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Abstract

In risk analysis, sensitivity measures quantify the extent to which the probability distri-

bution of a model output is affected by changes (stresses) in individual random input factors.

For input factors that are statistically dependent, we argue that a stress on one input should

also precipitate stresses in other input factors. We introduce a novel sensitivity measure,

termed cascade sensitivity, defined as a derivative of a risk measure applied on the output,

in the direction of an input factor. The derivative is taken after suitably transforming the

random vector of inputs, thus explicitly capturing the direct impact of the stressed input

factor, as well as indirect effects via other inputs. Furthermore, alternative representations

of the cascade sensitivity measure are derived, allowing us to address practical issues, such

as incomplete specification of the model and high computational costs. The applicability of

the methodology is illustrated through the analysis of a commercially used insurance risk

model.
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Mario Wüthrich.
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1 Introduction

1.1 Overview and contribution

Sensitivity analysis is concerned with the attribution of the uncertainty of a model output to

the uncertainties of model inputs (Saltelli et al., 2008). Principal tools in sensitivity analysis

are sensitivity measures (also called ‘importance measures’), which assign to each input factor

a score, ranking inputs according to their ability to influence (a probabilistic summary of) the

output; see Borgonovo and Plischke (2016) for an extensive review. Variance-based sensitivity

measures, for example, distinguish input factors by their ability to affect the output’s variance

(Saltelli, 2002). In this paper, and as is typical in risk management applications, the output

distribution is summarized through a quantile-based measure of risk. Specifically, we consider

the class of distortion risk measures introduced by Wang (1996), which subsumes expected

utilities and the two most common risk measures in financial risk management, Value-at-Risk

(VaR) and Expected Shortfall (ES) (Belles-Sampera et al., 2014).

Sensitivity measures are often constructed via partial derivatives either of outputs with re-

spect to inputs (‘local’ sensitivity measures, see Borgonovo and Plischke (2016) and references

therein) or of the output risk measure in the direction of random inputs (Tsanakas and Mil-

lossovich, 2016; Antoniano-Villalobos et al., 2018). One drawback of such sensitivity measures

is that they do not fully account for interactions among or statistical dependence between input

factors. Extensions have so far focused on higher order derivatives (Mara and Tarantola, 2012;

Borgonovo and Plischke, 2016). However, the dependence structure between input factors might

substantially impact the sensitivities, as is illustrated in the following example.

Example 1 (Non-linear insurance portfolio). Consider an insurance company with losses from

three different lines of business, X1, X2 and X3, each of which is subject to the same multiplica-

tive factor X4 arising from, e.g., inflation. The insurance company holds a reinsurance contract

on the loss from the first two lines of business, L = X4(X1 + X2), with deductible d and limit

l. This means that the aggregate loss faced by the insurer is

Y = L−min{(L− d)+, l}+X3X4. (1)

In this simple model, which we will use as a running example throughout the paper, we view

(X1, X2, X3, X4) as the input factors and Y as the output. Assume that the input factors
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(X1, X2, X3, X4) are dependent through a Gaussian copula with correlation matrix R:

R =



1 0.3 0 0.8

0.3 1 0 0

0 0 1 0

0.8 0 0 1


.

Each element rij of R closely approximates the Spearman rank correlation CorrS(Xi, Xj) of the

respective pair of input factors. Note that the aggregate portfolio loss Y is symmetric in X1 and

X2 but the dependence structure is not; X1 has a high rank correlation to X4, CorrS(X1, X4) =

0.8, while CorrS(X2, X4) = 0. Measuring the sensitivity to X1 and X2 via a local method

involving ∂Y
∂X1

, ∂Y
∂X2

obviously fails to reflect the asymmetry in statistical dependence. More

generally, as is demonstrated in the later Example 4, such asymmetry is also not fully reflected by

global sensitivity measures based on partial derivatives, in the vein of Tsanakas and Millossovich

(2016).

Example 2 (London Insurance Market portfolio). Consider the situation of a model user or

reviewer, who has only partial access to the model specifications. It is typical in risk manage-

ment applications for models to be high dimensional, with calculation of the model’s output

distribution proceeding by Monte Carlo simulation (Arbenz et al., 2012; Choe et al., 2018; Risk

and Ludkovski, 2018). A model user will often be supplied with a set of simulated scenarios

from variables of interest (model inputs and outputs), without easy access to either (a) the

distributional assumptions of inputs (which may themselves be outputs from sub-models) or

(b) the model function mapping inputs to outputs (which may be highly non-linear and compu-

tationally expensive to evaluate). This situation is typical in the regulatory review of internal

models in insurance (Cadoni, 2014).

For illustration of those points, we consider a proprietary model of a London Insurance

Market portfolio, currently in use by a participant in that market. The model represents a

portfolio with 72 input factors; the output is the portfolio loss. We do not have access to the

marginal nor the joint distribution of the input vector; indeed, the input factors are themselves

outputs of different sub-models. We were supplied by the model owner with a Monte Carlo

sample of size M = 500, 000, consisting of simulated observations from the model’s inputs and

corresponding output. We have no access to the data generating mechanism, hence we cannot
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Figure 1: Expected value and ES0.9 risk measure of input risk factors in the London Market
portfolio.

re-simulate under different model assumptions.

In Figure 1 we summarize the empirical distributions of individual input risk factors, by

plotting the mean and the Expected Shortfall risk measure (at 90% level) of each. The question

we aim to answer is: with the given (lack of) information about the model, how can one assess

the impact of stresses in a particular risk factor, taking fully into account the dependence between

inputs? We return to this example in Section 5.

In this paper, we aim to address the issues raised by the preceding two examples. We

propose a novel sensitivity measure, termed cascade sensitivity, defined as the partial derivative

of a distortion risk measure applied to the output, in the direction of a stressed input factor. This

definition is closely related to the approaches of Hong (2009); Hong and Liu (2009); Tsanakas and

Millossovich (2016). However, in our case the derivative is taken after a suitable transformation

of the random vector of inputs, which enables cascade sensitivity measures to fully capture the

impact of dependence between input factors, including indirect effects, such as those discussed

in Example 1. Specifically, our cascade sensitivity framework is underpinned by a variation

of the inverse Rosenblatt transform (Rosenblatt, 1952), which permits a stress on one input

factor to propagate through the entire input vector, changing all its components according to
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the input vector’s dependence structure. Thus, a stress on an input impacts on the output risk

measure both directly and indirectly, via the generated cascade of stresses on other (dependent)

inputs. In particular, the cascade sensitivity of an input factor decomposes into components,

each reflecting the direct or indirect contribution of an input factor to the sensitivity of the

output.

A sensitivity measure that fully reflects the dependence of the random vector of inputs is

useful in applications where the dependence structure of the inputs is of particular interest,

as in risk management applications (Glasserman and Xu, 2014; Lam, 2017). Challenges to

practical application of sensitivity analysis methods include the incomplete specification of

(black-box) models, as well as high computational costs (Saltelli et al., 2008; Lam and Qian,

2018). We demonstrate how the decomposition of cascade sensitivities can be calculated using

only bivariate copula information. Furthermore, we extend our approach to situations where

input factors may live on different scales, an issue identified by Antoniano-Villalobos et al.

(2018). Finally, we provide representations of the cascade sensitivity which do not require the

gradient of the aggregation function and allow for a straightforward implementation on a single

Monte Carlo sample. In the case that input factors are independent, these representations

allow for an alternative evaluation of marginal sensitivities studied by Hong (2009), without

knowledge of the gradient of the model function. Hence, our proposed cascade sensitivity

framework is practically useful, as illustrated through an application to the commercially used

London Insurance Market portfolio model introduced above.

1.2 Relation to existing literature

Global sensitivity analysis, which assesses the importance of model inputs or parameters over

a space of randomly generated outcomes, is established as a prominent tool for risk analysis in

numerous fields. Recent examples include life cycle impact assessment (Cucurachi et al., 2016),

land subsidence modelling (Sundell et al., 2019), seismic risk assessment (Foulser-Piggott et al.,

2020), flood risk management (Oddo et al., 2020), and mortality modelling in insurance (Rabitti

and Borgonovo, 2020). The success of those methods has led to extensions (Xiao et al., 2018)

and higher-level conceptualisations of global sensitivity analysis methods (Borgonovo et al.,

2016); for a wide-ranging review see Borgonovo and Plischke (2016).

In this paper, we offer a methodological contribution to the broad field of global sensitivity

analysis. Specifically, we build on a strand of literature that is concerned with directional
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derivatives of expected utility (Antoniano-Villalobos et al., 2018) or risk measure (Hong, 2009;

Tsanakas and Millossovich, 2016) functionals. However, in this stream of literature, sensitivity

measures generally do not account explicitly for the impact of the dependence between input

factors. This matters, given that the impact of (stochastic) dependencies is a persistent topic

in risk modelling; see for example Mornet et al. (2015), Su et al. (2015), Wang et al. (2016),

and Werner et al. (2018). Hence, we are concerned with reflecting the impact of the dependence

between input factors in sensitivity metrics. For that purpose, we make use of the Rosenblatt

transform, which is well known in statistics (e.g. in probability forecasting (Dawid, 1984)),

but, to our knowledge, has not been utilised in the context of sensitivity analysis. Nonetheless,

there are some conceptual parallels of our work with Mara and Tarantola (2012), who consider

multivariate normal variables in a variance-based sensitivity framework, Mai et al. (2015), who

study model robustness via a transformation of the input vector, and Kraus and Czado (2017),

who carry out bank stress testing using graphical dependence models.

1.3 Structure of the paper

Section 2 introduces the necessary notation and discusses the choice of stresses on input factors.

In Section 3 the cascade sensitivity measure is defined. The impact of input vectors’ dependence

structure on sensitivity is illustrated through numerical examples, including an application to

factor prioritization, as well as a data-driven approach to model uncertainty. Section 4 is

devoted to the calculation of the cascade sensitivity and its decomposition, using a bivariate

copula approach. In Section 5, a detailed application of cascade sensitivity is presented, to

the commercially used London Insurance Market portfolio discussed in Example 2. Technical

assumptions are gathered in the Appendix A, proofs and further detailed analytical calculations

are provided in the electronic companion.

2 Models and stresses

2.1 Preliminaries

Throughout the paper we work with a probability space (Ω,A, P ) and a random vector X =

(X1, . . . , Xn) whose components, X1, . . . , Xn, represent input factors. The input factorsX1, . . . , Xn

are assumed to be in L1(Ω,A, P ). We denote by Fj the marginal distribution function of the in-

put Xj , j = 1, . . . , n, and by F the joint distribution function of X. It is assumed that the joint
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density f of X exists and we denote by fj the marginal density of input factor Xj , j = 1, . . . , n.

The vector of input factors, X, is mapped by an aggregation function, g : Rn → R, assumed

to be almost everywhere differentiable, to the (univariate) output Y = g(X). We write H,h

for the distribution function and the density of the output Y , respectively. Taken together, the

input factors X and the aggregation function g constitute our model.

The left inverse of the distribution of any random variable W ∼ FW is defined by F−1W (u) =

inf{x ∈ R | FW (x) ≥ u}, u ∈ (0, 1]. We use the notation UW for a standard uniform random

variable comonotonic to W , that is, W = F−1W (UW ) a.s. In the case when W has a continuous

distribution function, it holds that UW = FW (W ) a.s. Moreover, for an n-dimensional vectorW ,

we denote byW−j = (W1, . . . ,Wj−1,Wj+1, . . .Wn) its sub-vector deprived of the jth component.

The distribution of the output Y = g(X) ∼ H, representing a decision variable, is summa-

rized through a risk measure. Risk measures are tools in financial risk management to assess

different levels of risk severity (Artzner et al., 1999; Föllmer and Schied, 2011). Here we work

with the class of distortion risk measures (Wang, 1996; Acerbi and Tasche, 2002; Belles-Sampera

et al., 2014), which are defined through

ργ(Y ) =

∫ 1

0
H−1(u)γ(u)du = E

(
H−1(UY )γ(UY )

)
,

where γ : [0, 1]→ [0,∞) is a normalized weight function such that
∫ 1
0 γ(u)du = 1. We assume the

input factors X and the aggregation g to be such that the considered distortion risk measure

ρ(g(X)) is finite. The focus on distortion risk measures is not restrictive, as the proposed

framework is also applicable for utility-type performance measures, see the remark at the end of

Section 3.1. Examples of distortion risk measures include the two most widely used risk measures

in risk management applications, the VaR and ES. The VaR of the random variable Y at level

α ∈ (0, 1) is defined as the left α-quantile, VaRα(Y ) = H−1(α) or through the weight function

γ(u) = δα(u), for the Dirac measure δα. The ES, also called Conditional Value-at-Risk, at level

α ∈ [0, 1) arises from γ(u) = 1
1−α1{u>α}, thus has representation ESα(Y ) = 1

1−α
∫ 1
α H

−1(u)du.

Throughout this paper, the examples will be based on ES.

2.2 Stressing input factors

The objective of this paper lies in the study of the sensitivity of ργ(Y ) to stressing input

factor Xi, 1 ≤ i ≤ n. Specifically, the sensitivity measure introduced in this paper aims to
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capture how a stress on an input Xi propagates through both the vector of input factors X

and, subsequently, the aggregation function, thus impacting on the risk measure of the stressed

model output. In this section, we discuss the choice of stress on the input factor Xi. The

question on how precisely a stress propagates through the model is considered in Section 3.2.

For simplicity, we fix i ∈ {1, . . . , n} for the rest of the paper, such that sensitivity to the

same input is considered throughout. We call a stress on input factor Xi a family of random

variables Xi,ε(ω) = K(Xi(ω), ε), ε ≥ 0, ω ∈ Ω, for some mapping K(x, ε) that is differentiable

in ε in a neighbourhood of 0 for all x. Moreover, K satisfies K(x, 0) = x, for all x ∈ R. In

particular, for any stress Xi,ε, it holds that (X1, . . . , Xi,ε, . . . , Xn)|ε=0 = X a.s. We denote by

Fi,ε, ε ≥ 0, the distribution function of Xi,ε.

Here we discuss different options for constructing a stress on Xi. A first consideration is

that, while in this paper we aim to reflect the dependence structure of X in assessing the impact

of stresses on Xi, we do not stress the dependence structure itself. Thus, we require that the

copula of (X1, . . . , Xi,ε, . . . , Xn) is the same as that of X. This is achieved by choosing K(x, ε)

non-decreasing in x for all ε, which leads to Xi,ε being comonotonic to Xi.

Further considerations for specifying a stress follow from the intended use of the sensitivity

analysis. In this paper, we consider two applications, factor prioritization and model uncer-

tainty; we refer to Borgonovo and Plischke (2016); Saltelli et al. (2008) for a comprehensive

review on sensitivity analysis and its applications.

Factor prioritization. In a factor prioritization (Saltelli et al., 2008) setting, we aim to

rank input factors depending on their relative importance in the model. For this purpose we

limit ourselves to additive shocks on Xi of the form:

Xi,ε = Xi + εk(Xi),

for a non-decreasing function k : R → R. Thus, εk(Xi) specifies the additional risk exposure

to be propagated through the model – factors are prioritized, which, after stressing, produce

a higher impact on ργ(g(X)). An additive shock is consistent with the use of Gateaux (or

directional) derivatives in assessing the sensitivity of statistical functionals, see e.g. Kalkbrener

(2005) in the setting of capital allocation, Tsanakas and Millossovich (2016) in the field of risk

analysis, and Kromer et al. (2016) in the context of systemic risk measurement.

Beyond the monotonicity requirement, the function k needs to satisfy continuity conditions;
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specifically we require k to be Lipschitz continuous. Lipschitz continuity guarantees finiteness

and robustness of ργ(g(X)) (in the sense of Pesenti et al. (2016)), with respect to substituting

Xi,ε for Xi; see Appendix A.2 for a more detailed argument. Further, when comparing sen-

sitivities to input factors, the same type of stress should be applied to each input; thus, we

will generally restrict to k having Lipschitz constant 1. Examples of stresses that satisfy these

conditions are:

Xi,ε = Xi + ε(Xi −m),

Xi,ε = Xi + ε(Xi − t1)1{Xi≤t1} + ε(Xi − t2)1{Xi≥t2}.

In the first expression, m may be a measure of central tendency (e.g. mean) when one is

interested in stressing the volatility of Xi (Tsanakas and Millossovich, 2016) or may be set to

zero for a proportional stress. In the second, one only stresses the tails of Xi, consistently with

a risk management perspective that places importance on the potential of extreme outcomes.

Such distortions of tail quantiles are consistent with typical risk management considerations.

This is the perspective we take in Example 4, where a stress on the right tail is adopted, following

from the interpretation of Xi as an insurance loss. A proportional stress on (transformed) input

factors is proposed in Section 5, where we deal with the problem of designing comparable stresses

for input factors that may live on different scales.

Model uncertainty. A different situation emerges when there is uncertainty around the

distribution of the input factor Xi. Here Fi, the distribution of Xi, gives an estimated baseline

model, but with the understanding that an uncertainty set F of alternative technically plausible

distributions for Xi exists. In this context, sensitivity analysis is meant to detect the potential

impact of mis-specifying the distribution of Xi on the aggregate risk assessment ργ(g(X)). The

stress is then constructed by a perturbation of the distribution of Xi, arising from a mixture of

Fi with some distribution F̂i ∈ F , where the set F contains distributions with finite absolute

mean. The use of such perturbations is common in sensitivity analysis and in Bayesian and

robust statistics (Hampel et al., 2011; Glasserman, 1991), as well as in financial risk management

(Cont et al., 2010). Specifically, we propose the comonotonic perturbation:

Xi,ε = F−1i,ε (UXi), where

Fi,ε(x) = (1− ε)Fi(x) + εF̂i(x), F̂ ∈ F .
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We implement this approach to sensitivity analysis of model uncertainty in Example 5, where the

set F arises from a bootstrapping procedure, leading to a data-driven specification of stresses.

3 Sensitivity measures

3.1 Marginal sensitivity

To assess the sensitivity of the output Y to the input Xi, sensitivity measures are defined. The

approach we follow here is to take a directional derivative of the risk measure applied to the

output distribution, in the direction of a stress to input Xi.

Definition 3.1. For a stress Xi,ε and a distortion risk measure ργ , we define the marginal

sensitivity to input factor Xi by

Si(X, g, ργ) =
∂

∂ε
ργ
(
g(X1, . . . , Xi,ε, . . . , Xn)

)∣∣
ε=0

,

whenever the derivative exists.

The general form of the marginal sensitivity for distortion risk measures follows directly

from Hong and Liu (2009) and is stated in the next proposition for completeness. It consists of

an expectation involving the derivative of the stress, the partial derivative of the aggregation

function in the direction of the stressed input factor and a weighting according to the chosen

risk measure.

For the existence of the sensitivity measures considered in this paper, additional assumptions

are needed on the distribution of the model output, following a stress on Xi. These are detailed

in Assumption A.1 in the Appendix and can be summarized as follows: the derivative of the

stressed output’s distribution function and the derivative of its quantile function, with respect

to ε, are, respectively, continuous and bounded in ε. We refer to Hong (2009) for a detailed

discussion of those assumptions. In particular, the continuity of the stressed output is usually

satisfied when g is continuous and the model is rich enough such that some of the elements of

X are continuous.

Proposition 3.2. Given a stress Xi,ε and under Assumptions A.1 in the appendix, the marginal

sensitivity to input factor Xi is

Si(X, g, ργ) = E
( ∂
∂ε
Xi,ε

∣∣
ε=0

gi(X)γ(UY )
)
,
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where gi(x) = ∂
∂xi
g(x) denotes the partial derivative of the aggregation function in the ith

component and ∂
∂εXi,ε(ω) = ∂

∂εK(Xi(ω), ε), for almost all ω ∈ Ω.

Remark. Definition 3.1 also includes sensitivity of expected utilities, considered in Cao and

Wan (2017); Antoniano-Villalobos et al. (2018). Note that, for the trivial weight function γ ≡ 1,

the distortion risk measure reduces to the expectation, ρ1(·) ≡ E(·). Thus, for a utility function

u : R→ R, we can write

E(u(g(X)) = ρ1
(
(u ◦ g)(X)

)
,

implying that expected utilities are a special case of our framework, with aggregation function

u ◦ g : Rn → R and an expectation risk measure.

3.2 Inverse Rosenblatt transforms

The marginal sensitivity of Definition 3.1 does not fully account for interactions among or

dependence between input factors, since, by its definition, when stressing one input factor, all

other marginal input distributions remain unaltered; see also the discussion in Borgonovo and

Plischke (2016). Note that the representation of the marginal sensitivity in Proposition 3.2

incorporates the derivative of the aggregation function solely in the direction of the stressed

input factor.

In order to address the indirect effects induced by the dependence between the input factors,

we utilize a representation of random vectors, termed inverse Rosenblatt transform1 (Rosenblatt,

1952; Rüschendorf and de Valk, 1993).

Definition 3.3. An inverse Rosenblatt transform of an n-dimensional random vector X, start-

ing at Xi, is given by a differentiable function ψ = (ψ(1), . . . , ψ(n))> : Rn → Rn and a (n − 1)-

dimensional random vector V = (V1, . . . , Vn−1), consisting of independent standard uniform

variables, independent of Xi, such that

X = ψ(Xi,V ) =
(
ψ(1)(Xi,V ), . . . , ψ(n)(Xi,V )

)
a.s. (2)

The set of inverse Rosenblatt transforms ofX, starting at Xi, is denoted byRi = {(ψ,V ) |X =

ψ(Xi,V )}.
1We call representation (2) the inverse Rosenblatt transform since, to be precise, the Rosenblatt transform is

the transformation from a random vector to a vector consisting of uniform random variables.
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It can be shown that for ψ(j), 1 ≤ j ≤ n, to exist and be differentiable in the first component,

it is sufficient that the joint density f is almost everywhere differentiable.

An inverse Rosenblatt transform can be explicitly constructed via the following process

(Rüschendorf and de Valk, 1993; Rubinstein and Melamed, 1998). For r = 1, . . . , n and J ⊆

{1, . . . , n}\{r}, denote by Fr|J(· | xj , j ∈ J) the conditional distribution function of Xr given

Xj = xj , j ∈ J . Then, it holds a.s. that

X1 = F−11|i (V1 |Xi) = ψ(1)(Xi,V ),

X2 = F−12|i,1(V2 |Xi, X1) = ψ(2)(Xi,V ),

X3 = F−13|i,1,2(V3 |Xi, X1, X2) = ψ(3)(Xi,V ),

...

Xi = ψ(i)(Xi,V ),

...

Xn = F−1n|1,...,n−1(Vn−1 |X1, . . . , Xn−1) = ψ(n)(Xi,V ),

where ψ(i) is the identity function in the first argument. Note that in the above construction,

each random variable Xj depends on Xi both directly and indirectly through X1, . . . , Xj−1.

Deploying an inverse Rosenblatt transform of the vector X = ψ(Xi,V ), (ψ,V ) ∈ Ri, we

can stress X through Xi,ε

Xi,ε = ψ(Xi,ε,V ) =
(
ψ(1)(X1,ε,V ), . . . , ψ(n)(X1,ε,V )

)
. (3)

Observe that the stress Xi,ε is carried through the entire input vector, changing all factors

according to their dependence on Xi,ε, resulting in a cascading effect.

Example 3 (Inverse Rosenblatt transform for a Gaussian copula). Let X have a Gaussian

copula with correlation matrix R, continuous marginals Fj , j = 1, . . . , n, and assume for sim-

plicity, in this example, that i = 1. For a vector of independent standard uniforms V =

(V1, . . . , Vn−1) independent of X1, define the standard normal variables Z1 = Φ−1
(
F1(X1)

)
and

Tj = Φ−1(Vj), j = 1, . . . , n − 1, where Φ denotes the standard normal distribution function.

Then, an inverse Rosenblatt transform starting from X1, (ψ,V ) ∈ R1, is derived by setting

ψ(1)(X1,V ) = X1

12



ψ(2)(X1,V ) = F−12

(
Φ (d21Z1 + d22T1)

)
...

ψ(n)(X1,V ) = F−1n

(
Φ (dn1Z1 + dn2T1 + · · ·+ dnnTn−1)

)
,

whereD = (djr)1≤j,r≤n is the lower triangular matrix resulting from the Cholesky decomposition

of R. Following this representation, one can stress X1 through substitution by X1,ε, which

implies replacing Z1 by Z1,ε = Φ−1
(
F1(X1,ε)

)
, in the right hand-side of the above equations.

It is then apparent how the stress on X1 also produces a stress on Xj , j = 2, . . . , n (provided

dj1 6= 0).

3.3 Cascade sensitivity

The inverse Rosenblatt transform, by propagating stresses on one input factor across the vector

of inputs, allows us to construct a sensitivity measure that fully reflects both the direct and the

indirect impacts on the output.

Definition 3.4. For a stress Xi,ε, (ψ,V ) ∈ Ri and a distortion risk measure ργ , we define the

cascade sensitivity to input factor Xi by

Ci(X, g, ργ) =
∂

∂ε
ργ
(
g
(
ψ(Xi,ε,V )

))∣∣
ε=0

,

whenever the derivative exists.

Hence, the cascade sensitivity framework directly extends approaches to sensitivity analysis

that are based on partial derivatives in the direction of input factors. In particular, the cascade

and the marginal sensitivities differ in the way a stress on an input propagates through the

model. Though the current paper is focused on distortion risk measures (and expected utilities),

the use of the inverse Rosenblatt transform for sensitivity analysis is a tool that could also be

used in other (e.g. variance-based) sensitivity analysis approaches (Mara and Tarantola, 2012).

The cascade sensitivity to an input factor can be decomposed into the marginal sensitivity

and additional components, each reflecting statistical, as well as functional, dependence between

inputs.

Proposition 3.5. Given a stress Xi,ε, (ψ,V ) ∈ Ri, and under Assumptions A.1 in the ap-
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pendix, the cascade sensitivity to input factor Xi is given by

Ci(X, g, ργ) =
n∑
j=1

Ci,j , (4)

where

Ci,j = E
( ∂
∂ε
Xi,ε

∣∣∣
ε=0

gj(X)ψ
(j)
1 (Xi,V )γ(UY )

)
(5)

and ψ
(j)
1 (x,v) = ∂

∂xψ
(j)(x,v).

The set of inverse Rosenblatt transforms of a random vector, Ri, is generally not a singleton,

implying that the inverse Rosenblatt transform is not unique. For instance, in the last example,

a different transform would be obtained for some permutation of (X2, . . . , Xn). However, as the

next result shows, the cascade sensitivity does not depend on the particular choice of inverse

Rosenblatt transform.

Proposition 3.6. For a stress Xi,ε, if the cascade sensitivity exists for one (ψ,V ) ∈ Ri,

then it exists and admits the same value for all other transforms (φ,U) ∈ Ri. Moreover, each

sensitivity Ci,j in (5) has the same value regardless of the choice of inverse Rosenblatt transform.

The decomposition of the cascade sensitivity Ci in Proposition 3.5 allows to quantify the

contribution of each input factors’ indirect effects, stemming from the dependence with the one

being stressed, to Ci. Specifically, Ci,j is the indirect contribution of input Xj to the sensitivity

Ci, when stressing input factor Xi. Moreover, note that Ci,i = Si is the marginal sensitivity;

hence Ci−Ci,i is the component of the cascade sensitivity which is solely due to the dependence

structure between input factors. The components Ci,1, . . . , Ci,n, contributing to the cascade

sensitivities Ci, i = 1, . . . , n, can be visualized in Table 1. Each row shows a cascade sensitivity

decomposed into its n-summands, Ci =
∑n

j=1Ci,j , i = 1, . . . , n. The diagonal contains the

marginal sensitivities, while off-diagonal elements Ci,j reflect the indirect contribution of Xj to

the cascade sensitivity of Xi.

Table 1: Illustration of cascade and marginal sensitivities in Proposition 3.5.

X1 X2 . . . Xn

C1 S1 C1,2 . . . C1,n
C2 C2,1 S2 . . . C2,n
...

...
...

. . .
...

Cn Cn,1 Cn,2 . . . Sn
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Proposition 3.5 shows that the cascade sensitivity decomposes into the marginal sensitivity

and components reflecting the dependence between the input factors. Thus, a natural question

arises as to whether, in general, positive (negative) dependence among inputs results into a larger

(smaller) cascade sensitivity compared to its marginal counterpart. We provide two results in

this direction in Proposition A.3 in Appendix A.3. First, for independent input factors the

cascade sensitivity reduces to the marginal sensitivity, irrespective of the aggregation function

or the choice of distortion risk measure. Second, the cascade sensitivity dominates the marginal

sensitivity, given positive dependence of the input vector, a non-decreasing aggregation function

and e.g. an additive stress.

The following two examples illustrate the ideas discussed above.

Example 4 (Non-linear insurance portfolio continued). We calculate the cascade sensitivity for

the insurance portfolio example introduced in Section 1. The marginal distributions of input

factors are summarized in Table 2 and we set the deductible d = 380 and the limit l = 30.

Calculations are based on a simulated Monte Carlo sample of size M = 100, 000.

Table 2: Distributional assumptions of input factors of the non-linear insurance portfolio ex-
ample.

Input Distribution Mean Std

X1 Log-Normal
(
4.98, 0.232

)
150 35.0

X2 Log-Normal
(
4.98, 0.232

)
150 35.0

X3 Gamma (100, 1) 100 10.0
X4 Log-Normal

(
−0.005, 0.12

)
1 0.1

We consider an additive tail shock to the first two lines of business defined by Xi,ε = Xi +

ε(Xi − ti)1{Xi>ti}, i = 1, 2, where ti = F−1i (0.9) is the 90% quantile of either. Table 3 reports

the cascade sensitivities to inputs X1 and X2 for the risk measure ES0.9. By construction, inputs

X1 and X2 represent directly comparable variables and are stressed in exactly the same fashion,

allowing for a direct comparison of C1 and C2. In Section 5, we discuss how to consistently stress

input factors for models whose input factors may live on different scales.

In the current example, the terms Ci,j , reflecting the indirect effects of the dependence

between the input factors, are proportional to their Spearman rank correlation with the stressed

input factor, see also Proposition 4.1, case 1. Note that CorrS(X2, X3) = CorrS(X2, X4) = 0,

hence C2,3 = C2,4 = 0, and thus C2 = C2,1 + S2 only accounts for the positive dependence

between X1 and X2. This is in contrast to C1, where C1,4, the indirect impact of X4, constitutes
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Figure 2: Sensitivities for the ES0.9. Left: (Ci−Si)/Ci, for i = 1 (triangles) and i = 2 (crosses),
against different levels of tail-stresses α, with ti = F−1i (α). Right: (C1 − C2)/C2 (blue) and
(S1 − S2)/S2 (red) against different levels of tail-stresses α.

a substantial 38% = 19.43
51.15 of the cascade sensitivity to X1.

Table 3: The cascade sensitivities to inputs X1, X2 (along with standard errors) for ES0.9 and
their decomposition into the direct effect of the stressed input (Ci,i = Si) and the indirect effects
of the other input factors (Ci,j).

Ci,1 Ci,2 Ci,3 Ci,4

C1 = 51.15 (0.009) 26.02 (0.005) 5.70 (0.001) 0 19.43 (0.003)
C2 = 13.96 (0.004) 2.86 (0.001) 11.10 (0.003) 0 0

Figure 2 (left) displays the quantities (Ci − Si)/Ci, i = 1, 2, reflecting the impact of the

dependence on the cascade sensitivity of X1 and X2 for different levels of tail stress α using the

risk measure ES0.9. It is seen that, consistently with Table 3, a substantial 50% of the cascade

sensitivity to input factor X1 stems from the dependence. The right-hand plot in Figure 2

shows the percentage increase of the sensitivity measures of X1, compared to X2. The plot

indicates that input factor X1 is more important both in the marginal and cascade sensitivity

for all levels of tail-stresses, with the difference between X1 and X2 becoming more pronounced

for high α (i.e. at the extreme right tail).

To further illustrate the effects of the dependence structure of the input vector on cascade

sensitivities, we report the marginal and cascade sensitivities for ES0.9, with CorrS(X1, X4) =

0.0, . . . , 0.8 in Table 4. Table 4 also states the percentage of the cascade sensitivity that stems

solely from the effects of the dependence between inputs,
Cj−Sj
Cj , j = 1, 2. As seen in Table

4, both the marginal and the cascade sensitivity to X1 increase with CorrS(X1, X4), with C1

impacted more heavily. The marginal and cascade sensitivities to input X2 are practically

constant, implying that indirect effects of the dependence between X1 and X4 have a very

minor impact on C2, which is in contrast to the cascade sensitivity to input X1, which increases
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by 232% = (51.15− 15.41)/15.41.

Table 4: Marginal and cascade sensitivity for the ES0.9 with CorrS(X1, X4) = 0.0, . . . , 0.8.

CorrS(X1, X4) C1 S1 C1−S1
C1 C2 S2 C2−S2

C2

0.0 15.41 12.50 19% 15.41 12.50 19%
0.2 22.15 15.60 30% 14.95 12.06 19%
0.4 30.28 18.89 38% 14.58 11.70 20%
0.6 39.92 22.37 44% 14.24 11.37 20%
0.8 51.15 26.02 49% 13.96 11.10 20%

Example 5 (Non-linear insurance portfolio continued (model uncertainty)). Here, we demon-

strate how cascade sensitivities based on perturbations can be used to generate a data-driven

measure of model uncertainty. We consider the same insurance portfolio model as in the last

example, but now assuming that the parameters of the Log-Normal distributions of X1 and

X2 are not known, but estimated from datasets of sizes M1 and M2 respectively, denoted by

xi = (xi1, . . . , xiMi), i = 1, 2. Our strategy is to generate model uncertainty sets for each of the

two input factors by bootstrapping from the given datasets and re-fitting Log-Normal distri-

bution parameters. Then, cascade sensitivities of input factors are calculated for perturbations

with respect to every distribution in the respective uncertainty set.

Specifically, for each input Xi, i = 1, 2, we proceed as follows:

1. Estimate the parameter vector from the dataset xi by its MLE, θ̂i = (µ̂(xi), σ̂(xi)) and

denote by Fi(·|θ̂i) the estimated distribution. Then, simulate 105 Monte Carlo samples of

(X, Y = g(X)) using those estimated distributions.

2. Sample with replacement 1000 sets of Mi observations from xi, and denote the resulting

vectors of bootstrapped observations by x
(j)
i =

(
x
(j)
i1 , . . . , x

(j)
iMi

)
, j = 1, . . . , 1000. For

each bootstrapped sample, estimate the parameters θ̂
(j)
i =

(
µ̂(x

(j)
i ), σ̂(x

(j)
i )
)
. Denote by

Fi(·|θ̂(j)i ) the estimated distributions, using the bootstrapped parameters.

3. Evaluate the cascade sensitivities Ci(X, g,ES0.9) for each bootstrap sample, using the

105 Monte Carlo samples of step 1, with respect to perturbations X
(j)
i,ε = F

−1,(j)
i,ε (UXi),

where F
(j)
i,ε (·) = (1− ε)Fi(·|θ̂i) + εFi(·|θ̂(j)i ), j = 1, . . . , 1000. Denote the resulting cascade

sensitivities for bootstrap sample j by C(j)i .

For the datasets x1,x2 we consider three scenarios: (a) M1 = M2 = 200; (b) M1 =

100, M2 = 1000; (c) M1 = 1000, M2 = 100. In each scenario, the datasets x1,x2 are syntheti-
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cally generated from a Log-Normal(µ = 4.98, σ2 = 0.232) distribution, to maintain consistency

with the previous example. The results are summarised in Table 5. For each scenario (a), (b)

and (c), we report maxj C(j)i , the resulting maximum of the cascade sensitivities over all boot-

strap iterations (i.e. over the space of alternative models in the uncertainty set). Furthermore,

we report the average of each C(j)i over the its largest 5%, 10% and 50% (i.e. 50, 100, 500)

outcomes.

Table 5: The cascade sensitivities to inputs X1, X2 for ES0.9, with respect to perturbations in
the bootstrapped uncertainty set.

M1 = 200, M2 = 200 M1 = 100, M2 = 1000 M1 = 1000, M2 = 100

X1 X2 X1 X2 X1 X2

Mean of 50% highest 10.37 4.13 15.67 1.68 3.96 4.25
Mean of 10% highest 27.12 8.77 38.54 3.57 8.78 10.88
Mean of 5% highest 33.65 10.25 46.20 4.15 10.50 13.26
Maximum 49.56 16.31 89.90 6.23 17.63 22.64

In scenario (a) M1 = M2 = 200, both X1 and X2 are subject to the same level of model

uncertainty. The larger values of the cascade sensitivities for X1 are due to the asymmetric

dependence structure, consistently with Table 3. This phenomenon is exacerbated in the case

M1 = 100, M2 = 1000, where X1 is subject to larger model uncertainty than X2, given the

smaller dataset from which its parameters are estimated. Finally, when M1 = 1000, M2 = 100

the effect is reversed, with the cascade sensitivity of X2 dominating that of X1. Thus, the high

model uncertainty that X2 is exposed to in this scenario more than compensates for the impact

of the dependence structure.

4 Evaluation of the cascade sensitivity

4.1 Direct evaluation of cascade sensitivity measures

Evaluating directly Ci and Ci,j , as in Proposition 3.5, requires knowledge (or estimation) of

the gradient of g and the functions ψ(j), j = 1, . . . , n, stemming from the inverse Rosenblatt

transform. The gradient of g may be readily available, as is often assumed in the sensitivity

analysis literature (e.g. Antoniano-Villalobos et al., 2018) or can be estimated using methods

such as local regression (e.g. Tsanakas and Millossovich, 2016) and Gaussian process emulation

(e.g. Bastos and O’Hagan, 2009; Risk and Ludkovski, 2018).

The function ψ requires the knowledge (or estimation) of the copula of X. If a parametric
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form for the copula is given, the inverse Rosenblatt transform can often be obtained. Here,

we present formulas for the cascade sensitivity, in the special cases of the popular Gaussian

copula and t copula dependence models; these arise respectively by transforming the marginal

distributions of a multivariate normal or multivariate t distribution (e.g. McNeil et al., 2015,

Ch. 7). Inverse Rosenblatt transforms for the Archimedean and the elliptical copula families

(Cambou et al., 2017, Sec. 3) are implemented in the R package copula (Hofert et al., 2017), and

for the canonical and D-vine copulas (Aas et al., 2009) in the R package VineCopula (Nagler

et al., 2019; Schepsmeier, 2015).

Proposition 4.1. Denote by Φ, φ, the distribution and density of a standard normal variable,

and by tν , sν the distribution and density of a t-distributed random variable with ν degrees of

freedom.

1. Let (Xi, Xj) have a Gaussian copula with correlation parameter rij and define Zi =

Φ−1(UXi), Zj = Φ−1(UXj ). Then, Ci,j becomes

Ci,j = rijE

[
∂Xi,ε

∂ε

∣∣∣∣
ε=0

gj(X)
fi(Xi)φ(Zj)

fj(Xj)φ(Zi)
γ(UY )

]
.

2. Let (Xi, Xj) have a t copula with correlation parameter rij and ν degrees of freedom and

define Zi = t−1ν (UXi), Zj = t−1ν (UXj ). Then, Ci,j becomes

Ci,j = E

[
∂Xi,ε

∂ε

∣∣∣∣
ε=0

gj(X)

(
rij +

ZiZj − rijZ2
i

ν + Z2
i

)
fi(Xi)sν(Zj)

fj(Xj)sν(Zi)
γ(UY )

]
.

It is seen that in the case of the Gaussian copula, Ci,j is directly proportional to rij . However,

for t copulas the dependence effects are more complex, reflecting the tail dependence of the t

copula model. We illustrate the calculation of Ci,j using the t copula in Section 5.

Remark. Note that the expressions for Ci,j in Proposition 4.1 require explicit knowledge of

only the bivariate copula of (Xi, Xj), rather than the entire copula of X. This is true also

beyond the Gaussian and t models, as seen in the first few lines of the proof of Proposition 4.1.

4.2 Alternative representation of cascade sensitivity measures

In the case when only the aggregate cascade sensitivity is of interest and the additional insight

of the decomposition Ci =
∑n

j=1 Ci,j is not sought, an alternative representation of Ci may be
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used, which does not require explicit knowledge of (the gradient of) g and can be implemented

efficiently on a single set of Monte Carlo samples. This representation of the cascade sensitivity

is valid for both additive shocks (factor prioritisation setting) and perturbations (model uncer-

tainty setting) discussed in Section 2.2 and implemented in Examples 4 and 5, respectively. In

the former case, additional assumptions on the shock apply, in practice restricting the choice of

shocks to tail stresses that are variations of

Xi,ε = Xi + ε(Xi − t1)1{Xi≤t1} + ε(Xi − t2)1{Xi≥t2}

for t1 ≤ t2 ∈ R suitably chosen such that fi(·) is non-decreasing on (−∞, t1] and non-increasing

on [t2,∞).

Proposition 4.2. Let Assumptions A.1 in the appendix be satisfied, (ψ,V ) ∈ Ri and a stress

defined as either of the two cases:

1. An additive shock Xi,ε = Xi + εk(Xi), for a non-decreasing Lipschitz continuous function

k : R → R with Lipschitz constant L, that satisfies k(x) ≤ 0 on the set where fi(x) is

non-decreasing and k(x) ≥ 0 on the set where fi(x) is non-increasing. Further define the

distribution function F̂i(x) = Fi(x)− k(x)
L fi(x), x ∈ R.

2. A perturbation Xi,ε = F−1i,ε (UXi), where Fi,ε = (1−ε)Fi+εF̂i, for a continuous distribution

function F̂i ∈ F , and set L = 1.

Then, the cascade sensitivity to input factor Xi has representations

Ci(X, g, ργ) = L · E
[Fi(Xi)− F̂i(Xi)

fi(Xi)
(g ◦ψ)1(Xi,V )γ(UY )

]
= L · E

[H(Y )− Ĥ(Y )

h(Y )
γ(H(Y ))

]
, (6)

where Ĥ denotes the distribution function of Ŷ = g(ψ(X̂i,V )), with X̂i = F̂−1i (UXi).

While in equation (6) the expectation is evaluated only over Y , the calculation depends

on the inverse Rosenblatt transform through the presence of ψ in Ŷ and, thereby, in Ĥ. We

provide representation (6) of the cascade sensitivity for the two most common distortion risk

measures used in practice, VaR and ES.
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Corollary 4.3. Let Assumptions of Proposition 4.2 be fulfilled and, for simplicity, set L = 1.

Then, the cascade sensitivities for the VaR and ES risk measures are

Ci(X, g,VaRα) =
α− Ĥ(H−1(α))

h(H−1(α))
,

Ci(X, g,ESα) =
1

1− α

[
E
((
Ŷ −H−1(α)

)
+

)
− E

((
Y −H−1(α)

)
+

)]
.

In representation (6) of the cascade sensitivity, the requirement for knowledge of the gradient

of the aggregation function has been replaced with the need to evaluate Ĥ, arising as a distorted

distribution of the output, after substituting input Xi with X̂i = F̂−1i (UXi). This can in itself

be seen as a different kind of sensitivity test, in particular if F̂i is more dispersed than Fi. For

example, the formula for the sensitivity of ES in Corollary 4.3 involves the difference between

two expectations over the right tail of the output, measuring the impact on the output of

substituting Xi with its distorted version X̂i. In the case of additive shocks, Xi,ε = Xi+εk(Xi),

the cascade sensitivity corresponds to comparing the output Y with the distorted output Ŷ =

g
(
ψ(F̂−1i (UXi),V )

)
, where F̂i(x) = Fi(x) − k(x)

L fi(x), x ∈ R. Hence, a stochastic comparison

of Fi and F̂i might be of interest; indeed we show in Proposition A.4 in Appendix A.3, that the

distribution F̂i dominates Fi in increasing convex order.

If evaluation of the aggregation function g is computationally expensive, direct calculation

of Ci via (6) can still be problematic. For example, in a Monte Carlo simulation setting with

sample size M , the calculation of the cascade sensitivity to one input factor requires an inverse

Rosenblatt transform and M evaluations of Ŷ = g
(
ψ(X̂i,V )

)
. However, given the independence

of Xi and V , the distribution function of Ŷ can be written as

Ĥ(y) = E
(
1{Y≤y}

f̂i(Xi)

fi(Xi)

)
, y ∈ R.

Hence Ĥ can be computed on the same Monte Carlo sample without the need to explicitly

calculate an inverse Rosenblatt transform. The ratio f̂i(Xi)
fi(Xi)

can here be viewed as importance

weights. Note that, in this context, importance sampling is not used as a variance reduction

technique but as a way of re-weighting scenarios to reflect the cascading effect.

We illustrate this procedure for ES and a stress as in Proposition 4.2 (with L = 1):

1. Sample M multivariate scenarios x(1) =
(
x
(1)
1 , . . . , x

(1)
n

)
, . . . ,x(M) =

(
x
(M)
1 , . . . , x

(M)
n

)
from input vector X and calculate the corresponding realisations of the output y(1) =
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g
(
x(1)

)
, . . . , y(M) = g

(
x(M)

)
.

2. Denote by vα an estimate of H−1(α), and estimate the cascade sensitivity for ES by

Cempi (ESα) =
1

M(1− α)

M∑
k=1

(
f̂i(x

(k)
i )

fi(x
(k)
i )
− 1

)(
y(k) − vα

)
+
.

Estimators of the cascade sensitivity for a distortion risk measure different from ES can be

obtained by utilizing its weight function γ and Proposition 4.2.

Remark. From Proposition A.3 it follows that, if Xi is independent ofX−i, then Ci(X, g, ργ) =

Si(X, g, ργ). Hence the methods developed in this section allow, in the case of independence, for

an alternative evaluation of marginal sensitivities of the type studied by Hong (2009), without

knowledge of the gradient of the function g. Specifically, in the case that Xi is independent of

X−i, we have that ψ(X̂i,V ) = (X1, . . . , X̂i, . . . , Xn), such that Ŷ = g
(
ψ(X̂i,V )

)
is the output

after substituting X̂i for Xi in g(X). In that sense, the requirement for estimation of the

gradient is replaced by the need to re-evaluate the model under a change of only the marginal

distribution for Xi.

5 Application to a London Market portfolio

5.1 Aim of the case study

In this Section, we calculate cascade sensitivities for the London Insurance Market portfolio

introduced in Section 1. Through this application, we aim to discuss sensitivity analysis in two

related but distinct scenarios:

(a) The model has a large number of input factors, on potentially different scales. A possible

criticism of any sensitivity measure defined via partial derivatives is that, for input factors

on different scales, it is difficult to draw conclusions regarding their relative importance;

in particular, such sensitivity measures are generally not invariant under monotone trans-

formations of input factors (Antoniano-Villalobos et al., 2018). Hence, the consistency of

stresses applied to different inputs is a point of interest.

(b) The model is a black box, that is, the model specification (joint distribution of input

factors and aggregation function) is not available in full to an analyst, who is typically
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only presented with a table of simulated scenarios from input factors and corresponding

outputs.

To address scenario (a) above, we propose applying a monotone transform to all input

factors, such that the transformed vector of inputs has identical marginal distributions. We

then proceed by stressing these transformed risk factors, in a consistent way. This can be seen

as an adaptation of the cascade sensitivity measure, making it invariant to monotone transforms

of the input factor being stressed. Regarding scenario (b), for a black box model, the cascade

sensitivity Ci can be calculated without having access to the explicit form of g, as argued in

Section 4.2. If in addition the form of g is known (or estimated), the decomposition of the

cascade sensitivities Ci,j can be calculated following Section 4.1, subject to estimation of the

joint distribution of (Xi, Xj) – a path we follow in the sequel.

5.2 Model features

The model we work with represents a London Insurance Market portfolio with 72 input factors.

We do not have access to the marginal nor the joint distribution of the input vector in explicit

form (the elements of X are themselves outputs of different sub-models). We work with a

Monte Carlo sample of size M = 500, 000, provided by the model owner, consisting of simulated

observations from the input vector X and its corresponding output Y . In addition, we are given

that the form of the aggregation function g is linear:

g(X) =

72∑
j=1

wjXj , for some w1, . . . , w72 > 0.

An analysis of the simulated data shows that all input factors Xi are non-negative and right-

skewed. As we do not have an explicit form of fi, the density of each Xi is estimated using local

linear likelihood methods, with the locfit package in R, see Loader (2006) and Loader (2013).

We show densities of the first four input factors in Figure 3 (left), with the vertical axis on the

log-scale, illustrating the variation in tail behaviour.

Furthermore, the input factors are positively correlated, with an average Kendall’s τ of 0.32.

A scatter plot of UX2 against UX1 is shown in Figure 3 (right). The dependence pattern (also

observed between other pairs) matches that of a t copula (e.g. McNeil et al., 2015). We estimate

the copula of X as a multivariate t copula, using the R package copula (Hofert et al., 2017).

In particular, the estimated degrees of freedom are ν = 3.97, providing evidence of substantial
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tail dependence.

Figure 3: Left: estimated densities of input factors X1, . . . , X4. Right: scatter plot of UX2

against UX1 .

5.3 Calculation of Ci

To find a consistent way of stressing different input factors, we (monotonically) transform each

Xi, i = 1, . . . , 72, to the same marginal distribution. In this example, we define

Zi = t−1ν (Fi(Xi)), i = 1, . . . , 72, (7)

where tν is the Student t distribution function with ν degrees of freedom, such that Zi ∼ tν

is comonotonic to Xi. Representation (7) allows to define a stress on the input Xi indirectly

through distorting the corresponding variable Zi. Thus, applying the same stress Zi,ε to all

tν-distributed variables Zi, results in a consistent and comparable stress for all input factors.

Here, we let Zi,ε = Zi(1 + ε), which can be interpreted as a direct stress on the volatility of Zi.

This choice of stress yields:

Xi,ε = F−1i (tν(Zi(1 + ε))).

The motivation for using the t distribution in conjunction with a proportional stress is

fourfold: (a) as a location-scale family, proportional stresses indicate themselves as natural

stresses on volatility; (b) the stressed variables Zi,ε have support within that of Zi
2, allowing

2In (7), one can choose other transformations Wi = F−1
Wi

(Fi(Xi)). But care should be taken then that each
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evaluation of tν(Zi(1+ε)); (c) the heavy tails of the t distribution ensure that extremal behaviour

will be reflected; (d) for consistency with multivariate t copula used.

We evaluate the cascade sensitivity with respect to ES at level α = 90%. Note that the

choice of stress and marginals for Zi means that the assumptions of Proposition 4.2 are satisfied.

Thus, following Section 4.2, we evaluate

Ci(X, g,ESα) =
1

1− α
E

[(
Y −H−1(α)

)
+

(
−Zi

s′ν(Zi)

sν(Zi)
− 1

)]
. (8)

The Monte Carlo estimation of the cascade sensitivity via (8) makes no use of the given form

of g, hence is applicable to black box models, and thus addresses scenario (b).

In Figure 4 the importance ranking of all 72 risk factors is displayed, according to the cascade

sensitivity measure, along with 90% confidence intervals representing sampling error, calculated

from a bootstrap sample of size 500. While all input factors display substantial sensitivity (none

is close to zero), the ranking is apparent. Specifically, it is clear that the portfolio loss Y is

significantly more sensitive to input factors 42 and 27, compared to other factors.

Figure 4: Importance ranking of cascade sensitivities of all 72 risk factors, with respect to a
proportional stress on the t-transformed input factors. The red lines represent 90% confidence
intervals.

stressed variable Wi,ε has support contained within that of Wi, to enable evaluation of FWi(Wi,ε).
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5.4 Calculation of Ci,j

Here we calculate the sensitivities Ci,j , representing the contribution of the jth input factor to

the cascade sensitivity of the ith input factor. The derivative of the stress applied on Xi is

∂Xi,ε

∂ε

∣∣∣∣
ε=0

=
∂

∂ε
F−1i (tν(Zi(1 + ε)))

∣∣∣∣
ε=0

=
sν(Zi)Zi
fi(Xi)

.

Given the assumption of a bivariate t copula between (Xi, Xj) and the linearity of g, we obtain,

using Proposition 4.1, case 2:

Ci,j =
1

1− α
wjE

[
Zi

(
rij +

ZiZj − rijZ2
i

ν + Z2
i

)
sν(Zj)

fj(Xj)
1{Y >H−1(α)}

]
.

The calculated values of Ci,j are represented in the heatmap of Figure 5. The ith row displays

the decomposition of Ci, while the jth column indicates the contributions of the jth input factor

to the cascade sensitivities of other factors. Marginal sensitivities are contained along the

diagonal, which can be seen to be larger than the corresponding indirect effects Ci,j , i 6= j, in

the same row and column.

The vertical stripes indicate that some input factors (namely X42, X43, X55, X68) are making

consistently high contributions to the cascade sensitivities of other risk factors. Comparing to

Figure 4, we see that, while input factor X42 also has a very high cascade sensitivity, this is

not the case for, say, X55. This observation illustrates the additional information conveyed by

the decomposition Ci =
∑n

j=1 Ci,j . In particular, as seen from (5), Ci,j depends on the partial

derivative of g in the direction of Xj (which in this example is constant and equal to the weight

wj). Thus the columns capture the local effects on g of individual variables, while the row sums

(cascade sensitivities Ci) emphasize the impact of dependence.

6 Conclusion

We introduce a novel sensitivity measure, termed cascade sensitivity, which is defined as a

directional derivative of a risk measure applied to the model output, in the direction of a stressed

input factor. The derivative is taken after a suitable (inverse Rosenblatt) transformation, which

results in capturing, not only the direct impact of the stressed input factor on the output, but

also the indirect effects arising via dependence with other input factors. Through examples,

we illustrate that the dependence between input factors may substantially contribute to the
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Figure 5: Heatmap of the decomposition of the cascade sensitivities Ci,j , i, j = 1, . . . , n. Rows
correspond to input factors that are stressed, while columns correspond to the (indirect) con-
tributions of other inputs factors.

cascade sensitivity of a particular input.

We show that the cascade sensitivity decomposes into components, with each component

reflecting direct or indirect contributions of an input factor to the sensitivity of the output.

If the decomposition is not sought, the cascade sensitivity admits a representation that allows

for a straightforward calculation using a single Monte Carlo sample and does not require the

knowledge of the gradient of the aggregation function. These representations of the cascade

sensitivity make implementation of the proposed sensitivity measure numerically efficient and,

thus, attractive for applications in the practice of risk analysis, as is demonstrated through a

model of a London Insurance Market portfolio used in industry.
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A Assumptions and technical details

A.1 Assumptions

Assumption A.1. Let ργ be a distortion risk measure and Xi,ε, ε > 0, a stress on Xi. With

abuse of notation, we denote the stressed input vector by Xi,ε = (X1, . . . , Xi,ε, . . . , Xn) for the

marginal sensitivity and Xi,ε = ψ(Xi,ε,V ), (ψ,V ) ∈ Ri, for the cascade sensitivity, respec-

tively. We write Yi,ε = g(Xi,ε) for the stressed output and denote its distribution function by

Hi,ε.

i) There exists a random variable W ≥ 0 with E(W ) < +∞, such that |Yi,ε2 − Yi,ε1 | ≤

W |ε2 − ε1| for all ε1, ε2 in a neighbourhood of 0.

ii) The aggregation function g is invertible in at least one argument, say the jth, and Xj has

a conditional density given X−j .

Moreover, for all ε in a neighbourhood of 0:

i) The derivative of Yi,ε with respect to ε exists with probability 1.

ii) Yi,ε has a continuous density.

iii) ∂
∂εHi,ε exists and is continuous (in both arguments).

iv) The function E
(
∂
∂εYi,ε |Yi,ε = y

)
is continuous in y.

v) P (Hi,ε(Yi,ε) ∈ Dγ) = 1, where Dγ is the set where the weight function γ is differentiable.

vi) ∂
∂εH

−1
i,ε exists and is bounded.

A.2 Robustness of stressed models

Here we show, that for a suitable risk measure and aggregation function, the stresses defined in

Section 2.2 guarantee that the marginal and cascade sensitivities are well-defined.

Proposition A.2. Given a distortion risk measure ργ , with γ non-decreasing, an aggregation

function g satisfying a linear growth condition, i.e. |g(x)| ≤ a + b|x|, for all x > c, with

a, b, c > 0 (Pesenti et al., 2016). Further, consider either
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1. a shock Xi,ε = Xi + εk(Xi), for a non-decreasing Lipschitz continuous function k, or

2. a perturbation Xi,ε = (1 − ε)F−1i (UXi) + εF̂−1i (UXi), with F̂i ∈ F , where F is a set of

distribution functions with finite absolute mean.

Then, the composition ργ ◦ g is robust, that is the functional ργ ◦ g is continuous with respect

to weak convergence. Moreover, the marginal and cascade sensitivities are well-defined.

Proof. Case 1: Denote by L the Lipschitz constant of k. By Lipschitz continuity of k and since

Xi ∈ L1(Ω,A, P ), it holds that the stressed input Xi,ε ∈ L1(Ω,A, P ). Moreover, for all ε ≥ 0,

we have a.s.

|Xi,ε| ≤ |Xi|+ ε|k(Xi)− k(0)|+ ε|k(0)| ≤ (1 + εL)|Xi|+ ε|k(0)|.

Thus, for 0 ≤ ε ≤ ε̄, it holds a.s. |Xi,ε| ≤ (1 + ε̄L)|Xi| + ε̄|k(0)| and the set {Xi,ε | Xi,ε =

Xi+εk(Xi), 0 ≤ ε ≤ ε̄} is uniformly integrable (by dominated convergence). Applying Theorem

4.8 by Pesenti et al. (2016), we obtain that the composition ργ ◦ g is robust, that is ργ ◦ g is

continuous with respect to weak convergence.

Case 2: Note that F̂i ∈ F is a distribution function satisfying
∫
|x|dF (x) < ∞. Using an

argument similar to that in case 1, we have a.s.

|Xi,ε| ≤ (1− ε)|Xi|+ ε|X̂i|.

Thus, for all 0 ≤ ε ≤ ε̄, it holds a.s. |Xi,ε| ≤ (1 − ε̄)|Xi| + ε̄|X̂i| and the set {Xi,ε | Xi,ε =

(1 − ε)F−1i (UXi) + εF̂−1i (UXi), 0 ≤ ε ≤ ε̄} is uniformly integrable. Applying Theorem 4.8 by

Pesenti et al. (2016), we obtain that the composition ργ ◦ g is robust.

A.3 Stochastic orders

A random vector W is said to be conditionally increasing in sequence (CIS) if, for all j =

2, . . . , n, E(l(Wj) | W1 = w1, . . . ,Wj−1 = wj−1) is a non-decreasing function of w1, . . . , wj−1,

for all non-decreasing functions l : R→ R for which the expectation exists (Müller and Stoyan,

2002).

Proposition A.3. Given a stress Xi,ε, (ψ,V ) ∈ Ri, and under Assumptions A.1, the following

hold:
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1. If Xi is independent of Xj , for i 6= j, then Ci,j = 0. Hence, if Xi is independent of X−i,

then Ci(X, g, ργ) = Si(X, g, ργ).

2. If the vector (Xi, Xπ(1), . . . , Xπ(n)) is CIS for a permutation π on {1, . . . , n}\{i}, the

aggregation function is component-wise non-decreasing, and ∂
∂εXi,ε

∣∣
ε=0
≥ 0 a.s., then

Ci(X, g, ργ) ≥ Si(X, g, ργ).

Proof. Case 1: consider a permutation of {1, . . . , n}/{i} such that j appears in first position. An

inverse Rosenblatt transform then satisfies ψ(j)(Xi,V ) = F−1j (Vj), thus ψ(j) does not depend on

Xi and we obtain Ci,j = 0. The conclusion follows from the uniqueness of the cascade sensitivity

decomposition, see Proposition 3.6.

Case 2: let π be a permutation on {1, . . . , n}/{i}. Then (Xi, Xπ(1), . . . , Xπ(n)) being CIS im-

plies that the conditional distributions Fπ(j)|i,π(1),...,π(j−1)(· |Xi = xi, Xπ(1) = xπ(1), . . . , Xπ(j−1) =

xπ(j−1)) are non-increasing in xi (Müller and Stoyan, 2002). Therefore the quantile functions

F−1π(j)|i,π(1),...,π(j−1)(· | Xi = xi, Xπ(1) = xπ(1), . . . , Xπ(j−1) = xπ(j−1)) are non-decreasing in xi

and ψ(j)(Xi,V ), 1 ≤ j ≤ n, are non-decreasing functions of Xi and thus ψ
(j)
1 (Xi,V ) ≥ 0 for

1 ≤ j ≤ n. The additional assumptions guarantee that all summands of the formula of the

cascade sensitivity in Proposition 3.5 are non-negative.

Examples of stresses with non-negative gradient include additive shocks Xi,ε = Xi + εk(Xi)

as defined in Section 2.2. Examples of perturbations are Xi,ε = F−1i,ε (UXi) with Fi,ε = (1 −

ε)Fi + εF̂i, whenever the distribution F̂i first order stochastically dominates Fi.

Note that, by Proposition 3.6, it is enough in Proposition A.3, case 2, that the vector

(Xi, Xπ(1), . . . , Xπ(n)) is CIS for one permutation π. Examples of vectors that are CIS, which

is a dependence concept of the copula alone (Müller and Scarsini, 2001, Prop. 3.5), include

the multivariate normal distribution whose inverse covariance matrix contains non-positive off-

diagonal elements, as well as the multivariate logistic, gamma, and negative binomial distribu-

tions (Müller and Scarsini, 2001; Karlin and Rinott, 1980). We also refer to Karlin and Rinott

(1980) for further examples of multivariate totally positive of order 2 distributions, a slightly

stronger dependence concept than CIS.

We recall that a random variable W dominates Z in increasing convex order, Z �icx W , if

E(l(Z)) ≤ E(l(W )), for all increasing convex functions l : R → R such that the expectations

exist (Müller and Stoyan, 2002).
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Proposition A.4. Let Xi have finite expectation and define the random variable X̂i with

distribution function F̂i(x) = Fi(x)− k(x)
L fi(x), x ∈ R, as in Proposition 4.2. Then the following

hold:

1. If E(k(Xi)) ≥ 0, then Xi �icx X̂i.

2. If 0 < ess sup k(Xi), then Xi does not dominate X̂i in increasing convex order.

Proof. Applying Lemma B.1 we see that F̂i is a distribution function. Note that X̂i dominates

Xi in increasing convex order, Xi �icx X̂i, if and only if E((X̂i − t)+) ≥ E((Xi − t)+) for all

t ∈ R. For case 1: let t ∈ R and apply Fubini,

E
(
(X̂i − t)+

)
− E

(
(Xi − t)+

)
=

∫ ∞
t

(x− t)
(
f̂i(x)− fi(x)

)
dx

=

∫ ∞
t

∫ ∞
t

(
f̂i(x)− fi(x)

)
1{u≤x}dxdu

=

∫ ∞
t

(
Fi(u)− F̂i(u)

)
du

=

∫ ∞
t

k(u)fi(u)
L du

= 1
L E(k(Xi)1{Xi>t}).

Recall that k is a non-decreasing function, thus if k(t) ≥ 0, the above expectation is non-

negative. If k(t) < 0, we have that E(k(Xi)1{Xi>t}) ≥ E(k(Xi)), which is non-negative by

assumption.

To see case 2: note that E(k(Xi)1{Xi>t}) is negative if and only if

E(k(Xi) | Xi > t) < 0 for all t ∈ R,

which is a contradiction to the assumption that 0 < ess sup k(Xi).

Proposition A.4 case 1 is for example satisfied for a one-sided stress of an input factor, that

is Xi,ε = Xi+ε(Xi−t)+, t > 0. For an input factor that is symmetric around zero, consider the

stress Xi,ε = Xi + ε(Xi− t1)1{Xi≤t1}+ ε(Xi− t2)1{Xi≥t2}, for t1 < 0 < t2, such that the density

of the input is non-decreasing for x ≤ t1 and non-increasing for x ≥ t2. Then, Proposition A.4

case 1, is fulfilled if t2 < |t1|.
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B Proofs

B.1 Auxiliary results

Lemma B.1. Let Z be an integrable random variable with distribution function FZ and right-

continuous density fZ whose support can be split into countably many intervals on which fZ

is monotonic. Let k : R → R a non-decreasing Lipschitz continuous function with Lipschitz

constant L > 0, which satisfies k(x) ≤ 0 on the set where fZ(x) is non-decreasing and k(x) ≥ 0

on the set where fZ(x) is non-increasing. Then F̃Z(x) = FZ(x) − k(x)
L fZ(x), x ∈ R, defines a

distribution function.

Proof. By Lipschitz continuity of k, it holds −(k(y) − k(x)) ≥ −L(y − x), for all x < y. Let

a, b ∈ R such that fZ is non-decreasing on [a, b], then it holds for all a ≤ x < y ≤ b that

F̃Z(y)− F̃Z(x) =

∫ y

x
fZ(u)du− k(y)

L fZ(y)− k(y)−k(x)
L fZ(x) + k(y)

L fZ(x)

≥
∫ y

x

(
fZ(u)− fZ(x)

)
du− k(y)

L

(
fZ(y)− fZ(x)

)
≥ 0.

Similarly, for a, b ∈ R such that fZ is non-increasing on [a, b], we have for all a ≤ x < y ≤ b

F̃Z(y)− F̃Z(x) =

∫ y

x
fZ(u)du− k(x)

L fZ(y)− k(y)−k(x)
L fZ(y) + k(x)

L fZ(x)

≥
∫ y

x

(
fZ(u)− fZ(y)

)
du+ k(x)

L

(
fZ(x)− fZ(y)

)
≥ 0.

Lemma B.2. Let K : R→ R be an absolutely continuous function with representation K(x) =∫ x
b κ(s)ds for all x ≥ b, where κ is a non-negative function and b ≥ −∞. Then, for any random

variable Z ≥ b a.s. with E(K(Z)) <∞ it holds that

E(K(Z)) =

∫ +∞

b
κ(s)P (Z > s)ds.
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Proof. For any b ≥ −∞ we obtain, using Fubini,

E(K(Z)) = E

(∫ Z

b
κ(s)ds

)
= E

(∫ +∞

b
κ(s)1{Z≥b}ds

)
=

∫ +∞

−∞
κ(s)P (Z > s)ds.

B.2 Proofs

Proof of Proposition 3.2. See Hong (2009); Hong and Liu (2009).

Proof of Proposition 3.5. From Proposition 3.2 it holds that the cascade sensitivity to input Xi

can be written as

Ci(X, g, ργ) =
n∑
j=1

E
( ∂
∂ε
Xi,ε

∣∣∣
ε=0

gj(X)ψ
(j)
1 (Xi,V )γ(UY )

)
.

Recall that for (ψ,V ) ∈ Ri and by construction of the inverse Rosenblatt transform ψ(i) is the

identity function, thus ψ
(i)
1 = 1 and Ci,i = Si.

Proof of Proposition 3.6. We first show that the cascade sensitivity is independent of the chosen

Rosenblatt transform. Consider a stress Xi,ε and (ψ,V ), (φ,U) ∈ Ri. Note that V and U

can be chosen to be independent of the stress Xi,ε. For a function l : Rn → R such that the

following expectation exists, it holds that, for all ε > 0,

E
(

(l ◦ψ)(Xi,ε,V )
)

= E
(

(l ◦ψ)(Xi,V )
fXi,ε(Xi)

fi(Xi)

)
= E

(
(l ◦ φ)(Xi,U)

fXi,ε(Xi)

fi(Xi)

)
= E

(
(l ◦ φ)(Xi,ε,U)

)
.

Thus, for all ε > 0, ψ(Xi,ε,V ) and φ(Xi,ε,U) follow the same distribution and therefore

∂
∂εργ

(
g
(
ψ(Xi,ε,V )

))∣∣
ε=0

= ∂
∂εργ

(
g
(
φ(Xi,ε,U)

))∣∣
ε=0

.

To show that the decomposition of the cascade sensitivity in Proposition 3.5, (4), is unique,

note that for (ψ,V ) ∈ Ri and j = 1, . . . n, we have

Ci,j =
∂

∂ε
ργ
(
g
(
(X1, . . . , Xj−1, ψ

(j)(Xi,ε,V ), Xj+1, . . . , Xn)
))∣∣∣

ε=0
. (9)

Define the random vectorX∗ = (X∗1 , . . . , X
∗
n), whereX∗k andXk follow the same distribution, for
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k ∈ {1, . . . , n}\{j}, and the conditional distribution of X∗j given X∗i is equal to the conditional

distribution of Xj given Xi. Further, let (X∗i , X
∗
j ) be independent of X∗−i,j , where X∗−i,j is

the sub-vector of X∗ deprived of its ith and jth components. Then, X∗ admits an inverse

Rosenblatt transform (ψ∗,V ∗) given by:

ψ∗(k)(X∗i ,V
∗) = F−1k (V ∗k ), k ∈ {1, . . . , n}\{i, j},

ψ∗(i)(X∗i ,V
∗) = Xi,

ψ∗(j)(X∗i ,V
∗) = ψ(j)(Xi,V

∗).

The cascade sensitivity of ργ(g(X∗)) to X∗i is thus given by

Ci(X∗, g, ργ) = Si(X∗, g, ργ) + Ci,j ,

with Ci,j given in (9).

Proof of Proposition 4.1. Case 1: By invariance of Ci,j on the choice of inverse Rosenblatt

transform (Proposition 3.6), we can chose a transform starting from Xi, Xj , . . . , such that we

represent input factors by

Xi = F−1i (UXi)

Xj = F−1j|i (V |Xi) = ψ(j)(Xi, V )

...

for some standard uniform random variable V . We further calculate

Ḟ−1j|i (v|x) :=
∂

∂x
F−1j|i (v|x) = ψ

(j)
1 (x, v).

From the properties of the multivariate normal distribution, it holds that (Zj |Zi = z) ∼

N(rijz, 1− r2ij). Consequently

Fj|i(y|x) = Φ

Φ−1(Fj(y))− rijΦ−1(Fi(x))√
1− r2ij

 ,

F−1j|i (v|x) = F−1j ◦ Φ
(
rijΦ

−1(Fi(x)) +
√

1− r2ijΦ
−1(v)

)
.
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Taking derivative with respect to x, we obtain

Ḟ−1j|i (v|x) =
φ
(
rijΦ

−1(Fi(x)) +
√

1− r2ijΦ−1(v)
)

fj

(
F−1j ◦ Φ

(
rijΦ−1(Fi(x)) +

√
1− r2ijΦ−1(v)

)) · rijfi(x)

φ(Φ−1(Fi(x)))
.

Replacing x = Xi, y = Xj , and v = V , yields

Ḟ−1j|i (V |Xi) =
φ
(
rijΦ

−1(UXi) +
√

1− r2ijΦ−1(V )
)

fj

(
F−1j ◦ Φ

(
rijΦ−1(UXi) +

√
1− r2ijΦ−1(V )

)) · rijfi(Xi)

φ(Φ−1(UXi))
.

Recall that, by definition,

V = Fj|i(Xj |Xi) = Φ

Φ−1(UXj )− rijΦ−1(UXi)√
1− r2ij

 .

Thus, we obtain that

Ḟ−1j|i (V |Xi) =
φ
(
Φ−1(UXj )

)
fj (Xj)

· rijfi(Xi)

φ(Φ−1(UXi))
= rij

φ (Zj)

fj (Xj)
· fi(Xi)

φ(Zi)
,

wherefrom the stated result follows.

Case 2: For the t copula the same steps are followed, with slightly lengthier calculations,

not reported here. The key difference is the form of the conditional t distribution (Ding, 2016),

Zj
∣∣
Zi=z

= rijz +
√

ν+z2

ν+1 (1− r2ij) W, for z ∈ R,

where W is a t distributed random variable with ν+1 degrees of freedom and the above equality

holds in distribution.

Proof of Proposition 4.2. Case 1 (additive shock): Consider an additive shock Xi,ε = Xi +

εk(Xi), then by Lemma B.1, F̂i(x) = Fi(x) − k(x)
L fi(x), x ∈ R, is indeed a distribution func-

tion and we denote its density by f̂i. We start with proving the first representation of Ci in

Proposition 4.2. We have that the following equalities hold a.s.

∂

∂ε
Xi,ε

∣∣
ε=0

= k(Xi) = L
Fi(Xi)− F̂i(Xi)

fi(Xi)
.

Thus, applying Proposition 3.5 results in the first formula for Ci.
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Next, we prove the second representation of Ci. Define ξ(y) = γ(H(y)), y ∈ R, and notate

(g ◦ψ)1(xi,v) = ∂
∂xi
g(ψ(xi,v)). Using independence of Xi and V and the definition of F̂i, the

cascade sensitivity to stress Xi,ε can be written as

Ci(X, g, ργ) = E(k(Xi)(g ◦ψ)1(Xi,V )ξ(Y ))

= E
(∫

R
k(x)(g ◦ψ)1(x,V )ξ(g(ψ(x,V )))fi(x)dx

)
= L · E

(∫
R

(Fi(x)− F̂i(x))β(x)dx
)
,

where we denote β(x) = (g ◦ ψ)1(x,V )ξ(g(ψ(x,V ))) and B(s) =
∫ ess supXi
s β(x)dx, hence

suppressing the dependence on V . Applying Fubini, we obtain

E
(∫

R
(Fi(x)− F̂i(x))β(x)dx

)
= E

(∫
R

∫
R

(
fi(s)− f̂i(s)

)
1{s≤x}dsβ(x)dx

)
= E

(∫
R

(
fi(s)− f̂i(s)

)
B(s)ds

)
= E(B(Xi))− E(B(X̂i)).

Applying the change of variable u = g(ψ(t,V )), we obtain

B(Xi) =

∫ ess supXi

Xi

β(t)dt

=

∫ ess supXi

Xi

(g ◦ψ)1(t,V )ξ(g(ψ(t,V )))dt

=

∫ ess supY

Y
ξ(u)du,

and similarly, B(X̂i) =
∫ ess sup Ŷ

Ŷ
ξ(u)du. Thus, using Lemma B.2, the cascade sensitivity be-

comes

Ci(X, g, ργ) = L

∫
R

(1− Ĥ(y))ξ(y)dy − L
∫
R

(1−H(y))ξ(y)dy

= L

∫
R

(H(y)− Ĥ(y))γ(H(y))dy

= L · E
(H(Y )− Ĥ(Y )

h(Y )
γ(H(Y ))

)
.

Case 2 (perturbation): Next we consider a perturbation Xi,ε = F−1i,ε (UXi), where Fi,ε =

(1 − ε)Fi + εF̂i and show the first formula of Ci in Proposition 4.2. For all 0 < u < 1 it holds
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that (Glasserman, 1991, Thm. 1.3)

∂

∂ε
F−1i,ε (u)

∣∣
ε=0

=
u− F̂i(F−1i (u))

fi(F
−1
i (u))

and we have almost surely

∂

∂ε
Xi,ε

∣∣
ε=0

=
∂

∂ε
F−1i,ε (UXi)

∣∣
ε=0

=
Fi(Xi)− F̂i(Xi)

fi(Xi)
. (10)

Thus, applying Proposition 3.5 gives the first representation.

To see the second representation, define, for all ε ≥ 0, the random variable X̄i,ε = Xi1A +

X̂i1Ac , where X̂i = F̂−1i (UXi), A ∈ A is independent of X and V , with P (A) = 1− ε and Ac =

Ω\A. Then, X̄i,ε and the stress Xi,ε follow the same distribution function Fi,ε. By independence

of X̂i and V , the random vectors ψ(X̄i,ε,V ) and ψ(Xi,ε,V ) are equal in distribution for all

ε > 0. Thus, the cascade sensitivity to the stress Xi,ε is equal to the cascade sensitivity

to the stress X̄i,ε. To calculate the latter, note that the stressed output, g(ψ(X̄i,ε,V )) =

Y 1A + g(ψ(X̂i,V ))1Ac , follows the mixture distribution (1− ε)H + εĤ, where Ĥ denotes the

distribution function of g(ψ(X̂i,V )). The representation of the cascade sensitivity to stress X̄i,ε

follows from a similar argument as in (10).

Proof of Corollary 4.3. The representation of the cascade sensitivity for the VaR follows from

the second representation of Proposition 4.2, noting that VaRα corresponds to γ(u) = 1{u=α}.

The representation for ES follows by applying Fubini

Ci(X, g,ESα) = E
[H(Y )− Ĥ(Y )

h(Y )
γ(H(Y ))

]
=

1

1− α

∫ +∞

H−1(α)
(H(y)− Ĥ(y))dy

=
1

1− α

∫ +∞

H−1(α)

∫ ∞
y

(
ĥ(z)− h(z)

)
dzdy

=
1

1− α

∫ +∞

H−1(α)
(z −H−1(α))

(
ĥ(z)− h(z)

)
dz

=
1

1− α

[
E
((
Ŷ −H−1(α)

)
+

)
− E

((
Y −H−1(α)

)
+

)]
.
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