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Hodge numbers of Calabi-Yau manifolds depend non-trivially on the underlying manifold data and they 
present an interesting challenge for machine learning. In this letter we consider the data set of complete 
intersection Calabi-Yau four-folds, a set of about 900, 000 topological types, and study supervised learning 
of the Hodge numbers h1,1 and h3,1 for these manifolds. We find that h1,1 can be successfully learned 
(to 96% precision) by fully connected classifier and regressor networks. While both types of networks fail 
for h3,1, we show that a more complicated two-branch network, combined with feature enhancement, 
can act as an efficient regressor (to 98% precision) for h3,1, at least for a subset of the data. This hints at 
the existence of an, as yet unknown, formula for Hodge numbers.

© 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

Topological quantities of manifolds, such as Betti or Hodge 
numbers, are often non-trivially related to the data describing the 
underlying manifold and tend to be difficult to work out. Explicit 
formulae are usually not known and calculations rely on compli-
cated and frequently computationally intense algorithms (see, for 
example, the volume [1] and references therein for applications 
of computational algebraic geometry to string and gauge theo-
ries). For this reason, such topological properties are an interesting 
and challenging playground for machine learning. At the most ba-
sic level, we can ask if neural networks are capable of learning 
these properties. In this letter, we will address this problem for 
complete intersection Calabi-Yau (CICY) four-folds and their Hodge 
numbers.

The complete set of CICY three-folds was the first large dataset 
of Calabi-Yau manifolds to be constructed [2,3]. It consists of 7890 
different topological types of manifolds which have provided string 
theorists and mathematicians alike with a fertile ground for ex-
ploration (for some recent applications in the context of string 
theory, see, for example, Refs. [4–8]). More recently, techniques 
of machine learning have been applied to the study of the string 
landscape [9–14] (for reviews see Refs. [15,16]). In fact, CICY three-
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folds were the first data set to be analysed from this viewpoint [9]. 
Subsequent work has studied Hodge numbers of CICY three-folds 
systematically, using different types of neural network architec-
tures [17–20].

With the advent of F-theory, Calabi-Yau four-folds have become 
increasingly important for string compactifications. CICY four-folds 
have been classified more recently [22] and their relevant topologi-
cal properties have been computed in Ref. [23]. The dataset is con-
siderably larger and richer than the one for CICY three-folds and it 
consists of about 900000 topological types of manifolds. However, 
so far, this new dataset has not been used for machine learning 
and the purpose of this letter is to fill this gap. More specifically, 
we will explore, within the context of supervised learning, if and 
to what extent Hodge numbers of CICY four-folds can be learned 
by neural networks.

2. Background and notation

2.1. CICY four-folds

A CICY four-fold is defined as a complete intersection of the 
zero loci of K multi-homogeneous polynomials in the ambient 
space A = Pn1 × Pn2 × . . . × Pnm with dimension d = n1 + · · · +
nm = K + 4. The degrees of these polynomials are collected in 
a m × K configuration matrix Q = (qi

a), where i = 1, . . . , m and 
a = 1, . . . , K . Its entries qi

a ∈Z≥0 specify the degree of homogene-
ity of the ath defining polynomial in the homogeneous coordinates 
of the ith projective ambient space factor. The Calabi-Yau condition
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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ni + 1 =
K∑

a=1

qi
a for i = 1, . . . ,m , (2.1)

fixes the dimensions ni of the projective spaces in terms of the 
configuration matrix. A configuration matrix Q , therefore, deter-
mines the ambient space A as well as a family of CICY four-folds 
therein, defined by all (sufficiently generic) polynomials with the 
specified multi-degrees. Fortunately, many topological quantities, 
including Hodge numbers, only depend on the family and, hence, 
only the configuration matrix Q , rather than the specific choice of 
polynomials.

Calabi-Yau three-folds have two non-trivial1 Hodge numbers, 
h1,1 and h2,1, which are related to the Euler number χ by χ =
2(h1,1 −h2,1). Since the Euler number is usually easily determined, 
three-folds require only one non-trivial Hodge number computa-
tion. The situation is significantly more complicated for four-folds 
which have four non-trivial Hodge numbers, h1,1, h2,1, h3,1 and 
h2,2. In addition to the formula for the Euler number

χ = 6(8 + h1,1 + h3,1 − h2,1) , (2.2)

there is an additional linear relation [25]

h2,2 = 2(22 + 2h1,1 + 2h3,1 − h2,1) , (2.3)

between those Hodge numbers which can be derived from the in-
dex theorem. As for three-folds, the Euler number is usually easily 
computed. In fact, for CICYs of any dimension it can be expressed 
explicitly in terms of the entries of the configuration matrix Q
(see, for example, Ref. [26]). In view of Eq. (2.3), this leaves us with 
two Hodge numbers to be determined by a non-trivial computa-
tion and, for our purposes, we will take these to be h1,1 and h3,1.

CICY four-folds for which the entire second cohomology de-
scends from the ambient space are called favourable and a sig-
nificant fraction of CICY four-folds have this property. Evidently, 
favourable four-folds satisfy h1,1 = m so in this case one of the re-
maining Hodge number computations is simple.

2.2. Data sets

The different topological types of CICY four-folds were classified 
in Ref. [22] (q.v. [23,24]) by listing their configuration matrices. 
Discarding cases which correspond to direct product manifolds, 
this has led to 905684 inequivalent configuration matrices Q with 
minimal size (m, K ) = (1, 1) and maximal size (m, K ) = (16, 20). 
About 54% of these are favourable. The distribution of Hodge num-
bers h1,1 and h3,1 for this data set is shown in Fig. 1.

The configuration matrices have different sizes so, as stands, 
they are not well-suited for training neural networks. We resolve 
this problem by padding each configuration Q with zeros (on the 
right and at the bottom) to create a 16 × 20 enhanced configura-
tion matrix Q̃ , whose size matches that of the largest configura-
tion. As an example, the enhanced configuration matrix Q̃ for a 
configuration Q with (m, K ) = (10, 12) is given by

Q̃ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

00000000011000000000
00000001100000000000
00000010100000000000
00001100000000000000
00010100000000000000
00200000000000000000
01000101000000000000
10001000100000000000
10010000001000000000
01100010010000000000
00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

↔

1 Throughout this letter, we only consider smooth, compact Calabi-Yau n-folds 
with holonomy group SU (n).
2

Fig. 1. Distribution of h1,1 and h3,1 for all CICY four-folds.

On the right, we have represented Q̃ by an image with 16 × 20
pixels and the typical entries 0, 1, 2 of Q̃ mapped to grey-scales. 
This has been done, as was in Ref. [9], to emphasise the analogy 
of our problem with pattern recognition. However, unlike for typ-
ical pattern recognition problems (such as classifying the MNIST 
numbers), it is not intuitively clear how our target (the Hodge 
numbers) is related to the features of the image.

Our data sets will be of the form

D1,1 = {Q̃ → h1,1} or D3,1 = {Q̃ → h3,1} . (2.4)

It is possible to enlarge these data sets by adding equivalent con-
figurations obtained from the given ones by simultaneous permu-
tations of rows and columns. Indeed, this method has been used 
to enlarge the set of CICY three-folds in Refs. [9,10,17,18]. How-
ever, the set of CICY four-folds is considerably larger and numbers 
are certainly sufficient for machine learning purposes without any 
enlargement. In fact, for cases where we use the entire data set 
we have also checked that enlarging by equivalent configurations 
does not significantly increase the performance of the networks 
we study. For these reasons, we take the data sets D1,1 and D3,1

above to contain the 905684 inequivalent (enhanced) configura-
tions of the original classification.

We will also analyse feature-enhanced versions of these data 
sets where we supplement the configuration matrix Q by mono-
mials of degree up to four in its entries qi

a . For larger configuration 
matrices this leads to very large input spaces which are not practi-
cal. For this reason and for specificity we will limit our discussion 
to configurations with size (m, K ) = (4, 4). This subset only con-
tains 1035 configurations so, unlike for the full data set, we now 
opt for an enlargement by all simultaneous row and column per-
mutations of Q . This leads to a total of 1035 × 242 = 596160
configurations. These 4 × 4 configurations Q are then feature-
enhanced to a vector Q q , where q = 1, 2, 3, 4, by including all 
monomials of degree ≤ q between the column entries of Q . For 
q = 2 this means Q 2 = (qi

a, q j
aqk

a), where a, i, j, k = 1, . . . , 4 and 
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j ≤ k, and analogously for q > 2. The dimensions2 dq of these en-
hanced configurations are given by (d1, d2, d3, d4) = (4 × 4, 14 ×
4, 34 × 4, 69 × 4). This choice of feature-enhancement is inspired 
by the success in bundle-cohomology calculations [14,30,31] and 
well-motivated mathematically. For an n-fold, cohomology, and 
Hodge numbers in particular, should depend on n-tuple intersec-
tion of divisors, and thus on polynomials up to degree n in the 
multi-degrees of the bundles; hence we add this information to 
the input.3 In summary, this leads to data sets of the form

D1,1
q = {Q q → h1,1} or D3,1

q = {Q q → h3,1} , (2.5)

where q = 1, 2, 3, 4. As is customary, we need to disjointly split 
the above data sets into a training set, a validation set and a test 
set. We typically use 15% for training and 5% for validation, both 
randomly selected from the full set, and the remainder of 80% for 
testing. The validation set is used to monitor progress during train-
ing and we evaluate the trained network on the test set.

2.3. Neural networks

Key components in the subsequent discussion are standard 
forward-feed, fully connected neural networks of depth d, which 
define a map of the form

Rn0
Ln1−→ Rn1

f−→ Rn1
Ln2−→ · · · Lnd−→ Rnd

f−→ Rnd .

Here Ln is a standard affine transformation with trainable weights 
and biases and co-domain dimension n and f represents a 
component-wise function, typically a logistic sigmoid function, 
σ(z) := (1 + e−z)−1, or a scaled exponential-linear unit (SELU), de-
fined by s(z) = 1.0507 z for z ≥ 0 and s(z) = 1.7851(exp(z) − 1)

for z < 0. In some cases, we will use a probability p dropout 
layer, denoted δp , which is a standard tool to avoid over-fitting. 
The dropout probability p is chosen to optimise performance. 
For classifier networks we also require a softmax layer S(zi) =
ezi (

∑
i ezi )−1. For notational convenience, we will use the short-

hand Nn0 (n1, f , n2, . . . , nd, f ) for the above network.
Explicit training is carried out with the Mathematica machine 

learning suite [32], using the ADAM [33] steepest gradient descent 
minimiser and a mean square loss (for the categorical classifica-
tion cases we also tried cross-entropy loss and the results were 
comparable). Evidently, the network architectures explored in this 
letter are relatively simple. We have checked that convolutional 
networks, similar to those used for digit recognition, do not im-
prove the performance significantly. However, it would be expedi-
ent to apply the methods of Ref. [19,20], as well as the interesting 
representation of configurations in [21] to the CICY four-fold data 
set.

3. Learning h1,1

Fig. 1 shows that h1,1 takes a rather limited set of values for our 
data set. More specifically, it turns out that h1,1 ∈ {1, 2, . . . , 24}. 
This suggests that both a 24-way classifier network and a regressor 
network with a real output intended as an approximation of h1,1

may be feasible. We discuss these two options in turn.

2 Recall that one can write (m+d−1
d

)
independent monomials of degree d in m

variables (here m = 4), so there are 10 quadrics, 20 cubics, and 35 quartics com-
posed from the columns of Q .

3 There are, indeed, more equivalences of configurations than just permutations 
and are more sophisticated mathematical equivalences such as splitting. In the 
threefold case such enhancement were performed in [21]. However, for the four-
folds, such data is not readily available so we do not consider them in this work.
3

Fig. 2. The training plot for the data set D1,1 in Eq. (2.4) and the classifier net-
work (3.1). Indicated is the error rate as a function of training rounds for the 
training set (orange) and the validation set (blue).

3.1. Classifier network

The relevant data set for this task is D1,1 in Eq. (2.4) which is 
used to train a network of the form

N16×20(512,σ , δ0.4,256,σ , δ0.3,256,σ ,24, S) . (3.1)

As mentioned earlier, we use 15% of the data set for training and 
5% for validation. Training is performed at a learning rate of 1/300
for 150 rounds and takes about 18 minutes on a single laptop CPU. 
The training curves are shown in Fig. 2. The trained network is ap-
plied to the test set (at 80% the bulk of the data) and it predicts 
h1,1 correctly for 96% of the cases. The 24 × 24 confusion matrix 
is diagonal to a good accuracy, with any single off-diagonal entry 
< 0.05. This is a rather convincing performance by a relatively sim-
ple, feed-forward network. We note that the substantial width of 
the network (3.1) is required to achieve the stated accuracy and we 
have to include the dropout layers in order to avoid over-fitting. 
In summary, we conclude that the Hodge numbers h1,1 for CICY 
four-folds can be successfully learned by a suitably configured fully 
connected classifier network.

Not surprisingly, for favourable manifolds, the network predicts 
h1,1 with 100% accuracy, so misclassifications only arise for non-
favourable cases. This observation suggests that a simple binary 
classifier network, similar to (3.1) but with the 24-dimensional 
output layer replaced by a two-dimensional one, can be used to 
distinguish favourable and non-favourable CICY four-folds. This is 
indeed the case and works at about 96% accuracy on the test set.

The above network generalises well when trained on a ran-
domly selected training set. A somewhat more ambitious question 
is whether a network trained on configurations with small Hodge 
number, say h1,1 < 8 (about 20% of the configurations), can pre-
dict the Hodge numbers of configurations with h1,1 ≥ 8. For CICY 
three-folds this was attempted in Ref. [18]. Obviously, such a net-
work, trained only on small and relatively simple configurations 
but able to predict properties of larger and more complicated ones 
would be very useful. Unfortunately, for the case of CICY four-folds 
and classifier networks of the type (3.1) this does not work well 
and the network performs poorly, with a success rate close to zero 
on configurations with h1,1 ≥ 8. However, seeding the training set 
with a small sample (say 10000) of configurations with h1,1 ≥ 8
leads to a significant improvement (success rate around 0.6).

3.2. Regressor network

Encouraged by the success of the classifier, let us see how a 
regressor performs. We emphasize that the difference with the re-
gressor and the classifier is that the former puts the input data 
into some category while the latter tries to find a “best-fit” func-
tion (albeit complicated) that analytically gives the Hodge numbers 
from the input configuration. This might be more mathematically 
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interesting than a mere categorization. We use the same dataset 
D1,1 in Eq. (2.4) and a network of the form

N16×20(512, s,256, s,128, s,32, s,8, s,1) . (3.2)

The idea is that the one-dimensional real output of this network 
approximates h1,1 and we take its rounding to the nearest inte-
ger as the prediction for h1,1. This is clearly challenging since a 
successful prediction requires an accurately trained network with 
a typical loss significantly less than one.

The above network is the best-performing we have found. After 
training for 150 rounds at a learning rate of 1/1000 (about 15 min-
utes on a single CPU), the network output has an average deviation 
from h1,1 of ∼ 0.3 on the test set. This translates, after rounding, 
into 83% of test set values correctly predicted. While this is a re-
spectable success rate and the network trains efficiently, a wrong 
prediction for h1,1, typically by 1, in 17% of the cases means the 
network is of limited practical use.

4. Learning h3,1

Fig. 1 shows that the range of h3,1 values is considerably larger 
than the one for h1,1. More specifically, we have 20 ≤ h3,1 ≤ 426. 
As we will see, for this range it is significantly harder to obtain 
convincing performances from simple classifier or regressor net-
works of the kind we have used for h1,1. For this reason, we also 
explore other options, focusing on the feature-enhanced data sets 
D3,1

q in Eq. (2.5) and more complicated two-branch networks.

4.1. Classifier and regressor networks

A 407-way classifier based on a network of the form

N16×20(512,σ , δ0.4,512,σ , δ0.4,512,σ , δ0.4,407, S)

trained on the dataset D3,1 in Eq. (2.4) leads to a poor perfor-
mance, with a 27% success rate on the test set. Likewise, a regres-
sor network of the form

N16×20(256, s, δ0.2,128, s,16, s,1) ,

trained on D3,1, produces test set predications for h3,1 with an av-
erage deviation of ∼ 2.7 from the true value. While this might be 
considered a reasonable accuracy for some purposes, it is not suffi-
cient to predict the correct integer after rounding. In fact, only 15% 
of test set values for h3,1 are reproduced exactly after rounding. 
For either of the above networks, we have not been able to im-
prove performance significantly by hyper-parameter optimisation.

4.2. Classifier and regressor for 4 × 4 configurations

We can ask if a classifier network performs better on the data 
set D3,1

1 of 4 × 4 configurations as defined in Eq. (2.5). In addition 
to a much smaller dimension of the feature space, the range of 
h3,1 values is now reduced to 20 ≤ h3,1 ≤ 260. In fact, a 235-way 
classifier network of the form

N4×4(512,σ , δ0.4,512,σ , δ0.4,512,σ , δ0.4,235, S) ,

trained on D3,1
1 performs perfectly on the test set at a 100% 

success rate. This is quite impressive, considering the number of 
classes is still large.

However, a regressor network of the form

N4×4(512, s,256, s,64, s,16, s,1)

trained on D3,1
1 is much less successful. It predicts h3,1 for the 

test set with an average error of ∼ 1 which leads to a success 
rate of 35% after rounding. We have not been able to improve this 
performance significantly by variations in hyper-parameters.
4

4.3. Two branch network and feature enhancement

Is it possible to construct a successful regressor network for 
h3,1? The approach we are about to present is motivated by ob-
servations made in the related context of line bundle cohomol-
ogy. Line bundle cohomology dimensions have been conjectured, 
in many cases empirically verified [27–29] and for some classes 
shown [30] to be described by piecewise polynomial formulae in 
the line bundle degrees. The degree of the polynomials equals the 
complex dimension of the underlying manifold. In Ref. [31] a two-
branch neural network adapted to this structure and trained with 
feature-enhanced data has been constructed. It has been shown 
that conjectures for piecewise polynomial cohomology formulae 
can be extracted from this network.

The present context is of course somewhat different. We are 
not interested in all line bundles on a fixed manifold but rather in 
specific properties for a class of different manifolds. Nevertheless, 
it is the case that computations of Hodge numbers for CICYs are 
ultimately reduced to the computation of line bundle cohomology. 
For this reason it is not far-fetched to try a two-branch regressor 
network, similar to the one used in Ref. [31], in order to learn h3,1.

More specifically, we would like to consider networks of the 
form

Q 1 → N4×4(512,σ ,512,σ ,256,σ ) ↘
dot → h3,1

↗
Q q → Ndq (256)

where “dot” indicates a dot product between the two vectors. The 
upper branch of the network is intended to detect the regions of 
the underlying piecewise polynomial formula. Since the bound-
aries of these regions are usually described by linear equations 
the upper branch only receives the 4 × 4 configuration matrices 
Q 1 ∈ D3,1

1 . On the other hand, the lower part of the network, 
which consists of a single affine layer is supposed to reproduce the 
polynomial and, therefore, receives the feature-enhanced matrices 
Q q ∈ D3,1

q which consists of the configuration matrix as well as its 
monomials of degree ≤ q. The analogy with line bundles suggests 
that we need up to quartic monomials (since we are working on 
four-folds). We have, therefore, constructed the data sets D3,1

q for 
q up to four. For comparison purposes we will consider all cases 
q = 1, 2, 3, 4.

Training the above network with D3,1
1 and D3,1

q for q = 1, 2
leads to poor performance, with an average error of ∼ 1 and a 
test set success rate of 54% for q = 1 and 40% for q = 2. On the 
other hand, training with D3,1

1 and D3,1
q for q = 3, 4 leads to very 

accurately trained networks. Specifically, for q = 3 we achieve an 
average error of 0.04 which translates into a 98% success rate on 
the test set. For q = 4 the results are similar, with an average error 
of 0.17 and a test set success rate of 95%.

Achieving this accuracy for q = 3, 4 requires a careful adjust-
ment of the learning rate during training. In an initial training step 
of about 100 rounds the learning rate is set to 1/1000. This leads 
to a network whose average error does not decrease below ∼ 1. 
Adding successive short training steps of about 5 - 10 rounds with 
gradually decreasing learning rate to a final value of 1/100000
then leads to the accuracy mentioned above.

In conclusion, we are able to build a successful regressor for 
h3,1, at least for the 4 × 4 configurations under consideration, 
by using a two branch network motivated by the results for line 
bundle cohomology in Ref. [31]. As expected, we require feature-
enhanced data which includes at least quadrics and cubics of the 
configuration matrix for this network to perform well. We note 
that the two-branch network can also be applied to the data sets 
D1,1

q for h1,1, where it leads to a 100% success rate on the test set.
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5. Conclusion & outlook

Computing Hodge numbers of Calabi-Yau manifolds is a non-
trivial task and presently known methods require, in all but special 
cases, complicated algorithms in commutative algebra, based on 
sequence-chasing in cohomology. For this reason, machine learn-
ing of Hodge numbers is an interesting and challenging task. This 
problem has obvious analogies with image classification, as orig-
inally pointed out in Ref. [9]. Despite this analogy, it is, a priori, 
unclear if these numbers can be successfully learned and, if so, 
what the required network architectures might be. Indeed, from 
universal approximation theorem, we expect that an NN could fit 
the given data of Hodge numbers. However, it is not clear that we 
could extrapolate from the training data to truly learn some un-
derlying functional dependence.

In this letter, we have studied supervised machine learning of 
the Hodge numbers h1,1 and h3,1 for complete intersection Calabi-
Yau (CICY) four-folds. This data set consists of about 900,000 topo-
logical types, each described by an integer (configuration) matrix 
Q . We find that h1,1 can be successfully predicted from Q with 
both fully connected classifier and regressor networks. The former 
are particularly effective and lead to a 96% success rate on the test 
set when trained on only 15% of the data.

Unfortunately, fully connected classifier or regressor networks 
do not work efficiently for h3,1, presumably due to the large range 
of h3,1 values. However, we have shown that a two branch regres-
sor network, combined with feature enhanced data, works well for 
a subset of the data which consists of 4 × 4 configuration matrices.

The structure of this two-branch network is motivated by re-
cent results for line bundle cohomology [27–30]. Its success hints 
at the existence of a formula for h3,1 in terms of Q which is at 
present unknown. It would be interesting to search for this for-
mula, possibly assisted by the information encoded in the trained 
network. Such a formula would be a new mathematical result and 
useful for applications in theoretical physics.
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