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Abstract 

In recent years, global urbanisation trends created pressing demands for residential and 

office space in all major cities of developed and developing countries. These demands are 

increasingly addressed by height-wise urban development. This is underpinned by the advent 

of new high strength materials and stiff lightweight structural components which enable 

designing and construction of tall buildings with large height-to-width aspect ratios. Indeed, 

slender tall buildings with rectangular floor plans achieve economical land utilisation in 

congested urban environments and facilitate efficient inner space organisation. However, such 

structures are prone to excessive wind-borne oscillations in the crosswind direction due to 

vortex shedding (VS) effects generated around their corner edges. These oscillations may 

generate floor accelerations beyond code-specific occupant comfort thresholds under moderate 

frequently occurring wind actions leading to serviceability failure. In this regard, the design of 

most slender tall buildings with rectangular plan view is commonly governed by serviceability 

occupant comfort criteria. At the same time, the latest sustainability requirements for new-built 

structures urge for minimising material usage as the portion of global carbon emissions due to 

building material manufacturing is rising. In this regard, this thesis addresses occupant comfort 

and material usage requirements in wind-excited tall buildings by equipping structures with 

innovative passive inerter-based dynamic vibration absorber (DVA) motion control 

configurations in conjunction with novel DVA-equipped tall building design approaches for 

weight minimisation.  

To this aim, the thesis contributes an optimal tuned mass damper inerter (TMDI) design 

approach in which TMDI stiffness and damping properties are numerically determined via a 

computationally efficient scheme to minimise floor accelerations in wind-excited buildings for 

given inertial TMDI properties (i.e., inertance and secondary mass) and inerter element 

connectivity. Optimally designed TMDIs for a wide range of inertial properties and various 

inerter connectivities are obtained for a benchmark slender 74-storey building subjected to 

experimentally calibrated spatially-correlated crosswind force field accounting for VS effects. 

Design charts on the TMDI inertial (mass-inertance) plane are furnished demonstrating that 

fixed structural performance level in terms of occupant comfort can be more efficiently 

achieved through lightweight TMDIs if compared with classical tuned mass dampers (TMDs) 

as long as sufficient inertance is provided. Further, TMDI sensitivity to host structure properties 

and to reference wind velocity is shown to decrease by increasing inertance or by spanning 

more floors in connecting the secondary mass with the host structure by the inerter. 

Moreover, attention is focused on examining the efficacy of the TMDI motion control 

potential for different dominant mode shape of buildings. This is facilitated by putting forward 

a novel analytical two-degree-of-freedom (2DOF) dynamical model representing TMDI-

equipped slender buildings treated as continuous tapered cantilever beams with varying 

geometrical properties and, thus, mode shapes. It is found that reduced free-end displacement 
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and TMDI stroke are achieved for structures in which the ratio of flexural rigidity over mass 

decreases faster with height, resulting in vibration modal shapes with higher convexity. The 

latter is quantified through the average modal curvature shown to be well-correlated with TMDI 

motion control improvement. It is concluded that appropriate building shaping extends the 

applicability of the TMDI to structures in design situations where connecting the inerter away 

from the free-end is practically and economically challenging. 

Inspired by the above findings, a local structural modification, top-storey softening, is 

proposed in conjunction with optimally tuned top-floor TMDI for improved occupant comfort 

performance in typical core-frame slender buildings. Comprehensive numerical data pertaining 

to a parametric investigation for a 34-storey steel-concrete composite core-frame structure 

demonstrate that the proposed top-storey softening reduces attached TMDI mass/weight 

requirements and inerter force for fixed floor acceleration performance and inertance. It further 

reduces TMDI stroke and achieves increased robustness to TMDI stiffness and damping 

properties as well as to the assumed inherent structural damping. It is concluded that by 

leveraging inertance and top-storey lateral flexibility, the proposed solution can efficiently 

control VS-induced floor acceleration with small additional gravitational (added weight) and 

horizontal (inerter and damping) forces. 

Lastly, an innovative framework for the optimal design of wind-excited DVA-equipped 

tall buildings subject to serviceability comfort criteria is proposed, which enables minimising 

material usage for occupant comfort-governed building structures by exploiting the motion 

control capability of inerter-based DVAs. The framework relies on a novel optimal structural 

member sizing Lagrangian formulation for minimum-weight structural design, in conjunction 

with optimal DVA tuning for occupant comfort under crosswind excitation. The applicability 

and usefulness of the framework is exemplified by application to a routine occupant-comfort-

sensitive 15-storey steel moment resisting frame (MRF) building equipped with a ground floor 

tuned inerter damper (TID). The inclusion of the TID together with the herein proposed design 

framework achieve up to 67% steel tonnage savings in meeting the ISO 6897 occupant comfort 

criteria. Pareto optimal solutions further demonstrate that the self-weight of lateral wind-load 

resisting structural systems can be traded to TID inertance, potentially leading to significant 

material usage reductions. 

Overall, numerical data furnished in this thesis demonstrate that the herein contributed 

optimal design formulations and algorithms as well as the innovative inerter-based DVAs are 

quite promising in achieving new types of sustainable and resilient slender tall buildings to 

wind excitation which can address current and future demands for residential and office space 

in modern city centres. 
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Chapter 1 

Introduction 

1.1 Background and Motivation 

1.1.1 Tall buildings and wind-related performance requirements 

Tall buildings, loosely defined as those exceeding 50m in height or 14 stories (CTBUH 

Height Criteria), historically emerged with the advent of lift as well as high-performance 

materials (e.g., wrought iron and subsequently steel) in the nineteenth century (Huang 2017) 

and have been primarily used for commercial and residential purposes ever since (Smith and 

Coull 1991). The 50m-tall Home Insurance Building (Fig. 1.1 (a)), completed in 1885 in 

Chicago, is generally considered as the world’s first skyscraper and the first tall building 

supported by an iron frame (Ford 2005). In recent decades, socio-economic and political factors 

(e.g., population growth, intensifying urbanisation, towering landmark structures as prestige 

symbols, and driving further centralized economic/business development, etc.) have sparked 

interest and demand in designing and erecting ever more slender and taller buildings 

dominating the congested urban environments in developed and developing countries (Cangelli 

and Fais 2012). As a representative example, Fig. 1.1 (b) shows the super-slender residential 

tower at 432 Park Avenue in NY, USA (96 stories, 425m tall, 15:1 height to width aspect ratio), 

which is currently the tallest residential tower in the western hemisphere. 

 

 
Fig. 1.1. (a) Home Insurance Building in Chicago (www.americaslibrary.gov); and (b) 432 Park 

Avenue in New York (www.skyscrapercenter.com). 

 

From the structural mechanics perspective, these tall, slender, and lightweight structures, 

are characterised by increased lateral flexibility and low inherent damping (Kareem et al. 1999). 

Accordingly, they can be particularly susceptible to large wind-borne deformations and 
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oscillations (Li et al. 2004, Khodaie 2020), creating two kinds of serviceability problems. The 

first is non-structural damage due to large inter-storey drifts in the along-wind (drag) direction. 

The second is occupant discomfort due to excessive floor accelerations in the crosswind (lift) 

direction (Simiu and Scanlan 1996). The latter issue is critical in tall building design as the 

human body is sensitive to motion in a broad frequency range including wind-induced building 

oscillations, which may cause various discomfort ranging from slight annoyance to severe 

dizziness, nausea, and headache (Kareem 1992, Burton et al. 2006). According to a rough 

criterion set by the ASCE 7-95 Standard, a building is classified as laterally flexible, thus prone 

to above wind-related serviceability problems, when the ratio of building height to the least 

horizontal dimension is larger than 4, or when the fundamental natural frequency is less than 1 

Hz. Indeed, it has been noted in many tall building designs, even in earthquake-prone areas (see, 

e.g., Taipei 101 in Fig. 1.2(a)), that while the local strength/ductility design of the structure is 

governed by seismic effects, the building overall deformation and motion are dominated by 

wind loads (Kareem et al. 1999). And yet, many urban areas with skylines dominated by flexible 

cantilevered structures, including tall buildings (see Fig. 1.2 (a) and (b)) and 

observation/communication towers (see Fig. 1.2(c)), are located in cyclone/typhoon/hurricane-

prone regions (Huang 2017). 

 

 

Fig. 1.2. (a) 509m-tall Taipei 101 Tower (www.taipei-101.com.tw); (b) 632m-tall Shanghai Tower 

(www.conniezhou.com); and (c) 309m-tall Sydney Centrepoint Tower (www.flickr.com/photos). 

 

In this context, tall building structures in moderate and high wind-prone regions need to 

meet the following requirements: 

 

(i) To sustain extreme wind fronts within the expected lifespan to prevent global and local 

structural failures concerning strength and stability. 

(ii) To withstand major wind events statically in the along-wind direction to avoid non-

structural damages to interior partitions, ceilings, door frames/windows, and external 

cladding/facades. 

http://www.taipei-101.com/
http://www.conniezhou.com/
http://www.flickr.com/photos
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(iii) To meet occupant comfort and habitability demands mainly in the crosswind direction 

under moderate/frequent wind events. 

(iv) To be sustainable and economical, minimising material consumption and 

environmental impacts in terms of carbon footprint. 

(v) To be efficient in terms of land usage and inner space organisation to cope with the 

ever-growing challenge of undersupply of urban land. 

 

For requirement (i), with the availability of high-performance materials, innovations in 

structural systems, and significant advances in computer-aided simulation/engineering design, 

the probability of catastrophic structural failures due to wind hazards alone is fairly small 

(Longarini et al. 2017). Besides, the design of buildings with slenderness ratio larger than 5 is 

usually governed by serviceability criteria rather than structural safety (Park and Park 1998, see 

also Li et al. 2004). In this respect, requirements (ii) and (iii) are assessed against codified 

thresholds in terms of inter-storey drifts and lateral floor accelerations. To this aim, the 

inherently probabilistic performance-based design (PBD) framework can be applied (e.g., 

Ciampoli and Petrini 2012). This framework safeguards non-structural integrity and, at the 

same time, minimises wind-induced losses (e.g., downtime caused by loss of 

operability/functionality and occupant discomfort) by ensuring certain structural performance 

levels are met depending on the intensity of wind loads with certain annual probability of 

occurrence (Cui and Caracoglia 2020). Further, the requirement (iv) emphasises the demand 

for innovative and material-efficient structural design, achieving financial savings and cutbacks 

in carbon footprint as well as embodied energy consumption. Finally, the requirement (v) may 

lead to ever-more slender structures with regular floor plans (e.g., rectangular, square), which, 

in turn, are more prone to excessive wind-induced oscillations (e.g., Kwok et al. 2009, 

Bernardini et al. 2015). 

Considering serviceability requirements (ii) and (iii) first, the total response of tall 

buildings under wind effects can be decomposed into three components, namely, a mean/static 

component, a (dynamic) background component, and a resonant component (Simiu and 

Scanlan 1996). The along-wind drifts caused by static and background components can be 

effectively contained by increasing lateral stiffness of tall buildings (Ricciardelli et al. 2003). 

However, the same strategy does not improve, in general, the serviceability performance 

associated with floor accelerations in the crosswind direction (Kareem et al. 1999, Taranath 

2016), which are mostly caused by the resonant component (Huang 2017). Specifically, for tall 

buildings with aspect ratio (i.e., height to width) over 3, the crosswind floor accelerations are 

usually more severe than the along-wind ones due to the resonance of crosswind excitation 

frequency with one of the vibration modes of the building structure (Liang et al. 2002, Isyumov 

2012). According to Solari (1985), the crosswind dynamic loads on tall buildings are induced 

by three mechanisms. These are along-wind turbulence, crosswind turbulence, and vortex 

shedding (VS) effect (also known as wake excitation), with the latter being the most dominant 
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of the three. In the wake excitation, vortices are created on the downside of the building and 

shed periodically from one side to the other when wind flows past the structure at a particular 

speed. This periodic shedding of vortices generates alternating low-pressure zones and giving 

rise to a fluctuating force in the crosswind direction (Simiu and Scanlan 1996). Consequently, 

occupant discomfort in the crosswind direction induced by VS effects can be critical for 

relatively moderate intensity frequently occurring wind velocities, and often governs tall 

building design (see, e.g., Burton et al. 2006, Kwok et al. 2009, Petrini and Ciampoli 2012, 

Bernardini et al. 2015, Taranath 2016).  

Turning the attention to the sustainability requirement (iv), it is worth noting that current 

global warming is largely a result of human activities increasing greenhouse gas concentration, 

particularly carbon dioxide, in the atmosphere. In particular, the built environment and 

manufacturing of materials for building construction account for approximately 36% and 11% 

of global energy-related CO2 emissions, respectively (International Energy Agency, 2017a, 

2017b). For a building structure, its lifetime carbon emissions are composed of 1) operational 

emissions coming from energy consumption during service, and 2) embodied emissions 

associated with building materials and maintenance (BS EN 15978, 2011). Lately, major 

reduction in operational energy consumption achieved in newly constructed and refurbished 

structures has made the embodied energy to become the most dominant portion of lifetime 

energy consumption in buildings (European Commission 2010, Moynihan and Allwood 2014, 

Cabeza et al. 2013, Pacheco-Torgal et al. 2013). In this setting, one key strategy to achieving 

global emission reduction is to utilise materials as efficiently as possible (Allwood et al., 2011) 

and thereby minimise the carbon footprints of construction industry sectors through material-

efficient structural design and structural optimisation. However, in the current limit-state design 

framework for building structures, minimum performance requirements at ultimate and 

serviceability limit states are established by codified rules for structural members with partial 

factors being introduced to ensure reliability but not embodied emissions efficiency (Orr et al. 

2019). Indeed, building codes of practice neither specify upper limits on the performance 

criteria, nor penalise overly conservative design. This consideration might yield code-compliant 

but material-inefficient and eco-unfriendly structures (Orr et al. 2019). In fact, after examining 

3,500 steel members from 27 buildings, an apparent reluctance to design the members above 

the utilisation ratio of 0.80 was observed by Dunant et al. (2018). More importantly, 63% of the 

members investigated therein were governed by serviceability rather than strength requirements. 

Further, based on the verification of 10,000 steel members in real buildings, Moynihan and 

Allwood (2014) showed that the average utilisation ratio was around 0.40 at the ultimate limit 

state, implying that more than half of the structural steel could have been saved without 

compromising code-specific strength criteria. To this end, building design protocols accounting 

for material efficiency is an important consideration to be addressed in achieving a net-zero 

economy. 
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1.1.2 Human motion perception and occupant comfort criteria in wind-excited buildings 

Human perception and tolerance to wind-borne vibrations in tall buildings are largely 

subjective and depend on both psychological and physiological factors (Tamura et al. 2006). 

Consequently, there is currently no universally accepted serviceability comfort criterion for 

specifying acceptable dynamic response level in wind-excited tall buildings, and major 

differences exist amongst the commonly used design codes in defining tolerance thresholds 

(Kwok et al. 2009). Still, there is a general consensus that building occupants would more likely 

tolerate motions of shorter duration (i.e., time of exposure) and with a lower frequency of 

recurrence (Hansen et al. 1973). Thus, it is common and reasonable to assume one-hour wind 

duration (Simiu and Scanlan 1996) together with one-year mean recurrence interval in comfort 

evaluation (Tamura et al. 2004). The former corresponds to the duration beyond which winds 

in a typical storm may be assumed to become relatively weak (Simiu and Scanlan 1996), while 

the latter is considered most relevant to the daily use of buildings (Burton et al. 2015). Moreover, 

the frequency range for assessing building habitability to wind action is typically taken between 

0.1 to 1.0 Hz (Chan and Chui 2005, Kwok et al. 2009), as the fundamental frequency of tall, 

slender building structures commonly falls within this range. 

To better understand human response to wind-induced building motion, extensive research 

has been conducted over the years, including experimental testing in motion simulators (cf. 

Noguchi et al. 1993, Shioya and Kanda 1993, Denoon 2000, Burton et al. 2003), field 

experiments in real buildings (cf. Isyumov and Kilpatrick 1996, Denoon et al. 1999, Denoon 

2000, and Kijewski-Correa et al. 2007), and surveys of occupants in monitored tall buildings 

(Kijewski-Correa et al. 2007, Lamb et al. 2013). A comprehensive literature review is provided 

in Kwok et al. (2009). It has been established that the floor acceleration is the quantity closely 

associated with human discomfort (Bernardini et al. 2015). Nevertheless, current building codes 

tend to use different floor acceleration metrics to define tolerance thresholds, such as the root 

mean square (RMS) value, peak value, and change rate of acceleration (Isyumov 1993, Boggs 

1997, McNamara et al. 2002). Similarly, a literature review on the subject shows different 

preferences among researchers in presenting the results: some report peak accelerations, while 

others report RMS values. Specifically, most of the research conducted with motion simulators 

subjected to sinusoidal motion tend to report peak accelerations, as this is a metric that may be 

readily measured. On the other hand, research works that involve wind-tunnel testing and 

numerical simulation based on wind forcing data tend to report both peak and RMS values 

(Griffis 1993). To this end, it has been argued that, when the vibration persists for an extended 

period (e.g., 10 to 20 minutes) as is common with winds, RMS acceleration is a more 

representative metric for human motion perception as isolated peak accelerations may be 

dampened out within a few cycles (Hansen et al. 1973, Isyumov and Poole 1983, Islam et al. 

1990). In every case, the relationship between peak and RMS accelerations can be described 

by a peak factor which varies with building frequency and wind duration (cf. Davenport 1964), 

though it is often taken equal to 3.5 (Griffis 1993, Kwok et al. 2009). Besides floor acceleration, 
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other contributing factors affecting occupant comfort include building occupancy type (cf. Fig. 

1.3), motion direction, waveform (Tamura et al. 2006, Kijewski-Correa and Pirnia 2009), visual 

effects, and acoustic cues (Isyumov 1993).  

Relying on the previous research results, standards of practice, such as ISO6897:1984, 

AIJ-GEH-2004, ISO10137:2007, and CNR-DT 207/2008, incorporate prescriptive provisions 

to regulate the occupant comfort-related performance of tall buildings subject to wind excitation. 

This is achieved by requiring that the wind-borne (peak or RMS) floor accelerations associated 

with a given recurrence interval are below a threshold which depends on the building vibration 

frequency (Bernardini et al. 2015). For illustration, Figure 1.3 compares serviceability comfort 

criteria in terms of peak floor acceleration from different design codes for one-year return 

period. Note the ISO6897 threshold curve (in terms of RMS value) has been converted to peak 

value, assuming a peak factor of 3.5. It is seen that, within the frequency range 0.1 – 1.0 Hz for 

serviceability check of tall buildings, the tolerance thresholds decrease monotonically as the 

vibration frequency increases, though at a slower rate. In this respect, it is important to note that 

the fundamental frequencies of all case-study buildings considered in this thesis are within the 

above frequency range, while the exposure duration is taken as 1 hour throughout the work. 

 

 

Fig. 1.3. A comparison of serviceability occupant comfort criteria from different design codes for a 

one-year recurrence period and within the frequency range 0.1 – 1.0Hz. 

 

1.1.3 Wind-borne motion control of tall buildings in the cross-wind direction 

For mitigation of the resonant response of tall buildings in the cross-wind direction, it is 

well-established that increasing the lateral structural stiffness is effective for suppressing lateral 

displacement amplitude (Kareem et al. 1999). However, the acceleration response cannot be 

efficiently and economically mitigated by adopting a more rigid lateral load-resisting system 

(Simiu and Scanlan 1996). A further downside of laterally stiffening a tall building is that the 

rate of change of floor acceleration, which contributes to occupant discomfort, may even 

increase (Kareem et al. 1999). Therefore, alternative solutions are warranted to control the VS-

induced floor accelerations. In this regard, aerodynamic modifications (cf. Kwok and Bailey 

1987, Kwok 1988) and use of auxiliary damping devices are both practical and effective 

measures to alleviate the crosswind acceleration response of tall buildings by reducing wind 
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action at the source and increasing energy dissipation capacity of the buildings, respectively. 

According to Amin and Ahuja (2010), aerodynamic modifications of tall buildings 

comprise two groups of techniques depending on their impacts on architectural and structural 

concepts. These are the global/major variation of buildings' cross-section along the height (e.g., 

tapering, setbacks, twisting) and the local/minor tailoring of buildings' cross-sectional shape 

(e.g., corner chamfering or rounding, fins fitting). The former approach reduces dynamic wind 

effects by making vortex formation irregular and incoherent with the height (Kim and Kanda 

2013). The latter approach hinders the formation of coherent wake fluctuations by altering the 

wind flow pattern around the structure (Karim 1983, Shimada 1995). Indeed, benefits of 

aerodynamic shaping of buildings have been widely reported in the literature (Dutton et al. 

1990, Hayashida and Iwasa 1990, Amano 1995, Cooper et al. 1997, Kim and Kanda 2010, Kim 

et al. 2011, Tanaka et al. 2012, Deng et al. 2015), while the effectiveness of vertical building 

tapering in reducing crosswind acceleration response was confirmed by Kim and You (2002) 

and You et al. (2008). In practice, however, structural engineers are not always able to specify 

the building shape and geometry (massing), which are commonly driven by architectural 

considerations (Chan and Chui 2006). In this context, over the past four decades, significant 

effort has been devoted to developing motion control technology, with particular emphasis on 

the use of auxiliary damping devices (Chu et al. 2005). In this respect, motion control systems 

for mitigating wind-induced vibrations in tall buildings (Yao 1972, Chung et al. 2013, Soto and 

Adeli 2013) can be broadly classified into three groups, namely, active, semi-active, and passive. 

In an active control system, external energy sources are required for powering the control 

actuators (i.e., the force delivery components), which are regulated by real-time sensors and 

controllers. The actuators generate the required control forces counteracting the building 

motion based on the system response variables measured by the sensors integrated within the 

structure (Lagaros et al. 2012). Examples of active control systems include active mass dampers, 

active tendon systems, active brace systems, and pulse generation systems. Despite adaptability 

to excitations and excellent control efficiency, active devices can be unreliable as they require 

a significant amount of external energy to generate the required control forces, which may not 

be available, especially during and immediately after severe natural hazards such as high winds 

and earthquakes (Longarini et al. 2017, Saaed et al. 2013). On the other hand, semi-active 

control devices require relatively small power supply to make adjustments to device properties 

(e.g., stiffness and/or damping coefficients known as “tunable parameters” of the control system) 

instead of applying the control forces to the structure directly (Saaed et al. 2013). A typical 

semi-active control device consists of several components such as sensors for measuring input 

and/or output, a controller for processing measurements and generating control signals, and 

actuators regulating the adaptable device properties. Examples of semi-active systems are semi-

active tuned mass dampers (TMDs), semi-active friction dampers, and electrorheological 

dampers, etc. Compared to active control systems, the main attraction of the semi-active control 

methods is that they are less demanding in terms of cost and external energy (Wen and 
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Shinozuka 1998, Lagaros et al. 2012, Tse et al. 2012). Besides, the passive components of semi-

active devices can still offer some degree of protection even in a power failure (Chu et al. 2005), 

which is not the case for active control devices. 

Finally, the most reliable and commonly applied control systems for enhanced 

serviceability and safety in wind-excited tall buildings are of the passive type due to their 

simplicity and inherent stability as they do not require any external energy to operate or 

structural response measurements (Christenson 2001). In principle, these systems require 

optimal tuning/design of the device(s) for a specific dynamic loading and rely on auxiliary 

damping devices to dissipate part of the input energy. According to the energy balance equation, 

the total input energy to an elastic system (such as wind-excited tall buildings) subjected to 

external excitations is equal to the sum of the kinetic energy, the elastic strain energy, the 

dissipated energy due to inherent structural damping, and the dissipated energy by 

supplementary damping devices/mechanisms, if any (Soong and Dargush 1997). This 

consideration intuitively suggests that the more energy is dissipated through auxiliary damping, 

the less severe the vibration is. Over the years, researchers and engineers have devised a variety 

of passive control technology, including broad-band energy dissipation devices (e.g., viscous 

fluid damper, viscoelastic dampers, friction damper, metallic yield dampers, etc., Kareem et al. 

1999), and narrow-band reactive dynamic vibration absorbers (DVAs) which aim to suppress a 

single dominant response frequency. Among these control devices, the tuned mass damper 

(TMD), which is the most representative DVA, has become a suitable and well-established 

solution for vibration mitigation of wind-excited tall buildings (Elias and Matsagar 2017, 2018, 

Tse et al. 2012, Ierimonti et al. 2018), since its first successful application in the Centrepoint 

Tower, Sydney (see Fig. 1.2 (c)). This is mainly owing to the fact that, although wind forces are 

usually broad-band, modern tall buildings with low inherent damping behave mostly as a 

narrow-band filter, thus inducing acceleration output within a limited frequency range around 

a dominant frequency close to the first natural frequency of the uncontrolled structure (Chan 

and Chui 2006). Consequently, the resonant response of tall buildings is, in general, dominated 

by the first modal response.  

 

1.1.4 Dynamic vibration absorbers (DVAs) for motion control of wind-excited tall 

buildings 

The concept of the DVA is one of the first strategies for passive motion control of 

dynamically excited mechanical and civil engineering structures (Frahm 1911). Arguably, the 

most widely studied and commonly used passive DVA in the literature and in practical 

applications is the so-called tuned mass damper (e.g., Ormondroyd and Den Hartog 1928, 

Brock 1946, Den Hartog 1956, Warburton and Ayorinde 1980, Randall et al. 1981, Thompson 

1981, Warburton 1982, Tsai and Lin 1994, Rana and Soong 1998, Asami et al. 2002, Krenk 

2005, Bakre and Jangid 2007, Ghosh and Basu 2007, Leung and Zhang 2009, Tributch and 

Adam 2012, Bortoluzzi et al. 2015, Salvi and Rizzi 2016). The typical TMD consists of a 
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secondary mass that is free to oscillate and attached to the primary structure via linear 

stiffeners/springs and viscous damper/dashpot elements (Elias and Matsagar, 2017). The 

widespread use of TMD is mainly due to its simplicity and effectiveness underpinned by the 

existence of simple and well-established design approaches seeking to optimally tune the TMD 

for minimising the response of a given dynamically excited structure for an a priori fixed 

attached mass (Marian and Giaralis, 2017). 

Historically, the concept of the TMD was initially proposed by Ormondroyd and Den 

Hartog (1928), followed by the derivation of closed-formed expressions in Brock (1946) and 

Den Hartog (1956) for estimating optimal TMD stiffness and damping parameters that 

minimise the peak displacement of sinusoidal force-excited undamped single-degree-of-

freedom (SDOF) primary structures. Focusing on harmonic excitations, Den Hartog (1956) 

demonstrated that all frequency response functions (FRFs) of a TMD-equipped undamped 

SDOF primary structure pass through the same two points. Following this fixed point theory, 

Warburton (1982) derived simple TMD design formulae minimising different response 

quantities of undamped SDOF primary structures under harmonic force and base excitations. 

More recently, Ghosh and Basu (2007) showed that the fixed point design approach can lead to 

near-optimal TMD vibration control performance for lightly damped single-degree-of-freedom 

(SDOF) primary structures with damping ratio up to 3%. Indeed, the TMD design formulae 

proposed in above works are valid for lightly damped multi-degree-of-freedom (MDOF) 

structures, provided that the vibratory motion to be suppressed is largely associated with a 

single/dominant structural mode (e.g. Rana and Soong 1998).  

Further, to suppress vibration from higher modes, multiple distributed TMDs (MTMDs) 

were studied by Fujino and Abe (1992) and Kareem and Kline (1995) to overcome the 

limitations of single TMD systems (i.e., with a single attached mass) which can only target one 

vibration mode. Moreover, the use of MTMDs arranged in parallel was studied by Xu and Igusa 

(1992) and Yamaguchi and Harnpornchai (1993) for improving the robustness of single TMD 

systems to detuning effects. In MTMD configuration, each individual TMD is tuned to a 

different frequency such that the effective frequency band becomes wider. Nevertheless, 

optimal design of MTMDs is considerably more challenging than single TMD design (see, e.g., 

Jokic et al. 2011) due to the increased number of design variables, let alone the significantly 

increased weight imposed on the primary structure due to the presence of multiple secondary 

masses.  

Focusing on civil engineering applications, much research has been carried out to 

investigate the effectiveness of TMDs in safeguarding the resilience of flexible cantilevered 

structures, such as tall buildings (Ricciardelli et al. 2003, Li et al. 2011, Lu et al. 2017), 

industrial chimneys (Brownjohn et al. 2009), solar towers (Carrato and Santamont 2012), and 

wind turbine towers (Zhao et al. 2018, Gaur et al. 2020), against dynamic environmental loads 

(e.g., Christopoulos and Filiatrault, 2006). Soto and Adeli (2013) conducted a comprehensive 

review of the application of TMDs in high-rise buildings and tall towers. 
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For tall building structures, typical passive TMD implementations rely on attaching a 

secondary mass (usually of the order of 0.25-0.75% of the total building mass or 1-2% of the 

modal mass, Kareem 1983) towards the top of structures via stiffeners/springs or via hangers 

in a pendulum-like configuration (see Fig. 1.4 (a) and (b) for the pendulum TMDs installed in 

Taipei 101 and Shanghai Tower, respectively). The elastic property of the spring connecting the 

secondary mass to the host structure is tuned/designed such that the secondary mass observes 

significant oscillations counterbalancing the motion of the host structure. The secondary mass 

is further linked to the primary structure using supplementary damping devices which are 

engaged from the relative motion of the attached mass with respect to the primary structure and 

dissipate wind-induced kinetic energy. In this regard, the optimal design of passive linear TMDs 

seeks to find the optimal stiffness and damping coefficients, kTMD and cTMD, for a given 

attached/secondary mass, mTMD as shown in Fig. 1.4 (a). For vibration suppression of tall 

buildings, the TMD is generally tuned to the first natural frequency of the primary structure to 

control the fundamental (translational) lateral mode shape (e.g., Rana and Soong 1998, Li et al. 

1999). 

 

 

Fig. 1.4. (a) the 600 ton, pendulum-type TMD in Taipei 101 (www.interestingengineering.com); and 

(b) the 1000 ton, pendulum-type TMD in Shanghai Tower (https://www.structuremag.org/?p=12403). 

 

Notwithstanding successful and wide implementations of linear passive TMDs, they have 

two major drawbacks in suppressing wind-induced oscillations in tall buildings: 

 

(I) The effectiveness and applicability of TMDs depend heavily on the attached mass: the 

larger the attached mass the better vibration suppression and robustness to detuning is 

achieved (De Angelis et al. 2012). However, attached mass can rarely exceed 0.5% to 

1% of the total building mass in tall buildings (Tse et al. 2012) as it becomes overly 

expensive to accommodate its weight and volume due to structural and architectural 

limitations, respectively. 

(II) TMDs may be “detuned” over time due to either unforeseen nonlinear behaviour of the 

TMD and/or of the host building structure, or due to changes to the dynamic properties 

http://www.interestingengineering.com/
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during the service life of the host structure. Detuning affects significantly TMD 

vibration suppression performance which is inherently narrow-band affecting 

frequencies close to the targeted dominant/fundamental natural frequency of the host 

structure. 

 

In addition to the two limitations above, another potential shortcoming of single TMD 

systems (i.e., with one secondary mass) for wind-induced building motion control is that they 

can only suppress the response level associated with a particular vibration mode, as previously 

discussed, while for wind-induced accelerations in slender cantilevered (civil engineering) 

structures, non-negligible contributions may, in some cases, come from the higher modes. 

Indeed, through full-scale field measurements of the Canton Tower (a 604m-tall, multipurpose 

observation tower with tapered, elliptical cross-section located in Guangzhou, China), Guo et 

al. (2012) showed that the peak acceleration response during a particular typhoon event, 

measured at the highest monitored level and in the stronger (principal) direction of the tower, 

was dominated by the second vibration mode in that direction. Still, the power spectral density 

(PSD) functions of acceleration response at lower heights were found to contain non-negligible 

peaks from the first six modes spread over the frequency range from 0 to 2 Hz. Meanwhile, for 

tall rectangular buildings with side ratio (i.e., the depth-over-breadth ratio) over 3, a second 

spike on the PSD of crosswind force can occur at a higher frequency than the 

primary/dominating VS frequency (cf. Fig. B.4 (b)) due to the sub-vortex shedding effect 

(Liang et al. 2002). Then, non-negligible higher-mode outputs can be generated if one of the 

higher resonance frequencies of the structure coincides with the sub-VS frequency. As an 

example, Li et al. (2004) conducted in situ measurements of the Di Wang Tower (a 325m-tall 

office tower with an elongated floorplan and side ratio close to 2) during the passage of Typhoon 

Sally and demonstrated that while the fundamental modal response largely dominated the 

acceleration response in the weaker direction of the building, the second mode still accounted 

for 10% of the total response. 

To further illustrate this point, figure 1.5 (b) and (c) examines, respectively, the absolute 

FRFs of the top-floor displacement and acceleration of a 74-storey benchmark structure 

equipped with an optimal top-floor TMD as shown in Fig. 1.5 (a) (see also Ciampoli and Petrini 

2012, Spence and Gioffrè 2012, Giaralis and Petrini 2017). As evidenced in Fig. 1.5 (c), the 

uncontrolled acceleration FRF has significant resonant peaks corresponding to the higher 

modes at which small inputs can incur large responses, whereas, in the displacement transfer 

function in Fig. 1.5 (b), there are only three resonant peaks visible and the second and third 

peaks are much lower than the first. Moreover, it is seen in Fig. 1.5 (c) that the single TMD 

system, tuned to the fundamental mode of the primary structure, is unable to suppress the higher 

modes as the pertinent FRF (depicted by the red dashed line) overlaps with the uncontrolled, 

except near the fundamental frequency. 
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Fig. 1.5. Crosswind transfer function of the top floor (a) displacement; and (b) acceleration of an 

uncontrolled 74-storey benchmark tall building. 

 

To overcome the above TMD shortcomings, Giaralis and Petrini (2017) recently explored 

the potential of top-floor tuned mass damper inerter (TMDI), initially proposed for seismic 

protection of multi-storey buildings (Marian and Giaralis 2013, 2014), in enhancing TMD 

vibration suppression effectiveness in wind-excited tall/slender structures subject to VS effects. 

The TMDI consists of a conventional linear passive TMD, in which the attached mass is linked 

to a different floor from the one that the TMD is attached to via an inerter element as shown in 

Fig. 1.5 (b). The latter is a mechanical element with negligible mass/weight, which develops a 

resisting force proportional to the relative acceleration of its terminals through a constant 

termed intertance, b, and measured in mass units (e.g., kg) (Smith 2002). Giaralis and Petrini 

(2017) showed that the TMDI reduces peak top-floor acceleration of the wind-excited 74-storey 

benchmark building as shown in Fig. 1.5 (a) more effectively than a same-weight TMD by 

considering a smaller attached mass but bigger inertance values, and/or larger TMDI topologies 

in which the inerter spans more stories in linking the attached mass to the host structure. The 

latter consideration is graphically explained in Fig. 1.5 (b), showing a top-floor TMDI in a 

planar n-storey frame building with the inerter spanning p floors (“-p” connectivity) and 

connecting the attached mass, mTMD, to the n-p floor. Moreover, it is numerically shown that the 

inclusion of the inerter device reduces the TMD stroke significantly, and that the magnitude of 

the developing inerter forces can be readily accommodated by the host structure locally 

(Giaralis and Petrini 2017). On the other hand, it has been established that within the TMDI, 

the inerter endows mass amplification and higher modes damping effects to building structures 

(Giaralis and Petrini 2017, Giaralis and Taflanidis 2018), which can be seen by examining 

pertinent acceleration FRFs of TMD- and TMDI-equipped benchmark structure in Fig. 1.5 (c). 

These benefits render the TMDI a lightweight and more versatile solution than the TMD for 

controlling both broad- and narrow-band excitations. 
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Fig. 1.6. A n-storey lumped-mass planar frame model equipped with a (a) top-floor TMD; (b) top-floor 

TMDI with connectivity “p”; and (c) ground-floor TID. 

 

Although the TMDI suppression effectiveness has been well identified, there are still 

several open issues that have not been addressed in the literature hitherto and in Giaralis and 

Petrini (2017). Firstly, the latter work did not consider the optimal TMDI design for wind-

excited tall buildings; only parametric analyses were undertaken to map relative trends to the 

response of tall buildings rather than to quantify the full potential of the TMDI for vibration 

control. Secondly, all previous works had only considered a given host structure with fixed 

mass and lateral stiffness distribution. Nevertheless, it is shown in Pietrosanti et al. (2020a) that 

the mode shape of the uncontrolled primary structure can influence the TMDI motion control 

performance heavily. This observation warrants further parametric and systematic 

investigations considering a wide range of mass and stiffness distributions of the host structure 

and different fundamental mode shapes. Thirdly, although improved vibration mitigation can 

be achieved by increasing the inerter connectivity, such a strategy may not be practical for 

routine slender mid- to high-rise buildings with 20-40 storeys. This is because occupying high-

premium space across several upper floors of such structures for accommodating a control 

device is not cost-effective. Finally, thus far in the scientific literature and practical 

implementation of TMDIs for tall buildings, the TMDI is designed and treated as a retrofitting 

measure to improve the performance related to occupant comfort (i.e., in terms of floor 

acceleration) of inherently deficient primary structures only. Therefore, all current studies had 

only considered the optimal design of the control device itself for a given primary structure; no 

efforts had been undertaken to design the whole tall building-plus-TMDI structural system in 

an integrated manner. This very fact motivates the optimal design of the primary structure-plus-

TMDI within a multi-objective setting, achieving simultaneous reduction in material 

consumption and optimal vibration control effect. 
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1.2 Aim and objectives 

Building on the current state-of-the-art research on the TMDI reviewed above, the 

overarching aim of this PhD thesis is to develop novel performance-based tall building design 

approaches for occupant comfort in the cross-wind direction, underpinned by numerical 

solution of innovative optimisation formulations, enabling slender, lightweight, and material-

efficient buildings equipped with passive TMDI devices. In this context, the following four 

objectives are set as stepping stones towards achieving the above aim. 

(I) Derive optimal TMDI tuning parameters, i.e. frequency ratio and damping ratio, to 

minimise selected structural performance (e.g., peak floor accelerations in the 

crosswind direction) of tall buildings related to appropriate performance criteria (e.g., 

occupants comfort) for given secondary mass and inertance, host structure, and wind 

excitation field. 

(II) Quantify the influence of the uncontrolled fundamental mode shape on TMDI 

vibration suppression efficacy through a thorough parametric investigation 

considering a wide range of primary structures modelled/simplified as continuous 

cantilever beams with various geometric shapes and, therefore, different mass and 

stiffness distribution. 

(III) Propose appropriate structural modification to tall buildings to improve the potential 

of TMDI for motion control, thus extend the applicability of TMDI to more routine 

structures. 

(IV) Develop novel integrated primary structure-plus-TMDI optimal design configurations 

for meeting building code-prescribed occupants' comfort criteria in tall buildings while 

minimising material usage for the primary structural system. 

 

1.3 Thesis organisation 

The thesis comprises eight chapters and two appendices followed by the list of cited 

references.  

The current first chapter provides an introduction to the thesis by briefly discussing the 

needs for tall buildings and reviewing the serviceability as well as sustainability requirements 

related to wind action as well as current mitigation measures. It lists the objectives of the current 

research effort and outlines the organisation of the thesis. 

Chapter 2 starts with a brief review of the development and technological aspects of the 

inerter device. Then, it reviews the state-of-the-art and the state-of-the-practice for the inerter-

based vibration control strategies, including various inerter-based configurations, for 

seismically-excited and wind-excited building structures. It identifies the research gaps that 

have not been answered/addressed by the existing studies, thus framing research needs in the 

field. 
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The first half of Chapter 3 contributes a novel optimal TMDI design formulation, which 

is numerically solved by a custom-made pattern search algorithm with an adaptive search range 

for computational efficiency. The formulation aims to minimise the peak or RMS floor 

acceleration of tall buildings under specified wind excitation by seeking optimal TMDI tunable 

parameters for given TMDI inertial properties and inerter connectivity. Further, the second half 

of Chapter 3 focuses on investigating TMDI benefits numerically with different inertial 

properties (i.e., secondary mass/weight and inertance) configured in different inerter 

connectivity for -tall building structures deficient to code-prescribed occupant comfort criteria 

under moderate wind action. This is achieved through the application of the TMDI tuning 

method to a 74-storey benchmark structure equipped with a top-floor TMDI. The latter is 

optimally designed for a wide range of inertial properties and three different topologies through 

the numerical solution of the underlying optimisation problem for the benchmark building 

subjected to experimentally calibrated spatially-correlated crosswind force field accounting for 

VS effects. 

Chapter 4 investigates the influence of the primary structure elastic and mass properties 

on the TMDI motion control performance, including the free-end displacement reduction for 

the primary structure, as well as the attached mass stroke, inerter and damping forces of the 

optimal TMDI. This is pursued through an innovative parametric study, involving a wide range 

of tapered beam-like cantilevered primary structures with different continuously varying 

flexural rigidity and mass distributions equipped with TMDIs optimally tuned to minimise the 

free-end peak and RMS displacement response of the primary structure subject to harmonic 

resonant and white noise excitation, respectively. 

Chapter 5 introduces an innovative local structural modification, i.e., top-storey softening, 

in conjunction with an optimal top-floor TMDI, as an alternative solution to the inerter spanning 

more than one storey as seen in Chapter 3, for improved serviceability performance in typical 

mid-rise to high-rise buildings that are susceptible to wind-induced VS effects causing occupant 

discomfort. This is supported by adapting the optimal TMDI tuning problem, initially 

formulated in Chapter 3, to include the top-storey lateral stiffness as a secondary design 

parameter (in addition to the TMDI inertial properties), aiming to minimise acceleration of the 

highest occupied floor. To this end, a 34-storey composite core-frame building is taken as the 

primary structure for numerical investigation. 

Chapter 6 presents a novel strain energy-based sizing optimisation formulation relying on 

optimality criteria (OC) and an associated numerical scheme for solving minimum-weight 

design problem of elastic frame structures with fixed layout under a single frequency constraint 

on any arbitrary vibration mode. The OC formulation is tailored for wind-excited tall buildings 

by applying the frequency constraint to the fundamental vibration mode treated as a measure 

of the structural lateral stiffness. The latter is generally inversely related to wind-borne 

acceleration response in tall buildings. In the first instance, the proposed OC approach, with 
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two sub-conditions for characterising the optimal structure, extend and generalise the well-

known uniform-strain-energy-density criterion by introducing a rigorous, supplementary 

condition derived using the Lagrangian multiplier formalism. The latter condition relaxes the 

implicit limitation of existing energy-based OC approaches that no stress redistribution during 

size updating is considered even in hyperstatic structures. From a practical viewpoint, it is seen 

that this supplementary condition improves on the convergence of existing OC methods 

significantly for eigenvalue/frequency-constrained optimisation problems. A rigorous 

mathematical proof is provided for showing that, if a stationary point exists in the feasible 

solution set of the optimisation problem, the resizing algorithm is driving the initial, non-

optimal structural design towards the global optimum (i.e., minimum-weight design) in the 

continuous design space. The method is exemplified using a planar moment resisting frame 

(MRF) consisting of three frame elements and is validated by a graphical optimisation method 

for accuracy. Pertinent numerical results from two independent/parallel sizing optimisations, 

performed on the same MRF but with different optimality criteria, are provided to demonstrate 

the influence of the second condition on the convergence of the iterative/resizing process and 

on the accuracy of the optimal solutions reached. The proposed resizing approach can be 

applied to reduce the structural self-weight of  tall buildings whose lateral load resisting 

systems comprise mainly frame elements and their design is governed by habitability 

(occupants comfort) criteria. 

Chapter 7 puts forth a novel structure-plus-TMDI design framework, combining the TMDI 

tuning method in Chapter 3 and the sizing algorithm in Chapter 6, for (structural) material use 

reduction of the primary structural system of VS-prone tall buildings while meeting code-

prescribed occupant comfort criteria by exploiting the motion control potential of inerter-based 

DVAs. The proposed framework is applied to an occupant comfort sensitive 15-storey moment 

resisting frame building under moderate wind action equipped with a ground-floor inerter-based 

vibration absorber. Pareto optimal solutions for inertance and structural building weight are 

provided for the case study building to quantify the potential savings in material consumption 

and upfront cost. 

Concluding remarks along with the limitations and, therefore, potential future extensions 

of the proposed methodologies are provided in Chapter 8. Furthermore, Appendix A reviews 

theoretical concepts of modelling lateral dynamic forces consistent with wind excitation in the 

frequency domain. Further, it outlines concepts and formulae from linear random vibration 

theory to obtain the peak as well as RMS response of tall buildings under wind excitations. 

Appendix B is informative and reviews details on wind excitation models accounting for VS 

effect in the crosswind direction. Further, it provides frequency- and time-domain numerical 

results for the 74-storey benchmark building used in Chapter 3 to verify the accuracy of the 

wind force modelling and the frequency domain structural analysis. 
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Chapter 2 

State of Art Review on Inerter-Based Vibration Control for Building 

Structures 

2.1 Preliminary remarks 

In recent years, inerter mechanisms have been extensively studied in the literature in 

conjunction with viscous dampers (VDs) and TMDs for enhanced vibration suppression of 

dynamically-excited civil engineering structures (Ikago et al. 2012, Lazar et al. 2014, Marian 

and Giaralis 2014, Zhang et al. 2017, Li et al. 2019, Taflanidis et al. 2019). The inerter element, 

defined by Smith (2002), is a linear massless mechanical element with two terminals resisting 

relative acceleration of its ends through a constant known as inertance measured in mass units 

(e.g., kg). As established in section 1.1.3, vibration control efficacy and robustness of 

conventional inertial dampers (i.e., TMD) are known to be limited by the secondary mass that 

can be accommodated by the host structure and their inherent narrowband nature affecting 

frequencies only close to the targeted vibration mode. Through incorporating an inerter device 

to the TMD in an appropriate configuration, these issues can be conveniently addressed by 

exploiting the inerter mass-amplification and higher-mode-damping attributes, thereby leading 

to a lightweight broadband DVA that is more efficient and robust to detuning effects and 

uncertainties. In the three most popular inerter-based DVA configurations, the inerter is 

functioning either as a motion amplifier, a mass substitute, or a mass amplifier in the forms of 

tuned-viscous-mass-damper (TVMD), tuned-inerter-damper (TID), and TMDI, respectively 

(Taflanidis et al. 2019). To this end, this chapter begins with a brief description of the inerter 

element and its realization/implementation through different mechanisms. Then, the three 

above mentioned inerter-based DVAs, as well as their advantages and limitations, are discussed 

in detail. Finally, the state of the art of TMDI applications is critically reviewed for seismically 

excited and wind-excited tall building structures. 

 

2.2 The Inerter 

A standard mechanical-electrical analogy considers the correspondence of force to 

electrical current and of velocity to voltage. In this setting, the spring, the damper, and the mass 

mechanical elements correspond to the inductor, resistor, and grounded capacitor electrical 

elements, separately, (Smith 2002), as shown in Fig. 2.1. Notably, the capacitor with two 

terminals does not have an immediate correspondence in the mechanical domain since the mass 

element has only one free-to-move “terminal” (cf. Fig. 2.1). This is because the force-velocity 

relationship, described by Newton’s second law, relates the acceleration (i.e., the time derivative 

of velocity) of the mass relative to a fixed point in the inertial frame, implying the other mass 
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“terminal” is connected to the ground (Hixson 1976). Consequently, a passive electrical circuit 

comprising inductors, resistors, and capacitors cannot have a direct spring-dashpot-mass 

mechanical analogue. This lack of a direct mapping motivated Smith (2002) to define a new 

mechanical element, the inerter, which is perfectly analogous to the capacitor as confirmed in 

Table 2.1. Moreover, Smith (2002) detailed physical embodiments of the inerter concept to 

approximate the behaviour of the ideal inerter element through converting linear motion to 

rotational motion, enabling storing a large amount of kinetic energy at fast-spinning flywheels 

while requiring negligible mass. The latter characteristic of the inerter device corresponds to 

the capacitor storing electrical energy in an electrical field. 

 

 

Fig. 2.1. Analogies of mechanical and electrical elements. 

 

Table 2.1 Analogies of mechanical and electrical quantities 

Mechanical domain Electronical domain 

Stiffness coefficient, k Reciprocal of inductance, 1/L 

Damping coefficient, c Reciprocal of resistance, 1/R 

Mass, m 

Capacitance, C 

Inertance, b 

Momentum, p(t)=mv1(t) Charge, Q(t)=CV(t) 

Force, f(t) Current, I(t) 

Relative velocity, v1(t) – v2(t) Voltage, V(t) 

Force and time derivative of velocity 

1f mv=  

Current and time derivative of voltage 

1 1Q CV I CV= → =  

(grounded capacitor) 

Force and time derivative of velocity 

1 2( )f b v v= −  

Current and time derivative of voltage 

Q CV I CV= → =  



Chapter 2 – State of Art Review on Inerter-based Vibration Control for Building Structures 

19 |  
 

Force and velocity 

1 1( )f c v v= −  

Current and voltage 

1I RV=  

Force and time integral of velocity 

1 2( )f k v v dt= −  

Current and time integral of voltage 

1 ( )V LI I L V t dt= → =   

 

2.2.1 Mechanical element and device implementations 

In the 2000s, the inerter was used in the suspension system of Formula 1 racing car under 

the name “J-damper,” which, when tuned to the resonant frequencies of the tires, reduces rapid 

load variation at the tire contact patch and hence increasing mechanical grip (Chen et al. 2009). 

Since then, several different inerter prototypes were devised and experimentally tested over the 

past decade, achieving inertance values orders of magnitude larger than the physical mass of 

the device (Smith 2020). The ideal inerter element, capable of simple realization (Smith 2002), 

develops a resisting force proportional to the relative acceleration of its ends as described by 

the following equation 

 

1 2( )F b u u= −  ,                                                          (2.1) 

 

where u1 and u2 are the displacement coordinates of the inerter terminals as shown in Fig. 2.2 

(a) and, hereafter, a dot over a symbol denotes time differentiation. In the above equation, the 

constant of proportionality b is the so-called inertance measured in mass units (e.g., kg).  

Notably, although inerter devices are nonlinear to some extent due to friction and backlash 

effects, a linear behaviour is observed within relatively wide frequency bands of practical 

interest (e.g., Papageorgiou and Smith 2005, Wang et al. 2011, Chuan et al. 2012, Takewaki et 

al. 2012, Swift et al. 2013). This observation justifies adopting the ideal inerter element 

assumption to model physical inerter devices, which paves the way for developing simplified 

optimal TMDI tuning and performance assessment approaches for host structures equipped 

with inerter-based controllers in this work. 

 



Chapter 2 – State of Art Review on Inerter-based Vibration Control for Building Structures 

20 |  
 

 

Fig. 2.2. Schematic representation of (a) an ideal inerter element; (b) a rack-and-pinion flywheel-based 

inerter device with n gears (adapted from Petrini et al. 2020); and (c) viscous mass damper with a 

rotational inertial mass (adapted from Takewaki et al. 2012). 

 

2.2.2 Technological aspects and different inerter implementations 

In the 1970s, Kawamata et al. (1973) introduced a novel vibration control device that 

makes full use of the inertial resistance of flowing liquid, which is generally viewed as the 

earliest realization of the inerter principle (Ikago et al. 2012). Nowadays, the most widely-

known inerter implementations incorporate either rack-and-pinion (see e.g., Smith 2002, 

Papageorgiou and Smith 2005) or ball-screw mechanisms (see, e.g., Arakaki et al. 1999, Ikago 

et al. 2012) to transform the translational kinetic energy associated with the relative motion of 

the device terminals into rotational kinetic energy at a lightweight fast-spinning disk/flywheel. 

In the former configuration, the inertance depends primarily on the number of gears and the 

gearing ratio used to drive the disk, rather than on the disk’s physical mass. To elaborate further 

on this point, consider a typical mechanical realization comprising a disk linked to a rack-and-

pinion via n gears. Figure 2.2 (b) depicts such a device with n gears. The inertance of this device 

is given by 
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where mf and γf are the mass and radius of the gyration of the flywheel, respectively, prf is the 

radius of the flywheel pinion, rk/(prk) is the gearing ratio of the k-th stage/gear of the gearbox 

with n stages. It is clearly seen in Eq. (2.2) the mass amplification effect of this inerter through 

the term 2 2

1

n

k k

k

r pr
=

 .  

In the latter case of ball-screw based inerters, the axial relative motion between the device 

terminals is translated to rotational motion, with amplification, by a threaded shaft with helical 

grooves for ball bearings acting as a ball screw as shown in Fig. 2.2 (c). The inertance of this 
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inerter embodiment is calculated by 
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in which Ld, ro, and ri denote the lead of the ball screw (i.e., the linear distance traveled by the 

ball nut during one full rotation), outer and inner radii of the flywheel, respectively, while mf is 

the actual mass of the flywheel. It is found by Ikago et al. (2012) that, for this type of 

configuration, the mass amplification factor, i.e., ( ) ( )
2 2 2

12 d oL r r +  , can reach several 

thousands. 

 

2.3 Inerter-based vibration control configurations 

2.3.1 The tuned viscous mass damper (TVMD) 

One strategy to mitigate building vibrations is to increase the energy dissipation capacity 

of the structure through deploying supplemental damping devices (e.g., viscous, viscoelastic, 

friction, and hysteretic dampers) distributed in various forms (e.g., integrating dampers in 

diagonal, chevron, and toggle bracing systems) between adjacent floors. In theory, these devices 

only change the equivalent damping of the host structure but not the equivalent building mass 

or stiffness in practical terms. On the other hand, Hwang et al. (2007) proposed a new type of 

vibration control device termed rotational inertia viscous dampers (RIVD), as shown 

schematically in Fig. 2.3 (b), which is capable of increasing the equivalent mass and damping 

of a seismically excited SDOF system simultaneously through the ball-screw amplifying 

mechanism. Notably, the RIVD is dynamically equivalent to a viscous mass damper (VMD). 

To better engage the device even in structures with small drifts, the RIVDs were incorporated 

into a toggle bracing system to magnify the axial deformation and energy dissipation of the 

damper. Numerical results show that the RIVD control performance depends heavily on the 

lead of the ball-screw: as the lead decreases, the equivalent mass and damping of the controlled 

structure, and consequently, the RIVD suppression performance increases substantially. Indeed, 

it is evident in Eq. (2.3) that as the lead Ld reduces, the inertance coefficient b is magnified by 

a factor of 1/Ld squared. 
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Fig. 2.3. Mechanical model of a (a) viscous damper; (b) viscous mass damper/rotational inertia viscous 

dampers; and (c) tuned viscous mass damper equipped undamped SDOF system (adapted from Ikago et 

al. 2012). 

 

Building on the concept of RIVD/VMD, Ikago et al. (2012) developed the tuned viscous 

mass damper (TVMD), which is a VMD/RIVD in series with a supplementary spring and with 

an additional flywheel, as shown in Fig. 2.3 (c). Notably, the spring and rotational mass 

arrangement in the TVMD configuration behaves as a supplementary tuned oscillator that 

further amplifies the deformation of the damper, thereby improving the RIVD performance and 

avoiding the use of toggle bracing system. Further, the amplified apparent mass effect of the 

internal rotational tube in the VMD (cf. Fig. 2.3(b)) has not been used intentionally (Ikago et 

al. 2012), whereas in the case of TVMD, this amplifying effect is explicitly achieved by adding 

a flywheel to the device (see Fig. 2.3 (b)) such that the TVMD allows simultaneous mass and 

damping enhancement for the first time (Zhang et al. 2018). The TVMD system is tuned to the 

fundamental mode of the host structure. Closed-form solutions for optimal frequency and 

damping ratios of the TVMD system were derived through the fixed-points theory (Den Hartog 

1956) for an undamped SDOF structure subjected to harmonic excitation and were used, as 

approximations, for slightly damped SDOF systems. The TVMD performance for seismic 

control was investigated numerically and experimentally through shaking table tests using a 

SDOF system equipped with a small-scale TVMD. The simulation and test results suggest that 

the TVMD is more effective in suppressing the displacement response of the SDOF system for 

ground motions having a wide range of frequency components than the conventional VD and 

VMD with the same damping coefficient cd as shown in Fig. 2.3 (a) and (b).  
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Fig. 2.4. a 14-storey MRF building in Tohuku Japan that utilises viscous dampers and tuned viscous 

mass dampers configured in conjunction with V-shaped bracing systems for seismic control (Sugimura 

et al. 2012). 

 

For application, figure 2.4 shows a 14-storey MRF building in Tohoku, Japan, that 

incorporates conventional VDs (in the first four stories) and TVMDs (from the 4th floor above) 

in conjunction with V-shaped steel bracing systems for seismic protection of the building 

through simultaneous mass and damping enhancements. Sugimura et al. (2012) reported that 

an apparent mass of 5,400 tonnes, accounting for 7% of the total building mass, can be obtained 

by a physical mass of 560 kg only, thus achieving a mass amplifying factor of 9,643. Further, 

the modal damping ratio of the fundamental mode, which dominates the seismic response of 

the building, is increased to 14% through the inclusion of the VDs and TVMDs. 

 

2.3.2 The tuned inerter damper (TID) 

Another representative inerter-based vibration control configuration, proposed by Lazar et 

al. (2014) for seismic protection of multi-storey buildings, is the so-called tuned inerter damper 

(TID). The latter can be installed either on the top floor (connecting the roof and penultimate 

floor) to replace the conventional TMD or on the first floor (connecting the first floor and 

ground) of the buildings (see Fig. 1.6(c)) in which case the inerter is grounded and acts as a 

mass element equal to b. In both cases, the inclusion of the inerter element creates an additional 

lateral degree-of-freedom (DOF), denoted by xTID in Fig. 1.6 (c), which, in the case of the 

ground-level installation, makes the TID to be dynamically equivalent to a TMD hung from the 

first floor but without an attached mass. The main advantage of TIDs is that a high level of 

vibration suppression can be achieved with a much reduced weight through scaling up the 
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inertance by gearing (Lazar et al. 2014). Compared to the TMDI, the TID has a simpler 

configuration as the entire attached mass is substituted with a single inerter element (Radu et 

al. 2019), which connects the parallelly arranged spring and damper elements directly to the 

floor underneath. Through algebraic solution, Lazar et al. (2014) found that, in addition to the 

two well-known fixed points on the FRF of TMD-equipped undamped SDOF oscillators, there 

exists a third fixed point on the FRF curve of TID-equipped SDOF system at a higher frequency. 

By extending the fixed-points technique (Den Hartog 1956), the TID tuning strategy was 

established analytically for undamped SDOF systems subjected to sinusoidal ground motion. 

Four different control strategies with the same apparent mass, namely, the top-floor and ground-

floor TMD and TID, were studied numerically in an undamped 3-storey planar frame model 

subjected to seismic excitation. The numerical results show that the ground-floor TID achieved 

better control performance than the top-floor counterpart with the same inertance value, 

whereas, in the case of TMDs, the opposite was true. Further, optimally-tuned TID and TMD 

installed on the same floor exhibit similar control performance, though the former required a 

much smaller weight. Finally, for the ground-floor TID to perform equally well as top-floor 

TMD, the inertance value needs to be five times larger than the attached mass of the TMD for 

the frame model considered therein. 

 

2.3.3 The tuned mass damper inerter (TMDI): a generalization of TMD and TID 

Independently of the TID, Marian and Giaralis (2013) proposed a DVA, called tuned mass 

damper inerter (TMDI), for passive protection of seismically excited multi-storey buildings 

combining the inerter with the classical TMD as depicted in Fig. 1.6 (b). In this configuration, 

the inerter device connects the TMD attached mass to a lower floor of the building, with the 

TMDI stiffness and damping properties, kTMDI and cTMDI, tuned to control the fundamental 

vibration mode of the primary structure for given attached mass, mTMD, and inertance 

constant, b (cf. Fig. 1.6 (b)). Notably, in the absence of the inerter, the TMDI in Fig. 1.6 (b) 

reduces to a classical TMD with a free-to-oscillate mass in Fig. 1.6 (a), whereas when the inerter 

substitutes the attached mass entirely, the TID configuration in Fig. 1.6 (c) is retrieved. In this 

respect, the TMDI can be viewed as a generalization of the TMD and the TID (Marian and 

Giaralis 2017). Pertinent analytical and numerical data, reported in Marian and Giaralis (2014) 

for damped SDOF and MDOF primary structures base-excited by stationary stochastic 

processes, evidenced that using the inerter in the proposed configuration can either replace a 

considerable part of the TMD vibrating mass to achieve a significantly lighter passive vibration 

absorber for fixed performance or improve the TMD performance for a fixed attached mass. 

These advantages of the TMDI were attributed, on the one hand, to the mass-amplification and 

higher-mode damping effects endowed by the inerter and, on the other hand, to more efficient 

usage of the damper with a much higher damping coefficient compared to a same-mass TMD. 

In this regard, the TMDI was shown to outperform the TMD for the seismic protection of fixed-

based buildings (Giaralis and Marian 2016, Pietrosanti et al. 2017, Giaralis and Taflanidis 2018, 
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Ruiz et al. 2018, De Domenico et al. 2020, Kaveh et al. 2020) and based-isolated buildings (De 

Domenico and Ricciardi 2018, De Angelis et al. 2019), as well as for serviceability performance 

enhancement of wind-excited high-rises (Giaralis and Petrini 2017, Dai et al. 2019) and 

vibration control of wind turbine towers (Sarkar and Fitzgerald 2019). 

In detail, Pietrosanti et al. (2017) investigated the effects of different TMDI optimisation 

strategies on optimal TMDI tuning properties, i.e., stiffness and damping coefficients, 

employing a white-noise base-excited damped SDOF primary structure system with the inerter 

connecting the secondary mass to the ground. Three optimisation criteria were adopted to 

design the TMDI, i.e., minimising displacement and acceleration of the primary system, as well 

as maximising dissipated energy by TMDI over total input energy. Numerical results show that 

the tuning parameters obtained by the three criteria were similar for the same TMDI attached 

mass and inertance value, whereas the optimal solutions found by the third criteria always lie 

between the corresponding values determined by the first and second strategies. To this effect, 

the authors concluded that the third criterion forms a "middle ground" for optimal TMDI design 

under simultaneous displacement and acceleration constraints on the primary system. 

Furthermore, Giaralis and Taflanidis (2018) considered an optimum TMDI design framework 

accommodating the mass-amplification and higher-mode-damping benefits while accounting 

for parametric uncertainties to the host structure properties and seismic excitation. Numerical 

results pertinent to a 10-storey building under stationary Kanai‐Tajimi stochastic excitation 

evidence that the TMDI achieves enhanced structural performance and robustness to building 

and excitation uncertainties compared to same mass/weight TMDs. In particular, parametric 

uncertainty to the excitation was shown to have a minor impact on TMDs, TIDs, and TMDIs, 

whereas structural uncertainties only had a noticeable impact on the first two but not on the 

TMDI.  

More recently, Pietrosanti et al. (2020a) demonstrated that the relative modal coordinate 

of the hosting structure between the two terminals of the TMDI influences the TMDI 

effectiveness significantly in seismically excited buildings represented by lumped-mass models. 

In this regard, the work of Pietrosanti et al. (2020a) points to the fact that the stiffness and/or 

mass properties of the primary structure can affect the motion control efficacy of the TMDI, 

which is not the case for classical TMDs. Further, Pietrosanti et al. (2020b) conducted a 

campaign employing shaking table testing to assess the TMDI vibration suppression attributes 

in harmonically excited SDOF structures under combined effects of structural and inerter 

nonlinearity. Experimental data show that the main advantages of the TMDI established in the 

literature for ideal inerter elements (e.g., improved vibration suppression through increasing 

inertance without increasing physical mass) is maintained for non-ideal inerter devices. More 

importantly, the dynamic response of the SDOF structure in terms of displacement, acceleration, 

and base reaction force is insignificantly influenced by the nonlinear attributes of the inerter 

device.  
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2.4 Applications of TMDI to benchmark building structures 

2.4.1 Earthquake engineering applications 

In several previous studies (see, e.g., Marian and Giaralis 2014, Giaralis and Taflanidis 

2018, Pietrosanti et al. 2017), optimally tuned TMDIs were shown to outperform TMDs in 

mitigating earthquake-induced vibrations in building structures for the same secondary mass, 

especially, if it is relatively small. Nevertheless, all these TMDI seismic application studies 

involved simplified modelling assumptions, such as considering shear-type frame building 

models, adopting a single performance objective, and/or representing seismic excitation as a 

stationary stochastic process). Recognising the above limitations, Ruiz et al. (2018) extended 

these efforts by examining a risk-informed TMDI optimisation, adopting multiple objectives 

for TMDI design and employing probabilistic life-cycle criteria to quantify performance using 

time-history analysis while assuming linear structural behaviour. Emphasis of the work was 

placed on TMDI applications for seismic protection of tall buildings in the region of Chile, 

which was motivated by the fact that mass/inertia dampers had been shown particularly efficient 

in reducing structural damage potential of earthquakes in the Chilean seismo-tectonic 

environment (Ruiz et al. 2015). Three performance criteria were used in the design optimisation 

including the life-cycle cost of the integrated system composed of the device upfront cost and 

anticipated seismic losses over the structure lifetime, the repair cost with a specific return of 

period, and the inerter force magnitude affecting the inerter size and upfront cost. A case study 

was presented employing a specific 76.2m-tall 21-storey building with an unsymmetrical 

tapered elliptical floorplan located in Santiago, Chile. Seven different inerter topological 

configurations were examined with the TMDI mass attached either to the top floor or the 18th 

floor and the inerter connecting the secondary mass to the floor either one, two, or three stories 

above or below. Numerical results show that optimal TMDI configurations can accomplish 

simultaneous reduction of life-cycle and repair costs, though at the expense of larger inerter 

forces and, thus, increased inerter size and cost. Further, it was shown that connecting the inerter 

to a lower floor provides considerable benefits across all examined performance criteria as the 

inerter is engaged in a more efficient way for the same inerter coefficient and attached mass 

ratios. 

Furthermore, De Domenico et al. (2020) recently explored the potential of using multiple 

TMDIs, integrated into the aerial walkway connecting two adjacent high-rise buildings, as an 

unconventional control strategy for enhancing structural safety and serviceability of near 

located tall buildings or twin towers subject to seismic hazards. The idea was to utilise the 

uncorrelated relative motion between the buildings to maximise the TMDI efficiency in 

suppressing earthquake-borne vibrations in both structures. A case study was presented 

involving a real project in China that has two closely located buildings coupled by an aerial 

corridor connecting the 46th floor of the taller tower to the roof/55th floor of the lower. One 

TMDI system was installed in each building with the second terminal of the inerter device 

connected to the other building via the aerial passage. For optimal TMDI designs, performance-
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based optimisations were performed to determine the optimal values of attached mass, inertance, 

stiffness and damping coefficients of both TMDIs that minimise the averaged floor 

displacement, inter-storey drift, or floor acceleration of two buildings simultaneously by 

employing Nondominated Sorting Genetic Algorithm II for 44 ground motions from the FEMA 

P695 far-field record set. It was found that the frequency contents of the seismic input have a 

strong impact on the TMDI control performance. Considering reasonable constraints imposed 

on the TMDI inertial properties and location, the optimally designed dual TMDI system was 

shown to outperform both the conventional multiple TMD system and single TMDI and to be 

very efficient in acceleration and inter-storey control but not in displacement suppression. 

 

2.4.2 Wind engineering applications 

Turning attention to wind engineering applications, Giaralis and Petrini (2017) explored 

for the first time the idea of using a top-floor TMDI in various inerter topologies to suppress 

excessive crosswind-induced oscillations compromising occupant comfort in super-tall 

buildings. A parametric numerical study was undertaken involving a TMDI-equipped planar 

low-order model, defined in terms of lumped mass, damping, and stiffness matrices, that 

accurately captured the in-plane dynamic behaviour of a 74-storey benchmark building exposed 

to a quasi-stationary spatially correlated wind force field accounting for VS effects in the 

crosswind direction. The TMDI frequency and damping ratios were determined using closed-

form solutions yielding optimal tuning parameters for the classical TMD that minimise the 

displacement response variance of white noise force-excited undamped SDOF primary 

structures (Warburton 1982). To this effect, the tuning parameters used in this study did not aim 

to achieve optimal TMDI design for the considered wind-excited primary structure against any 

particular optimisation criterion, but only yielded reasonable yet suboptimal values of tuning 

parameters. Still, it was found that the inerter incorporation to the TMD reduces the peak top 

floor acceleration supporting improved occupant comfort beyond a same-weight TMD more 

effectively by adopting smaller attached mass together with TMDI connectivity in which the 

inerter spans more storeys in linking the attached mass to the host structure. These findings 

were attributed to the mass-amplification and higher-mode damping effects of the TMDI 

previously discussed (see also Figure 1.5), which become more prominent for smaller TMD 

masses and larger inerter topologies. In this context, it was numerically shown that the TMDI 

can meet code-prescribed serviceability design requirements by considering significantly 

smaller attached mass (depending on the TMDI connectivity and inertance coefficient) 

compared to the TMD and (ii) the inerter device can be used to upgrade existing TMD-equipped 

tall buildings, without changing the attached mass, to meet more stringent serviceability design 

requirements than those considered in the initial design due to site-specific climate change 

effects or changes to the surrounding built environment (i.e., increased wind exposure). 

Moreover, Wang et al. (2019) extended the above efforts by considering a performance-
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based numerical optimisation that aims to minimise either peak floor displacement or 

acceleration in wind-excited tall buildings. The optimisation formulation treated explicitly the 

device's location, i.e., on which floor the TMDI is deployed, as an active/primary design 

variables alongside the TMDI stiffness and damping coefficients. However, given the inherent 

complexity of wind excitation models, the therein proposed TMDI optimisation approach, 

which relies on repetitive time-domain analysis through complex mode superposition, becomes 

computationally overly demanding, as the number of the primary structure DOFs increases. In 

this context, it is deemed necessary to develop a computationally efficient tuning strategy for 

wind-excited TMDI-equipped tall buildings to meet the relevant serviceability requirements. 

 

2.5 Research gaps 

The existing body of research on TMDI vibration control for tall buildings (Giaralis and 

Petrini 2017, Giaralis and Taflanidis 2018, Ruiz et al. 2018, Dai et al. 2019, Domenico et al. 

2020) has well established the beneficial effects of inerter incorporation in conventional TMDs 

for improved control efficacy and robustness. These improvements are achieved by means of 

increasing the inertance and/or inerter connectivity. Nevertheless, most of these studies have 

been undertaken to investigate the TMDI control performance in earthquake-excited building 

structures, while limited work has been undertaken to address the efficient optimal TMDI 

design for wind-induced vibration suppression (research gap #1). At the same time, no relevant 

work has been conducted to systematically quantify the influence of elastic and mass properties 

of the primary structure on the TMDI control efficacy (research gap #2). Moreover, for typical 

mid-rise buildings and certain cantilever-like structures, spanning the inerter over several floors 

in linking the attached mass to the host structure may not be physically possible or cost-effective. 

In these circumstances, alternative strategies are needed to extend the applicability of TMDI 

for routine mid-to-high-rise wind-sensitive buildings and, more generally, slender cantilevered 

structures (research gap #3). Last but not least, no prior research has utilised inerter-based DVAs 

to achieve material-efficient design of the lateral wind load resisting structural systems of tall 

buildings commonly governed by serviceability (occupant comfort) requirements through 

simultaneous optimisation of the primary structural system and of the vibration absorber in an 

integrated manner (research gap #4). The above four identified research gaps are addressed in 

this PhD thesis by pursuing the four research objectives, respectively, listed in Section 1.2. In 

the following Chapter, the focus is placed on developing a computationally efficient optimal 

TMDI tuning strategy for wind-borne motion control of tall buildings, and then on quantifying 

numerically various gains achieved by TMDIs optimally tuned for occupant comfort 

performance in tall buildings subject to VS effects. Thus, next chapter addresses research gap 

#1 by pursuing objective (I).
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Chapter 3 

Optimal TMDI Tuning for Wind Excited Buildings 

Note: Part of this Chapter has been published in 

Petrini, F., Giaralis, A., and Wang, Z. (2020). “Optimal tuned mass-damper-inerter (TMDI) design in 

wind-excited tall buildings for occupants’ comfort serviceability performance and energy harvesting.” 

Eng. Struct., 204: 109904. 

Herein, material corresponding only to the Candidate contribution to the paper is presented. This includes 

the formulation of a novel optimal TMDI design problem with a numerically efficient tuning algorithm 

for minimising floor accelerations in wind-excited tall buildings through optimal TMDI tuning, but with 

no energy harvesting considerations. All the numerical data presented in this Chapter have been obtained 

by the candidate using own-developed computer code. Further, Appendix B.5 includes verification of 

frequency-domain analysis results against time-domain analyses conducted by the Candidate using wind 

tunnel force data made available to the Candidate. 

3.1 Preliminary remarks 

Design of any DVA for motion control of a primary structure involves determining optimal 

properties of the absorber to maximise its effectiveness (Ghosh and Basu 2007). To this aim, 

this Chapter extends the work of Giaralis and Petrini (2017) to explore the full potential 

of optimally tuned TMDI with different inertial properties and inerter connectivities for 

vibration control and occupant comfort in wind-excited tall buildings susceptible to VS effects. 

In this respect, the Chapter addresses directly research gap #1 in Section 2.5 by pursuing 

objective (I) of Section 1.2. Specifically, the investigation is supported by formulating a novel 

TMDI optimisation problem (OP) and by considering a numerical solution strategy, aiming to 

minimise building floor accelerations under specified wind action. The approach is illustrated 

by application to the 74-storey benchmark structure equipped with a top-floor TMDI considered 

previously in Giaralis and Petrini (2017) without optimal TMDI tuning. The optimal TMDI 

properties are determined using a numerically efficient algorithm for a wide range of TMDI 

inertial properties and various inerter connectivities. The tuning process requires a structural 

analysis step to be undertaken assuming the same wind-excited primary structure but different 

TMDI stiffness and damping properties, which can be computationally intensive if applied to a 

detailed finite element (FE) model. To this effect, simplified low-order models that can 

accurately represent the detailed FE model (of the building) are necessary to meet the objective 

in a computationally efficient manner. Therefore, the planar low-order model derived in 

Giaralis and Petrini (2017), which was found dynamically equivalent to the FE model of the 

benchmark building, is adopted in this Chapter as the testbed/case-study structure for validating 
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the herein proposed tuning algorithm and for investigating the TMDI control effectiveness. The 

low-order model is excited by a well-established stochastic wind force model accounting for 

VS effects calibrated against wind tunnel tests (Liang et al. 2002). Notably, the OP formulation 

and numerical solution strategy presented herein are applicable to the optimal design of any 

inerter-based DVA for maximising occupant comfort in slender structures and are, thus, 

employed in later Chapters, with necessary modifications, for optimal TMD, TID, and TMDI 

design in various dynamically excited cantilevered structures. 

 

3.2 Optimal TMDI design for occupant comfort in wind excited structures 

In this section, a novel TMDI tuning problem is formulated alongside a custom-coded 

pattern search algorithm with iteratively narrowing search range to efficiently design/tune the 

TMDI primary design variables (DVs) for floor acceleration minimisation under a given design 

wind. 

 

3.2.1 Optimal design problem formulation 

The proposed optimal TMDI tuning for a n-storey building aims to minimise either the 

peak or RMS acceleration of the k-th floor. In most cases, the k-th floor is chosen to be the top 

floor as this is where the floor acceleration reaches its maximum value in the crosswind 

direction of typical building structures. With reference to Figure 1.6(b), the considered OP 

involves five dimensionless design parameters in total. These include the TMDI frequency and 

damping ratios defined as 
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respectively. They are grouped in the vector x1 = [νTMDI, ξTMDI]
T and are treated as primary DVs 

throughout this thesis. Additionally, the OP involves three secondary DVs, namely the TMDI 

attached mass and inertance ratios defined as 

 

 and = ,TMDIm b

M M
 =                                                     (3.2) 

 

respectively, plus the TMDI connectivity 1 ≤ p ≤ n , grouped in the vector x2 = [μ, β, p]T. In 

Eq.(3.2), M is a characteristic mass property of the primary structure (e.g., total building mass). 

Then, optimal design parameters in x1 (primary DVs) are sought within a prespecified search 

range [x1
min, x1

max] to minimise the objective function (OF), i.e., peak{ }kx  or RMS{ }kx , 

given values of the parameters in x2 (secondary design parameters). The problem can be 

mathematically expressed as 
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For a given building structure subjected to crosswind excitation, the OF can be efficiently 

computed following the frequency-domain random vibration analysis approach detailed in 

Appendix A. 

Purposely, the optimal design formulation in Eq. (3.3) allows for considering explicitly 

any desired combination of TMDI inertial properties (through μ and β) and TMDI connectivity 

p (i.e., number of floors spanned by the inerter element). In this manner, the special cases of 

TMD and TID can be examined by taking β=0 and μ=0, respectively. The performance in terms 

of occupants comfort can be verified by comparing either the hourly peak or RMS acceleration 

of the highest occupied floor under a design wind having a particular annual return period with 

the code-prescribed threshold values depending on the first natural frequency of the building 

(i.e., thresholdpeak{ }kx x  or thresholdRMS{ }kx x ). 

 

3.2.2 Numerical solution strategy 

The solution to the OP in Eq. (3.3) for a TMDI-equipped tall building represented by a 

damped MDOF system excited by complex wind excitation model is mathematically intractable 

and non-trivial. Therefore, a numerical pattern search solution strategy (Charles and Dennis 

2003) with iteratively updated search range of the primary DVs for efficiency is herein 

employed for the task and coded in MATLAB®. Specifically, a Cartesian three-dimensional 

coordinate system (νTMDI, ξTMDI, peak{ }kx  or RMS{ }kx ) is first created, with the vertical 

axis representing the peak or RMS crosswind acceleration on the selected floor k. The 

horizontal νTMDI-ξTMDI plane is discretised into an orthogonal mesh grid with upper and lower 

boundaries specified by x1
max and x1

min, respectively. The performance is evaluated at all points 

of the mesh grid for fixed TMDI inertial properties defined by μ and β, and connectivity p. 

Subsequently, the minimal performance, i.e., min{peak{ }}kx  or min{RMS{ }}kx , within 

the search range is returned, with the corresponding νTMDI and ξTMDI coordinates stored as the 

optimal tuning parameters, νopt and ξopt, at the current iterative step for the pre-selected TMDI 

inertial properties and connectivity. Based on the convergence criterion against the optimal 

performance, the boundaries/search range for νTMDI and ξTMDI are narrowed in the next iteration, 

using the optimal tuning values found in the current iteration. The iterations stop when the ratio 

of the absolute performance difference (between current iteration i and previous iteration i-1) 

to the current performance becomes smaller than a pre-specified tolerance, in which case 

convergence is assumed and the global minimum is returned. The algorithm is illustrated in the 

flowchart of Fig. 3.1. The TMDI tuning approach presented here is illustrated in section 3.5 

using the TMDI-equipped benchmark structure and wind excitation discussed in the following 
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two section. 

 

 

Fig. 3.1. Flowchart of the pattern search algorithm with adapted search range for optimal TMDI design. 

 

3.3 Modelling of case-study building structure and wind force excitation 

3.3.1 Benchmark building description and finite element modelling 

A slender crosswind-excited 74-storey steel building with height-to-width aspect ratio of 

more than 6 is used as a case-study structure for assessing performance and advantages of 

optimally tuned TMDIs throughout this chapter. The building has rectangular 50m × 50m 

footprint and is 305.9 m tall: typical floor height is 4 m, while ground and last floor height is 

13 m and 4.9 m, respectively. The adopted structure is sensitive to VS induced vibrations 

compromising occupant comfort and has been previously considered as benchmark for the 

development of performance-based wind engineering approaches (Ciampoli and Petrini 2012, 

Petrini and Ciampoli 2012, Spence and Gioffrè 2012). The lateral load bearing system of the 

case-study structure is double-symmetric along two horizontal perpendicular principal axes. It 

comprises an inner and an outer spatial steel frame having 12 and 28 columns, respectively, 

which are all pinned at the base. The two frames are connected by three steel truss outriggers 

spaced approximately 100 m apart. All columns have hollow square sections, with varying 

dimensions and thickness along the building height ranging between 1.20 m × 1.20 m to 0.50 

m × 0.50 m, and 0.06 m to 0.025 m, respectively. Beams are of various standard double-T steel 

profiles while outriggers consist of double-T horizontal and hollow-square diagonal members. 

A linear FE model of the considered structural system is developed in SAP2000® software 

package as shown in Fig. 3.2. The FE model comprises 7592 linear Euler-Bernoulli beam 

elements with all beam-to-column connections taken as rigid. Horizontal rigid diaphragm 

constraints are imposed at the height of each floor to account for the effect of the slabs in the 
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model. The total mass of the structure accounting for dead, superimposed, and live loads is 

92830 Mg and is uniformly distributed at each floor level except for the last floor to which half 

of the typical floor mass is assigned. 

Due to the presence of VS effects, the direction of the wind field which maximises lateral 

wind-induced vibrations (floor accelerations) in the crosswind direction coincides with any of 

the two principal axes of the adopted structure (Petrini and Ciampoli 2012). Therefore, only the 

uncoupled purely translational vibration modes of the FE model along a principal building axis 

are required for the assessment of structural performance in terms of occupant comfort 

serviceability limit state. For illustration, the first three translational mode shapes along a 

horizontal principal building axis are plotted in Fig. 3.2 tracing nodal displacements of the 

master node of each floor. They are obtained from standard linear modal/eigenvector analysis 

in SAP2000® upon constraining all rotational DOFs about the gravitational axis and all 

translational DOFs along the perpendicular horizontal principal axis of the building. The first 

three natural frequencies of these modes and the corresponding modal participating mass ratios 

in parentheses are 0.185 Hz (0.6233), 0.563 Hz (0.1900), and 1.052 Hz (0.0745). 

 

 

Fig. 3.2. Detailed FE model of the adopted benchmark case-study tall building structure and in-plan 

lateral translational mode shapes. 

 

Furthermore, the first six natural frequencies and respective modal participating mass 

ratios of the same building model in Fig. 3.2, with all DOFs activated (i.e., six DOFs per node), 

are summarised in Table 3.1 to demonstrate the influence of out-of-plane DOF deactivation on 

the modal properties of the model. In the Table, Ux, Uy, and Uz denote the global translational 

directions, X, Y, and Z, respectively, and Rx, Ry, and Rz denote the rotational directions about 

the X, Y, and Z axes, separately. Evidently, besides the symmetry of translational/flexural 

vibration modes in the two principal directions, no coupling is noted between any two flexural 
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modes or within any combination of flexural and torsional modes by viewing the pertinent 

modal participating mass ratios. To this end, it is reasonable to model the building as a planar 

dynamic system within any of the principal planes. As an extra precaution, it has been 

numerically verified that floor accelerations of the case-study building under the wind 

excitation introduced in section 3.3.3 are dominated by the fundamental vibration mode only, 

as the acceleration response is found insensitive to variation of the higher modal damping ratios. 

 

Table 3.1. The first six natural frequencies and corresponding modal participating mass ratios of the 

building FE model in Fig. 3.2 with all degrees-of-freedom activated. 

Mode 
Frequency 

[Hz] 

Modal participating mass ratio 

Ux Uy Uz Rx Ry Rz 

1 0.185 0.6233  0.0000  0.0000  0.0000  0.3921  0.0000  

2 0.185 0.0000  0.6233  0.0000  0.3922  0.0000  0.0000  

3 0.323 0.0000  0.0000  0.0000  0.0000  0.0000  0.7481  

4 0.563 0.1901  0.0000  0.0000  0.0000  0.2138  0.0000  

5 0.564 0.0000  0.1901  0.0000  0.2137  0.0000  0.0000  

6 0.867 0.0000  0.0000  0.0000  0.0000  0.0000  0.1219  

Sum 0.8134  0.8134  0.0000  0.6059  0.6059  0.8699  

 

3.3.2 Low-order planar frame model 

The fact that the critical response of the adopted case-study building to wind excitation 

lies along any one structural principal axis motivates the consideration of a surrogate planar 

(two-dimensional) dynamical model capturing faithfully the in-plane lateral vibrational 

behaviour along a principal axis of the high-fidelity three-dimensional FE model of Fig. 3.2. 

The considered model has N = 74 DOFs corresponding to the lateral translational displacements 

of the 74 rigid diaphragms, one at each floor, along a principal horizontal axis of symmetry of 

the case-study building. It, therefore, can be viewed as a 74-storey planar frame supporting, in 

later sections, the physical tractability of different TMDI topologies involving different floor 

connectivity. 

Mathematically, the adopted planar model is defined in terms of mass, Ms∈ℝ74×74, 

damping, Cs∈ℝ74×74, and stiffness, Ks∈ℝ74×74 matrices such that: (i) its undamped 74 modes 

of vibration match the 74 lateral uncoupled translational modes of the FE model of the case-

study structure in Fig. 3.2, and (ii) it attains mode-dependent damping properties specified 

based on recorded measurements from real-life tall buildings reported in the literature (Spence 

and Kareem 2014). Notably, the definition of the planar frame model through Ms, Cs, and Ks 

matrices enables, later, the incorporation of the TMDI through straightforward matrix 

manipulations rather than modifications to the detailed FE model. 

Following Giaralis and Petrini (2017), condition (i) is met by first defining a diagonal mass 

matrix Ms with diagonal elements equal to the floor masses assumed by the FE model. That is, 

Ms[k, k] = 1263 tonne (k = 1, 2, … , 73) and Ms[74, 74] = 631 tonne. Next, a full stiffness 
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matrix Ks is obtained by satisfying the modal analysis equations 

 

2

(FE) (FE) 0;  1,2,...,74,
j j

j − = =
 s sK M φ                                      (3.4) 

 

where φ(FE)j∈ℝ74×1 is the j-th uncoupled translational mode shape along a principal building 

axis obtained from the detailed FE model as previously discussed and ω(FE)j is the corresponding 

natural frequency. Excellent mode shape matching is achieved as illustrated in the rightmost 

panel of Fig. 3.2 in which the first three normalised mode shapes obtained from the FE model, 

φ(FE)j (j = 1, 2, 3) and from the planar frame model, φj (j = 1, 2, 3), are superposed plotted as 

continuous lines and circle-shaped dots, respectively. Further, a full damping matrix is obtained 

by the expression 

 

( ) ( )
1 1

mod ,T
− −

=sC Φ C Φ                                                   (3.5) 

 

where Ф∈ℝ74×74 is the modal matrix collecting all 74 φj mode shapes, the superscript “-1” 

denotes matrix inversion, and Cmod∈ℝ74×74 is a diagonal matrix defined as 

 

( ) ( ) ;  1, 2,., 2 .., 74
s

T

j j j j
j j j  ==

mod
C φ M φ                                           (3.6) 

 

In the last equation, ωj and ξj are the j-th natural frequency and modal damping ratio, 

respectively, of the planar frame model. In meeting condition (ii) above, modal damping ratios 

are taken equal to the values summarised in Table 3.2. Specifically, damping ratios in the 

frequency range of 0-7Hz are specified to match experimentally identified damping ratios from 

full-scale field measurements in tall steel framed buildings reported in Spence and Kareem 

(2014) and references therein. For natural frequencies above this range, increasing damping 

ratios with natural frequency are assumed to converge asymptotically to an arbitrary 18% 

damping ratio. The assumed increase in damping with frequency accounts for the anticipated 

greater participation of non-structural components in the inherent damping of the structure for 

oscillations dominated by the higher vibration modes (see Spence and Kareem 2014 and 

references therein). Notably, it has been numerically verified that the floor accelerations of the 

case-study building are solely dominated by the fundamental vibration mode in the sense that 

modal damping ratios of higher modes do not affect the response practically. 

 

Table 3.2 Modal damping ratios for all 74 translational vibration modes of the planar low-order FE 

model representing the case-study building structure in Fig. 3.2. 

Mode number, j 1 to 3 4 to 6 7 to 10 11 to 20 21 to 40 41 to 60 61 to 74 

Modal damping, ξj 2% 4% 6% 9% 12% 15% 18% 
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3.3.3 Wind force excitation model 

The input wind action to the 74-storey planar frame model derived in the previous section 

is herein represented by the stochastic crosswind force model developed in Liang et al. (2002) 

for tall buildings with rectangular footprint. The adopted model is based on experimental data 

from a comprehensive wind tunnel testing campaign and accounts for both the turbulence and 

the VS components of the crosswind force, the latter being critical for occupant comfort in the 

case-study building (Petrini and Ciampoli 2012). It is defined by a zero-mean Gaussian ergodic 

spatially correlated random field expressed in the domain of circular frequencies ω analytically 

through a PSD matrix. Upon spatial discretisation of the wind force random field at each floor 

slab of the case-study 74-storey building, a PSD 
74 74 74

FF

S  wind force matrix is specified. 

For the case-study building with total height 305.9m and square footprint the diagonal elements 

of the PSD wind force matrix, are given as Liang et al. (2002) 
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which specify the PSD of the wind force acting at the k-th floor slab located at height zk from 

the ground. In the previous expression, σk is the RMS of the crosswind force at the k-th floor 

slab and ωk is the frequency of VS at zk height. The RMS of the crosswind force is herein 

computed as 

 

2

m L

1
( ) ,

2
k k kV z C B z =                                                                  (3.8) 

 

where ρ is the air mass density taken equal to 1.25kg/m3; LC  is the mean RMS lift coefficient 

which is equal to 0.404 for square footprint buildings according to Liang et al. (2002); B=50m 

is the width of the building in the crosswind direction; Δzk is the tributary height of the k-th 

floor taken as half the storey height above floor k plus half the storey height below floor k; and 

Vm(zk) is the mean wind velocity at zk height. The latter can be determined through the power 

law expression (Simiu and Scanlan 1996) 

 

( ) ,

a
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H
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                                                                  (3.9) 

 

where Vref is a reference gradient wind velocity controlling the intensity of the wind action at 
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Href above the ground, and α is a dimensionless parameter dependent on the site terrain 

roughness. In the numerical part of this chapter, the α parameter is taken equal to 0.35 which is 

consistent with large cities terrain type (Simiu and Scanlan 1996), while Href is pinned to 810m 

assumed as a characteristic height of the atmospheric boundary layer in congested urban 

environments. Notably, selection of the reference height, Href, in the power law expression 

given by Eq. (3.9) for estimating the mean wind profile, Vm(z), within the atmospheric boundary 

is arbitrary so long as the reference wind speed, Vref, is calibrated/adjusted to that height 

accordingly (Simiu and Scanlan 1996). Further, the VS frequency in Eq. (3.7) is determined by 

 

( )t m2
,

k

k

S V z

B


 =                                                                      (3.10) 

 

in which St is the Strouhal number taken equal to 0.084 as experimentally determined in Liang 

et al. (2002) for square footprint tall buildings. 

For illustration, the PSDs of wind force acting at four different floor slab heights are 

plotted in Fig. 3.3 for Vref= 30m/s at Href= 810m, which corresponds to a mean wind velocity of 

21.3m/s at the building top (i.e., 305m above the ground). This particular speed corresponds to 

relatively weak, frequently occurring wind events. For stronger winds, the logarithmic law is 

currently considered by meteorologists as a superior representation of wind profile in the lower 

atmosphere (Owen 1974). It is seen that the dominant VS frequency increases with floor height 

as can be inferred by Eqs. (3.9) and (3.10). The same happens for the wind force amplitude 

except from the first and last floors whose tributary heights are different from the rest of the 

building floors, i.e., 8.5m and 2.45m, respectively as opposed to 4m for typical floor. 

 

 

Fig. 3.3. Power spectral density functions of cross-wind forces acting at different floor levels of 

the case-study structure. 
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Lastly, the off-diagonal terms of the 
74

FFS  PSD matrix modelling the spatial correlation of 

wind forces acting at floor slabs k and l are given as (Liang et al. 2002) 
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z z
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for the case-study building. In Section B.5 of the Appendix, the accuracy of the considered 

crosswind load modelling is verified against wind tunnel force data by examining the response 

of the benchmark building in Figure 3.3 (see Fig.B.7). 

 

3.4 TMDI-equipped tall building modelling and structural analysis for crosswind 

excitation 

Following Giaralis and Petrini (2017), a TMDI is herein considered to mitigate wind-

induced accelerations in the crosswind direction of the benchmark structure. The modelling of 

the TMDI and its incorporation to the adopted structure is graphically shown in Fig. 3.4 

depicting the 74-DOF surrogate model derived in section 3.3.2 as a planar 74-storey frame-like 

building with lumped floor masses mk= Ms(k,k); k=1,2,…,74. The TMDI consists of a 

conventional TMD comprising a secondary mTMDI mass attached to the top floor via a stiffener, 

modelled as a linear spring with kTMDI stiffness, in parallel with a linear viscous damper, 

modelled as a dashpot with damping coefficient cTMDI, and an inerter device, highlighted in red 

in Fig. 3.4, connecting the secondary mass to p floors below the top floor. The inerter device is 

modelled through an ideal massless/weightless mechanical element resisting the relative 

acceleration developing at its two ends/terminals through the inertance coefficient b (Smith 

2002). In this regard, following Eq. (2.1), the inerter element force reads as
74 )(b TMDI px xF b −−= , 

where xTMDI is the lateral displacement of the secondary mass, x74-p is the lateral displacement 

of the floor which the inerter connects the secondary mass to and a dot over a symbol signifies 

differentiation with respect to time. Therefore, in the TMDI configuration the inerter exerts an 

additional, compared to the conventional TMD, control force, Fb, to the host structure whose 

amplitude depends on the relative acceleration of the inerter terminals and on the inertance b. 

In this regard, the potentially improved vibration suppression capability of the TMDI compared 

to the TMD depends on the inerter connectivity “-p”, as well as on the inertance b. 
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Fig. 3.4. TMDI equipped lumped-mass surrogate planar frame model of the wind-excited case-study 

building with “p” connectivity and typical rack-and-pinion flywheel inerter device with n gears. 

 

With regards to TMDI connectivity, the cases p=1, 2, and 3 are examined in Section 3.5 

taken to be mostly appealing to potential practical implementations involving a pendulum-like 

TMDI accommodated within a central atrium spanning up to three highest building floors (see 

e.g., Taipei 101 building). Further, turning the attention to the inertance property, b, it is 

important to note it is readily scalable and independent of the physical mass/weight of the 

inerter device in a similar manner to the scalability of the damping coefficient cTMDI of the 

TMDI viscous damper. Indeed, supplemental damping devices for seismic protection of 

building structures incorporating inerters with several hundred thousand tonnes of inertance 

have been prototyped and experimentally verified in recent years (Watanabe et al. 2012, 

Nakamura et al. 2014). To shed further light on this issue, consider a commonly used inerter 

device embodiment employing a rack-and-pinion mechanism to transform the translational 

motion into rotational motion of a flywheel (i.e., a solid spinning disk) through a gearbox shown 

in Fig. 3.4. It can be readily shown the inertance of this device is given by Eq. (2.2). Clearly, 

the inertance can be scaled by orders of magnitude through changing the gearing ratios and/or 

the number of the gears with immaterial change to the mass/weight of the device. Along these 

lines, Brzeski et al. (2017) demonstrated experimentally the feasibility of inerter devices with 

continuously varying transmission gearbox, rather than stepped gearing changes, leading to 

inerters that may achieve any desired inertance value, within the gearbox effective range of 

transmission. 

Mathematically, the mass, M, the damping, C, and the stiffness, K, matrices of a surrogate 

n-storey building model equipped with a top-storey TMDI configured in “-p connectivity” are 

concisely written as (Giaralis and Petrini 2017)  
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where n = 74 for the herein considered benchamark structure. Further, in the above expressions, 
75 75+ sM  , 

75 75+ sC  , and 
75 75+ sK   are the mass, 

74 74

s

M  , the damping, 
74 74

s

C  , and the stiffness, 
74 74

s

K  , matrices of the surrogate planar frame model 

defined in section 3.3.2, respectively, augmented by one last (bottom) row with zero entries and 

by one last (rightmost) column with zero entries. Further, the vector 
75 1u1   has zero 

elements except from the u-th entry which is equal to one, and the superscript “T” denotes 

matrix transposition. Note that the inclusion of the inerter influences only the mass matrix M 

of the controlled surrogate building model in Eq. (3.12), that is, matrices C and K are the same 

for the TMD and for the TMDI. More importantly, note that for b=0 (no inerter), Eq. (3.12) 

represents the surrogate building model with a conventional TMD attached to its top, 74-th, 

floor, which is the most widely considered TMD connectivity for vibration suppression in wind-

excited tall buildings (see e.g. Kareem et al. 1999, Tse et al. 2012, Ierimonti et al. 2018). Therefore, 

in the following numerical work, the TMD is treated as a special case of the TMDI by setting 

b=0. Finally, the frequency-domain crosswind response analysis of the TMDI-equipped low-

order benchmark building model is performed following the steps detailed in Appendix A. 

 

3.5 Optimal TMDI design for occupant comfort 

To explore the full potential of TMDI for motion control in wind-excited tall buildings 

susceptible to VS effects, the OP in Section 3.2.1 is herein solved numerically using the solution 

strategy in Section 3.2.2 to find the optimal TMDI DVs, νTMDI and ξTMDI, for different sets of 

secondary parameters, μ, β, and p, to maximise occupant comfort in the benchmark building 

structure in Section 3.3.1. Since the largest wind-induced peak floor acceleration is always 

reached at the roof level of the case-study building, the proposed optimal TMDI design problem 

essentially aims to minimise the peak top-floor acceleration 74peak{ }x   in Eq. (A.5) (by 

setting k=74), attained within one hour of excitation under the wind force PSD matrix SFF in 

Eq. (3.11) specified for a given design reference wind speed Vref in Eq. (3.9). Under the common 

assumption of gaussian (stochastic) input/output processes being stationary, ergodic, and time-

limited, the peak instantaneous floor accelerations can be estimated from the corresponding 

RMS values through the widely used peak factor due to Davenport (1964) given in Eq. (A.7) 

of Appendix A. For the case-study building, this peak factor is equal to 3.77, which is evaluated 

by setting the effective structural response frequency η in Eq. (A.7) to the building’s 

uncontrolled fundamental frequency, i.e., η=0.185Hz, and by taking the duration of 
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exposure Twind to one hour, i.e., Twind = 3600s. 

Purposely, application of the optimal design formulation in Eq. (3.3) to the herein 

considered case-study building allows considering explicitly any desired combination of TMDI 

inertial properties, that is, attached mass and inertance, through the secondary design 

parameters μ and β, respectively, and inerter floor connectivity through the connectivity number 

p. In this manner, the special case of the TMD can be examined by setting β = 0. Further, the 

bounds of μ value are set to [0.1%, 1%] based on real-life TMD installations tuned to the 

first/fundamental mode shape of high-rise buildings, whereas the β value is confined within the 

range [0.0, 0.8] to avoid unrealistically high inertance for the considered structure throughout 

the rest of this Chapter. The search range for the primary DVs of TMDI, νTMDI and ξTMDI, used 

in solving Eq. (3.3) is taken as x1
min = [0.0, 0.0]T and x1

max = [2.0, 2.0]T. This range was proved 

sufficient for the adopted structure, TMDI inertial properties spanning 0.1% ≤ μ ≤ 1% and 0 ≤ 

β ≤ 0.8, practically relevant TMDI connectivities p = 1, 2, 3, and for Vref up to 50 m/s. 

First, for numerical illustration of the tuning strategy in section 3.2.2, Fig. 3.5 plots the 

peak top-floor acceleration/OF surfaces in three successive iterations on the primary DV 

(νTMDI - ξTMDI) plane, obtained by applying the preceding iterative pattern search algorithm to 

the benchmark building in Fig. 3.2 subjected to the crosswind force excitation in Fig. 3.3 and 

equipped with a top-floor TMDI with μ=0.5%, β=20%, and p=3. Numerical results pertaining 

to optimal TMDI design parameters and structural response of the TMDI-controlled structure 

considered previously in Giaralis and Petrini 2017 are first presented with the focus placed on 

exhibiting the convergence behaviour of the algorithm. 

The optimal TMDI design in this example involves finding the primary DVs in x1=[νTMDI, 

ξTMDI]
T for given secondary design parameters, x2=[μ=0.5%, β=20%, p=3], and reference wind 

velocity, Vref=30m/s, to minimise the peak crosswind acceleration on the 74th floor/top floor of 

the benchmark structure. The initial lower and upper bounds of the search range for the primary 

DVs is set to x1
min = [0.0, 0.0]T and x1

max = [2.0, 2.0]T, respectively. The global minimum point 

(νopt(i), ξopt(i), Pmin(i)) for iteration i where 
min 74

( )=min{peak{ }}( )P i x i  is reported on Fig. 3.5. 

The convergence tolerance is set to 1.0%. In this particular example, convergence is reached 

after three iterations in which the initial search range narrows down to x1
min=[0.9, 

0.1]T and x1
max=[1.1, 0.3]T in the second iteration, and ultimately to x1

min=[0.97, 

0.13]T and x1
max=[0.99, 0.15]T in the final iteration, with the same discretisation density of the 

adaptive search domain and with a logarithmic increase of precision/resolution by which 

optimal parameters are determined.  
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Fig. 3.5. Iterative optimal TMDI design with μ=0.5%, β=20%, and p=3 for a benchmark with Vref=30 

m/s (a) 1st iteration; (b) 2nd iteration; and (c) 3rd iteration. 

 

3.5.1 Convexity and optimality of the TMDI design problem 

In this sub-section, the performance surfaces of peak top-floor acceleration of TMDI-

controlled benchmark structure on the primary DV (νTMDI-ξTMDI) plane are demonstrated in the 

vicinity of the optimal solution point for different combinations of TMDI inertial properties and 

inerter connectivities. From a computational viewpoint, strong convex behaviour of the 

objective function 74OF peak{ }x=  on the νTMDI-ξTMDI plane is noted with a single prominent 

global optimal design point being observed for all TMDI cases considered. For illustration, Figs. 

3.6(a)-3.6(c) plot the 74peak{ }x  as a function of the primary DVs for fixed μ=0.5%, β=20%, 

and Vref=30m/s as considered in Fig. 3.5, and for three different TMDI connectivity numbers, 

i.e., p=1, 2, 3 demonstrating that convexity of the OP in Eq. (3.3) is maintained for all TMDI 

topologies herein examined. Moreover, Figs. 3.6(c) and 3.6(d) plot the  74peak x  response 

surface on the primary DV plane for fixed μ=0.5%, TMDI connectivity “-3” or p=3, and 

Vref=30m/s and for two different inertance ratio values illustrating that the problem in Eq. (3.3) 

is convex irrespective of the assumed inertance value. 
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Fig. 3.6. Objective function and design point of the optimisation problem in Eq.(3.3) for μ=0.5%, 

Vref=30m/s and for different TMDI connectivities and inertance ratios. 

 

To shed light on the nature of the motion control achieved through solving Eq. (3.3), Fig. 

3.7 plots FRFs of top floor acceleration of the adopted benchmark structure for Vref=30m/s 

equipped with optimally designed TMDIs for various connectivity number, p, and inertance 

ratios, β, including the limiting case of β=0 (TMD). All inertial dampers considered have the 

same attached mass μ=0.5%, while the FRF of the uncontrolled model is also superposed. The 

left column panels of Fig. 3.7 focuses on the FRFs behaviour within a narrow frequency range 

around the first/fundamental natural frequency of the uncontrolled structure and the two lowest 

natural frequencies of the TMD(I) controlled structures. It is seen in Fig. 3.7(a), considering 

TMDIs with fixed connectivity (p=3 or “-3”) and varying inertance, that the solution of the 

proposed optimal TMDI design formulation yields a “Den Hartog” style of optimality at least 

for β≤20% in the sense that the two resonant peaks of the controlled structure attain almost 

equal FRF values (Den Hartog 1956). This type of optimality is mostly efficient for supressing 

narrow-band excitations characterised by a dominant frequency (see also Marian and Giaralis 

2017) and, therefore, relevant to the problem at hand. Nevertheless, as the inertance increases 

above 20% the right-most peak value in the FRFs becomes lower than the left-most peak value. 

Further, a shift of the first resonant frequency to lower frequencies is observed as inertance 

increases for fixed μ and inerter connectivity in the FRFs of TMDI-controlled structure, while 

the second resonant frequency is attained at higher frequencies. Overall, the FRF value at the 

fundamental natural frequency of the uncontrolled structure reduces considerably with 
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increasing inertance, however, the controlled structure attains larger FRF values compared to 

the uncontrolled structure at a relatively narrow band of frequencies lower than the fundamental 

natural frequency of the uncontrolled structure. Interestingly, all the previous trends in the FRFs 

of optimal TMDI-equipped case-study structure with increasing inertance are true for the case 

of TMDI-equipped structure with fixed attached mass μ=0.5% and inertance β=30% as the 

inerter spans more floors, that is, as TMDI topologies with increasing p are considered shown 

in Fig. 3.7(c). The latter observation suggests that increasing the number of floors spanned by 

the inerter has a similar effect to the FRFs of optimal TMDI-equipped structures as the increase 

of the inertance for fixed TMDI connectivity. More importantly, the FRFs in the right column 

panels of Fig. 3.7, plotted for a wider frequency range to include the first three natural 

frequencies of the uncontrolled structure, demonstrate that TMDIs optimally designed through 

the problem formulation in Eq. (3.3) suppress higher modes of vibration. Notably, this is not 

the case for the TMD. Specifically, appreciable reductions to peak FRF values corresponding 

to higher vibration modes for optimal TMDI-equipped structures are achieved as the inertance 

increases for fixed TMDI connectivity, Fig. 3.7(b), and as the inerter device spans more floors 

for fixed inertance, Figs. 3.7(d). To this end, it is established that increasing inertance for fixed 

TMDI connectivity and secondary mass affect qualitatively the FRF of  74peak x  in the same 

manner as by increasing the number of floors spanned by the inerter in TMDIs with fixed 

inertance and secondary mass. 

 

 

Fig. 3.7. Frequency response functions of top floor acceleration of the case-study structure for 

Vref=30m/s with no motion control (uncontrolled), controlled with optimal TMD (μ=0.5%), and 

controlled with optimal TMDIs for fixed μ=0.5% and different TMDI topologies and inertance ratios. 
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3.5.2 Sensitivity of primary optimal design parameters to secondary parameters and to 

wind velocity 

Turning the attention to the TMDI primary design variables in x1, Fig. 3.8 plots iso-value 

curves of the optimal parameters νopt and ξopt, related to the TMDI stiffness and damping 

properties respectively, on the plane of the secondary design parameters in x2 (i.e., the μ-β 

TMDI inertial design plane) obtained by solving Eq.(3.3) for Vref=30m/s and TMDI topologies 

“-1” to “-3”. Note that the y-axis of the graphs in Fig. 3.8 correspond to TMD optimal designs 

(𝛽=0), while the x-axis corresponds to lightweight TMDIs with relatively low physical mass. 

It is seen in Fig. 3.8 (a) that νopt decreases with increasing inertance ratio for fixed secondary 

mass as well as with increasing mass ratio for fixed inertance for all considered TMDI 

topologies. Further, increasing the inerter connectivity results in faster changes of νopt with β, 

that is, iso-value νopt curves of the “-3” TMDI connectivity are steeper than of the “-2”. Still, 

deviations of TMDI νopt values from those obtained for TMD cases are relatively small. 

Nevertheless, the variation of ξopt on the TMDI inertial design plane in Fig. 3.8 (b) is more 

significant. In particular, ξopt increases monotonically with increasing μ for fixed β. Further, it 

increases monotonically with β for fixed μ for all the considered TMDI topologies only for 

β>15%, while ξopt is more sensitive to differences in TMDI connectivity compared to νopt. 

 

 

Fig. 3.8. Optimal values of the primary design varaibles in x1 on the secondary design parameters 

plane. 

 

Finally, the sensitivity of the optimal design values in x1 is further quantified against 

changes to the reference wind velocity, Vref, in Fig. 3.9, for the three considered TMDI 

topologies, one low inertance ratio value, β=0.1 and one very high inertance value, β=0.8, for 

fixed mass ratio μ=0.5%. Such changes to Vref may be due to new high-rise buildings being 

erected nearby the benchmark structure bringing about changes to wind field exposure and/or 

due to climate change effects predicted to increase Vref at a given location in the foreseen future 

as discussed in Steenbergen et al. (2012). It is important to note that changes to Vref not only 

change the intensity of wind exciting forces, but also the dominant excitation VS frequency 

(see Eqs. (3.9) and (3.10)). It is seen that optimal x1 values are at large insensitive and, therefore, 
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robust to Vref variations. In particular, ξopt remains practicality constant with Vref, while νopt 

decreases only slightly with Vref and only for the high β value considered. 

 

 

Fig. 3.9. Sensitivity of the optimal values of the DVs to the variation of the wind speed. Case μ=0.5%. 

 

3.6 Performance-based assessment and design in optimally tuned TMDI-equipped 

structures 

3.6.1 Peak top floor acceleration, secondary mass stroke, and inertance force 

The efficiency of TMDIs designed/tuned through the OP in Eq. (3.3) to contain VS 

induced vibrations causing occupant discomfort in tall, slender structures can be quantified in 

a practically useful manner by evaluating the OF in Eq. (3.3), i.e., peak top floor acceleration 

of the case-study structure, for optimal parameters in x1 determined for various TMDI 

topologies and inertial properties in x2. To this aim, Fig. 3.10 plots three different families of 

iso-value curves of  74peak x achieved by optimally tuned TMDIs in three different topologies 

on the β-μ plane. These curves are obtained by using optimal values for the TMDI primary 

design parameters, νopt and ξopt, reported in Fig. 3.8 for Vref=30m/s. It is seen that improved 

structural performance in terms of peak floor acceleration can be achieved by increasing the 

secondary TMDI mass for fixed inertance across the board. Further, improved structural 

performance is monotonically achieved with increasing inertance for the “-3” TMDI 

connectivity for fixed mass ratio as long as μ<0.6%. This is readily explained by examining the 

FRFs plotted in Fig. 3.7(b) whose peak values are reduced as inertance increases at all structural 

natural frequencies and not just the first/fundamental one and by noting that response 

acceleration are sensitive to high frequency dynamics. Interestingly, TMDs with μ>0.3% 

perform better than TMDIs in “-1” and “-2” topologies with relatively low inertance ratios 

β<15%. However, as the inertance ratio increases above 15%, all TMDIs outperform TMDs for 

any fixed attached mass ratio providing improved performance with increasing inertance 

verifying trends reported in Giaralis and Petrini (2007) for the case of non-optimal TMDIs. 

Importantly, it is deduced by comparing the slopes of the different families of the iso-value 

curves that the more floors the inerter spans, the faster is the rate of improved performance with 
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increasing inertance. Consequently, better performance is achieved for sufficiently large fixed 

inertance ratio as the inerter spans more floors (see also FRFs in Fig. 3.7(d)). 

 

 

Fig. 3.10. Peak top floor acceleration in mm/s2 achieved with optimally designed TMDIs in different 

topologies and inertial properties: secondary mass ratio μ and inertance ratio β. 

 

Apart from the improvement to host structural performance, an important response 

quantity of interest to the practical design of mass/inertial dampers is the so-called peak stroke 

of the secondary mass, that is the peak relative displacement of the TMD(I) mass with respect 

to the floor that the mass is attached to. This is because increased TMD(I) stroke demands 

require larger clearance in housing safely a TMDI within the host structure such that no local 

pounding/collision occurs. Further, the cost of energy dissipation devices/dampers increases 

with the stroke. For the case-study structure, the peak stroke is computed by setting k=74 and 

l=75 (i.e., DOF corresponding to the xTMDI displacement in Fig. 3.4) in peak{xkl} expression in 

Eq.(A.6). Peak TMDI stroke values obtained for optimal TMDIs in three different topologies 

for the case-study structure for Vref=30m/s are plotted in Fig. 3.11 as functions of TMDI inertial 

properties within the ranges 0.1% ≤ μ ≤ 0.55% and 0 ≤ β ≤ 10%. A considerable stroke demand 

reduction is observed with increasing inertance for any fixed mass ration value as has been also 

the case for non-optimal TMDIs in Giaralis and Petrini (2017). For example, as illustrated in 

Fig. 3.11, a ten-fold reduction of the peak stroke (from 600mm to 60mm) is achieved by 

increasing the inertance from 0.5% to 9.5% for fixed mass ratio μ=0.2%. Interestingly, 

appreciable stroke reduction is achieved with increased mass ratio for only relatively small 

inertance ratios as the iso-value peak stroke curves in Fig. 3.11 tend to become parallel to the 

y-axis with increasing β. Further, it is seen that stroke is insensitive to TMDI connectivity. 

 



Chapter 3 – Optimal TMDI Tuning for Wind Excited Buildings 

48 |  
 

  

Fig. 3.11. Peak stroke of optimally designed TMDI in the secondary design parameters plane. 

 

Having established that TMDI achieves better motion control with respect to TMD 

through increase of inertance and/or through considering TMDI topologies in which the inerter 

spans more floors, it is deemed useful to examine the peak inerter force Fb (note 

74 )(b TMDI px xF b −−=  ) developing for optimal TMDIs of different topologies as β increases. 

Figure 3.12 serves this purpose by plotting iso-value curves on the β-μ plane of peak inerter 

force developing in the case-study structure for different TMDI topologies under Vref=30m/s. 

These curves are determined by setting k=74-p and l=75 in  peak klx  expression in Eq.(A.6) 

in conjunction with 
74 )(b TMDI px xF b −−= . Trivially, inerter force is zero for β=0. Then, inerter 

force demands increase monotonically with inertance but at a gradually reduced rate. It is 

further observed that for β>10%, the inerter force increases for fixed inertance as the inerter 

spans more floors while variations to the inerter force among different TMDI topologies 

become more significant with decreasing attached mass. These observations verify that the key 

to the efficacy of the TMDI for motion control is the inerter force. Indeed, larger inerter forces 

correlate well with more significant peak floor acceleration reductions as can be inferred by 

comparing iso-value curves in Figs. 3.10 and 3.12. Still, it is seen that even for very large 

inertance ratios and for “-3” connectivity, the peak developing inerter force, at least for 

Vref=30m/s, is not excessively large, as is the case for the use of TMDIs for seismic protection 

of buildings structures (Ruiz et al. 2018), and can be accommodated locally by the structure 

with some appropriate local detailing. 
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Fig. 3.12. Peak inerter force of optimally designed TMDI in the secondary design parameters plane. 

 

3.6.2 Trading secondary mass to inertance 

In the previous section, Fig. 3.10 was used for comparative quantitative assessment of the 

potential of optimal TMDIs with different inertial properties and connectivities to reduce floor 

accelerations in the case-study structure. Herein, the iso-value curves of Fig. 3.10 are 

interpreted as TMDI design charts from a PBD perspective to demonstrate that attached mass 

and, therefore weight, can be effectively traded with inertance for a desired pre-specified/target 

structural performance level in terms of peak floor acceleration related to occupant comfort 

criteria (Tamura et al. 2006, Kwok et al. 2009). To this aim, Fig. 3.13(a) plots the data of Fig. 

3.10 pertaining to TMDI connectivity “-3” which was arbitrarily chosen for the sake of 

exemplification. Treating Fig. 3.13(a) as a design chart, it is seen that different levels of peak 

floor acceleration can be achieved by optimal TMDIs with different sets of inertial properties μ 

and β for fixed inerter connectivity. Importantly, it is seen that in most cases the iso-value curves 

have negative slope on the β-μ plane. Therefore, optimised TMDIs with reduced secondary 

mass can achieve the same performance through increased inertance. This establishes a direct 

mass reduction/substitution effect endowed by the inerter to the TMDI and leading to overall 

more lightweight inertial dampers: an important advantage in designing new slender minimal-

weight tall buildings. To further illustrate this point, Fig. 3.13(b) plots iso-value curves for 

different TMDI topologies for peak top-floor acceleration equal to the occupants comfort 

threshold, 102.9mm/s2, applicable to the case-study structure assuming residential occupancy 

according to guidelines effective in Italy (see Guidelines CNR-DT 207/2008, also Petrini and 

Ciampoli 2012). The serviceability comfort threshold curve from the guideline is plotted in Fig. 

3.13(c) as a function of the building vibration frequency, together with the performance of the 

adopted case-study structure equipped with an optimal TMDI with connectivity “-3”. Evidently, 

it is seen in Fig. 3.13(b) that the more floors the inerter spans the more significant the weight 
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reduction effect becomes with increasing inertance as the iso-value curves become steeper 

going from “-1” to “-3” topologies, and, at the same time, inertance demands are reduced for 

fixed mass ratio in achieving the targeted performance. 

 

 

Fig. 3.13. Performance-based design charts of TMDI for the case-study structure (a) Connectivity “-3”; 

(b) Various topologies for case-study structure occupants’ comfort threshold 102.9mm/s2; (c) Code-

prescribed serviceability design threshold and performance of the adopted primary structure equipped 

with optimal TMDI with connectivity “-3”. 

 

Further to the case of new structures, the incorporation of an inerter, alongside retuning to 

achieve optimal parameters νopt and ξopt, is also applicable as a retrofitting strategy in existing 

TMD-equipped tall buildings to enhance their performance against wind excitation required by 

change of use/occupancy (e.g., from office to residential building) or by increasing Vref (e.g., 

due to changes to wind exposure (Simiu and Scanlan 1996) or due to climate change effects 

(Steenbergen et al. 2012)). Along these lines, an illustrative example is shown in Fig. 3.13(a) 

which assumes the scenario that the case-study building has a TMD with μ=0.3% already 

installed achieving 130mm/s2 peak top floor acceleration under Vref = 30m/s. By incorporating 

an inerter with β= 13%, 24%, 42%, or 68% at TMDI connectivity “-3”, performance increases 

through reduction of peak top floor acceleration by 7.7%, 15.4%, 23.1%, or 30.8% respectively 
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upon optimal retuning. 

 

3.7 Performance assessment of non-optimally designed TMDI structure 

3.7.1 Robustness to detuning due to changes of benchmark structure properties 

Numerical data reported in previous section concerns optimally designed TMDIs for a pre-

specified reference wind velocity assuming perfectly known structural properties of the case-

study structure. Nevertheless, as discussed in the introduction, TMD(I)s may be “detuned” 

either over time due to changes to the properties of the host building structure, or due to 

inaccurate knowledge of structural properties. In this respect, it is deemed useful to gauge the 

sensitivity of TMDIs (with different inertance ratios and inerter connectivities) in mitigating 

wind-induced floor accelerations to changes to primary structure properties in case the actual 

structure has different properties from those assumed in optimal TMDI tuning. To this aim, the 

mass and damping matrices of the case-study structure defined in section 3.3.2 are perturbed 

by uniformly scaling them down by 10% and 20% of their original values, respectively. Mass 

perturbation consideration is related to uncertainty in mass density of materials as well as its 

occupancy and live loads during its service life, while damping perturbation consideration is 

motivated by large uncertainty in estimating inherent damping of tall buildings influenced, 

phenomenologically, by several parameters as discussed in Spence and Kareem (2014) and 

references therein. 

Figure 3.14 plots peak top-floor acceleration versus inertance ratio for the case-study 

structure with perturbed mass and damping properties, respectively, and equipped with 

TMD(I)s optimally tuned to the original structure. In all cases, Vref=30m/s for the incident wind 

is assumed, and TMDIs with μ=0.2% and 0.5%, connectivities “-1” and “-3”, and inertance 

ratios β ranging from 0% (TMD) to 70% are considered. Further, to facilitate a comparison, the 

obtained accelerations are normalised by peak top-floor acceleration of the original structure 

with optimal TMD(I)s. In this setting, the closer the ordinates of the graphs in Figs. 3.14(a) and 

3.14(b) to unity is, the less sensitive the TMD(I) is to mass and damping property perturbations, 

respectively. In all the cases considered, it is seen that the TMDI is more sensitive than the 

same-mass TMD for inertance ratios smaller than a relatively low critical value which depends 

on TMDI connectivity and attached mass ratio. These critical inertance ratios are reported in 

Table 3.3. It is found that the more floors spanned by the inerter and/or the smaller the mass 

ratio, the lower the critical inertance ratios above which the TMDI becomes less sensitive than 

the TMD to the structural property perturbations. Then, as the inertance increases above the 

critical inertance ratios of Table 3.3, the TMDI becomes more “robust” to structural 

uncertainties at a rate that, again, depends on TMDI connectivity and mass ratio: the more floors 

are spanned by the inerter and/or the smaller the mass ratio is, the faster decreases the level of 

sensitivity with increasing inertance. In fact, the relatively lightweight TMDIs (μ=0.2%) with 

connectivities “-2” and “-3” appear to be less sensitive than the “heavy” TMD (μ=0.5%) for 

inertance ratios higher than 25% and 20%, respectively, to considered 
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perturbations/uncertainties in the mass and damping properties. As a general comment, one 

concludes through inerters spanning more floors and through sufficiently large inertance the 

TMDI outperforms TMDs in terms of sensitivity to structural properties perturbation. 

 

 

Fig. 3.14. Robustness of optimally tuned TMDI to mass and damping properties perturbations of the 

case-study primary structure for Vref= 30m/s. 

 

Table 3.3. Critical inertance values (%) above which the TMDI is less sensitive than the TMD 

 Connectivity μ=0.2% μ=0.5% 

Mass perturbation 

0.9Ms 

-1 10.0% 20.0% 

-2 4.5% 9.5% 

-3 2.7% 4.8% 

Damping perturbation 

0.8Cs 

-1 14.0% 27.5% 

-2 5.5% 11.0% 

-3 3.5% 6.5% 

 

3.7.2 Performance for increased reference wind velocity, Vref 

In Fig. 3.9 (section 3.5.2), it was found that optimal TMDI tuning parameters are quite 

insensitive to increasing reference wind velocity resulting in increasing amplitude and 

dominant frequency of the wind forcing field. This observation motivates investigating the 

potential of incorporating an inerter device to retrofit an existing structure equipped with a 

TMD optimally tuned to a particular Vref, such that improved performance is achieved for a 

significantly higher Vref. In doing so, it is assumed that no retuning takes place to the TMD 

which results in a non-optimal TMDI as opposed to optimal TMDIs for retrofitting of existing 

TMD-equipped structures discussed in section 3.6.2 (Fig. 3.13(a)). In this regard, the herein 

considered retrofitting scenario for existing TMD-equipped structures involves only adding an 

inerter, with no replacement/adjustment of any other TMD(I) device components. This is a quite 

appealing retrofitting scenario from a practical viewpoint due to its simplicity as well as in view 

of inerter devices with varying inertance through gearing (see e.g., Brzeski et al. 2017). 

Figure 3.15 plots peak top floor acceleration for the case-study building equipped with an 
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optimally designed TMD at Vref = 30m/s with μ=0.5% subjected to wind force field with Vref = 

45m/s (i.e., 50% above the design one) and provided with an inerter with varying inertance 

(without any variation of other parameters) and for three TMDI connectivities. Reported top 

floor acceleration is normalised to the peak top floor acceleration for the TMD equipped 

structure at the increased Vref = 45m/s. Therefore, ordinates below unity in Fig. 3.15 indicate 

improved TMDI performance compared to TMD for Vref = 45m/s. Similar to Fig. 3.14, it is seen 

that there is a critical inertance value, different for each TMDI connectivity, below which the 

TMD performs better than the TMDI, ranging from β=3.1%, for “-3” connectivity, to β=8.5%, 

for “-1” connectivity. To this effect, incorporating an inerter with larger inertance from this 

critical value will result in an increasingly better performance compared to the original TMD 

of the existing structure. Therefore, the proposed retrofitting strategy is effective as long as 

sufficient inertance is considered together with an appropriate TMDI connectivity. 

 

 

Fig. 3.15. Comparative performance of non-optimal TMDI under Vref=45m/s for retroffiting the case-

study structure equipped with a TMD with μ=0.5% optimally tuned for Vref=30m/s. 

 

As a closure of Section 3.7, the non-monotonic performance trends in Figs. 3.14 and 3.15 

correspond to non-optimal TMD(I) designs with a non-uniform level of lack of optimality. In 

other words, the TMD (no inertance) and the various TMDIs (with different inertance) are not 

detuned to the same extent for the same perturbation of the structure or of the excitation 

intensity. The physical interpretation is that, under these non-uniformly non-optimal conditions, 

it requires large inertance for the TMDI to outperform the TMD. This is because the TMD is 

attached to one floor of the structure while the TMDI to two floors. So the TMDI performance 

is affected more than the TMD when excitation or structural property change for relatively 

small inertance. However, as inertance increases, the TMDI becomes eventually less sensitive 

to detuning than the TMD because of the increased inertial property (inertance). Trends here 

confirm numerical data for earthquake excitations (Giaralis and Taflanidis 2018). 

 

3.8 Closure 

In this chapter, a novel optimal TMDI design problem has been formulated to determine 
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the tunable properties (i.e., stiffness and damping properties) of TMDI such that the crosswind 

floor acceleration, critical to buildings' occupant comfort, is minimised for pre-specified TMDI 

inertial properties and connectivity. The OP was solved efficiently using a custom-made pattern 

search algorithm with an adaptive DV search domain that is iteratively narrowed within the 

bounded solution region based on the optimal solution found in the previous step. Novel 

numerical results on optimal TMDI design parameters and structural response of a 305.9 m tall 

74-storey benchmark structure considered previously in the literature are presented to showcase 

the effectiveness and convergence behaviour of the proposed TMDI tuning algorithm. 

Further, the efficacy of the TMDI to achieve occupant comfort performance in wind-

excited slender tall buildings susceptible to VS effects has been numerically established for the 

74-storey case-study building with more than 6 height-to-width ratio. Attention has been 

focused on exploring the influence and potential benefits of TMDIs with different inertial 

properties (i.e., secondary mass/weight and inertance) configured in different topologies 

defined by the number of floors spanned by the inerter device to connect the secondary mass to 

the building structure. Optimally designed TMDIs for a wide range of inertial properties and 

three different topologies have been obtained through numerical solution of the underlying OP 

for the benchmark structure subjected to experimentally calibrated spatially-correlated 

crosswind force field accounting for VS effects in tall buildings with rectangular footprint. 

Computational work has been expedited by considering a surrogate low-order planar dynamical 

model of the benchmark building capturing faithfully structural dynamic behaviour along the 

critical wind direction as well as by performing frequency domain structural analysis.  

High level of convexity in solving the OP for all cases considered has been noted as well 

as robustness to TMDI optimal design parameters to varying reference wind velocity. 

Additionally, peak top floor acceleration FRFs for optimal TMDI-equipped structures 

demonstrated that TMDIs with fixed secondary mass/weight reduce FRF coordinates for all 

modes of vibration as opposed to solely mitigating the first/fundamental one in the case of the 

TMD. This wideband mode-dampening effect was shown to be more significant as the inertance 

coefficient and/or as the number of floors spanned by the inerter increases. More importantly, 

innovative PBD graphs on the TMDI inertial (mass-inertance) plane have been furnished 

demonstrating that any fixed structural performance level in terms of occupant comfort (i.e., 

peak top floor acceleration) may be achieved through replacing secondary mass by inertance as 

long as sufficiently large inertance, above a relatively low critical value, are considered. Further, 

the same graphs demonstrate that the more floors the inerter spans, the more significant mass 

reductions are achieved for same inertance. In this respect, it is concluded that more lightweight 

TMDIs for fixed performance are achieved through inerters spanning more floors and/or 

through increased inertance within an optimal TMDI design setting. Meanwhile, it was further 

shown that the stroke of the secondary TMDI mass is considerably reduced with increasing 

inertance, while peak inerter forces exerted to the host structure were shown to be of reasonable 

magnitude in all cases considered. To this end, the applicability of the reported PBD graphs to 
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design new TMDI-equipped buildings as well as to retrofit existing TMD-equipped tall 

buildings has been established. The latter case involves adding inerters spanning one or more 

floors to already installed TMDs with no changes to secondary mass to address increased 

requirements for occupants comfort and/or climate change effects expected to increase design 

reference wind velocity.  

Robustness of optimally designed TMDIs to changes to the building structural properties, 

namely to total mass and inherent damping attributes, as well as to increased wind velocity, 

either due to increased wind exposure of the building and/or to climate change effects, was also 

explored. It was found that optimally tuned TMDIs become more robust than TMDs for same 

secondary mass as long as inertance above a certain limiting value is provided. This value 

depends on the secondary mass and on the number of floors spanned by the inerter: the lower 

the secondary mass and/or the more floors are spanned by the inerter, the lower the critical 

inertance value is. 

Overall, the evidenced numerical data suggest that the proposed optimal TMDI design 

formulation yields practically meaningful PBD charts for occupant comfort, while sufficiently 

large inertance values and/or TMDI topologies in which the inerter spans more floors are 

beneficial for occupant comfort in VS-prone tall buildings, for reducing secondary mass stroke, 

and for increasing robustness to building structural properties and wind intensity. Nevertheless, 

these benefits come at the cost of larger inerter force exerted to the building for increased 

inertance and/or for TMDI topologies spanning more floors (Giaralis and Petrini 2017). In the 

upcoming chapter, the focus is directed towards the influence of the elastic and mass properties 

of the primary structure to the optimal TMDI performance. 
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Chapter 4 

Analytical and Numerical Investigation of TMDI Connectivity and 

Primary Structure Influence 

Note: This Chapter has been submitted for publication and is currently under review: 

Wang, Z. and Giaralis, A. (2020) “Enhanced motion control performance of the tuned mass damper 

inerter (TMDI) through primary structure shaping.” Manuscript submitted to Struct. Control Health 

Monit. for publication (accepted pending on minor revisions). 

4.1 Preliminary remarks 

As stated in the introduction, upward tapering of tall buildings along the building height 

is a practical and efficient technique to alleviate the wind-induced accelerations. In the 

crosswind direction, this shape modification technique renders formation and shedding of 

vortices irregular and spatially incoherent (Kim and Kanda 2013), hence reducing the dynamic 

wind effects and ultimately the acceleration response (see, e.g., Kim and You 2002, You et al. 

2008). Recently, Khodaie (2020) investigated the potential of using an optimal TMD system, 

attached to the free-end of cantilever structures with a square footprint, in conjunction with 

upward tapering of the primary structure for enhanced wind-borne performance in terms of 

displacement and acceleration. Numerical results evidenced that using the TMD system 

collaboratively with the proposed shape modification can efficiently reduce the wind-induced 

vibration through simultaneously increasing the energy dissipation capability and reducing the 

dynamic wind loads at source. Nevertheless, the TMD effectiveness is known to be only 

influenced by the attached mass but not by the properties of the host structure, meaning that the 

improved performance reported in Khodaie (2020) was an additive outcome. On the contrary, 

for the TMDI configuration, Pietrosanti et al. (2020a) recently demonstrated that the modal 

coordinate difference (of the primary structure) between the two terminals of the TMDI 

influences its effectiveness significantly in suppressing vibrations in earthquake-excited 

lumped-mass models. This finding points to the fact that the stiffness and mass properties of 

the host structure influence the motion control efficacy of the TMDI and warrants further 

investigation into the influences of the host structural properties on TMDI performance. 

Notably, the quantification of this influence has not been systematically pursued to date as all 

previous works have focused on leveraging the TMDI inertial properties (i.e., secondary mass 

and inertance) and inerter connectivity to mitigate the response of TMDI-equipped structures 

to dynamic excitations. 

In this context, this Chapter aims to address the above gap in the literature by investigating 

the influence of the elastic and mass properties of the primary structure on the TMDI motion 
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control performance. This is pursued through an innovative parametric study involving a wide 

range of tapered beam-like cantilevered primary structures with different geometrical shapes 

(and, hence, different continuously varying flexural rigidity and mass distributions), equipped 

with TMDIs optimally tuned for minimising the steady-state peak and RMS free-end/tip 

displacements of the primary structure under harmonic resonant and white noise excitation, 

respectively. Optimal TMDI tuning and performance assessment are facilitated through a 

simplified 2-DOF dynamic model, which accounts for the properties of the primary structure 

as well as the influence of its uncontrolled mode shape at the location where the inerter connects 

the secondary mass to the host structure through a generalised SDOF oscillator. The accuracy 

of the 2-DOF model for optimal TMDI design and for structural performance assessment is 

verified against detailed finite element (FE) models for a wide range of TMDI parameters and 

primary structure shapes. 

 

4.2 Two-DOF modelling and analysis of TMDI-equipped continuous flexural cantilever 

structures 

4.2.1 System description and equations of motion in time domain 

Consider a fixed-base structure amenable to be modelled as a continuous cantilevered 

beam with height h and with distributed flexural rigidity EI(x) and mass per unit length m(x) 

where 0 ≤ x ≤ h as depicted in Fig. 4.1(a). This generic beam model can well represent slender 

tall buildings, industrial chimneys, wind turbine towers, as well as solar towers. Further, let a 

TMDI be attached to the free-end/tip of the considered beam (primary structure) to control the 

beam lateral motion due to a horizontal distributed dynamic load p(x,t) as shown in Fig. 4.1 (b). 

The TMDI comprises a secondary mass mTMDI attached to the primary structure through a linear 

spring with stiffness kTMDI in parallel with a dashpot with damping coefficient cTMDI. The 

secondary mass is further connected to the primary structure at height χ from the ground (fixed 

end) through an inerter element with inertance b. 

 

 

Fig. 4.1. (a) Continuous flexural cantilevered uncontrolled (primary) structure; (b) TMDI-controlled 

structure; (c) Assumed deflected shape and virtually displaced deflected shape; (d) External loads 

acting on the primary structure; and (e) External loads acting on the TMDI mass. 

 

Next, assume that under the external load p(x,t), the lateral response of the uncontrolled 
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primary structure can be faithfully approximated by a single deflected time-invariant shape ψ(x). 

Under this assumption, the response displacement of the primary structure can be written as 

(Clough and Penzien 1995) 

 

( , ) ( ) ( ),u x t x z t=                                                           (4.1) 

 

where z(t) is the free-end displacement of the cantilever and ψ(x) satisfies the fixed-end 

boundary conditions and is normalized such that ψ(h)=1 (Fig. 4.1(c)). In this setting, the 

continuous beam can be represented by a generalised SDOF oscillator whose equation of 

motion is readily derived using the principle of virtual work (Clough and Penzien 1995). 

Specifically, the virtual work done by the inertial resistance and the external forces acting onto 

the primary structure shown in Fig. 4.1(d) due to some virtual displacement δz at the free-end 

of the primary structure is given as 

 

( ) ( ) ( ) ( ) ( )
0 0

,

h h

E I b c k
W p u dx f u dx f u f f ux x h    = − − − +                           (4.2) 

 

where δu(x)=ψ(x)δz. In the above equation, fI is the distributed inertial resistance of the primary 

structure, fb is the force of the TMDI inerter element acting at x=χ height, and fc and fk are the 

forces of the TMDI damper (dashpot) and spring elements, respectively, acting at x=h (free-

end). These forces are given as 

 

( ) ( , ),  [ ( ) ],  ( ),  and ( ),
I b c TMDI k TMDI

f m x u x t f b z y f c z y f k z y = = − = − = −            (4.3) 

 

where a dot over a symbol signifies differentiation with time and y(t) is the displacement of the 

secondary mass (Fig. 4.1(b)). Further, the virtual work done by the internal flexural and 

damping forces of the primary structure due to the same virtual displacement δz is given as 

 

( ) ( )

0

2 2 2

2 2 2
( ) ( ) ,

, ,H

I cW t EI x z dx
u x t u x t d

a
x x dx

 


=
  

+ 
  

                             (4.4) 

 

assuming that stresses due to inherent damping of the primary structure are proportional to the 

strain velocity by a constant ac. 

By setting δWE= δWI and manipulating algebraically Eqs. (4.2-4.4), the following equation 

of motion is reached 
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( ) ( ) ( )* 2 * * *
( ) ( ) ( )

TMDI TMDI TMDI TMDI
m b z b y c c z c y k k z k y p t   + − + + − + + − = ,     (4.5) 

 

written in terms of the free-end displacement z(t) of the primary structure and the TMDI 

secondary mass displacement y(t). In the above equation, p*(t), m*, c*, and k* are the generalised 

load, mass, damping, and stiffness, respectively, of an underlying generalised SDOF system 

which represents the primary structure in the considered simplified model. These generalised 

quantities are defined as 

 

( )

*

0

2*

0

* *

0

*

0

2
2

2

2
2

2

( , ) ( )

( )

( )

( )

( )

( )

h

h

h

c c

h

p x t x dx
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                                          (4.6) 

 

Further to Eq. (4.5), an additional independent equation of motion can be written in terms 

of the displacements z(t) and y(t) by taking equilibrium of the external forces acting on the 

secondary mass and making use of d’Alembert’s principle as follows (Fig. 4.1(e)) 

 

( ) ( ) ( ) ( ) 0.

k c b TMDI

TMDI TMDI TMDI

f f f m y or

b z m b y c z y k z y  − + + − + − =

+ + =
                          (4.7) 

 

Next, the two equations of motion, Eqs. (4.5) and (4.7), are re-written as 

 

( )
*

2 2 2 2

1 1 1 1 1 *

2 2

1 1

( )
1 ( ) ( ) 2 2 ( ) ( ) ( )( )

( ) ( ) 2 ( ) ( ) ( ) ( ) 0

t
z y z z y z z y

m

z y z y z y

p
              

           

+ − + + + − + + + − =

− + + + − + + − =







   

(4.8) 

 

with the aid of the circular natural frequency of the generalised SDOF primary structure 

representation, 1=(k*/m*)1/2, and of five non-dimensional parameters, namely, the mass ratio, 

μ, the inertance ratio, β, the TMDI frequency ratio, v, the TMDI damping ratio, ξ, and the 

primary structure inherent damping ratio 1. These parameters are defined in terms of the 

generalised primary structure properties and the TMDI properties as 
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* *

1
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( )
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2 ( ) 2
.

TMDI TMDITMDI TMDI
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k m bm cb c

m m m b k m k
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
= =

+
= = =

+
 (4.9) 

 

Clearly, the equations of motion in Eq. (4.8) define a 2-DOF dynamical model which 

approximates the response of the TMDI-equipped cantilevered continuous beam of Fig. 4.1(b) 

in terms of the free-end displacement z(t) and the secondary TMDI mass displacement y(t). 

Importantly, the properties of the herein derived 2-DOF model depend explicitly on the flexural 

stiffness and mass distribution of the primary cantilevered beam structure as well as on the 

assumed deflected shape (mode) ψ(x) through the generalised SDOF properties in Eq. (4.6). 

Further, the 2-DOF model accounts for the location x=χ that the inerter connects the secondary 

mass to the primary structure through the modal coordinate ψ(χ). In this regard, the considered 

2-DOF model encompasses the special case of a TMDI with grounded inerter (i.e., the inerter 

connects the TMDI mass to the ground) by setting χ=0 in Eq. (4.8) for which ψ(0)=0. The latter 

TMDI arrangement (with grounded inerter) has been widely studied in the literature (Marian 

and Giaralis 2014, Marian and Giaralis 2017, Pietrosanti et al. 2017, De Domenico and Riciardi 

2018) and corresponds to a TMD with secondary mass equal to b+mTMDI for force-excited 

primary structure. To this end, it is deemed convenient to define the non-dimensional inerter 

connectivity ratio 

 

CR 1 ,
h


= −                                                              (4.10) 

 

which will be seen to be a critical parameter for TMDI motion control performance taking 

values between CR=0 (inerter in parallel to TMDI spring and dashpot) and CR=1 (grounded 

inerter). Further to the TMDI with grounded inerter, the 2-DOF model can also approximate 

the special case of a conventional TMD with secondary mass mTMDI attached to the free-end of 

the primary structure by setting b=β=0 in Eq. (4.8). 

 

4.2.2 Frequency response functions 

To expedite numerical work in subsequent sections, a set of non-dimensional FRFs 

corresponding to response quantities of practical interest are herein derived analytically. To this 

end, the equations of motion in Eq. (8) are first written in the domain of circular frequency, ω, 

as 

 

2 2 2 2 2

1 *

2 2 2 2

*
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[1 (1 ( ) )+( + 2 )( ) 2 ] ( ) [ ( ) ( 2 )( )] ( )

[ ( ) ( 2 )( )] ( ) ( 2 )( ) ( ) 0,

,
P

g i g i g Z g i g Y
k

g i g Z g i g Y


              

           

− + + + + − + + =

− + + + − + + =







 

                                         (4.11) 
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in which 1i = −  , g is the normalized frequency ω/ω1, Z(ω) and Y(ω) are the Fourier 

transformed displacements z(t) and y(t), respectively, and P*(ω) is the Fourier transform of the 

generalised load p*(t) in Eq. (4.6). Then, by eliminating Y(ω) from Eq. (4.11), one obtains the 

non-dimensional FRF relating the primary structure free-end displacement to the static free-

end displacement P*(ω)/k* given as 

 

2 2

2 2 2 2 2 2 2 2

1

* *

( )
( )

( )

( 2 )( )

{1 [1 ( ) ] ( + 2 )( ) 2 }( 2 )( ) [( 2 )( ) ( )]
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g i g

g i g i g g i g i g g


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

   

                

= =

− + +

− + + + + − + + − + + −

 

(4.12) 

 

In subsequent sections, the above analytical FRF is used to facilitate optimal TMDI design 

(tuning). Further, the non-dimensional FRF of the relative displacement of the TMDI secondary 

mass with respect to the primary structure free-end displacement, commonly termed as TMDI 

stroke, is given as 
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(4.13) 

 

while the non-dimensional FRF of the relative acceleration between the secondary mass and 

the primary structure at height x=χ, that is ( ) ( ) ( )z t y t  − , is given as 
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(4.14) 

 

The analytical FRFs in Eqs. (4.13) and (4.14) are used in the numerical part of this work 

for efficient calculation of the TMDI stroke, damping force, and inerter force under random 

excitation. This is achieved through frequency domain random vibration analysis as detailed in 

the next sub-section. 

 

4.2.3 Random vibration analysis for white noise excitation 

For the case of stochastically excited primary structure, the previous analytically derived 
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FRFs can be readily used to calculate RMS response statistics through standard random 

vibration analysis in frequency domain. Specifically, consider the case of zero-mean uniformly 

distributed in space white noise excitation. For this excitation, response PSD functions of 

practical interest are computed with the aid of the FRFs in Eqs. (4.12)-(4.14) as 

 

( ) ( ) ( ) ( )
2 2 2 2

* 2 * 2 * 2 * 2

( ) ( ) ( ) ( )
( ) , ( ) , ( ) , and ( ) ,

( ) ( ) ( ) ( )

p p p p

z stroke v a

H S G S G S B S
S S S S

k k k m

        
   = = = =  

(4.15) 

 

where Sz() is the PSD of the free-end displacement of the primary structure, Sstroke(ω) is the 

PSD of the TMDI stroke, Sv(ω) is the PSD of the relative velocity between the attached mass 

and the cantilever free-end, and Sa(ω) is the PSD of the relative acceleration between the 

attached mass and cantilever structure at height χ. In the above expressions, Sp(ω) is the 

excitation PSD given as 

 

( ) ( )
2

0
0

( ) ,
h

pS x dx W =                                           (4.16) 

 

where W0 is the constant PSD amplitude of the white noise excitation. Then, the RMS values 

of the free-end displacement of the primary structure, z(t), attached mass stroke, z(t)-y(t), 

damping force, fc(t), and inerter force, fb(t), are obtained using the expressions 

 

max max max max

0 0 0 0

( ) ( ) ( )  and ( ) ,= , = , ,
z z stroke stroke fc v fb aTMDIS d S d c S d S db

   

           = =     

        (4.17) 

 

respectively, where ωmax is a cut-off frequency above which the PSDs in Eq. (4.15) attain 

negligible values. 

 

4.3 Optimal TMDI design using the two-DOF simplified model 

4.3.1 Optimal TMDI design for resonant harmonic loading 

Consider the case of a harmonic generalised load applied to the 2-DOF model defined in 

the previous section with frequency equal to ω1, that is, the natural frequency of the generalised 

SDOF system representing the primary structure. Arguably, this is a worse-case scenario 

excitation based on resonance considerations (Cacciola et al. 2020). In this respect, it is deemed 

useful to examine the effectiveness of the TMDI to mitigate the free-end displacement z(t) under 

resonant harmonic loading. To this aim, the magnitude of the FRF in Eq.(4.12) at ω=ω1 (i.e., 

g=1) given as 

 



Chapter 4 – Analytical and Numerical Investigation of TMDI Connectivity and Primary 

Structure Influence 

63 |  
 

1

2

2 2 2 2 2

1

( )

( 1 2 )( )
,

[( + 2 )( ) ( ) 2 ]( 1 2 )( ) [ ( ) ( 2 )( )]

H

i

i i i i



   

                

=

− + +

+ − + − + + − − + +

 

(4.18) 

 

is adopted to gauge TMDI motion control effectiveness. This is because |H(ω1)| provides the 

ratio of the peak steady-state free-end displacement over the static displacement for resonant 

harmonic excitation. To ensure meaningful performance comparison for different TMDI 

properties, an optimal TMDI tuning problem is formulated to determine TMDI frequency, v, 

and damping, ξ, properties which minimise |H(ω1)| given mass ratio, μ, inertance ratio, β, and 

inerter connectivity ratio, CR, for a primary structure with assumed deflected shape ψ and 

damping ratio ξ*. In this setting, the primary TMDI design variables (DVs) can be collected in 

the vector x1=[ν, ξ]T and the secondary TMDI DVs in the vector x2=[β,μ,CR]T so that the optimal 

TMDI tuning problem is mathematically written as 

 

 
1

2

min ma

11

x

1 1
min  subjecte o ( d t) ,H   

x

x xx x                            (4.19) 

 

where the vectors x1
min and x1

max specify the lower and the upper bounds, respectively, of the 

search range of the two primary DVs. Note that the TMDI tuning problem in Eq.(19) allows 

for explicit treatment of the TMD and of the TMDI with grounded inerter as special cases by 

taking β=0 and CR=0, respectively. 

The solution of the optimisation problem in Eq.(4.19) is straightforward as the numerator 

of the FRF in Eq.(4.18) becomes zero for ν=1 and ξ=0, for every x2, ψ, and ξ*. Still, given that 

in practical applications some TMDI damping will always be present in anticipation of wide-

band excitations (see also next sub-section), it is instructive to study the behaviour of |H(ω1)| as 

function of the primary design variables for different TMDI inertial and connectivity properties. 

To this end, Fig. 4.2 plots |H(ω1)| on the ν-ξ plane for TMD (β=0) and for TMDI with β=40% 

and different CR values. In all cases, the mass ratio is taken as μ=0.1%, the inherent damping 

ratio is taken as ξ*=2%, and the deflected shape of the primary structure is assumed to be 

 

( ) 1 cos
2

x
x

h



= −

 
 
 

 ,                                                     (4.20) 

 

which is commonly adopted to approximate single-mode dynamic behaviour of cantilevered 

structures whose response is dominated by their first mode shape (Chopra 2000). It is seen that 

the global |H(ω1)| minimum is reached at ν=1 as ξ→0 and that the TMDI becomes more 

effective than TMD throughout the primary variables design plane as CR increases. The latter 

observation is practically important as it suggests that connecting the inerter further away from 
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the free-end of the primary structure enhances TMDI motion control for resonant harmonic 

loading even for non-optimal (i.e., ξ>0) TMDI damping ratios. 

 

 

Fig. 4.2. Magnitude of the non-dimensional FRF, H(ω1), in Eq. (18) versus TMDI frequency ratio, ν, 

and damping ratio, ξ, for attached mass ratio μ=0.1%, inertance ratios, β=0 (ΤMD) and β=40%, and 

connectivity ratios, (a) 2.5%; (b) 5.0%; and (c) 7.5%. 

 

 

Fig. 4.3. Magnitude of the non-dimensional FRF, H(ω1), in Eq. (4.18) versus TMDI frequency ratio for 

various secondary mass ratios, , inertance ratios, , and connectivity ratios, CR. 

 

Further light on the optimal TMDI design for resonant harmonic loading is shed by 

examining numerical data in Fig. 4.3 where |H(ω1)| is plotted against TMDI frequency v for 



Chapter 4 – Analytical and Numerical Investigation of TMDI Connectivity and Primary 

Structure Influence 

65 |  
 

three different secondary mass ratios μ= [0.1%, 0.2%, 0.3%], inertance ratios β=[0, 20%, 40%], 

and connectivity ratios CR= [2.5%, 5.0%, 7.5%]. A fixed arbitrarily taken value of TMDI 

damping ratio ξ=5% is taken, while ξ* is taken equal to 2% and the deflected shape of Eq.(4.20) 

is assumed. It is seen that improved free-end displacement reduction at a wider band of 

frequencies around the optimal value v=1 is achieved as the inertance ratio β and/or the 

connectivity ratio CR increase. On the contrary, the increase of the secondary mass has 

negligible effect to the motion control performance of the TMDI, though it is significant 

(beneficial) for the TMD. Notably, similar trends on motion control performance of optimally 

designed TMDI have been reported in previous works which considered lumped-mass primary 

structures under earthquake and wind excitations (see e.g., Giaralis and Taflanidis 2018, Petrini 

et al. 2020). These similarities indicate the capability of the simplified 2-DOF model of section 

4.2.1, derived from a primary structure with continuously distributed mass and stiffness 

properties, to capture the salient dynamics of TMDI-equipped cantilevered structures as well 

as to facilitate optimal TMDI tuning. 

 

4.3.2 Optimal TMDI design for white noise excitation 

Turning the attention to mitigating primary structure motion to white noise excitation 

(uniformly distributed and spatially correlated), TMDI optimal tuning is sought in the second 

norm, H2, sense. Specifically, the primary DVs in vector x1 are determined to minimise the area 

under the square magnitude of the non-dimensional FRF in Eq. (4.12) (OF) for given secondary 

DVs in vector x2 and for assumed primary structure deflected shape ψ and damping ratio ξ1. 

The underlying optimisation problem is mathematically written as 
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x x x x                (4.21) 

 

The solution to the above problem is non-trivial and, herein, pattern search (Charles and 

Dennis 2003) is employed to find numerically x1 that yields the minimum, Amin, value of the 

objective function. For computational efficiency, a custom-made pattern search algorithm with 

iteratively narrowing search range in a step-wise manner is hard-coded in MATLAB®. In all 

the ensuing numerical work, the initial search range in solving the optimisation problem in Eq. 

(4.21) is taken as x1
min=[0.0, 0.0]T and x1

max=[2.0, 2.0]T. This initial search range is iteratively 

narrowed around the ν and ξ values which minimise the OF in the previous step, until the 

difference of Amin between two successive steps becomes smaller than a pre-specified tolerance 

set equal to 10-2. 
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Fig. 4.4. Iterative pattern search algorithm illustration for solving the optimisation problem in Eq.(4.21) 

for TMDI with mass ratio μ=0.1%, inertance ratio β=40%, and connectivity ratio CR=7.5%, and 

primary structure with ξ*= 2% and deflected shape in Eq.(20): (a) 1st iteration; (b) 2nd iteration; and (c) 

3rd iteration. 

 

For numerical illustration, Fig. 4.4 plots the OF in Eq.(4.21) on the primary DV plane 

computed in three different successive steps/iterations of the pattern search algorithm for 

x2=[40%, 0.1%, 7.5%]T, 1=2%, and primary structure deflected shape in Eq.(4.20). Optimal 

values ν(j), ξ(j) and Amin(j) for j=1,2,3 iterations are indicated in the plots. It is seen that the 

algorithm converges fast and that the OF is convex exhibiting a single (global) minimum. The 

same behavior is noted in all cases examined later in this work. Moreover, in the inlet of Fig. 

4.4(c), the magnitude of the normalized FRF in Eq. (4.12) for the optimally designed TMDI is 

plotted to demonstrate the nature of the achieved optimality. It is seen that the free-end 

displacement FRF exhibits two distinct peaks of almost equal height with a local minimum 

(valley) attained roughly at the uncontrolled fundamental frequency. These two peaks 

correspond to the shifted vibration mode of the primary structure and the TMDI mode. 

Further to Fig. 4.4(c), Fig. 4.5 plots the magnitude of the FRF in Eq. (4.12), |H(ω)|, for 

optimally designed TMDIs to white noise excitation for the same x2 properties and primary 

structure considered in Fig. 4.3. Evidently, increased inerter and connectivity ratios are 

beneficial to the TMDI capability to mitigate primary structure motion for white noise 

excitation just as for resonant harmonic excitation, while the mass ratio has negligible effect. 
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Fig. 4.5. Magnitude of the non-dimensional FRF, H(ω), in Eq. (12) for optimally designed TMDIs to 

white noise excitation for various secondary mass ratios, , inertance ratios, , and connectivity ratios, 

CR. 

 

4.4 Geometric shape variation of primary structure 

4.4.1 Geometric shape definition and derivation of fundamental mode shapes 

Having established the applicability and usefulness of the simplified 2-DOF model 

presented in section 4.2 to support optimal TMDI tuning for motion control of cantilevered 

primary structures, the attention is turned to leveraging this model for investigating the 

influence of the primary structure geometry to the TMDI vibration suppression effectiveness. 

To this aim, cantilevered beams with solid rectangular cross-section, height h, constant width 

L, and varying depth D(x) with height are considered as shown in Fig. 4.6. The continuously 

varying depth allows to define beams with different smoothly tapered shapes inspired by real-

life structures such as industrial chimneys (e.g., Brownjohn et al. 2009), slender towers 

supporting renewable energy generation (e.g., Zhao et al. 2018, Li et al. 2018), and tall 

buildings (e.g., Li et al. 2011, Lu et al. 2017). Specifically, beams with five different geometric 

shapes shown in Fig. 4.6 are defined through the analytical expressions of the depth profiles, 

D(x), reported in Table 4.1. The uniform shape “I” has constant depth profile assuming a square 

cross-section. The non-constant depth profiles of the other four geometric shapes are specified 

with the aid of the depth ratio R=D(0)/D(h) (i.e. base depth over free-end depth). Purposely, the 
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base depth, D(0), is defined as a function of R (see Table 1) such that all shapes have the same 

total volume for any value of R. This consideration allows for establishing beams with different 

height-wise mass and flexural rigidity distributions expressed as 

 

( ) ( )
( )3

( ) and ,
12

D
m x LD

EL x
x EI x= =                                   (4.22) 

 

respectively, but with the same total mass equal to ρhL2, where ρ is the mass density. In this 

regard, these beams constitute a practically meaningful set of parametrically defined primary 

structures for the purpose of assessing comparatively the TMDI motion control effectiveness. 

This is because they attain different dynamic/modal properties, which do influence TMDI 

efficacy, but have equal total weight and material usage which are directly linked to 

sustainability considerations in construction (Cabeza et al. 2013). 

 

 

Fig. 4.6. Considered geometric shapes of cantilevered beam-like primary structures. 

 

Table 4.1. Analytical definition of primary structure geometric shapes in Fig.6(b) through the depth 

D(x) and the depth ratio R=D(0)/D(h). 

Shape Description 

Depth at the 

base 

D(0)=Do 

Depth at height x 

D(x) 

Depth at the 

tip 

D(h) 

I Uniform L L L 

II Parabolic (concave) 3L/(2+1/R) D0+D0(1/R-1)(x/h)2 

D0/R 
III Linear 2L/(1+1/R) D0+D0(1/R-1)x/h 

IV Double curvature 2L/(1+1/R) D0+1/2D0(1/R-1)[1-cos(x/h)] 

V Parabolic (convex) 3L/(1+2/R) D0+D0(1-1/R)[(x/h)2-2(x/h)] 

 

To provide an insight into the relative variation of mass and flexural rigidity distributions 

of the primary structures in Fig. 4.6, Fig. 4.7 plots the ratio EI(x)/m(x) (i.e., flexural rigidity 

over mass) for different values of the depth ratio R and for all four non-uniform geometric 

shapes. These plots are normalized by the constant ratio EI/m=EL2/12ρ of the uniform shape. 

In all the panels of Fig. 4.7, the same reference continuous curve corresponding to the uniform 
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shape (R=1) is included to facilitate comparisons. It is seen that for all shapes (depth profiles 

D(x)), an increase in the depth ratio R results in higher values of EI(x)/m(x) towards the base of 

the structure and lower values towards the free-end of the structure. Therefore, an increase of 

R defines primary structures that become increasingly more flexible with height. Further, as 

shapes evolve from “II” to “V” the rate of change of EI(x)/m(x) with height reduces faster, that 

is, the primary structure becomes more flexible with height at a faster rate while the value 

[EI(h)/m(h)]/[EI(0)/m(0] reduces. In fact, for shapes “IV” and “V” the ratio EI(x)/m(x) becomes 

practically constant x/h>0.80 and x/h>0.75, respectively. Notably, these differences in the 

distribution of EI(x)/m(x) with height affects the properties of the primary structure mode 

shapes as discussed later in this section. 

 

 

Fig. 4.7. Rigidity over mass distribution plots for all considered geometric shapes (depth profiles in 

Table 1) and for various depth ratios R of cantilevered beam-like primary structures. 

 

Regardless of their geometric shape, the assumption that the dynamic response of the 

primary structure is dominated by the first/fundamental mode shape, φ1(x), is made which is 

reasonable for slender structures. In this respect, the simplified 2-DOF model of section 4.2 can 

be used in conjunction with the primary structures in Fig. 4.6 by using the mass and flexural 

rigidity distributions of Eq.(4.22) in Eq.(4.6) and by setting ψ(x)= φ1(x). For the purposes of 

this work, the fundamental mode shape φ1(x) of the uncontrolled primary structures is 

numerically approximated using a FE approach. This is achieved by discretising the primary 

structure using 40 tapered equal-length linear Euler-Bernoulli beam elements. Then, a 41-DOF 

planar dynamic model is derived involving only one lateral translational DOF per FE node grid 

along the horizontal load direction in terms of a diagonal mass matrix and a full stiffness matrix. 

The mass matrix is formed by lumping the own mass of the elements at the nodes while the 

stiffness matrix is constructed using standard static condensation to eliminate vertical and 

rotational DOFs at each FE node. Next, standard modal analysis is conducted to obtain the 

fundamental mode shape vector φ1∈ℝ41×1. The central difference method is used to obtain 

numerically the second derivative of the mode shape vector (modal curvature) and the standard 

trapezoid quadrature rule is used to determine the integrals in defining the generalised primary 

structure properties in Eq. (4.6). 
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The influence of the geometric shape of the primary structure to its fundamental mode is 

qualitatively seen in Figs. 4.8(a) and 4.8(b). In Fig. 4.8(a), numerically derived fundamental 

modes are plotted for all five geometric shapes of Fig. 4.6 and for the same ratio R=3 (except 

for the uniform shaped structure which can only attain R=1), while in Fig. 4.8(b) fundamental 

modes for shapes “I” and “V” with different depth ratios R=2,3,4, and 5 are plotted. It is 

observed that as geometric shapes vary from “II” towards “V” for fixed R and as the ratio R 

increases for fixed shape, the convexity of the modes increases. This is readily justified by the 

fact that the ratio EI(x)/m(x) takes on higher values (i.e., is always heavier distributed) towards 

the base of the primary structure and reduces faster with height as R increases and/or as shapes 

vary from “II” to “V” as previously discussed in view of Fig. 4.7. In this work, the average 

modal curvature along the height of the structure is used as an intuitive scalar quantitative 

metric to measure the convexity of the fundamental modal shape. The variation of this novel 

metric for the four non-uniform primary structures and for R=2,3,4, and 5 is reported in Fig. 

4.8(c) in which ordinates are normalized by the average curvature of the uniform primary 

structure. This is an important consideration for the purposes of this work as it will be seen, in 

subsequent sections, that the average modal curvature of the primary structure correlates well 

with the TMDI motion control potential. 

 

 

Fig. 4.8. Numerically derived fundamental mode shapes and average modal curvature for primary 

structures with different depth profiles (shapes) and depth ratios R. 

 

Furthermore, Pietrosanti et al. (2020a) showed that the TMDI control effectiveness (in 

suppressing earthquake-induced vibrations in lumped-mass models) correlates positively with 

the modal coordinate difference (of the primary structure) between the two connecting locations 

of the TMDI, i.e., Ψ(h)-Ψ(χ). To examine the influences of primary structure tapering on the 

latter quantity, Fig. 4.9 plots the modal coordinate difference of the fundamental modes, values 

normalized by the corresponding difference of the uniform cantilever (i.e., the shape I) 

with CR=2.5%, for all five geometric shapes in Fig. 4.6, four depth ratios in Fig. 4.7, and 

three CR in Fig. 4.5. It is seen that, as the depth profile varies from “II” towards “V” for fixed R, 

or as R increases for fixed shape, or as CR increases for fixed shape and R, the modal coordinate 

difference between the two TMDI terminals increases, which, as will be seen later, correlates 
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well with the TMDI control effectiveness. 

 

 

Fig. 4.9. Normalized mode coordinate difference between the free end and the inerter connecting 

location of primary structures, Ψ(H)-Ψ(χ), with different depth profiles (shapes), depth ratios, R, and 

inerter connectivity ratios, CR. 

 

4.4.2 Verification of the simplified 2-DOF model for optimal TMDI design and 

performance assessment 

Besides approximating the dynamic response of the primary structure via a single mode 

shape through modal truncation, another simplifying assumption made in the 2-DOF model 

defined in section 4.2 is that the TMDI-controlled primary structure would have the same 

fundamental mode shape as the uncontrolled. Indeed, the inclusion of the TMDI alters locally 

the fundamental mode shape of the primary structure which, in turn, may affect the 

effectiveness of the optimal TMDI tuning if using the simplified 2-DOF model for the task. 

Thus, it is herein deemed important to verify the accuracy of the 2-DOF model for optimal 

TMDI tuning vis-à-vis a more detailed model that can capture the structure-TMDI coupling as 

well as the effects of higher modes. 

In this junction, note that the combination of large R, β, and CR values leads to higher 

influence of the TMDI to mode shapes since a large R specifies primary structures with a more 

flexible upper part while large β and CR result in higher magnitude dashpot and inerter forces 

exerted to the primary structure (see Fig. 4.15 later in the chapter). Therefore, structures with 

high ratio R=5 for shapes II-V and large TMDI inertance, β=40%, and CR=7.5% are used for 

the verification of the 2-DOF model tuning accuracy. For each structure, two different dynamic 

systems are considered to determine the FRF H(ω) used in the objective function for optimal 

tuning. The first system is the 2-DOF model in section 4.2 in which ψ(x) is set equal to the 

fundamental mode shape of the uncontrolled primary structure. This mode shape is estimated 

through modal analysis using the 41-DOF FE model as detailed in section 4.4.1. For this system, 

the H(ω) is determined using Eq. (4.12). The second system uses directly the 41-DOF FE 

modelling of the primary structure which is augmented by an additional DOF for the TMDI 

following the formulation of Giaralis and Petrini (2017). The resulting 42-DOF model accounts 

for primary structure-TMDI interaction explicitly while H(ω) is determined using the frequency 

domain approach in Giaralis and Petrini (2017). Next, two different sets of optimal TMDI 

primary DV values, νopt and ξopt, are computed by solving the H2 optimisation problem in Eq. 
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(4.21) using the H(ω) from the two different systems (the 2-DOF and the 42-DOF).  

Table 4.2 reports the percentage difference of the two sets of optimal TMDI tuning 

parameters for all structures considered. In the same Table, the deviation to the structural 

performance due to adopting different sets of TMDI tuning parameters for each structure is also 

reported, measured in terms of RMS free-end displacement percentage difference obtained 

from 42-DOF detailed models under white noise excitation. It is evidenced that the simplified 

2-DOF model is sufficiently accurate to be used for TMDI optimal tuning since errors to the 

tuning parameters are less than 0.2% for all considered structures, causing deviations to 

structural performance of 1% or less. Moreover, Table 4.2 furnishes differences to structural 

performance obtained by using the simplified and the detailed models and adopting the 

corresponding sets of TMDI tuning parameters. It is seen that percentage differences are less 

than 2% across the board. In view of these small differences, the 2-DOF model is used for 

optimal TMDI tuning as well as for comparative performance assessment of optimal TMDI-

equipped primary structures in all the ensuing numerical work. Note that this consideration 

expedites significantly the computational work given that the evaluation of H(ω) for the 42-

DOF model involves multiplications and inversion of 42-by-42 full matrices which are 

computationally much more demanding than the evaluation of H(ω) through Εq. (4.12). Hence 

the practical merit of the model in section 4.2 is established for optimal TMDI tuning of generic 

cantilevered structures with dominant fundamental mode. 

 

Table 4.2 Absolute percentage differences of optimal TMDI tuning parameters and of RMS free-end 

displacements using 42-DOF detailed FE models and 2-DOF simplified models of TMDI-equipped 

primary structures. Optimal tuning for white noise excitation is considered. 

Control device 
TMDI 

(μ=0.3%, β=40%, CR=7.5%) 

Primary structure 
I 

(R=1) 

II 

(R=5) 

III 

(R=5) 

IV 

(R=5) 

V 

(R=5) 

νopt 0.00% 0.05% 0.13% 0.09% 0.16% 

ξopt 0.00% 0.00% 0.00% 0.00% 0.00% 

RMS free-end displacement deviation 0.01% 0.49% 0.61% 0.30% 1.05% 

RMS free-end displacement performance 1.88% 1.15% 1.22% 1.42% 1.69% 

 

4.5 Performance assessment of TMDI-equipped structures with different geometric 

shapes 

In this section, the influence of primary structure geometric shape to the motion control 

effectiveness of TMDI is assessed through a parametric numerical investigation, involving 

primary structures of different geometric shapes characterized by the depth ratio R=D(0)/D(h) 

and the depth profile D(x) in Table 4.1 and Fig. 4.6. To this aim, TMDIs with various μ, β, and 

CR properties are optimally tuned for resonant harmonic excitation or for white noise excitation 

(as indicated in the text and figure captions) by solving the optimisation problem in Eq. (4.19) 



Chapter 4 – Analytical and Numerical Investigation of TMDI Connectivity and Primary 

Structure Influence 

73 |  
 

or (4.21), respectively. In all structures investigated, ξ*=2% inherent structural damping is 

assumed. To expedite computations, the 2-DOF model of section 4.2 with deflected shape ψ(x) 

equal to the fundamental mode shape of the primary structure is used for TMD(I) tuning and 

for obtaining response quantities of interest throughout this section for the above excitations. 

Fundamental mode shapes are computed through modal analysis applied to FE models of the 

primary structures as detailed in section 4.4.1. 

 

4.5.1 Influence of depth ratio R to free-end displacement 

First, attention is focused on investigating the influence of the depth ratio R=D(0)/D(h) of 

the primary structure on the TMDI motion control efficacy. This is supported by plotting in Fig. 

4.10 the RMS free-end displacement of optimal TMDI-equipped structures against CR for fixed 

depth ratios R=2,3,4, and 5 and for each of the geometric shapes II-V in Fig. 4.6, separately. 

The same TMDI mass and inertance are considered for all structures of each panel of Fig. 4.10, 

taken as mTMDI=0.1%×m*
Avg and b=40%×m*

Avg, respectively, where m*
Avg is the average 

generalized mass m* in Eq. (4.6) of all the primary structures studied in Fig. 4.10. These 

assumed inertial values are representative of low mass/weight and high inertance TMDIs which 

were found to be quite effective and advantageous over TMDs in earthquake (Giaralis and 

Taflanidis 2017) and wind (Giaralis and Petrini 2017) engineering applications as they relax 

requirements for large secondary mass and reduce significantly the kinematics of the secondary 

mass. Both considerations are practically important: the former leads, ultimately, to more 

lightweight and, therefore, economic absorbers; the latter reduces needs for space/clearance to 

accommodate the absorber, as well as the cost of energy dissipation devices (dampers) whose 

cost increases with the stroke (relative displacement between primary structure and secondary 

mass). For each structure, TMDI is optimally tuned for white noise excitation using Eq.(4.21). 

Further, the reported RMS free-end displacements in Fig. 4.10 are normalised by the RMS free-

end displacement of the same primary structure equipped with a same-mass TMD which is 

optimally tuned by solving Eq. (4.21) for b=0. In all the panels of Fig. 4.10, the same reference 

continuous curve corresponding to the uniform shape (R=1) is included to facilitate 

comparisons. 
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Fig. 4.10. RMS free-end displacements of white noise excited TMDI-equipped structures for 

attached mass mTMDI=0.1%×m*
Avg and inertance b=0.40×m*

Avg for different geometric shapes and 

depth ratios normalized by the corresponding displacements of optimal TMD-equipped structures 

and plotted against CR. 

 

It is seen that improved vibration suppression is achieved monotonically as CR increases 

(i.e., as the inerter links the secondary mass further away from the free-end) for all geometric 

shapes and R values and, thus, for all different primary structure mode shapes. In this regard, 

best performance is always achieved for grounded inerter (CR=100%). However, performance 

improvement saturates with CR fast for all structures and, in general, little improvement is 

demonstrated for CR>30%. Further, for relatively small CR values (less than about 3%) the 

TMD outperforms the TMDI (normalized free-end displacement is higher than 100%). All the 

above trends agree with trends reported in previous numerical studies examining various 

TMDI-equipped lumped-mass models of different benchmark building structures exposed to 

wind or earthquake excitations (e.g., Giaralis and Taflanidis 2018, Ruiz et al. 2018, Taflanidis 

et al. 2019, Giaralis and Petrini 2017, Petrini et al. 2020, Kaveh et al. 2020). Hence, it is safely 

concluded that these trends are applicable to any type of primary cantilevered structure which 

suggests that it is always beneficial to attach the inerter as further away from the free-end of 

the primary structure as structurally and economically feasible. 

More importantly, reported data in Fig. 4.10 evidence that TMDI performance improves 

monotonically over a same-mass TMD as the depth ratio R increases for fixed CR value and 

for any geometric shape. This improvement is more substantial for lower CR values. This novel 

finding suggests that the TMDI becomes more effective as the upper part of cantilevered 
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primary structures becomes more flexible (see discussion in view of Fig. 4.7) for same total 

structural weight. In this regard, from the structural design viewpoint, the CR can be traded for 

tapering of the primary structure geometric shape in achieving a desired target structural 

performance for fixed inertial TMDI parameters (i.e., mass mTMDI and inertance b). For instance, 

for shape “V” in Fig. 4.10(d), the required CR for a TMDI with mTMDI=0.1%×m*
Avg and 

b=40%×m*
Avg to achieve 50% better performance than a same-mass TMD reduces from 18% 

to 11% as the depth ratio increases from R=2 to R=4. In the first instance, this consideration is 

useful for design engineers as it leads to more lightweight vibration absorbers and, thus, more 

economical since the attached mass is proportional to the upfront TMD(I) cost (e.g., Ruiz et al. 

2018). This consideration is also beneficial in applications where connecting the inerter much 

below the top of the structure is practically challenging such as in the case of tall buildings 

discussed in Wang and Giaralis (2020) and Kaveh et al. (2020). In this respect, increasing the 

depth ratio R of the primary structure (or more generally, designing the primary structure such 

that the flexural rigidity over mass ratio, EI(x)/m(x), reduces faster with height) widens the 

applicability of the TMDI over the TMD. As an example, note that for shape “IV” in Fig. 

4.10(c), the critical CR value beyond which the TMDI outperforms the TMD are 7.4%, 5.1%, 

and 2.75% for depth ratios R=1 (uniform), R=2, and R=5, respectively. 

 

4.5.2 Influence of depth profile (primary structure shaping) to free-end displacement and 

acceleration 

In this section, the attention is turned to quantifying the influence of the depth profile, D(x), 

of primary structures to the TMDI motion control potential. For this purpose, Figs. 4.11 and 

4.12 plot peak steady-state displacement (under resonant harmonic excitation) and RMS free-

end displacement (under white noise excitation) of primary structures with different geometric 

shapes equipped with TMDIs optimally tuned for resonant harmonic and white noise 

excitations, respectively. Displacement values are normalised by the corresponding 

displacement of optimally tuned TMD-equipped structures. In each panel of these figures, 17 

different primary structures are considered with same TMDI mass and inertance (the 

upper/middle and bottom rows of panels actually use different β ratios) equal to mTMDI= μ×m*
Avg 

and b=β×m*
Avg, respectively, where m*

Avg is the generalised mass in Eq. (4.6) across the 17 

primary structures. The primary DVs of TMDI for resonant harmonic excitation are set as v=1 

and ξ=5%, while TMDI DVs for white noise excitation are determined numerically by solving 

Eq.(4.21).  
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Fig. 4.11. Peak free-end displacement of TMDI-equipped structures under resonant harmonic 

excitation for attached mass mTMDI=μ×m*
Avg, inertance b=β×m*

Avg, and various interter connectivity 

ratios, CR, primary structure shapes, and depth ratios R. Values are normalised by the corresponding 

displacement of optimal TMD-equipped structures. 

 

It is seen that, for sufficiently large CR values (5.0% and 7.5%), the TMDI motion control 

potential improves over the TMD as the depth profile (shape) of the primary structure changes 

from type “II” towards type “V” for any fixed R value and for both harmonic and white noise 

excitations. With reference to Fig. 4.8(c) and 4.9, this trend suggests that improved TMDI 

performance is achieved as the average modal curvature or the modal coordinate difference (i.e., 

Ψ(h)- Ψ(χ)) of the uncontrolled primary structure increases. This can be achieved by shaping 

the primary structure such that its flexural rigidity over mass ratio, EI(x)/m(x), reduces faster 

with height (see Fig. 4.7). To elaborate on this point, Fig. 4.13 plots RMS free-end displacement 

for white noise excited structures of the middle row of panels of Fig. 4.12 versus the average 

modal curvature of Fig. 4.8(c). It is seen that, for CR≥5.0, the TMDI performance improves 

linearly with the average modal curvature at a similar rate (slope) for all considered shapes and 

as R values increase, which establishes the beneficial effect of the average modal curvature in 

TMDI-equipped cantilevered structures. 

At the same time, it is also evidenced that the improvement of the TMDI motion control 

effectiveness over the TMD due to a change to the depth profile becomes more substantial for 
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larger depth ratio R values. This is readily attributed to the fact that R influences the value of 

[EI(h)/m(h)]/[EI(0)/m(0)] in a direct manner. For example, the improvement of TMDI 

performance over TMD for harmonic excitation between primary structures with shape “II” 

and “V” for the case of CR= 5.0%, μ=0.1%, and β=40% (Fig. 4.11) is only 7.0% (from 17.2% 

to 24.2%) for R=2 compared to a much higher 24.0% (from 23.8% to 47.8%) for R=4. Moreover, 

TMDI performance benefits more significantly by an increase to R for depth profiles exhibiting 

faster reduction of the EI(x)/m(x) ratio with height (i.e., shapes “IV” and “V”). For instance, as 

R increases from 2 to 4 TMDI relative performance to TMD improves by only 6.6% (from 17.2% 

to 23.8%) for shape “II” as opposed to 23.6% (from 24.2% to 47.8%) for shape “V” for the 

previous TMDI case and harmonic resonant excitation. 

 

 

Fig. 4.12. RMS free-end displacement of TMDI-equipped structures under white noise excitation for 

attached mass mTMDI=μ×m*
Avg, inertance b=β×m*

Avg, and various interter connectivity ratios, CR, 

primary structure shapes, and depth ratios R. Values are normalized by the corresponding displacement 

of optimal TMD-equipped structures. 

 

Still, for the relatively low CR=2.5% value (first column of panels in Figs. 4.11 and 4.12), 

the TMD outperforms the TMDI except for shapes IV and V with R =4 and 5 and for the 

combination of large inertance β=40% and small secondary mass μ=0.1%. With regards to the 

spectral content of the excitation, a comparison between Figs. 4.11 and 4.12 shows that TMDI 

is more effective in suppressing primary structure free-end displacement due to harmonic 
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excitation than white noise excitation compared to the TMD. For example, the TMDI with 

μ=0.1%, β=40%, and CR=5.0% achieves a 36.9% improvement in reducing the peak free-end 

displacement under harmonic excitation (Fig. 4.11) as opposed to a mere 11.5% improvement 

in reducing the RMS free-end displacement under white noise excitation (Fig. 4.12) for the 

primary structure shape “V” with R=3. As a remark, it is noted that for all shapes and depth 

ratios considered, the relative motion control effectiveness of TMDI over TMD improves 

significantly by increasing the inertance for both harmonic and white noise excitations, as seen 

by comparing the upper rows of panels with the bottom rows in Figs. 4.11 and 4.12. On the 

other hand, this improvement reduces by increasing the attached mass as seen by comparing 

the upper rows of panels with the middle rows in Figs. 4.11 and 4.12. These trends confirm that, 

irrespective of the primary structure shape, the TMDI attached mass can be traded off for 

inertance in order to achieve some prespecified target structural performance as has been 

exhaustively demonstrated and discussed in the literature (e.g., Giaralis and Marian 2016, 

Petrini et al. 2020).  

 

 

Fig. 4.13. RMS free-end displacement of TMDI-equipped structures under white noise excitation 

as function of normalised average modal curvature (Fig.4.8(c)) for attached mass mTMDI=0.3%×m*
Avg, 

inertance b=0.4×m*
Avg, and various inerter connectivity ratios, CR, primary structure shapes, and depth 

ratios R. Values are normalized by the corresponding displacement of optimal TMD-equipped 

structures. 

 

Notably, up to this point, the free-end displacement (not the acceleration) has been chosen 

and studied as the engineering demand parameter for assessing the structural performance under 

two worst-case scenario excitations. The reason for this selection is that the simplified 2-DOF 

model degenerates the primary structure as a SDOF system to the first vibration mode. To this 

effect, the 2-DOF model is not applicable to acceleration-response assessment under white 

noise excitation due to higher mode contributions to acceleration response. Still, it is deemed 

relevant to report the free-end acceleration of the primary structures, equipped with TMDI 

optimally tuned for minimising the tip displacements subject to white noise excitation. In this 

regard, Figure 4.14 plots the RMS acceleration of TMDI-equipped primary structures 

considered in the middle row of Fig. 4.12. Again, acceleration values are normalised by the 

corresponding value of optimal TMD-equipped structures. It is seen that the trends in Fig. 4.14 

trivially follow the same, favourable trends as the free-end displacement evidenced in the 
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middle row of Fig. 4.12. 

 

 

Fig. 4.14. RMS free-end acceleration of TMDI-equipped structures under white noise excitation for 

attached mass mTMDI=0.3%×m*
Avg, inertance b=0.4×m*

Avg, and various interter connectivity ratios, CR, 

primary structure shapes, and depth ratios R. Values are normalised by the corresponding acceleration 

of optimal TMD-equipped structures. Optimal tuning is for white noise excitation. 

 

4.5.3 Influence of primary structure shaping to TMDI stroke and control forces 

Having quantified the influence of primary structure shaping to the performance of TMDI-

equipped cantilevers in terms of free-end displacement suppression, its influence on the 

attached mass stroke (relative displacement to the free-end displacement), as well as on the 

damping and inerter forces, is now investigated. This is because these three quantities are 

important to the practical design of TMDI-equipped structures. Specifically, TMDI stroke 

demands relate to the required clearance in housing the attached mass to avoid collisions as 

well as to the cost of the damping device (see e.g., Ruiz et al. 2018). Further, the magnitude of 

the damping and the inerter forces relates as well to the cost of the devices and may necessitate 

special design provisions at the connections of the devices to the primary structure to safely 

accommodate locally the exerted forces (e.g., Giaralis and Petrini 2017). 

The upper row of panels in Fig. 4.15 furnishes bar-plots of RMS stroke values σstroke in Eq. 

(4.17) for the same structures as the first row of panels in Figs. 4.11 and 4.12 normalised by the 

corresponding RMS stroke of optimal TMDs. This data confirms that, irrespective of the 

primary structure shape, the inclusion of the inerter to the TMD reduces dramatically the 

attached mass stroke (by more than 90% for all structures considered) as has been reported in 

several previous studies (e.g., Giaralis and Petrini 2017, Petrini et al., 2020). Nevertheless, it is 

seen that this relative reduction does not depend significantly on the variation of the primary 

structure shape due to different depth profile and/or depth ratio. However, the reduction of the 

RMS stroke with respect to the TMDI stroke for uniform primary structure with CR=2.5% 

depends appreciably on the primary structure shape with more than 40% reduction observed 

for all the non-uniformly distributed shapes (bottom row of panels in Fig. 4.15), while it is 

insensitive to CR. The reduction trends of RMS stroke with respect to the primary structure 

shape are consistent with the free-end RMS displacement improvement in Figs. 4.11 and 4.12 

and, therefore, very well correlated with the average modal curvature and the modal coordinate 
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difference of the primary structure mode shape in Fig. 4.8(c) and Fig. 4.9, respectively. This 

observation leads to the practically welcoming conclusion that appropriate primary structure 

shaping along the same lines discussed in the previous section achieves simultaneous gains both 

in terms of free-end displacement and TMDI secondary mass stroke. 

 

 

Fig. 4.15. RMS TMDI attached mass stroke for TMDI-equipped structures under white noise excitation 

for attached mass mTMDI=0.1%×m*
Avg, inertance b=0.4×m*

Avg, and various interter connectivity ratios, 

CR, primary structure shapes, and depth ratios R. In the upper row of panels values are normalized by 

the corresponding stroke of TMD-equipped structures and in the bottom row of panels values are 

normalized by the stroke of TMDI uniform shaped structure with CR=2.5%. 

 

Further, Fig. 4.16 reports the RMS inerter force, σfb (upper row of panels), and damping 

force, σfc (bottom row of panels), in Eq.(4.17) for the same structures in the first row of panels 

in Figs. 4.11 and 4.12 normalised by the corresponding forces developing in the uniform 

primary structure for CR=2.5%. For all shapes considered, damping forces are seen to increase 

appreciably with the depth ratio R for fixed depth profile and CR, whereas the increase in inerter 

forces is less significant. In this regard, there is a positive correlation between average modal 

curvature in Fig. 4.8(c) and developing inerter and damping forces as R changes for fixed 

primary structure shape. These trends are further visualised in Fig. 4.17, which plots curves of 

performance (RMS free-end displacement) versus inerter and damping forces for fixed primary 

structure shapes and different R values. It is seen that, for CR≥5.0%, a positive correlation exists 

between the depth ratio R and the control forces (i.e., damping and inerter forces) within an 

optimal TMDI design setting. More importantly, structural performance improves almost 

linearly with the control forces as R increases with higher rate of improvement as the depth 

profile evolves from “II” towards “V”. From a structural design viewpoint, the significance of 

the above observed trend is that, in case of leveraging/exchanging R for improved structural 

performance, higher control forces are developed and need to be accommodated by the primary 



Chapter 4 – Analytical and Numerical Investigation of TMDI Connectivity and Primary 

Structure Influence 

81 |  
 

structure. 

 

 

Fig. 4.16. RMS inerter resisting force (upper row of panels) and damping force (bottom row of panels) 

for attached mass, mTMDI=0.1%×m*
Avg, inertance b=0.4×m*

Avg, and various interter connectivity ratios, 

CR, primary structure shapes, and depth ratios R normalized by the corresponding values of optimal 

TMDI for the uniform primary structure with the inerter connectivity ratio, CR=2.5%. 

 

Meanwhile, for the cases that TMDI outperforms TMD (CR=5% and 7.5%), it is seen, in 

the first row of panels in Fig. 4.16, that the inerter force reduces as the depth profile varies from 

type “II” to type “V” and fixed R. This observation suggests that pursuing shaping of the 

primary structure (to achieve faster EI(x)/m(x) change with height) through appropriate 

selection of depth profile rather than increase of the depth ratio may be preferable for improving 

structural performance in applications where the magnitude of the inerter force is critical in 

design, as can be seen by examining the first row of panels in Fig. 4.17. At the same time, the 

magnitude of the damping force is influenced significantly by the depth profile, as evidenced 

in the second row of panels in Fig. 4.16. However, the damping force reduces slightly when 

going from shape “VI” and “V” for fixed R, while the structural performance remains almost 

the same as seen in Fig. 4.17. Collectively, the above observations and data in Figs. 4.16 and 

4.17 suggest that TMDI damping and inerter force demands might be reduced through 

appropriate shaping of primary structure. This is an important practical consideration since the 

upfront cost of dampers and inerter devices is well-related to the force they need to be designed 

for. 
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Fig. 4.17. RMS free-end displacement versus RMS inerter force (upper row of panels) and damping 

force (bottom row of panels) for attached mass, mTMDI= 0.1%×m*
Avg, inertance b=0.4×m*

Avg, and 

various inerter connectivity ratios, CR, primary structure shapes, and depth ratios R. All quantities are 

normalized by the corresponding values of optimal TMDI for the uniform primary structure (R=1) with 

CR=2.5%. 

 

4.6 Closure 

In this chapter, the significance of the geometric shape of primary cantilevered structures 

to the motion control efficacy of the TMDI under resonant harmonic as well as white noise 

excitations has been herein established. This was achieved through an innovative parametric 

study involving a wide range of tapered beam-like primary structures with different 

continuously varying flexural rigidity, EI(x), and mass, m(x), properties but same total weight 

equipped with TMDIs optimally tuned for minimising the free-end displacement under resonant 

harmonic and white noise excitation. Optimal TMDI tuning and structural performance 

assessment was expedited through a novel simplified 2-DOF dynamic model in which the 

primary structure is represented by a generalised SDOF system to accounts for its flexural 

rigidity and mass distribution as well as its fundamental vibration mode, ψ(x), and the location 

that the inerter connects to the primary structure (CR). The accuracy of the simplified model 

for TMDI tuning and structural performance assessment have been numerically verified using 

detailed FE models of primary structures. Structural performance of optimal TMDI-equipped 

primary structures with different shapes was expressed in terms of peak and RMS free-end 

displacement for harmonic and white noise excitation, respectively. Further, RMS values of 

TMDI stroke, inerter force and damping force were also presented. 

Numerical data demonstrated that TMDI motion control efficiency improves 

monotonically with increasing inertance and CR (distance of inerter connection to the primary 

structure from the free-end) irrespective of the primary structure shape at a reduced rate with 

best performance always achieved for grounded inerter (i.e., CR=1.0). More importantly, it was 

found that improved TMDI performance as well as reduced TMDI stroke are achieved for 
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primary structure shapes in which the ratio EI(x)/m(x) reduces faster with height (at the cost of 

increased damping force), rendering the upper part of the primary structure more flexible 

compared to its base. The beneficial effect of such geometric primary structure shaping was 

attributed to an increase in the convexity of the fundamental vibration mode of the primary 

structure (measured through the average along height modal curvature), which creates a larger 

modal coordinate difference between the two terminals of the TMDI, i.e., ψ(H)-ψ(χ). This was 

showcased by demonstrating excellent correlation between structural performance 

improvement and increase of the average modal curvature. In this respect, the herein reported 

numerical results establish that shaping the uncontrolled primary structure for faster reduction 

of EI(x)/m(x) is beneficial from a performance-oriented structural design viewpoint as it relaxes 

requirements for attached mass and/or reduces requirements of CR which allows for the inerter 

to be connected closer to the free-end of the primary structure. The former is important as it 

leads to more lightweight vibration absorbers, the latter is important as it extends the 

applicability of TMDI to structures where connecting the inerter away from the free-end is 

practically challenging/prohibitive. Furthermore, it was also found that the primary structure 

shape influences significantly the TMDI inerter and damping control forces exerted to the 

primary structure and demonstrated that the magnitude of these forces may be contained 

through judicial shaping of the primary structure without compromising structural performance. 

As a closing note, the fact that the TMDI motion control potential is heavily dependent on 

the primary structure elastic and mass properties and, ultimately, on the global modal shape of 

the uncontrolled structure suggests that tailored application-dependent structural design may be 

key for improved performance of TMDI-equipped structures to dynamic excitations, besides 

optimal TMDI tuning (νTMDI and ξTMDI), inertial properties (μ and β), and inerter connectivity 

(CR). In this regard, the numerical data furnished in this chapter motivates locally modifying 

the lateral stiffness of the primary structure for improved TMDI performance. To this end, in 

the next chapter, the applicability of TMDI is extended by leveraging judicious local primary 

structure modification to improve the performance of structures equipped with top-floor TMDIs 

spanning just one floor (p=1). 
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Chapter 5 

Extending the Use of TMDI to High-Rise Buildings: Soft Top Floor 

Modification 

Note: This Chapter has been published in: 

Wang, Z. and Giaralis, A. (2020). “Top-storey softening for enhanced mitigation of vortex shedding 

induced vibrations in wind-excited optimal tuned mass damper inerter (TMDI)-equipped tall buildings.” 

J. Struct. Eng., DOI: 10.1061/(ASCE)ST.1943- 541X.0002838. 

5.1 Preliminary remarks 

Numerical results in Chapter 3 demonstrated the efficacy of optimal top-storey TMDIs 

with adequate connectivities in mitigating wind-induced vibrations in ultra-tall, landmark 

building structures for enhanced occupant comfort performance. It was shown that optimally 

tuned TMDIs achieve appreciably larger peak top-floor acceleration reductions compared to 

the TMD for the same attached mass as the inertance increases and/or as TMDI connectivity 

with the inerter spanning more than one storey are considered. The latter consideration is 

graphically illustrated in Fig. 5.1 (b) and (c), which shows two different TMDI topologies in 

a n-storey building with the inerter spanning one (the top) storey (p=1 or “-1” connectivity) and 

two (the top and the penultimate) storeys (p=2 or “-2” connectivity), respectively. Moreover, 

Fig. 5.1(e) furnishes indicative numerical data (explained and discussed in detail later in the 

chapter) demonstrating, phenomenologically, that FRF ordinates of the n-2 floor acceleration 

reduce for optimally designed TMDIs with connectivity “-2” vis-à-vis “-1” for the same 

attached mass and inertance (see also Giaralis and Taflanidis 2015, 2018). On the downside, 

however, it is also found that the improved floor acceleration performance through increasing 

inertance and/or inerter-floor connectivity came at the expense of larger inerter and damping 

forces exerted to the building structure (see also Giaralis and Petrini 2017). More importantly, 

whilst TMDI topologies with inerter spanning more than one floor may be economically 

feasible for landmark structures/skyscrapers with a large number of floors, it does not seem a 

practically sensible solution for the typical slender mid-to-high-rise buildings with 20-40 

storeys. This is because sacrificing high-premium space across several upper floors of such 

structures for hosting a control device to suppress VS-induced floor accelerations is not cost-

efficient. 

To this end and in light of the conclusions in chapter 4, the idea of modifying the primary 

structure properties (i.e., lateral stiffness/flexibility distribution) locally to better engage the 

TMDI for enhanced vibration control and thus avoiding the inerter spanning more than one 

storey is investigated and pursued in this chapter. Specifically, for routine slender high-rise 
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buildings, a structural modification, namely top-storey softening, is proposed in conjunction 

with a top-storey TMDI in “-1” connectivity placement as graphically shown in Fig. 5.1(d) to 

mitigate crosswind floor accelerations in a cost-effective manner. Note that the case-study 

structure adopted in this chapter is a typical 34-storey, composite core-frame building that 

comprises a reinforced concrete (r/c) core coupled with perimetric steel MRFs, as depicted in 

Fig. 5.1(a). Then, top-storey softening can be readily implemented by discontinuing the r/c core 

beyond the penultimate floor/slab and, if required, by further reducing the top-storey lateral 

stiffness. The latter may be accomplished by increasing the top-storey height, as shown in Fig. 

5.1(d), among other alternative means such as size reduction of top-storey structural members. 

From the structural dynamics viewpoint, consideration of top-storey softening is motivated by 

the fact that reducing the lateral stiffness of the storey equipped with the TMDI has, 

phenomenologically, similar effects to system FRF as letting the inerter of the TMDI span more 

floors while keeping in all cases TMDI weight and inertance fixed as evidenced in Fig. 5.1(e). 

This beneficial effect can be readily attributed to the fact that top-floor softening increases 

locally the curvature and the modal coordinate difference of the fundamental mode shape of the 

primary structure between the two TMDI terminals as discussed in Chapter 4. 

 

Fig. 5.1. (a) Planar graphical representation of a typical coupled core-frame building (primary 

structure); (b) and (c) Unmodified primary structure with different TMDI topologies; (d) Proposed 

structural modification with top-storey TMDI, (e) Floor acceleration transfer functions for uncontrolled 

and TMDI-controlled structures. 

 

5.2 Case-study coupled core-frame building and FE modelling 

The potential of top-storey softening for mitigating wind-induced vibrations in TMDI-

equipped core-frame tall buildings is assessed throughout this work with reference to the 34-

storey case-study structure shown in Fig. 5.2(a). The adopted structure is 110.6m tall and has a 

square 24m-by-24m footprint. The lateral load-resisting structural system is composite 

consisting of a perimetric steel MRF and a central reinforced concrete (r/c) core. The MRF has 

12 equally-spaced columns in total and, therefore, three-bay frames with 8m opening are 
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formed along each side of the building as shown in Fig. 5.2(b). MRF members, columns and 

beams, are rigidly connected and have hollow rectangular sections with varying dimensions 

along the building height reported in Table 5.1. The r/c core has 8m-by-8m plan-view 

dimensions and comprises of outer and inner shear wall segments as seen in Fig. 5.2(c). The 

thickness of the outer r/c core walls decreases with building height as detailed in Table 5.1 while 

one large (door) opening is left within the y-z plane on each side of the core (Fig. 5.2(c)). The 

inner (stiffening) shear wall segments have uniform thickness with building height (Table 5.1). 

The MRF and core are coupled at each floor level through primary beams assumed to be hinged 

at both ends. Therefore, primary beams carry only gravitational loads: they do not participate 

in resisting lateral loads and do not transfer moments to the MRF and core. Slabs are taken as 

rigid diaphragms. 

 

Table 5.1 Member sections geometry of 34-storey composite core-frame case-study building. 

floor 

storey 

height 

[m] 

Hollow square 

column 

sections (a×t) [mm] 

 

Hollow rectangular 

beam sections  

(a1×a2×t1×t2) [mm] 

 

r/c core outer  

wall thickness 

[mm] 

r/c core inner  

wall thickness 

 [mm] 

1st (ground) 5.0 700×40 700×400×36×20 400 150 

2nd - 7th  3.2 700×40 700×400×36×20 400 150 

8th - 14th  3.2 650×36 650×360×32×20 350 150 

15th - 21st  3.2 600×32 600×320×28×20 300 150 

22nd -28th  3.2 550×28 550×280×24×20 250 150 

29th- 34th  3.2 500×24 500×240×20×20 200 150 

 

 

Fig. 5.2. (a) Case-study 34-storey building; (b) typical floor and core-frame lateral load-resisting 

system; (c) geometry of r/c core; (d) floor mass distribution. 
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A linear FE model of the building is developed in SAP2000® software package. The FE 

model comprises 552 membrane and 1564 shell elements, representing the slabs and r/c shear 

walls, respectively, as well as 1292 Euler-Bernoulli one-dimensional beam elements with rigid 

or hinged connections as appropriate. Horizontal perfectly rigid diaphragm constraints are 

imposed at the height of each floor. The total mass of the structure accounting for dead and live 

loads is 92830 Mg and is lumped at each floor level following the distribution shown in Fig. 

5.2(d). 

Due to the presence of the two large door openings in the r/c core shown in Fig. 5.2(c), the 

lateral-load resisting system of the case-study building is not doubly-symmetric in plan. It is 

found that for the particular wind excitation model adopted in all the ensuing numerical work 

and discussed later in the chapter, the critical (along-) wind field direction is along the y 

principal building axis inducing maximum lateral floor accelerations along the x principal 

building axis. Hence, only the in-plane translational vibration motion of the FE model along 

the x principal axis is required for studying structural performance for occupants’ comfort 

serviceability limit state associated with floor response acceleration in the crosswind direction. 

To this end, in the next section, a low-order linear planar dynamical model is developed 

capturing faithfully in-plane structural response to dynamic excitation along x axis of the case-

study building in Fig. 5.2. 

 

5.3 Low-order planar model of uncoupled case-study structure and wind force excitation 

To expedite computational work in later sections, herein, a low-order lumped-mass planar 

dynamic model with 34 DOFs corresponding to the uncoupled lateral in-plane translations of 

rigid slabs along the x axis of the case-study building in Fig. 5.2 is derived from the previously 

discussed detailed FE model. The reasons for using such a relatively large number of DOFs in 

the low-order model (i.e., one DOF per floor) is to capture accurately the effect of local changes, 

such as top-storey softening, to the global structural response of the building in support of 

optimal design and assessment of TMDI-equipped case-study structure as well as to facilitate a 

fine spatial discretisation of the wind loading. The 34-DOF model is defined in terms of a 

diagonal mass matrix, Ms∈ℝ34×34, and full damping and stiffness matrices, Cs∈ℝ34×34 and Ks

∈ℝ34×34, respectively. Main diagonal of the Ms matrix is populated with the lumped floor 

masses in Fig. 5.2(d) while Ks and Cs matrices are obtained as detailed in the following two 

sub-sections.  

 

5.3.1 Stiffness matrix derivation and verification based on modal properties 

The lateral stiffness of the case-study building in Fig. 5.2 along principal axis x is primarily 

contributed by two planar perimetric three-bay rigid-jointed MRFs and by the r/c core acting 

along its “weak” axis due to the two openings (i.e., the contribution of the two out-of-plane 

MRFs is neglected). The MRFs and the core undergo the same lateral displacement at each 

floor being coupled through rigid diaphragms. In this setting, the coupled core-frame system is 
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modelled as a sum of two contributing cantilevered beam-like structural systems: one 

corresponding to the r/c core and one to the two same steel MRFs (e.g., Dym and Williams 

2007, Cluni et al. 2013). The r/c core contribution is represented by a Kcore∈ℝ34×34 stiffness 

matrix derived from application of static condensation to a flexural Timoshenko beam as seen 

in Fig. 5.3(a). Further, each perimetric MRF is represented by a Kframe∈ℝ34×34 stiffness matrix 

of an equivalent beam-like structure derived through static condensation as shown in Fig. 5.3(b). 

The stiffness matrix of the 34-DOF low-order model can thus be determined as 

 

2 ,s core frame+K = K K                                                     (5.1) 

 

 

Fig. 5.3. Static condensation for stiffness matrix derivation of the low-order model: (a) for the central 

core; (b) for the perimetric frame. 

 

The properties of the uncondensed Timoshenko beam in Fig. 5.3(a) corresponding to the 

r/c core component are evaluated storey-wise. Effective shear area, cross-sectional area, and 

second moment of area of the core is determined by accounting for all inner and outer walls 

along the x principal building axis considering also properties reductions due to door openings. 

Moreover, the uncondensed stiffness matrix of the 3-bay 34-storey MRF in Fig. 5.3(b) is 

determined based on standard FE discretisation with Euler-Bernoulli beam elements using 

columns and beam member sections in Table 5.1. Importantly, the above approach for Ks matrix 

specification allows for modifications to be made independently in any of the two contributing 

components to the lateral load resisting system (i.e., the MRFs and the r/c core), which 

facilitates pertinent parametric investigations to be undertaken to explore the performance of 

TMDI-equipped benchmark structure for different host structure configurations in the 

numerical part of this work. 

The accuracy of the developed 34-DOF low-order model to capture accurately dynamic 

modal properties of the detailed FE model of the case-study building even for large local 

stiffness variations, as will be required in implementing top-storey softening in later sections, 
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is herein verified in terms of natural frequencies and mode shapes for two different r/c core 

configurations. In the first configuration (baseline uncontrolled structure) the core runs up to 

the roof (34th floor). In the second configuration, the core stops at the penultimate storey (33rd 

floor), thus creating a coreless (flexible) top-storey. The latter configuration is readily 

implemented in the developed coupled two-beam stiffness matrix derivation approach by 

setting cross-sectional area and the second moment of area properties of the last segment of the 

Timoshenko beam in Fig. 5.3(a) to zero. For both configurations, standard modal analysis is 

applied to the detailed FE model (Fig. 5.2) and to the low-order model to extract modal 

properties corresponding to the translational vibration modes along the x principal axis.  

Table 5.2 reports differences of the lowest three vibration modes obtained from the FE 

model and the low-order model in terms of natural frequencies and mode shapes. Mode shape 

difference is quantified through the modal assurance criterion (MACj) for the j-th mode which 

is a scalar measure of mode shape similarity defined as (Brincker and Ventura 2015) 

 

2

_

_

MAC ,

T

jlow order j FEM

j

jlow order j FEM

 
 =
 
 

φ φ

φ φ
                                           (5.2) 

 

where φj low_order and φj FEM are the j-th mode shape vectors obtained by the low-order and the 

detailed FE model, respectively, the superscript “T” denotes matrix transposition and ||p|| is the 

length of vector p. Clearly, MACj value equal to unity means that φj low_order and φj FEM mode 

shape vectors are identical. It is seen in Table 5.2 that, for both configurations, natural 

frequencies estimated by the low-order model are slightly lower than those computed from the 

FE model. This is because the contribution of the two out-of-plane MRFs are neglected in the 

lower-order model. Still, percentage error difference in natural frequencies is below 2% across 

the board, while MAC values indicate perfect agreement between mode shapes obtained by the 

two different models. This is further verified visually in Fig. 5.4, which plots the lowest three 

modes of the two building configurations obtained by the two computational models. 

 

 

Fig. 5.4. Lowest three lateral mode shapes for the two different case-study building r/c core 

configurations of Table 5.2 obtained by the detailed FE and low-order model: (a) 1st mode; (b) 2nd 

mode; and (c) 3rd mode. 
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Table 5.2 Comparison of modal properties of the lowest 3 translational vibration modes along principal 

axis y of the case-study building between the detailed FE model and the low-order model. 

Core configuration Mode 

Frequency [Hz] 

MAC 
Mass participation 

factor FEM 
Low-

order 
Error  

Core runs up to 

34th floor 

(baseline 

uncontrolled 

structure)  

1st 0.3409  0.3344  1.91% 1.000000 63.18% 

2nd 1.3745  1.3537  1.51% 0.999994 18.77% 

3rd 3.2010  3.1651  1.12% 0.999858 7.51% 

Core runs up to 

33rd floor  

(coreless top-storey 

structure)  

1st 0.3398  0.3336  1.83% 0.999998 63.19% 

2nd 1.3300  1.3140  1.20% 0.999542 18.82% 

3rd 2.0979  2.0801  0.85% 0.998782 7.27% 

 

Overall, matching quality of modal properties quantified in Table 5.2 and Fig. 5.4 verify 

that the herein derived 34-DOF low-order model is dynamically equivalent to the detailed FE 

model along the x principal direction and will be used henceforth to expedite numerical work. 

 

5.3.2 Inherent damping modelling 

The inherent structural damping of the case-study building is incorporated in the low-order 

model through a full damping matrix obtained by the expression (e.g., Chopra 2000) 

 

( ) ( )
1 1

mod ,T

s

− −
=C Φ C Φ                                                  (5.3) 

 

where Ф∈ℝ34×34 is the modal matrix collecting all φj low_order, j=1,2,…,34 mode shapes, the 

superscript “-1” denotes matrix inversion, and Cmod∈ℝ34×34 is a diagonal matrix defined as 

 

  ( ) ( )mod _ _ ;  1,2,...,34, 2 T

j j low order j low ordes rn j
jj j  = =C φ M φ                     (5.4) 

 

In the last equation, ωn(j) and ξj are the j-th natural circular frequency and modal damping 

ratio, respectively, of the 34-DOF low-order model. In all the ensuing numerical work, unless 

otherwise specified, the modal damping ratio of the first mode, ξ1, which dominates the 

crosswind response of the case-study building, is taken equal to 0.55%. This modal damping 

ratio value was estimated from field measurements for a similar to the herein considered case-

study structure 120m-tall composite building with square floorplan studied in Fang et al. (1997). 

For higher vibration modes, gradually increasing modal damping ratios are assumed as follows 

ξj = 1% for j = 2,3,4; ξj = 2% for j = 5,6,7; ξj = 4% for j = 8,9,10; ξj = 8% for j = 11,...,20; and ξj 
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= 16% for j = 21,...,34, following trends of frequency-dependent damping models for tall 

buildings proposed in the literature (see e.g., Spence and Kareem 2014 and references therein). 

 

5.3.3 Wind excitation model 

Wind action to the low-order 34-DOF planar model derived in the previous section is 

represented by the stochastic crosswind force model developed by Liang et al. (2002) for tall 

buildings with rectangular footprint. Upon spatial discretisation of the wind force random field 

at each floor slab of the case-study 34-storey building, a PSD 
34 34 34

FF

S  wind force matrix 

is specified. For the case-study building with total height 110.6m and square footprint the 

diagonal elements of the PSD wind force matrix, are given as (Liang et al. 2002) 

 

 
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( )( ) ( )

( )

( )( ) ( )

2 32
34

2 2
2 2 2 2
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 
 
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− + − +  

S  

(5.5) 

 

which specify the PSD of the wind force acting at the k-th floor slab located at height zk from 

the ground. In the last expression, σk is the RMS of the crosswind force at the k-th floor slab 

and ωk is the frequency of VS at zk height. The RMS of the crosswind force σk is computed by 

Eq. (5.5) by assuming the air mass density ρ=1.25kg/m3, the mean RMS lift coefficient 

L 0.404C =   for square footprint buildings according to Liang et al. (2002), and the building 

breadth in the crosswind direction B= 24m. The tributary height of the k-th floor, Δzk is still 

taken as half the storey height above floor k plus half the storey height below floor k. The mean 

wind velocity at zk height, Vm(z), is determined by Eurocode 1 (EN 1991-1-4: 2005) 

 

( ) ( ) ( ) ,m r o bV z c z c z V=                                                       (5.6) 

 

where Vb is the basic wind velocity (i.e., the 10 minute mean wind velocity at 10m above open 

flat country terrain) taken equal to 22 m/s throughout this work, co(z) is the orography factor 

assumed equal to 1.0, and cr(z) is the roughness factor based on the Eurocode-compliant 

logarithmic law and terrain category IV ( i.e., area in which at least 15% of the surface is 

covered with buildings and their average height exceeds 15 m). Further, the VS frequency ωk 

is determined by Eq. (3.10) by assuming the Strouhal number St = 0.084 as experimentally 

determined by Liang et al. (2002) for square footprint tall buildings. 

For illustration, the PSDs of wind force acting at four different floor slab heights are 

plotted in Fig. 5.5 for Vb = 22 m/s. It is seen that the dominant VS frequency increases with 

floor height as can be inferred by Eqs. (3.10) and (5.6). The same happens for the wind force 
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amplitude except from the last floor whose tributary height is different from the rest of the 

building floors, i.e., 1.6 m as opposed to 3.2 m applicable for the typical floor. 

 

 

Fig. 5.5. Power spectral density functions of crosswind forces acting at different floor levels of the 

case-study building. 

 

The off-diagonal terms of the 
34

FFS  PSD matrix modelling the spatial correlation of wind 

forces acting at floor slabs k and l are given as (Liang et al., 2002) 

 

  ( ) ( )
2

34 , exp ,
5.56

k l
FF k l

z z
k l S S

B
 

 − 
= −  

   

S                                     (5.7) 

 

for the case-study building, where B is the building breadth in the crosswind direction. 

 

5.4 Optimal TMDI design for serviceability performance accounting for top-storey 

stiffness reduction 

To investigate the potential of top-storey softening for enhanced serviceability 

performance in TMDI-equipped wind-excited tall buildings subject to VS effects, it is essential 

to optimally tune the TMDI to minimise peak floor accelerations for pre-specified wind 

excitation and building structure properties. To this aim, the optimal TMDI tuning problem 

formulated in Section 3.2.1 is now adapted to include the top-storey height, Htop, as a secondary 

design parameter replacing the TMDI connectivity number p, as the inerter connectivity 

number of the proposed vibration control strategy is fixed to 1. As a remark, the increase of 

top-storey height (as an efficient means of increasing its lateral flexibility) was taken into 

account explicitly when evaluating the wind excitation model. In this way, a fair and 

meaningful comparison can be made between the original building structure and the locally 

modified one with a softened top floor. In this setting, the vector x2 (see Section 3.2.1) collecting 

the secondary design parameters changes to x2 = [μ, β, Htop]
T, while the numerical solution 
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strategy for obtaining the optimal tuning parameters, νopt and ξopt, for pre-specified TMDI 

inertial properties and top-storey height remains unchanged (see Section 3.3.2). For the adopted 

case-study building, the OF is evaluated by Eq.(B.5) on the 32nd/highest occupied floor by 

setting k=32, i.e.,  32OF=peak x . The adapted optimal TMDI problem is applied to the case-

study structure in which top-storey stiffness is explicitly accounted for in the design.  

Purposely, the above optimal design formulation allows for considering explicitly any 

desired combination of TMDI inertial properties (i.e., attached mass and inertance), and utilises 

a single geometric property, top-storey height, to leverage the level of top-storey softening or, 

equivalently, of top-storey lateral stiffness reduction in a straightforward manner. In an actual 

application, top-storey stiffness reduction may be implemented by one, or a combination of, 

several other local (top-storey) structural modifications apart from discontinuing the r/c core. 

These may include the reduction of flexural rigidity of beams and/or columns of the MRF and 

the increase of top-storey height. More importantly, the reason of including a host/building 

structure parameter to TMDI design is because the lateral stiffness of the top-storey (where the 

TMDI is installed) influences heavily TMDI (though not TMD) optimal primary design 

parameters as will be seen in view of numerical results.  

 

5.4.1 Convexity and nature of achieved optimality 

The OP in Eq. (3.3) with the OF changed to  32peak x   and x2 to [μ, β, Htop]
T is 

numerically solved for the case-study structure using the numerical solution strategy detailed 

in Section 3.2.2. A wide initial search range delimited by min

1 [0.0,  0.0]T=x and 

max

1 [2.0,  2.0]T=x  is adopted since it is found that optimal TMDI tuning parameters move 

away from the commonly encountered values for building structures with smooth stiffness 

variation in elevation as top-storey stiffness reduces (e.g., optimal frequency ratios νTMDI are 

much higher than unity corresponding to tuning to the first mode of the uncontrolled structure 

as seen later in Fig. 5.7). To expedite computations in solving Eq. (3.3), the custom-developed 

algorithm (see Section 3.2.2) applies the pattern search (see Charles and Dennis 2003) 

iteratively with progressively narrower search range in x1 by “zooming-in” the neighbourhood 

of the optimal νTMDI and ξTMDI values found in the previous iteration. The stoppage criterion for 

the iterations checks the absolute difference between two successive optimal OF values against 

a pre-specified convergence tolerance.  
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Fig. 5.6. Iterative optimal TMDI design with μ=0.1% and β=8% for the adopted case-study structure 

with Htop=5m and discontinued r/c core (a) 1st iteration; (b) 2nd iteration; and (c) 3rd iteration. 

 

For numerical illustration, Fig. 5.6 plots OF surfaces on the primary DV plane (νTMDI, ζTMDI) 

obtained from the iterative pattern search-based algorithm for the case-study structure with 

coreless top-storey for x2=[ μ=0.1%, β=8%, Htop=5m]T and for the wind excitation PSD
34

FFS . 

The global minimum point ( ) ( )  ( )( )32, ,opt optp p peak x p  for the p-th iteration is further 

reported in Fig. 5.6. The convergence tolerance is set to 1%. For this case, convergence is 

reached after three iterations in which the initial search range narrows down to 

min

1 [1.3,  0.0]T=x  and max

1 [1.5,  0.2]T=x  in the second iteration, and ultimately to

min

1 [1.35,  0.09]T=x  and max

1 [1.37,  0.11]T=x in the final iteration, with same discretisation 

density of the search domain and with logarithmic increase of precision/resolution by which 

optimal parameters are determined. 

To shed light on the nature of optimality achieved through solving Eq. (3.3) for buildings 

with flexible top-storey, Fig. 5.1(e) plots the 32nd floor acceleration FRF of the optimal TMDI-

equipped example structure treated in Fig. 5.6 (softened top-storey case) together with the FRFs 

for optimal TMDI-equipped structure with coreless top-storey modification (connectivity “-1” 

case) and for uncontrolled/unmodified structure. It is seen that the considered optimal TMDI 

design formulation yields a classical “Den Hartog” style of optimality (Den Hartog 1956): both 

FRFs of optimal TMDI-controlled structures show two local resonant peaks of almost equal 

height one to the left and one to the right of the fundamental natural frequency of the 

uncontrolled structure ωn(1). Evidently, this type of optimality is maintained under the herein 

considered building modification (i.e., top-storey softening) since the latter does not change 

significantly ωn(1) (see Table 5.2). Notably, it is known that Den Hartog optimality is mostly 

efficient for supressing narrow-band excitations characterised by a dominant frequency and, 

therefore, relevant to addressing VS effects (see Fig. 5.5). Moreover, the higher-natural-

frequency (i.e., wideband) damping effect of TMDI, which is well-reported in the literature 

(Giaralis and Taflanidis 2015, 2018), becomes more prominent with top-storey softening Fig. 

5.1(e): the second resonant peak in the FRF of the uncontrolled structure is slightly reduced in 

the FRF of TMDI-equipped unmodified structure, while it is practically non-visible in the FRF 

of the TMDI-equipped structure with top-storey softening. 
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5.4.2 Sensitivity of optimal primary design parameters to top-storey stiffness 

The influence of top-storey stiffness to the optimal TMDI parameters in x1 determined 

through solving Eq. (3.3) is parametrically investigated in Fig. 5.7 considering the cases of 

TMDI with μ=0.1%, β=6% and structures with coreless top-storey and with different top-storey 

heights Htop = 4m, 5m, and 6m. All panels of Fig. 5.7 plot the  32peak x  of TMDI-controlled 

structures normalized by  32peak x  of the uncontrolled and unmodified case-study building 

versus the frequency ratio νTMDI and/or the damping ratio ξTMDI. It is seen that, as top-storey 

stiffness reduces (i.e., top-storey height increases), optimal νTMDI and ξTMDI values increase 

appreciably. The fact that ξopt increases with top-storey softening for fixed TMDI inertial 

properties (i.e., secondary mass and inertance) is quite welcoming as it has been shown to be 

well-associated with improved TMDI motion control capacity for seismically excited multi-

storey buildings (Ruiz et al. 2018, Taflanidis et al. 2019). This trend is herein confirmed as the 

minimum achieved  32peak x   value attained at the optimal TMDI design point reduces 

considerably as ξopt increases driven by higher top-storey building height (last row of panels in 

Fig. 5.7). 

From a structural dynamics viewpoint, it appears that TMDI stiffness is key to the 

improved TMDI motion control potential as top-storey becomes more flexible. Indeed, νopt 

increases significantly with top-storey height (e.g., TMDI frequency becomes 60% higher from 

the first natural frequency of the uncontrolled structure ωn(1) for the case of Htop = 6m) 

demonstrating that TMDI resonates with local top-storey dynamics associated with higher 

frequencies as the top-storey stiffness reduces (see e.g., mode shapes of uncontrolled case-study 

building structure with coreless top-storey in Fig. 5.4). Notably, such large νopt values are not 

observed in optimal TMDI designs for regular in elevation structures in which νopt ranges 

typically within [0.8 1.0] interval (Ruiz et al. 2018) even in the case of TMDI topologies with 

inerters spanning more than one storey (e.g., connectivity “-2” in Fig. 5.1). Even more 

important, from a practical viewpoint, is to observe in Fig. 5.7 that the optimal TMDI 

design/tuning becomes significantly less sensitive to the optimal TMDI parameters in x1 as the 

top-storey becomes more flexible: perturbations to νopt and/or ξopt values have less impact to the 

achieved  32peak x   performance as top-storey height increases. Therefore, top-storey 

softening increases TMDI robustness to design parameters and, ultimately, to uncertain or 

inaccurate knowledge of the fundamental natural frequency of the uncontrolled structure as 

well as to detuning effects which are major concerns in passive TMD applications (Elias and 

Matsagar 2018). 
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Fig. 5.7. Objective function surface on the primary design variables plane (upper row of panels) and 

surface cross-sections along νTMDI at the optimal ξTMDI= ξopt value (middle row of panels), and along 

ξTMDI at the optimal νTMDI=νopt value (lower row of panels) for μ=0.1%, β=6%, and various top storey 

heights Ηtop. 

 

5.5 Performance assessment and design of optimal TMDI-equipped structure with 

reduced top-storey stiffness 

In this section, comprehensive numerical results are furnished and discussed shedding 

light to the effectiveness of TMDI designed/tuned through the solution of the optimisation 

problem in Eq.(3.3) in containing VS induced vibrations in the case-study building exposed to 

the (ω)34

FF
S PSD wind force matrix. To this aim, TMDIs with different inertial properties (i.e., 

secondary mass and inertance) are examined while the top-storey of the case-study building is 

softened laterally by eliminating the r/c core and by varying its height within Htop = [4.0, 6.0] 

(m) interval. Firstly, performance in terms of peak floor acceleration of the 32nd floor as well as 

peak secondary mass stroke (relative displacement between secondary mass and 33rd floor) is 

presented and discussed. Next, peak developed damping and inerter forces are reported to gain 

an insight on their relative importance as TMDI properties vary. Lastly, attention is focused on 

quantifying the trade-offs among secondary mass, inertance and top-storey stiffness to explore 

the feasibility of more lightweight TMDIs achieving a pre-specified structural performance in 

terms of peak floor acceleration (i.e., performance-oriented design). 
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5.5.1 Floor acceleration and secondary mass stroke 

The first row of panels in Fig. 5.8 reports percentage reduction factor (RF) of peak floor 

acceleration at the 32nd floor of optimal TMDI-equipped structure with respect to the 

uncontrolled case-study building with a coreless (flexible) top-storey (i.e., the core stops at the 

penultimate/33rd storey) for three different mass ratios and for several inertance ratios including 

the limiting case of β=0 (TMD) as a function of top-storey lateral stiffness. The latter is given 

as a percentage of the top-storey stiffness of the case-study structure without r/c core at the 33rd 

storey and Htop = 3.2m. It is observed that optimal TMDI capability to suppress floor 

accelerations increases appreciably and monotonically as the top-storey stiffness reduces for 

fixed mass and inertance ratios (but for different TMDI stiffness and damping properties as 

determined through the solution of the optimisation problem in Eq. (3.3)). On the contrary, for 

the TMD case acceleration RFs remain practically constant with top-storey flexibility. These 

results demonstrate that the very presence of the inerter (i.e., as long as b>0) enables improved 

TMDI vibration control potential as top-storey flexibility increases. This fact is attributed to the 

coupling of the acceleration of the secondary oscillating mass to the acceleration of the 33rd 

floor achieved by the inerter mathematically manifested through the non-diagonal terms in the 

mass matrix M (refer to Eq. (3.12) by setting n=34 and p=1). And the herein advocated host-

structure modification (i.e., top-storey softening) leverages the positive effect of this coupling 

in reducing floor accelerations below the top-storey. Nevertheless, when no such coupling 

exists (i.e., conventional TMD case in which β=b=0 and M is a diagonal matrix), top-storey 

flexibility has no effect to the overall motion control level achieved. In the latter case, the 

appended secondary mass does not “see” the local top-storey change of stiffness and, therefore, 

the TMD is trivially tuned to the first natural frequency of the host structure (note that νopt=1 

across the board in the second row of panels in Fig. 5.8) which remains practically unchanged 

with top-storey stiffness (see e.g., first natural frequencies for unmodified and top-storey 

coreless uncontrolled building in Table 5.2).  

In this regard, top-storey lateral stiffness becomes a critical TMDI design parameter 

(though not for TMD). For example, for TMDI with μ=0.1% and β=8%, a reduction to top-

storey stiffness from 53% to 18% (herein implemented by increasing top-storey height h from 

4.0m to 5.8m) achieves 20% improvement in reducing peak 32nd floor acceleration and 10% 

better performance compared to the TMD with same attached mass. Moreover, it is seen that 

for given μ and β there is a limiting top-storey stiffness reduction defined by the intersection of 

the (practically horizontal) TMD RF curves with the TMDI RF curves, above which the TMD 

outperforms TMDI. This limiting value increases (i.e., less severe top-storey softening is 

required for TMDI to outperform TMD) as inertance increases and secondary mass reduces.  

Furthermore, for fixed top-storey stiffness, higher inertance improves floor acceleration 

control at a reduced rate with inertance. This improvement becomes more significant for 

increased top-storey flexibility and for reduced attached mass, that is, TMDI RF curves are 
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more spaced out as top-storey stiffness reduces and/or μ decreases. Notably, these trends 

confirm results reported in the previous chapter for the case of a high-rise 74-storey wind-

excited building as well as for seismically excited low-to-mid-rise buildings with optimal 

TMDIs (Giaralis and Taflanidis 2018, Ruiz et al. 2018). 

 

 

Fig. 5.8. Peak acceleration percentage reduction of 32nd floor (upper row of panels), optimal frequency 

ratio (middle row of panels), and secondary mass stroke (lower row of panels), in TMDI-equipped 

structure for various mass ratios, μ, and inertance ratios, β, against lateral top-storey stiffness reduction. 

 

Finally, in the upper panels of Fig. 5.8, a horizontal red solid line has been added to each 

subplot to indicate the comfort threshold by CNR-DT 207/2008 (used previously in Chapter 3), 

assuming office occupancy and based on the uncontrolled fundamental frequency of the 

original case-study building, i.e., f1=0.341Hz. Notably, the slight decrease in the fundamental 

frequency of the primary structure due to top-storey softening is not considered when 

evaluating the comfort threshold value, as the proposed structural modification is local (i.e., 

only at the top floor) and should not be used to ease the comfort requirement considered in the 

original design. It is seen that, for TMD with μ=0.1%, optimal TMDs are unable to suppress 

the peak floor acceleration below the codified threshold. For the TMDI, as the inertance ratio 

increases, the required (normalised) top-storey stiffness for the structural performance to satisfy 

the criterion also increases, whereas as the top storey softens, the required inertance ratio for 

meeting the considered comfort criterion is reduced. Importantly, the intersections of the 

comfort threshold line with the acceleration RF curves of TMDI indicate a series of 

feasible/code-compliant design in terms of habitability under given wind action, achieved by 

different combinations of top-storey stiffness and inertance values. 

Apart from peak floor acceleration, which is the critical building performance index for 
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serviceability limit state design in the crosswind direction, an important quantity of interest to 

practical design of mass/inertial dampers is the so-called peak stroke of the secondary mass, 

that is, the peak relative displacement of the TMD(I) mass with respect to the floor that the 

mass is attached to. This is because increased TMD(I) stroke demands require larger clearance 

in housing safely a TMDI within the host structure such that no local pounding/collision occurs. 

Further, the cost of damper device increases with stroke. For the case-study structure, the peak 

stroke is computed by setting k=34 and l=35 (i.e., DOF corresponding to the secondary mass 

displacement) in  peak klx  expression in Eq. (A.6). The bottom row of panels in Fig. 5.8 plots 

peak TMD(I) stroke for the same inertial properties versus top-storey stiffness reduction. It is seen 

that the inclusion of the inerter reduces considerably secondary mass stroke demands, as also by 

Giaralis and Petrini (2017) for non-optimally tuned TMDIs, and that peak stroke reduces with 

increasing inertance at a reduced rate. The gains in stroke demand of the TMDI compared to 

TMD reduce as secondary mass increases but remain significant (almost 6-fold stroke reduction 

for μ=0.1 reducing to almost 4-fold reduction for μ=0.2 and 0.3). More importantly, stroke 

demand is positively (though insignificantly) affected by top-storey stiffness reduction. This is 

quite welcoming result suggesting that the favourable effect of increasing top-storey flexibility 

to the TMDI effectiveness for mitigating floor accelerations does not come with any increasing 

cost/demand related to the stroke of the damping device or to the clearance of the secondary 

mass. 

 

5.5.2 Inerter force and damping force 

To gain further insight to the effect of top-storey stiffness reduction to TMDI motion 

control capacity, attention is herein focused on quantifying the peak forces developing at the 

inerter and at the damping device of optimally designed TMDIs according to Eq. (3.3). The 

quantification of peak inerter and damping forces is also deemed essential to check that they 

are not excessive and, thus, can be economically accommodated locally by the host structure 

as this is found to be critical for TMDIs used in seismic protection of building structures (see 

e.g., Ruiz et al. 2018 and Taflanidis et al. 2019). In this respect, the upper two rows of panels 

in Fig. 6.9 report peak inerter and damping device forces for the same optimal TMDI designs 

examined in Fig. 5.8. The peak relative acceleration required in determining the peak inerter 

force in Eq. (2.1), is computed by setting k=33 and l=35 in  peak klx  expression in Eq. (A.6), 

while the peak damping force is computed by the product of the peak relative velocity between the 

secondary mass and last floor found by setting k=34 and l=35 in  peak klx  expression in Eq. 

(A.6) and the damping coefficient, copt, determined by 

 

( )1
2 ( ) ,opt opt opt TMDI n

c m b  = +                                                 (5.8) 

 

The latter expression is obtained by setting νTMDI and ξTMDI equal to νopt and ξopt, respectively, 
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in Eq. (3.1) and manipulating. Results evidence that secondary mass has negligible effect to the 

inerter and damping forces, while these forces increase monotonically with inertance for fixed 

mass ratio and top-storey stiffness. The effect of the inertance to the inerter force is readily 

deduced from Eq.(2.1) and confirms trends reported by Giaralis and Petrini (2017) for non-

optimal TMDIs for VS-induced vibrations mitigation in tall buildings. Further, the positive 

relationship between inertance and damping force, also seen in TMDIs optimised for seismic 

protection of multi-storey buildings (Ruiz et al. 2018), is attributed to the fact that copt in Eq.(5.8) 

increases with inertance since ξopt (reported in the bottom row of panels in Fig. 5.9) as well as 

νopt in Fig. 5.8 increase with β. Effectively, higher inertance not only enables higher inerter force 

but also supports the use of damping devices with higher damping coefficients which, 

ultimately, increases damping force leading to overall improved motion control. 

 

 

Fig. 5.9. Peak inerter force (upper row of panels), peak damping force (middle row of panels), and 

optimal damping ratios (lower row of panels) of TMDI-equipped structure for various mass ratios, μ, 

and inertance ratios, β, against lateral top-storey stiffness reduction. 

 

Nevertheless, top-storey stiffness reduction has a prominently different effect between the 

inerter force and the damping force. Peak inerter force decreases as the top-storey softens at an 

increasing rate. On the contrary, damping force increases as the top-storey softens at a rate that 

becomes exponential for β≥6%. These trends indicate that top-storey stiffness reduction 

improves TMDI motion control performance through significant increase of the damping force, 

but not of the inerter force. Notably, the achieved increase in damping force via top-storey 

softening does not come from an increase to the relative velocity at the ends of the damper, but 

from an increase of copt in Eq. (5.8). This can be appreciated by noting that the variation trends 
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of ξopt with top-storey stiffness reduction in Fig. 5.9 are similar to those of νopt in Fig. 6.8 and 

to peak damping force trends in Fig. 5.9. In this respect, top-storey stiffness reduction affects 

TMDI damping force in a similar manner as the increasing of inertance.  

With regards to the actual values of peak TMDI forces attained for the case-study structure 

under the assumed wind intensity, it is seen that the inerter force is always larger than the 

damping force (for the herein considered β and μ inertial properties) and this difference is higher 

for larger inertance values and/or stiffer top-storey. The highest inerter force observed is of the 

order of 320kN (for β=10% and Htop=4.0m) which can be readily transferred to the host 

structure without requiring any out-of-ordinary connection and be safely accommodated by an 

adequately designed inerter device. Yet, top-storey stiffness reduction tends to balance off the 

difference between peak inerter and damping forces for fixed inertance resulting in a reduction 

of the peak inerter force. For instance, the peak inerter force of 320kN drops to 225kN for β=10% 

through stiffness reduction by 35%. In this regard, top-storey softening is beneficial in 

containing peak inerter force.  

 

5.5.3 Trading secondary mass to inertance and/or top-storey stiffness in performance-

oriented design 

Numerical results reported in Fig. 5.8 suggest that the same structural performance, in 

terms of peak floor acceleration, can be achieved by using different sets of secondary design 

variables in x2 (i.e., secondary mass, inertance, and top-storey height). This is an important 

consideration from the designer’s viewpoint as it enables exchanging secondary mass (attached 

weight) to inertance and/or to top-storey stiffness within a performance-oriented design context 

(i.e., aiming to achieve a pre-set performance level). To illustrate this point and to quantify 

potential practical benefits, Fig. 5.10(a) and 5.10(b) plot optimal iso-performance curves on the 

TMDI inertial μ-β plane for fixed top-storey stiffness and for fixed performance, respectively.  

Optimal damping coefficient, copt, and peak inerter force, Fb, and damping force, Fc, are 

reported for all optimal designs considered in the graphs. It is seen that all iso-performance 

curves have negative slope on the μ-β plane establishing the direct mass reduction/substitution 

effect endowed by the inerter to the TMDI and leading to overall more lightweight inertial 

dampers: a practically important advantage in designing new slender minimal-weight tall 

buildings. Nevertheless, trading mass to inertance for fixed top-storey stiffness, Fig. 5.10(a), 

comes at the cost of increased damping coefficient and force as well as increased inerter force. 

Further, significant increase to the inertance and to damping coefficient and force are required 

to achieve small performance improvements for fixed mass. Quantitatively, for μ=0.1% it takes, 

on average, increases of about 15% in inertance and 72% in damping coefficient, leading to an 

average increase of 31% of peak damping force, for every 1% of improvement of peak floor 

acceleration. Conveniently, these arduous requirements can be relaxed through minute top-

storey softening as seen in Fig. 5.10(b). For μ=0.1%, the same performance can be achieved 
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with reduced average required inertance, damping coefficient, and damping force by 

approximately 18%, 28%, and 25%, respectively, for every 2% reduction to the top-storey 

stiffness. As a final remark, top-storey softening further leads to attached mass reduction for 

fixed inertance to achieve a pre-set performance: Fig. 5.10(b) shows that 2% reduction of top-

storey stiffness reduces the required mass ratio by about 0.1% corresponding to a 20 tonne 

TMDI weight reduction for the case-study building.  

 

 

Fig. 5.10. Quantification of mass-inertance-damping coefficient trade-off for (a) fixed normalized 

stiffness 38%; and (b) fixed performance RF=50%. 

 

5.6 Influence of building properties to floor acceleration performance 

In this final section the influence of the inherent damping and r/c core stiffness of the case-

study building to the performance of optimal-TMDI equipped structure is quantified, separately, 

through parametric analyses. The influence of these two building properties was deemed 

important to assess since: (a) accurate estimation of the inherent damping properties in tall 

buildings is a quite challenging task involving uncertainty (e.g., Spence and Kareem 2014) 

while it is known to affect significantly their response to wind excitation, (b) lateral r/c core 

stiffness is primarily defined from along-wind direction ultimate limit state design (e.g., Huang 

2017) and, therefore, may vary independently from serviceability limit state design in the 

crosswind direction. 
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5.6.1 Influence of inherent structural damping modelling 

The amount of inherent damping present in the dominant vibration modes of an 

uncontrolled system can heavily affect its response to dynamic loading. At the design stage, 

damping characteristics of building structures are usually assumed as constant and independent 

of response magnitudes in the dynamic analysis because as yet there is no widely accepted 

method available for accurately predicting damping ratios of a structure before construction (Li 

et al. 2003). As such, to explore the influence of the inherent structural damping, the first modal 

damping ratio, ξ1, of the case-study building is herein estimated using the following three 

different damping models proposed in the literature: ξ1= 0.01f1 (Jeary 1986), ξ1= 0.002884/f1 + 

0.012856 f1 (Lagomarsino 1993), and ξ1= 0.0231f1 (Satake et al. 2003), where f1 is the first 

structural natural frequency in Hz. Damping ratios for higher modes are taken the same as 

before as it is found that their influence is insignificant to structural performance. The 

normalised standard deviation of peak 32nd floor accelerations of optimal TMDI-equipped case-

study structure with different first modal damping ratios, ξ1, computed from the above damping 

estimators is plotted in the upper panels of Fig. 5.11 as a function of the inertance β and for 

various mass ratio μ and top-storey height Htop values. Further, each standard deviation is 

normalised by the corresponding average value of the same peak floor accelerations used in 

computing that standard deviation. Therefore, the curves in the upper panels of Fig. 5.11 

measure directly the structural performance dispersion of the TMDI-equipped case-study 

building due to different inherent damping ratios for various sets of μ, β, and Htop. 

 

 

Fig. 5.11. Normalised standard deviation of peak crosswind acceleration at 32nd floor (upper panels) 

and average TMDI damping coefficient copt (lower panels) as functions of inertance ratio for three 

inherent damping models, various mass ratios, and two top-storey heights. 
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It is observed that the significance of the influence of the assumed/estimated ξ1 value to 

structural performance dispersion reduces with increased inertance and attached mass. 

Interestingly, it is further seen that the influence of the inherent damping is less important as 

the top-storey softens, that is, as the top-storey height increases from 4.0m to 4.6m. Finally, as 

β and Htop increase, the normalised standard deviation of structural performance for different 

mass ratios converge. All the above trends can be readily attributed to the fact that the average 

value of optimal TMDI damping coefficients (i.e., copt), determined by assuming different 

inherent damping ratios for the case-study building, increase with inertance and top-storey 

softening as shown in the lower panels of Fig. 5.11. In this regard, the effect of the assumed ξ1 

value becomes less important in optimal TMDI-equipped tall buildings as inertance increases 

and/or top-storey softens due to the increased TMDI supplementary damping rendering the 

inherent damping modelling less critical in tall buildings design. 

 

5.6.2 Influence of r/c core stiffness 

Treating the structure in Fig. 5.2 as the base-case, two variants of the case-study structure 

with r/c core lateral stiffness contribution uniformly reduced by 10% and 20% are considered. 

This is readily achieved through the low-order model of the structure by multiplying the Kcore 

term in Eq. (5.1) with reduction factors 0.9 and 0.8, respectively, while the perimetric MRF 

stiffness contribution remains the same. Figure 5.12 plots percentage RF of peak 32nd floor 

acceleration of optimal TMDI-equipped structures over optimal TMD-equipped structures (β=0) 

with different core stiffness as function of top-storey stiffness reduction for μ=0.1% and for 

different β values. 

 

 

Fig. 5.12 Peak acceleration percentage reduction of 32nd floor for optimal TMDI-equipped versus 

optimal TMD-equipped structures with different r/c core contributions against lateral top-storey 

stiffness reduction for attached mass ratio μ=0.1%, and various inertance ratios. 

 

It is seen that TMDI peak floor acceleration control capability deteriorates slightly 

compared to TMD capability as the relative stiffness contribution of the core reduces by about 

1% for 10% r/c core stiffness reduction. Notably, this deterioration is independent of top-storey 

stiffness. These findings suggest that top floor optimal TMDIs are more efficient for tall 

buildings behaving closer to a flexural cantilever. It is, therefore, concluded that increasing 

lateral stiffness contribution of the r/c core as opposed to the MRFs to contain deformation 

demands in the along-wind direction facilitates controlling floor accelerations in the crosswind 
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direction by means of TMDI. 

 

5.7 Closure 

The effectiveness and advantages of using optimally tuned top-storey TMDIs in 

conjunction with an innovative local structural modification, i.e., top-storey lateral stiffness 

reduction, have been numerically explored for mitigating floor accelerations in the crosswind 

direction of slender core-frame high-rise buildings critical for serviceability design (occupants’ 

comfort criteria). This has been accomplished by furnishing pertinent numerical data for a low-

order top-storey-TMDI-equipped dynamical system capturing faithfully in-plane modal 

properties (mode shapes and natural frequencies) of a 34-storey square-plan core-frame 

benchmark building with softened top-floor through discontinuing the central r/c core and 

increasing the top-floor height. A novel optimal TMDI tuning problem has been formulated 

and numerically solved treating TMDI properties and top-floor height as design parameters 

aiming to minimise peak floor acceleration demands under crosswind excitation forces. These 

forces were modelled as a stationary spatially-correlated random field accounting for vortex 

shedding effects. 

Numerical results obtained for different TMDI inertial properties (mass and inertance) and 

top-storey height have shown that improved structural performance in terms of peak floor 

acceleration and attached mass stroke are achieved by increasing inertance and/or by reducing 

top-storey stiffness for fixed TMDI attached mass, while no improved performance is achieved 

by the classical TMD (no inertance) with top-storey softening. In this regard, it was 

demonstrated, through the consideration of optimal TMDI design charts for fixed floor 

acceleration performance, that the required TMDI mass/weight can be reduced either by 

increasing inertance or by softening the top storey. This is deemed a rather advantageous 

consideration in the design of new structures. Still, it was found that mass reduction achieved 

through increased inertance for a fixed target performance increases the required damping and 

inerter forces exerted to the structure. However, these forces reduce for fixed attached mass and 

structural performance by exchanging inertance to top-storey softening. Thus, by leveraging 

inertance and top-storey stiffness, the proposed motion control solution can be judicially 

designed to exert overall balanced and relatively small amplitude additional forces in new 

structures in the gravitational (small added weight) and the horizontal directions. Additionally, 

it was shown that increase of the top-storey height lead to increased robustness of structural 

performance (floor acceleration) with respect to the optimal TMDI properties and as well as to 

the assumed inherent structural damping. Therefore, top-storey softening yields more robust 

TMDI designs to detuning effects as well as to inaccurate knowledge of structural properties. 

Lastly, it was seen that response acceleration performance of optimal TMDI-controlled 

structures improves by increasing the flexural contribution in coupled core-frame lateral load-

resisting suggesting that increasing the core vis-à-vis frame resistance in meeting ultimate limit 

design criteria in the along-wind direction favours meeting serviceability design criteria in the 
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crosswind direction.  

Looking further into the case of existing tall/slender buildings, the reported numerical data 

suggest that the addition of a relatively soft top-storey housing a properly tuned lightweight 

TMDI is a potent retrofitting measure to enhance serviceability performance. In this manner, 

more stringent serviceability design requirements than those considered in the initial design due 

to site-specific climate change effects or changes to the surrounding built environment (i.e., 

increased wind exposure) can be achieved. Overall, the numerical data furnished in this chapter 

demonstrate the great potential of improving the performance of TMDI-equipped structures to 

crosswind excitations through appropriate design of the primary structure. Thus, there is scope 

to pursue optimal primary structure design in lieu with the use of inerter-based vibration control. 

These aspects are explored in the following two chapters.
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Chapter 6 

A Novel Sizing Optimisation Method for Minimal-Weight Skeletal 

Structures 

6.1 Preliminary remarks 

Numerical results presented in previous chapters demonstrated that there is scope in 

pursuing integrated optimal DVA (achieved in Chapter 3) and primary structure design. To 

support this task, this chapter proposes a novel automated sizing optimisation algorithm/routine 

for addressing the material efficiency issue in wind-excited, occupant comfort-governed tall 

buildings through increasing the lateral stiffness (and thus the fundamental frequency) without 

the aid of any vibration suppression device. This task can be straightforwardly introduced in 

the structural design of tall buildings by requiring self-weight minimisation of the load-bearing 

systems through finding optimal cross-section sizes of structural members (DVs) while 

satisfying certain performance objectives, such as the requirement that wind-induced floor 

accelerations be below codified thresholds (Spence 2018). For wind-exited buildings subject to 

habitability criteria, their weight-minimisation problem can be conveniently converted to a 

sizing OP of elastic structures under a behavioural constraint (BC) on its fundamental frequency. 

This is owing to the fact that wind-induced floor accelerations in both along-wind and 

crosswind directions are, in general, inversely related to the building’s fundamental frequency 

within the frequency range for serviceability check, i.e., from 0.1 - 1.0 Hz (Tallin and Ellingwd 

1983, Griffis 1993, Chan and Chui 2006). Two numerical approaches are currently available 

for sizing optimisation under a frequency constraint: mathematical programming techniques 

and optimality criteria (OC) methods (Lógó 2005). Notwithstanding the rigorous basis and 

generality, the former approach can be computationally costly for design problems with a large 

number of DVs (Kirsch 1993), which is typically the case for tall buildings. Therefore, the 

(discrete) OC methods, developed by Venkayya et al. (1968) and generalised by Berke (1970), 

Gellatly and Berke (1972), and Venkayya et al. (1973), are widely considered as a more efficient 

alternative for solving large-scale OPs whose BCs are many fewer than the DVs (Yin and Yang, 

2001). 

In general, the OC methods rely on first characterising the optimal structure through some 

necessary conditions that are believed to hold at the optimum, and then applying an iterative 

algorithm to gradually modify/resize the current non-optimal design for satisfying the 

conditions in the continuous design space until convergence, and hence indirectly optimising 

the structure. These criteria can be mathematically defined statements (known as rigorous OC) 

derived by the Karush-Kuhn-Tucker approach, or more intuitive one (known as intuitive OC) 

such as the requirement that the strain energy density (SED) averaged per unit volume must be 
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uniform throughout the structure (Prager and Shield 1968, Prager and Taylor 1968, Venkayya 

et al. 1968). Although the recursive relations (for updating the DVs) involving nonlinear and 

implicit BC functions are inherently iterative, fast convergence to a practically meaningful 

solution is still shared across many applications for at least well-understood structural 

behaviours, especially if the behaviours approximate those of statically determinate systems 

(Patnaik et al. 1995). 

Whilst the intuitive OC methods based on the uniform SED criterion are quite attractive 

owing to their engineering intuition and efficiency, two issues not addressed by the current 

approaches exist. Firstly, a systematic approach, capable of handling different element types 

(i.e., bear, beam, frame) and various structural BCs (i.e., on frequency, buckling, or 

displacements) in a unified and stable manner, is lacking. Indeed, when only displacement 

constraints are present, the current OC methods appear to be satisfactory even for large systems 

with many DVs. However, the methods can become erratic in obtaining a solution for 

eigenvalue-constrained OPs or for structures whose behaviours do not resemble those of 

determinate systems (Patnaik et al. 1995). Secondly, the successful implementation of intuitive 

OC methods requires the OF (i.e., structural self-weight) as well as the BCs to be separable 

explicitly. That is, both functions need to be written as a sum of contributions of different 

structural elements, each one being a function of one DV only (Berke and Khot 1987). For 

indeterminate structures, uncoupling/separability does not hold because BCs contain internal 

forces that are implicit functions of some or all DVs. Thus, in the current energy-based OC 

approaches, the required separability is assumed either explicitly or implicitly for hyperstatic 

systems (see, e.g., Kiusalaas 1973, Khot 1983, Berke and Khot 1987, Canfield et al. 1989, Levy 

1994, Makris and Provatidis 2002, Chan and Chui 2006, Makris et al. 2006). 

To this end, this chapter proposes a novel strain energy-based OC that takes into account 

the coupling between the DVs in the indeterminate system, together with a rigorous resizing 

algorithm, for the automated minimum-weight design of frame structures with fixed layout 

subject to a single (natural) frequency constraint. The novel OC is derived through a Lagrangian 

Multiplier (LM) formulation which adjoins the nonlinear frequency constraint, expressed in 

terms of modal strain energy, to the linear OF representing the total material volume. The 

optimal structure is characterised through a set of differential equations whose solution defines 

the optimality without heuristically suggesting uniform SED distribution across all structural 

members adopted by current energy-based OC methods. Further, the numerical algorithm used 

for solving the proposed OC-based optimal sizing formulation relies on updating of the DVs 

and the LM using recursive closed-form formulae. Conveniently, the algorithm is readily 

amendable to parallel computing programming which reduces significantly computational time 

requirements. 

 

 

 

https://www.researchgate.net/scientific-contributions/71924385_Panagiotis_A_Makris
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6.2 Formulation of the structural sizing optimisation problem subject to frequency 

constraint 

For linear elastic skeletal structures with fixed layout, the considered sizing optimisation 

seeks to minimise the structural self-weight while satisfying a frequency constraint of a chosen 

mode restated in modal strain energy. This is achieved by a novel OC derived herein and a 

compatible iterative algorithm adapted from Chan and Chui (2006) to optimally reallocate the 

material within the (fixed) layout while ensuring the target strain energy (and target frequency) 

is met by the structure. The considered OP for a structure comprising n frame elements and, 

hence, n independent DVs can be mathematically expressed as 

 

min max
1

total target

*
arg min ( )
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n
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i

V l a
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= = 
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                                               (6.1) 

 

where V(a): ℝn→ℝ is the OF measuring the total volume of structural material to be minimised, 

while li and ai (i=1,…,n) denote the length and cross-sectional area of element i, respectively. 

The length of structural elements are taken as fixed, while the n areas of the elements are 

continuous DVs grouped in the vector a∈ℝ1×n and bounded by the box constraint amin ≤ a ≤ 

amax. The equality BC requires that the total strain energy, Utotal(a): ℝn→ℝ, induced by some 

external loading is equal to a target strain energy Utarget. The feasible solution set S of the OP 

can be therefore obtained by intersecting the convex solution set A={a | amin ≤ a ≤ amax} with 

the set C={a | Utotal(a) = Utarget}, where A, C, S ⊂ ℝn. Additional equal size constraints to enforce 

that the size of certain members is the same in support of design practicality and structural 

buildability, may be additionally imposed on the DVs. In this setting, the herein formulated OP 

involves finding the optimal point a* or a set of optimal cross-sections within the feasible 

solution set S=AC, at which the self-weight is minimised. Geometrically, the optimal solution 

a* corresponds to the minimum point of the projection of the BC curve/surface onto the OF 

plane/hyperplane passing through the origin of the N+1 dimensional design space and normal 

to the vector (l1,…,ln).
 

To facilitate a solution of the above OP, the LM approach is employed to convert the 

constrained OP in Eq. (6.1) into an unconstrained OP in which the first derivative test is 

applicable. Specifically, the auxiliary Lagrangian, L: ℝn×ℝ→ℝ, that adjoins the nonlinear BC 

to the linear OF is formed as 

 

total target( , ) ( ) ( ) ,L V U U   = − − a a a                                        (6.2) 

 

where λ is the LM. Assuming Utotal(a) is differentiable on the feasible set S, the stationary 

condition of the Lagrangian with respect to DVs, aL(a, λ)=0, yields 
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Further, the stationary condition with respect to the LM, λL(a, λ)=0, yields the BC in Eq. 

(6.1), i.e., 

 

total target( ) 0,U U− =a                                                       (6.4) 

 

which is independent of the multiplier. Therefore, Eqs. (6.3) and (6.4) define a system of n+1 

coupled equations for n+1 unknowns. These are the n DVs (areas ai) plus the LM λ. Moreover, 

the total strain energy, Utotal(a), may be written explicitly as a summation of element strain 

energies as 

 

total
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i
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where ( )iu a  denotes the average SED over the respective volume of element i. 

According to the standard LM approach, at any stationary point of the OF evaluated under 

a single equality BC, the gradient of the OF can be expressed as a product of the gradient of the 

BC with the LM acting as a constant coefficient (Luenberger 1969). Note, however, that a 

stationary point may not be the global minimum as it could equally well be a local extremum 

or a turning point. Furthermore, the global minimum may not be a stationary point since the 

optimum could be achieved on the boundaries of the feasible set. At this point, it is shown 

analytically in Section 6.3 that for an appropriately formulated strain-energy equality constraint 

associated with natural frequency, the set C always forms a convex/concave curve/surface 

within the DV plane/hyperplane such that there exists at most one (stationary) point in the 

feasible set S for which Eq. (6.3) holds. It is further shown that if such a stationary point exists 

in S, it must be the global minimum a* to the OP. Assured by this fact, Eq. (6.3), which gives 

the necessary conditions at the optimum, can be manipulated by using Eq. (6.5) to give 
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The above expressions define the necessary OC for all structural elements in an optimally 

sized structure via n differential equations involving the SED of each element. According to 

the uniform SED criterion derived in Prager and Taylor (1968) and Venkayya et al. (1968), the 

https://en.wikipedia.org/wiki/Gradient
https://en.wikipedia.org/wiki/Coefficient
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average SED of each structural element at the optimum (i.e., the first term on the right hand 

side of Eq. (6.6)) must be equal to a same constant, i.e., 
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Based on Eq. (6.7), it is evident that the following condition 
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must also be true at the optimum for Eq. (6.6) to hold. 

In this setting, Eq. (6.7) describes the intuitive uniform SED criterion considered in Prager 

and Taylor (1968) and Venkayya et al. (1968) and will be referred as the first OC hereafter. As 

stated previously, it heuristically suggests that the average SED of all structural elements, 

 ( 1,..., ),ju j n=   of the optimal structure to be equal to the same constant, Utotal(a*)/V(a*). 

More importantly, the novel second OC in Eq. (6.8) reveals that, for every element of the 

optimal structure, say element j, the weighted sum of partial derivatives of all SEDs with respect 

to the DV of that element, aj, over the corresponding element length, lj, must be constant. 

Therefore, Eqs. (6.7) and (6.8) together constitute a novel OC-based optimisation formulation. 

To satisfy the second OC, two possibilities exist depending on the static determinacy of the 

structure. In the case of statically determinate structures, the SED of element j depends only on 

the size of element j, aj, such that its partial derivatives with respect to all other 

DVs, ak (k=1,…,n and k≠j), vanish and the summation on i in Eq. (6.8) drops. In the case of 

statically indeterminate structures, the element SEDs become multivariate functions of more 

than one DV. Thus, not all partial derivatives in Eq. (6.8) are zero such that Eq. (6.8) holds 

exactly with no decoupling between the DVs occurs. 

Using the equality given in Eq. (6.8), the OC given in Eq. (6.6) can be rewritten in a more 

compact form as 

 

*[ ( )+ ] 1 ( 1,..., ).j ju d j n = =a                                               (6.9) 

 

For statically determinate structures, dj in Eq.(6.9) is given by 
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while for statically indeterminate structures dj is given as 
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It is worth noting that Eq. (6.9) expresses the novel OC-based formulation in terms 

of n equations involving n SED-related quantities and the unknown LM. By setting dj=0 in Eq. 

(6.9), the herein proposed OC-based formulation degenerates to the standard OC problem 

developed by Prager and Taylor (1968) and Venkayya et al. (1968) which assumes uniform 

SED across all members. In this respect, the proposed OC-based formulation constitutes a 

generalisation of the standard OC formulation with uniform SED. Importantly, it will be seen 

in section 6.5, in view of pertinent numerical results, that the generalised OC formulation, 

which additionally considers the OC in Eq. (6.8), improves the convergence rate of the resizing 

algorithm significantly. 

 

6.3 Numerical solution strategy of the optimal sizing problem 

6.3.1 Iterative algorithm for resizing design variables 

Based on the novel OC in Eq. (6.9), a numerical resizing routine, adapted from the linear 

recursive relation in Chan and Chui (2006), is herein presented for updating the DVs and LM 

(OP unknowns). The linear recursive relation for updating the DVs at the p-th iteration attains 

the form 
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where ( )p

jc  is a scaling factor at iteration p for modifying the j-th DV based on Eq. (6.9) and 

is given by 

 

( ) ( ) ( ) ( )1 1 [ ( ) 1],p p p p

j j jc u d = + + −                                          (6.13) 

 

In the last equation, the relaxation parameter η controls the convergence rate of the 

recursive process: as η becomes smaller, the value of ( )p

j
a  is modified to a larger extent, and 

vice versa. The SED of the j-th element, ( )p

ju , and total strain energy, ( )

total

pU , caused by the 

applied loads at iteration p are numerically evaluated by 
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respectively, in which (ke,j)(p) and (δe,j)(p) are the element stiffness matrix and element 

displacement vector, separately, while (K)(p) and (δ)(p) are the structure stiffness matrix and 

global displacement vector due to the applied loads at iteration p respectively. 

The application of Eq. (6.12) to update the DVs require determining first the dj terms in 

Eq. (6.13). To this aim, the following expressions 
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can be used for the numerical approximation of dj at the p-th iteration for statically determinate 

and indeterminate structures, respectively. The above expressions derive in a straightforward 

manner from the analytical expressions in Eqs. (6.10) and (6.11), respectively. Specifically, in 

these two equations, ( ) ( 1)( )p p

i iu a −  denotes the updated SED for element i at iteration p, which 

is evaluated by forcing the i-th DV to the corresponding value in the previous iteration p-1 

while keeping all other DV values in the current iteration p. Therefore, Eqs. (6.16) and (6.17) 

serve as estimations of Eqs. (6.10) and (6.11), respectively, through finite difference 

approximation. From a computational standpoint, the evaluation of dj
(p) (j = 1, …, n) according 

to Eq. (6.16) or (6.17) at iterative step p requires n additional analyses (compared to the current 

energy-based OC methods assuming static determinacy and uncoupled relations for updating 

the DVs) per structural element, as the quantities 
( ) ( 1)( )p p

i ju a −
  entails DVs from two 

successive iterative steps (i.e., 
( ) ( ) ( 1) ( ) ( )

1 1 1,  ...,  ,  ,  ,  ...,  p p p p p

j j j na a a a a−

− +  ). For large structural 

systems, the evaluation of dj
(p) as per these two equations may thus become computationally 

intensive and costly. Nevertheless, it should be recognised that computation of dj values for 

different structural elements at one iterative step are independent of each other and thus need 

not be performed sequentially. With a high-performance computer with multiple 

processors/cores, it is possible to perform the computation of dj values (for all n structural 

elements) in parallel on different cores (e.g., by switching from serial execution to parallel 

execution) at each iteration step, and hence expediting the resizing process by roughly m times 
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where m denotes the number of cores available for the task. 

Next, to construct the element stiffness matrix ke,j for Euler-Bernoulli beams, it is 

necessary to express all moments of inertia, i.e., Iyy,j, Izz,j, and Jt,j, as functions of the cross-

section area aj for each beam element. Previous studies by Chan (1992) showed that sectional 

properties can be expressed as reciprocal functions of cross-section areas through regression 

analysis. In addition, the well-known simple relationship Ij = caj
r covers many practical cases 

where “c” and “r” are constants (Berke and Khot 1987). In this work, however, it is assumed 

the skeletal structure to be optimised only consists of cross-sections with fixed dimension ratios 

defined in Table 6.1 (cf. r1, r2, r3, and r4). For common arbitrary steel sections shown in Table 

6.1, the sectional properties can be related to the cross-section area in an exact manner by 

introducing following relations 
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where α, β, and γ are non-dimensional constants relating the moments of inertia to the cross-

section area, and are derived for arbitrary hollow box, flange, and tubular sections in the table 

below 

 

Table 6.1. Non-dimensional constants relating section properties to cross-section area. 

 Hollow box Flange section Tubular section 

S
ectio

n
 illu

stratio
n
 

  

 

α 

3

1 1 3 2

2

1 2 1 3

( 2 )(1 2 )1

12 [ (1 2 )( 2 )]

r r r r

r r r r

− − −


− − −
 1 1 3 2

2

1 2 2 3

3
( )(1 2 )1

12 [2 (1 2 ) ]

r r r r

r r r r

− − −


+ −
 

4

2

4

4

2

1 (1 )1

4 [1 (1 ) ]

r

r

− −


− −
 

β 

3 3

1 2 1 3

2

1 2 1 3

(1 2 )( 2 )1

12 [ (1 2 )( 2 )]

r r r r

r r r r

− − −


− − −
 

3 3

1 2 2 3

2

1 2 2 3

2 (1 2 )1

12 [2 (1 2 ) ]

r r r r

r r r r

+ −


+ −
 

γ 

2

2 1 3 2 3

2

1 2 3 1 2 1 3

(1 )( )

(1 )[ (1 2 )( 2 )]

( )r r r r r

r r r r r r r

− −

+ − − −

+

− −
 

3 3

1 2 2 3

2

1 2 2 3

1

3

2 +(1 )

[2 (1 2 ) ]

r r r r

r r r r


−

+ −
 4

2

4

4

2

1 (1 )1

2 [1 (1 ) ]

r

r

− −


− −
 

 

Before utilising Eq. (6.12) to update the current design, it is necessary for the unknown 
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LM at the current iteration λ(p) to be known. To this aim, the change in the total strain energy 

between two successive iterations can be expressed by the approximation to a first-order Taylor 

series expansion about the DVs as 

 

( 1) ( ) ( ) ( 1) ( )

total total total

1

( ) ( ).
n

p p p p p

i i i

i

U U U a a a
+ +

=
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Using Eq. (6.5) for Utotal in conjunction with Eq. (6.11), the partial derivative (∂Utotal/∂aj)(p) 

can be written as 
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Upon substitution of Eqs. (6.12) and (6.20) into Eq. (6.19) (assuming all DVs are active, 

i.e., 
( 1) ( ) ( ) ( ) ( ) ( )- = [ ( ) 1]p p p p p p

j j j j jua a a d + + − ), the following relation is established after 

some algebraic manipulation 
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where ( 1)

total

pU +  and ( )

total

pU  represents the total strain energies of the structure due to the applied 

loads at two successive iterations. The latter quantity at iteration p can be evaluated by Eq. 

(6.15).  

Let the equality energy constraint in Eq. (6.1) be satisfied after p iterations such that 

( 1)

total target=pU U+ . By substituting this equality into Eq. (6.21), one obtains 
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which can be used for computing the LM at the current iteration p.  

At this junction, the iterative application of Eq. (6.12) for ( 1)p

j
a

+  and Eq. (6.22) for 
( )p

until convergence of the self-weight and the LM, the optimal solution a* of the sizing OP subject 

to the equality strain energy constraint is achieved. Note that in using Eq. (6.22), it is necessary 

to select a proper initial value for the LM at p = 1 which influences the rate of convergence of 
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the proposed method. Experience shows that the initial value can be estimated using Eq. (6.22) 

by neglecting the contributions of dj terms, i.e., dj = 0. The above sizing optimisation process 

is explained graphically in the algorithmic flowchart shown in Fig. 6.1. 

 

 

Fig. 6.1. Flowchart of sizing optimisation process for minimising material usage while satisfying the 

total strain energy constraint. 

 

6.3.2 Expressing target frequency in terms of modal strain energy 

In formulating the sizing OP in Eq. (6.1), the total strain energy is adopted as the state 

variable of the OP. It is therefore necessary to express the constraint on the natural frequency 

of a chosen mode in terms of modal strain energy. To this aim, consider the equation of motion 

for a discrete structural system with n elements and m DOFs in undamped free vibration give 

as 

 

21 1
 ( 1,..., ),

2 2

T T

k k k k k k m= =φ Kφ φ Mφ                                        (6.23) 

 

where K∈ℝm×m and M∈ℝm×m are the elastic stiffness matrix and mass matrix of the structure, 

while ωk and φk∈ℝm×1 are the circular frequency and mode shape vector for mode k respectively. 

The product ωk
2Mφk on the right-hand side of Eq. (6.23) represents the applied-inertia load 

vector fI,k∈ℝm×1 for mode k, whereas the entire left-hand side gives the modal strain energy Uk 

of the structure due to the applied-inertia load fI,k. Thus, the free-vibration motion may be 
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considered to involve deflections produced by inertial forces acting as applied loads. If the 

mode shape vector is normalized such that φk
TMφk=1, the modal strain energy Uk can be then 

expressed in terms of ωk as 

 

21 1
 ( 1,..., )

2 2

T

k k k kU k m= = =φ Kφ  ,                                        (6.24) 

 

Based on Eq.(6.24), the constraint on the structure’s k-th natural frequency can be 

converted to an equivalent constraint on the respective modal strain energy. The latter can be 

used as the target strain energy Utarget in Eq. (6.1). In conjunction with the sizing optimisation 

algorithm presented in the last section, a FE-based optimal design procedure can be 

implemented as illustrated by the flowchart in Fig. 6.1 to refine the DVs iteratively towards the 

optimal solution a* that minimises the structural weight while meeting the target natural 

frequency for any chosen vibration mode. 

 

6.4 Convexity of the frequency-constrained sizing optimisation problem 

The OP formulated in section 6.2 is that of minimising the structural volume/weight of a 

skeletal structure subject to a single equality constraint on the natural frequency of a chosen 

eigenmode. The latter BC is restated in terms of modal strain energy first before it enters the 

OP formulation in Eq. (6.1). It is assumed that the structure to be optimised has a fixed topology, 

and cross-section areas of the members are the DVs. This implies that the OF, i.e., the volume, 

depends linearly on the DVs and is therefore strictly convex. However, the nonlinear BC 

functions may give rise to a nonconvex feasible region/set in the design space (Svanberg 1984). 

Then, there is a risk that a local, but not global, minimum is attained when the derived OC (see 

Eqs. (6.7) and (6.8)) is satisfied through applying the numerical resizing procedure detailed in 

section 6.3 to the structure. Therefore, it is important to ensure the strict convexity of the OP 

(i.e., the OF is strictly convex over a convex and compact feasible set) so that, due to the 

linearity of the OF, each local optimum is also a global one (Christensen and Klarbring 2009). 

For the herein considered OP, the convexity of the feasible solution set S relies on the 

set C (where C={a | Utotal(a) = Utarget}) since the intersection of any two convex sets 

(say A={a | amin ≤ a ≤ amax} and C) is also a convex set. For this reason, the convexity of C is 

examined hereafter for the frequency constraint considered in section 6.3.2. 

To this aim, the set C is first rewritten as C={a | 1/2k(a)2 = Utarget} by using Eq. (6.24), 

where k denotes the target frequency value for mode k, and Utarget is the corresponding modal 

strain energy. It is proved in Svanberg (1984) that, for any vibration mode (say k), let Ω={a | 

ωk(a) = ω} where ω is a given real positive number and ωk(a): Ω→ℝ (k=1,…,m), the natural 

frequency ωk(a) and the feasible solution set Ω are both convex. This means that the Hessian 

matrix of the k-th natural frequency, H(ωk)∈ℝn×n, must be positive semidefinite assuming ωk(a) 

is twice continuously differentiable on Ω (Christensen and Klarbring 2009), i.e., yTH(ωk)y ≥ 0 
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for all y∈ℝn×1 and y≠0. Then, C must also be convex as the Hessian matrix of the natural 

frequency squared, i.e., 

 

( ) ( )2( ) 2 2 ( ),
T

k k k k k    =   +H H                                       (6.25) 

 

is also positive semidefinite due to following inequality 
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since yTH(ωk)y ≥ 0 and ωk > 0, and the squared term in Eq. (6.26) is always nonnegative. 

Therefore, C={a | 1/2k(a)2 = Utarget} gives a convex set within the DV plane. Since S=AC, 

the feasible set S is convex and compact (because of the box constraint A), and there exists only 

one local/global optimum to the OP under the frequency constraint. 

 

6.5 Illustrative application and validation of sizing optimisation method 

The proposed sizing OP and its LM-based numerical solution method relies on the 

intuition that at the optimal design point a*, the OF V(a) cannot decrease in the direction of any 

such neighbouring point of a* that also satisfies the BC, Utotal(a)=Utarget. Moreover, at the 

optimum, the contour line of the OF must be tangential to the BC curve; otherwise, one could 

“walk” along the constraint curve to descend, meaning that the point is not the minimum. In 

this section, this geometric interpretation for minimum weight design of skeletal structures is 

adopted to illustrate and validate the proposed OP and its numerical solution. To this aim, a 

simple structure with only two DVs is considered which can be readily solved graphically using 

the above geometric interpretation. The structure is a planar portal frame consisting of three 

structural elements and two DVs (one for the girder and one for the columns), as depicted in 

Fig. 6.2 (a). The OP involves determining optimal cross-sectional areas of the girder and 

columns, [a1
*, a2

*], that minimise the structural volume while satisfying a constraint on the 

structural fundamental frequency. The two DVs are bounded by the side constraint a[amin,amax], 

where amin=[1.0a1,o,1.0a2,o] and amax=[2.0a1,o,2.0a2,o] with the subscript “o” denoting the initial 

design. The target fundamental frequency target is arbitrarily set to 1.5 times that of the initial 

structure, i.e., target=1.51,o. The corresponding target value in terms of modal strain energy is 

Utarget=2.25U1,o derived by using Eq. (6.24). 

The problem is initially solved graphically using MATLAB, as shown in Fig. 6.2 (b) and 

(c). Specifically, Fig. 6.2 (b) plots the modal strain energy surface Utotal(a) caused by the first 

modal inertia load vector fI,1 defined in last section, and target energy plane Utarget on the DV 
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plane (a1,a2). Both surfaces are normalized by the modal strain energy of initial structure U1,o 

such that Utotal(a1,o,a2,o)=1.0 and Utarget=2.25. Figure 6.2 (b) shows that the two surfaces intersect 

at the red dotted curve, which defines the BC for the DVs to satisfy. This curve is then projected 

onto the normalized OF surface V(a) (by the volume of initial structure) plotted in the a1-a2-

V(a1,a2) design space to form another red dotted curve in Fig. 6.2 (c). Evidently, the lowest 

point on this curve corresponds to the minimum-weight design that satisfies the considered 

frequency constraint. Quantitatively, Fig. 6.2 (c) reveals that the two DVs need to increase to 

[1.6700a1,o,1.2227a2,o] respectively for the MRF to see an increase in its fundamental frequency 

from 1,o to 1.51,o. Accordingly, the volume of material required for this increase is about 

44.64% of the initial design, i.e., V(a*)=1.4464V(ao). Evidently, this solution is exact for the 

problem at hand and can thus be used as a testbed to validate the numerical scheme in Fig. 6.1. 

 

 

Fig. 6.2. (a) The planar cantilever system consisting of two beam elements and six DOFs; (b) modal 

strain energy surface versus target energy plane; and (c) surface of objective function and optimal 

solution point. 

 

Next, the same OP is solved numerically using the iterative sizing algorithm presented in 

the previous sections. Variations of fundamental frequency, material volume, and LM value are 

plotted in Figs. 6.3 (a), (b), and (c), respectively, throughout the iterative optimisation process. 

Results from two independent solutions of the optimal design problem are plotted together in 

Fig. 6.3 to demonstrate the influence of different OC on the convergence of the iterative process 

and on the accuracy of the optimal solutions reached. In the first optimisation solution (denoted 

by 1OC), only the first OC in Eq. (6.7) requiring all structural elements to be equal in terms of 

SED is adopted by setting dj = 0 in Eq. (6.12), (6.17), and (6.22) for the three elements. As 

discussed previously, by setting dj in these equations to zero, the uniform SED-based OC 

approach is retrieved. In the second optimisation solution (denoted by 2OC), both the OCs in 

Eqs. (6.7) and (6.8) are fulfilled simultaneously, which constitutes the main novelty of the 

herein presented optimal sizing approach, by following the numerical procedure detailed in 

Fig.6.1. The latter requires the evaluation of dj for all elements at every iteration. Results in Fig. 

6.3 (a) and (b) evidence that both the OC approaches are able to closely resolve the optimal 

DVs which minimise the self-weight as the exact (graphical) method presented above. 

Specifically, the 1OC converged after 183 iterations, giving a slightly heavier design by about 

2.60% than the graphical method, while the second 2OC approach with two simultaneous OC 
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converged much faster after 19 iterations, giving a near-optimal overdesign by 1.62% only. In 

this regard, it is evident that the herein proposed OC approach is more accurate from the 

standard approach found in the literature, while it converges much faster. 

 

 
Fig. 6.3. variations of (a) fundamental frequency and (b) volume of structural material of the planar 

MRF, values normalized by corresponding values of the initial structure; and (c) Lagrangian multiplier 

throughout the sizing optimisation process. 

 

6.6 Closure 

In this chapter, a formulaic yet rigorously valid resizing algorithm, based on a novel OC 

concerning volume-averaged SEDs of structural elements (e.g., bars, beams, and frames), is 

developed for the minimum-weight design of skeletal structures with fixed layout under a 

frequency constraint on any chosen vibration mode. Through mathematical argument, the strict 

convexity of the OP is proved so that, if a stationary point exists in the feasible design set, it is 

guaranteed to be the global optimum to the frequency-constrained weight-minimisation 

problem. The method is exemplified by a planar portal frame with two active DVs only and 

validated/verified against a graphical method applying the geometric interpretation of the LM 

theorem. Numerical results show that the convergence behaviour of the resizing process, with 

coupled relations (for updating the DVs) derived from the herein proposed OC, is improved 

significantly compared to the conventional OC methods based on the uniform SED criterion 

and conjectured separability/uncoupled relations. As a remark, the formulation can be easily 

extended/generalised to tackle displacement- or buckling/stability-constrained sizing OPs of 

skeletal structures by restating all performance constraints (i.e., upper displacement limits, 

lowest buckling load factor of a chosen eigenmode) in terms of strain energy of the structures. 

To this end, the OP formulation in Eq. (6.1) and the corresponding numerical routines in Eq. 

(6.12) for updating the DVs and Eq. (6.24) for evaluating the LM can be applied directly to 

solve buckling- or displacements-constrained OPs. 

In the following Chapter, the herein proposed sizing algorithm is used in conjunction with 

the TMDI tuning method detailed in Chapter 3 for the integrated tall building-plus-TMDI 

optimal design to meet the code-prescribed comfort requirement while minimising material 

usage of the primary structural system. 
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Chapter 7 

Integrated Optimal Design of DVA-Equipped Wind Excited Buildings 

for Weight Minimisation and Occupant Comfort 

7.1 Preliminary remarks 

As discussed in Chapter 1, lateral stiffening of VS-prone tall buildings (by increasing 

member sizes without changing the structural system) cannot efficiently address the 

serviceability occupant comfort requirement associated with floor accelerations (Simiu and 

Scanlan 1996, Ricciardelli et al. 2003). This strategy may lead to a feasible/code-compliant but 

heavy design that is neither material-efficient nor cost-effective (cf. the illustrative example in 

Chan and Chui 2005). In this regard, Chapters 3 and 5 explored the use of optimally tuned 

inerter-based DVAs for efficient vibration mitigation of wind-excited ultra-tall and high-rise 

buildings to meet occupant comfort criteria without the need of any structural 

modification/stiffening. Nevertheless, the therein considered TMD(I)s are designed 

independently from the primary/host structure which is taken as fixed. In this regard, no effort 

has been undertaken so far to design the tall building-plus-TMDI structural system in an 

integrated manner for structural efficiency and code-compliance. 

In this context, this chapter proposes a novel framework for the optimal design of inerter-

based DVA-equipped tall buildings governed by comfort criteria to achieve the concurrent self-

weight reduction of the primary structural system and optimal vibration control of the absorber 

through a two-staged, sequential optimisation. Specifically, in the first stage, a sizing 

optimisation is performed using the OC-based resizing approach detailed in Chapter 6 and 

applied to the detailed FE model of an uncontrolled building to minimise its structural self-

weight while satisfying a specified target fundamental frequency. In the second stage, the 

optimised minimum-weight structure is equipped with an optimally tuned TMDI (with fixed 

inertial properties and connectivity) to minimise its crosswind floor accelerations using the 

tuning method elaborated in Chapter 3. A low-order model, capturing the detailed (building) 

model's dynamic attributes accurately (see Section 3.3.2), is used to facilitate an efficient 

solution for optimal TMDI tuning and performance assessment of the optimally controlled 

building. Wind excitation is modelled as a spatially-correlated crosswind force field accounting 

for VS effects. This integrated design framework, involving sizing optimisation of the host 

structure, optimal TMDI design/tuning, and performance assessment of optimal TMDI-

controlled minimum-weight structure, is iterative and seek for the size-optimal primary 

structure with an adequate fundamental frequency. In this respect, it is repeatedly executed until 

the building's critical fundamental frequency is determined. The latter is the minimum value of 

the fundamental frequency, below which the optimally controlled floor accelerations would no 
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longer satisfy the serviceability comfort constraint. In this regard, the proposed design 

framework utilises the fact that the crosswind-induced floor accelerations are inversely related 

to the primary structure's fundamental frequency within the frequency range (i.e., from 0.1Hz 

to 1.0Hz) for serviceability check (Chan and Chui 2006). At this point, it needs to be 

emphasised that this optimisation methodology/strategy is sequential, that is, it does not 

optimise the primary structural system and the vibration controller simultaneously. In this 

regard it might miss the theoretical optimum of the integrated system. Notwithstanding this 

pitfall, it provides a practical way of achieving concurrent self-weight reduction and optimal 

vibration control, thus paving the way towards material-efficient, wind-resilient tall building 

design. 

As a case-study, a 15-storey steel MRF structure equipped with a ground-floor TID is 

adopted as the case-study structure to demonstrate the applicability and usefulness of the 

proposed design framework. Importantly, the consideration of a ground-floor TID is inspired 

by several studies (Lazar et al. 2014, Zhang et al. 2017, Giaralis and Taflanidis 2018) 

demonstrating the high efficiency of this DVA in controlling earthquake-induced vibrations in 

multi-storey buildings. Its rationale is supported by the fact that top-floor DVA placement 

sacrifices high premium space in the upper floor(s) which may not be applicable in routine mid-

to-high-rise structures. Addressing such structures becomes a priority in this Chapter to 

demonstrate the potential impact of the proposed design framework together with employment 

of inerter-based DVAs in everyday engineering practice and the resulting material savings in 

routine structures. 

 

7.2 A novel framework for minimal-weight design of inerter-based DVA-equipped tall 

buildings to meet cross-wind serviceability criteria 

This section presents a novel structure-plus-inerter-based DVA optimal design framework 

for simultaneous material use reduction and vibration mitigation of wind-excited building 

structures governed by serviceability occupant comfort criteria in the cross-wind direction. To 

date, in the scientific literature and practical design of DVA-equipped tall buildings, the control 

device has been designed and treated as a retrofitting measure to improve the habitability of 

wind-excited, inherently deficient buildings. Herein, it is proposed to optimise the building's 

lateral load resisting structural system and the DVA in an integrated manner to achieve optimal 

DVA-equipped building structures for own-weight minimisation based on material efficiency 

considerations. To this end, an integrated design cycle, entailing a two-staged optimisation (first 

for the host structure and then for the control device) followed by a performance assessment 

(of the optimal DVA-equipped building), is executed iteratively for the DVA-controlled host 

structure to find its critical fundamental frequency for given wind action. The latter frequency 

is the threshold value below which the optimal DVA-equipped building would no longer meet 

the code-prescribed comfort requirement without changing/increasing the secondary design 

parameters of the control device (e.g., attached mass, inertance, inerter connectivity). For 
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elaboration, this design strategy is broken down into three steps detailed below and graphically 

illustrated in the flowchart of Fig. 7.1. 

 

(1) First, a series of sizing optimisation runs are conducted, targeting different gradually 

increasing fundamental frequencies starting from the initial frequency f1 and at an 

increment of Δf. These runs are executed in parallel for numerical efficiency making use of 

the sizing algorithm developed in Chapter 6. The goal is to ensure minimum material 

consumption for the primary structural system under the same side constraints on the 

member sizes. 

(2) Next, the series of the above derived optimal designs, all with minimum self-weights but 

different fundamental frequencies, are retrofitted with a same inerter-based DVA whose 

stiffness and damping properties are optimally determined for given secondary DVs using 

the generic TMDI tuning method presented in section 3.2. The aim is to minimise the floor 

acceleration under the design wind excitation at the top-most occupied storey. Performance 

assessment is conducted for each optimal DVA-controlled structure to plot the optimally 

controlled performance curve in terms of the selected floor acceleration. The latter curve is 

compared against the performance demand curve generated by relevant building 

codes/guidelines to interpolate the critical fundamental frequency fc. 

(3) Finally, the critical frequency determined in step (2) is now used as the target fundamental 

frequency for the sizing optimisation of the primary structure, after which the DVA is 

optimally tuned for the optimally designed host structure and considered wind action to 

generate the ultimate integrated optimal design. 

 

Notably, the above strategy is based on the following two facts. Firstly, wind-induced floor 

accelerations of tall buildings in both along-wind and crosswind directions are, in general, 

inversely related to their fundamental frequencies within the frequency range of 0.1 – 1.0 Hz 

(Tallin and Ellingwd 1983, Griffis 1993). Within this range, the dynamic wind forces and 

corresponding acceleration response of tall buildings can generally be reduced by increasing 

the building's fundamental frequency (Chan and Chui 2006). This provision shifts the resonant 

frequency away from the VS frequency, therefore reducing the excitation at the source. Indeed, 

for most tall buildings, the PSD function of wind force throughout the building height 

attenuate rapidly with the loading frequency increasing when the reduced frequency, 

i.e., ωB/(2πVH), is larger than 0.1, where B is the building breadth in the crosswind direction, 

and VH denotes the hourly mean design wind speed at the building top (Islam et al. 1990). 

Secondly, the fundamental frequency of the optimised structure (with fixed layout) is inversely 

related to its self-weight, that is, the lower the fundamental frequency is, the less structural 

material is required for the optimised structure to achieve that target frequency. To facilitate 

computations, the proposed framework utilises a low-order model with one DOF per floor to 

facilitate an efficient solution for optimal DVA tuning and performance assessment of the 
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optimal DVA-equipped structure. However, consideration of the detailed FE model of the 

uncontrolled building is required for sizing optimisation of the primary structural system. 

 

 

Fig. 7.1. Flowchart of novel framework for minimal-weight design of inerter-based DVA-equipped tall 

buildings to meet cross-wind serviceability criteria. 

 

7.3 Modelling of case-study building structure and wind force excitation model 

7.3.1 Case-study building description and surrogate planar frame model 

The case-study building considered for numerical demonstration of the proposed optimal 

integrated design framework is a doubly symmetric, 15-storey, 3-bay steel MRF building with 

16.5m-by-16.5m footprint. It totals 49.8m of height: ground floor is 5.0m high, while the rest 

of the floors are 3.2m high. The structure comprises four parallel planar MRFs along each 

principal axis with all beam-to-column joints taken as rigid as shown in Fig. 7.2(a). Columns 

have hollow square sections with varying outer dimensions and thickness along the building 

height ranging between 0.48m and 0.32m, and 0.024m to 0.016m respectively. Beams are of 
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various welded wide flange sections with section height and flange width varying between 0.5m 

and 0.3m, and 0.3m and 0.18m, respectively. Horizontal perfectly rigid diaphragm constraints 

are imposed at the height of each floor in developing a detailed FE linear model of the structure 

in SAP2000® software package. By deactivating the out-of-plane DOFs, the first three natural 

frequencies of the building and corresponding modal mass participating ratios in parentheses 

are 0.548Hz (0.7118), 1.391Hz (0.1675), and 2.342Hz (0.0593). The building is designed to all 

serviceability and ultimate limit state requirements for static design load combinations 

including gravitational loads and mean wind component forces acting in the along-wind 

direction according to the relevant Eurocodes. The required steel tonnage (MRFs self-mass) is 

471 tonnes. 

To expedite computational work in later sections, a low-order planar dynamic model with 

15 DOFs corresponding to the lateral in-plane translations of the rigid slabs is derived from the 

detailed FE model of the benchmark building using the modal-based procedure detailed in 

Giaralis and Petrini (2017). The 15-DOF model is defined in terms of a diagonal mass matrix, 

and full damping matrix and stiffness matrices. Building mass including nominal gravitational 

loads is lumped at each floor as shown in Fig. 7.1(b), while modal damping ratios for the j-th 

mode are taken as: ξj=1%, for j= 1,2,3; ξj= 2% for j= 4,5,6; ξj= 4% for j= 7,8,9; ξj=8% for j= 

10,11,12; and ξj=16% for j= 13,14,15. The first three mode shapes obtained by the detailed FE 

model and the 15-DOF system match very well as shown in Fig. 7.2(c). 

 

 

Fig. 7.2. Benchmark building structure: (a) detailed FE model; (b) lumped floor mass distribution along 

building height; (c) first three mode shapes obtained by the detailed FE and by the low-order models; 

and (d) ground-floor TID-equipped lumped-mass planar frame model of the benchmark building 

structure. 

 

7.3.2 Crosswind force excitation model 

The input wind action to the 15-storey (15-DOF) low-order model is herein represented 

by the stochastic crosswind force model developed in Liang et al. (2002) for buildings with 

rectangular footprint (refer also to Appendix B). This wind forcing model is based on 
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experimental data from a comprehensive wind tunnel testing campaign and accounts for both 

the turbulence and the VS components of the wind force in the crosswind direction, the latter 

being critical for occupants’ comfort. It is defined by a zero-mean stationary Gaussian spatially 

correlated random field represented in frequency domain by a full PSD matrix. For the 15-DOF 

dynamic model, a 
15 15 15

FF

S  wind force PSD matrix is determined upon spatial discretisation 

of the wind random field at each building floor. Herein, the logarithmic mean wind velocity 

profile of Eurocode 1 (EN 1991-1-4: 2005) is assumed for rough/urban terrain and for a 

(moderate) basic wind speed of 20m/s (i.e., 10mins mean wind velocity at 10m height above 

open flat terrain) plotted in Fig. 7.3(a). For this wind profile, wind force PSDs at three different 

floor slab heights are plotted in Fig. 7.3(b) following Liang et al. (2002). It is seen that the 

dominant VS frequency increases with floor height. The same happens for the wind force 

amplitude except from the last floor whose tributary height is only 1.6m. That is, half of the 

tributary height of typical floors. 

 

 
Fig. 7.3. Assumed wind excitation model: (a) mean wind velocity profile; (b) power spectral density 

functions of crosswind forces acting at different floor levels of the benchmark structure. 

 

7.3.3 Assessment for occupant comfort criteria in the crosswind direction 

Occupant comfort for the case study building is assessed against the ISO Standard 6897 

criterion which is based on the RMS floor acceleration defined as 

 

1exp( 3.65 0.41ln ).a f = − −                                               (7.1) 

 

The above comfort threshold value, a , is frequency-dependent: the higher the building's 

fundamental frequency f1 is, the more stringent the threshold becomes. To this end, increasing 

the lateral stiffness of VS-prone buildings cannot efficiently address the comfort deficiency as 

the code requirement would also tighten as the fundamental frequency increases. The reason 

for adopting the ISO 6897:1984 standard (as opposed to CNR-DT 207/2008 in Chapters 3 and 

5) in the current chapter is that, here, the building’s fundamental frequency, f1, changes 

significantly (see Section 7.4.1) due to sizing optimisation for different target frequencies, 
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which is not the case in previous chapters where the buildings’ fundamental frequencies stay 

practically constant. Then, the peak factor, g (see Eq. (A.7)), for converting the RMS response 

to peak response will also change with f1 even though the time of exposure, Twind, remains the 

same. In this setting, it is more straightforward to gauge the building habitability in terms of 

RMS floor accelerations instead of the peak ones, as evaluation of the latter requires further 

conversions through different peak factors. 

Whilst the case-study building in Fig. 7.2(a) satisfies all requirements for static design 

load combinations, it is found to be deficient for the occupant comfort criterion in Eq. (7.1) 

under the moderate wind action defined in Fig. 7.3. To demonstrate the inadequacy of the case-

study building, Fig. 7.4(a) reports the RMS accelerations developed at each floor of the initial 

building structure (solid orange curve) along the building height under the wind action shown 

in Fig. 7.3, together with the comfort threshold value for initial fundamental frequency 0.548 

Hz (black dashed line). It is seen that the RMS acceleration is over the limit value at the last 

two occupied floors (excluding the unoccupied roof), indicating the code-deficiency of the 

case-study building. 

 

 

Fig. 7.4. RMS floor accelerations of (a) initial non-optimal structure and optimally re-designed 

structure with target fundamental frequency 0.548 Hz and of (b) optimally re-designed structure with 

target fundamental frequency 0.928 Hz, together with respective ISO6897 occupant comfort 

thresholds; (c) variation of total weight of structure throughout the optimal re-design process. 

 

7.4 Re-design of uncontrolled case-study building and optimal TID tuning for occupant 

comfort 

7.4.1 Re-design of uncontrolled benchmark structure for occupant comfort 

The uncontrolled building in Fig. 7.2(a) is herein re-designed to satisfy the ISO 6897 

standard while minimising its own-weight. This is achieved by applying the optimally sizing 

OC-based approach developed in Chapter 6 to the initial structure which involves increasing 

its fundamental frequency to such a critical value that the uncontrolled RMS floor accelerations 
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at all floors (except the roof) drop below the ISO 6897 limit value. This critical frequency, 

which also serves as the target frequency for the uncontrolled structure, is found to be 0.928Hz 

by interpolation. To shed further light on this resizing process, Fig. 7.4(c) traces the MRF self-

weight variation throughout the iterative application of the OC-based algorithm, starting with 

the initial deficient design. The latter has a total self-mass of 472 tonnes and fundamental 

frequency 0.548Hz. The iterative process converged at 787tons with the fundamental frequency 

increased to the target value (i.e., 0.928Hz) after 19 iterations. Consideration of further 

iterations improves neither the self-weight nor the structural performance, i.e., 14RMS{ }x . The 

RMS floor accelerations of the optimally re-designed structure with f1=0.928Hz are plotted in 

Fig. 7.4(b) (solid blue line with circular markers), together with the corresponding ISO 6897 

threshold (blue dashed line). The latter has decreased (i.e., became more stringent) since the re-

designed structure has a higher fundamental frequency. It is seen that the code-prescribed 

requirement is satisfied at all occupied floors, and the floor accelerations have reduced 

noticeably compared to those of the initial design. However, this is achieved at the expense of 

315tonnes of additional steel (i.e., 67% increase of steel tonnage). 

To further demonstrate the effectiveness of the resizing algorithm in section 6.2, the initial 

deficient building is optimised again for the original fundamental frequency of 0.548Hz. The 

performance of the optimal, though deficient, design (solid red curve with square markers) is 

added in Fig. 7.4(a) with the corresponding self-weight variation plotted in Fig. 7.4(c). It is seen 

in Fig. 7.4 that, although the primary structure is optimised to have a reduced self-weight (from 

472tonnes to 447tonnes) while still achieves the same fundamental frequency (0.548Hz), the 

overall acceleration performance does not improve noticeably as the fundamental frequency 

remains the same. In this context, in the following section, an optimally designed ground-floor 

TMDI with no secondary mass (i.e., a TID) is considered for this optimal but infeasible design 

to meet the occupant comfort requirement without demanding any additional steel to stiffen the 

lateral load-resisting system.  

 

7.4.2 TID-equipped tall building modelling and structural analysis for crosswind 

excitation 

The modelling of the TID and its incorporation to the case-study building is schematically 

shown in Fig. 7.2(d) depicting a low-order 15-DOF model as a planar 15-storey frame-like 

building with lumped floor masses mk and lateral floor displacements xk (k=1,2,…,15). The low-

order model is derived from the detailed FE model of the benchmark structure following the 

same approach as in Section 3.3.2 (see also Giaralis and Petrini 2017). The TID consists of a 

visco-elastic link, modelled as a linear spring with kTID stiffness in parallel with a dashpot with 

damping coefficient cTID, which connects one terminal of the inerter element, highlighted in red 

in Fig. 7.2(d), with the first-floor slab. The second inerter terminal is fixed to the ground. In 

this regard, the inerter element force reads as 
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,b TIDF bx=                                                                (7.2) 

 

where xTID is the lateral TID displacement shown in Fig. 7.2(d) and a dot over a symbol signifies 

differentiation with respect to time. 

Mathematically, the mass, M, damping, C, and stiffness, K, matrices of the TID-equipped 

lumped-mass 15-DOF model in Fig. 7.2(d) are given as 
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(7.3) 

 

respectively, where ck,p and kk,p with k=1,…,15 and p=1,…,15 are the damping and stiffness 

coefficients of the low-order 15DOF system representing the uncontrolled optimised 

benchmark building. Response displacement, velocity, and acceleration PSD matrices, as well 

as corresponding RMS responses, of the TID-equipped structure subject to the wind force PSD 

matrix, 
15 15 15

FF

S , defined in section 7.3.2 can be obtained following the frequency domain 

analysis approach detailed in Appendix A. 

 

7.4.3 Optimal TID design for minimum-weight host structure subject to occupant 

comfort requirement 

In this section, a ground-floor TID is considered to mitigate crosswind-induced 

accelerations of the optimised but deficient structure with f1=0.548Hz considered in Fig. 7.4(a) 

subject to VS effects associated with occupant comfort. To this aim, the optimal tuning problem 

in section 3.2 is adapted aiming to minimise the RMS floor acceleration at the highest occupied 

floor, i.e., 14OF RMS{ }x= . This is because RMS acceleration increases monotonically with 

building height in the crosswind direction of typical multi-storey buildings prone to VS effects 
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(see e.g. Fig. 7.4(a) and (b)). The problem DVs are the non-dimensional TID parameters defined 

as 

 

1

,  and 
2

,  ,
TID TID

TID TID

TID

k b c

k b

b

M
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
= = =                                    (7.4) 

 

namely, inertance ratio, frequency ratio, and damping ratio, respectively. In the last 

equation, M can be either the total building mass, the structural self-mass, or the generalised 

mass of the fundamental mode as before, while ω1 is the first circular natural frequency of the 

uncontrolled (no TID-equipped) structure. Herein, M is taken as the self-weight of the primary 

structural system. The OP is solved numerically using the pattern search approach presented in 

section 3.2.2 with an evolving search domain. In this manner,  optimal primary DVs, i.e., 

frequency ratio, νTID, and damping ratio, ξTID, are determined to minimise the OF for the 

minimal-weight host structure, same wind excitation model, and fixed inertance ratio β treated 

as secondary DV. 

To illustrate the above TID optimal design problem, Fig. 7.5 furnishes results from the 

application of the TMDI tuning method to the optimised but deficient structure under the wind 

force PSD matrix in section 7.3.2 to minimise 14RMS{ }x   or 
14x  . The latter response is 

computed using Eq. (A.3) by setting k=14 and then taking the square root of the corresponding 

acceleration variance. In doing so, practically meaningful range of values for the primary DVs 

are searched: νTID is bounded in the [0.99, 1.01] range based on real-life TMD installations in 

high-rise buildings tuned to the first natural frequency ω1, while ξTID is bounded in the [0.00, 

0.03] range to ensure realistic viscous damping coefficients. Strong convex behaviour of the 

OF on the primary DVs, νTID-ξTID, plane is noted with a single global optimal design point 

readily identified for inertance ratios β ranging within [0, 1] interval. It is found that the required 

inertance ratio in order for the optimised but deficient building with f1=0.548Hz to be occupant-

comfort adequate is 18.5% of the self-weight of the initial design (or b=87.27 tonnes). The 

corresponding performance surface of the TID-equipped optimised structure, normalized by 

14RMS{ }x  of the initial uncontrolled structure, is plotted in Fig. 7.5(a) on the νTID-ξTID plane 

for β=18.5%. As seen, the optimal RMS acceleration at νopt=1.004 and ξopt=0.008 is just below 

the codified threshold value of 33.30 mm/s2, and hence confirming the feasibility of the 

integrated design. Further, optimal values of the primary DVs of the TID for the optimised 

structure are plotted in Fig. 7.5(b) as functions of β ranging within [0, 1]. It is seen that both 

DVs increase steadily with the inertance ratio except around β=0.20. Further, for all β ratios 

considered, the optimal frequency ratio νTID is always between 0.99 and 1.01, while the optimal 

damping ratio ξTID is between 0.00 and 0.03. 

 



Chapter 7 –Integrated Optimal Design of DVA-Equipped Wind Excited Buildings for Weight 

Minimisation and Occupant Comfort 

131 |  
 

 

Fig. 7.5. Optimal TID design for optimised deficient structure in Figure 7.3 subject to wind excitation 

in Figure 7.2: (a) Objective function and optimal design point for β=0.185; and (b) optimal primary DV 

values with β. 

 

7.5 Application of the integrated optimal design framework to the TID-equipped MRF 

15-storey benchmark building 

7.5.1 Performance curve of optimal TID-equipped host structure in relation to ISO6897 

occupant comfort demand curve 

Herein, the three-step design framework of Fig. 7.1 is applied to the TID-controlled 15-

storey case-study building (represented by the low-order model in section 7.4.2) to derive the 

performance curve of the optimal TID-equipped minimum-weight structure against the 

fundamental frequency. To this aim, the benchmark structure with the fixed layout is firstly 

optimised for a series of gradually increasing fundamental frequencies ranging between 

0.548Hz and 1.100Hz at an increment of Δf=0.050Hz, that is, 12 parallel sizing optimisation 

rounds in total. Next, a ground-floor TID with fixed inertance ratio β=10% (or inertance 

constant b=87.28 tonnes) is incorporated to every optimised structure and optimally tuned for 

the wind model defined in section 7.3.2. Notably, the inertance ratio β herein is defined as the 

ratio of inertance value to the self-weight of initial, non-optimal host structure to avoid the 

change of inertance value as the host structure becomes stiffer/heavier such that a fair and 

meaningful comparison can be made. Performance assessment is then conducted 

for each optimal TID-equipped minimum-weight structure to generate the integrated 

performance curve in terms of the RMS acceleration on the 14th floor. The latter is compared 

against the demand curve computed by Eq. (7.1) to interpolate the critical fundamental 

frequency fc, as shown in Fig. 7.6 (a). It is seen in Fig. 7.6(a) that the performance curve of the 

optimal TID-equipped structure (blue dashed line) intersects the demand curve at the 

fundamental frequency f1=0.706Hz, corresponding to a self-mass of 576 tonnes. The RMS floor 

accelerations of this design along the building height can be found in Fig. 7.4(b) (the solid blue 

curve with circular markers). For comparison, the corresponding performance curve of 

the uncontrolled optimised structure is also added in Fig. 7.6(a) (solid red curve), which is 

found intersecting the demand curve at the increased frequency f1=0.928Hz, corresponding to 

a self-mass of 787 tonnes as established in section 7.4.1. In this setting, a 26.8% (or 211 tonnes) 
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reduction in the steel consumption is achieved for the primary structural system through 

deploying a ground-floor TID with inertance b=87.28 tonnes. Finally, the self-weight variation 

of the optimised structure is plotted in Fig. 7.5(b) as a function of the target fundamental 

frequency. As seen for this particular case-study building, the required self-weight to achieve a 

prescribed frequency follows a linear relation with the target frequency with a positive slope of 

914.7 tonnes/Hz. 

 

 

Fig. 7.6. (a) Performance curves of uncontrolled optimised structure and of optimal TID-equipped 

optimised structure for inertance ratio 0.10, together with the performance demand curve by ISO6897 

standard; and (b) self-weight of optimised case-study structure against fundamental frequency. 

 

7.5.2 Trading inertance to primary structure weight in optimally designed DVA-

equipped structures for minimal weight 

This section investigates numerically the potential of optimal ground-floor TIDs to 

suppress wind-induced vibration in VS-prone multi-storey buildings that were optimised for 

minimum self-weight while satisfying a fundamental frequency constraint. Attention is focused 

on demonstrating performance improvement of the optimally designed integrated system (i.e., 

optimal TID plus optimised host structure) as the fundamental frequency of the host structure 

increases for fixed inertance, as well as on enhanced vibration control of optimal TIDs as 

inertance increases for a given primary structure. To this aim, the occupant comfort deficient 

15-storey case-study structure in Fig. 7.2(a) is optimised using the sizing optimisation method 

of Chapter 6 for the series of fundamental frequencies considered in Fig. 7.6. Then, optimal 

TIDs with various inertance ratios ranging between 10% and 100% at 10% interval are 

considered for the optimised structures with different fundamental frequencies and self-weights. 
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Fig. 7.7. (a) Performance curves of uncontrolled optimised structure and of optimal TID-equipped 

optimised structure for inertance ratio 0.10, together with the performance demand curve by ISO6897 

standard; and (b) self-weight of optimised case-study structure against fundamental frequency. 

 

Figures 7.7 (a) and (b) plot the RMS acceleration at the penultimate floor of optimally 

designed TID-equipped case-study structures as a function of the fundamental frequency for 

various inertance ratios and as a function of inertance ratio for different fundamental 

frequencies, respectively. The data evidence that the RMS floor acceleration reduces 

monotonically with the fundamental frequency for any inertance ratio considered or with the 

inertance ratio for any fundamental frequency, both at a reducing rate. The implications behind 

the graphs are therefore two-fold: first, stiffening the host-structure laterally is not cost-

effective to address typical occupant comfort criteria because the beneficial effect of increasing 

lateral stiffness tends to saturate as the fundamental frequency increases; similarly, performance 

improvement of TID is more sensitive to inertance for lower inertance ratios and gradually 

reduces as β ratio increases. As seen in Fig. 7.7(a), an optimal TID with β=20% is sufficient to 

achieve code-compliant floor accelerations for the optimised building with the original 

frequency without any modification to the primary structural system. Specifically, only a 10.6% 

reduction in the 14th floor RMS acceleration is required for the optimised structure with 

f1=0.528Hz (see the leftmost data points on the performance curves) to meet ISO6879 comfort 

criterion. As established in section 7.4.3, this reduction can be conveniently achieved by 

incorporating an optimal TID with β=18.5% (or b=87.27tonnes) without altering in any other 

way the MRF lateral load-bearing system. As a remark, the inertance values examined in Fig. 

7.7 are realistic and practically meaningful even for f1=1.100Hz and β=100%, in which case the 

floor acceleration is reduced by 21.9% compared to the uncontrolled case. Indeed, this inertance 

ratio corresponds to an inertance constant b=953.9tonnes, which is much smaller than the 

inertance achieved by the hydraulic inerter device discussed in Nakaminami et al. (2017) 

reaching >10000 metric tons of inertance. Recalling that meeting ISO6879 criteria through 

structural modification (member resizing) alone would require 315tonnes of additional steel to 
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stiffen the initial MRF as discussed in section 7.4.1, one concludes that optimal ground-floor 

TID is quite efficient in meeting occupant comfort criteria in wind-excited buildings leading to 

lightweight design and material savings. 

 

7.5.3 Structural weight reduction potential of optimally tuned TIDs for building 

structures deficient to occupants’ comfort 

Numerical results furnished in Fig. 7.7 suggest that the code-compliant performance in 

terms of RMS floor acceleration can be achieved using different sets of structural self-

weight/fundamental frequency and inertance constant. This is an important consideration from 

a practical viewpoint as it enables self-weight reduction of the primary structural system via 

increasing inertance within a performance-oriented design context (i.e., aiming to achieve a 

pre-set performance level). By repetitive application of the proposed design framework for 

different inertance values, it is possible to reach a Pareto optimal set of structural-plus-DVA 

designs from which designers can decide. 

To illustrate this point and quantify potential gains in terms of steel usage reduction, Fig. 

7.8(a) plots the performance surface of the optimised TID-equipped case-study structure on the 

self-weight and inertance design plane. Notably, each data point on the surface is associated 

with a unique optimal design of the integrated structural system, obtained employing the first 

two steps in the design framework detailed in section 7.2. Further, the ISO 6897 demand surface 

is superposed in the design space by extruding the demand curve (black dashed line in Fig. 

7.7(a)) along the inertance axis. This is facilitated by the fact that comfort threshold value is 

only affected by the fundamental frequency of host structure but not inertance of the TID. It is 

seen in Fig. 7.8(a) that the two surfaces intersect at the red dashed curve, which defines the 

Pareto front separating feasible designs from infeasible ones. Evidently, the portion of the 

performance surface that locates above the demand surface corresponds to infeasible designs 

violating the codified threshold, while the portion below corresponds to feasible, though non-

optimal, designs. This intersected curve is then projected onto the self-weight and inertance 

plane, as shown in Fig. 7.8(b). Importantly, it is seen in Fig. 7.8(b) that the Pareto front (depicted 

as the blue dashed line) has a negative slope, indicating the optimised TID-equipped multi-

storey buildings with reduced self-weight can still meet the comfort requirement through 

increasing the inertance of ground-floor TID. Apparently, any point along the Pareto front 

corresponds to a unique optimal design for which no further self-weight reduction can be 

achieved without increasing the inertance and vice versa. This fact establishes a direct material 

reduction effect for the primary structural system endowed by optimal ground-floor TIDs 

leading to overall more lightweight inertial dampers that do not commandeer high-premium 

space at upper floors of the buildings as opposed to TMD(I): a practically important advantage 

in designing new slender minimal-weight tall buildings.  

Quantitatively, for every tonne the inertance constant increases, the required steel tonnage 
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for the MRF lateral load-bearing system of the case-study building is reduced by about 3.8 

tonnes. From a financial perspective, the optimal TID with an 87.27-tonne inerter has reduced 

the upfront (structural) cost of the lateral load resisting system by $723625 or 33.2% compared 

to the uncontrolled structure redesigned optimally to satisfy the occupant comfort requirement. 

The above cost reduction is estimated by relating linearly the upfront costs of TID and steelwork 

(for 10-15 storey frame buildings with easy access and repetitive grids) to inertance value and 

steel tonnage through proportionality constants of $2500/tonne based on Tse et al. (2012) and 

$2770/tonne according to SteelConstruction.Info, respectively. Note that the herein adopted 

cost value for TIDs is based on the attached mass of conventional TMDs. This is justified by 

the fact that a ground-floor TID behaves equivalently to a classical TMD installed at the first-

floor slab. Therefore, the two passive vibration absorbers should have comparable costs as a 

large proportion of the upfront cost comes from the mechanical devices, e.g., stiffeners and 

dampers, and tuning of the device. 

 

 
Fig. 7.8. (a) performance surface of optimally designed TID-equipped case-study structure versus 

ISO6897 occupant comfort demand surface; and (b) quantification of structural self-weight-and-

inertance trade-off and pareto front in self-weight and inertance design plane. 

 

7.6 Closure 

In this chapter, a novel framework for the optimal design of wind-excited DVA-equipped 

tall buildings subject to serviceability comfort criteria has been proposed, enabling (structural) 

material use reduction for comfort-governed building structures by exploiting the motion 

control capability of inerter-based DVAs. The framework relies on the optimal sizing algorithm 

in Chapter 6 for the minimum-weight design of skeletal structures under a frequency constraint 

(restated in terms of modal strain energy) in conjunction with the optimal TMDI tuning method 

in Chapter 3 for occupant comfort under cross-wind excitation. For exemplification, a routine 

regular mid-rise MRF building, deficient in meeting the ISO 6897 comfort requirement under 

moderate wind action, has been chosen as the paradigm to showcase the applicability and 

usefulness of the proposed framework as well as of inerter-based DVAs in simultaneous self-
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weight reduction and optimal vibration control. This consideration supports the potential impact 

of inerter-based DVAs used collaboratively with the herein proposed design framework. 

Notably, although the case-study building for demonstration purpose is a mid-rise MRF 

structure, the framework and idea behind are believed to work equally well for any skeletal 

structural system of tall buildings (including ultra-tall landmark structures in Chapter 3) and 

any inerter-based DVA encompassing, but not limited to, TMD, TID, and TMDI. 

For the adopted case-study building, major conclusions in view of the herein furnished 

numerical results are: (1) Optimally tuned ground-floor TID for floor acceleration minimisation 

is a potent retrofitting measure to meet occupant comfort criteria without structural 

modifications leading to a considerable increase in steel tonnage (up to 67% increase for the 

considered structure) and upfront structural cost (up to 33.2%); and (2) Increasing inertance 

within an optimal TID design setting is beneficial for suppressing accelerations at all upper 

floors without noticeably affecting the fundamental frequency of host structure. The latter is 

another important advantage of employing vibration control devices (instead of stiffening the 

primary structure directly) when addressing the discomfort issue as the codified 

requirement/threshold also tightens with the fundamental frequency increasing. Overall, it is 

concluded that ground-floor TID is a promising DVA configuration to achieve occupant 

comfort in mid-rise buildings. 
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Chapter 8 

Concluding Remarks 

In this final Chapter, the main conclusions drawn and novel contributions pursued in each 

Chapter of this thesis are summarised and pertinent remarks on theoretical formulations and 

numerical results are furnished in Section 8.1. The objectives progressively contribute new 

knowledge through the development of novel computational and optimisation tools, models, 

and data sets capitalising on and significantly extending prior research work on the TMDI for 

wind-excited tall buildings (Giaralis and Petrini 2017), on optimal design of linear passive 

energy dissipation devices (Marian and Giaralis 2014, Giaralis and Taflanidis 2018), and on 

structural (sizing) optimisation of elastic structures with fixed layout subjected to generalised 

stiffness (e.g., frequency) constraints (Chan and Chui 2006). Further, the main limitations and 

potential directions for future research are outlined in section 8.2. 

 

8.1 Summary of achievements and contributions 

In chapter 1, an introduction to the structural needs/requirements of tall buildings related 

to the impacts of static and dynamic wind loads together with current mitigation measures is 

provided. In addition, a conspectus of the objectives of the research effort is provided with the 

thesis organisation outlined. 

In chapter 2, the development and technological aspects of the inerter device, including 

different inerter-based configurations implemented for motion control of tall buildings subject 

to seismic and wind excitation, are briefly reviewed. The research gaps and needs are next 

identified. 

In chapter 3, a novel optimal TMDI tuning problem, aiming to minimise acceleration 

response at a selected location under given wind action for occupant comfort, is formulated and 

numerically solved using a custom-made pattern search algorithm with an adaptive design 

variable search range for computational efficiency, thereby, achieving the objective (I). The 

search range is continuously updated/narrowed within the feasible solution set based on the 

optimal solution found in the previous iterative step, with a logarithmic increase of 

precision/resolution by which optimal parameters are determined. Notably, the proposed 

numerical solution approach entailing the "zoom-in" strategy can be easily extended to include 

more primary design variables (e.g., the installation location), in addition to stiffness and 

damping properties, of the inerter-based dynamic vibration absorbers into the optimisation 

formulation for any desired combination of secondary design parameters. In order to reduce the 

computation time for optimal tuning process, the density of the orthogonal mesh grid can be 

leveraged, e.g., by having a coarser discretisation of the search domain, to reduce the total 
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number of performance assessments/dynamic analyses required to determine the optimal 

solution provided that the objective function is well-behaved (i.e., does not have any local 

extremum other than the global within the initial search range). Novel numerical results 

regarding the optimal design of a top-floor TMDI with given inertial properties (i.e., secondary 

mass/weight and inertance) and judicial connectivity (defined by the number of floors spanned 

by the inerter device to connect the secondary mass to the building structure) in a 74-storey 

benchmark structure are presented to showcase the effectiveness and convergence behaviour of 

the proposed method. 

Further, in Chapter 3, the TMDI efficacy has been established numerically to achieve the 

occupant comfort performance in wind-excited tall buildings susceptible to vortex shedding 

effects. This was achieved through application of the TMDI tuning algorithm and efficient 

frequency-domain analysis utilising a surrogate low-order planar model of the benchmark 

building. The latter captured faithfully structural dynamic behaviour along the critical direction. 

Attention has been focused on exploring the influence and benefits of TMDIs in wind-induced 

motion control of real slender buildings within an optimal TMDI design setting. To this aim, 

optimally designed TMDIs, minimising the peak top-floor acceleration for a wide range of 

inertial properties and three different topologies, have been obtained through the numerical 

solution of the underlying optimisation problem formulated in section 3.2 for a 305.9m tall 

benchmark building with a rectangular floorplan and a height-to-width ratio more than six 

subjected to experimentally calibrated spatially-correlated crosswind force field accounting for 

vortex shedding effects. Strict convexity of the objective function in solving the optimisation 

problem for all cases considered has been noted near the optimum as well as improved 

robustness of optimal TMDIs (over a same-mass TMD as long as the inertance value is over a 

critical value) to their optimal design parameters, changes of the building's structural properties, 

and varying reference wind velocity. Additionally, it was demonstrated that TMDIs with fixed 

secondary mass/weight reduce peak top-floor acceleration frequency response function 

coordinates for all higher vibration modes (i.e., wide-band dampening effect) as opposed to the 

TMD solely mitigating one particular mode. More importantly, it was confirmed that more 

lightweight TMDIs for fixed performance could be achieved by letting the inerter span more 

floors or increasing the inertance coefficient. To this end, the TMDI applicability to control 

vortex shedding-prone slender tall buildings and to retrofit existing TMD-equipped buildings 

has been established. The latter case involves adding inerters connecting the TMD attached 

mass to an appropriate lower floor with no changes to the secondary mass and necessary 

retuning to address tightened requirements for occupant comfort. 

In Chapter 4, a simplified 2-DOF model, representing the TMDI-equipped flexural 

cantilever with continuously distributed mass and flexibility, is proposed to pursue/facilitate the 

systematic quantification of the influence of the uncontrolled fundamental mode shape on 

TMDI vibration suppression efficacy, thereby meeting the objective (II). This is achieved 

through an innovative and thorough parametric investigation considering a wide range of 
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primary structures modelled/simplified as continuous tapered (cantilever) beams with various 

(geometric) shapes and, thus, different mass and stiffness distribution. The simplified model 

entails approximating the host structure as a generalised SDOF oscillator through its 

uncontrolled fundamental mode shape. Non-dimensional analytical FRFs of practical interest 

are derived using the 2-DOF model in terms of five TMDI parameters (i.e., frequency, damping, 

attached mass, and inertance ratios, as well as connectivity ratios) and the uncontrolled modal 

coordinate of the host structure to expedite the dynamic analyses in the frequency domain. 

Optimal TMDI design problem, aiming to minimise the free-end steady-state displacement of 

the host structure accounting for resonant harmonic and white noise excitations, is formulated 

and solved numerically utilising the closed-form FRFs and the same "zoom-in" strategy from 

chapter 3 for efficiency. The main findings of the chapter are two-fold. Firstly, from the control 

device standpoint, the TMDI performance improves (compared to a same-weight TMD) for all 

considered cantilever shapes by adopting smaller attached mass, larger inertance, or higher CR 

values (i.e., allowing the inerter span a longer distance). Secondly, from the host structure 

standpoint, the TMDI becomes even more effective than the TMD for cantilevered structures 

whose upper part is more (laterally) flexible from the lower. However, for each TMDI-equipped 

cantilever beam and given inertial properties, there seems to exist a minimum connectivity-

ratio threshold value only beyond which the TMDI starts to outperform the TMD, indicating 

for relatively small connectivity ratios, the inerter inclusion may be detrimental (i.e., worsening 

the TMD performance). From a practical viewpoint, it is concluded that, with judicial upwards 

(stiffness) tapering, the TMDI can achieve better suppression effect than the TMD with a 

smaller attached mass, hence enabling more lightweight construction in the design of flexible 

cantilever structures such as tall buildings, wind turbine/solar towers, and industrial chimneys. 

Finally, the dependence of TMDI control potential on the host structure properties motivates 

local modification/manipulation of the lateral stiffness to purposely create a larger modal-

coordinate difference between the two terminals of the TMDI for enhanced vibration 

suppression. 

Upon meeting objective (II), in Chapter 5, the effectiveness and advantages of using an 

optimal top-floor TMDI in conjunction with a local structural modification, namely, top-storey 

softening, have been numerically explored as an effective alternative to the inerter spanning 

more than one floor for mitigating crosswind floor accelerations of slender high-rise buildings 

governed by serviceability comfort criteria. This is accomplished by furnishing pertinent 

numerical data for a low-order dynamical system capturing faithfully in-plane modal properties 

(mode shapes and natural frequencies) of a 34-storey square-plan core-frame benchmark 

building with softened top-floor by discontinuing the central r/c core and increasing the top-

storey height. The optimal TMDI tuning problem in chapter 3 has been extended to include the 

top-floor height as a secondary design parameter (in addition to TMDI inertial properties) and 

numerically solved to minimise the peak floor acceleration under crosswind excitation 

modelled as a stationary spatially-correlated random field accounting for VS effects. Notably, 
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the proposed structural modification for improving the TMDI control potential extends the 

applicability of TMDI to more routine structures in which spanning the inerter over a longer 

distance is prohibitive, thereby directly addressing objective (III). 

Numerical results for different TMDI inertial properties and top-storey heights show that 

improved structural performance in terms of peak floor acceleration and attached mass stroke 

are achieved by increasing inertance and/or by reducing top-storey stiffness for fixed TMDI 

attached mass. In contrast, no improved performance is achieved by TMDs through top-storey 

softening. In this regard, it was demonstrated that the required TMDI mass/weight can be 

reduced by either increasing inertance, as seen in previous chapters, or softening the top-storey 

for a preset performance level. The latter strategy is rather advantageous in the design of VS-

sensitive buildings because (1) it does not occupy premium space on the upper floors as the 

TMDI is fully contained within a single (last) storey, and (2) top-storey softening can be readily 

implemented by simple local modifications such as discontinuation of the r/c core at the last 

floor and increasing the top-storey height as seen in this chapter, or by other means such as 

reduction of member sizes. More interestingly, it was shown that a decrease of the top-storey 

stiffness leads to decreased sensitivity of structural performance to the optimal TMDI properties 

and the assumed inherent structural damping, and hence yielding more robust TMDI designs to 

detuning effects and inaccurate knowledge of structural properties. Lastly, it is seen that the 

performance of optimal TMDI-controlled case-study building improves as the flexural 

contribution coming from the r/c core increases in the coupled core-frame (lateral load resisting) 

system, suggesting that the optimal top-floor TMDIs work the best for flexure-typed (compared 

to shear-typed) building structures. This observation is readily attributed to the fact that the 

flexure-typed cantilever structures with no abrupt change in lateral stiffness allow a larger 

modal-coordinate difference to be developed around their free-ends. Looking further into the 

case of existing tall/slender buildings, the herein reported numerical data suggests that the 

addition of a relatively soft top-storey housing a properly tuned lightweight TMDI is an 

effective retrofitting measure to enhance serviceability performance. In this manner, more 

stringent serviceability design requirements than those considered in the initial design due to 

site-specific climate change effects or changes to the surrounding built environment (i.e., 

increased wind exposure) can be achieved. 

In Chapter 6, a rigorous sizing optimisation algorithm, centred on a novel strain energy-

based optimality criteria formulation, is developed for the minimum-weight design 

of uncontrolled elastic skeletal structures with fixed layout while satisfying a target frequency 

of the chosen vibration mode. The latter quantity is used in the optimality criteria formulation 

as a quantitative measure of the overall lateral stiffness of the optimised structure, which is 

inversely related to the floor accelerations under given wind excitation. The resizing method, 

entailing sensitivity analyses of a nonlinear behavioural constraint function concerning the total 

modal strain energy of the structure, relies on parallel computing to expedite the optimising 

process. The algorithm is exemplified using a trivial planar MRF with two active design 
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variables subjected to a frequency constraint on its fundamental mode. It is shown that the 

resizing routine can accurately and efficiently solve the frequency-constrained weight-

minimisation problem of skeletal structures with less iterative effort compared to the intuitive 

uniform-strain-energy-density optimality criteria method, provided that a stationary point 

indeed exists in the feasible solution set. Notably, the herein proposed algorithm can be readily 

generalised to cover stability- and displacement-constrained optimisation problems of skeletal 

structures by restating the performance constraints (e.g., upper limits on displacement and 

lower limit on critical buckling load factor) in terms of induced strain energy. The algorithm is 

used in the proceeding chapter collaboratively with the generic TMDI tuning algorithm (see 

chapter 3) for the optimal integrated design of TMDI-equipped tall buildings to achieve 

simultaneous material use minimisation of the primary structure and optimal suppression effect 

of the dynamic vibration absorber. 

For the adopted case-study building, major conclusions in view of the herein furnished 

numerical results are: (1) Optimally tuned ground-floor TID for floor acceleration minimisation 

is a potent retrofitting measure to meet occupant comfort criteria without structural 

modifications leading to a considerable increase in steel tonnage (up to 67% increase for the 

considered structure) and upfront structural cost (up to 33.2%); and (2) Increasing inertance 

within an optimal TID design setting is beneficial for suppressing accelerations at all upper 

floors without noticeably affecting the fundamental frequency of host structure. The latter is 

another important advantage of employing vibration control devices (instead of stiffening the 

primary structure directly) when addressing the discomfort issue as the codified 

requirement/threshold also tightens with the fundamental frequency increasing. Overall, it is 

concluded that ground-floor TID is a promising dynamic vibration absorber configuration for 

achieving occupant comfort in mid-rise buildings. Still, further numerical and experimental 

work is warranted to examine ground-floor TID efficiency for different wind excitation 

intensity in a performance based design context and compare it to widely used alternative 

solutions such as top-floor TMD and distributive VDs. 

In Chapter 7, a novel structure-plus-TMDI optimal design framework has been developed 

for (structural) material use reduction of the primary structural system of vortex shedding-prone 

tall buildings while meeting code-prescribed occupant comfort criteria by leveraging/exploiting 

the motion control potential of optimally tuned inerter-based dynamic vibration absorbers, 

thereby addressing the objective (IV). The integrated design approach relies on the resizing 

algorithm in Chapter 6 for the minimum-weight design of the host structure under a frequency 

constraint in conjunction with the generic tuning method in Chapter 3 for optimal TMDI design 

under given wind excitation. For the sizing optimisation process, the target frequency for the 

fundamental vibration mode of the host structure is chosen such that a lower target value would 

cause the optimally designed integrated system (i.e., the host structure plus the control device) 

to no longer satisfy the codified threshold without changing/increasing the secondary design 

parameters of the control device (e.g., inertance, connectivity). The proposed framework is 
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believed to be applicable to any skeletal structural system of tall buildings and any inerter-based 

dynamic vibration absorber such as TMD, TID, and TMDI. A regular 15-storey moment 

resisting frame building, initially deficient in meeting the ISO 6897 comfort requirement under 

moderate wind action, has been considered as the paradigm to showcase the applicability and 

usefulness of the proposed framework as well as of inerter-based dynamic vibration absorbers 

in concurrent material use reduction and optimal vibration control. Numerical results pertinent 

to the case-study building evidenced that an optimal TID, placed on the ground floor of vortex 

shedding-prone mid-rise buildings, can effectively contain/influence the crosswind 

accelerations on all higher floors. Major conclusions in view of the herein furnished numerical 

results include: (i) Optimal ground-floor TIDs for floor acceleration minimisation is a potent 

retrofitting measure to meet the comfort criteria without stiffening the primary structure leading 

to a considerable increase of steel usage (up to 67% increase for the considered structure); (ii) 

For a preset performance level, there is a trade-off between the self-weight of the host structure 

and inertance value of the ground-floor TID from which the designers or owners can decide; 

and (iii) The herein proposed design approach can sufficiently address the optimal design 

problem of TMDI-equipped tall buildings, supporting material-efficient design and lightweight 

construction. 

As a closing remark, the results exhibited in this thesis suggest the potential use of TMDI 

in an appropriate configuration (e.g., top-floor TMDI, ground-floor TID), as a lightweight 

alternative solution with improved effectiveness and robustness to conventional TMDs, for 

vibration control of wind-excited vortex shedding-prone tall buildings ranging from mid-rises 

to ultra-tall landmark structures. It has been shown that the TID configuration and inerter 

device(s) can be incorporated in existing uncontrolled and TMD-equipped tall buildings, 

separately, as a retrofitting measure to either enhance comfort-related serviceability 

performance or maintain the current performance level under increased wind exposure due to 

site-specific climate change effects or changes to the surrounding built environment. More 

importantly, the herein developed/proposed integrated design framework has provided a clear 

direction and paved the way towards the sustainable and innovative tall building design through 

the use of inerter-based dynamic vibration absorbers within a multi-objective context, leading 

to reductions not only in the upfront cost but also in embodied energy consumption. Through 

successfully addressing the four objectives set out in the introduction, this thesis progressively 

contributes new knowledge through the development of novel computational and optimising 

tools, models, and data sets capitalising on and extending prior research works on the use of 

TMDI for motion control of wind-excited tall buildings (Giaralis and Petrini 2017), on the 

optimal tuning of linear passive inerter-based dynamic vibration absorbers (Marian and Giaralis 

2014, Giaralis and Taflanidis 2018), and on the sizing optimisation of elastic skeletal structures 

with fixed layout under generalised stiffness (e.g., frequency) constraints (Chan and Chui 2006). 
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8.2 Main limitations and future directions 

The main limitations of this PhD research are identified as follows. Firstly, the work is 

based on two-dimensional/planar analysis such that coupling between flexural and torsional 

modes is ignored. This simplification is deemed appropriate and accurate for symmetric tall 

buildings whose first several translational and torsional modes are well-separated, such as in 

the case-study building studied in Chapter 3. For asymmetric tall buildings, however, a more 

realistic low-order model, with two orthogonal translational DOFs in the principal directions of 

the building plus a torsional DOF around the vertical axis (i.e., three DOFs per floor), is 

required for investigating vibration control effectiveness of inerter-based DVAs under different 

wind directions/incidence angles in a computationally tractable manner. Moreover, the work is 

centred on the common assumption of stochastic input/output processes that are 

steady/stationary and ergodic, and therefore overlooked fast and transient responses as well as 

potential benefits of TMDI incorporation under stormy winds and tornadoes. Finally, design 

considerations, which are essential for implementing inerter-based DVAs in real tall buildings, 

are not considered in the research, including local connections of TMDI to the primary structure 

and physical embodiments of various TMDI configurations studied. 

As far as extensions are concerned, future research can arise in the following four areas. 

Firstly, the conclusions regarding the motion control potential of inerter-based dynamic 

vibration absorbers are valid for ideal linear inerter and for ignoring nonlinear behaviour of the 

TMD. Whilst inerter device prototypes do deviate from the ideal inerter element behaviour 

depending on the employed technology and the application-dependent frequency range of 

operation (e.g. Papageorgiou and Smith 2005, Swift et al. 2013), recent studies demonstrate 

that such deviations do not significantly influence the benefits of the inertance in dynamic 

vibration absorbers (e.g., Gonzalez-Buelga et al. 2016, Brzeski and Perlikowski 2017, 

Pietrosanti et al. 2020b). Therefore, it is anticipated that the herein reported trends and 

conclusions are valid even for non-ideal inerter devices, although it is recognised that 

quantification of benefits and performance accounting for non-ideal inerter behaviour warrants 

further research work.  

Secondly, further numerical work is required to examine the ground-floor TID efficiency 

for different wind excitation intensities in a performance based design context and to compare 

it to alternative widely used solutions such as top-floor TMD(I)s and distributive viscous 

dampers. Special attention is to be placed on quantifying its limitations in suppressing wind-

induced accelerations at upper floors of slender tall buildings as the building height increases. 

Thirdly, the sizing optimisation formulation (section 6.2) and associated algorithm (section 

6.3.1) need to be extended beyond skeletal structures by including two-dimensional shell 

elements such that the resizing routine becomes applicable to building structures that comprise 

reinforced concrete shear walls and/or cores in the lateral load-resisting system. The method is 

readily applicable for accommodating buckling and (multiple) displacement constraints. 

Therefore, it can readily serve for minimal weight design in buckling-sensitive structures as 
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well as in displacement-based design of tall buildings (e.g., in the serviceability design for inter-

storey drifts). Moreover, the sizing formulation and algorithm presented in this thesis are both 

continuous in nature - that is, the cross-section area of structural members can take on any real 

value provided that the value is within the side constraint. In practice, however, the final optimal 

design would only make sense if the design variables take on discrete values. To this end, an 

additional algorithm needs to be developed for automated mapping from the continuous optimal 

solution to the closest discrete solution at the end of the sizing design, so that the true gains in 

weight reduction and financial savings can be examined.  

Fourthly, upon addressing the last limitation, a more detailed life-cycle cost analysis, 

composed of the TMDI and primary structural upfront costs as well as potential losses over the 

lifetime of structures due to either downtime or non-structural repairs, needs to be conducted 

by adopting realistic tall buildings to accurately quantify the overall financial gain achieved by 

the use inerter-based vibration absorbers. 
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Appendix A - Frequency domain random vibration analysis for 

structural response estimation to crosswind excitation forces 

Optimal TMDI design/tuning requires computationally efficient determination of peak or 

RMS response of TMDI/TID/TMD-equipped building models to cross-wind forces. 

Throughout this thesis linear models defined in terms of mass, M, damping, C, and 

stiffness, K, matrices are considered. Further, cross wind floor forces are modelled through 

spatially correlated stationary processes expressed in frequency domain in terms of a n-by-n 

power spectral density (PSD) matrix n

FFS , where n is the number of building floors. In this 

setting, computationally efficient structural response determination is facilitated through 

standard frequency domain random vibrations analysis. Specifically, the response displacement, 

velocity, and acceleration PSD matrices of TMDI-equipped building models are obtained by 

(Roberts and Spanos 2003) 

 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
* 2 4,  , and ,xx FF xx xx xx xx         = = =S B S B S S S S     (A.1) 

 

respectively. In Eq. (A.1), SFF is the PSD wind force matrix n

FFS , expanded by adding a zero 

row and a zero column corresponding to the DOF of the TMDI/TID/TMD which is not 

subjected to any wind load (internally housed). Further, the “*” superscript denotes complex 

matrix conjugation, and the transfer matrix B is given as 

 

( ) ( )
1

2 ,i  
−

= − +B K M C                                                          (A.2) 

 

where 1i = − . 

Moreover, the response displacement, velocity and acceleration variances of the k-th floor 

are determined by 

 

( ) ( ) ( )
max max max

2 2 2

0 0 0

,  , and ,
k k k k k k k k kx x x x x x x x xS d S d S d

  

        = = =        (A.3) 

 

respectively. That is, by integrating the response auto-spectra populating the main diagonal 

elements of the response PSDs in Eq. (A.1), ( )  ,
k kx x xx

S k k = S , ( )  ,
k kx x xx

S k k = S , and 

( )  ,
k kx x xx

S k k = S , up to a maximum (cut-off) frequency, ωmax, above which the energy of 

the underlying stochastic processes is negligible. Furthermore, the variance of the relative 

response displacement, velocity, and acceleration between two different floors, or more 

generally between two different DOFs, k and l is obtained by 
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where ( )  ,
k lx x xxS k l = S  , ( )  ,

k lx x xxS k l = S  and ( )  ,
k lx x xxS k l = S   are the response 

displacement, velocity, and acceleration cross-spectra corresponding to the k and l DOFs. 

Ultimately, the peak displacement, velocity and acceleration of the k-th DOF are estimated by 

the expressions 

 

     2 2 2peak ,  peak , and peak ,
k k kk x k x k xx g x g x g  = = =                    (A.5) 

 

respectively, and the peak relative displacement, velocity, and acceleration between k and l 

DOFs, are estimated by the expressions 

 

     2 2 2peak ,  peak , and peak ,
kl kl klkl x kl x kl xx g x g x g  = = =                   (A.6) 

 

respectively. In the Eqs. (A.5) and (A.6), g is the peak factor estimated by the widely used 

semiempirical formula due to Davenport (1964) 

 

( )
( )

0.577
2 ,

2
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wind

g ln T
ln T




= +                                                 (A.7) 

 

where η=2π/ω is the effective structural response frequency in Hz (e.g., can be taken equal to 

the fundamental natural frequency of the uncontrolled primary structure model), and Twind is an 

assumed time duration of exposure to the wind action during which the peak response quantities 

in Eqs. (A.5) and (A.6) are evaluated under the common assumption of stochastic input/output 

processes being stationary/ergodic time-limited processes. As a remark, the quantity η in Eq. 

(A.7) should be interpreted physically as the frequency at which most of the energy in the 

spectrum is concentrated (Davenport 1961b). For lightly damped systems, this will generally be 

close to the natural frequency of the structure (Davenport 1964).
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Appendix B - Modelling of wind loads to building structures and 

verification against wind tunnel force data 

B.1 Overview of wind loading to structures 

PBD of structures to dynamic loads relies on accurate external force modelling across 

different intensity levels. For wind-excited buildings, uncertainties rise from aerodynamic wind 

loading characteristics as well as from system properties, i.e., mass, stiffness and inherent 

damping properties. Wind loading is dependent on statistical properties of wind field velocity, 

which could be quantified based on statistical wind speed data analysis (Huang 2017). In 1960s, 

Davenport used random vibrations theory to study the effects of wind loading to structures and 

outlined a modelling approach, illustrated in Fig. B.1, to determine the wind-induced response 

of structures to turbulent, gusty wind fields by representing wind velocity field as a stationary 

Gaussian random process (Davenport, 1961, 1963, 1964). This process is expressed as 

 

( ) ( ),U t U u t= +                                                          
(B.1) 

 

where U  is a mean time-invariant component; u(t) is a time-varying fluctuating component 

with zero mean. By introducing some necessary modifications to account for the speed gradient 

in the atmospheric boundary layer and for the mode shape of the structure, the above wind field 

modelling approach is adequate for the estimation of along-wind response of buildings, slender 

towers, and certain types of bridge structures (Tamura et al. 2013).  

 

 

Fig. B.1 Davenport’s approach for determining the wind-induced resonant response of buildings and 

structures (Isyumov 2012). 

 

In this context, the wind loading to building structures consists of a mean (static) 

component and a zero-mean fluctuating (dynamic) component. For sufficiently rigid structures 
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(e.g. tall buildings), the design wind loading is mainly associated with the pressure on the 

surface of the structure being, as a first rough approximation, proportional to the square of the 

wind speed (Huang 2017). The thus-developed total response process of structures comprises 

three components: a static component due to the mean wind loading part, and a background 

dynamic component and a resonant dynamic component due to the fluctuating part of wind 

loading. While the static response can be obtained via static analysis, predicting the dynamic 

response of buildings to wind excitation requires dynamic analysis either in time domain 

through response history analysis or in frequency domain through spectral representation of 

wind load fluctuation and random vibration theory. Depending on their relative direction to the 

mean wind component, wind-induced force and structural response are resolved into two 

orthogonal directions: the along-wind (drag) and the crosswind (lift) direction. While many tall 

buildings are dominated by drag, there are buildings in which crosswind direction effects or 

even torsion become critical (Isyumov 2012). In the along-wind direction, turbulence buffeting 

is the dominant excitation mechanism, whereas the excitation mechanisms in the crosswind 

direction and response processes of buildings are more complex (Tamura et al. 2013). 

According to Solari (1985), the crosswind dynamic load of tall buildings is induced by three 

mechanisms: along-wind turbulence, crosswind turbulence and wake excitation, with the latter 

being the main contributor of the three. In wake excitation, vortices are created at the back of 

the body and detach periodically from either side of the body when a fluid such as air or water 

flows past a bluff body. For tall buildings with aspect ratio (height to width) over 3 (such as 

those considered in this thesis), crosswind response usually exceed along-wind response and 

may actually be several times larger (Liang et al. 2002). 

For illustration, Fig. B.2(a) plots the first-order probability density function (PDF) of the 

turbulent along-wind force (i.e. after deducting the mean component) at the 73rd floor of the 

benchmark building from Ciampoli and Petrini (2012) and Spence and Gioffrè (2012), while 

Fig. B.2(b) plots the second-order or joint PDF of two random variables, i.e., the turbulent 

along-wind forces at 37th floor and 73rd floor. Details of the benchmark building can be found 

in section 3.3.1. The time history data of along-wind force, for generating these two plots, were 

obtained from a wind tunnel test conducted at the boundary layer wind tunnel of CRIACIV 

(Inter-University Research Centre on Buildings Aerodynamics and Wind Engineering) in Prato 

Italy and made available to the author. In both plots, the “bell-shaped” probability distribution 

with zero mean, i.e. Gaussian distribution for many naturally occurring random processes, can 

be seen. 

 



Appendix B – Modelling of wind loads to building structures and verification against wind 

tunnel force data 

149 |  
 

 

Fig. B.2. (a) First-order probability density function (PDF) of the turbulent along-wind force at 73rd 

floor, and (b) second-order or joint PDF of turbulent along-wind forces at 37th and 73rd floors. 

 

B.2 Modelling of wind loads to structures in the along-wind direction 

There are many mathematical models developed over the past few decades for wind 

spectra in meteorology and wind engineering. The most commonly considered one for the 

longitudinal turbulence is the von Karman/Harris spectrum developed for laboratory turbulence 

by von Karman (1948) and adapted for wind engineering by Harris (1968). Based on the results 

of a study of about 70 spectra of the horizontal components of gustiness in storing wind, 

Davenport (1961a) proposed an expression for the spectrum of horizontal gustiness. Height-

dependent wind spectra were later proposed by Kaimal et al. (1972) and by Solari (1993). The 

mathematical expressions for these four gust spectra are summarised in Table B.1 in non-

dimensional form. Most building codes adopt the Karman-type spectrum to represent wind-

induced pressures in the along-wind direction (Tamura et al. 2013). 

 

Table B.1. Mathematical expressions of gust spectra of the along-wind turbulence. 

 Gust spectrum of the along-wind turbulence 

von Karman (1948) / 

Harris (1968) 

( )
2 5/6

*
2

24
(10)

1 70.8
(10)
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 
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  
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  (B.2) 

Davenport (1961a) 
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Kaimal (1972) 
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Solari (1993) 
( )

( )
2 5/3

6.868
,

1 10.302

u

u

u u

fL

f S z f z

z fL

z



 
   

=
 
+ 

 

 

  (B.5) 

 

In the expressions of Table B.1, Su is the gust spectrum of the along-wind turbulence, f is 

the frequency, z is the height, *u  is the friction velocity, Lu is a turbulence length scale (the 

average size of the turbulent eddies of the air flow), ( )U z  is the mean speed at height z, and 

σu(z) is the standard deviation of along-wind turbulence at height z. For illustration, Fig. B.3 

plots the first three spectral shapes for Lu = 1200m, z = 10m, (10)U = 22m/s, and *u = 2.12m/s. 

In the low frequency range (e.g., f < 0.01Hz), the Davenport spectrum attains the lowest values, 

while in the higher frequency range (e.g., f > 0.1Hz), it traces closely the Kaimal spectrum of 

turbulence. Since the spectral distribution in the lower frequency range has little influence on 

tall building responses, the Davenport spectrum is still widely used in wind engineering and 

design wind codes. 

 

 

Fig. B.3. Spectrum of horizontal gustiness. 

 

Once the spectrum of longitudinal turbulence is evaluated, the spectrum of fluctuating drag 

force, SF, can be evaluated in the frequency domain by multiplying the spectrum of turbulence, 

Su, with the aerodynamic admittance function, i.e., ( )
22( )) U(Dx C A z zf    , for the first three 

types of spectrum in Table B.2. The empirical factor, 
4/3( ) 1 [1 (2 ) ]U( )x f f zA= + , is used to 

reflect the dependence of force (acting on structures) on the size of disturbance or gust in 

relation to the size of structure. Further to these three spectrum, Solari (1993) proposed a 

different approach which allows practitioners to evaluate the generalised force spectrum 

associated with any resonant mode of the building and with any given mode shape (Eq. (B.5)). 

With this approach, it is possible to model the building as a SDOF system and consider any 
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particular mode of vibration individually. 

 

Table B.2. Mathematical expressions of force spectra of the along-wind turbulence. 

 Force spectrum of the along-wind turbulence 

von Karman 

(1948)/ 

Harris (1968) ( ) ( ) ( )
22) U( )(F D uS f x C z fzf A S =    (B.6) 

Davenport 

(1961a) 

Kaimal 

(1972) 
( ) ( ) ( )

22 U( ), ( ) ,F D uS z f x f C A z S z fz =    (B.7) 

Solari (1993) 
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( )
( ) ( )1

0

U(z)
U(z)

1
Z

b u

u

K z z dz
Z z




=   
(B.11) 

 

In the expressions of Table B.2, SF is the along-wind force spectrum, ρ is air density, B and 

D are frontal width and depth of the building, Z is the height of building, Cx and Cz are lateral 

and vertical exponential decay coefficients respectively, Cy is the cross-correlation coefficient 

of pressure acting on the windward and leeward face, CD is drag coefficient, CW and CL are 

absolute values of pressure coefficients on windward and leeward faces, and Ψ1(z) is the first 

mode shape of the building at height z. 

 

B.3 Modelling of wind loads to structures in the crosswind direction 

In the crosswind direction, the dynamic wind loading on tall buildings is mainly induced 

by the wake excitation (Solari 1985). The vortex shedding mechanism is known to strongly 

correlate with side ratio, aspect ratio of the building, and turbulence intensity of incident flow 

(Liang et al. 2002). Since the 1970s, much research has been conducted to investigate the 

crosswind dynamic loads on rectangular tall buildings via wind tunnel testing (see e.g. Saunders 

and Melbourne 1975, Kareem 1982, Cheng et al. 1992, Choi and Kanda 1993). Nonetheless, 

these tests only involved a limited number of side ratios, and the proposed mathematical 

spectral models do not fit well with the experimental data, especially in the high frequency 

range. To this end, Liang et al. (2002) proposed empirical formulae of crosswind force spectra 

based on wind tunnel tests, conducted on rectangular prismatic models with a wide range of 

side ratios and two different model heights. The proposed mathematical model is in good 



Appendix B – Modelling of wind loads to building structures and verification against wind 

tunnel force data 

152 |  
 

agreement with the experimental results in low and high frequency ranges.  

In this model, tall buildings are further categorized into two groups, i.e., the ones whose 

side ratio is between 1/4 and 3, and the others with side ratio between 3 and 4. In the former 

case, the power spectra of crosswind force have a single peak at the vortex shedding frequency 

as shown in Fig. B.4 (a), whereas in the latter case, the spectra have two peaks, which are due 

to the primary and sub-vortex shedding, respectively, as shown in Fig. B.4 (b).  

 

 

Fig. B.4. Power spectra of crosswind for side ratio (a) 1/4≤D/B<3, and (b) 3≤D/B≤4 (Liang et al. 

2002). 

 

Normalized formulae for crosswind spectra for the two categories of tall buildings are 

summarised in Table B.3. In these expressions, SF(f) is the spectrum of the crosswind force, f is 

the frequency, 2( ) 1 2 ( ) Lz U z C B =   is the RMS crosswind force at height z, 
LC   is 

empirical lift coefficient, / sf f f=   (where ( )s tf S U z B=  ) is the frequency of vortex 

shedding, St is the empirical Strouhal number, ( )U z  is the mean speed at height z, S is the 

area of floor plan, B, D and H is the building’s breadth, depth, and height, respectively, 

( ) ( )b

u uI z U z=  is the turbulence intensity, ( )u z  is the RMS (or standard deviation) of 

the turbulent velocity fluctuations at height z. As a remark, the dimension of ( )z  is in [F]/[L], 

i.e., force per length. To compute the RMS crosswind force at height z in [F], one needs to 

multiply ( )z  with the tributary height of buildings such that f×S(f)/𝜎2 is in non-dimensional 

form. 

 

Table B.3. Mathematical expressions of force spectra of the crosswind turbulence. 

Side ratio Normalized formula for crosswind spectrum 

1/4≤D/B<3 

2 0.50 3

1 2

2 2 2 2 2 2 2
1 2

( ) ( )
+(1-A)

(1 ) 1.56 (1 )

FfS f H C f C f
A

f C f f C f
=

− +  − + 

, (B.12) 

1 1 1( ) 0.179 0.65H C C C= + , (B.13) 

2.8 1.4

1 [0.47( / ) 0.52( / ) 0.24] / ( / )C D B D B H S= − + , (B.14) 
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2 2C = , (B.15) 
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, (B.17) 

0.175( / ) 4.7,4 / 8k H S H S= − +   , (B.18) 

1 2C = , (B.19) 

2 2C k= , (B.20) 

b

uA aI= , (B.21) 

0.17( / ) 3.32a H S= + , (B.22) 

0.18( / ) 0.26b D B= + , (B.23) 

 

B.4 Modelling of the spatial correlation of wind forces 

The cross-spectrum of two continuous records is a measure of their degree of correlation. 

The cross-spectrum amplitude of along-wind and crosswind forces at different heights decay as 

the height difference increases indicating smaller correlation.  

For longitudinal dynamic wind loads (in the along-wind direction), the cross-spectrum can 

be estimated by 

 

)( ) exp( ,( ) ( )
j k j kF F j Fk FS f S Sf f f= −                                          (B.24) 

 

where ( )
jFS f   and ( )

jFS f   are the along-wind force auto-spectra at locations j and k, 

respectively (see Table B.2), and jkf   is a frequency dependent coherence function for 

longitudinal velocity fluctuations proposed by Davenport (1968) and given by 

 

( ) ( )

ˆ ,
1

2

z j k

jk

j k

fC z z
f

U z U z

−
=
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                                                   (B.25) 
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in which Cz is a non-dimensional, vertical decay coefficient and usually taken equal to 10, f is 

frequency in Hz, zj and zk are height at locations j and k respectively, ( )jU z  and ( )kU z  are 

mean velocity at locations j and k. 

For transverse velocity fluctuations in the crosswind direction, Vickery and Clark (1972) 

proposed the following empirical expression 

 

2
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2

| |
cos( ) exp - ,  ,

i j

ij

z z
r

B




  −  
=   =  

   

                                 (B.26) 

 

which is widely used in the literature as a coherence function. Further to the above, Liang et al. 

(2002) proposed a similar expression of coherence function. 
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=  =  
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                                           (B.27) 

 

In Eqs. (B.26) and (B.27), Δ is the vertical distance between two levels, zi and zj, B is the 

building breadth, α, α1, and α2 are three empirical coefficients. With the auto-spectra and 

coherence functions in place, the cross spectra of dynamic wind loads in the crosswind direction 

can be evaluated by 

 

( ) ( ) ( )
j k j kF F jk F FS f r S f S f=  ,                                             (B.28) 

 

in which the two terms under the square root denote the auto-spectra of dynamic wind loading 

at zi and zj respectively. 

Finally, the PSD wind force matrix (in both along-wind and crosswind directions), 

( )n

FF S , for a n-storey building structure represented by a n-DOF surrogate model defined 

through mass, stiffness, and damping matrices can be evaluated as follows 
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where ω is the circular frequency in rad/s, and the element ( )
j kF FS f  can be determined using 

either Eq. (B.24) or Eq. (B.28).   
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B.5 Case-study structural response verification of wind models vis-à-vis experimental 

wind tunnel force data 

To verify the spectral/mathematical models of fluctuating wind loads peak responses of 

uncontrolled primary structure, e.g., peak floor displacement, inter-storey drift, and floor 

acceleration, of the 74-storey benchmark building (see section 3.3.1) are first obtained in 

frequency domain by assuming the Kaimal spectrum in the along-wind direction and the Liang 

spectrum in the crosswind direction. The thus-evaluated responses are then compared against 

the corresponding peak responses obtained in time domain, by a step-by-step time integration 

method (e.g. Newmark-beta method), using experimental wind tunnel test data. The frequency 

domain and time domain structural analysis algorithms have been both custom-coded in 

MATLAB®. 

The wind tunnel test was carried out on a 1:500, 0.61m-tall, rigid building model with a 

0.1m-by-0.1m square footprint and an aspect ratio of 6.1 at the boundary layer wind tunnel of 

CRIACIV (Inter-University Research Centre on Buildings Aerodynamics and Wind 

Engineering) in Prato Italy, as shown in Fig. B.5. Experimental measures, i.e., the drag, lift and 

torque at each floor, were taken at the mean wind velocity Vm of 19.6 m/s at the top of the 

building model, which is equivalent to 35 m/s in full-scale with a return period of 1 year. The 

sampling interval is approximately 1/250 s, and the duration of time history is 30 s. These time-

history data were made available to the author. 

 

 
Fig. B.5. Experimental model in the wind tunnel test (Petrini and Ciampoli 2012). 

 

The frequency-domain and time-domain responses in the along-wind and crosswind 

directions are plotted in Fig. B.6 and Fig. B.7, respectively, for comparison. It is seen that, by 

assuming the same micrometeorological conditions, the peak responses, estimated in the 

frequency domain by making use of the Kaimal and Liang spectrum, are found in good 

agreement with the corresponding peak values evaluated in the time domain using the wind 

tunnel data. Notably, the peak displacements and inter-storey drift ratios in Figs. B.6 are induced 

by the fluctuating component of wind loading in the along-wind direction, and should not be 
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confused with the static displacement response (which is much larger in amplitude) due to the 

mean component. 

 

 

Fig. B.6. Verification of frequency domain analysis vis-à-vis time-domain analysis using experimental 

wind tunnel test data in the along-wind direction of the benchmark 74-storey structure in Fig.3.3 

(Ciampoli and Petrini 2012). 

 

 
Fig. B.7. Verification of frequency domain analysis vis-à-vis time-domain analysis using experimental 

wind tunnel test data in the crosswind direction of the benchmark 74-storey structure in Fig.3.3 

(Ciampoli and Petrini 2012). 
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