-

turbations of the BMN strings to generate the three S3 fluctuations of the

AdS3×S
3×T4 giant magnon. The S3

+ perturbations of the AdS3×S
3×S3×S1

magnon can be obtained from these, simply by scaling the worldsheet coordi-

nates by cos2ϕ. For a detailed description of the dressing method the reader

is referred to section 2.2.3, here we just repeat the key points, in order to lay

down the notation for the rest of the section.

J.1 Review of the SU(2) dressing method

The sigma-model action for R×S3 strings in static conformal gauge is equiva-

lent to the SU(2) principal chiral model with Wess-Zumino term (2.223). This

formulation uses the embedding

g =

 Z1 −iZ2

−iZ̄2 Z̄1

 ∈ SU(2), (J.1)

where, in terms of the R4 coordinates of (4.3)

Z1 = X1 + iX2, Z̄1 = X1 − iX2,

Z2 = X3 + iX4, Z̄2 = X3 − iX4.

(J.2)

Note that Z̄i are the complex conjugates of Zi for the real classical solution, but

not necessarily for the perturbation that we will write as complex functions.

Starting with a solution g, the dressing method aims to find the appropriate

dressing factor χ(z, z̄) such that

g → g′ = χg (J.3)
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is a new solution. The equations of motion for the principal chiral model

are equivalent to the compatibility condition of the overdetermined auxiliary

system

∂̄Ψ = AΨ
1 + (1 + q)λ, ∂Ψ = BΨ

1− (1− q)λ, (J.4)

via
A = ∂̄g g−1, B = ∂g g−1. (J.5)

Given the solution Ψ(λ) for general spectral parameter λ, satisfying

Ψ(0) = g, (J.6)

the simplest non-trivial dressing factor is

χ(λ) = 1 + λ1 − λ̄1
λ− λ1

P, (J.7)

with the projector

P = v1v
†
1

v†1v1
, v1 = Ψ(λ̄1)e, e = (1, 1). (J.8)

Below we will also refer to the matrix X and scalar y

X = v1v
†
1, y = v†1v1 : P = X

y
. (J.9)

In order for χ(0)Ψ(0) to have unit determinant, we need to introduce an addi-

tional constant phase (λ1/λ̄1)1/2, and with this, the dressed solution becomes

g′ =
√
λ1
λ̄1

(
1−

(
1− λ̄1

λ1

)
P

)
g . (J.10)

J.2 Dressing the unperturbed BMN string

To set the scene and some notation, let us quickly run through the application

of the dressing method to the BMN string Z1 = eit, Z2 = 0. We solve the

auxiliary problem

gBMN =

e−i(z−z̄) 0

0 ei(z−z̄)

 , ABMN = −BBMN =

−1 0

0 1

 , (J.11)
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to find

ΨBMN(λ) =

e−iZ(λ) 0

0 eiZ(λ)

 ,

Z(λ) = z

1− (1− q)λ −
z̄

1 + (1 + q)λ.

(J.12)

Introducing the real variables

U = i
(
Z(λ̄1)− Z(λ1)

)
, V = −Z(λ̄1)− Z(λ1)− t, (J.13)

the projector (J.8) becomes

PBMN = XBMN
yBMN

(J.14)

with

yBMN = 2 coshU, XBMN =

 e−U ei(t+V )

e−i(t+V ) eU

 . (J.15)

Pametrizing the pole as λ1 = rei
p
2 , the dressing (J.10) yields the giant magnon

gGM =

eit [cos p2 + i sin p
2 tanhU

]
−ieiV sin p

2 sechU

−ie−iV sin p
2 sechU e−it

[
cos p2 − i sin p

2 tanhU
]
 . (J.16)

Furthermore, setting r = q̃−1, we get the stationary magnon

U = γ

√
q̃2 − u2X , V = −qγ X , X = γ(x− ut), (J.17)

where

γ2 = 1
1− u2 , cot p

2 = u√
q̃2 − u2

. (J.18)

J.3 Dressing the perturbed BMN string

To apply the dressing method to the perturbed BMN string

g0 = gBMN + δ gpert, (J.19)
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in each step we keep terms up to first order in δ. For example

g−1
0 = g−1

BMN − δ g
−1
BMN gpert g

−1
BMN. (J.20)

The auxiliary problem can be written as

A0 = ABMN + δ Apert, B0 = BBMN + δ Bpert, (J.21)

and its solution

Ψ0(λ) = ΨBMN(λ) + δΨpert(λ). (J.22)

Then we expand the projector

P0 = X0
y0

=
XBMN + δ Xpert
yBMN + δ ypert

≡ PBMN + δ Ppert, (J.23)

i.e.

Ppert =
Xpert
yBMN

−
ypert
yBMN

PBMN, (J.24)

and the dressing factor (J.10)

χ0 = χBMN + δ χpert : χpert = λ̄1 − λ1
|λ1|

Ppert. (J.25)

Finally, the dressed solution is

g1 = χ0 g0 ≈ χBMN gBMN + δ
(
χpert gBMN + χBMN gpert

)
(J.26)

from which we can read off the perturbation as the first order term. Let us

now apply these steps to the three perturbations we found in1 (4.27)–(4.28).

Massless fluctuation.

The massless BMN perturbation is

gpert = eikx−iωt

ieit 0

0 −ie−it

 , ω2 = k2, (J.27)

1 Setting sinϕ = 1 for the S3
− perturbations of the AdS3×S3×S3×S1 magnon gives the

S3 fluctuations of the AdS3 × S3 × T4 BMN string.

212



APPENDIX J

for which the auxiliary problem has perturbations

Apert = i(ω − k)eikx−iωt
+1 0

0 −1

 ,

Bpert = i(ω + k)eikx−iωt
−1 0

0 +1

 ,
(J.28)

and

Ψpert(λ) = i (k(1 + qλ) + ωλ)eikx−iωt

k(1− (1− q)λ)(1 + (1 + q)λ)

e−iZ(λ) 0

0 −eiZ(λ)

 . (J.29)

Substituting into (J.24), (J.25) we can read off the fluctuation components

z1 = −ieikx−iωte+it
(
q̃k − ω cos p

2

− i sin p
2 tanhU

(
ω − q̃k cosh(U + ip

2 ) sechU
) )
,

z̄1 = ieikx−iωte−it
(
q̃k − ω cos p

2

+ i sin p
2 tanhU

(
ω − q̃k cosh(U − ip

2 ) sechU
) )
,

z2 = ieikx−iωt sin p
2 e

+iV sechU
(
qk − iq̃k sin p

2 tanhU
)
,

z̄2 = −ieikx−iωt sin p
2 e
−iV sechU

(
qk + iq̃k sin p

2 tanhU
)
,

(J.30)

Massive fluctuation (1).

The first massive BMN fluctuation is

gpert = eikx−iωt

0 1

0 0

 , ω2 = (1 + qk)2 + q̃2k2, (J.31)

for which the auxiliary problem has perturbations

Apert = +(ω + 1− k)eiteikx−iωt
0 1

0 0

 ,
Bpert = −(ω + 1 + k)eiteikx−iωt

0 1

0 0

 ,
(J.32)
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and
Ψpert(λ) = eiteikx−iωt

1 + (1 + q)ω−1−k
ω+1−kλ

0 eiZ(λ)

0 0

 . (J.33)

Further substituting and using the identity

1

1 + ω−1−k
ω+1−k

√
1+q
1−qe

i
p
2

= 1
2
ω + 1 + qk − q̃ke−i

p
2

ω − q̃k cos p
2

(J.34)

one gets the magnon fluctuation (rescaled by a constant)

z1 = −ieikx−iωte−iV e+it sin p
2 sechU×(

ω + 1 + qk − q̃k cosh(U + ip
2 ) sechU

)
,

z̄1 = −ieikx−iωte−iV e−it sin p
2 sechU×(

ω − 1− qk − q̃k cosh(U − ip
2 ) sechU

)
,

z2 = ieikx−iωt
(
q̃k sin2 p

2 sech2U − 2(q̃k − ω cos p
2 )−

2i(1 + qk) sin p
2 tanhU

)
z̄2 = ieikx−iωte−2iV q̃k sin2 p

2 sech2U.

(J.35)

Massive fluctuation (2).
The other massive BMN fluctuation is

gpert = eikx−iωt

0 0

1 0

 , ω2 = (1− qk)2 + q̃2k2, (J.36)

for which the auxiliary problem has perturbations

Apert = +(ω − 1− k)e−iteikx−iωt
0 0

1 0

 , (J.37)

Bpert = −(ω − 1 + k)e−iteikx−iωt
0 0

1 0

 , (J.38)

and
Ψpert(λ) = e−iteikx−iωt

1 + (1 + q)ω+1−k
ω−1−kλ

 0 0

e−iZ(λ) 0

 . (J.39)
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Further substituting, using the identity

1

1 + ω+1−k
ω−1−k

√
1+q
1−qe

i
p
2

= 1
2
ω − 1 + qk − q̃ke−i

p
2

ω − q̃k cos p
2

(J.40)

and after constant rescaling, one can read off the magnon fluctuation

z1 = −ieikx−iωteiV e+it sin p
2 sechU×(

ω + 1− qk − q̃k cosh(U + ip
2 ) sechU

)
,

z̄1 = −ieikx−iωteiV e−it sin p
2 sechU×(

ω − 1 + qk − q̃k cosh(U − ip
2 ) sechU

)
,

z2 = ieikx−iωte2iV q̃k sin2 p
2 sech2U,

z̄2 = ieikx−iωt
(
q̃k sin2 p

2 sech2U − 2(q̃k − ω cos p
2 )−

2i(1− qk) sin p
2 tanhU

)
.

(J.41)
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Comparison to AdS5 × S5

fluctuations

In this appendix we compare our solutions, in the ϕ = q = 0 limit, to the

fluctuations of the AdS5 × S5 giant magnon found in [54]. To harmonize

notation, we need to write the frequency and wavenumber in the boosted

worldsheet basis
eikx−iωt = eik̂X−iω̂T ,

k = γ(k̂ + uω̂) = csc p
2 (k̂ + cos p

2 ω̂),

ω = γ(ω̂ + uk̂) = csc p
2 (ω̂ + cos p

2 k̂),

(K.1)

where we also used the q = 0 version of (4.13).

K.1 Bosonic fluctuations

Although in the q = 0 limit the stationary magnon reduces to the HM giant

magnon, due to obvious differences in the geometry we will only match a

subset of our fluctuations to a subset of the ones found in [54]. The magnon

on AdS5 × S5 has four massive and one (unphysical) massless fluctuations on

AdS5, and, four massive and one (unphysical) massless fluctuations on S5.

Out of these, we will match both unphysical and four of the massive modes

(two each on AdS3 and S3), while our massless modes on the T4 have no

counterparts on AdS5 × S5. The pure plane-wave AdS3 bosons (4.21), (4.22)

are trivially the same as the AdS5 bosons (2.11) of [54] (restricted to the

AdS3 ⊂ AdS5 subspace), so let us focus on the S3 fluctuations. Substituting

(K.1), the massless solution (4.38) becomes

z1 = −ieik̂X−iω̂T e+it sin p
2

(
k̂ − ω̂ sinhX sinh(X + ip

2 )
)
,

z̄1 = ieik̂X−iω̂T e−it sin p
2

(
k̂ − ω̂ sinhX sinh(X − ip

2 )
)
,

z2 = z̄2 = eik̂X−iω̂T sin p
2 (k̂ + cos p

2 ω̂) sechY tanhY,

(K.2)

217



APPENDIX K

which, up to a factor of sin p
2 , matches1 equation (2.19) of [54]. In this limit

the massive boson (4.41) reduces to

z1 = −eik̂X−iω̂T e+it sin p
2 sech2X

(
k̂ sinhX + ω̂ sinh(X + ip

2 ) + i coshX
)
,

z̄1 = eik̂X−iω̂T e+it sin p
2 sech2X

(
k̂ sinhX + ω̂ sinh(X − ip

2 ) + i coshX
)
,

z2 = ieik̂X−iω̂T sin p
2

(
(k̂ + cos p

2 ω̂) sech2X − 2(k̂ + i tanhX )
)
,

z̄2 = ieik̂X−iω̂T sin p
2 (k̂ + cos p

2 ω̂) sech2X ,

(K.3)

while (4.43) becomes

z1 = −eik̂X−iω̂T e+it sin p
2 sech2X

(
k̂ sinhX + ω̂ sinh(X + ip

2 ) + i coshX
)
,

z̄1 = eik̂X−iω̂T e+it sin p
2 sech2X

(
k̂ sinhX + ω̂ sinh(X − ip

2 ) + i coshX
)
,

z2 = ieik̂X−iω̂T sin p
2 (k̂ + cos p

2 ω̂) sech2X ,

z̄2 = ieik̂X−iω̂T sin p
2

(
(k̂ + cos p

2 ω̂) sech2X − 2(k̂ + i tanhX )
)
.

(K.4)

Although the two m = 1 bosons do not mix for q > 0, as can be seen from

their dispersion relations ω2 = (1 ± qk)2 + q̃2k2, in the pure R-R limit they

become degenerate, and one can take linear combinations to match the specific

solutions of [54]. The difference 1
2
(
(K.4)− (K.3)

)
z1 = z̄1 = 0

z2 = ieik̂X−iω̂T sin p
2 (k̂ + i tanhX ),

z̄2 = −ieik̂X−iω̂T sin p
2 (k̂ + i tanhX ),

(K.5)

1 Note that δZ, δ ~X of [54] are related to our notation by z1 = δZ, z2 = δX3 + iδX4, and
we have chosen the magnon-polarization vector ~n to point in the X3 direction.
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reproduces the solution (2.22) of [54], with ~m pointing along the X4 direction,

while the sum 1
2
(
(K.3) + (K.4)

)
z1 = −eik̂X−iω̂T e+it sin p

2 sech2X
(
k̂ sinhX + ω̂ sinh(X + ip

2 ) + i coshX
)
,

z̄1 = eik̂X−iω̂T e+it sin p
2 sech2X

(
k̂ sinhX + ω̂ sinh(X − ip

2 ) + i coshX
)
,

z2 = z̄2 = ieik̂X−iω̂T sin p
2

(
(k̂ + cos p

2 ω̂) sech2X − (k̂ + i tanhX )
)
,

(K.6)

matches the solution (2.20) of [54], with ~m = ~n pointing along theX3 direction.

K.2 Fermionic fluctuations

Since AdS5 × S5 is supported by 5-form fluxes, while AdS3 × S3 × T4 is sup-

ported by 3-form fluxes, the spinor structure of fermion fluctuations on the

two backgrounds will be quite different, however, it is reasonable to expect

similar functional forms. The kappa-fixed solutions (3.35), (3.37) in [54] are

of the form

Ψ1 ∼ csc p
4

√
ω̂ + k̂ sechX

√
ω̂ cosh 2X + k̂ eiαe±iχU,

Ψ2 ∼ sec p
4

√
ω̂ − k̂ sechX

√
ω̂ cosh 2X − k̂ eiβe±iχ̃U,

(K.7)

where χ, χ̃ are the same as our (4.70) and

eiα = eik̂X−iω̂T
(

1 + iω̂ sinh 2X
1− iω̂ sinh 2X

1− ik̂ tanh 2X
1 + ik̂ tanh 2X

)1/4

,

eiβ = eik̂X−iω̂T
(

1− iω̂ sinh 2X
1 + iω̂ sinh 2X

1− ik̂ tanh 2X
1 + ik̂ tanh 2X

)1/4

.

(K.8)

At first glance these solutions seem rather different from (4.107), but for ω̂ =√
k̂2 + 1

√
ω̂ + k̂ sechX

√
ω̂ cosh 2X + k̂ eiα = ieik̂X−iω̂T

(
tanhX − i(k̂ + ω̂)

)
,√

ω̂ − k̂ sechX
√
ω̂ cosh 2X − k̂ eiβ = −ieik̂X−iω̂T

(
tanhX − i(k̂ − ω̂)

)
.

(K.9)

csc p
4 =

√
2

1− u, sec p
4 =

√
2

1 + u
, (K.10)
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and we can rewrite (K.7) as

Ψ1 ∼ 1√
1− u

eik̂X−iω̂T
(
tanhX − i(k̂ + ω̂)

)
e±iχU,

Ψ2 ∼ 1√
1 + u

eik̂X−iω̂T
(
tanhX − i(k̂ − ω̂)

)
e±iχ̃U,

(K.11)

in agreement with the q = 0 limit of (4.107), with the caveat that in [54] the

spinors are swapped Ψ1 ↔ Ψ2 compared to our notation.
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Coefficients in the reduced
fluctuation equations for the
mixed-flux R×S3 magnon

Here we present the coefficients of the reduced equations (4.73), and to do so

in a relatively compact form we need to introduce the shorthands

p1268 = 1
2(1− λ12λ68), (L.1)

ξ = qu√
q̃2 − u2

, (L.2)

and define

Nab = i

2λ12

(
aq√
q̃2 − u2

+
Qb

√
1−Q2

b sech2Y
1−Q2

b sech2Y

)
, a, b ∈ {±}. (L.3)

With these, we have

Cf1f1
= +N−+ + i(ω̃ + λ12(1 + p1268 tan2ϕ)ξ)− iλ12q γζ

−1 p1268 tan2ϕ,

Cg1g1
= −N++ + i(ω̃ + λ12p1268 tan2ϕ ξ)− iλ12q γζ

−1 p1268 tan2ϕ,

Cf2f2
= +N−− − i(ω̃ + λ12(1 + p1268 tan2ϕ)ξ)− iλ12q γζ

−1 p1268 tan2ϕ,

Cg2g2
= −N+− − i(ω̃ + λ12p1268 tan2ϕ ξ)− iλ12q γζ

−1 p1268 tan2ϕ,

(L.4)

Cf1f2
= (1− u)γ e

∫
(−N−++N−−)dY (1 + p1268 tan2ϕ)(λ12 tanhY − iξ),

Cg1g2
= (1− u)γ e

∫
(+N++−N+−)dY p1268 tan2ϕ(λ12 tanhY + iξ),

Cf2f1
= (1 + u)γ e

∫
(−N−−+N−+)dY (1 + p1268 tan2ϕ)(λ12 tanhY + iξ),

Cg2g1
= (1 + u)γ e

∫
(+N+−−N++)dY p1268 tan2ϕ(λ12 tanhY − iξ),

(L.5)
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Cf1g2
= (1− u)γ e

∫
(−N−+−N+−)dY (iλ12 p1268 tanϕ secϕ sechY),

Cg1f2
= (1− u)γ e

∫
(+N+++N−−)dY (iλ12 p1268 tanϕ secϕ sechY),

Cf2g1
= (1 + u)γ e

∫
(−N−−−N++)dY (−iλ12 p1268 tanϕ secϕ sechY),

Cg2f1
= (1 + u)γ e

∫
(+N+−+N−+)dY (−iλ12 p1268 tanϕ secϕ sechY).

(L.6)

Note that p1268 is the eigenvalue of the ansatz with respect to the projector
1
2(1+Γ̂1268), and ∆ = 0 exactly when p1268 tanϕ = 0. In this case we see that

the last block of coefficients are zero, the P± parts of the equations decouple

and we have solutions with definite Γ̂012345 chirality.
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Pullback of the vielbein and
spin connection for the
mixed-flux AdS3 × R soliton

For the AdS3 soliton background (5.1) the c omponents of the pulled-back

vielbein eAa = EAµ (X)∂aX
µ are

e0
0 =

(
q̃2 cosh2Y − q2u2γ2

)
cschY

q̃
√
q̃2 cosh2Y − u2

, e0
1 = −

uγ2
(
q̃2 − u2

)
cschY

q̃
√
q̃2 cosh2Y − u2

, (M.1)

e1
0 =

uγ2
(
q̃2 − u2

)
cothY√

q̃2 cosh2Y − u2
, e1

1 = −
γ2
(
q̃2 − u2

)
cothY√

q̃2 cosh2Y − u2
, (M.2)

e2
0 =

quγ2
√
q̃2 − u2 cschY
q̃

, e2
1 = −

qγ2
√
q̃2 − u2 cschY

q̃
, (M.3)

e4
0 = cosϕ , e4

1 = 0 , (M.4)

e7
0 = sinϕ , e7

1 = 0 , (M.5)

and the non-zero components of the pulled-back spin connection can be ex-

pressed as

ω01
0 = −ω10

0 =

√
q̃2 − u2

q̃

(
q̃2 cosh2Y − q2u2γ2

)
cschY

q̃2 cosh2Y − u2 ,

ω01
1 = −ω10

1 = −
uγ2

(
q̃2 − u2

)3/2

q̃

cschY
q̃2 cosh2Y − u2 ,

ω12
0 = −ω21

0 = −quγ
2

q̃

√
q̃2 cosh2Y − u2 cschY,

ω12
1 = −ω21

1 = qγ2

q̃

√
q̃2 cosh2Y − u2 cschY.

(M.6)
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Fermion derivatives for the
mixed-flux AdS3 × R soliton

Grouping the operators acting on each spinor ϑJ in (5.5), we get the fermion

derivatives

D = (1− u)γ
ζ

(
D1 −D0 −

1
8( /H0 − /H1)

)
∂S→0

,

D̃ = (1 + u)γ
ζ

(
D1 + D0 −

1
8( /H0 + /H1)

)
∂S→0

,

(N.1)

where Da = ∂a + 1
4ω

AB
a ΓAB, and the constants were introduced to normalize

the ∂Y term. The NS-NS flux appears in the partial contraction (D.2)

/Ha = 1
6(ρa /H + /Hρa) , (N.2)

and, writing out (N.1), we have

D = ∂Y + 1
2G Γ01 + 1

2Q Γ12 −
(1− u)γ

48ζ
(
/H(ρ0 − ρ1) + (ρ0 − ρ1) /H

)
,

D̃ = ∂Y + 1
2G̃ Γ01 + 1

2Q Γ12 −
(1 + u)γ

48ζ
(
/H(ρ0 + ρ1) + (ρ0 + ρ1) /H

)
,

(N.3)

with

G = ω01
1 − ω

01
0

ζ(1 + u)γ = − q̃2(1− u) sinh2Y + q̃2 − u2

q̃
(
q̃2 cosh2Y − u2

) cschY ,

G̃ = ω01
1 + ω01

0
ζ(1− u)γ = q̃2(1 + u) sinh2Y + q̃2 − u2

q̃
(
q̃2 cosh2Y − u2

) cschY ,

Q = ω12
1 ∓ ω

12
0

ζ(1± u)γ = q

q̃
√
q̃2 − u2

√
q̃2 cosh2Y − u2 cschY .

(N.4)
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To further expand these fermion derivatives, we take (5.23)

/H = 24q
(
Γ̂+ P+ −∆ Γ̂35

)
, (N.5)

and substitute into (N.3), but also letting D, D̃ act on the kappa-fixed spinors,

like in (5.21). The interesting term in DK1 is

1
48
(
/H(ρ0 − ρ1) + (ρ0 − ρ1) /H

)
K1

= 1
24
(
/HΓ̂4K2 + Γ̂4K2 /H

)
K1

= q
(
Γ̂+P+Γ̂4K2K1 + Γ̂4K2Γ̂+P+K1

−∆Γ̂35Γ̂4K2K1 − Γ̂4K2∆Γ̂35K1
)

(N.6)

= −q
(
P−Γ̂35K2K1 + (−K2 + 1)P+Γ̂35K1

+
(
∆4 −∆7 Γ̂47

)
Γ̂35K2K1

−
(
∆4 −∆7 Γ̂47

)
Γ̂35K2K1 + ∆4 Γ̂35K1

)

= −q
(
RP− −

(
R− Γ̂35

)
P+ + ∆4 Γ̂35

)
K1,

where we used the definition of kappa-projectors (5.18), ∆ from (5.24), the

identity KJ Γ̂4 = −Γ̂4KJ + Γ̂4, and (5.28). Similarly,

1
48
(
/H(ρ0 + ρ1) + (ρ0 + ρ1) /H

)
K2

= −q
(
RP− −

(
R− Γ̂35

)
P+ + ∆4 Γ̂35

)
K2,

(N.7)

and with this, the fermion derivatives (acting on kappa-ficed spinors) take the

final form

D = ∂Y + 1
2G Γ̂01 + 1

2Q Γ̂12 + q(1− u)γ
ζ

(
RP− − (R− Γ̂35)P+ + ∆4 Γ̂35

)
,

D̃ = ∂Y + 1
2G̃ Γ̂01 + 1

2Q Γ̂12 + q(1 + u)γ
ζ

(
RP− − (R− Γ̂35)P+ + ∆4 Γ̂35

)
.

(N.8)
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Phase identities for the mixed-
flux AdS3 × R soliton

Let us collect here some identities that we used when deriving the hyperbolic

parametrization of the kappa-projectors (5.33) and the simplified form of the

reduced equations (5.44). From the definitions of hyperbolic functions in terms

of exponentials it follows that

earctanh(α sechY) =
(coshY + α

coshY − α

)1/2
, (O.1)

e
arccosh

(
cothY√

1+Q2 csch2Y

)
=

cothY +
√

1−Q2 cschY

cothY −
√

1−Q2 cschY

1/2

, (O.2)

as long as |α| < 1. In particular, with α = u/q̃ and Q = Q±, we have

e±χ =

 q̃ coshY ± u√
q̃2 cosh2Y − u2

1/2cothY ∓
√

1−Q2
+ cschY√

1 +Q2
+ csch2Y

1/2

,

e±χ̃ =

 q̃ coshY ± u√
q̃2 cosh2Y − u2

1/2cothY ±
√

1−Q2
− cschY√

1 +Q2
− csch2Y

1/2

,

(O.3)

where, as defined in (5.36),

χ = 1
2

arctanh
(
u sechY

q̃

)
− arccosh

 cothY√
1 +Q2

+ csch2Y

 ,

χ̃ = 1
2

arctanh
(
u sechY

q̃

)
+ arccosh

 cothY√
1 +Q2

− csch2Y

 .

(O.4)
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No normalizable solutions for
∆ 6= 0

In section 5.1.2 we obtain solutions to the fermions zero mode equations (5.30)

for the case of ∆ = 0. For completeness, and to get the right number of zero

modes, here we are going to argue that there are no normalizable solutions for

∆ 6= 0. We restrict to the q = 0 case, which can be regarded as the leading

term in a q-expansion. For AdS3 × S3 × S3 × S1 on the Γ̂3568 = +1 spinor

subspace, (5.24) becomes

∆ = −κ2 Γ̂4 − κκ̃ Γ̂7, (P.1)

with
κ = sinϕ , κ̃ =

√
1− κ2 = cosϕ. (P.2)

The equations of motion are

(1 + u)γDΨ1 +
(
R P− −K1∆ Γ̂+

)
Ψ2 = 0 ,

(1− u)γD̃Ψ2 −
(
R P− −K2∆ Γ̂+

)
Ψ1 = 0 .

(P.3)

with (q = 0) fermion derivatives

D = ∂Y + 1
2G Γ̂01 , D̃ = ∂Y + 1

2G̃ Γ̂01 . (P.4)

We take the same approach as in section 5.1.2. First we write down a suitable

kappa-fixed ansatz, which we substitute back into (P.3) to get the reduced

system of ODEs. Finally we demonstrate that the reduced system has no

normalizable solutions.
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Kappa-gauge fixing Turning on non-zero ∆, the projectors P± do not

commute with the equations any more, and the kappa-fixed ansatz generalizing

(5.43) needs to relate the two chiralities. One such ansatz is

ΨJ =
[(
αJ+ + αJ− Γ̂02

)
fJ(Y) +

(
ᾱJ+ + ᾱJ− Γ̂02

)
gJ(Y) Γ̂47

]
Uλ , (P.5)

where, with αJ± defined in (5.40)–(5.41),

ᾱJ± ≡ αJ±|λ→−λ , (P.6)

and the constant spinor satisfies Γ̂01Uλ = +Uλ, P−Uλ = Uλ and Γ̂35Uλ =

−iλUλ (note that we previously had λ = λ35λP , and λP = −1 on U , hence

λ35 = −λ). In the above expression fJ , gJ correspond to the P− and P+

chiralities, respectively, and Γ̂47 transforms between the two subspaces.

Reduced equations for q = 0 Substituting (P.5) into (P.3), most of the

terms we get are the same as in section 5.1.2, with the exceptions being

K1∆ Γ̂+Ψ2 and K2∆ Γ̂+Ψ1. It is easy to see that

∆ Γ̂+ΨJ = −iλ
[ (
αJ+ + αJ− Γ̂02

) (
κ2 − κκ̃ Γ̂47

)
fJ (P.7)

+
(
ᾱJ+ + ᾱJ− Γ̂02

) (
κκ̃+ κ2 Γ̂47

)
gJ

]
Uλ , (P.8)

and after some simplification we get

K1∆ Γ̂+Ψ2 =
[ (
α1

+ + α1
− Γ̂02

) [
−iλκ2 cothY f2 − iλκκ̃ cschY g2

]
+
(
ᾱ1

+ + ᾱ1
− Γ̂45

) [
−iλκ2 cothY g2 + iλκκ̃ cschY f2

]
Γ̂47

]
Uλ ,

K2∆ Γ̂+Ψ1 =
[ (
α2

+ + α2
− Γ̂02

) [
−iλκ2 cothY f1 + iλκκ̃ cschY g1

]
+
(
ᾱ2

+ + ᾱ2
− Γ̂02

) [
−iλκ2 cothY g1 − iλκκ̃ cschY f1

]
Γ̂47

]
Uλ .

(P.9)
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With this, the combined result of substitution is

[ (
α1

+ + α1
− Γ̂02

)[
∂Yf1 +

(
C12 + iλ(1− u)γ κ2 cothY

)
f2

+ iλ(1− u)γ κκ̃ cschY g2

]

+
(
ᾱ1

+ + ᾱ1
− Γ̂02

)[
∂Yg1 + iλ(1− u)γ κ2 cothYg2

− iλ(1− u)γ κκ̃ cschY f2

]
Γ̂47

]
Uλ = 0 ,

(P.10)

[ (
α2

+ + α2
− Γ̂02

)[
∂Yf2 +

(
C21 − iλ(1 + u)γ κ2 cothY

)
f1

+ iλ(1 + u)γ κκ̃ cschY g1

]

+
(
ᾱ2

+ + ᾱ2
− Γ̂02

)[
∂Yg2 − iλ(1 + u)γ κ2 cothYg1

− iλ(1 + u)γ κκ̃ cschY f1

]
Γ̂47

]
Uλ = 0 ,

(P.11)

where, from (5.46)
C12 = −iλ (1− u)γ cothY,

C21 = iλ (1 + u)γ cothY.
(P.12)

Making the ansatz
f1 = 1√

1 + u
f̃1, g1 = 1√

1 + u
g̃1,

f2 = i λ√
1− u

f̃2, g2 = i λ√
1− u

g̃2,

(P.13)

we arrive at the following four equations

∂Y f̃1 + κ̃2 cothY f̃2 − κκ̃ cschY g̃2 = 0 ,

∂Y f̃2 + κ̃2 cothY f̃1 + κκ̃ cschY g̃1 = 0 ,

∂Y g̃1 − κ2 cothY g̃2 + κκ̃ cschY f̃2 = 0 ,

∂Y g̃2 − κ2 cothY g̃1 − κκ̃ cschY f̃1 = 0 .

(P.14)

Note that for κ = 0 the functions f̃1, f̃2 decouple from g̃1, g̃2, and we recover

the q = 0 limit of the ∆ = 0 solutions found in section 5.1.2.
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Expansion in κ. We have not been able to find closed form solutions to the

system (P.14) for general values of κ, instead we take a series expansion to

subleading order

f̃i = f̃
(0)
i + κf̃

(1)
i +O(κ2), g̃i = g̃

(0)
i + κg̃

(1)
i +O(κ2), (P.15)

where f̃ (n)
i , g̃

(n)
i are independent of κ. To zeroth order f̃1, f̃2 decouple from

g̃1, g̃2, and the solutions are

f̃
(0)
1 = c1 cschY + c2 sinhY , g̃

(0)
1 = c3 ,

f̃
(0)
2 = c1 cschY − c2 sinhY , g̃

(0)
2 = c4 ,

(P.16)

matching the solutions we found in section 5.1.2. The only normalizable solu-

tion is
f̃

(0)
1 = C0 cschY , g̃

(0)
1 = 0 ,

f̃
(0)
2 = C0 cschY , g̃

(0)
2 = 0 ,

(P.17)

and these will be the forcing term in the first order equations

∂Y f̃
(1)
1 + cothY f̃

(1)
2 = + cschY g̃

(0)
2 ,

∂Y f̃
(1)
2 + cothY f̃

(1)
1 = − cschY g̃

(0)
1 ,

∂Y g̃
(1)
1 = − cschY f̃

(0)
2 .

∂Y g̃
(1)
2 = + cschY f̃

(0)
1 .

(P.18)

The solution at this subleading order is

f̃
(1)
1 = c1 cschY + c2 sinhY , g̃

(1)
1 = c3 + C0 cothY ,

f̃
(1)
2 = c1 cschY − c2 sinhY , g̃

(1)
2 = c4 − C0 cothY ,

(P.19)

where the ci are independent of those in (P.16) (which have been fixed), and C0

is from the leading order solution (P.17). We see that there is no combination

of the constants ci that would make this solution normalizable at both Y →

±∞. As it is already impossible to find decaying solutions at subleading order

in κ, we conclude that there are no normalizable solutions for ∆ 6= 0.
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Appendix Q

Pullback of the vielbein and
spin connection for the
mixed-flux double magnon

For the double-magnon background (5.68) the pulled-back vielbein has com-

ponents eAa = EAµ (X)∂aX
µ

e0
0 = 1 ,

e3
0 = e6

0 = − 1√
2

uγ2
(
q̃2 − u2

)
tanhY√

q̃2 sinh2Y + u2
,

e4
0 = e7

0 = 1√
2

(
q2u2γ2 + q̃2 sinh2Y

)
sechY

q̃
√
q̃2 sinh2Y + u2

,

e5
0 = e8

0 = 1√
2
quγ2

√
q̃2 − u2 sechY
q̃

,

(Q.1)

e0
1 = 0 ,

e3
1 = e6

1 = 1√
2

γ2
(
q̃2 − u2

)
tanhY√

q̃2 sinh2Y + u2
,

e4
1 = e7

1 = 1√
2

uγ2
(
q̃2 − u2

)
sechY

q̃
√
q̃2 sinh2Y + u2

,

e5
1 = e8

1 = − 1√
2
qγ2

√
q̃2 − u2 sechY

q̃
,

(Q.2)

while the non-zero components of the pulled-back spin connection are

ω34
0 = ω67

0 = −

√
q̃2 − u2

2q̃

(
q2u2γ2 + q̃2 sinh2Y

)
sechY

q̃2 sinh2Y + u2 , (Q.3)

ω34
1 = ω67

1 = −
uγ2

(
q̃2 − u2

)3/2

2q̃
sechY

q̃2 sinh2Y + u2 , (Q.4)
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ω35
0 = ω68

0 = quγ2

2q̃

√
q̃2 sinh2Y + u2 sechY, (Q.5)

ω35
1 = ω68

1 = −qγ
2

2q̃

√
q̃2 sinh2Y + u2 sechY. (Q.6)
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Appendix R

Fermion derivatives for the
mixed-flux double magnon

Grouping the operators acting on each spinor ϑJ in (5.73), we get the fermion

derivatives

D = (1− u)γ
ζ/2

(
D1 −D0 −

1
8( /H0 − /H1)

)
∂S→0

,

D̃ = (1 + u)γ
ζ/2

(
D1 + D0 −

1
8( /H0 + /H1)

)
∂S→0

,

(R.1)

where Da = ∂a+ 1
4ω

AB
a ΓAB, and the constants are chosen to normalize the ∂Y

term. The NS-NS flux contraction can be rewritten as /Ha = 1
6(ρa /H + /Hρa),

see (D.2), hence we have

D = ∂Y + 1
2G (Γ34 + Γ67) + 1

2Q (Γ35 + Γ68)

− (1− u)γ
24ζ

(
/H(ρ0 − ρ1) + (ρ0 − ρ1) /H

)
,

D̃ = ∂Y + 1
2G̃ (Γ34 + Γ67) + 1

2Q (Γ35 + Γ68)

− (1 + u)γ
24ζ

(
/H(ρ0 + ρ1) + (ρ0 + ρ1) /H

)
.

(R.2)

with

G = ω34
1 − ω

34
0

1
2ζ(1 + u)γ

= q̃2(1− u) cosh2Y − q̃2 + u2

q̃
(
q̃2 sinh2Y + u2

) sechY ,

G̃ = ω34
1 + ω34

0
1
2ζ(1− u)γ

= − q̃
2(1 + u) cosh2Y − q̃2 + u2

q̃
(
q̃2 sinh2Y + u2

) sechY ,

Q = ω35
1 ∓ ω

35
0

1
2ζ(1± u)γ

= − q

q̃
√
q̃2 − u2

√
q̃2 sinh2Y + u2 sechY .

(R.3)
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Appendix S

Coefficients in the reduced
zero mode equations for the
double magnon

Here we present the coefficients appearing in the reduced zero mode equations

(5.98). Defining1

M±1 = 1
2 (λ12(2− λP )ξ ± q̃ sechY) ,

M2 = −q

2
√
q̃2 − u2

(q̃ sechY − iu tanhY) ,

M±3 = λ12
2 (2− λP ) tanhY + iλPλ12M

±
1 ,

(S.1)

N±1 (u) = i

2

(
± u sechY

q̃
±
u
(
q̃2 − u2

)
sechY

q̃
(
q̃2 sinh2Y + u2

)

− 2λ12q√
q̃2 − u2

−
λ12λPQ+

√
1−Q2

+

cosh2Y −Q2
+

)
,

N±2 = q

2
√
q̃2 − u2

iq̃u coshY ±
(
q̃2 − u2

)
tanhY√

q̃2 sinh2Y + u2
,

(S.2)

the coefficients can be written as

Cf1f1
= N−1 ( u) + iM+

1 , Cg1g1
= N+

1 ( u) + iM−1 ,

Cf2f2
= N+

1 (−u)− iM+
1 , Cg2g2

= N−1 (−u)− iM−1 ,
(S.3)

Cf1g1
= N−2 , Cg1f1

= N+
2 ,

Cf2g2
= −N−2 , Cg2f2

= −N+
2 ,

(S.4)

1 Note that changing u→ −u in N1, we also have Q+ → Q−.
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Cf1f2
= (1− u)γ e

∫
(N+

1 (−u)−N−1 (u))dY M+
3 ,

Cg1g2
= (1− u)γ e

∫
(N−1 (−u)−N+

1 (u))dY M−3 ,

Cf2f1
= (1 + u)γ e

∫
(N−1 (u)−N+

1 (−u))dY M̄+
3 ,

Cg2g1
= (1 + u)γ e

∫
(N+

1 (u)−N−1 (−u))dY M̄−3 ,

(S.5)

Cf1g2
= −i (1− u)γ e

∫
(N−1 (−u)−N−1 (u))dY

(1
2 + λPλ12M2

)
,

Cg1f2
= +i (1− u)γ e

∫
(N+

1 (−u)−N+
1 (u))dY

(1
2 − λPλ12M̄2

)
,

Cf2g1
= −i (1 + u)γ e

∫
(N+

1 (u)−N+
1 (−u))dY

(1
2 − λPλ12M2

)
,

Cg2f1
= +i (1 + u)γ e

∫
(N−1 (u)−N−1 (−u))dY

(1
2 + λPλ12M̄2

)
,

(S.6)
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Appendix T

Solving the reduced
zero mode equations for
the double magnon

Here we solve the reduced equations

∂Y f̃1 + i

2M
(1)
+ f̃1 + 1

2M
(2)g̃1 + 1

2M
(3)
+ f̃2 + 1

2
(
1 + λPλ12M

(2)
)
g̃2 = 0,

∂Y g̃1 + i

2M
(1)
− g̃1 −

1
2M̄

(2)f̃1 + 1
2M

(3)
− g̃2 + 1

2
(
1− λPλ12M̄

(2)
)
f̃2 = 0,

∂Y f̃2 −
i

2M
(1)
+ f̃2 −

1
2M

(2)g̃2 + 1
2M̄

(3)
+ f̃1 + 1

2
(
1− λPλ12M

(2)
)
g̃1 = 0,

∂Y g̃2 −
i

2M
(1)
− g̃2 + 1

2M̄
(2)f̃2 + 1

2M̄
(3)
− g̃1 + 1

2
(
1 + λPλ12M̄

(2)
)
f̃1 = 0,

(T.1)

where

M
(1)
± = λ12(2− λP )ξ ± q̃ sechY,

M (2) = −q√
q̃2 − u2

(q̃ sechY − iu tanhY) ,

M
(3)
± = λ12(2− λP ) tanhY + iλPλ12M

(1)
± ,

(T.2)

and M̄ (i) is the complex conjugate of M (i). Introducing the rotated basis

F1, F2, G1, G2 via the transformation

f̃1 = 1
2(F1 + F2 +G1 +G2), f̃2 = λPλ12

2 (F1 + F2 −G1 −G2),

g̃1 = 1
2(F1 − F2 +G1 −G2), g̃2 = λPλ12

2 (F1 − F2 −G1 +G2),
(T.3)

the reduced equations become

∂YF1 + λP
2 ((2− λP ) tanhY + λ12)F1 = 0,

∂YF2 + λP
2 ((2− λP ) tanhY − λ12)F2 = 0,

(T.4)
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∂YG1 −
λP
2 ((2− λP ) tanhY + λ12)G1

+ iξ (λ12(2− λP ) + tanhY)F1 + q̃

i+ q√
q̃2 − u2

 sechY F2 = 0,

∂YG2 −
λP
2 ((2− λP ) tanhY − λ12)G2

+ iξ (λ12(2− λP )− tanhY)F2 + q̃

i− q√
q̃2 − u2

 sechY F1 = 0.

(T.5)

It is now a simple exercise to solve these ODEs, and we look at the general

solutions on the P̂± subspaces separately.

T.1 Solutions on the P̂+ subspace.

Setting λP = 1 in (T.4), the solution is

F1 = C1e
−λ12

2 Y
√

sechY, F2 = C2e
+λ12

2 Y
√

sechY,

G1 = C3e
+λ12

2 Y
√

coshY + iC1ξe
−λ12

2 Y
√

sechY

− C2q̃

i+ q√
q̃2 − u2

 e+λ12
2 Y
√

sechY sinhY,

G2 = C4e
−λ12

2 Y
√

coshY − iC2ξe
+λ12

2 Y
√

sechY

− C1q̃

i− q√
q̃2 − u2

 e−λ12
2 Y
√

sechY sinhY,

(T.6)

for some integration constants Ci. Using the identities

e±
λ12
2 Y = 1

2e
− i

2 arctan(sinhY)
(
(1± iλ12) coshY

+ (1∓ iλ12)(1 + i sinhY)
)√

sechY

= 1
2e

+ i
2 arctan(sinhY)

(
(1∓ iλ12) coshY

+ (1± iλ12)(1− i sinhY)
)√

sechY

(T.7)

we can transform this solution back to the original basis (T.3) to get
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f̃1 = e−
i
2 arctan(sinhY)(c1 + c3 coshY + c4 sinhY)

+ e+ i
2 arctan(sinhY) λ12q(q̃ − u)

(1 + q̃)
√
q̃2 − u2

(c1 + ic4),

g̃1 = iλ12e
+ i

2 arctan(sinhY)(c1 − c3 coshY − c4 sinhY)

− iλ12e
− i

2 arctan(sinhY) λ12q(q̃ − u)

(1 + q̃)
√
q̃2 − u2

(c1 + ic4),

f̃2 = iλ12e
+ i

2 arctan(sinhY)(c2 + c4 coshY + c3 sinhY)

− iλ12e
− i

2 arctan(sinhY) λ12q(q̃ + u)

(1 + q̃)
√
q̃2 − u2

(c2 − ic3),

g̃2 = e−
i
2 arctan(sinhY)(c2 − c4 coshY − c3 sinhY)

+ e+ i
2 arctan(sinhY) λ12q(q̃ + u)

(1 + q̃)
√
q̃2 − u2

(c2 − ic3).

(T.8)

The two sets of integration constants are related by

c1 = 1
4

(
(1− iλ12)(1 + iξ)C1 + (1 + iλ12)(1− iξ)C2

+ (1− iλ12)C3 + (1 + iλ12)C4

)
,

(T.9)

c2 = λ12
4

(
(1− iλ12)(1− iξ)C1 − (1 + iλ12)(1 + iξ)C2

− (1− iλ12)C3 + (1 + iλ12)C4

)
,

(T.10)

c3 = iλ12
4

(
q̃(1− iλ12)

(
1 + iq√

q̃2 − u2

)
C1

− q̃(1 + iλ12)
(

1− iq√
q̃2 − u2

)
C2

+ (1− iλ12)C3 − (1 + iλ12)C4

)
,

(T.11)

c4 = − i4

(
q̃(1− iλ12)

(
1 + iq√

q̃2 − u2

)
C1

+ q̃(1 + iλ12)
(

1− iq√
q̃2 − u2

)
C2

− (1− iλ12)C3 − (1 + iλ12)C4

)
.

(T.12)
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We see that there are no normalizable solutions on this subspace.

T.2 Solutions on the P̂− subspace.

On the other hand, if we set λP = −1 in (T.4), the solutions are

F1 = C1e
+λ12

2 Y(coshY)3/2, F2 = C2e
−λ12

2 Y(coshY)3/2,

G1 = C3e
−λ12

2 Y(sechY)3/2

− 1
2C2q̃

i+ q√
q̃2 − u2

 e−λ12
2 Y(sechY)3/2(Y + coshY sinhY)

− i

8C1λ12ξe
+λ12

2 Y(sechY)3/2
(

sinh(3Y) + 5λ12e
λ12Y + 8Ye−λ12Y

)
,

G2 = C4e
+λ12

2 Y(sechY)3/2

− 1
2C1q̃

i− q√
q̃2 − u2

 e+λ12
2 Y(sechY)3/2(Y + coshY sinhY)

− i

8C2λ12ξe
−λ12

2 Y(sechY)3/2
(

sinh(3Y)− 5λ12e
−λ12Y + 8Yeλ12Y

)
,

(T.13)

where Ci are arbitrary integration constants. Rotating back to the original

basis (T.3), again using (T.7), we get

f̃1 =
(
c1 secY + c3 cosh2Y − i

2 q̃
(
c3 −

λ12qc4√
q̃2 − u2

)
(YsechY + sinhY)

+ 5
4λ12ξc4 − iλ12ξc4YsechY − i

4λ12ξc3sechY sinh(3Y)
)
e−

i
2 arctan(sinhY)

+
(
c2 secY + c4 cosh2Y − i

2 q̃
(
c4 + λ12qc3√

q̃2 − u2

)
(YsechY + sinhY)

− 5
4λ12ξc3 − iλ12ξc3YsechY − i

4λ12ξc4sechY sinh(3Y)
)
e+ i

2 arctan(sinhY),

(T.14)
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g̃1 = iλ12

(
c1 secY − c3 cosh2Y − i

2 q̃
(
c3 −

λ12qc4√
q̃2 − u2

)
(YsechY + sinhY)

− 5
4λ12ξc4 − iλ12ξc4YsechY + i

4λ12ξc3sechY sinh(3Y)
)
e+ i

2 arctan(sinhY)

− iλ12

(
c2 secY − c4 cosh2Y − i

2 q̃
(
c4 + λ12qc3√

q̃2 − u2

)
(YsechY + sinhY)

+ 5
4λ12ξc3 − iλ12ξc3YsechY + i

4λ12ξc4sechY sinh(3Y)
)
e−

i
2 arctan(sinhY),

(T.15)

f̃2 = λ12

(
c2 secY − c4 cosh2Y − i

2 q̃
(
c4 + λ12qc3√

q̃2 − u2

)
(YsechY + sinhY)

− 5
4λ12ξc3 − iλ12ξc3YsechY − i

4λ12ξc4sechY sinh(3Y)
)
e+ i

2 arctan(sinhY)

+ λ12

(
c1 secY − c3 cosh2Y − i

2 q̃
(
c3 −

λ12qc4√
q̃2 − u2

)
(YsechY + sinhY)

+ 5
4λ12ξc4 − iλ12ξc4YsechY − i

4λ12ξc3sechY sinh(3Y)
)
e−

i
2 arctan(sinhY),

(T.16)

g̃2 = −i
(
c2 secY + c4 cosh2Y − i

2 q̃
(
c4 + λ12qc3√

q̃2 − u2

)
(YsechY + sinhY)

+ 5
4λ12ξc3 − iλ12ξc3YsechY − i

4λ12ξc4sechY sinh(3Y)
)
e−

i
2 arctan(sinhY)

+ i

(
c1 secY + c3 cosh2Y + i

2 q̃
(
c3 −

λ12qc4√
q̃2 − u2

)
(YsechY + sinhY)

− 5
4λ12ξc4 − iλ12ξc4YsechY + i

4λ12ξc3sechY sinh(3Y)
)
e+ i

2 arctan(sinhY),

(T.17)
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where the new integration constants are given by

c3 = 1
4

(
(1 + iλ12)C1 + (1− iλ12)C2

)
,

c4 = −iλ12
4

(
(1 + iλ12)C1 − (1− iλ12)C2

)
,

c1 = 1
4

(
(1− iλ12)C3 + (1 + iλ12)C4

)
+ 5

8λ12ξc3,

c2 = iλ12
4

(
(1− iλ12)C3 − (1 + iλ12)C4

)
− 5

8λ12ξc4.

(T.18)

For c3 = c4 = 0 we get the normalisable solutions

f̃1 = sechY
(
c1e
− i

2 arctan(sinhY) + c2e
+ i

2 arctan(sinhY)
)
,

g̃1 = iλ12 sechY
(
c1e

+ i
2 arctan(sinhY) − c2e

− i
2 arctan(sinhY)

)
,

f̃2 = λ12 sechY
(
c1e
− i

2 arctan(sinhY) + c2e
+ i

2 arctan(sinhY)
)
,

g̃2 = i sechY
(
c1e

+ i
2 arctan(sinhY) − c2e

− i
2 arctan(sinhY)

)
.

(T.19)
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