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Summary

The tuned mass damper inerter (TMDI) is a linear passive dynamic vibration

absorber widely considered in the literature to mitigate the motion of dynami-

cally excited primary structures. Previous studies focused on optimal TMDI

tuning approaches and connectivity arrangements to improve motion control

efficiency for some given primary structure. This paper investigates the influ-

ence of the elastic and mass properties of the primary structure to the TMDI

motion control performance. This is pursued through an innovative parametric

study involving a wide range of tapered beam-like cantilevered primary struc-

tures with different continuously varying flexural rigidity and mass distribu-

tions equipped with TMDIs optimally tuned for resonant harmonic and for

white noise excitations. Optimal TMDI tuning and performance assessment

are expedited through a novel simplified two-degree-of-freedom dynamic

model, which accounts for the properties of the primary structure. It is found

that reduced free-end displacement and TMDI stroke are achieved for primary

structures in which the ratio of flexural rigidity over mass decreases faster with

height resulting in vibration modal shapes with higher convexity. The latter is

quantified though the average modal curvature shown to be well correlated

with TMDI motion control improvement. It is concluded that judicial shaping

of the primary structure extends the applicability of the TMDI to structures

where connecting the inerter away from the free end is practically challenging

while contains the magnitude of the inerter and damping forces exerted to the

primary structure. Therefore, this study paves the way towards combining opti-

mal TMDI tuning with primary structure design for improved performance to

dynamic loads.
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1 | INTRODUCTION

Recent advances in computer-aided engineering design together with the availability of high-performance materials
enable the construction of ever-more slender cantilevered civil engineering structures including high-rise buildings,
industrial chimneys, and wind turbine towers. Such structures are typically lightweight and material efficient, thus pro-
moting sustainability in construction.1 However, they are prone to develop excessive lateral oscillations under the
action of wind and earthquakes due to their low inherent damping and resonant natural frequencies, which can lead to
serviceability or even structural failures.2 To this end, supplemental damping devices and passive vibration absorbers
are commonly employed to safeguard the resilience of flexible cantilevered structures to wind and seismic loads.3 In
this context, the tuned mass damper (TMD) has been widely used in practice for lateral vibrations suppression of flexi-
ble cantilevered structures including tall buildings,4,5 industrial chimneys,6 and solar towers,7 as well as heavily investi-
gated for motion control of wind turbine towers.8,9 The typical TMD consists of a free-to-oscillate secondary mass
attached to the top of the cantilevered structure via linear stiffeners/springs and viscous damper (dashpot) elements.10

For a given secondary mass, the TMD stiffness and damping properties are “tuned” to the fundamental (dominant)
vibration mode of the uncontrolled (or primary) structure such that significant kinetic energy is transferred from the
primary structure to the oscillating secondary mass and dissipated by the damping element.11,12 In this setting,
the TMD vibration control efficacy depends on its inertia: the larger the attached TMD mass is, the more effective and
robust to detuning effects the TMD becomes.13 However, practical constraints limit the TMD weight that can be accom-
modated at the top of slender structures while TMD up-front cost increases with the attached mass.14

To this end, in recent years, the inertia property of the inerter, defined by Smith15 as a linear massless mechanical
element resisting relative acceleration through the inertance constant, has been leveraged to relax requirements for
large secondary mass in suppressing the motion of dynamically excited civil engineering structures via passive dynamic
vibration absorbers.16–21 Among these absorbers, the TMDI, introduced by Marian and Giaralis,22 was shown to out-
perform the conventional TMD for the seismic protection of fixed-based buildings18,23–28 and base-isolated
buildings,29,30 as well as for mitigating wind-borne vibrations in buildings31–33 and wind turbine towers.34 In this
respect, it was found that the incorporation of an inerter to the TMD can lead to significant attached mass reduction
since the inertance scales up practically independently of inerter device physical mass in actual device embodi-
ments.15,35,36 For fixed-based buildings, this is achieved by using an inerter to connect the secondary mass attached to
one building floor (commonly the top floor/roof) to a different (lower) floor. The early works of Marian and Giaralis18,22

showed that TMDI motion control efficacy improves with increasing inertance. Later, Giaralis and Taflanidis25,37 dem-
onstrated significantly enhanced and robust seismic performance to uncertainties in TMDI-equipped multistorey shear
frames as the inerter spans more floors (i.e. as the inerter connects the secondary mass to a more distant lower floor
from the floor that the mass is attached to). This trend was confirmed in various real-life and benchmark structures
under earthquake and wind excitations.26,32,33

More recently, Wang and Giaralis38 showed that TMDI motion control potential in wind-excited tall buildings
improves by decreasing the stiffness of the floor where the TMDI is located through a local modification of the primary
structure. Furthermore, Pietrosanti et al.39 demonstrated that the relative modal coordinate of the floor where the sec-
ondary mass is attached to and the floor where the inerter is attached to influences significantly the effectiveness of
TMDI to suppress vibrations in lumped-mass models of earthquake excited buildings. In this regard, collectively, the
works of Wang and Giaralis38 and Pietrosanti et al.39 point to the fact that the stiffness and/or mass properties of
the primary structure influence the motion control efficacy of the TMDI. Nevertheless, the quantification of this influ-
ence has not been systematically pursued to date as all previous works have focused on leveraging the TMDI inertial
properties (i.e., secondary mass and inertance) and inerter connectivity to mitigate the response of TMDI-equipped
structures to dynamic excitations. This paper addresses the above gap in the literature through a novel parametric inves-
tigation involving a wide range of TMDI-equipped structures modeled as cantilevered continuous beams with various
geometrical shapes. Numerical work is expedited by putting forth a novel simplified two-degree-of-freedom (2-DOF)
model of the considered structures, which accounts for flexural rigidity and mass distribution of the primary structure
as well as the modal coordinate of the primary structure at the location where the inerter connects to. The investigation
is further supported by optimal TMDI tuning aiming to minimize the free-end peak and root-mean-square (RMS)
displacement response of the primary structure subject to harmonic resonant and white noise excitation, respectively.
Optimal TMDI tuning and performance assessment are facilitated by using analytically derived frequency response
functions (FRFs) of the 2-DOF model. Attention is focused on quantifying the influence of the primary structure
geometrical shape to the free-end displacement reduction, secondary mass stroke, inerter force, and damping force.
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The remainder of the paper is organized as follows. In Section 2, the governing equations of motion of a
TMDI-equipped cantilevered beam accommodating any inerter connecting location are established in terms of a set of
nondimensional TMDI and primary structure parameters in frequency domain via treating the TMDI-controlled
continuous cantilever as a 2-DOF system. A set of FRFs corresponding to response quantities of practical interest
are derived analytically. Optimal TMDI design/tuning is considered in Section 3 for minimizing the steady-state dis-
placement response of the primary structure subject to harmonic resonant and to white noise force excitation. Section 4
introduces and discusses parametric geometric shape variation of the primary structure and its influence on the funda-
mental mode shape, which is used in subsequent sections for investigating the effect of primary structure shaping to
the motion control potential of the TMDI. The accuracy of the 2-DOF model for optimal TMDI design/tuning is verified
against detailed finite element (FE) models for a wide range of TMDI parameters and primary structure shapes. Next,
Section 5 furnishes and discusses comprehensive numerical results shedding light to the effectiveness of optimally
designed TMDI in containing vibration of cantilevered beams with different mass and stiffness/flexibility distributions
under resonant harmonic and white noise force excitations. Finally, Section 6 summarizes main conclusions.

2 | TWO-DOF MODELING AND ANALYSIS OF TMDI-EQUIPPED
CONTINUOUS FLEXURAL CANTILEVER STRUCTURES

2.1 | System description and equations of motion in time domain

Consider a fixed-base structure amenable to be modeled as a continuous cantilevered beam with height h and with dis-
tributed flexural rigidity EI(x) and mass per unit length m(x) where 0 ≤ x ≤ h as depicted in Figure 1a. This generic
beam model can well represent slender tall buildings, industrial chimneys, wind turbine towers, and solar towers. Fur-
ther, let a TMDI be attached to the free end/tip of the considered beam (primary structure) to control the beam lateral
motion due to a horizontal distributed dynamic load p(x,t) as shown in Figure 1b. The TMDI comprises a secondary
mass mTMDI attached to the primary structure through a linear spring with stiffness kTMDI in parallel with a dashpot
with damping coefficient cTMDI. The secondary mass is further connected to the primary structure at height χ from the
ground (fixed end) through an inerter element with inertance b.

Next, assume that under the external load p(x,t), the lateral response of the uncontrolled primary structure can be
faithfully approximated by a single deflected time-invariant shape ψ(x). Under this assumption, the response displace-
ment of the primary structure can be written as40

u x, tð Þ¼ψ xð Þz tð Þ, ð1Þ

where z(t) is the free-end displacement of the cantilever and ψ(x) satisfies the fixed-end boundary conditions and is nor-
malized such that ψ(h) = 1 (Figure 1c). In this setting, the continuous beam can be represented by a generalized single-
degree-of-freedom (SDOF) oscillator whose equation of motion is readily derived using the principle of virtual work.40

FIGURE 1 (a) Continuous flexural cantilevered uncontrolled (primary) structure, (b) TMDI-controlled structure, (c) assumed deflected

shape and virtually deflected shape, (d) external loads acting on the primary structure, and (e) external loads acting on the TMDI mass
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Specifically, the virtual work done by the inertial resistance and the external forces acting onto the primary structure
shown in Figure 1d due to some virtual displacement δz at the free end of the primary structure is given as

δWE ¼
ðh
0

pδu xð Þdx�
ðh
0

f Iδu xð Þdx� f bδu χð Þ� f cþ f kð Þδu hð Þ, ð2Þ

where δu(x) = ψ(x)δz. In the above equation, fI is the distributed inertial resistance of the primary structure, fb is the
force of the TMDI inerter element acting at x = χ height, and fc and fk are the forces of the TMDI damper (dashpot) and
spring elements, respectively, acting at x = h (free end). These forces are given as

f I ¼m xð Þ€u x, tð Þ, f b ¼ b ψ χð Þ€z�€y½ �, f c ¼ cTMDI _z� _yð Þ,and f k ¼ kTMDI z� yð Þ, ð3Þ

where a dot over a symbol signifies differentiation with time and y(t) is the displacement of the secondary mass
(Figure 1b). Further, the virtual work done by the internal flexural and damping forces of the primary structure due to
the same virtual displacement δz is given as

δWI tð Þ¼
ðH
0

EI xð Þ ∂2u x, tð Þ
∂x2

þac
∂2 _u x, tð Þ

∂x2

� �
d2ψ

dx2
δzdx, ð4Þ

assuming that stresses due to inherent damping of the primary structure are proportional to the strain velocity by a constant ac.
By setting δWE = δWI and manipulating algebraically Equations (2)–(4), the following equation of motion is

reached:

m� þbψ χð Þ2� �
€z�bψ χð Þ€yþ c� þ cTMDIð Þ _z� cTMDI _yþ k� þkTMDIð Þz�kTMDIy¼ p� tð Þ, ð5Þ

written in terms of the free-end displacement z(t) of the primary structure and the TMDI secondary mass displacement
y(t). In the above equation, p*(t), m*, c*, and k* are the generalized load, mass, damping, and stiffness, respectively, of
an underlying generalized SDOF system, which represents the primary structure in the considered simplified model.
These generalized quantities are defined as

p� tð Þ¼
ðh
0
p x, tð Þψ xð Þdx, m� ¼

ðh
0
m xð Þ ψ xð Þð Þ2dx,

c� ¼ ac

ðh
0
EI xð Þ d2ψ

dx2

� �2

dx¼ ack
� and k� ¼

ðh
0
EI xð Þ d2ψ

dx2

� �2

dx:

ð6Þ

Further to Equation (5), an additional independent equation of motion can be written in terms of the displacements
z(t) and y(t) by taking equilibrium of the external forces acting on the secondary mass and making use of d'Alembert's
principle as follows (Figure 1e):

f kþ f cþ f b ¼mTMDI€y or

bψ χð Þ€z� mTMDI þbð Þ€yþ cTMDI _z� _yð ÞþkTMDI z� yð Þ¼ 0:
ð7Þ

Next, the two equations of motion, Equations (5) and (7), are rewritten as

1þβψ χð Þ2� �
€z�βψ χð Þ€yþ2ξ1ω1 _zþ2νξ μþβð Þω1 _z� _yð Þþω2

1zþν2ω2
1 μþβð Þ z� yð Þ¼ p� tð Þ

m�
βψ χð Þ€z� μþβð Þ€yþ2νξ μþβð Þω1 _z� _yð Þþν2 μþβð Þω2

1 z� yð Þ¼ 0

8<
: ð8Þ

4 of 23 WANG AND GIARALIS



with the aid of the circular natural frequency of the generalized SDOF primary structure representation, ω1 = (k*/
m*)1/2, and of five nondimensional parameters, namely, the mass ratio, μ, the inertance ratio, β, the TMDI frequency
ratio, v, the TMDI damping ratio, ξ, and the primary structure inherent damping ratio ξ*. These parameters are defined
in terms of the generalized primary structure properties and the TMDI properties as

μ¼mTMDI

m� , β¼ b
m� , ν¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kTMDI= mTMDI þbð Þp

ω1
, ξ¼ cTMDI

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mTMDI þbð ÞkTMDI

p , and ξ� ¼ c�

2
ffiffiffiffiffiffiffiffiffiffiffi
m�k�

p : ð9Þ

Clearly, the equations of motion in Equation (8) define a 2-DOF dynamical model, which approximates the
response of the TMDI-equipped cantilevered continuous beam of Figure 1b in terms of the free-end displacement z(t)
and the secondary TMDI mass displacement y(t). Importantly, the properties of the herein derived 2-DOF model
depend explicitly on the flexural stiffness and mass distribution of the primary cantilevered beam structure as well as
on the assumed deflected shape (mode) ψ(x) through the generalized SDOF properties in Equation (6). Further, the
2-DOF model accounts for the location x = χ that the inerter connects the secondary mass to the primary structure
through the modal coordinate ψ(χ). In this regard, the considered 2-DOF model encompasses the special case of a
TMDI with grounded inerter (i.e., the inerter connects the TMDI mass to the ground) by setting χ = 0 in Equation (8)
for which ψ(0) = 0. The latter TMDI arrangement (with grounded inerter) has been widely studied in the litera-
ture18,24,29,41 and corresponds to a TMD with secondary mass equal to b + mTMDI for force-excited primary structure.
To this end, it is deemed convenient to define the nondimensional inerter connectivity ratio

CR¼ h� χ

h
, ð10Þ

which will be seen to be a critical parameter for TMDI motion control performance taking values between CR = 0
(inerter in parallel to TMDI spring and dashpot) and CR = 1 (grounded inerter). Further to the TMDI with grounded
inerter, the 2-DOF model can also approximate the special case of a conventional TMD with secondary mass mTMDI

attached to the free end of the primary structure by setting b = β = 0 in Equation (8).

2.2 | Frequency response functions

To expedite numerical work in subsequent sections, a set of nondimensional FRFs corresponding to response quantities
of practical interest are herein derived analytically. To this end, the equations of motion in Equation (8) are first written
in the domain of circular frequency, ω, as

1�g2 1þβψ χð Þ2� �þ ν2þ i2gνξð Þ μþβð Þþ i2gξ�
	 


Z ωð Þþ g2βψ χð Þ� ν2þ i2gνξð Þ μþβð Þ½ �Y ωð Þ¼ P� ωð Þ
k�

,

g2βψ χð Þ� ν2þ i2gνξð Þ μþβð Þ½ �Z ωð Þþ ν2� g2þ i2gνξð Þ μþβð ÞY ωð Þ¼ 0,

8<
: ð11Þ

in which i¼ ffiffiffiffiffiffiffi�1
p

, g is the normalized frequency ω/ω1, Z(ω) and Y(ω) are the Fourier transformed displacements z(t)
and y(t), respectively, and P*(ω) is the Fourier transform of the generalized load p*(t) in Equation (6). Then, by eliminat-
ing Y(ω) from Equation (11), one obtains the nondimensional FRF relating the primary structure free-end displacement
to the static free-end displacement P*(ω)/k* given as

H ωð Þ¼ Z ωð Þ
P� ωð Þ=k� ¼

ν2� g2þ i2gνξð Þ μþβð Þ
1� g2 1þβψ χð Þ2	 
þ ν2þ i2gνξð Þ μþβð Þþ i2gξ�

� �
ν2� g2þ i2gνξð Þ μþβð Þ� ν2þ i2gνξð Þ μþβð Þ� g2βψ χð Þ½ �2 :

ð12Þ

In subsequent sections, the above analytical FRF is used to facilitate optimal TMDI design (tuning). Further, the
nondimensional FRF of the relative displacement of the TMDI secondary mass with respect to the primary structure
free-end displacement, commonly termed as TMDI stroke, is given as
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G ωð Þ¼Z ωð Þ�Y ωð Þ
P� ωð Þ=k� ¼

g2 βψ χð Þ� μþβð Þ½ �
1� g2 1þβψ χð Þ2	 
þ ν2þ i2gνξð Þ μþβð Þþ i2gξ�

� �
ν2� g2þ i2gνξð Þ μþβð Þ� ν2þ i2gνξð Þ μþβð Þ� g2βψ χð Þ½ �2 ,

ð13Þ

while the nondimensional FRF of the relative acceleration between the secondary mass and the primary structure at
height x = χ, that is, ψ χð Þ€z tð Þ�€y tð Þ, is given as

B ωð Þ¼ Z ωð Þψ χð Þ�Y ωð Þ½ �ω2

P� ωð Þ=m� ¼
ψ χð Þ ν2� g2þ i2gνξð Þ μþβð Þ½ �� ν2þ i2gνξð Þ μþβð Þ� g2βψ χð Þ½ �f gg2

1� g2 1þβψ χð Þ2	 
þ ν2þ i2gνξð Þ μþβð Þþ i2gξ�
� �

ν2� g2þ i2gνξð Þ μþβð Þ� ν2þ i2gνξð Þ μþβð Þ� g2βψ χð Þ½ �2 :
ð14Þ

The analytical FRFs in Equations (13) and (14) are used in the numerical part of this work for efficient calculation
of the TMDI stroke, damping force, and inerter force under random excitation. This is achieved through frequency
domain random vibration analysis as detailed in the next subsection.

2.3 | Random vibration analysis for white noise excitation

For the case of stochastically excited primary structure, the previous analytically derived FRFs can be readily used
to calculate RMS response statistics through standard random vibration analysis in frequency domain. Specifically,
consider the case of zero-mean uniformly distributed in space white noise excitation. For this excitation,
response power spectral density (PSD) functions of practical interest are computed with the aid of the FRFs in
Equations (12)–(14) as

Sz ωð Þ¼ H ωð Þj j2Sp ωð Þ
k�ð Þ2 ,Sstroke ωð Þ¼ G ωð Þj j2Sp ωð Þ

k�ð Þ2 ,Sv ωð Þ¼ ωG ωð Þj j2Sp ωð Þ
k�ð Þ2 ,andSa ωð Þ¼ B ωð Þj j2Sp ωð Þ

m�ð Þ2 , ð15Þ

where Sz(ω) is the PSD of the free-end displacement of the primary structure, Sstroke(ω) is the PSD of the TMDI stroke,
Sv(ω) is the PSD of the relative velocity between the attached mass and the cantilever free end, and Sa(ω) is the PSD of
the relative acceleration between the attached mass and cantilever structure at height χ. In the above expressions, Sp(ω)
is the excitation PSD given as

Sp ωð Þ¼
ðh
0
ψ xð Þdx

� �2

W 0, ð16Þ

where W0 is the constant PSD amplitude of the white noise excitation. Then, the RMS values of the free-end displace-
ment of the primary structure, z(t), attached mass stroke, z(t)–y(t), damping force, fc(t), and inerter force, fb(t), are
obtained using the expressions

σz ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðωmax

0

Sz ωð Þdω

vuuut ,σstroke ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðωmax

0

Sstroke ωð Þdω

vuuut ,σfc ¼ cTMDI

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðωmax

0

Sv ωð Þdω

vuuut ,and σfb ¼ b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðωmax

0

Sa ωð Þdω

vuuut , ð17Þ

respectively, where ωmax is a cutoff frequency above, which the PSDs in Equation (15) attain negligible values.
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3 | OPTIMAL TMDI DESIGN USING THE 2-DOF SIMPLIFIED MODEL

3.1 | Optimal design for resonant harmonic loading

Consider the case of a harmonic generalized load applied to the 2-DOF model defined in the previous section with fre-
quency equal to ω1, that is, the natural frequency of the generalized SDOF system representing the primary structure.
Arguably, this is a worse-case scenario excitation based on resonance considerations.42 In this respect, it is deemed use-
ful to examine the effectiveness of the TMDI to mitigate the free-end displacement z(t) under resonant harmonic load-
ing. To this aim, the magnitude of the FRF in Equation (12) at ω = ω1 (i.e., g = 1) given as

H ω1ð Þ¼
ν2�1þ i2νξð Þ μþβð Þ

ν2þ i2νξð Þ μþβð Þ�βψ χð Þ2þ i2ξ�
	 


ν2�1þ i2νξð Þ μþβð Þ� βψ χð Þ� ν2þ i2νξð Þ μþβð Þ½ �2
ð18Þ

is adopted to gauge TMDI motion control effectiveness. This is because jH(ω1)j provides the ratio of the peak steady-
state free-end displacement over the static displacement for resonant harmonic excitation. To ensure meaningful perfor-
mance comparison for different TMDI properties, an optimal TMDI tuning problem is formulated to determine TMDI
frequency, v, and damping, ξ, properties, which minimize jH(ω1)j given mass ratio, μ, inertance ratio, β, and inerter
connectivity ratio, CR, for a primary structure with assumed deflected shape ψ and damping ratio ξ*. In this setting, the
primary TMDI design variables (DVs) can be collected in the vector x1 = [ν, ξ]T and the secondary TMDI DVs in
the vector x2 = [β,μ,CR]T so that the optimal TMDI tuning problem is mathematically written as

min
x1

H ω1ð Þj jf g,given x2 and subjected toxmin
1 ≤ x1 ≤ xmax

1 , ð19Þ

where the vectors x1
min and x1

max specify the lower and the upper bounds, respectively, of the search range of the two
primary DVs. Note that the TMDI tuning problem in Equation (19) allows for explicit treatment of the TMD and of the
TMDI with grounded inerter as special cases by taking β = 0 and CR = 0, respectively.

The solution of the optimization problem in Equation (19) is straightforward as the numerator of the FRF in Equa-
tion (18) becomes zero for ν = 1 and ξ = 0, for every x2, ψ , and ξ*. Still, given that in practical applications some TMDI
damping will always be present in anticipation of wide-band excitations (see also next subsection), it is instructive to
study the behavior of jH(ω1)j as function of the primary DVs for different TMDI inertial and connectivity properties.
To this end, Figure 2 plots jH(ω1)j on the ν–ξ plane for TMD (β = 0) and for TMDI with β = 40% and different CR
values. In all cases, the mass ratio is taken as μ = 0.1%, the inherent damping ratio is taken as ξ* = 2%, and the
deflected shape of the primary structure is assumed to be

ψ xð Þ¼ 1� cos
πx
2h

 �
, ð20Þ

FIGURE 2 Magnitude of the nondimensional FRF, H(ω1), in Equation (18) versus TMDI frequency ratio, v, and damping ratio, ξ, for

attached mass ratio μ = 0.1%, inertance ratios, β = 0 (ΤMD) and β = 40%, and connectivity ratios, (a) 2.5%, (b) 5.0%, and (c) 7.5%
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which is commonly adopted to approximate single-mode dynamic behavior of cantilevered structures whose response is
dominated by their first-mode shape.43 It is seen that the global jH(ω1)j minimum is reached at ν = 1 as ξ ! 0 and that the
TMDI becomes more effective than TMD throughout the primary variables design plane as CR increases. The latter observa-
tion is practically important as it suggests that connecting the inerter further away from the free end of the primary structure
enhances TMDI motion control for resonant harmonic loading even for nonoptimal (i.e., ξ > 0) TMDI damping ratios.

Further light on the optimal TMDI design for resonant harmonic loading is shed by examining numerical data in
Figure 3 where jH(ω1)j is plotted against TMDI frequency v for three different secondary mass ratios μ = [0.1%, 0.2%,
0.3%], inertance ratios β = [0, 20%, 40%], and connectivity ratios CR = [2.5%, 5.0%, 7.5%]. A fixed arbitrarily taken value
of TMDI damping ratio ξ = 5% is taken, while ξ* = 2% and the deflected shape of Equation (20) is assumed. It is seen
that improved free-end displacement reduction at a wider band of frequencies around the optimal value v = 1 is
achieved as the inertance ratio β and/or the connectivity ratio CR increase. On the antipode, the increase of the second-
ary mass has negligible effect to the motion control performance of the TMDI, though it is significant (beneficial) for
the TMD. Notably, similar trends on motion control performance of optimally designed TMDI have been reported in
previous works, which considered lumped-mass primary structures under earthquake and wind excitations.25,33 These
similarities indicate the capability of the simplified 2-DOF model of Section 2.1, derived from a primary structure with
continuously distributed mass and stiffness properties, to capture the salient dynamics of TMDI-equipped cantilevered
structures as well as to facilitate optimal TMDI tuning.

3.2 | Optimal design for white noise excitation

Turning the attention to mitigating primary structure motion to white noise excitation, TMDI optimal tuning is sought
in the second norm, H2, sense. Specifically, the primary DVs in vector x1 are determined to minimize the area under

FIGURE 3 Magnitude of the nondimensional FRF, H(ω1), in Equation (18) versus TMDI frequency ratio for various secondary mass

ratios, μ, inertance ratios, β, and connectivity ratios, CR
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the square magnitude of the nondimensional FRF in Equation (12) (objective function [OF]) for given secondary DVs
in vector x2 and for assumed primary structure deflected shape ψ and damping ratio ξ*. The underlying optimization
problem is mathematically written as

Amin ¼min
x1

ðωmax

0
H ωð Þj j2dω|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

objective function OFð Þ

8>>><
>>>:

9>>>=
>>>;

given x2 and subjected toxmin
1 ≤ x1 ≤ xmax

1 : ð21Þ

The solution to the above problem is nontrivial, and herein, pattern search44 is employed to find numerically x1 that
yields the minimum, Amin, value of the OF. For computational efficiency, a custom-made pattern search algorithm with
iteratively narrowing search range in a stepwise manner is hard coded in MATLAB®. In all the ensuing numerical
work, the initial search range in solving the optimization problem in Equation (21) is taken as x1

min = [0.0, 0.0]T and
x1

max = [2.0, 2.0]T. This initial search range is iteratively narrowed around the ν and ξ values, which minimize the OF
in the previous step, until the difference of Amin between two successive steps becomes smaller than a prespecified toler-
ance set equal to 10�2.

For numerical illustration, Figure 4 plots the OF in Equation (21) on the primary DV plane computed in three dif-
ferent successive steps/iterations of the pattern search algorithm for x2 = [40%, 0.1%, 7.5%]T, ξ1 = 2%, and primary
structure deflected shape in Equation (20). Optimal values ν( j), ξ( j), and Amin( j) for j = 1,2,3 iterations are indicated in
the plots. It is seen that the algorithm converges fast and that the OF is convex near the optimum, exhibiting a single
(global) minimum. The same behavior is noted in all cases examined later in this work. Moreover, in the inlet of
Figure 4c, the magnitude of the normalized FRF in Equation (12) for the optimally designed TMDI is plotted to demon-
strate the nature of the achieved optimality. It is seen that the free-end displacement FRF exhibits two distinct peaks of
almost equal height with a local minimum (valley) attained roughly at the uncontrolled fundamental frequency. These
two peaks correspond to the shifted vibration mode of the primary structure and the TMDI mode.

Further to Figure 4c, Figure 5 plots the magnitude of the FRF in Equation (12), jH(ω)j, for optimally designed
TMDIs to white noise excitation for the same x2 properties and primary structure considered in Figure 3. Evidently,
increased inerter and connectivity ratios are beneficial to the TMDI capability to mitigate primary structure motion for
white noise excitation just as for resonant harmonic excitation, while the mass ratio has negligible effect.

4 | GEOMETRIC SHAPE VARIATION OF PRIMARY STRUCTURE

4.1 | Geometric shape definition and derivation of fundamental mode shapes

Having established the applicability and usefulness of the simplified 2-DOF model presented in Section 2 to support
optimal TMDI tuning for motion control of cantilevered primary structures, the attention is turned to leveraging this

FIGURE 4 Iterative pattern search algorithm illustration for solving the optimization problem in Equation (21) for TMDI with mass

ratio μ = 0.1%, inertance ratio β = 40%, and connectivity ratio CR = 7.5%, and primary structure with ξ* = 2% and deflected shape in

Equation (20): (a) first iteration, (b) second iteration, and (c) third iteration
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model for investigating the influence of the primary structure geometry to the TMDI vibration suppression effective-
ness. To this aim, cantilevered beams with solid rectangular cross section, height h, constant width L, and varying depth
D(x) with height are considered as shown in Figure 6. The continuously varying depth allows to define beams with dif-
ferent smoothly tapered shapes inspired by real-life structures such as industrial chimneys,6 slender towers supporting
renewable energy generation,8,45 and tall buildings.4,5 Specifically, beams with five different geometric shapes shown in
Figure 6 are defined through the analytical expressions of the depth profiles, D(x), reported in Table 1. The uniform
shape “I” has constant depth profile assuming a square cross section. The nonconstant depth profiles of the other four
geometric shapes are specified with the aid of the depth ratio R = D(0)/D(h) (i.e., base depth over free-end depth). Pur-
posely, the base depth, D(0), is defined as a function of R (see Table 1) such that all shapes have the same total volume

FIGURE 5 Magnitude of the nondimensional FRF, H(ω), in Equation (12) for optimally designed TMDIs to white noise excitation for

various secondary mass ratios, μ, inertance ratios, β, and connectivity ratios, CR

FIGURE 6 Considered geometric shapes of cantilevered beam-like primary structures
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for any value of R. This consideration allows for establishing beams with different height-wise mass and flexural rigidity
distributions expressed as

m xð Þ¼ ρLD xð Þ and EI xð Þ¼ELD3 xð Þ
12

, ð22Þ

respectively, but with the same total mass equal to ρhL2, where ρ is the mass density. In this regard, these beams consti-
tute a practically meaningful set of parametrically defined primary structures for the purpose of assessing comparatively
the TMDI motion control effectiveness. This is because they attain different dynamic/modal properties, which do influ-
ence TMDI efficacy, but have equal total weight and material usage, which are directly linked to sustainability consider-
ations in construction.1

To provide an insight into the relative variation of mass and flexural rigidity distributions of the primary structures
in Figure 6, Figure 7 plots the ratio EI(x)/m(x) (i.e., flexural rigidity over mass) for different values of the depth ratio
R and for all four nonuniform geometric shapes. These plots are normalized by the constant ratio EI/m = EL2/12ρ of
the uniform shape. In all the panels of Figure 7, the same reference continuous curve corresponding to the uniform
shape (R = 1) is included to facilitate comparisons. It is seen that for all shapes (depth profiles D(x)), an increase in the
depth ratio R results in higher values of EI(x)/m(x) towards the base of the structure and lower values towards the free
end of the structure. Therefore, an increase of R defines primary structures that become increasingly more flexible with
height. Further, as shapes evolve from “II” to “V,” the rate of change of EI(x)/m(x) with height reduces faster; that is,
the primary structure becomes more flexible with height at a faster rate while the value [EI(h)/m(h)]/[EI(0)/m(0)]
reduces. In fact, for shapes “IV” and “V,” the ratio EI(x)/m(x) becomes practically constant x/h > 0.80 and x/h > 0.75,

TABLE 1 Analytical definition of primary structure geometric shapes in Figure 6 through the depth D(x) and the depth ratio R = D(0)/

D(h)

Shape Description

Depth at the base Depth at height x Depth at the tip

D(0) = D0 D(x) D(h)

I Uniform L L L

II Parabolic (concave) 3L/(2 + 1/R) D0 + D0(1/R � 1)(x/h)2 D0/R

III Linear 2L/(1 + 1/R) D0 + D0(1/R � 1)x/h

IV Double curvature 2L/(1 + 1/R) D0 + 1/2D0(1/R � 1)[1 � cos (πx/h)]

V Parabolic (convex) 3L/(1 + 2/R) D0 + D0(1 � 1/R)[(x/h)2 � 2(x/h)]

FIGURE 7 Rigidity over mass distribution plots for all considered geometric shapes (depth profiles in Table 1) and for various depth

ratios R of cantilevered beam-like primary structures
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respectively. Notably, these differences in the distribution of EI(x)/m(x) with height affect the properties of the primary
structure mode shapes as discussed later in this section.

Regardless of their geometric shape, the assumption that the dynamic response of the primary structure is domi-
nated by the first/fundamental mode shape, φ1(x), is made, which is reasonable for slender structures. In this respect,
the simplified 2-DOF model of Section 2 can be used in conjunction with the primary structures in Figure 6 by using
the mass and flexural rigidity distributions of Equation (22) in Equation (6) and by setting ψ(x) = φ1(x). For the pur-
poses of this work, the fundamental mode shape φ1(x) of the uncontrolled primary structures is numerically approxi-
mated using a FE approach. This is achieved by discretizing the primary structure using 40 tapered equal-length linear
Euler–Bernoulli beam elements. Then, a 41-DOF planar dynamic model is derived involving only one lateral transla-
tional DOF per FE node grid along the horizontal load direction in terms of a diagonal mass matrix and a full stiffness
matrix. The mass matrix is formed by lumping the own mass of the elements at the nodes, while the stiffness matrix is
constructed using standard static condensation to eliminate vertical and rotational DOFs at each FE node. Next, stan-
dard modal analysis is conducted to obtain the fundamental mode shape vector φ1∊ℝ41 � 1. The central difference
method is used to obtain numerically the second derivative of the mode shape vector (modal curvature), and the stan-
dard trapezoid quadrature rule is used to determine the integrals in defining the generalized primary structure proper-
ties in Equation (6).

The influence of the geometric shape of the primary structure to its fundamental mode is qualitatively seen in
Figure 8a,b. In Figure 8a, numerically derived fundamental modes are plotted for all five geometric shapes of Figure 6
and for the same ratio R = 3 (except for the uniform-shaped structure, which can only attain R = 1), while in Figure 8b,
fundamental modes for shapes “I” and “V” with different depth ratios R = 2, 3, 4, and 5 are plotted. It is observed that
as geometric shapes vary from “II” towards “V” for fixed R and as the ratio R increases for fixed shape, the convexity of
the modes increases. This is readily justified by the fact that the ratio EI(x)/m(x) takes on higher values (i.e., is always
heavier distributed) towards the base of the primary structure and reduces faster with height as R increases and/or as
shapes vary from “II” to “V” as previously discussed in view of Figure 7. In this work, the average modal curvature
along the height of the structure is used as an intuitive scalar quantitative metric to measure the convexity of the funda-
mental modal shape. The variation of this novel metric for the four nonuniform primary structures and for R = 2, 3, 4,
and 5 is reported in Figure 8c in which ordinates are normalized by the average curvature of the uniform primary struc-
ture. This is an important consideration for the purposes of this work as it will be seen, in subsequent sections, that the
average modal curvature of the primary structure correlates well with the TMDI motion control potential.

4.2 | Verification of the simplified 2-DOF model for optimal TMDI design and
performance assessment

Besides approximating the dynamic response of the primary structure via a single-mode shape, a major simplifying
assumption made in the 2-DOF model defined in Section 2 is that it does not account for the structure–TMDI

FIGURE 8 Numerically derived fundamental mode shapes and average modal curvature for primary structures with different depth

profiles (shapes) and depth ratios R
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interaction effect to this mode shape. Indeed, the inclusion of the TMDI alters locally the fundamental mode shape of
the primary structure, which, in turn, may affect the effectiveness of the optimal TMDI tuning if using the simplified
2-DOF model for the task. Thus, it is herein deemed important to verify the accuracy of the 2-DOF model for optimal
TMDI tuning vis-à-vis a more detailed model that can capture the structure–TMDI coupling as well as the effects of
higher modes. For the same reason, it is also deemed essential to verify the accuracy of the 2-DOF model for structural
performance assessment.

At this juncture, note that the combination of large R, β, and CR values leads to higher influence of the TMDI to mode
shapes since a large R specifies primary structures with a more flexible upper part while large β and CR result in higher
magnitude dashpot and inerter forces exerted to the primary structure (see Figure 13 later in the paper). Therefore, struc-
tures with high ratio R = 5 for shapes II–V and large TMDI inertance, β = 40%, and CR = 7.5% are used for the verifica-
tion of the 2-DOF accuracy. For each structure, two different dynamic systems are considered to determine the FRFH(ω)
used in the OF for optimal tuning. The first system is the 2-DOFmodel in Section 2 in which ψ(x) is set equal to the funda-
mental mode shape of the uncontrolled primary structure. This mode shape is estimated through modal analysis using
the 41-DOF FE model as detailed in Section 4.1. For this system, the H(ω) is determined using Equation (12). The second
system uses directly the 41-DOF FE modeling of the primary structure, which is augmented by an additional DOF for the
TMDI following the formulation of Giaralis and Petrini.31 The resulting 42-DOF model accounts for primary structure–
TMDI interaction explicitly, while H(ω) is determined using the frequency domain approach in Giaralis and Petrini.31

Next, two different sets of optimal TMDI primary DV values, νopt and ξopt, are computed by solving the optimization prob-
lem in Equation (21) using theH(ω) from the two different systems (the 2-DOF and the 42-DOF).

Table 2 reports the percentage difference of the two sets of optimal TMDI tuning parameters for all structures con-
sidered. In the same table, the deviation to the structural performance due to adopting different sets of TMDI tuning
parameters for each structure is also reported, measured in terms of RMS free-end displacement percentage difference
obtained from 42-DOF detailed models under white noise excitation. It is evidenced that the simplified 2-DOF model is
sufficiently accurate to be used for TMDI optimal tuning since errors to the tuning parameters are less than 0.2% for all
considered structures causing deviations to structural performance of 1% or less. Moreover, Table 2 furnishes differ-
ences to structural performance obtained by using the simplified and the detailed models and adopting the
corresponding sets of TMDI tuning parameters. It is seen that percentage differences are less than 2% across the board.
In view of these small differences, the 2-DOF model is used for optimal TMDI tuning and comparative performance
assessment of TMDI-equipped primary structures in all the ensuing numerical work. Note that this consideration expe-
dites significantly the computational work given that the evaluation of H(ω) for the 42-DOF model involves multiplica-
tions and inversion of 42-by-42 full matrices, which are computationally much more demanding than the evaluation of
H(ω) through Εquation (12). Hence, the practical merit of the model in Section 2 is established for optimal TMDI tun-
ing of generic cantilevered structures with dominant fundamental mode.

5 | PERFORMANCE ASSESSMENT OF TMDI-EQUIPPED STRUCTURES
WITH DIFFERENT GEOMETRIC SHAPES

In this section, the influence of primary structure geometric shape to the motion control effectiveness of TMDI is
assessed through a parametric numerical investigation, involving primary structures of different geometric shapes

TABLE 2 Absolute percentage differences of optimal TMDI tuning parameters and of RMS free-end displacements using 42-DOF

detailed FE models and 2-DOF simplified models of TMDI-equipped primary structures with μ = 0.3%, β = 40% and CR = 7.5%

Primary structure

I (R = 1) II (R = 5) III (R = 5) IV (R = 5) V (R = 5)

νopt 0.00% 0.05% 0.13% 0.09% 0.16%

ξopt 0.00% 0.00% 0.00% 0.00% 0.00%

RMS free-end displacement deviation 0.01% 0.49% 0.61% 0.30% 1.05%

RMS free-end displacement performance 1.88% 1.15% 1.22% 1.42% 1.69%

Note: Optimal tuning for white noise excitation is considered.

WANG AND GIARALIS 13 of 23



characterized by the depth ratio R = D(0)/D(h) and the depth profile D(x) in Table 1 and Figure 6. To this aim, TMDIs
with various μ, β, and CR properties are optimally tuned for resonant harmonic excitation or for white noise excitation
(as indicated in the text and figure captions) by solving the optimization problem in Equation (19) or (21), respectively.
In all structures investigated, ξ* = 2% inherent structural damping is assumed. To expedite computations, the 2-DOF
model of Section 2 with deflected shape ψ(x) equal to the fundamental mode shape of the primary structure is used for
TMD(I) tuning and for obtaining response quantities of interest throughout this section for the above excitations. Fun-
damental mode shapes are computed through modal analysis applied to FE models of the primary structures as detailed
in Section 4.2.

5.1 | Influence of depth ratio R to free-end displacement

First, attention is focused on investigating the influence of the depth ratio R = D(0)/D(h) of the primary structure to
the TMDI motion control efficacy. This is supported by plotting in Figure 9 the RMS free-end displacement of optimal
TMDI-equipped structures against CR for fixed depth ratios R = 2, 3, 4, and 5 and for each of the geometric shapes
II–V in Figure 6, separately. The same TMDI mass and inertance are considered for all structures of each panel of
Figure 9, taken as mTMDI = 0.1% � m*

Avg and b = 40% � m*
Avg, respectively, where m*

Avg is the average generalized
mass m* in Equation (6) of all the primary structures studied in all the panels of Figure 9. These assumed inertial
values are representative of low mass/weight and high inertance TMDIs, which were found to be quite effective and
advantageous over TMDs in earthquake25 and wind31 engineering applications as they relax requirements for large
secondary mass and reduce significantly the kinematics of the secondary mass. Both considerations are practically
important: the former leads, ultimately, to more lightweight and, therefore, economic absorbers; the latter reduces
needs for space/clearance to accommodate the absorber, as well as the cost of energy dissipation devices (dampers)

FIGURE 9 RMS free-end displacements of white noise excited TMDI-equipped structures for attached mass mTMDI = 0.1% � m*
Avg and

inertance b = 0.40 � m*
Avg for different geometric shapes and depth ratios normalized by the corresponding displacements of optimal TMD-

equipped structures and plotted against CR. Optimal tuning is for white noise excitation
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whose cost increases with the stroke (relative displacement between primary structure and secondary mass). For
each structure, TMDI is optimally tuned for white noise excitation using Equation (21). Further, the reported RMS
free-end displacements in Figure 9 are normalized by the RMS free-end displacement of the same primary structure
equipped with a same-mass TMD, which is optimally tuned by solving Equation (21) for b = 0. In all the panels of
Figure 9, the same reference continuous curve corresponding to the uniform shape (R = 1) is included to facilitate
comparisons.

It is seen that improved vibration suppression is achieved monotonically as CR increases (i.e., as the inerter links
the secondary mass further away from the free end) for all geometric shapes and R values and, thus, for all different pri-
mary structure mode shapes. In this regard, best performance is always achieved for TMDIs with grounded inerter
(CR = 100%), which have been widely studied in the literature.18,19,24,25,29,30,36 However, this performance improvement
saturates with CR quickly for all structures such that little improvement is achieved for CR > 30%. Further, for rela-
tively small CR values (less than about 3%), the TMD outperforms the TMDI (normalized free-end displacement is
higher than 100%). All the above observations agree with the trends reported in previous numerical studies examining
various TMDI-equipped lumped-mass models of different benchmark building structures exposed to wind or earth-
quake excitations.21,25,26,28,31,33 Hence, it is safe to conclude that these trends are applicable to any type of cantilevered
primary structure, and it is always beneficial to connect the second terminal of the inerter as further away from the free
end of the primary structure as structurally and economically feasible.

More importantly, reported data in Figure 9 evidence that optimal TMDI performance improves monotonically over
a same-mass TMD as the depth ratio R increases for fixed CR value and for any geometric shape considered. This
improvement is more substantial for lower CR values. This novel finding suggests that the TMDI becomes more effec-
tive as the upper part of cantilevered primary structures becomes more flexible (see discussion in view of Figure 7) for
same total structural weight. In this regard, from the structural design viewpoint, the CR can be traded for tapering of
the primary structure geometric shape in achieving a desired target structural performance for fixed inertial TMDI
parameters (i.e., mass mTMD and inertance b). For instance, for shape “V” in Figure 9d, the required CR for a
TMDI with mTMDI = 0.1% � m*

Avg and b = 40% � m*
Avg to achieve 50% better performance than a TMD with the same

mass reduces from 18% to 11% as the depth ratio increases from R = 2 to R = 4. In the first instance, this consideration
is practically useful as it leads to more lightweight vibration absorbers and, thus, more economical since the attached
mass is proportional to the up-front TMD(I) cost.26 The consideration is also beneficial in applications where con-
necting the inerter much below the top of the structure is practically challenging such as in the case of tall buildings
discussed in Wang and Giaralis38 and Kaveh et al.28 In this respect, increasing the depth ratio R of the primary structure
(or more generally designing the primary structure such that the flexural rigidity over mass ratio, EI(x)/m(x), reduces
faster with height) widens the applicability of the TMDI over the TMD. As an example, note that for shape “IV” in
Figure 9c, the critical CR value beyond which the TMDI outperforms the TMD is 7.4%, 5.1%, and 2.75% for depth ratios
R = 1 (uniform), R = 2, and R = 5, respectively.

5.2 | Influence of depth profile (primary structure shaping) to free-end displacement

In this section, the attention is turned to quantifying the influence of the depth profile, D(x), of primary structures on
the TMDI motion control potential. For this purpose, Figures 10 and 11 plot peak steady-state displacement under reso-
nant harmonic excitation and RMS free-end displacement under white noise excitation of primary structures with dif-
ferent geometric shapes equipped with TMDIs tuned for resonant harmonic and for white noise excitations,
respectively. Displacement values are normalized by the corresponding displacements of optimally tuned TMD-
equipped structure. In each horizontal row of panels of these two figures, 17 different primary structures are considered
with the same TMDI mass and inertance (though different horizontal rows use different μ and β ratios for comparison)
equal to mTMDI = μ � m*

Avg and b = β � m*
Avg, respectively, where m*

Avg is the averaged generalized mass in
Equation (6) across the 17 primary structures. TMDI parameters for resonant harmonic excitation are set as v = 1 and
ξ = 5%, while TMDI parameters for white noise excitation are determined numerically by solving Equation (21). A sam-
ple of optimal TMDI parameters, νTMDI and ξTMDI, for white noise excitation and for μ = 0.3%, β = 40%, and three CR
values (2.5%, 5.0%, and 7.5%) are plotted in Figure 12.

It is seen that, for sufficiently large CR values (5.0% and 7.5%), the TMDI motion control potential improves over
the TMD as the depth profile (shape) of the primary structure changes from shape “II” towards shape “V” for any fixed
R value and for both resonant harmonic and white noise excitations. With reference to Figure 8c, this trend suggests
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that improved TMDI performance is achieved as the average modal curvature of the primary structure increases or,
equivalently, as the fundamental mode shape of the uncontrolled structure becomes more convex (see Figure 8a,b). The
latter is accomplished by shaping the structures such that the flexural rigidity over mass ratio, EI(x)/m(x), reduces faster
with height (see Figure 7). To elaborate on this point, Figure 13 plots the peak and RMS free-end displacements for res-
onant harmonic and white noise excited structures versus the average modal curvature of Figure 8c in the upper and
lower rows of panels, respectively, corresponding to the middle row of panels of Figures 10 and 11, separately. It is seen
that, for CR≥5.0, the TMDI performance improves linearly with the average modal curvature at a similar rate (slope)
for all considered shapes and as R values increase, which establishes the beneficial effect of the average modal curvature
in TMDI-equipped cantilevered structures.

At the same time, it is also evidenced in Figure 10 that the improvement of the TMDI motion control effectiveness
over the TMD due to a change to the depth profile becomes more substantial for larger depth ratios. This is readily
attributed to the fact that R influences the value of [EI(h)/m(h)]/[EI(0)/m(0)] in a direct manner. For example, the
improvement of TMDI performance over TMD for harmonic excitation between primary structure shapes “II” and “V”
for the case of μ = 0.1%, β = 40%, and CR = 5.0% (Figure 10) is only 7.0% (from 17.2% to 24.2%) for R = 2 compared to
a much higher 24.0% (from 23.8% to 47.8%) for R = 4. Moreover, TMDI performance benefits more significantly by an
increase to R for depth profiles exhibiting faster reduction of the EI(x)/m(x) ratio with height (i.e., shapes “IV” and

FIGURE 10 Peak free-end displacement of TMDI-equipped structures under resonant harmonic excitation for attached mass

mTMDI = μ � m*
Avg, inertance b = β � m*

Avg, and various inerter connectivity ratios, CR, primary structure shapes, and depth ratios R.

Values are normalized by the corresponding displacement of optimal TMD-equipped structures. Optimal tuning is for resonant harmonic

excitation
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“V”). For instance, as R increases from 2 to 4, the TMDI relative performance to TMD improves by only 6.6% (from
17.2% to 23.8%) for shape “II” as opposed to 23.6% (from 24.2% to 47.8%) for shape “V” for the previous TMDI case and
harmonic resonant excitation.

Still, for the relatively low CR = 2.5% value (first column of panels in Figures 10 and 11), the TMD outperforms
the TMDI except for shapes IV and V with R = 4 and 5 and for the combination of large inertance β = 40% and
small secondary mass μ = 0.1%. With regard to the spectral content of the excitation, a comparison between
Figures 10 and 11 shows that optimal TMDIs are more effective in suppressing structural displacement response
due to harmonic excitation than white noise excitation than same-mass TMDs. For example, the TMDI with
μ = 0.1%, β = 40%, and CR = 5.0% achieves a 36.9% improvement in reducing the peak free-end displacement
under harmonic excitation (Figure 10) as opposed to a mere 11.5% improvement in reducing the RMS free-end
displacement under white noise excitation (Figure 11) for the primary structure shape “V” with R = 3. As a final
remark, it is noted that for all shapes and depth ratios, the relative motion control effectiveness of TMDI over TMD
improves significantly by increasing the inertance for both excitations, which can be seen by comparing the upper
vis-à-vis the bottom rows of panels in Figures 10 and 11. On the other hand, this improvement reduces with the
attached mass increasing, as seen by comparing the upper vis-à-vis the middle rows of panels in Figures 10 and 11.
These trends confirm that, irrespective of the primary structure shape, the TMDI attached mass can be traded off
to inertance in order to achieve some target structural performance as has been exhaustively demonstrated and
discussed in the literature.23,33

FIGURE 11 RMS free-end displacement of TMDI-equipped structures under white noise excitation for attached mass

mTMDI = μ � m*
Avg, inertance b = β � m*

Avg, and various inerter connectivity ratios, CR, primary structure shapes, and depth ratios R.

Values are normalized by the corresponding displacement of optimal TMD-equipped structures. Optimal tuning is for white noise excitation
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5.3 | Influence of depth profile (primary structure shaping) to TMDI stroke and control
forces

Having quantified the influence of primary structure shaping on the performance of TMDI-equipped structures in
terms of free-end displacement, it is herein deemed essential to gauge the influence of the same on the attached mass

FIGURE 12 Optimal TMDI tuning parameters for white noise excitation, attached mass mTMDI = 0.3% � m*
Avg, inertance

b = 0.4 � m*
Avg, various inerter connectivity ratios, CR, primary structure shapes, and depth ratios R

FIGURE 13 Free-end displacement of TMDI-equipped structures under resonant harmonic (upper row) and white noise excitation

(lower row) as function of normalized average modal curvature (Figure 8c) for attached mass mTMDI = 0.3% � m*
Avg, inertance

b = 0.4 � m*
Avg, and various inerter connectivity ratios, CR, primary structure shapes, and depth ratios R. Values are normalized by the

corresponding displacement of optimal TMD-equipped structures
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stroke (relative displacement to the free-end displacement), the damping force, and the inerter force. This is because
these three quantities are important to the practical design of TMDI-equipped structures. Specifically, TMDI stroke
demands relate to the required clearance in housing the attached mass to avoid collisions as well as to the cost of the
damping device.26 Further, the magnitude of the damping and the inerter forces also relate to the cost of the devices
and may necessitate special design provisions at the connections of the devices to the primary structure to safely accom-
modate locally the exerted forces.31

The upper row of panels in Figure 14 furnishes bar plots of RMS stroke values σstroke in Equation (17) for the same
structures considered in the upper row of panels in Figures 10 and 11, normalized by the corresponding RMS stroke of
optimal TMDs. These data confirm that, irrespective of the primary structure shape, the inclusion of the inerter to the
TMD reduces dramatically the attached mass stroke (by more than 90% for all structures considered) as has been
reported in several previous studies.31,33 Nevertheless, it is seen that this relative reduction does not depend signifi-
cantly on the variation of the primary structure shape due to different depth profile and/or depth ratio. However, the
reduction of the RMS stroke with respect to the TMDI stroke for uniform primary structure with CR = 2.5% depends
appreciably on the primary structure shape with more than 40% further reduction observed for all the nonuniformly
distributed shapes (bottom row of panels in Figure 14), while it is insensitive to CR. The reduction trends of RMS stroke
with respect to the primary structure shape are consistent with the free-end displacement improvement in Figures 10
and 11 and, therefore, very well correlated with the average modal curvature of the primary structure mode shape in
Figure 8c. This observation leads to the practically welcoming conclusion that appropriate primary structure shaping,
along the same lines as discussed previously, achieves simultaneous reductions in both free-end displacement and
TMDI secondary mass stroke.

Further, Figure 15 reports the RMS inerter force, σfb (upper row of panels), and damping force, σfc (bottom row of
panels), in Equation (17) for the same structures considered in the first row of panels in Figures 10 and 11, normalized
by the corresponding forces developing in the uniform primary structure for CR = 2.5%. For all shapes considered,
damping forces are seen to increase appreciably with the depth ratio R for fixed depth profile and CR, whereas the
increase in inerter forces is less significant. These trends are further visualized in Figure 16, which plots curves of per-
formance (RMS free-end displacement) versus inerter and damping forces for fixed primary structure shapes and differ-
ent R values. It is seen that, for CR ≥ 5.0%, a positive correlation exists between the depth ratio R and the control forces

FIGURE 14 RMS TMDI attached mass stroke for TMDI-equipped structures under white noise excitation for attached mass

mTMDI = 0.1% � m*
Avg, inertance b = 0.4 � m*

Avg, and various inerter connectivity ratios, CR, primary structure shapes, and depth ratios R.

In the upper row of panels, values are normalized by the corresponding stroke of TMD-equipped structures, and in the bottom row of

panels, values are normalized by the stroke of TMDI uniform-shaped structure with CR = 2.5%
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within an optimal TMDI design setting. More importantly, structural performance improves almost linearly with the
control forces as R increases with higher rate of improvement as the depth profile evolves from “II” towards “V.” From
a structural design viewpoint, the significance of the above trend is that higher control forces need to be accommodated
by the primary structure in case of leveraging R for improved structural performance.

FIGURE 15 RMS inerter resisting force (upper row of panels) and damping force (bottom row of panels) for attached mass,

mTMDI = 0.1% � m*
Avg, inertance b = 0.4 � m*

Avg, and various inerter connectivity ratios, CR, primary structure shapes, and depth ratios R

normalized by the corresponding values of optimal TMDI for the uniform primary structure with the inerter connectivity ratio, CR = 2.5%

FIGURE 16 RMS free-end displacement versus RMS inerter force (upper row of panels) and damping force (bottom row of panels) for

attached mass, mTMDI = 0.1% � m*
Avg, inertance b = 0.4 � m*

Avg, and various inerter connectivity ratios, CR, primary structure shapes, and

depth ratios R. All quantities are normalized by the corresponding values of optimal TMDI for the uniform primary structure (R = 1) with

CR = 2.5%
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Meanwhile, for the cases that TMDI outperforms TMD (CR = 5% and 7.5%), it is seen that the inerter force reduces
as the depth profile varies from type “II” to type “V” for fixed R (first row of panels in Figure 15). In this respect, judicial
selection of depth profile rather than increase of the depth ratio may be preferable for improving structural perfor-
mance in applications where the magnitude of the inerter force acting at height χ to the structure is critical in design as
can be appreciated by examining the first row of panels in Figure 16. Similarly, the magnitude of the damping force is
influenced significantly from the depth profile and the depth ratio, as evidenced by the second row of panels in
Figure 15. For CR = 5% and 7.5%, damping force increases as structural performance improves and as depth profile
changes from type “II” to type “IV” for fixed R. However, damping forces reduce slightly when going from shape “VI”
to “V” for fixed R, while the structural performance remains almost the same as seen in Figure 16.

Collectively, the previous observations and data in Figures 15 and 16 suggest that TMDI damping and inerter con-
trol force demands might be contained through judicial shaping of primary structure. This is an important practical
consideration since the up-front cost of dampers and inerter devices is well related to the force they need to be
designed for.

6 | CONCLUDING REMARKS

The significance of the geometric shape of cantilevered primary structures to the motion control efficacy of the TMDI
under resonant harmonic as well as white noise excitations has been herein established. This was achieved through an
innovative parametric study involving a wide range of tapered beam-like primary structures with different continuously
varying flexural rigidity, EI(x), and mass, m(x), properties but same total weight equipped with TMDIs optimally tuned
for resonant harmonic and for white noise excitation. Optimal TMDI tuning and structural performance assessment
was expedited through a novel simplified 2-DOF dynamic model in which the primary structure is represented by a
generalized SDOF system to accounts for its flexural rigidity and mass distribution as well as its fundamental vibration
mode and the location that the inerter connects to the primary structure (CR). The accuracy of the simplified model for
TMDI tuning and performance assessment has been numerically verified vis-à-vis detailed FE modeling of primary
structures. Structural performance of TMDI-equipped primary structures with different shapes was expressed in terms
of peak and RMS free-end displacement for harmonic and white noise excitation, respectively. Further, RMS values of
TMDI stroke, inerter force, and damping force were also presented.

Numerical data demonstrated that TMDI motion control efficiency improves monotonically with increasing
inertance and CR (distance of inerter connection to the primary structure from the free end) irrespective of the primary
structure shape at a reduced rate with best performance always achieved for grounded inerter. More importantly, it was
found that improved TMDI performance as well as reduced TMDI stroke are achieved for primary structure shapes in
which the ratio EI(x)/m(x) reduces faster with height rendering the upper part of the primary structure more flexible
compared to its base. The beneficial effect of such geometric primary structure shaping was attributed to an increase in
the convexity of the fundamental vibration mode of the primary structure measured through the averaged modal curva-
ture over height. This was showcased by demonstrating excellent correlation between structural performance improve-
ment and increase of the average modal curvature. In this respect, the herein reported numerical results establish that
shaping the uncontrolled primary structure for faster reduction of EI(x)/m(x) is beneficial from a performance-oriented
structural design viewpoint as it relaxes requirements for attached mass, leading to more lightweight absorbers and/or
reduces requirements of CR, which allows for the inerter to be connected closer to the free end of the primary structure.
The former is important as it leads to more lightweight absorbers, the latter is important as it extends the applicability
of TMDI to structures where connecting the inerter away from the free end is practically challenging/prohibitive. Fur-
thermore, it was also found that the primary structure shape influences significantly the TMDI inerter and damping
control forces exerted to the primary structure and demonstrated that the magnitude of these forces may be reduced
through judicial shaping of the primary structure without compromising structural performance.

As a closing note, the fact that the TMDI motion control potential is heavily dependent on the primary structure
elastic and mass properties and, ultimately, on the global modal shape of the uncontrolled structure suggests that
tailored application-dependent structural design may be key for improved performance of TMDI-equipped structures
to dynamic excitations, besides optimal TMDI tuning and inerter connectivity (CR). In this regard, it is envisioned
that the numerical data furnished in this study will serve as a useful first stepping stone towards future research
endeavors combining optimal device tuning with structural design for ever-more resilient structures to dynamic
excitations.
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