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Ethnic markers and the emergence 
of group‑specific norms
Juan Ozaita1,2, Andrea Baronchelli 3,4 & Angel Sánchez 1,2,5,6*

Observable social traits determine how we interact meaningfully in society even in our globalized 
world. While a popular hypothesis states that observable traits may help promote cooperation, 
the alternative explanation that they facilitate coordination has gained ground in recent years. 
Here we explore this possibility and present a model that investigates the role of ethnic markers in 
coordination games. In particular, we aim to test the role of reinforcement learning as the microscopic 
mechanism used by the agents to update their strategies in the game. For a wide range of parameters, 
we observe the emergence of a collective equilibrium in which markers play an assorting role. 
However, if individuals are too conformist or too greedy, markers fail to shape social interactions. 
These results extend and complement previous work focused on agent imitation and show that 
reinforcement learning is a good candidate to explain many instances where ethnic markers influence 
coordination.

Despite the globalized nature of our societies, ethnic groups behaving according to disparate social norms or 
conventions are  ubiquitous1. According to  Barth2, people identify themselves, and are identified by others, as 
belonging to certain ethnic group by means of culturally transmitted features, such as wealth symbols, language, 
culture and artistic forms, dress style or cuisine. All these attributes have in common that they are external and 
can be seen, evaluated and acted upon by any other member of the population. In turn, mechanisms based on 
social categorization and parochialism work to maintain  them3.

Several researchers argued that ethnic groups are the basic locii for cooperation, enabling individuals to 
profit from cooperative exchanges depending on the observation of the traits displayed by  others4–6. However, 
the existence of cooperative or altruistic disposition towards similarly marked individuals has been challenged 
based on the possibility of free-riding7. An alternative explanation solves the free-riding problem by maintaining 
that the social role of ethnic markers can be to facilitate coordination rather than  cooperation8–10. While there is 
contradictory experimental evidence on this  hypothesis11–14, research specifically designed to test between these 
two options seems to favor the coordination  interpretation15.

In this paper, we focus on the role of ethnic markers on norm formation, modelled as a game of 
 coordination18–24. Our aim is to study reinforcement  learning25–27 in this context, motivated by recent empiri-
cal findings that have identified this evolutionary mechanism in many instances of human  interaction28,29. We 
work in the framework introduced by McElreath et al.9 consisting of a unique binary marker used by individuals 
to choose their behavior in social interactions . This characterization of strangers based on ethnic markers is 
thus used to determine whether or not there are shared social norms with  them16,17. Importantly, their model 
was based on imitation-driven evolutionary dynamics, in which populations using a given strategy (marker-
dependent or not) grow or decrease depending on the difference between their payoff and those of the other 
populations. In contrast, our approach based on reinforcement learning does not use the information on payoffs 
from other individuals in the population, which is more often than not unavailable, and is governed only by the 
individual’s own aspirations and payoff.

Indeed, the rationale for exploring reinforcement learning as an alternative to proportional imitation is that, 
while the first has been criticised for assuming excessive flux of information in the population, the latter allows to 
achieve a cooperative equilibrium by using only individual  information30–32. In our model, each agent is defined 
by an individual parameter called the aspiration. This parameter defines how the outcome of an interaction makes 
it more likely to choose a given action in the future, when the payoff it yields is larger than the aspiration (positive 
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stimulus). The opposite occurs when the payoff is smaller thant the aspiration (negative stimulus), namely the 
action becomes less likely to be repeated. In the following sections, we explore the role of this parameter, as well 
as other parameters arising from the model introduced in Ref.1. We will thus identify the conditions under which 
markers promote coordination, which will be summarized in the final discussion.

Model
In this section we introduce our model for the marker’s mechanism incorporating reinforcement  learning25–27 
as our paradigm for the evolution of the agents decisions. As stated above, the key feature of this dynamics is the 
aspiration parameter, which agents use to evaluate the outcome of a round. If the outcome is above (below) their 
aspirations, they generate a positive (negative) stimulus and tend to repeat (avoid) their previous action. The 
effect of this dynamics was first studied by Macy and Flache in Ref.26 where they considered two-agent interac-
tions through different social dilemmas, one of them being coordination. Without considering markers, they 
showed that aspirations that can generate positive and negative stimuli tend to promote cooperation in social 
dilemmas; in the case of coordination, this amounts to largely increasing the proportion of interactions in which 
agents succeed in coordinating. Other choices for the aspiration values led in turn to coordination failures. Here, 
we consider different aspiration values when markers mediate a coordination game played by a population of 
size N >> 2 . When markers are present, individual actions evolve based on two different inputs, namely from 
intra- and iter- marker interaction, which significantly increases the complexity of the possible outcomes.

In our model, agents are characterized by the following parameters:

• Behavior It is the action chosen for the coordination game. It may take two different values {0, 1}.
• Marker It is a visible characteristic which identify the interaction. It may take two different values {0, 1} . In 

our version markers will be immutable, modeling observable social traits that either do not change or change 
in a very slow timescale.

• Aspiration The payoff expected by the agent, which will define the stimulus that it receives from the interac-
tion.

• Probability vector The probability for an agent to choose a behavior according to the subject’s marker. We 
consider the probabilities to choose an action when interacting with an agent with the same marker and the 
same for the case of an agent with the opposite marker, i.e., 

In this model, population is split in couples and agents interact via a coordination game. These games are char-
acterized by a symmetric payoff matrix, such as

where each element of the matrix ( aij ) corresponds to the payoff obtained by player 1 when choosing behavior 
i while player 2 chooses strategy j. When both players choose the same action ( aii for i = 1, 2 is selected) they 
get a better payoff given by the additional amount δ . We then say that they have coordinated in that timestep. 
Note that markers do not affect the payoff matrix; their effects are only included in the probability vector that 
we described above.

On the other hand, we have included in the model several variables, mostly taken from the pioneering 
research about markers in Ref.1, that characterize the population and their interactions as a whole:

• e: Probability for the interaction to be marked, modelling the willingness of the agents to choose someone 
with the same marker. This parameter takes into account the tendency to bias interactions towards the marker 
we share with other members from our population, or in other words, the degree of  homophily33.

• δ : Extra payoff for successful coordination. In the following sections, we will set δ = 0.5.

The model consists of N agents , that evolve in time according to the following dynamics: 

1. Select type of interaction With probability e, the individual interacts with another one chosen at random 
without making any reference to the marker, and with probability 1− e the individual interacts with another 
one who shares her same marker. This implies that interactions with others sharing one’s marker take place 
with probability 1− e/2 . Once the type of interaction is selected, a random couple that fulfill the chosen 
criterion is assigned to the focal individual.

2. Select individual actions and play the game Both interacting agents select a behavior according to their prob-
ability vector and play the coordination game accordingly.

3. Collect payoff and update probability vector Both agents collect their payoff. If this payoff satisfies their 
expectations, they generate a positive stimulus, and vice-versa. A positive stimulus encourages the agent to 
repeat the same action and a negative one repel him. These dynamics are captured in the following equations, 
extracted from Ref.26: 

p=,0 + p=,1 =1,

p �=,0 + p�=,1 =1.

(1)
(

1+ δ 1

1 1+ δ

)

,
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where pa,t is the probability of choosing a certain action at the timestep t and sa,t is the stimulus obtained 
by the agent at that timestep. Furthermore, l is the learning  rate26, that controls the speed of adaptation of 
the agents.

Before going into the presentation of our findings, a brief discussion is needed to understand the methodology 
of the present work. As can be seen from the above description, we have introduced a model that incorporates 
the mechanism we want to understand, but at the same time it involves a number of parameters and variables. 
This immediately raises two questions: first, how robust are the conclusions we can draw from the model with 
respect to changes in the parameters, and second, what is the range in which those conclusions hold. To answer 
these questions, we must resort to a detailed exploration of the model, checking what happens with its differ-
ent alternatives (such as variations on the perfection of the coordination game, variations on the learning rate, 
variations on the bias of the interaction, heterogeneous aspirations, and others we discuss below). While at first 
glance this may look like a collection of simulations, we have made every effort to address all possibilities and 
provide a complete study of our model. As will be shown below, this thorough simulational study will allow us 
to establish our conclusions on firm grounds.

Results
We present here our main results for the model above. First of all, we will consider that all agents have identical 
aspirations and we will characterize the different collective behaviors arising. Once the baseline model is well 
understood, according to our program we will study variations on the parameters . We will also analyze the effect 
of modifying the payoff matrix (imperfect coordination), learning rate variations (l), assortment effects (more 
than one aspiration present in the population), migration effects and variations on the bias of the interaction (e). 
Unless otherwise specified, the values of the main parameters and variables of the model are as follows: Learn-
ing rate l = 0, 5 (fast learning), e = 0.5 (interaction is biased towards individuals with the same marker, and a 
unique population of N = 500 agents. We run simulations for 4000 interactions per agent (in total, 3× 106 ), and 
statistical averages and plots have been made with 100 simulations with markers and behaviors initially chosen 
at random with equal probability.

Baseline. We start by looking at the evolution of the probability vector phase space for different values of the 
aspirations. Specifically, we consider the cases Ai = {1, 1+ δ/2, 1+ δ, 1+ 2δ} , which represent aspiration levels 
at the minimum payoff(and therefore always satisfied or neutral), an intermediate value between payoffs, the 
maximum payoff, and a level above all payoffs (which leads to negative stimulus for all outcomes), respectively. 
Results are shown in Fig. 1.

We can distinguish two main kinds of behavior depending on the value of aspiration: For Ai ≤ 1+ δ/2 , the 
system is dominated by positive stimuli. Reinforcement learning leads agents to deterministic behavior, stick-
ing to one of the actions for each of the two possible interactions, individuals with the same marker and with 
different markers. On the contrary, when Ai > 1+ δ/2 , the learning process is dominated by negative stimuli, 
and agents behave more randomly, meaning for both categories agents may choose one or other strategy with 
nonzero probability.

In order to shed further light into the different regimes, we introduce the ratio of coordination mi defined as

The ratio of coordination allows us to monitor how successful the average player is in coordinating with every 
individual she meets. In Fig. 2 we show the values of this parameter averaged over the length of the run and over 
simulations for an interval of values for the aspiration level. This figure allows us to clearly identify the separa-
tions between the three regimes we have identified:

The first regime arises when Ai ≤ 1 : All stimuli are positive (or neutral, in the extreme case). This means 
that every action encourages the subject to repeat the same action. If we let this dynamics evolve, the subjects 

(2)pa,t+1 =

{

pa,t + (1− pa,t)lsa,t if sa,t ≥ 0,

pa,t + pa,t lsa,t if sa,t < 0,

(3)mi =
no. of coordinations

no. of interactions

Figure 1.  2D histograms for the probability vectors of the population. Shown is the fraction of agents with 
specific values of choosing action 0 when facing another agent with different marker (horizontal axis) and when 
facing another agent with the same agent (vertical axis). From left to right, aspiration levels are 1, 1+ δ/2 , 1+ δ , 
1+ 2δ.
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end up organized in the four possible combinations of 
{

p=,0, p�=,0

}

 . Note that the agents always receive the same 
positive stimuli irrespective of their behavior, resulting in no correlation strategy-marker. We will refer to this 
type of behavior as frequentists referring to the fact that their choices depend on the agent and its sequence of 
interactions. As a consequence, the ratio of coordination is around 0.5, as expected in such a random setting. 
The second regime arises when we increase the aspiration further, 1 < Ai < 1+ δ/2 . Here, both positive and 
negative stimuli exist but the former dominate. Agents are again clustered, but this time p= is marker related 
and p = is unique for all the population. If both behaviors are the same, homogeneity is promoted. At the end of 
the simulations, we observe that agents develop intra-marker correlations (collective organized strategy within 
each marker subgroup) and inter-marker correlations (collective organized strategy for interactions between 
marked subgroups). Thus, agents have a criterion for both categories.

Further information on the correlations between markers and behavior can be obtained from the study of 
the variance of the agents probability vector for the relevant range of aspirations in the stationary state. In order 
to show the intra-marker correlation, we plot the averaged (over agents and simulations) standard deviation 
of p=, p�= . To show the marker correlation, we plot the standard deviation of the probabilities arising in the 
population with marker 0 ( p=,0 ) and marker 1 ( p=,1 ). As we can see, in the regime 1 < Ai < 1.25 the standard 
deviation for both markers drops independently to zero. This means that the stationary distribution of p=,0 and 
p=,1 tends to a unique value, which, as seen in Fig. 1, it is either zero or one. On the other hand, as the standard 
deviation of p= is nonzero, this concentration around a single value occurs independently for each marker, 
capturing the marker correlation. The inter-marker correlation also achieves low variances, but never reaching 
zero, which shows the weakness of the correlation, arising from the parameter e and the bias in the interaction. 
Still, agents in this regime present lower standard deviations than the ones with higher and lower aspirations, 
showing us that they are correlating the marker of their partner with a particular action. We will call the agents 
in this regime learning agents, as they do learn to coordinate; note that the ratio of coordination is almost 1 (cf. 
Fig. 2), the difference being due to mistakes or, equivalently, fluctuations during the learning process (Fig. 3).

Finally, the third regime occurs when 1+ δ/2 ≥ Ai ≤ 1+ δ . We enter the stochastic behavior: Positive and 
negative stimuli exist, but negative ones dominate. Probability vectors are uniformly distributed in the phase 

Figure 2.  Coordination ratio mi for different values of the aspiration, averaged over agents, time and 
simulations.

Figure 3.  Standard deviation of p=, p�=, p=,0,p=,1averaged over agents and simulations for the relevant range of 
aspirations. The parameters used are the same of Fig. 1.
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space. Agents do not share a criterion nor have a clear strategy for any of the categories. We will call them random 
walkers. The ratio of coordination is again 0.5, as in the case of frequentists.

Variations on the baseline. Having described in detail the phenomenology we observe on our baseline 
model, in this subsection we are going to study the role of the parameters we of the model by varying them one 
by one and analyzing the change in the qualitative results.

Variations on the perfection of the coordination game. In the baseline, both actions lead to the same payoffs 
when the agents agree on them. However, it is possible that the two choices lead to different payoffs, i.e., the 
interaction is not pure coordination anymore. We explore this scenario by modifying the payoff matrix as fol-
lows.

We simulated, as an example, δ = 0.5,Ai = 1+ δ/2, a1 = b1 = δ/2 , obtaining the results shown in Fig. 4. 
Agents choose the Pareto-dominant equilibrium (the one with the largest payoff) if their aspiration level is not 
too large: Reinforcement learning agents organize around this strategy, maximizing their individual and global 
payoff. The 2D histogram shows clearly that all agents choose the best equilibrium irrespective of the markers. 
Therefore, markers play no role when different outcomes have different payoffs because higher payoffs provide 
higher stimuli, which is the key element for an agent in order to arrive to the final equilibrium. Thus, markers are 
only relevant to self-organize the system when there are several equilibria with the same payoff in a pure coor-
dination game, helping agents organize in categories {0,=, } , {0, �=, } , {1,=, },{1, �=, } , which is not possible in the 
absence of markers. Categories arising from markers define the new collective agreements or conventions that are 
present in the population. It has to be kept in mind that in addition to the two equilibria being equally beneficial, 
agents must have the right aspiration value, for positive stimuli to lead to the evolution of coordinated behavior.

Variations on the learning rate (l). In the baseline simulations, we have used fast learning, i.e., agents react 
strongly to the stimulus. Let us now look at the possibility that qualitative results, like the marker correlations, 
are the same if the learning rate is slower ( l = 0.05 ). The results are summarized in Fig. 5. The main difference 
with the previous case is the higher level of coordination among the populations with low aspirations. With a low 
learning rate, the influence of stimuli is very weak. Agents need more interactions to achieve a stationary prob-
ability vector, which is expected for the equilibrium in agents with low aspirations. This increase in the number 
of interactions promotes a more homogeneous equilibrium. It is interesting to note that if we could take the limit 
l → 0 our agents would take infinite time to arrive to an equilibrium, but it would be entirely homogeneous. 
We can conclude then than, at least in the variable mi , the qualitative difference in behavior around Ai = 1 can 
become continuous if we choose the proper learning rate. The variation on the learning rate can be also noted 
in the high aspirations region. As the learning rates are smaller, random-walkers stay trapped around quasi-
random behavior, with probabilities close to 0.5.

Variations on the bias of the interaction (e). Another important feature of our model is the bias on the interac-
tion. In order to discuss the effects of this, we consider an example of the evolution of the coordination rate in 
the population. We choose a population with a global aspiration Ai = 1, 1 to promote coordination, and check, 
for a slow learning rate ( l = 0, 05 ), the difference between e = 0, 5 and e = 1 . In Fig. 6, we can see that there are 
two different coordination velocities, represented by the different slopes of the curve. There are two stages in the 
process of arriving to the equilibrium: In the first one, the system is not organized and it is building both criteria, 

(4)
(

1+ δ + a1 1− b1
1 1+ δ

)

Figure 4.  Evolution of the average ratio of coordination for the asymmetric coordination problem with 
a1 = b1 = δ/2 (left) for different aspiration levels, and 2D histograms for the probability vectors of the 
population (right) for Ai = 1.1.
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the intra-marker one and the inter-marker. In the second one, the intra-marker criterion exists, but the agents 
do not know yet what to do when they interact with someone with a different marker. The bias can also be seen 
in the phase space of probability vectors . If we study the statistics of the previous case, for comparison, we can 
see that the biased case has some kind of transition in two stages, from full coordination to random walkers. 
Firstly, the inter-correlation is broken so the agents spread around one of the axes. In a second stage, the intra-
correlation is destroyed and we arrive to the homogeneously distributed phase space. On the other side, if there 
is no bias, both correlations are destroyed at the same time.

Further information can be obtained from the coordination picture near the transition between learning agent 
and random walker, shown in Fig. 7. As it could be seen also in the probability vector phase space, in the biased 
case the weak correlation is destroyed and the stronger one stays. In the unbiased case, both transitions persist 
at the edge of the transition. And, as we can see, the coordination distribution has a positive skew in the biased 
case and a negative one in the unbiased. We can say then that the strength of the correlation is interaction based, 
as weakening one of the correlations makes for a higher probability of obtaining lower levels of coordination.

Heterogeneous aspirations. In order to study heterogeneous, diverse populations we are going to choose three 
different values for the aspirations, representing the three main categories we have analyzed above. These values 
will be Ai = {0.8, 1.1, 1.5} and they will appear in the population with different proportions. We will study popu-
lations with two different categories of aspirations in different proportions ( 25%, 50%, 75% ) and populations 
with three different categories of aspirations in an equal proportion. These configurations will be studied under 
baseline conditions of fast learning rate ( l = 0.5 ) and marked-biased interaction(e = 0.5 ), with all the simula-
tion parameters as explained in the former section.

In general, our results show that when learning agents are mixed with other type of agents they lose the full 
coordination they achieve when they are on their own, as described in the case of the baseline simulations. How-
ever, there are other consequences of this mixed population that change depending on the precise composition 
considered. Thus, if learning agents are a majority (75% of the population), intra and inter-marker correlation 
still exist but they are not perfect. This means that 0.5 < p=, i < 1 , 0.5 < p  =, i < 1 , so their most probable option 
is to choose the correlated probability, but they could break the rule (leading to only partial correlation). In 
turn, the global level of coordination depends on who are they mixed with: If they are mixed with frequentists, 

Figure 5.  Left: Coordination ratio mi for different values of the aspiration, averaged over agents, time and 
simulations. Right: 2D histograms for the probability vectors of the population. l = 0.05.

Figure 6.  Left: Average coordination ratio for Ai = 1.1 and e = 0, 5 or e = 1 . Right: 2D histograms for the 
probability vectors of the population. Ai = 1, 22
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Fig. 8 shows that they self-organize in the corners of the probability phase space, i.e., on deterministic behavior, 
the specific one arising depending on their history of coordinations. It is interesting to note that four groups of 
frequentists are formed, depending on their coordination with the collective agreements of the learning agents. 
The widest peak corresponds to the one with the maximum coordination, probably because of the influence of 
the learning agents. On the other hand, if they are mixed with random walkers, these last ones eventually cluster 
in the surroundings (in the probability vector phase space) of the collective agreement made by the learning 
agents. In addition to the random movement from the interactions between them, they are driven by the learning 
agents to their positions, as they prefer coordination to uncoordination.

Now, in case learning agents are in 1:1 proportion, what we observe in the center panel of Fig. 8 is that the 
inter-marker correlation is destroyed, while the intra-marker still survives, but partially affected too. The coor-
dination ratio is lower than before, but higher than the random value of 0.5. If they are mixed with frequentists, 
they self-organize with an individual criterion that is affected by the presence of learning agents (just like the 
previous case). The absence of the inter-marker correlation can be noticed in the fact that the coordination ratio 
for the frequentist population is a sum of two Gaussian distributions, one related to the ones that share the learn-
ing agents intra-marker correlations and the ones that do not. If, on the contrary, they are mixed with random 
walkers, they stay at the surroundings of the learning agents criterion, as before. However, as the inter-marker 
correlation has been destroyed, the surroundings are a whole dimension from the probability vector phase space. 
The coordination ratio is still higher than 0.5 even for random walkers.

Figure 8 shows in its right panel results for the situation in which learning agents are a minority ( 25% ). In 
this case, both of their correlations are very weak or suppressed. If they are mixed with random walkers, both 
correlations are destroyed. However, if the majority are frequentists, learning agents stay in the surroundings of 
the equilibria that frequentists have decided, achieving a slightly better coordination ratio. This occurs because 
they coordinate with a group of frequentists and have a nonzero probability of coordinating with learning agents 
and frequentist groups.

Finally, in a well mixed population of agents with fixed aspirations and three choices, namely {0.8, 1.1, 1.5} , 
the results are similar to the case in which learning agents were in the minority. This means that as before, they 
tend to stay in the surroundings of the groups created by frequentists.

Variations on the number of groups and role of migration. An important question as to the effect and dynamics 
of behaviors in marked populations, already raised in Ref.1, is the possibility that there are different populations, 
possibly separated geographically, a situation that may lead to several combinations of markers and actions, 
not necessarily agreeing between groups of individuals. Therefore, we are now going to consider this issue, and 
to that end we will consider that agents have an individual label indicating to which group they belong to. Fol-

Figure 7.  Histograms of the coordination ratio for Ai = 1.22 and e = 0, 5 or e = 1.

Figure 8.  Coordination ratio for a a frequentist/learning or a random walker/learning agent population, with 
ratios (1:3) (left), (1:1) (middle), and (3:1) (right).
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lowing Ref.1, we introduce two migration parameters, m and β , representing the proportion of population that 
migrates in each group (m) and the frequency of the process(β ), respectively. Specifically, migration events take 
place every βN rounds at the end of the corresponding timestep, and in each migration event m individuals in 
each group are randomly chosen and also randomly reassigned to other groups keeping the population of each 
group constant.

As the simplest way to understand the effects of migration, we will consider two separate population groups, 
denoted by a binary label {0, 1} . We have considered medium-sized populations ( Ngroup = 250 ), while all the 
other parameters have been set like in baseline case. In what follows we study two cases: First, two groups with 
different initial aspirations, so we can assess the role of the spatial structure in the conformation of marked com-
munities, and a second situation with the same fixed initial aspiration for both groups, studying how the amount 
and velocity of migration influence reaching or not homogeneity between groups in the collective agreements.

For the first study, we have in turn considered two possibilities, one with group 1 with initial aspiration 0.8 
and group 2 with initial aspiration 1.1, and another one with group 1 with initial aspiration 1.5 and group 2 with 
initial aspiration 1.1. Our results are summarized in Fig. 9, where it can be seen that the existence of separate 
groups, which as we said can come from the underlying spatial structure, does not promote new results nor 
marked communities as, at the end of the day, we obtained two fragmented groups whose main features are 
basically the same as the ones studied above.

For the second study, namely the influence of the migration parameters, we set up two groups of learning 
agents with fixed aspirations ( Ai = 1.1 ) with different migration speeds ( β ) and a fixed quantity of migrants. 
To be specific, we will use a proportion of population that migrates in each group given by m = 1/N . With this 
setup, we have explored the number of coincidences in the possible criteria for the intra-marker and inter-marker 
correlations. We define an intra-marker coincidence as the use of the same behaviors between groups in interac-
tions between agents of the same marker, and inter-marker coincidence as the use of the same behaviors between 
groups in interactions between agents of different markers. Therefore, we define the intra/inter-homogeneity as 
the percentage of realizations for a configuration that promotes these coincidences.

It has to be taken into account that, as we are using e = 0.5 , a 75% of all interactions are intra-marker so it is 
very likely that intra-marker correlations will evolve on a faster time scale. On the other hand, in principle one 
should expect that migration leads to more heterogeneity and to longer time scales for the arising of conven-
tions, because agents migrate between groups having possibly different actions for the same marker. However, 
our simulations show that this is not the case and migration turns out to be compatible with homogeneity and a 
single time scale, which means that the outcome of the evolution is not affected by the bias towards interacting 
with one’s own marker. The difference between the numbers for intra and inter homogeneity arises from the fact 
that the inter-marker correlation is collective agreement in a group, while the intra-marker correlation exists for 
every marked group (it is proportional to the number of groups). As can be seen in Table 1, the ratio 2:1 for these 
quantities remains more or less constant until the parameters allow to reach global homogeneity.

Figure 9.  Coordination ratio for group 0 and for group 1.

Table 1.  Number of coincidences in collective agreements between different groups for different values of 
migration speed ( β).

β %intra-homogeneity %inter-homogeneity

No migration 20 45

10 21 48

1 28 60

0.1 50 100

0.01 100 100
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In the former setup we were working with m = 1/N  , just because it is the scenario where differences can 
arise easily before reaching homogeneity. As expected, if we introduce larger fractions of migrants (larger m), 
higher homogeneity arises. For instance, when β = 0.1 , for different m we obtain the results collected in Table 2, 
showing the efficiency of migration to induce homogeneity across groups.

Discussion
In this work, we investigated reinforcement learning in a model for the emergence of marker-related behaviour 
in coordination problems, showing that it can provide a mechanism in order to solve such multi-agent coordi-
nation games. We found that

• Markers allow to resolve the (pure) coordination problem through reinforcement learning.
• For coordination to take place, however, aspiration levels must be in the mid range, i.e., not too low and not 

too high (see  also1).
• When equilibria are not equivalent, markers become irrelevant.

Furthermore, (1) we found that migration and spatial structure do not promote new collective effects in this 
context; (2) we checked that results are mostly insensitive to the group size, and that they hold for evolutionary-
relevant small groups (see “Appendix”); (3) we also checked that when there is  habituation26, allowing aspiration 
levels to change as a function of the received payoffs, a large fraction of agents end up with aspirations beyond 
the range where learning takes place and random behavior arises, thus breaking the collective behavior related 
to markers (see “Appendix”).

It is interesting to consider our work in relation to the pioneering proposal by McElreath et al.9, which did 
not consider reinforcement learning but rather imitation-driven dynamics. Our results are largely different from 
theirs: Indeed, in our model marker-behavior correlations arise less often, while the existence of more than one 
group or a spatial structure is less significant. The reason for this is that we are considering a dynamics for the 
actions and, importantly, markers do not evolve in our model. Reinforcement learning dynamics with well tuned 
aspirations introduces a systematic way for agents to create correlations with markers, while in Ref.1 this hap-
pens to be an equilibria between different processes of the dynamics. The interpretation of this dynamics is also 
important: Copying the fittest individual’s action (and possibly marker) may not be a realistic circumstance, as 
some social features can not be changed by adaptation, or even if they can, individuals may not have informa-
tion about the payoff obtained by every other individual. Reinforcement learning dynamics only uses individual 
information, avoiding these methodological issues.

Markers have also been considered in the literature about tag games and social norms in agent-based model-
ling. Axtell, Epstein and  Young35 studied tags as promoters of social norms, intended as self-enforcing patterns 
of behavior. In the framework of bargaining, pairs of individuals play a Nash demand game with three options. 
Agents update their memories: They remember a number of past interactions and form expectations based on 
the frequency with which they met each demand. When there are two tags for the population that can also be 
remembered and associated to different demands, Axtell et al. obtain similar results to ours for pure coordina-
tion, in the sense that different behaviors for inter- and intra-group interactions appear, connected to lower or 
higher payoffs. When coordinating on the two actions yields different payoffs they still observe marker dependent 
behavior while we do not, which points to evolution being linked to memory in their model as the reason for the 
contrasting results. Moving further away from our basic setup, the idea of tags as cooperation facilitators has been 
studied extensively. Edmonds and  Hales36,37 defined tags that take continuous values. Individuals can produce 
resources of one kind but they need all the types produced in the population to survive. Continuous tags are 
used to identify individuals to share resources with. Agent-based simulations with evolutionary dynamics show 
that in this setup cooperation is not viable over the long run without some new individuals entering the popula-
tion from outside, although groups of sharing individuals do persist in the medium term. Comparison with our 
model raises the question as to what would be the fate of coordination with a similar scenario of continuous tags.

Therefore, it is clear that after the pioneering works we have discussed in the early 2000s, there is a wide 
field to explore about the role played by markers in the emergence of group related behavior, particularly of 
coordination, and the corresponding factors influencing it. Thus, our research paves the way to study new game 
structures that may represent new social processes, or to new marker structures that represent more complex 
social definitions than the binary one we have used (several features may be added: Global markers, memory à 
la Axtell et al.35 continuous ones such as those in Refs.1). Even markers evolving also by reinforcement learning 

Table 2.  Number of coincidences in collective agreements between different groups for different values of 
migrating fraction of population (m).

m %Intra-homogeneity %Inter-homogeneity

No migration 20 45

1/N 50 100

2/N 85 100

5/N 100 100

10/N 100 100
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could be incorporated to our setup to study situations in which such change is actually easy in the society. Exter-
nal observable markers are, according to our model, features that may affect the way a society works. Agreements 
are reached inside different groups in the society, and this may in turn lead to a more complex understanding 
of collective social norms.

Appendix
Reinforcement learning with habituation. For the sake of completeness, it is interesting to explore the 
effect of dynamic aspirations. It is quite common that individuals have some aspiration level at the beginning of 
some interaction process, and that as the interactions proceed they get used to some level of payoff and change 
their aspirations accordingly. This is generally referred to as habituation, this is, the adaptation of the aspiration 
to the average payoff obtained by the agent. This is introduced by adding a dynamical rule describing the evolu-
tion of the aspiration, given  by26:

where πt is the payoff obtained by the agent at time t. The process of updating individual aspirations is introduced 
in the dynamics for all the timesteps. After a couple of individuals has interacted and collected their payoff, they 
adapt their aspirations according to the former equation.

In order to understand the possible new effects introduced by this dynamic adaptation of agents, we will con-
sider the case of one initial aspiration for all the population, with values {0.8, 1.1, 1.5} as before, and also two dif-
ferent aspirations in the initial conditions in different proportions. We will use a fast learning approach ( l = 0.5 ) 
and marked-biased interaction ( e = 0.5 ) in a single group. Our main findings can be summarized as follows.

When aspirations are initially lower than 1+ δ/2 , and habituation is low (in our case h < 5× 10−3 ), the 
dynamics modifies slightly the level of aspirations, but it does not change the qualitative results. Correlations exist 
and they induce a high level of coordination, which ends promoting high aspirations (agents reach Aeq ≃ 1+ δ , 
cf. Fig. 10).

Moving now to intermediate values of habituation ( 5× 10−3 < h < 0.5 ), we observe in Fig. 11 that habitu-
ation destroys correlations, diminishing the coordination ratio and eventually taking the system to uncoordi-
nation. As we are biasing the interaction, there is a two-stage destruction. This process happens stochastically, 
there is not a critical value of h that separates both behaviors. Finally, for high values of h (in our case h ∼ 0.5 ), 

(5)At+1 = (1− h)At + hπt ,

Figure 10.  Coordination ratio (left) and aspiration (right) distributions. A0 = 0.8 and h = 10−3.

Figure 11.  Coordination ratio (left) and aspiration (right) distributions. A0 = 0.8 and h = 5× 10−2.
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it can be seen in Fig. 12 the system tends to a uniform distribution of aspirations between the two payoffs, or, in 
other words, it behaves randomly.

When aspirations are initially higher than 1+ δ/2 , agents do not create correlations, and their coordination 
ratio is about 50% , which makes them end in an aspiration of Ai ≃ 1+ δ/2 . All their behavior is randomized, 
independently of the value of h. The only behavior that they share with the previous scenario is the non-Marko-
vian one. In addition, the results for fragmented populations are similar to this. As aspirations are now dynamic, 
the important fact now is the amount of agents that can create correlations, as this is the behavior that can pro-
mote high coordination ratios and high aspirations for the agents.

To sum up, habituation moves aspirations towards the payoff average. This payoff average is ≥ 1+ δ/2 , where 
correlations can not be created. The specific evolution of the system depends on initial conditions.

Small groups. As another feature to complete our study of this model, it is important to consider smaller 
group sizes for two reasons: First, if the model is to apply to early stages of human history, such as hunter-
gatherer groups, the typical number of individuals involved in the process may certainly be smaller than the one 
considered so far. Second, it is possible to check the model predictions and assess how applicable the model is to 
actual situations by using experimental studies of our setup, and small numbers are easier to handle in that case. 
After carrying out simulations for smaller groups (number of agents = {200, 500, 1000, 1250, 1500} ), qualitative 
results do not change. This includes the effects arising from the variations on the learning rate, biasing, habitua-
tion and fragmented aspirations are the same, as they do not affect the stimuli structure.

However, the smaller size may give rise to smoothening of the transitions between regimes that we observed 
in Fig. 4, and one could in fact ask if there is some kind of Ising-like  transition34 between the different regimes 
we have described. Figure 13 presents a plot of the region around Ai = 1+ δ/2 for several sizes of the system. 
We will focus on the learning-random walker region ( Ai ≃ 1+ δ/2 ). The other important region ( Ai = 1 ) has an 
easier analysis. The peak in the variance tends to be smaller as we increase the size, giving signals of a finite size 
effect. There are more reasons, related with the variation of the learning rate and the behavior of frequentists. The 
region ( Ai ≃ 1+ δ/2 ) promotes a qualitative change of behavior, which we could not relate to any parameter of 
the system. However, as we can see in the picture below, the system does not exhibit the typical finite size scaling 
one would expect if we were facing a face transition.

Received: 15 September 2020; Accepted: 29 November 2020

Figure 12.  Coordination ratio (left) and aspiration (right) distributions. A0 = 0.8 and h = 0.5.

Figure 13.  Average coordination ratio (left) and Binder cumulant (right) for several sizes in the 1+ δ/2 region.
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