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a b s t r a c t 

Representations of sensory working memory can be found across the entire neocortex. But how are verbal work- 

ing memory (VWM) contents retained in the human brain? Here we used fMRI and multi-voxel pattern analyses 

to study Chinese native speakers (15 males, 13 females) memorizing Chinese characters. Chinese characters are 

uniquely suitable to study VWM because verbal encoding is encouraged by their complex visual appearance and 

monosyllabic pronunciation. We found that activity patterns in Broca’s area and left premotor cortex carried 

information about the memorized characters. These language-related areas carried (1) significantly more infor- 

mation about cued characters than those not cued for memorization, (2) significantly more information on the 

left than the right hemisphere and (3) significantly more information about Chinese symbols than complex visual 

patterns which are hard to verbalize. In contrast, early visual cortex carries a comparable amount of information 

about cued and uncued stimuli and is thus unlikely to be involved in memory retention. This study provides 

evidence for verbal working memory maintenance in a distributed network of language-related brain regions, 

consistent with distributed accounts of WM. The results also suggest that Broca’s area and left premotor cortex 

form the articulatory network which serves articulatory rehearsal in the retention of verbal working memory 

contents. 
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ntroduction 

There has been increasing interest in the neural basis of work-

ng memory (WM) storage in recent years ( Christophel et al., 2017b ;

’Esposito and Postle, 2015 ; Leavitt et al., 2017 ; Miller et al., 2018 ).

his work, however, mainly focused on visual and other sensory forms

f working memory to identify storage using fMRI and multi-voxel pat-

ern analysis (MVPA). Recent studies used this approach, for example,

o identify cortical regions representing low-level visual features such as

rientation ( Ester et al., 2015 ; Stephenie A. Harrison and Tong, 2009 )

nd color ( Serences et al., 2009 ), motion information ( Emrich et al.,

013a ; Riggall and Postle, 2012 ), auditory information ( Kumar et al.,

016 ; Linke and Cusack, 2015 ), tactile patterns ( Schmidt and Blanken-

urg, 2018 ), spatial locations ( Jerde et al., 2012 ) and object information

 Lee et al., 2013 ). Work on verbal working memory, however, is scarce
∗ Corresponding authors. 

E-mail addresses: chang.yan@bccn-berlin.de (C. Yan), tbchristophel@gmail.com (
1 These authors contributed equally. 

(  

ttps://doi.org/10.1016/j.neuroimage.2020.117595 

eceived 20 June 2020; Received in revised form 14 October 2020; Accepted 18 Nov

vailable online 26 November 2020 

053-8119/© 2020 Published by Elsevier Inc. This is an open access article under th
nd lacks specificity for the remembered verbal content. Recent work

sing fMRI and MVPA, for example, employed English words and pseu-

owords as stimuli, but decoded the contrast between stimulus-domains

verbal versus nonverbal) instead of decoding the actual memorized

ontent ( Lewis-Peacock et al., 2012 ; Yue et al., 2019 ). Using EEG, a

ifferent group of researchers was able to decode which of two letters

‘L’ & ‘T’) subjects were currently memorizing ( Polanía et al., 2011 ),

ut could not ascertain whether they were reading out visual or verbal

orking memory due to the limitations of the stimulus set. Thus, where

n the human brain the contents of verbal working memory are stored

as remained an open question. 

This question is part of an ongoing debate between traditional

iews of working memory which localize storage to a central store

n frontal regions ( Goldman-Rakic, 1995 ) and views allocating stor-

ge to a distributed network of regions spanning the entire neocortex

 Christophel et al., 2017b ; Fuster, 1995 ; Postle, 2006 ; Zimmer, 2008 ).
T.B. Christophel). 
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he traditional view was challenged by recent MVPA work which de-

oded stimulus-specific WM contents in different posterior brain areas

uch as visual cortex ( Emrich et al., 2013a ; Stephenie A. Harrison and

ong, 2009 ; Riggall and Postle, 2012 ), auditory cortex ( Kumar et al.,

016 ; Linke and Cusack, 2015 ), hMT + ( Christophel and Haynes, 2014 ;

mrich et al., 2013a ), the frontal eye fields (FEF; Jerde et al., 2012 )

nd posterior parietal cortex ( Christophel et al., 2012 ; Christophel and

aynes, 2014 ; Jerde et al., 2012 ). Notably, some recent studies found

ontent-specific working memory storage of objects ( Lee et al., 2013 ),

rientation ( Ester et al., 2015 ) and auditory stimuli ( Kumar et al., 2016 )

n both lateral prefrontal and posterior sensory regions. This recent work

ave credence to a long-standing alternative perspective which postu-

ated distributed representations in both posterior and frontal regions

 Christophel et al., 2017b ; Fuster, 1995 ; Postle, 2006 ; Zimmer, 2008 ).

hese findings raised a question whether these dual representations of

emorized contents are redundant. Instead, we have argued for a divi-

ion of labor where anterior regions represent abstract, semantic or ver-

al representations of memorized contents, while sensory regions main-

ain non-verbal sensory details of stimuli ( Christophel et al., 2017b ).

ritically, our account of working memory storage predicts that verbal

orking memory storage in anterior regions is predominantly limited to

eft-hemispheric areas involved in language perception and production.

Here, we thus aimed at identifying neural circuits representing ver-

al working memory contents to (1) identify verbal working memory

tores to allow for further exploration of verbal storage specifically and

o (2) add to our understanding of the distribution of working memory

torage in general. We asked Chinese native speakers to perform a dif-

cult delayed match-to-sample task in a MRI scanner. Prior work indi-

ates that Chinese characters which feature monosyllabic pronunciation

ombined with a complex visual appearance, are predominantly memo-

ized verbally rather than visually ( Hue and Erickson, 1988 ; Zhang and

imon, 1985 ). Thus, Chinese characters are uniquely suitable for the

tudy of verbal working memory as compared to roman letters or words.

e measured BOLD activity throughout the brain using fMRI while sub-

ects memorized well-known simplified Chinese characters over an ex-

ended delay. Critically, we employed retro-cues to distinguish between

nemonic activity and activity related to reading and encoding the

ample characters ( Albers et al., 2013 ; Christophel et al., 2012 ; S. A

arrison and Tong, 2009 ; Schmidt et al., 2017 ; Sprague et al., 2014 ).

hen we probed the entire human brain for brain patterns representing

he individual memorized characters using a cross-validated multi-voxel

attern analysis (cvMANOVA; Allefeld and Haynes, 2014 ) and a search-

ight approach ( Kriegeskorte et al., 2006 ). 

aterials and methods 

articipants 

Thirty healthy right-handed literate native speakers of simplified-

hinese (age between 18 and 35 years old) who had been raised in

ainland China with normal or corrected-to-normal vision participated

n the experiment. Handed-ness was self-reported. All participants had

ompleted at least 12 years of school education in China which en-

ured their familiarity with frequently used Chinese characters. The

ample size was chosen based on our experience with content-specific vi-

ual working memory signals ( Christophel et al., 2012 ; Christophel and

aynes, 2014 ), but was increased considerably. Subjects gave informed

onsent and the study was approved by the local ethics committee. Two

articipants were excluded due to poor behavioral performance (Figure

1a). The final sample included 15 males and 13 females (age 27.25 ±
.78 years old). 

timuli 

The stimuli used in this study were simplified Chinese characters

ith high familiarity among native Chinese speakers and comparable
isual complexity (Figure b). Simplified Chinese characters have been

fficially used in mainland China and Singapore since the 1950s. The

amiliarity was ensured by drawing stimuli from the ‘List of Frequently

sed Characters in Modern Chinese’ ( Ministry of Education of the Peo-

le’s Republic of China, 1988 ), which contains the 3,500 most frequently

sed Chinese characters with between 1 and 23 strokes. The number

f strokes of which a given character is composed is often regarded as

 way to measure its visual complexity ( Zimmer, 2008 ). Here, we de-

ided for characters with 12 strokes, because 12-stroke characters are

ufficiently complex while at the same time being frequent enough to

rovide a sufficient number of characters in the frequent list. Images

or all characters were taken from a database provided by the Mojikyo

nstitute ( http://www.mojikyo.org/ ), with the same size and font. In ad-

ition, five native Chinese speakers were required to evaluate how well

hey knew every character with 12 strokes and its pronunciation (in to-

al 320 characters with 12 strokes from the list). Only characters, which

ere rated as ‘exact recognition’ by all five native speakers, were se-

ected for the stimulus pool. Furthermore, Chinese characters with sym-

etric structure (such as which means ‘crystal’) were left out due to their

omparatively low visual complexity. As a result, 240 well-known sim-

lified Chinese characters with 12 strokes were selected for the stimulus

ool for this study. 

To allow for subsequent fMRI multi-voxel pattern analysis, a limited

umber of sample stimuli were chosen for each participant to remember.

ndividual sample sets of 10 Chinese characters were generated based

n criteria that characters of the same sample set presented different

ronunciations (neither common consonants nor common vowels), low

ixel-by-pixel correlation (Pearson correlation ≤ 0.1) and similar pro-

ortions of black pixels (difference ≤ 10%). A different sample set was

enerated for every participant. During scanning, stimuli were presented

ia a projector. 

xperimental design 

We used a retro-cue based match-to-sample task with a 10 s delay

eriod ( Figure a ). A trial began with the sequential presentation of two

ample stimuli. Each sample stimulus was shown for 500 ms, followed

y a fixation period of 200 ms. Then a retro-cue (‘1’ or ’2’) was presented

n a background of a black and white checkerboard for 500 ms. The

etro-cue instructed subjects whether to remember the first or the second

ample stimulus in each trial (cued & uncued sample; Sperling, 1960 ).

his was followed by the presentation of a blank screen (with only the

xation point) for 9.5 s, resulting in an overall delay of 10 s. Then a

equence of three test screens was shown, each for 200 ms, separated

y 300 ms. Each test screen contained two test characters. Subjects were

equired to find the retro-cued sample character among six test charac-

ers. This difficult variant of a match-to-sample task required subjects

o identify the memorized item out of a larger set of stimuli (chance

evel: 16.67%) to minimize ceiling effects. After the offset of the third

est screen, they had 1400 ms to respond by pressing the corresponding

utton. A pair of MR-compatible button boxes with 2 × 4 buttons (using

he first three buttons on both sides) was employed to collect six pos-

ible response options. Participants were required to fixate throughout

he trial. 

All test stimuli were partly occluded to discourage subjects from

emorizing only a small part of the character. Randomly, two out of

ine patches that covered the whole stimulus space were occluded for

ll test characters in each trial. Critically, subjects deliberately received

o instruction on how subjects should memorize the stimuli to avoid

iasing them in favor verbalization as we aimed at avoiding verbaliza-

ion that might have played no functional role in retaining the stimuli.

ubjects were simply informed of the sequence of events and which but-

ons were needed to indicate the matching character. In addition, they

ere told to attend more carefully to the first stimulus in each trial to

inimize recency effects. 

http://www.mojikyo.org/
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The total duration of a trial was 14 s, followed by a variable inter-

rial interval of 2–8 s (average: 4.8 s). Every subject completed an fMRI

ession of 4 runs, with 50 trials per run. Every Chinese character from

he sample set was presented five times per run and 20 times in total as

he cued sample. The trial order was randomized. The experiment was

rogrammed using Matlab (Mathworks, Natick, MA) and Cogent 2000

 http://www.vislab.ucl.ac.uk/cogent_2000.php ). 

Please note that this design does not include any variation of sample

ize ( Braver et al., 1997 ; Chen and Desmond, 2005 ; Cohen et al., 1997 ;

irschen et al., 2010 ; Rypma et al., 1999 ) or the class of memorized

ontent (i.e. verbal versus nonverbal content D’Esposito et al., 1998 ;

ystrom et al., 2000 ; Paulesu et al., 1993 ) nor does it have trials where

ubjects do not have to memorize any samples for extended periods of

ime ( Collette et al., 1999 ; Crosson et al., 1999 ; Koelsch et al., 2009 ;

chumacher et al., 1996 ; Smith et al., 2001 ). This limitation prohibits

s from running univariate comparisons between task conditions which

re comparable with prior work. 

ata acquisition 

Functional MRI was measured on a Siemens 3 Tesla Trio scanner at

he Berlin Center for Advanced Neuroimaging (BCAN). Both structural

RI data (T1-weighted MPPRAGE: 192 sagittal slices; TR = 1900 ms;

E = 2.52 ms; flip angle = 9°; FOV = 256 mm) and functional BOLD

mages (T2 ∗ -weighted gradient-echo EPI: 32 contiguous slices; whole

eocortex; TR = 2 s; TE = 30 ms; voxel size = 3 × 3 × 3 mm; matrix

ize = 64 × 64 × 32; slice gap = 0.6 mm; descending order; flip an-

le = 90°; FOV = 192 mm) were acquired during the scanning. In each

f the four experimental runs, 473 functional images were collected per

articipant. The onset of each trial was locked to the onset of the ac-

uisition of an fMRI image to reduce temporal variability in the data

nalysis. All data is available upon request. 

tatistical analysis 

We employed cross-validated MANOVA ( Allefeld and Haynes, 2014 )

 form of multivariate pattern analysis combined with searchlights

 Kriegeskorte et al., 2006 ) to estimate brain regions holding content-

pecific information about Chinese symbols during the delay through-

ut the brain. Preprocessing was restricted to motion correction only, in

rder to maintain the fine spatiotemporal properties of the fMRI activity

nd therefore maximize the sensitivity of MVPA. Statistical analysis of

MRI data was performed using SPM8 ( Friston K. J. et al., 1994 ) and

vMANOVA ( Allefeld and Haynes, 2014 ). 

The purpose of MVPA is to assess whether multivariate fMRI data

ontain information about differences between experimental conditions,

.e. whether the experimental manipulation induces different multi-

ariate distributions in the data. Conventional classifier-based MVPA

 Haynes and Rees, 2006 ) quantifies a multivariate effect by the accuracy

f a classifier in distinguishing data belonging to different experimen-

al conditions. Instead, cvMANOVA is based on multivariate analysis of

ariance (MANOVA; Timm, 2004) and quantifies the amount of multi-

ariate variance explained by a specific contrast, in units of the multi-

ariate error variance. To do so, it uses the multivariate form of the gen-

ral linear model with the same regressors as would be used in univari-

te fMRI analysis. It has a number of advantages over classifier-based

pproaches: It replaces binary classification with a continuous measure

f patterned differences, performs a parameter-free analysis based on a

robabilistic encoding model of the data (the multivariate general linear

odel) and results in an interpretable and unbiased estimate of multi-

ariate effect size (explained variance). Moreover, because cvManova

mploys a cross-validated variant of a likelihood-ratio statistic, it can

e shown to be more sensitive than classification accuracy (see Fig. 3d

n Allefeld and Haynes, 2014 ). For these reasons, cvMANOVA has been

sed throughout our recent work ( Christophel et al., 2018 , 2017 ). Other
han standard MANOVA, cvMANOVA uses leave-one-session-out cross-

alidation to obtain an unbiased estimate of the explained multivari-

te variance, called pattern distinctness D ( Allefeld and Haynes, 2014 ).

 consequence of this is that if the true amount of explained variance

s 0, estimated values of D vary around 0 (for more details, please see

llefeld and Haynes, 2014 ). Notably, we employed a multivariate anal-

sis approach to increase sensitivity and cannot make any inferences

bout the multivariate nature of the underlying signals ( Hebart and

aker, 2018 ). 

We modeled the delay-period activity in response to the memorized

ample stimulus in each trial using 5 finite impulse response (FIR) re-

ressors representing 5 fMRI scans acquired during the delay period

10 s delay at a TR of 2 s). For 10 memorized sample Chinese characters

his resulted in 50 regressors (plus the constant regressor) for each of

he four runs. We wanted to know whether the difference between the

0 memorized characters induced a difference in the multivariate dis-

ribution of the data in any one of the 5 FIR bins. For a given FIR bin,

he corresponding contrast matrix contained 9 component contrasts (Is

here a difference between character 1 and 2, character 2 and 3, […],

haracter 9 and 10?). These were repeated for all FIR bins, leading to

 × 9 = 45 component contrasts overall. The resulting contrast matrix

ad the following form (showing only the 5 component contrasts for the

omparison character 1 vs 2): 

 

′ = 

⎛ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎝ 

1 0 0 0 0 −1 0 0 0 0 ⋯ 

0 1 0 0 0 0 −1 0 0 0 ⋯ 

0 0 1 0 0 0 0 −1 0 0 ⋯ 

0 0 0 1 0 0 0 0 −1 0 ⋯ 

0 0 0 0 1 0 0 0 0 −1 ⋯ 

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱ 

⎞ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎠ 

Each row of 𝐶 

′ had 50 entries corresponding to the 50 regressors,

nd there were 45 rows corresponding to the 45 component contrasts.

aken together, this contrast implemented the null model that in none

f the 5 FIR bins there was a change in the multivariate distribution

etween the 10 conditions (memorized characters). cvMANOVA esti-

ates the amount of multivariate variance in the data that goes beyond

his null model and therefore quantifies evidence that there is indeed

n effect of the memorized character. cvMANOVA was combined with

earchlight analysis ( Kriegeskorte et al., 2006 ). For this the analysis was

pplied to a set of voxels within a spherical mask with radius of 5 vox-

ls that was centered on a given voxel, and this was repeated for each

oxel throughout the brain in turn. We increased the searchlight ra-

ius as compared to our prior work to (a) to increase sensitivity and

b) to account for potential variation in function-anatomy association

n more anterior regions ( Grodzinsky and Santi, 2008 ; Schlaepfer et al.,

995 ). This resulted in a statistical parametric map of pattern distinct-

ess values SPM{ 𝐷} which reflected the local information content of the

xperimental data. These 𝐷-images were co-registered to the anatomi-

al image, normalized using unified segmentation and smoothed with a

aussian kernel of 3 mm FWHM. The resulting maps were then statis-

ically assessed using a one-sample one-sided 𝑡 -test against zero across

ubjects. Please note that one-sample t-tests do not provide population

nference ( Allefeld et al., 2016 ). Brain regions with values of pattern dis-

inctness significantly larger than zero contain information about mem-

rized Chinese characters during the delay period, which therefore can

e considered as potential storage areas for verbal working memory. 

To further interrogate these findings, we used a number of planned

omparisons assessing whether the areas found carried information (1)

electively attributable to working memory, (2) selectively in the left

emisphere and (3) selectively during verbal rather than visual work-

ng memory. For this, we performed statistical comparisons using data

rom the cluster peaks of the main analysis showing the strongest effect.

n detail, we used the (up to) three peaks with the highest T-value for

ach cluster (shown in Table S1), extracted D for these peaks from the

espective searchlight maps and averaged them for each cluster. We fo-

used these analyses on peaks rather than clusters to minimize effects

http://www.vislab.ucl.ac.uk/cogent_2000.php
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f thresholding on the data compared. Please note that while the peaks

re identified as individual voxels, they represent D calculated from hun-

reds of voxels used in the searchlights in individual subject space. First,

o test whether perceptual activity elicited by merely perceiving and

eading the samples had leaked into delay period, we also performed

 variant of the main analysis using those samples that were presented

t the beginning of the trial but were not cued for memorization. This

nalysis was identical to the main analysis which focused on the mem-

rized samples, but all labels were reassigned to represent the not cued

tem. Thus, the model for the uncued condition was identical to the cued

ondition, except that the FIR regressors modeled not the memorized

haracter but the not cued character. Critically, this analysis focused

n the same 5 delay period time points as the main analysis. Second,

e also asked whether the regions found showed signs of lateralization.

earchlight multivariate pattern analyses regularly produce asymmet-

ic patterns of results ( Christophel et al., 2015 , 2012 ; Christophel and

aynes, 2014 ). This asymmetry, however, can be a result of threshold-

ng. For this reason, arguing for lateralization requires explicit testing

 Davidson and Irwin, 1999 ). Here, we compared data extracted from

luster peaks with data from their right hemispheric counterparts by

irroring these peaks on the sagittal center plane in mni space (x = 0).

Third and finally, we directly compared our results to data from

wo previously published studies where subjects memorized complex vi-

ual pattern stimuli with little verbal content ( Christophel et al., 2012 ;

hristophel and Haynes, 2014 ). The analysis was identical to the main

nalysis for memorized Chinese characters above, but used data, time

tamps and sample labels from these previously published data sets. Full

etail for these additional studies is reported in the respective publi-

ations ( Christophel et al., 2012 ; Christophel and Haynes, 2014 ). The

tudies shared a very similar overall design (same MRI scanner, trial-

canner time locking, two samples, masks and retro cues, similar delay,

rial, run and experiment duration) but varied in minorly in scanning

arameters (acquisition order, slice gap, flip angle), number of samples

sed per subject and the task at the end of the delay. 

esults 

ehavioral results 

Behaviorally, two participants were excluded because of their poor

erformance compared to other participants (performance more than

wo standard deviations below the group average; Fig. S1a ). The re-

aining 28 subjects reached on average an accuracy of 87.64% (SEM ±
.17%) and a reaction time of 735 ms (SEM ± 26 ms). 

VPA analysis results 

Patterns of brain activity during maintenance were analyzed using a

ultivariate pattern analysis approach (searchlight-based cvMANOVA;

llefeld and Haynes, 2014 ; Kriegeskorte et al., 2006 ) to identify brain

egions encoding content-specific information about Chinese symbols. 

We first asked which brain regions held significant stimulus-

nformation during the delay. We found three brain regions with signals

hat held significant information about memorized Chinese symbols dur-

ng the delay period (one-sample one-sided t -test, P FWE < 0.05 cluster-

evel corrected, with cluster-defining threshold of P < 0.001; N = 28;

ee Fig. 2 Figure 1a & Table S1 ). One brain region covers the pars or-

italis and pars triangularis of the left inferior frontal gyrus (BA 45, 46

 47; cluster-level corrected P FWE = 0.038), overlapping with the ante-

ior part of what is generally defined as Broca’s area ( Pulvermüller and

adiga, 2010 ). Another cluster is in the left premotor cortex (lPMC; BA

, 8 & 9; cluster-level corrected P FWE < 0.001), located anterior to the

rimary motor cortex and covers a major part of the precentral gyrus

nd the posterior part of the middle frontal gyrus in the left hemisphere.

he last cluster is in early visual cortex in both the left (Brodmann area
7 & 18; cluster-level corrected P FWE < 0.001) and the right hemisphere

Brodmann area 17, 18 & 19; cluster-level corrected P FWE = 0.004). 

We then asked whether the information that we found could be

niquely attributed to mnemonic processing. This is a necessary step,

s information about a memorized item during the delay period might

e a result of merely perceptual representations of the sample stimuli

hich persist long after stimulus offset due to hemodynamic lag. For

his, we made use of the retro-cue information embedded in our design.

e tested whether the regions reported above carried more informa-

ion about the memorized (cued) characters as compared to characters

hich could be forgotten (uncued) after the retro-cue was presented. An

rea involved exclusively in the perception of a given character but not

n the memorization would carry similar information for the cued and

he uncued stimulus. Due to hemodynamic lag, this perceptual infor-

ation might ‘leak’ into the delay and therefore mask as mnemonic ac-

ivity. In contrast, memory storage would be indicated by significantly

arger information for the memorized stimulus over the delay period.

esting this difference directly on all three regions ( Fig. 1 b ), we found

hat Broca’s area and left promotor cortex showed significantly more in-

ormation for memorized contents qualifying them as working memory

tores (two-sided paired t-test; in Broca’s area: P = 0.004; in lPMC: P <

.001). Early visual cortex, however, showed similar levels of informa-

ion for cued and uncued symbols and is thus unlikely to be involved in

he retention of Chinese characters (two-sided paired t -test; P = 0.543).

As a third step, we asked whether the information we found was

imited to the left hemisphere as one might expect for language-driven

epresentations. Both anterior Broca’s area and premotor cortex were

ound to carry information only in the left hemisphere in this study. Ex-

licitly testing for lateralization ( Fig. 1 c ), we found that the correspond-

ng regions in the right hemisphere did not contain significant stimulus

nformation even at reduced thresholds, while significantly more infor-

ation was found in the left than in the right hemisphere (two-sided

aired t-test between hemispheres; in Broca’s area: P = 0.046; in lPMC:

 < 0.001). 

Finally, we asked whether the regions we found to carry mnemonic

epresentations in the current study were exclusively involved in verbal

orking memory. To investigate this question, we compared our results

ith data from two previous studies investigating the retention of com-

lex visual patterns that were hard to verbalize: complex color patterns

 Christophel et al., 2012 ) and complex motion patterns ( Christophel and

aynes, 2014 ). We employed the same MVPA analyses to compare the

emory storage of verbal and visual information in these regions. The

ample size was 28 in this study, and 17 in both previous studies on

on-verbal working memory. Therefore, we conducted a two–sided two-

ample t-test on parametric maps of pattern distinctness in identified

rain areas holding WM contents of Chinese characters ( Fig. 1 d ). Both

nterior Broca’s area and lPMC held significantly more delay-period in-

ormation for Chinese characters than for complex visual patterns (Chi-

ese characters versus color patterns, in Broca’s area: P < 0.001 and in

PMC: P = 0.003; Chinese characters versus motion patterns, in Broca’s

rea: P = 0.001 and in lPMC: P = 0.003). 

Notably, information regarding non-verbal patterns was indis-

ernible from 0 in both Broca’s area and lPMC, with the exception that

PMC held significant information about complex color patterns, but sig-

ificantly less than information about Chinese symbols (two-sided one-

ample t-test; color patterns in Broca’s area: P = 0.494 and in lPMC:

 < 0.001; motion patterns in Broca’s area: P = 0.804 and in lPMC:

 = 0.082). 

iscussion 

The present study employed an information mapping approach to

dentify brain regions in 28 native Chinese speakers that maintained

ontent-specific information about Chinese characters during a 10 s de-

ay period. We found three brain regions holding significant information

bout memorized Chinese characters. Only anterior Broca’s area and left
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Fig. 1. ( a ) The paradigm of the retro-cue based match-to-sample task over an extended delay period. In each trial subjects were presented sequentially with two 

sample stimuli. This was followed by a retro-cue (‘1’ or ‘2’) on a background of a black and white checkerboard, indicating whether the first or the second sample 

stimulus should be memorized (cued versus uncued stimulus). Then a blank screen with only the fixation point was presented for 9.5 s, resulting in an overall 

retention delay of 10 s (analysis time window). Afterwards, six test stimuli were presented in three sequential screens and subjects were asked to choose the cued 

stimulus by pressing the corresponding button. Test stimuli were partly occluded at random positions in each trial to prevent subjects from remembering only parts 

of the characters. (b) An individual sample set of ten Chinese characters with different pronunciations and comparable visual complexity was generated for each 

subject. Pronunciations of the monosyllabic Chinese characters are ‘ji ē bó xióng hán duàn z ǐ fù què piàn gùn’ in the illustrated sample set. 
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remotor cortex (lPMC) retained working memory contents while early

isual cortex appeared to have no preference for the memorized over the

ot-memorized character and is thus unlikely to be involved in memo-

ization. To our knowledge, this is the first study to decode stimulus-

pecific representations from Broca’s area using fMRI and MVPA. 

While the neural machinery at the heart of human capabilities to

roduce and understand speech is more intricate than we can give jus-

ice to, (for recent reviews see Armeni et al., 2017 ; Hickok and Poep-

el, 2007 ; Houde and Nagarajan, 2011 ; Poeppel, 2012 ; Tourville and

uenther, 2011 ), it is clear that Broca’s area plays a central role. It was

riginally believed that damage to Broca’s area was sufficient to impair

peech production ( Broca, 1861 ). Later work demonstrated that this set

f symptoms requires damage extending into the insula, motor cortex,

ubcortical structures and parts of the white matter ( Alexander et al.,

990 ; Ardila et al., 2016 ; Dronkers et al., 2007 ; Mohr et al., 1978 ). Dam-

ge that is limited to Broca’s area leads to a milder form typically re-

erred to as ‘minor Broca aphasia’ ( Ardila et al., 1988 ; Mohr et al., 1978 ).

his neuropsychological evidence for a central role of Broca’s area is

upported by fMRI evidence for its involvement in language processing

 Just et al., 1996 ; Kinno et al., 2008 ). Our results are consistent with the

redominance of left-hemispheric areas like Broca’s area in right-handed

articipants as a hallmark of language processing ( Pulvermüller and
adiga, 2010 ). Notably, there is evidence which points to some involve-

ent of right-hemispheric analogues of typical language related areas in

uman speech ( Tourville and Guenther, 2011 ; Zangwill, 1967 ). Finally,

t is worth noting that while our results overlap with what is typically

eferred to as Broca’s area in prior work, there is considerable variation

n the localization of Broca’s area between studies and even subjects

 Goucha and Friederici, 2015 ; Grodzinsky and Santi, 2008 ; Keller et al.,

009 ). More anterior and dorsal portions of the ventral prefrontal cortex

ave been implicated in abstracted and semantic working memory stor-

ge ( Christophel et al., 2017b ; Lee et al., 2013 ; Schmidt et al., 2017 ), but

lso rehearsal and mnemonic control ( Fegen et al., 2015 ; Zanto et al.,

011 ). The relationship between Broca’s area and these neighboring re-

ions is a question for future research. 

Premotor cortex has classically been shown to be important for the

lanning, the preparation, the selection and the initiation of movement

 Wise, 1985 ). Stimulation of the left premotor cortex, however, also in-

uces transient speech disturbances ( Duffau et al., 2003 ). Further, recent

MS and fMRI evidence suggest its involvement in silent articulation

nd language comprehension ( Iacoboni, 2008 ; Schomers et al., 2015 ). 

Previous evidence exists supporting the participation of Broca’s area

nd left premotor cortex in working memory as part of the dorsal stream

f language processing ( Hickok and Poeppel, 2007 ; Jacquemot and



C. Yan, T.B. Christophel, C. Allefeld et al. NeuroImage 226 (2021) 117595 

Fig. 2. Content-specific representations of Chinese characters during the delay period (Pattern distinctness D), revealed by a searchlight-based multi-voxel pattern 

analysis (cvMANOVA). (a) Brain regions with significant stimulus-specific information during the delay period (see Table S1; one sample one-sided t-test with P FWE 

< 0.05; N = 28). (b) Content-specific information about cued (memorized) and uncued (presented but not cued to be memorized) samples retained in identified 

brain regions carrying delay-period contents. Regions encoding a comparable amount of information for cued and uncued samples were assumed to be involved in 

the perception than the retention process, and therefore were excluded from further analyses. (c) Comparison of the decoded information between the left and the 

right hemisphere. (d) Comparison of the current study with two previous working memory studies on complex visual patterns that were hard to verbalize ( N = 28, 

17 and 17; complex color patterns see Christophel et al., 2012 ; Christophel and Haynes, 2014 ). Data shown in (b–d) represent pattern distinctness in the peaks of 

the respective cluster (see Table S1 ) and ( for c) their contralateral mirrors. Please note, that the data for memorized samples (black bars) is the same in Fig. 2 b–d. 

Error bars represent between-subjects SEM; ∗ above bars refers to two-sided one-sample t-test with P < 0.05; ∗ above brackets indicates two-sided paired t -test ( in b, 

c) or two-sided two-sample t -test ( in d) with P < 0.05. 
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cott, 2006 ). Lesion work suggested that damage to the left premo-

or cortex can lead to severe impairment in rehearsal and deficits in

erbal short-term memory ( Vallar et al., 1997 ). Previous fMRI research

as further provided evidence for the involvement of language-related

egions of the neocortex in working memory. For example, a number

f studies reported increases in BOLD activity with increasing verbal

orking memory load in left inferior prefrontal cortex, premotor cortex,

nferior parietal regions and superior temporal gyrus amongst other re-

ions ( Braver et al., 1997 ; Chen and Desmond, 2005 ; Cohen et al., 1997 ;

irschen et al., 2010 ; Rypma et al., 1999 ; Yue et al., 2019 ). Activity dif-

erences in overlapping regions was also found when comparing verbal

orking memory to non-mnemonic control tasks ( Collette et al., 1999 ;

rosson et al., 1999 ; Koelsch et al., 2009 ; Schumacher et al., 1996 ).

urthermore, recent fMRI work showed linearly increased brain activ-

ty with rising verbal rehearsal rate in premotor and inferior frontal

reas ( Fegen et al., 2015 ). Finally, a number of studies investigated ver-

al working compared to other non-verbal working memory contents

sing both univariate ( Nystrom et al., 2000 ; Paulesu et al., 1993 ) and

ultivariate ( Yue et al., 2019 ) methods. Reporting robust differences

n premotor cortex, superior temporal areas, posterior parietal cortex

nd inferior frontal gyri ( Nystrom et al., 2000 ; Paulesu et al., 1993 ;

ue et al., 2019 ), this work demonstrates that these areas at least have

nformation about the general type of material that is remembered and

re candidates for working memory storage. As a note of caution, how-

ver, prior work suggests that regions can show activity changes that

re not stimulus-selective during working memory and thus not exhibit
timulus-specific activity patterns ( Emrich et al., 2013b ; Riggall and Pos-

le, 2012 ). 

While it is plausible that regions where we do not find significant

timulus-selective information but which are implicated in prior work

re involved in non-storage processes like stimulus unspecific atten-

ional and control functions, it is also possible that our design and

nalysis approach might have led us to miss additional representa-

ions. In particular, in our searchlight analysis no significant stimulus-

pecific representation was estimated in posterior parietal brain regions

hat have been implicated in language processing and verbal working

emory by neuropsychological investigations ( Warrington et al., 1971 ;

arrington and Shallice, 1969 ) and superior temporal areas. We fur-

her did not find significant mnemonic activity patterns in regions of

he left fusiform gyrus typically referred to as the visual word form

rea (VWFA; Cohen et al., 2000; Dehaene and Cohen, 2011; Dehaene

t al., 2002) further suggesting that working memory storage in this

tudy is predominantly depending on non-visual representations. The

urrent study cannot exclude the possibility of other regions and strate-

ies being involved in the retention of verbal material, as some subject

ndicated that they memorized using a visual or spatial strategy in ad-

ition to verbal encoding (see Figure S1). It is possible that additional

egions represent memorized contents when auditory-verbal material is

sed ( Yue et al., 2019 ) or when a larger set size encourages the use of

dditional regions to minimize interference within a given cortical cir-

uit ( Christophel et al., 2018 ). Alternatively, it is possible that our study

acked the statistical power to discover stimulus-selective activity pat-
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erns which are less pronounced than the ones reported in the current

tudy. 

Anterior Broca’s area and left premotor cortex contain significantly

ore delay-period information for Chinese characters than for complex

isual patterns. Further, they carry little delay-period information for

isual stimuli, with the exception that left premotor cortex stored sig-

ificant information for complex color patterns. It is unclear whether

he limited involvement of the premotor cortex in the storage of color

atterns can be attributed to its general involvement in visual memory

e.g. active refreshment of visual stimuli during the delay) or the occa-

ional use of verbalization strategies for complex color patterns. Gener-

lly, we cannot exclude the possibility that the language-related regions

ound in the current study could also carry information about complex

isual stimuli if, for example, verbalization of these stimuli would be

ncouraged or other parameters of the designs were changed. Finally, a

ore comprehensive approach to dissociate mnemonic contents stored

n cortical regions during working memory would take a wide swath of

vailable data and compare information for all studied forms of contents

nd task-contexts across the entire human brain. 

Participants furthermore reported a dominance of verbal (incl.

coustic and semantic) strategies in memorizing cued Chinese charac-

ers during the delay period in a post-study questionnaire ( Figure S1b ).

hese results suggest that visually displayed characters are memorized

erbally, and that Broca’s area and left premotor cortex serve as working

emory stores specific to verbal rather than visual material. Although

ne cannot completely exclude the possibility that Chinese characters

re memorized occasionally visually, it is unlikely that visual WM stor-

ge takes place in Broca’s and lPMC. Instead, it is reasonable to infer

hat the two areas (as part of the articulatory network on the dorsal

tream of language processing; Hickok and Poeppel, 2007 ) contributes

o maintenance of verbal language information, possibly through artic-

latory rehearsal. 

Notably, the searchlight-sphere in the current study centered in

roca’s area (peak MNI = [ − 56, 34, − 4], radius = 15 mm) overlaps with

vidence for putatively ‘visual’ working memory storage of orienta-

ion in ventrolateral PFC (peakMNI = − 37, 30, − 2], radius = 8 mm;

ster et al., 2015 ). In addition, a recent fMRI study revealed content-

pecific tactile information in premotor cortex during working memory

 Schmidt and Blankenburg, 2018 ). The evidence reported here might

uggest that verbal working memory might play a role in the mainte-

ance of these kinds of stimuli which have been originally thought of

s ‘low-level’ sensory as suggested by prior behavioral and theoretical

ork ( Postle, 2006 ; Postle et al., 2005 ; Simons, 1996 ). 

Baddeley’s influential ‘phonological loop’ model suggests that the

unction of verbal working memory storage is accomplished through

he tight interplay between two systems: a sensory component and a

otor component ( Baddeley, 1992 ; Baddeley et al., 1984 ). The former

aptures the phonological input and decays over time, and the latter

ssists to maintain the memorized contents via articulatory rehearsal

 Baddeley, 1992 ; Baddeley et al., 1984 ). While our design cannot dis-

ern the exact neural coding schemes used to retain verbal material,

ne could speculate that Broca’s area and premotor cortex compose

he articulatory network that serves for articulatory rehearsal (see also

ickok and Poeppel, 2007 ). 

Our findings of verbal WM contents stored in Broca’s area and left

remotor cortex show little overlap with originally proposed dorsolat-

ral prefrontal (DLPFC) regions for working memory storage ( Goldman-

akic, 1995 ). Although both regions lie within the frontal lobe, Broca’s

rea is located inferior and premotor cortex located posterior to DLPFC.

hus, our findings provide no evidence in favor of a central working

emory store localized in DLPF. Instead, they provide evidence favoring

 ‘distributed’ account of working memory storage ( Christophel et al.,

017b ; Postle, 2006 ; Zimmer, 2008 ). Under this view, both sensory

nd non-sensory brain regions are able to carry persistent content-

elective representations. For sensory memory, primate electrophysiol-

gy and human imaging studies have identified such persistent stimulus-
elective activity in regions covering the entire neocortex (for a review,

ee Christophel et al., 2017b ). This study extends this data by reveal-

ng that verbal WM maintenance depends on a coordinated recruit-

ent of distributed language-related regions in the anterior areas, but

ails to identify representations in posterior language-specific areas. No-

ably, some distributed accounts of working memory ( D’Esposito and

ostle, 2015 ; Postle, 2006 ; Zimmer, 2008 ) further ascribe the role of at-

ention allocation and control to prefrontal cortices. Please note that the

urrent study cannot ascertain whether any particular region is involved

n these processes. 

For this study, we decided to use Chinese characters as stimuli in-

tead of Latin script and (for example) English language stimuli. This

hoice was motivated by prior work suggesting a predominant use of

erbal working memory for memorizing Chinese script and the possi-

ility to discourage verbal encoding by varying the visual complexity of

he sample characters used ( Sun et al., 2011 ). Univariate evidence, how-

ver, suggests that studying verbal working memory with Latin script

an lead to very similar results. For example, recent work ( Kim et al.,

011 ) indicates that verbal working memory for Korean and English

anguage stimuli activates an overlapping set of regions. 

Finally, it is worth noting that the working memory task employed

ere is quite distant from real-life applications of working memory,

here the environment is typically cluttered with distracting informa-

ion, where working memory contents are usually retained while per-

orming other tasks, where often more than one verbal stimulus is re-

ained and where tasks regularly require combining or manipulating

emorized information. Thus, further research is needed to establish

hether the regions reported here fulfill the same roles in these real-life

ituations. 

onclusions 

This is the first study using MVPA to directly examine the stimulus-

pecific storage of verbal working memory. Our findings show that ver-

al WM storage relies on a distributed network of language-related brain

reas in the left hemisphere: anterior Broca’s area and left premotor cor-

ex. As part of the articulatory network for language processing, they

ight serve as a neural substrate for articulatory rehearsal in verbal

orking memory maintenance. 
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