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A B S T R A C T

Engineering systems must function effectively whilst maintaining reliability in service. Predicting
maintenance costs and asset availability raises varying degrees of uncertainty from multiple sources.
Previous reviews in this domain have assessed cost uncertainty and estimation for the entire life cycle.
This paper presents a systematic review to investigate existing methodologies and challenges in
uncertainty quantification, aggregation and forecasting for modern engineering systems through their
in-service life. Approaches to forecast uncertainty here are hindered chiefly by data quality of available
data, experience and knowledge. A total of 107 papers were analysed to answer three research questions
based on the scope, through which two core research gaps were identified. An integrated combination of
identified approaches will enhance rigour in uncertainty assessment and forecasting. This review
contributes a systematic identification and assessment of current practices in uncertainty quantification
and scientific methodologies to quantify, aggregate and forecast quantitative and qualitative
uncertainties to better understand their impact on cost and availability to aid decision making
throughout the in-service phase.
© 2021 The Author(s). This is an open access article under the CC BY license (http://creativecommons.org/

licenses/by/4.0/).

Contents

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
Topology of engineering systems and uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
Research definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
Review methodology: appraisal and synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

Appraisal of identified literature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
Quality assessment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
Data extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

Synthesis of extracted data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
Analysis of synthesised data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

Contextual application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
Uncertainty propagation and simulation techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

Quantitative uncertainty analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
Qualitative uncertainty analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
Multivariate uncertainty analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

Probability distributions for uncertainty analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
Uncertainty assessment and forecasting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

Research results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
Discussion of findings for research questions 1 and 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

How can multivariate uncertainties be aggregated and represented through different probability distributions? . . . . . . . . . . . . . . 200
How can qualitative estimates driven by expert opinion and individual experiences be standardised and validated? . . . . . . . . . . . 201

Contents lists available at ScienceDirect

CIRP Journal of Manufacturing Science and Technology

journal homepa ge: www.elsev ier .com/locate /c i rp j
* Corresponding author.
E-mail address: a.h.grenyer@cranfield.ac.uk (A. Grenyer).

https://doi.org/10.1016/j.cirpj.2021.03.004
1755-5817/© 2021 The Author(s). This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cirpj.2021.03.004&domain=pdf
mailto:a.h.grenyer@cranfield.ac.uk
https://doi.org/10.1016/j.cirpj.2021.03.004
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.cirpj.2021.03.004
http://www.sciencedirect.com/science/journal/17555817
www.elsevier.com/locate/cirpj


I

s
c
p
r
s
m
e
r
c
o
f
e
d
s
t

a
n
s
c
t
u
f

a
r
h
d
s
i
o
v
r
i

u
T
l
t
o
d
I
m
a

i
a
c
s
c
f
r

A. Grenyer, J.A. Erkoyuncu, Y. Zhao et al. CIRP Journal of Manufacturing Science and Technology 33 (2021) 188–208
Discussion of findings for research question 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
How can uncertainty be forecast over the in-service phase of an asset's life cycle and what are the key challenges faced in doing so? 201

Research questions contribution to knowledge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
Conclusions and future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
Funding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
Conflict of interest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

ntroduction

The increasing complexity and dynamic nature of engineering
ystems drives an inherently high level of uncertainty. Many such
omplex engineering systems (CES) consist of multiple component
arts or subsystems that interact in a collective manner not
epresentative of individual parts [1–3]. Examples of complex
ystems range from biological organisms, global climate and
eteorology to bridges, ships and aircraft. Engineering systems are
xpected to carry out intended functions whilst maintaining
eliability in service. It is therefore increasingly challenging to
onfidently predict availability, cost and performance in various
perating conditions [1,4,5]. Decisions made concerning these
actors are shrouded in uncertainty, requiring significant experi-
nce and expertise, as well as the use of often outdated equipment
ata. This is typically managed under through-life product-service
ystem (PSS) contracts, where the client makes use of a product in
heir possession but does not take ownership [6–10].

This review is motivated by the requirement for scientific
pproaches to quantify, aggregate and forecast technical engi-
eering uncertainties for complex and non-complex engineering
ystems. These uncertainties impact the ability to effectively
arry out maintenance tasks given available techniques and
echnology to required industry standards. Examples include
ncertainties in degradation, no-fault found, obsolescence and
ailure rates [11–13].

It is therefore hypothesised that the utilisation of the above
pproaches considering a multivariate combination of measured,
ecorded data (quantitative) and experience-driven opinion or
uman factors (qualitative) will increase confidence and rigour in
etermining the impact of uncertainty over time. Such approaches
hould be applicable for various scenarios where data may be
ncomplete, inconsistent, inaccessible, and reliant on expert
pinion [14–16]. In the light of dramatically increasing data
olumes and computational capability in engineering systems,
igorous machine learning algorithms should be incorporated to
ntelligently forecast uncertainty estimates [17,18].

Previous reviews in this domain have considered the role of
ncertainty estimation in life cycle costing under PSS [14,19–21].
he in-service phase covers the largest portion of an asset's
ifecycle between contract bidding and disposal. Many approaches
o aggregate different types of uncertainty consider a summation
f best and worst-case scenarios represented by probability
istributions to define boundaries for likely outcomes [14].
nadvertently disregarding the space between these scenarios
ay result in under or over-estimation and data distortion,
dversely impacting decision-making.
This paper presents a systematic literature review (SLR) to

nvestigate distinct approaches in uncertainty quantification and
ggregation that can be applied in a real-world context, in

(RQs) to achieve this are depicted in Section “Research definition”.
The review follows the 4-stage analytical framework composed by
Booth et al. [22] to conduct an SLR: search, appraisal, synthesis and
analysis (SALSA). This generic approach is well validated and can be
applied under varying conditions to provide a clear analysis of
literature published in the field of uncertainty and identify
research gaps [23–25].

The primary contribution of this review is the combined
consideration of scientific methodologies to quantify (numerical
expression of an entity), aggregate (collation of entities) and
forecast (likely future outcomes) quantitative and qualitative
uncertainties to better understand their impact on cost and
availability to aid decision making throughout the in-service
phase. A total of 107 papers were analysed to answer three
research questions, through which two core research gaps were
identified.

The paper is structured as follows: Section “Topology of
engineering systems and uncertainty” discusses a topology of
engineering systems and uncertainty, including classification and
recognised standards. Section “Research definition” defines the
research scope and subsequent RQs for the review. Theory and
implementation of the SALSA methodology fulfils
Sections “Review methodology: Appraisal and synthesis” and
“Analysis of synthesised data”; Section “Review methodology:
Appraisal and synthesis” details the appraisal and synthesis of
identified literature and categorisation of extracted data, while
Section “Analysis of synthesised data” analyses the findings.
Section “Research results and discussion” discusses the research
findings parallel to the RQs. Section “Research questions contribu-
tion to knowledge” concludes the review and identifies research
gaps and future work.

Topology of engineering systems and uncertainty

As stated above, a complex system is comprised of multiple
component parts or subsystems interacting linearly or non-
linearly, exhibiting a collective behaviour that is distinct from
and seldom predictable by that of individual parts or subsystems
[1–3]. Conversely, a complicated system can be comprised of a
myriad of interconnected parts but still exhibit a predictable
collective behaviour [2,3]. Complex systems science is a rapidly
expanding and evolving field, the theory of which is widely
documented [1–5,26,27].

A complex engineering system (CES) is one that is focused on an
engineering domain rather than, for example, social, biological or
meteorological systems. The inherently complex and dynamic
nature of CES manifests high levels of uncertainty. This takes shape
in various forms including costing, policymaking, supply chains
and technical uncertainties [3,4]. Technical engineering uncer-
tainties within engineering systems set the context for this review,
onjunction with how uncertainty can be forecast for the in-
ervice phase for engineering systems. Both complex and non-
omplex engineering systems are considered in this review, with a
ocus towards CES owing to their increasing relevance within the
esearch scope. The objectives and resulting research questions
18
where uncertainty in the performance of one component or
subsystem (node) may have knock-on effects with interconnected
nodes or the whole system. The level of uncertainty can change
throughout the in-service life of each node in an unpredictable and
often non-linear manner [2,3]. This calls for adaptive and
9
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intelligent approaches to forecast uncertainty based on a
combination of available data and expert opinion.

There are several definitions and interpretations of uncertainty in
literature [28–39]. It is defined here as the difference between the
amount of information that is required to perform a task and the
amount of information already possessed. The relevance of
information, or lack of, should be specified concerning the
functionality of the organisation or application in question [40].
Uncertainty is caused by variability in the environment, human error
and/or human ambiguity (e.g. lack of knowledge) and could cause a
negative, positive or neutral impact on the overall performance [41].

The terms error and uncertainty are often used interchangeably.
Risk is generally interpreted as purely negative impacts of
uncertainty [29,32,35,37,42]. It is important to differentiate these
concepts. A statistical error is the (unknown) difference between
the retained (measured) value and the true value, following
probability distributions. Measurement uncertainty is the lack of
information about the magnitude of these errors. Risk is the
positive or negative impact specific sources of uncertainty will
have on the measurand (the system for which uncertainty is being
assessed). The degree of uncertainty associated with the measur-
and can be utilised to aid decision making.

There are two key types of uncertainty described in literature:
Type A, which are sourced from quantitative data; and Type B, which
makeuseofqualitativetechnicalandexpertknowledgeorexperience
[16,30,34,43–45]. These are further explored in Section “Uncertainty
propagation and simulation techniques”. In the context of this paper,
Type A will hence be referred to as ‘quantitative’ and Type B as
‘qualitative’. Uncertainty can be further characterised as aleatory and
epistemic. Epistemic uncertainties are those that could be known in
principle but are not known in practice [46–50]. This may be due to
inaccurate measurements or the measurement model neglecting
certain characteristics. Epistemic uncertainties can therefore be
reduced by obtaining more data or by refining models. Aleatory
uncertainty, however, cannot be reduced as it represents statistical
variables that differ each time a given experiment is carried out [46–
57]. The influence of different types of uncertainty can play a key role
in confidence determination for risk and reliability analysis [36].

Further examination can be made by the four ‘(un)known-(un)
known risk quadrants’, described in detail by Marshall et al. [58].
These levels of risk identification can be applied to both
quantitative and qualitative uncertainty since risk is the impact
of uncertainty on the measurand. As their names suggest, ‘known
knowns’ are uncertainty sources that have been taken into account
and catered for; ‘known unknowns’ are understood to exist but
their magnitude is not defined; ‘unknown knowns’ are unidenti-
fied sources that may be accounted for through alternate means
(possibly by other sources creating information asymmetry [59]);
‘unknown unknowns’ have not been identified or accounted for
and, therefore, pose the greatest risk [4,58,60]. These can also
represent forecastable uncertainties not initially apparent and
unpredictable ‘black swan’ events. A categorisation of uncertain-
ties centred on these four quadrants based on the nature and
source of uncertainty is illustrated in Fig. 1 [58,60]. An example
uncertainty source for each quadrant is linked to possible types –

quantitative, qualitative, epistemic and aleatory.
Frameworks to assess uncertainty in engineering systems, as

well as the systems themselves, require a degree of flexibility to
accommodate complexity while maintaining a degree of robust-
ness to meet core objectives within specified confidence bound-

level of complexity in a robust system is controlled by identifying
and mitigating factors that pose the greatest uncertainty [3,6]. The
flexibility of machine learning algorithms allows uncertainties to
be forecast in a variety of complex domains, examined further in
Section “Analysis of synthesised data”.

Research definition

Defining the research scope is necessary to frame clear,
answerable questions that formulate the aim and objectives
described above; which inform search terms and inclusion/
exclusion criteria in the succeeding phases [22]. Various formal
frameworks have been composed to define the research scope and
successive RQs.

The PICOC framework illustrated in Table 1 was adopted for this
review [22,24,25]. This was selected against others proposed by
Booth et al. [22,62–64] such as SPICE [63] and CIMO [65] as it
provides a transparent and duplicable identification of key
concepts to be implemented in the SALSA framework.

The scope was adapted as more research was uncovered and the
author's understanding of the topic grew. The resulting objectives
and corresponding RQs are depicted in Table 2. These objectives
were derived as the basis to achieve the outcomes defined in the
PICOC framework to establish key approaches to quantify and
forecast uncertainty in the maintenance of engineering systems.

Review methodology: appraisal and synthesis

The literature search detailed the formulation of the search
string entered in online databases with applied filters (article type
and publication year), inclusion of previously cited and recom-
mended papers (hand search), along with publications cited in
highly relevant sources [63]. The resulting string and search results
are illustrated in Appendix A. The specific search process was not
deemed relevant for this journal publication. From the database
search, 148 files were downloaded on a basis of accessibility,

Fig. 1. Categorisation of uncertainties based on their nature and sources.
aries [4,10,47]. Flexibility in engineering systems design allows for
mitigation in the face of unknown-unknowns, allowing the system
to “evolve” when presented with unpredictable challenges to the
point of being reconfigurable with high degrees of freedom
[4,6,18]. Robust systems are highly reliable within their design
scope and predictable range of associated uncertainty [61]. The
190
format, title and date. The hand search sourced 119 papers, while
24 were sourced from citations within sourced papers. This
resulted in a pool of documentation to assess in the appraisal
phase. Inclusion and exclusion criteria are required to refine the
results, as well as a structured data extraction methodology,
defined in the following sections.
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ppraisal of identified literature

uality assessment
It is necessary to refine the number of publications obtained to

ppropriately satisfy the RQs and assess the evidence base. To do
his, a critical assessment of relevance and quality was conducted.
he broad selection process in Fig. 2, adapted from Booth et al. [22],
as implemented considering the PICOC framework in
ection “Research definition”, as well as other review examples
nd author experience. Specific inclusion and exclusion criteria,
ased on the PICOC framework, are identified in Table 3 [22,23,66].

ata extraction
A data extraction table was composed in MS Excel (Appendix B)

o manage the literature and assess the evidence base, allowing

different studies to be appraised in a consistent manner [22]. This
included a record of:

� Publication details: Source folder, filename, publication title,
author, year, type (journal, book, etc.), source method (database
search, citation search, recommended) and author keywords.

� Study details: Context, aims/objectives, methodologies/theory
adopted, data collection strategies.

� Results: Author's conclusions, outcome/findings, strengths,
limitations.

Publication details were recorded for all sources that passed the
screening stage in Fig. 2. Eligibility was established in four main
sifting stages: title, abstract, introduction/conclusion and full-text
reading. If deemed eligible based on title, a preliminary
understanding of study details and results was obtained from
the abstract to gain familiarity and identify key information.
Publications considered relevant were then looked over in more
detail to gain a comprehensive understanding in the next two
stages. This allowed papers to be summarised into categories and
identify relationships for synthesis [67]. Cited publications within
papers that could enhance the research picture were searched for
directly and fed back into the start of the process. A total of 185
papers were eliminated in the process, based on the sifting stages
illustrated in Figs. 2 and 3.

Synthesis of extracted data

The synthesis phase of the SALSA framework overlaps with the
search and analysis phases to produce a breakdown of extracted
data, comparing similarities and differences within each category
[22]. This phase will identify what the literature says. The analysis
identifies what it means.

able 1
esearch scope definition – PICOC framework.

Concept Definition

Population Uncertainty prediction and assessment; considering the impact attributed by a combination of quantitative and qualitative inputs over the in-
service phase of complex or non-complex engineering systems

Intervention Examination of existing UQ techniques, qualitative assessments, uncertainty forecasting, multivariate uncertainty aggregation for differing
probability distributions

Comparison Current industrial practices – how does the new proposal compare to the existing methods and academic processes?
Outcomes Determination of relevant probability distributions and guidance on how to quantify uncertainty in context to aid decision making for industrial

maintenance
Identification of methodologies to quantify qualitative uncertainty attributes, combine quantitative and qualitative uncertainties and assess
significant correlations
Identification of methodologies to forecast uncertainty through the in-service life and optimise outputs as new information is acquired

Context Multivariate quantification, aggregation and forecasting of technical engineering uncertainty for engineering systems in-service, applicable to
industrial maintenance

able 2
esearch objectives and research questions.

Objectives Research question

1 Identify current practices in the quantification and aggregation of
different types of uncertainty

How can multivariate uncertainties be aggregated and represented
through different probability distributions?

2 Identify and assess approaches that could analyse and estimate
multivariate uncertainties for real-world applications

How can qualitative estimates driven by expert opinion and
individual experiences be standardised and validated?

3 Explore techniques to forecast uncertainty in engineering systems. How can uncertainty be forecast over the in-service phase of an
asset's life cycle and what are the key challenges faced in doing so?
Fig. 2. Appraisal: Publication selection process [22,68].

19
Data extracted from the papers was categorised through a
thematic synthesis. This is a well-validated method for synthesis-
ing qualitative data [22–25,68]. Key themes were established
according to the research scope defined in the PICOC framework
(Table 1), RQs, discussions with academic supervisors and the
author's understanding of the topic. The thematic categorisation
1
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involved the generation of several categories for each established
theme. This was achieved through a repetitive word counting
process whereby the most frequently used words in the full text of
each included paper were cross-referenced with the proposed
category names using VLOOKUP functions in Excel (snapshot in
Appendix C). The most recurring words were more likely to be
identified as categories that could be applied to the themes. This
process required several iterations to combine and refine catego-
ries within a larger area and eliminate less frequent or irrelevant
words; identified by the same method as key themes.

The category term most frequently recurring for each paper was
highlighted. For each category, the number of highlighted cells
over the 107 papers was added to the number of papers that
contain that category term. The resulting ‘score’ was then used to
identify the most relevant categories in each theme, combining
similar terms. The resulting themes and categories are defined in
Table 4. Where applicable, the pros and cons of these categories are
discussed in the Analysis phase.

Theme and category definitions were determined through the
author's interpretation of occurrences in literature as well as
dictionary definitions. An example of the thematic synthesis data
extraction for 3 papers is illustrated in Table 5.

Analysis of synthesised data

This section examines the categorised themes from the
synthesis and extracted data to answer the research questions
(RQs) defined in Section “Research definition”. Thematic analyses
are presented to examine the coverage of each theme over the
included papers and correlations between them, assessing results
from the synthesis. Narrative analysis is presented for each theme
to discuss results and case examples. The evidence base and
correlations from the thematic and narrative analyses are

context of the measurand; be it a simple system under laboratory
conditions or a complex engineering system (CES) with a myriad of
interconnected subsystems. The adoption and adaptation of this
process in various contextual applications in the included papers is
discussed in Section “Contextual application”.
Section “Uncertainty propagation and simulation techniques”
examines RQ1, focusing on the aggregation of uncertainty across
multiple elements. Section “Probability distributions for uncer-
tainty analysis” looks at the selection and use of relevant
probability distributions to conduct the analysis. RQ2 is examined
in Section “Qualitative uncertainty analysis”, where methods to
conduct qualitative uncertainty analysis are examined.
Section “Uncertainty assessment and forecasting” examines RQ3,
focusing on forecasting uncertainty for the in-service phase of
engineering systems.

Publication details of year and type for the 107 included papers
are illustrated in Figs. 4 and 5. The majority of examined papers
were published in 2019–1920. A positive linear trend in
publications up to the present indicates a growing relevance
and interest within the research scope. The term ‘Conference’
includes workshops; ‘Book’ includes book sections and booklets.

The majority of examined publications are journal articles,
which are identified specifically in Table 6. ‘Other’ consists of
journal publications featured once.

Contextual application

The contextual application theme identified in Table 4 groups
publications, as the name suggests, in their applied context.
Through the refinement process described in the synthesis, 4
categories were identified: Aerospace & defence (Inc. nuclear
weapons and other military applications), Emissions, energy &
environment (Inc. oil & gas, meteorology, energy & power,
greenhouse gases and coastal models), Manufacturing & mainte-
nance (Inc. optimisation of processes around PSS and in general,
structured surfaces, machine tooling and miscellaneous case
studies) and Theory (Inc. description and derivation of analytical
methods without a specified application). The number and
percentage distribution of these applications are illustrated in
Fig. 6.

The majority of included papers examine the theory in
uncertainty analysis, aggregation and forecasting (41%). These
include statistical analysis, qualitative methods such as the
pedigree approach and machine learning and Bayesian reasoning
for forecasting. Papers applied in the other three contexts are
reasonably distributed.

Uncertainty propagation and simulation techniques

This section examines identified techniques to propagate

Table 3
Appraisal: Inclusion and exclusion criteria.

Inclusion Exclusion

l UQ theory, uncertainty prediction and analysis, contextual application,
multivariate uncertainty
l Uncertainty propagation and forecasting
l Industrial maintenance applications
l Clear techniques & referred sources for validity & additional searching

l Not met any inclusion criteria
l Duplication
l Full source not accessible
l Not written in English
l Limited in-text citations or references to verify findings

Fig. 3. Appraisal: Quality assessment – Publication eliminations.
evaluated to answer the RQs in Section “Research results and
discussion”. Any generated hypotheses were grounded to populate
an emergent theory. Conclusions are drawn and compared with
other studies in the category [22,72].

The identification of uncertainties that influence the measur-
and will inherently vary in dynamic nature depending on the
192
uncertainty. The percentage of the 107 included papers that make
use of or adapt the main techniques identified through the
synthesis are illustrated in Fig. 7, stacked by their contextual
application. The ‘other’ category encompasses less used methods
used in the research context such as Latin Hypercube sampling and
Taylor series expansion.



Table 4
Synthesis: definition of data extraction themes and categories.

Theme Definition Category Definition

Contextual application The field in which the
proposed framework or
study is applied

Aerospace & defence Includes defence and commercial or military aerospace sectors

Emissions, energy &
environment

Includes oil & gas, energy & power and greenhouse gas cases

Manufacturing &
maintenance

Includes general maintenance and manufacturing processes in
miscellaneous applications

Theory Qualitative or quantitative theory and frameworks with no applied context
Analysis type Type of analysis carried out

according to the nature of
uncertainty sources

Quantitative Type A, considering purely statistical data sources

Qualitative Type B, considering purely heuristic data sources
Multivariate Combination of Type A and B data sources

Propagation & simulation
techniques

Most prominent techniques
used to propagate
uncertainty in the analysis
process

Bayesian Expresses the probability of an event occurring given that a prior event has
occurred

Confidence Probability that true parameter value lies within a specified range
Correlation Level of interdependence between 2 or more variables
Degrees of freedom Amount of information in a sample relevant to the estimation of a

parameter
Expertise/assumption Derivation of a parameter through opinion-based, non-statistical means
Fuzzy set theory Function assigns a grade between 0 and 1 to each input parameter of a set,

as opposed to Boolean which is 0 or 1
Monte Carlo Highly effective and flexible simulation technique to generate random

variables about specified input parameters for multiple distribution types
Neural network Network of cooperating processing elements to give an output. This is

applied to a model and ‘trained’ to give an optimum output
Pedigree matrix Scores results of qualitative expert judgement or assumptions according to

predefined criteria to allow for quantitative assessment
Sensitivity analysis Identifies key input parameters for uncertainty analysis. Quantifies how

changes in input value alter that of the outcome
Survey/interview Qualitative data collection method for expert or general population opinion

on a given topic
Other Methods not used in many papers

Probability distributions Type of distribution
function (PDF) used to
represent uncertainty
about a given range in the
analysis process

Beta (See Table 7)

Lognormal ”

Normal ”

Poisson ”

Triangular ”

Uniform ”

Weibull ”

Uncertainty assessment and
forecasting

Most prominent terms and
qualities used to predict
and forecast uncertainty

Challenges Hinders, adds complexity or prevents action towards a given entity

Deep learning Use of artificial networks to learn from existing data to predict or optimise
future results

Forecasting Predicting future trends based on past and present data
Life cycle A series of stages or developments that take place over the useful lifetime of

a given product or service
Optimisation Finding the best or most effective use of a situation or resource
Over time Measurable progress of past, present, and future events
Prediction Estimate that something will happen or will be a consequence of something

else – Synonym for forecasting

Table 5
Synthesis: thematic data extraction example for 3 papers.

Theme Simmons et al. [69] Baek et al. [70] Erkoyuncu et al. [71]

Contextual application Emissions, energy & environment Emissions, energy & environment Manufacturing & maintenance
Analysis type Quantitative Multivariate Multivariate
Propagation & simulation techniques Bayesian, Confidence, Monte Carlo,

Sensitivity analysis
Confidence, Correlation. Monte Carlo,
Pedigree matrix, Sensitivity analysis, Survey/
interview

Confidence, Sensitivity analysis

Probability distributions Normal, Uniform Normal, Uniform, Triangular Normal, Triangular, Poisson,
Weibull

Uncertainty assessment and
forecasting

Estimation, Optimisation,
Prediction

Estimation, Life cycle Estimation, Life cycle, Prediction
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Purely quantitative analysis is considered by 43 papers (40%),
purely qualitative is considered by 23 (21%) and a multivariate
combination is considered by 41 (38%). One of the core focuses of
this research is to equate qualitative approaches for implementa-
tion with quantitative approaches to then quantify multivariate
technical engineering uncertainties in engineering systems. This
consideration is necessary for real-world applications, however
not essential when considering costing of such systems in theory.
This is further explained in Sections “Qualitative uncertainty
analysis” and “Multivariate uncertainty analysis”.

Terms such as ‘variance’, ‘standard deviation’ and ‘stochastic’
were not included as they were considered too generic. Some
commonly used techniques appear to feature less frequently than
one might expect (e.g. degrees of freedom in 9% of the 107 papers).
The reason for this is that some studies focus on a specific part of
the analysis process (e.g. uncertainty source identification through
expert opinion or interviews) and so consider other stages to be out
of scope.

Quantitative uncertainty analysis
Purely quantitative uncertainty analysis focuses on epistemic,

statistical data. Techniques are discussed in theory below, which
are then applied in case examples. Qualitative aspects need to be
taken into consideration to be applied to real-world dynamic cases.
The most commonly used techniques in the included papers that
focus on quantitative analysis are illustrated in Fig. 9, again stacked
by contextual application.

Uncertainty is statistically equal to the standard deviation of a
given dataset, which is equal to the square root of the distribution
variance and referred to as the ‘standard uncertainty’ [30,73]. Many
potentially identifiable uncertainties will have a negligible impact
on the measurand. To maintain focus on uncertainties that have a
tangible impact on the system, alongside expert judgement,
sensitivity analysis is conducted across the input parameters
[47,48,61,70,74–81]. Sensitivity and correlation are key consider-
ations in both single type and multivariate UQ. As seen in Fig. 9,
40% of the 43 quantitative analysis papers reviewed explicitly use
sensitivity analysis and 23% discussed correlation between the
inputs.

Monte Carlo simulation is by far the most widely used
simulation method to evaluate uncertainty; used in 63% of the
43 quantitative papers and 52% of the total 107 included papers. It
is stated to provide the most effective approach to the propagation
and analysis of uncertainty in many situations for various
combinations and complexities [16,20,31,50,81–86]. It can be
applied to multiple probability distributions for multivariate
analysis and forecasting. Extensive sampling of uncertainty ranges
for individual variables can be achieved without the use of
substitute models [80]. However, it can require significant
computational power, with 1000–10,000 simulation runs general-
ly accepted as appropriate coverage depending on model
complexity [83,87]. Taylor series expansion and Latin hypercube
sampling are often used as part of Monte Carlo simulation, but are
largely covered in theory in the included papers [80,83,88]. These
two methods are considered in the ‘Other’ category in Fig. 9.
Bayesian analysis derives the probability of an event occurring
given that a prior event has occurred, given as a probabilistic
function of the two events occurring independently or together
[30,50,89]. Bayesian methods applied in forecasting are covered in
further detail in Section “Uncertainty assessment and forecasting”.

Fig. 4. Analysis: Included papers – Publication year.

Fig. 5. Analysis: Included papers – Publication type.

Table 6
Analysis: included papers – featured journal publications.

Publication Papers

CIRP Journal of Manufacturing Science and Technology 11
Reliability Engineering & System Safety 8
Journal of Petroleum Science and Engineering 3
CIRP Annals – Manufacturing Technology 3
Progress in Aerospace Sciences 3
International Journal of Life Cycle Assessment 2
Sustainability 2
International Journal of Production Research 2
Journal of Hydrology 2
Others 44
Total 80

Fig. 6. Analysis: Contextual application classification of included papers.
The categorised techniques can apply to purely quantitative
(Section “Quantitative uncertainty analysis”), qualitative
(Section “Qualitative uncertainty analysis”) or multivariate
(Section “Multivariate uncertainty analysis”) uncertainty quantifi-
cation and analysis. The distribution of analysis types by contextual
application is shown in Fig. 8.
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In 1995, the International Standards Organisation (ISO)
published the Guide to the Expression of Uncertainty Measure-
ment (GUM). This is commonly referred to in literature as ‘the
Guide’ or ‘GUM’ and has seen various updates and expansions since
its inception [30,34,43,45,85,90]. The general uncertainty analysis
process defined by the GUM involves 5 core stages [30,34,90]: (1)
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identify the measurand; (2) identify uncertainty sources and
associated probability distributions; (3) quantify uncertainties
(simulation); (4) aggregate uncertainties; (5) report analysis
results. While proficient for purely quantitative estimates, the
GUM employs coverage factors and confidence limits to accom-
modate for qualitative or multivariate estimates. These often lead
to underestimation, do not permit flexibility and, therefore, cannot
be realistically applied in dynamic, complex engineering systems
[61,91].

Since its inception, the GUM has been applied and adapted to
assess uncertainty in a range of applications from structured
surfaces [92] to micro gear measurement [93], smart grid power
systems [77] and risk and reliability assessment in the nuclear
weapons sector [56]. Uncertainty typically increases when
considering correlation between input parameters. This, along
with sensitivity between inputs to identify those with the greatest
impact, are key considerations for rigorous uncertainty analysis to
capitalise on risk with the best possible model representation.

Fig. 7. Analysis: Percentage of uncertainty propagation and simulation techniques used in included papers by contextual application.

ig. 8. Analysis: Percentage of analysis type used in included papers by contextual
pplication.
Fig. 9. Analysis: Percentage of techniques used in included papers for quantitative analysis by contextual application.
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Complex system uncertainty analysis involves representations of
epistemic and aleatory uncertainty. For epistemic analysis,
uncertainty can be represented through various means including
interval analysis, possibility theory, evidence theory and probabil-
ity theory [2,4,56,94]. Probability theory is the dominant method,
but others can be useful in the CES context – examined and
compared in Sections “Qualitative uncertainty analysis” and
“Uncertainty assessment and forecasting”. The main challenges
for UQ in these contexts include the aggregation of information
from multiple sources and the propagation of complex computa-
tional models that incorporate flexibility in design while holding a
degree of robustness to deliver on objectives [2,6,10,56].

Qualitative uncertainty analysis
The identification of known qualitative uncertainty sources

typically relies on expert opinion. Methods used to aid this process
include surveys, interviews and the pedigree matrix [15,16,41].
Qualitative frameworks are often used in conjunction with
quantitative methods such as Monte Carlo and sensitivity analysis
in the context of real-world applications. Therefore, the majority of
qualitative applied cases are discussed in the next section,
including those considering surveys and interviews. Fig. 10 shows
the distribution of techniques used in purely qualitative analyses.
Expert opinion and Monte Carlo were implemented in 52% and 26%
of the 23 qualitative papers respectively. This section will examine
commonly used qualitative propagation approaches, namely the
pedigree matrix, as well as comparisons between probability
theory, evidence theory and fuzzy set theory.

The pedigree matrix was derived by Funtowicz and Ravetz [95]
to score qualitative (expert) knowledge and opinion according to
predefined criteria to permit quantitative reliability assessment. It
has been used in 17% of the 23 papers considering purely
qualitative analysis (Fig. 10), solely applied in the emissions,
energy & environment context, and 22% of the 41 considering
multivariate (Fig. 11), and applied in all 4 considered contexts,
though largely again in emissions, energy & environment. It has
also been applied in medical fields and genealogy, largely
visualised using decision trees, though these are not examined

problems can highlight bias, implausibility, disagreement among
stakeholders, limitations and sensitivities [76].

The pedigree approach can be applied on its own or through a
notational scheme devised by Funtowicz and Ravetz [95] to
standardise multivariate uncertainty dimensions via 5 qualifiers:
Numeral, Unit, Spread, Assessment and Pedigree (NUSAP). The first
3 terms consider quantitative factors: the quantity value, acquisi-
tion date and random error of the variance of the dataset
(addressed by sensitivity analysis and Monte Carlo), respectively.
Implementation of NUSAP is further discussed in
Section “Multivariate uncertainty analysis”.

Additional uncertainty propagation approaches include proba-
bility theory, evidence theory and fuzzy set theory [31,89].
Probability theory is the ‘classic’ UQ method for input parameters
with definable probability distributions, discussed in much of this
review. Evidence theory makes use of artificial intelligence and
machine learning to collate evidence from different sources and
presents an evaluation to understand if the available evidence is
common or contradictory [19,31,97]. Evidence theory can neglect
deterministic decision-making, which considers the outcome
alone without associated risk, by keeping an ‘open eye’ to new
information, governed by a belief system to dictate possibility
measures [19]. This may be a suitable approach for qualitative
reasoning but is less suited to estimating quantitative uncertainty,
which is centred on recorded data [31].

Fuzzy set theory is applied in machine learning to assign a
grading to input parameters (e.g. a scale of 0 to 1 rather than 0 or 1).
This is well suited in cases where recorded data and knowledge is
lacking and available data is inherently subjective
[15,19,31,49,89,98]. This lack of mediated data is one of the major
challenges in UQ for both complex and non-complex engineering
systems [1,2,14,15,41,71,98]. Uncertainty analysis where data is
scarce benefits greatly from the application of artificial neural
networks (NNs). These networks of cooperating input elements are
applied to a model and trained to give an optimum output by
learning from previous examples [19,99]. NNs are a go-to option
for forecasting and predicting tasks to be undertaken – discussed
further in Section “Uncertainty assessment and forecasting”.

Fig. 10. Analysis: Percentage of techniques used in included papers for qualitative analysis by contextual application.
in the scope of this review. Pedigree assessment relies on expert
opinion. Pedigree criteria are defined according to the contextual
application of the study [15,16,96]. Qualitative assumptions made
in uncertainty analysis can have a significant impact on the
resulting estimate, especially in the context of complex systems.
The application of the pedigree matrix in complex environmental
196
Multivariate uncertainty analysis
The term ‘multivariate’ is defined here as the combination of

uncertainty from quantitative, measured, recorded data and
qualitative, experience-driven opinion or human factors. Since
qualitative estimates are obtained from technical expert
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nowledge or experience, they were not initially classed as pure
tatistical quantities with definable degrees of freedom [30,44].
he GUM proposed coverage factors and confidence limits as
ethods to accommodate for qualitative or multivariate estimates.
n ‘effective’ degrees of freedom is applied using the Welch–
atterwhite formula [30,100], though this was later found to lead to
nderestimation of the combined uncertainty [43,45,91,101,102].
ince then, a range of advanced qualitative, quantitative and
ultivariate methods have been proposed to gauge qualitative
stimates in a way that can be statistically equal to quantitative
stimates.
The percentage of included papers that used multivariate

nalysis is shown in Fig. 11. Expert opinion and assumptions made
o carry out the assessment were considered in 39% of the 41
ultivariate analysis papers (discussed in the previous section).
he quality of the opinion sways the confidence in the result
considered in 49% of multivariate analysis papers), which can be
etermined through the pedigree matrix (in 22%) and sensitivity
nalysis (in 32%).
The pedigree matrix can be applied to simple calculations and

omplex models through explicit and systematic reflections on
ultivariate uncertainty [15,16,96,103]. Uncertainty estimation in

ife cycle costing under product-service systems (PSS) is a growing
eld of interest, where uncertainty changes throughout the life
ycle stages [7,9,14,19–21,94]. Uncertainty analysis in PSS is
xamined further in Section “Uncertainty assessment and fore-
asting”. NUSAP has been implemented to estimate uncertainty in
ost estimation from different sources at the bidding stage of
ndustrial PSS contracts in the aerospace & defence context [104].
ncertainties were identified through a predefined classification;
ommercial, affordability, performance, training, operation, engi-
eering (CAPTOE) [105] and ranked using NUSAP [16].
The incorporation of qualitative estimates with quantitative

ssessments in the in-service phase of industrial PSS may present
hallenges due to increasing complexity but can also draw parallels
rom other phases of the life cycle [7,10]. Additional reviews have
nalysed value capture for PSS throughout the product life cycle on
he transition to servitisation [9], availability support [106] and

and sensitivity analysis allows uncertainty parameters with
negligible impact to be eliminated, enabling focus on those that
influence the measurand [20,70]. This helps to alleviate the trade-
off between accuracy and implementation costs in LCA to identify
the most significant input parameters.

Another application domain of multivariate uncertainty in
engineering systems is real-time systems. Largely considered in
software engineering, these systems are highly dependent on
confident and thorough uncertainty estimates to account for
worst-case scenarios [107,108]. Uncertainties considered can range
from computational processing times [107,109] to environmental
and human factors, such as in virtual reality (VR) applications with
remote maintenance [108]. Literature concerning real-time
systems in this review is considered under the manufacturing
and maintenance context. Real-time systems are inherently
complex owing to the range of assumptions taken into account
and unpredictable behaviour and interaction of system elements.
To obtain confident predictions of worst-case execution times,
evolutionary algorithms are employed along with surrogate
models, neural networks and regression models – further explored
in Section “Uncertainty assessment and forecasting” [109,110].

Further applications of the pedigree matrix and sensitivity
analysis, along with Monte Carlo and Taylor Series expansion, are
made in the oil & gas sector to estimate uncertainty in greenhouse
gas emissions [83]. These highly complex operations consist of
multivariate estimates requiring rigorous estimates. Confidence
levels associated with individual sources are dependent on data
availability and quality. This process followed the core methods
described in the GUM [30,34,83,90]. While applied solely to the oil
& gas sector in the examined literature [83], the analysis method
should be applicable in broader areas within the research scope.

A further approach to gauge qualitative uncertainty factors
through the pedigree approach in a way that they can be attributed
to quantitative estimates is as a geometric standard deviation
(GSD), which fits to lognormal distributions [85]. The measure of
GSD is necessary to overcome scaling in data. As discussed in
Section “Quantitative uncertainty analysis”, the standard deviation
is representative of the uncertainty in a given dataset, which relies

Fig. 11. Analysis: Percentage of techniques used in included papers for multivariate analysis by contextual application.
nformation flow [21]. Lack of concrete data and qualitative
ecisions cause uncertainty that can lead to undesirable results.
his also prompts the need for flexibility in PSS under uncertainty
6].

Data quality in life cycle assessments (LCA) is enhanced through
 multivariate consideration of parameters. The use of pedigree
19
on the scale (unit) of linear data [85]. Therefore, for the analysis of
data from varying sources and measured in different units,
uncertainty factors need to be independent of scaling effects.

Using GSD as the uncertainty measure overcomes scale
dependency. If the data source does not follow a lognormal
distribution, GSD ratios are obtained via the coefficient of variation
7
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(CV) [84,111]. This considered quantitative uncertainty sources
attributed by epistemic error and qualitative sources due to
imperfect data. The CV is a dimensionless measure of variability
defined as the ratio between the standard deviation and the mean
[84,85,111,112]. Muller et al. [84] devised formulas to apply the CV
to various distributions to allow selection of the most appropriate
probability distribution functions (PDF) for the analysis. The
robustness of this method was tested for each parameter PDF using
Monte Carlo simulation. This is a key method to combine
multivariate uncertainties through different PDFs.

Probability distributions for uncertainty analysis

The selection of the most appropriate PDF depends on the
nature of each input parameter (quantitative or qualitative
sources) and how it is recorded [15,113]. The most common types
of PDF used in the included papers are stacked by their contextual
application in Fig. 12.

Statistical measured data is typically represented by the normal
(Gaussian) distribution, used in 58% of the 107 examined papers, or
lognormal in 9%. Uniform distributions are considered in 33% of
papers. When recording data, an individual digital readout has a
uniformly distributed uncertainty, since it is on or off. The values of
the readout are represented by a different distribution, depending
on how it was recorded. Several publications therefore considered
more than one type of distribution. Table 7 describes the main
distributions identified in the papers, adapted from Stockton and
Wang [113], Everitt and Skrondal [33], and Erkoyuncu [15].

The Weibull distribution is used in reliability modelling and
analysis for life cycle forecasting [11,14,114]. This could be an
important distribution choice when considering forecasting
uncertainty, however, it was only considered in 6% of papers
included in this review.

Uncertainty assessment and forecasting

This section of the analysis focuses on how uncertainty can be
forecast and modelled over the in-service phase of an assets life
cycle and where these are or can be applied to complex and non-
complex engineering systems. The term ‘assessment’ is a
judgement of value or quality based on available information,
while ‘forecasting’ is the determination of most likely future

maintainability to ensure the asset is fit for purpose [19,104]. Each
of these considerations raise challenges which promote numerous
uncertainties, covered in Section “Multivariate uncertainty analy-
sis”. Schwabe et al. [82] stated that the ability to quantify and
forecast cost uncertainty is often limited by minimal measurement
points, lack of experience, unknown history and low data quality.
This precipitates innovation hesitancy in the face of an ever-
increasing rise in technological innovation [115].

One of the key emerging techniques to forecast uncertainty is
deep learning; a subset of machine learning. The main difference
between them is the way data is presented. Machine learning
algorithms tend to require structured data, whereas deep learning
networks rely on layers of a neural network (NN). The terms are
often used interchangeably. The quality of data ultimately
determines the quality of the result. To give greater confidence
in estimates such as maintenance costing, backpropagation
algorithms can be applied to further improve the quality of NN
training [11,18,110,116–119]. Applications were reviewed in terms
of their learning capability and reliability in uncertainty prediction.
Stochastic models calculated from steady-state probabilities do not
necessarily reflect reality since maintenance policies can take
several years to stabilise [11].

A review of the theory of probabilistic modelling in machine
learning and artificial intelligence was made by Ghahramani [17].
Data is the key element of machine learning systems, the capability
of which is largely dependent on the probabilistic interpretation of
uncertainty. Bayesian learning is the application of Bayesian
probability theory in machine learning, where predictions or
beliefs are updated when presented with new data via Bayes’
Theorem [52,117,120–124]. Smart [111] presented a methodology
to develop cost estimating relationships from trends with limited
data. Bayes’ Theorem was utilised to combine prior data,
experience or opinion with limited real-time data to produce
accurate forecasts with a degree of confidence.

The main challenges in Bayesian learning are the quality and
availability of prior data or knowledge and the flexibility of models
to encompass all properties of data required to achieve the
prediction task. Flexible models can make better predictions, but
all predictions involve assumptions [17,120]. Gaussian processes
are a highly flexible non-parametric approach to predict unknown
functions and are widely used for regression and classification.
Non-parametric model predictions get more complex with the

Fig. 12. Analysis: Percentage of PDFs used in included papers by contextual application.
outcomes based on that information. The majority of studies
identified centre around cost estimation in the PSS context
[6,7,9,14,19,20,41,71,82,89]. The in-service phase of PSS covers
the largest portion of the life cycle situated between contract
bidding and disposal. This phase calls for numerous equipment
considerations including reliability, flexibility, availability and
198
density of training data, whereas parametric models have a fixed
number of parameters. Gaussian processes are used to optimise the
training process for machine learning models [120,125,126].

The end of Section “Qualitative uncertainty analysis” identified
the endorsement of NNs to aid uncertainty analysis for complex
engineering systems alongside fuzzy set theory. The terms and
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ualities identified in the synthesis to represent uncertainty
ssessment and forecasting are illustrated in Fig. 13 and stacked by
ontextual application. Uses of NNs and Bayesian techniques from
ig. 7 and selected distributions from Fig. 12 are included for
omparison. Life cycles of products or services were considered in
9% of the 107 included papers, with 21% considering NNs and 32%
onsidering Bayesian techniques.
The General Likelihood Uncertainty Estimation (GLUE) method

ses Bayesian inference to assess uncertainty in model predictions.
argely applied in hydrology and meteorology, the method uses
nsemble forecasting of weighted parameter sets to identify the
ontribution level of each set for a forecasted point in time
69,127–129]. Simmons et al. [69] used the GLUE method as a tool
or optimisation and estimation of best-fit parameters for
umerical models in coastal engineering. The use of Monte Carlo
imulation provided confidence intervals on predicted erosion
evels, which can offer information to the decision-maker on
xpected uncertainty [115]. The GLUE method was seen to be an
ffective calibration technique for coastal erosion modelling.
immons stated that the GLUE method provides an improvement

patterns. Optimised by backpropagation, the data-driven network
incorporated uncertainty directly into the loss function to reduce
errors. Relationships between variables were predicted by regres-
sion algorithms. The combination of deep learning and UQ was
shown to improve generalisation of point estimation compared to
RMSE calculation to forecast multi-step meteorological time series
but is best suited to scenario modelling in meteorology.

Bayesian deep learning (BDL) is one of the most popular
techniques to learn from and forecast data trends
[17,52,120,121,125,130]. However, this approach requires signifi-
cant modification models, adopting variation inference instead of
backpropagation, making them harder to implement, computa-
tionally slower, and even reduce test accuracy [116,125]. A
theoretical framework proposed by Gal and Ghahramani [125]
used a dropout training approach to approximate Bayesian
inference in Gaussian processes in deep neural networks, which
was shown to mitigate the problem presented by BDL. The
uncertainty assessed here was in the deep learning process itself,
not the resulting uncertainty interval.

One of the most significant challenges highlighted in this

able 7
nalysis: comparison of commonly used PDFs [15,33,113].

Distribution Parameters Application Advantage Disadvantage

Beta Lower and upper range plus 2 shaping
parameters

Variability over a fixed range Highly flexible distribution Requires additional estimation
points to shape appropriately

Lognormal Mean and Log. of standard deviation Nonlinear, skewed ranges Works well for factors that
interact in a multiplicative
manner

Can be difficult to express
standard deviation
Criticised for giving over
estimated probability

Normal Mean and standard deviation Standard distribution is
considered as standard
uncertainty of the estimate

Works well for symmetrical data Not as applicable for defining risk,
which is usually asymmetrical

Triangular Minimum, maximum and mean Used when most likely value is
distinguished

Simple and intuitive, can be
skewed or symmetric

Points are highly absolute
Can lead to under or over
estimation as confidence levels
cannot be stated

Uniform Minimum and maximum Constant data flow or where shape
is unknown

Very simple to use High risk of over or under
estimation

Weibull Scale and shape parameters
W(L,α,β) is an open-ended distribution with
location L, scale parameter α, and shape
parameter β

Reliability modelling and analysis,
life cycle forecasting

Can take the form of multiple
distributions, depending on the
value of β

Parameter selection can be
inaccurate – leads to
underestimation

Fig. 13. Analysis: Percentage of terms and attributes in included papers for uncertainty assessment and forecasting.
n predictive skill, a rigorous evaluation of model sensitivity to
arameters, an ability to identify differences in model performance
nd quantification of parameter-induced uncertainty.
A deep uncertainty quantification (DUQ) prediction model was

roposed by Wang et al. [116] to learn from historic data through a
egative log-likelihood error (NLE) calculation to forecast weather
19
review in terms of uncertainty quantification and forecasting in all
examined contexts is data availability. Where there is not sufficient
data to fulfil the Central Limit Theorem, where the normalised sum
of inputs tends towards the Normal distribution, estimates cannot
necessarily be made with enough confidence to make rigorous
estimates or forecasts [14,30,82,109,110,114]. To this end, Schwabe
9
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et al. [82,99] devised a novel approach to forecast cost uncertainty
for a given point in time by spatial geometry, described through the
symmetrical relationship between cost variance data at a given
point in time, represented in a vector space. The life cycle under
consideration was represented as an open complex system. These
vectors were aggregated to give a probable cost variance
represented in state space.

There is limited literature on holistic, multivariate cost
uncertainty estimation for the in-service phase of PSS [19,71].
Guidance is scarce to aid the selection of suitable uncertainty
modelling methods such as NN, BDL and fuzzy set theory, which in
themselves generally only consider epistemic forms of uncertainty
[17,19,31,89,99].

Research results and discussion

The final phase of the review methodology discusses the
research methodology and results conducted through the SALSA
framework [22]. An evaluation of the validity of research methods
adopted and findings culminated throughout the review is given in
Appendix D. Research questions 1 and 2 share many similarities
and are discussed in Section “Discussion of findings for research
questions 1 and 2”, summarised in Table 8. Research question 3 is
discussed in Section “Discussion of findings for research question
3”, summarised in Table 9. Section “Research questions contribu-
tion to knowledge” summarises the core contributions to
knowledge of from findings of the research questions.

Discussion of findings for research questions 1 and 2

How can multivariate uncertainties be aggregated and represented
through different probability distributions?

The analysis of papers to answer this question is presented in
Sections “Uncertainty propagation and simulation techniques” and

“Probability distributions for uncertainty analysis”. Quantitative
uncertainty analysis considers an aggregation of input parameter
uncertainty whose value is derived from statistical data. Sensitivity
analysis and Monte Carlo simulation are used to propagate
uncertainty ranges over multiple PDFs along with correlation
between inputs and respective degrees of freedom. The majority of
solely quantitative approaches follow the standard GUM method,
or an adaption thereof.

The main qualitative analysis techniques combined the pedi-
gree matrix, largely integrated in NUSAP, with quantitative
assessment methods such as quantitative risk assessments and
LCA. The former appreciated the need for multivariate consider-
ations but there were no examples found of a combined approach.
The latter applied sensitivity analysis to eliminate negligible inputs
to alleviate the trade-off between measurement accuracy and
implementation costs. However, uncertainty over the life cycle was
considered constant, when in reality it is likely to fluctuate. The
multivariate combination of quantitative and qualitative uncer-
tainty is essential in real-world contextual applications to provide
estimates of cost, availability and reliability with high levels of
confidence.

The selection of the most appropriate PDF to represent a
given uncertainty source is crucial in the analysis process
[15,113]. Attributing qualitative factors as geometric standard
deviation (GSD) enables the quantification and aggregation of
multivariate uncertainties through an amalgamation of the
pedigree matrix, Monte Carlo simulation and coefficient of
variation (CV) [84,85]. The presented method can be applied to a
range of PDFs.

Findings were qualified by referred sources and standardised
methods for quantitative and qualitative uncertainty analysis. The
probity of the amalgamation of these methods is considered
unbiased since it can, in theory, be applied to multiple PDFs in
multiple contexts. It also fulfils the outcome of the PICOC

Table 8
Identified approaches to resolve RQ1 and RQ2.

Problem Approach

RQ1: Aggregation of multivariate uncertainties represented through
different probability distributions

RQ2: Standardise and validate qualitative estimates

GUM method
[30,34,43,45,85,90]

Standardised methods for quantitative aggregation (standard
deviation)
Gives standard 5-step process to identify, quantify and combine
uncertainties
Uses effective degrees of freedom for qualitative aggregation, leads
to underestimation
Widely used with small variations in multiple applications

Use of effective degrees of freedom via Welch-Satterwhite formula
can lead to underestimation of combined uncertainty – improved
method presented by Willink [91]

NUSAP
[16,96]

Can be applied to simple calculations and complex models
Found to improve the depiction of uncertainty through visualisation
and background knowledge compared to EQRAs
Not clear how quantitative and qualitative estimates were combined
explicitly

Uses pedigree to attribute qualitative estimates in a quantitative
manner, suited to a broad range of applications

Geometric standard
deviation (GSD) and
coefficient of variation
(CV)
[84,85,111,112]

Estimates are represented under the lognormal distribution as GSD
to eliminate scaling effects from different types of data
CV enables aggregation of quantitative and qualitative uncertainties
represented by different PDFs

Uses pedigree to attribute qualitative estimates via GSD

Willink method
[45,91]

Fits quantitative estimates to qualitative by attributing a known
parent distribution to quantitative
“Proposed method improves performance when some error
components are drawn from non-normal distributions whose
variances are obtained by non-statistical means”

Qualitative estimates represented by known variance and
‘coefficient of excess’
Removes bias of overall variance estimate

Top-down approach AKA: Broad level – does not go far into measurement procedure and does Considers uncertainty component by possible bias – determined

Nordtest approach,
Single-lab validation
[102]

not attempt to quantify all uncertainty sources individually, contrary
to GUM, but follows the same 5-step process
Instead, uncertainty sources are quantified in large “batches” via
components that take several uncertainty sources into account
Uncertainty obtained characterises analysis procedure rather than
an explicit result

against an uncertain reference value
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ramework to determine relevant probability distributions and
ethods to quantify uncertainty that can be applied in industrial
aintenance. Other approaches examined were only applied in

heory, prompting the need for further research in applied fields.
lternative techniques may exist that were not covered in this
eview. This can be down to the probity of the initial search string
nd robustness of the elimination process.

ow can qualitative estimates driven by expert opinion and individual
xperiences be standardised and validated?
The analysis of papers to answer this question is presented in

ection “Qualitative uncertainty analysis”. Qualitative approaches
pplied in real-world cases are used in conjunction with
uantitative methods such as Monte Carlo and sensitivity analysis.
he pedigree matrix is one of the most widely used methods to
alidate qualitative attributes such as expert opinion and experi-
nce [15,16,84,85,95,96]. This requires the definition of pedigree
riteria upon which the experience or qualifications of an ‘expert’
re scored and aggregated to attribute a quantitative measure of
ncertainty. These criteria can be defined through surveys and
nterviews with industrial practitioners and academics. This
pproach has been adapted and implemented in a range of fields
or various purposes [16,31,70,76,83,85,96]. Expert opinion and
ndividual experiences can be validated against defined pedigree
riteria to provide a standardised representation of uncertainty
ttributed by them.

selection of suitably qualified individuals. The pedigree ap-
proach was the only qualitative technique explored in detail as it
was deemed best suited and widely accepted to fulfil the desired
application. Other approaches or adaptations of pedigree may
warrant further investigation, but the application through GSD
and CV proposed by Ciroth et al. [85] and Muller et al. [84]
appear best suited to fulfil research questions 1 and 2. These
factors also achieve the outcome portion of the PICOC
framework in Table 1 to identify methodologies to quantify
qualitative uncertainty attributes and combine them with
quantitative uncertainties.

Discussion of findings for research question 3

How can uncertainty be forecast over the in-service phase of an asset's
life cycle and what are the key challenges faced in doing so?

The analysis of papers to answer this question is presented in
Section “Uncertainty assessment and forecasting”. Intelligent
learning techniques are increasingly used to flexibly forecast
uncertainty estimates in a range of fields, though applied methods
for maintenance in-service are limited. The key challenges faced
here, as in traditional uncertainty analysis, are the quality of
available data and experience and knowledge surrounding data
collection [56,131]. These challenges limit the ability to optimally
train networks through probabilistic Bayesian learning, which
reduces confidence and robustness in the associated uncertainty

able 9
entified approaches to resolve RQ3.

Problem Method

RQ3: Forecasting uncertainty over the in-service phase of an asset's life cycle

Fuzzy set theory
[15,19,31,49,89,98]

Function assigns a grade between 0 and 1 to each input parameter of a set, as opposed to Boolean that are 0 or 1
Suitable for qualitative reasoning, not for estimating quantitative uncertainty.
Often recommended in cases where recorded data and knowledge is lacking and available data is inherently subjective.
Used alongside NNs to aid uncertainty analysis

Neural network (NN) with
backpropagation (BPN)
[15,17,56,109–111,113,125,132]

A flexible network of cooperating processing elements to give an output. Applied to a model and ‘trained’ to give an optimum
output
Backpropagation computes the gradient of the loss function and uses it to change input parameters to reduce mistakes and
optimise the output
Other applications reviewed regarding learning capability and reliability in uncertainty prediction, giving greater confidence in
maintenance cost estimates
BPN addresses stabilisation of maintenance policies based on steady-state probabilities from stochastic models at inception that
may not reflect reality for forecasts.

GLUE method
[69,127–129]

Uses Bayesian inference and ensemble forecasting to assess uncertainty and contribution (sensitivity) of factors for a forecasted
point in time
Monte Carlo simulation provides information to the decision-maker on expected uncertainty with a degree of confidence.
Allows for identification of differences in model performance and quantification of parameter-induced uncertainty

Deep uncertainty quantification
(DUQ)
[116]

Combines deep learning and UQ to forecast multi-step meteorological time series
Uncertainty is incorporated straight into a loss function and is directly optimised through backpropagation
Improves generalisation compared to mean squared error (MSE) and mean absolute error (MAE)
BPN incorporates uncertainty directly into loss function for direct optimisation
Regression is solved as a mapping problem rather than curve fitting and so cannot be naturally applied to multi-step timer-series
forecasting

Dropout as Bayesian approximation
[125]

Theoretical framework casting dropout training in deep NNs as approximate Bayesian inference in deep Gaussian processes
Bayesian models require significant modification to train deep models, making them harder to implement and computationally
slower
Dropout training used to approximate Bayesian inference in Gaussian processes
Approximate Bayesian inference updates probability as more evidence becomes available
Considerable improvement in predictive log-likelihood and RMSE compared to existing state-of-the-art methods such as BDL

Spatial geometry
[82,99]

Forecasts cost uncertainty for a given point in time where available data is scarce, determined by the geometric symmetry of cost
variance data at the time of estimation
Represents uncertainty in a vector space, aggregated to give probable cost variance in state space.
Propagation described through the symmetrical relationship between cost variance data at a given point in time set apart from 0.
Alternative to traditional parametric techniques where available data is not sufficient to fulfil the Central Limit Theorem
The highly adaptive nature of the pedigree approach through
USAP has allowed it to be implemented in multiple real-world
ontexts, while others such as applying effective degrees of
reedom are more likely to lead to lower confidence in the
verall uncertainty estimate. The definition of criteria alleviates
ias in the approach, though this should be made by a diverse
20
estimate. Alternative approaches to forecast uncertainty under
limited data have been proposed such as deep uncertainty
quantification (DUQ) [116], drop out learning [125] and spatial
geometry [82].

Findings for this research question may be considered bias
towards the context of cost estimation in PSS [6,7,9,21,106].
1
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Additional research is needed to examine how the assessed deep
learning approaches can be applied for uncertainty assessment in
industrial maintenance under limited data [98,108]. This requires a
multivariate aggregation at present and a prediction of how the
uncertainty may change through the in-service phase, considered
for individual system components and as a whole. This achieves
the final outcome of the PICOC framework to identify methods to
forecast uncertainty and optimise outputs as new information is
acquired. The resulting forecasts can be utilised by decision-
makers to determine where uncertainties may pose an undesirable
risk over time, requiring mitigation to reduce the likelihood of
unforeseen costs and delays.

Research questions contribution to knowledge

The analysis of synthesised literature to answer research
question 1 (RQ1) in Section “Uncertainty propagation and
simulation techniques” summarised the key UQ approaches used
to undertake purely quantitative, purely qualitative and multivari-
ate analysis. Section “Probability distributions for uncertainty
analysis” identified PDFs best suited for uncertainty analysis
applicable to industrial maintenance. Standardisation of qualita-
tive factors to answer RQ2 in Sections “Qualitative uncertainty
analysis” and “Multivariate uncertainty analysis” highlighted the
use of the pedigree matrix to assign scores corresponding to
uncertainty intervals [15,16]. These are attributed by their
geometric standard deviation (GSD) to combine with quantitative
estimates. To gauge these on an equivalent scale for aggregation,
the respective coefficient of variation (CV) of each input is used as
the uncertainty measure [84,85]. Systems in the reviewed context
of emissions, energy & environment are inherently complex.
Methods used must be flexible and therefore likely to be
transferable to industrial maintenance.

The analysis to answer RQ3 in Section “Uncertainty assess-
ment and forecasting” highlighted the use of deep learning to
forecast uncertainty. Methods to forecast individual and aggre-
gated uncertainty manifested by data availability, quality,
experience and knowledge over time should be applicable under
limited data where traditional probabilistic Bayesian learning
cannot be applied. Approaches such as deep uncertainty
quantification (DUQ) [116], drop out learning [125] and spatial
geometry [82] should be explored to make confident predictions
of which uncertainties will pose undesirable risk throughout the
in-service phase. Simulations of dynamic uncertainties in
complex and non-complex systems can be made through
surrogate models to estimate real-time and forecasted behaviour
[108,110].

Conclusions and future work

The purpose of this review was to investigate distinct
methodologies used to quantify, aggregate and forecast uncertain-
ty for real-world applications. Knowledge gaps within the research
scope were highlighted, prompting the future research direction
for dynamic uncertainties manifested in engineering systems to
optimise performance and availability for the in-service phase.

Section “Introduction” hypothesised that current approaches
considering a multivariate combination of factors will increase
confidence and rigour in determining the impact of uncertainty
over time under limited available data. The methodologies

Conclusions drawn from the discussion of approaches prove
that the aggregation and forecasting of uncertainty are hindered by
the quality of available data, experience and knowledge. Modern
engineering systems feature a myriad of subsystems interacting
simultaneously and nonlinearly with each other with levels of
importance dependent on operational condition and system
environment. Limited data concerning the optimisation of such
systems and interactions between them increases uncertainty
throughout their in-service life. These systems typically operate
under product-service system (PSS) contracts with multiple
stakeholders, which presents challenges to confidently and
accurately determine the level of uncertainty at present or in
the future. These combined elements inhibit proficient decision-
making and may lead to under or over estimation.

Multivariate techniques applied in the contextual domains of
this review have highlighted equal challenges with limited
tangible data and information. Uncertainty attributed to stake-
holder relationships is a key challenge to deliver maintenance.
However, this is largely tied into supply chains and therefore out of
scope for this research [6,21]. Frameworks should be angled
towards the core challenges that lead to uncertainty in the
maintenance of engineering systems. The in-service life typically
spans several years, prompting a need to accurately forecast and
track changes in technical engineering uncertainties relating to
cost and equipment availability.

From the findings of this review in answering the three research
questions, two core research gaps were identified:

1. Lack of frameworks to aggregate multivariate uncertainty that
can be applied in-service for increasingly complex engineering
systems.

2. Limited approaches forecasting individual and aggregated
uncertainties in engineering systems with complex and non-
complex entities under limited data.

Future work to close the first gap is recommended to develop
robust frameworks that consider dependencies between multivar-
iate inputs within increasingly complex system boundaries and
identify which inputs have the greatest influence on the
aggregated uncertainty. Flexibility in engineering systems design
allows unpredictable unknown-unknowns to be mitigated (Fig. 1),
which should be reflected in uncertainty frameworks. While many
UQ approaches exist for purely quantitative scenarios, stand-
ardised methodologies to quantify multivariate uncertainty are
limited in the manufacturing and maintenance context, especially
for the in-service phase. The suitability of the pedigree matrix to
determine qualitative uncertainty in the context of the research
questions proves promising for the research direction in increas-
ingly complex engineering systems.

The combination of traditional probability theory with deep
learning will address the second gap and allow uncertainty to be
forecast for real-world applications, incorporating complex and
non-complex entities. Deep learning techniques will help to
dynamically optimise flexible uncertainty forecasts when new
data becomes available. The push to develop deep learning
methods to forecast uncertainty is gathering importance as data
volumes, computational capability and complexity in engineering
systems increases.

Maintenance processes should be simulated through surrogate
models, incorporating the identified challenges to execute
identified above for multivariate aggregation in theoretical and
real-world applications, along with deep learning techniques to
forecast uncertainty have been shown to achieve this and
consequently prove the hypothesis to be true.
202
frameworks to quantify, aggregate and forecast the resulting
uncertainties. Data collected from simulations can then be
incorporated to train developed frameworks to confidently
aggregate and forecast multivariate uncertainty.
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ppendix A. Search string and results

Search string: (“Uncertainty quantification” AND (“aggrega-
ion” OR “industrial maintenance” OR “forecasting” OR “chal-
enges” OR “complex engineering systems”))

Table A1.

Appendix B. Snapshot of data extraction table for publication
details, study details and results of selected papers

Table A1
Database search results.

Database Search fields Date Documents found

Google Scholar Title 07/07/2020 59
IEEE Xplore Title-Abs-Key 07/07/2020 79
Science Direct Title-Abs-Key 07/07/2020 275
Scopus (open access) Title-Abs-Key 07/07/2020 218

Total 631
203
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ppendix C. Snapshot of word frequency count matrix for the
hematic synthesis using Excel VLOOKUP functions

ppendix D. Research methods validity and neutrality

The validity of research methods is distinguished here as the
xtent to which they achieve the objectives. Neutrality is the
easure to avoid bias and increase transparency and replicability
f the research. The following points examine these traits for the
rameworks and methods adopted in this review.

 Systematic review procedure: The SALSA framework was
adopted to carry out the review procedure due to its contextual
flexibility and validity, as well as its successful implementation
in other systematic reviews [22–25].

 Scoping framework: The PICOC framework (Table 1) was
adopted to scope the research and define the aim, objectives
and research questions as it provides a transparent and
duplicable identification of key concepts to be implemented in
the SALSA framework.

 Literature search: The PICOC framework was used to construct,
refine and enhance the search string (Appendix A. Search string

introduction/conclusion and full-text reading (Fig. 3) according
to these criteria via author's interpretation of their relevance. The
remaining papers were deemed most relevant to answer the
research questions. Data management was upheld using the data
extraction table described in Section “Data extraction”.

� Synthesis: Themes and categories were established through the
repetitive word counting process described in Section “Synthesis
of extracted data”. This reproducible process was validated and
refined by comparison with other reviews and academic
feedback [24,25,67,68]

� Analysis: A combination of thematic, narrative, tabular and
graphical approaches were adopted to examine the literature
and answer the research questions. Types of uncertainty were
discussed in Section “Topology of engineering systems and
uncertainty” to provide context for the research scope.

References
and results). Literature deemed to encapsulate the scope of the
research criteria was selected to assess in the appraisal phase.

 Appraisal: Inclusion and exclusion criteria were defined through
the research scope and PICOC framework, as well as examples in
literature [22,23,66]. Publications were eliminated on a basis of
format (accessibility), duplication, title, abstract, date,
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