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ABSTRACT
Multiple strategies have been used in the National Health System (NHS) in England to
reduce inappropriate antibiotic prescribing and consumption in order to tackle antimicrobial
resistance. These strategies have included, among others, restricting dispensing, introduction
of prescribing guidelines, use of clinical audit, and performance reviews as well as strategies
aimed at changing the prescribing behaviour of clinicians. However, behavioural interven-
tions have had limited effect in optimising doctors’ antibiotic prescribing practices. This
study examines the determinants of decision-making for antibiotic prescribing in hospitals in
the NHS. A system dynamics model was constructed to capture structural and behavioural
influences to simulate doctors’ prescribing practices. Data from the literature, patient
records, healthcare professional interviews and survey responses were used to parameterise
the model. The scenario simulation shows maximum improvements in guideline compliance
are achieved when compliance among senior staff is increased, combined with fast labora-
tory turnaround of blood cultures, and microbiologist review. Improving guideline compli-
ance of junior staff alone has limited impact. This first use of system dynamics modelling to
study antibiotic prescribing decision-making demonstrates the applicability of the method-
ology for design and evaluation of future policies and interventions.
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Introduction

Antibiotic resistance and
prescribing management

Antimicrobial resistance (AMR) happens when med-
icines used to prevent and treat infections caused by
microorganisms (such as bacteria, fungi, viruses,
and parasites) became ineffective (World Health
Organization, 2018). Antibiotic resistance (ABR) is a
subset of AMR, specifically meaning the resistance
developed in bacterial pathogens, occurs when bac-
teria are able to survive and grow in the presence of
one or more antibiotics and continue to cause infec-
tion (Bush et al., 2011). ABR creates poor individual
patient health outcomes, a burden on health systems
and an economic burden on countries (de Kraker
et al., 2011). Inappropriate use of antibiotics, espe-
cially broad-spectrum antibiotics, is one of the
major drivers of ABR and contributes to the emer-
gence of hard-to-treat infections (Holmes et al.,
2016; Public Health England, 2018). Inappropriate

antibiotic use includes underuse, overuse and misuse
of antibiotics. Underuse, when antibiotics are
needed but not given. Overuse, when antibiotics are
used to treat non-bacterial infections. Misuse, when
the wrong types are used for a given bacterial infec-
tion, or when antibiotics exceed the required dur-
ation, or administered by incorrect routes (oral
versus intravenous) (Spivak et al., 2016). While there
has been a 13.2% reduction in antibiotic prescrip-
tions in primary health care across the National
health System (NHS) in England between 2008-12
(Public Health England, 2018), specifically, the pro-
gress in hospitals has been poor, with no evidence
of sustained reduction in total antibiotic prescribing
(Public Health England, 2018). The United
Kingdom (UK) has set a target to reduce antimicro-
bial use in humans by 15% by 2024 (Department of
Health and Social Care, 2019). Various policies and
interventions aimed at healthcare professionals and
patients have been promoted to improve appropriate
use of antimicrobials and to preserve their future
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effectiveness (Ramsay et al., 2003; Zarb et al., 2011).
These include the use of prescribing guidelines and
education programmes, restriction to dispensing cer-
tain antimicrobials, timely de-escalation of therapy
when sufficient information is available to do so,
and the use of different drug combinations to treat
infections (Ramsay et al., 2003). In hospitals, over
the last decade, the policy focus has shifted from
structural and procedural interventions to behav-
ioural interventions to optimise antibiotic prescrib-
ing, improve individual patient care, reduce hospital
expenditure and decelerate the development of
AMR (Tonkin-Crine et al., 2015). Such a shift in
policy focus is supported by the research evidence,
which shows that behavioural interventions, such as
education programmes and the use of prescribing
guidelines, have more sustained effect on prescribing
in comparison to structural interventions, such as
restricting dispensing (MacDougall & Polk, 2005).

Factors influencing antibiotic prescribing:
Literature review

We undertook a review of the published literature in
order to identify the factors influencing doctors’ anti-
biotic prescribing decision-making in hospitals in the
UK. We searched the PubMed database for literature
published from January 2000 to March 2019.
Additionally, we searched for grey literature using the
Institute for Scientific Information (ISI) Web of
Knowledge. We identified 110 studies through PubMed
and grey literature search; 16 studies met our inclusion
criteria. We employed a hierarchical multi-level frame-
work to categorise factors of influence, identified from
the rapid literature review, including both barriers and
facilitators, as individual, organisational, and system level
factors based on where they arose in a health system
(Robert & Fulop, 2014), presented in Table 1. Some
influence factors cannot be solely attributed to one level,
which motivated the use of systems thinking to examine
these barriers and facilitators.

The challenges to successful and sustained imple-
mentation of behavioural interventions and

programmes are documented in the literature.
However, there are no studies which provide a
detailed process analysis and seek to understand the
interactions among different policy initiatives and
interventions. There is a paucity of knowledge on why
certain interventions appear to be more effective than
others in influencing prescribing behaviour, and how
interventions work in synergy or in opposition to
influence prescribing behaviour. An analysis of factors
influencing prescribing behaviour, their interaction
and the magnitude of the effects produced by these
interactions is critical in order to inform the selection
of policy alternatives and to shape an optimal “mix”
of policy interventions (Kyratsis et al., 2019).

In this paper, we addressed the following research
question: How do multiple and concurrent influences
on prescribing decision-making processes influence
prescribing in hospitals? Our objective was to under-
stand and analyse these influences to develop a
model that could predict the effects of policy inter-
ventions when introduced individually, sequentially
or synchronously. To answer our research question
and to achieve our objective, we developed a system
dynamics (SD) model to simulate healthcare profes-
sional’s antibiotic prescribing decisions when treating
hospital inpatients. First, we reviewed the published
literature to identify factors influencing antibiotic
prescribing decision-making in NHS hospitals in
England. Second, we analysed data from survey and
interviews with clinicians in NHS Trust hospitals in
England to construct a SD model which conceptual-
ised the antibiotic prescribing process in hospital
medical wards. Third, we parameterised the model
using routinely collected hospital data, and validated
the model through multiple expert discussion panels
and validation tests. Finally, we used the SD model
under various scenarios, to predict prescribing out-
comes, measured as the percentage of decisions in
line with NHS antibiotic prescribing guidelines.

Rationale for selecting system dynamics

The results from the literature review suggested that
antibiotic prescribing decision-making processes are

Table 1. Influence factors affecting prescribing behaviour categorised using a hierarchical framework.
Individual level Organisational level Health system level

Facilitators Adopting education programmes and
obtaining prescribers’ feedback for future
intervention design (Ashiru-Oredope
et al., 2012; Chambers et al., 2019; Cooke
et al., 2010; Davey et al., 2013; McNulty
et al., 2012; Thakkar et al., 2011)

Introducing new technology for
testing or changes to
laboratory turnaround time by
substantively changing work
patterns (Davey et al., 2013)

Sharing antibiotic prescribing and patient
outcome data nationally (Wickens et al.,
2013) Reviewing and updating research
and collaboration plans to set priorities in
antimicrobial stewardship research
(Rzewuska et al., 2019)

Barriers Low guideline accessibility; low
hospital budget for AMS
implementation; unregulated
de- escalation practices
(Ashiru-Oredope et al., 2013;
Bal & Gould, 2011)

Low prescribers’ participation in guideline
making; national level guideline not
suitable for local institutes (Charani et al.,
2011, 2019)

Delayed delivery of pathogen information due to prolonged laboratory turnaround
time; senior prescribers’ instruction overriding guidelines (Charani et al., 2011,
2013; Hulscher et al., 2010; Skodvin et al., 2015)
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influenced by complex, interlinked cultural, struc-
tural and procedural factors operating at multiple
levels across health systems. To design interventions
for maximum impact on improved prescribing
behaviours, it is important to systematically analyse
the causal relationships between prescribing behav-
iour, the cultural and structural determinants driv-
ing these behaviours, the context within which these
behaviours happen, and to predict how prescribing
decisions change as an outcome of the syner-
gic impact.

In addition to observed clinical features of
patients, factors influencing antibiotic prescribing
decision-making processes included structural and
cultural determinants, such as prescribing guideline
accessibility, hospital budgets to implement anti-
microbial stewardship (AMS) interventions, the pro-
vision of information to clinicians on the pathogens
causing the infection (Ashiru-Oredope et al., 2012;
Charani et al., 2011, 2013; Davey et al., 2013;
Thakkar et al., 2011), and team level cultures
(Charani et al., 2019). However, extant research has
not explored the value of using a systems lens for
this problem of complex causal mechanisms, the
role of various determinants and context.

Application of a hierarchical framework to categor-
ise influence factors at individual, organisational and
health system levels has been an important initial step
in providing a systems perspective. However, such
frameworks have not been applied to develop a sys-
tems thinking tool or a systems dynamic model to
explore the factors influencing prescribing behaviour.

Further, to date, published studies investigating
sub-optimal prescribing behaviour have typically
provided a description and/or an explanation of the
behaviours observed but do not adequately examine
or explain cause-effect relationships. This earlier
research has exhausted its utility for informing tar-
geted policies, as causality is either over-simplified
or based on qualitative analysis alone with limita-
tions for scale up. The current literature on com-
plexity in healthcare is not well developed
empirically and theoretically (Greenhalgh et al.,
2010). A paradigm shift is urgently required if the
translation from research evidence to routine health-
care practice policy is to be achieved (Greenhalgh &
Papoutsi, 2018; Moore et al., 2015). Therefore, we
embraced the philosophical shift from the conven-
tional linear cause-effect perspective to a system per-
spective (Ahmad, Sim, et al., 2019). We
conceptualised causality as multiple interacting
influences giving rise to a particular outcome, none
of the influence factors can be said to have a fixed
“effect size” (Moore et al., 2015). In addition, the
assumptions we made in this study differed from
earlier research which considered doctors as

perfectly rational decision makers. We assume here
that doctors are not able to make optimal prescrib-
ing decisions due to “bounded rationality.” The the-
ory of bounded rationality takes into account the
cognitive limitations of decision makers in both
knowledge and computational capacity, as well as
the limitation in the time available to make a deci-
sion (Rawson et al., 2019; Simon, 1991). Human
decision makers are not able to think in “feedback
loops,” due to the limited nature of human informa-
tion-processing capabilities, especially in the pres-
ence of multiple interlinked feedback loops, as they
do not realise that their own behaviour has an
impact on the whole system and the feedback on
itself (Senge, 1990; J. D. Sterman, 1987). When deci-
sions need to be made with incomplete knowledge
(pathogen information) and in limited time (pre-
scriptions are needed to treat the patient as early as
possible, and sometimes without diagnostic testing),
analytical tools are required to prevent sub-opti-
mal decisions.

Analytic tools from the discipline of systems
thinking help researchers gain insights in underlying
structures of a complex situation (National Institute
for Health Research (NIHR) Research Design
Service: East Midlands, 2017). System Dynamics
(SD), a systems thinking approach, has demon-
strated its capability to solve problems in health
management when employed to simulate population
flows, predict health-seeking behaviours, support
health decision-making, test health policy alterna-
tives, and evaluate effectiveness of health interven-
tions (Ahmad, Zhu, et al., 2019; Barton et al., 2004;
G€unal & Pidd, 2010; Lane & Husemann, 2008). SD
conceptualises systems as networks of feedback loops.
Non-linear relationships and time delays within sys-
tems are drivers of dynamic and complex system
behaviour, and the source of policy resistance whether
intentional or as a result of an unintended conse-
quence (Forrester, 1994; Lebcir, 2006; J. Sterman,
2002). SD takes into account the cognitive limitations
of decision-makers in both knowledge and computa-
tional capacity and allows researchers to incorporate
emotional variables when managing human behaviour.
However, despite its attractiveness as a method, to
date, SD has not been utilised to investigate antibiotic
prescribing behaviour.

The UK government has set an objective for health
institutions to report by 2024 on the percentage of
prescriptions supported by a diagnostic test or deci-
sion support tool (Department of Health and Social
Care, 2019). Adopting systems thinking approaches,
such as SD, will enhance decision-making by predict-
ing intervention impact on health systems in future
decision support strategies, which has not been
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achieved using traditional clinical decision supports
that solely focus on individual-level outcomes.

In this study, we developed a SD model by sys-
tematically considering factors which influence pre-
scribing behaviour of doctors, to enable us to model
and simulate doctors’ antibiotic prescribing deci-
sion-making processes, in order to predict prescrib-
ing outcomes in hospitals.

Research methods

We followed the established protocol for a SD
approach to develop the model (Martinez-Moyano
& Richardson, 2013; J. D. Sterman, 1992). We fol-
lowed seven steps: conceptualising the problems to
be addressed, defining model boundaries to set the
context in which the problem will be addressed,
determining model variables, mapping the causal
relationships between variables qualitatively using
causal loop diagrams (CLDs), formulating model
variables quantitatively using source data and stock
and flow diagrams (SFDs), validating the model,
and simulating the model to provide estimates of
doctors’ antibiotic prescribing outcomes under vari-
ous “what if” scenarios.

Model conceptualisation

In order to understand how antibiotics were pre-
scribed to treat hospital inpatients, we re-analysed
secondary data from (i) a survey with 109
Foundation Year doctors from 5 NHS Trust teach-
ing hospitals in the NHS England to study their
knowledge and attitudes in antibiotic prescribing
(Gharbi et al., 2016), and (ii) semi-structured inter-
views with 3 specialist registrar and 8 consultants
from 3 NHS Trust teaching hospitals to assess how

“empiric” decisions were made when treating
patients with infections in medical wards and the
barriers perceived by these doctors to make optimal
prescribing decisions (Rawson et al., 2016).

We constructed a flow chart to capture the typical
process of clinicians prescribing antibiotics, which is
divided into empiric and review stages. Clinicians who
can prescribe antibiotics in medical wards include
senior staff, which refers to specialist registrars and con-
sultants, and junior staff (Foundation Year doctors,
core trainees, and nurses). When patients with symp-
toms of infections are admitted in medical wards, clini-
cians make empiric prescribing decisions without
information of pathogens that caused the infection.
Patients have blood samples taken for microbiology
laboratory testing to identify the pathogens. When the
test results become available, the empiric decisions are
reviewed by microbiologists. However, for those
patients who have not had blood samples taken, or
have blood samples missing or contaminated, the
empiric decisions made for them will are reviewed by
clinicians in medical wards (instead of microbiologists).
The review decision can be to stop antibiotic treatment,
to escalate to a different treatment regime by increasing
dosage or frequency or switching from oral to intraven-
ous route, to de-escalate to a treatment regime by
increasing dosage or frequency or switching from oral
to intravenous route, or to switch to a different type of
antibiotic medication. The flow chart of the antibiotic
decision-making processes is presented in Figure 1.

Qualitative description of the decision-
making processes

We identified a series of individual-level factors
with direct impact on clinicians’ antibiotic prescrib-
ing practices through the literature review, the

Figure 1. Flow chart of antibiotic prescribing decision-making in hospitals in the National Health System in England.
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survey, and interview data analysis. Key individual-
level factors which emerged from these analy-
ses include:

� Clinician’s seniority: senior staff tend to rely on
their own experience; while junior staff tend to
consult senior staff or refer to prescribing guide-
lines. However, when senior staff’s decisions
contradict the prescribing guidelines, junior doc-
tors always followed senior staff’s instructions
(the culture of deference and conflict avoidance)
(Charani et al., 2013).

� Patient’s age: elderly patients in general present
with more complicated clinical symptoms and ill-
nesses. In order to cover all possible infections,
especially when pathogen information is not
available, clinicians tend to prescribe antibiotics
with broader spectrum than the ones recom-
mended in the guidelines.

� Microbiology laboratory turnaround time: the
time lag caused by the process of transferring
patient’s blood samples, performing tests to iden-
tify pathogens and susceptibility (i.e., which anti-
biotics the pathogens are resistant to), and varies
from less than 24 hours to longer than 72 hours
in NHS Trust hospitals. The shorter the turn-
around time, the earlier the clinicians can make
precise prescribing decisions based on pathogen
information. In addition, improving blood sam-
pling practice quality, so that all patients have
blood samples taken and all of these are tested
would allow microbiologists to provide expert
input when empiric decisions are reviewed.

To explicitly visualise the causal relationships
between these factors and clinicians’ tendency to
comply with prescribing guidelines, we developed a
causal loop diagram (CLD) which provides a quali-
tative description of the SD model (Figure 2). The
model boundary chart is provided in Appendix 1 to
present exogenous variables, endogenous variables,
and the variables excluded in this model.

Simulation model to predict level of prescribing
guideline compliance

We used a “stock and flow” methodology to develop
a simulation model representing the progression of
doctors prescribing decisions when treating patients
with antibiotics in medical wards. In our model,
stock levels correspond to the number of patients
with prescribing decisions made at different stages.
Flows represent the number of patients going
through prescribing stages per unit of time. The
flow rates are expressed by mathematical equations.

In addition, we included a microbiology labora-
tory sub-system to simulate the process of patients’
blood samples being tested for pathogen informa-
tion in the microbiology laboratory. The patients’
blood samples arrive in the microbiology laboratory
and are processed to determine the pathogen. The
time before the pathogen information becomes
available is determined by the average laboratory
turnaround time. When blood culture results
become available, the patients’ progress from
empiric stage to review stage with empiric decisions
having been reviewed by microbiologists. The

Figure 2. Causal loop diagram of doctors’ decision-making processes.
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mathematical equations quantitatively describing the
flow rates, the initial conditions of the stocks, and
the average microbiology laboratory turnaround
time of each blood sample being processed, were
calculated using the source data.

We used the software iThinkVR (iSee Systems,
2005) to construct and simulate the model
(Figure 3).

The core of the model is the Number_of_non_
compliant_empiric_prescribing_decisions determined
by the percentage of senior staff and junior staff who
did not comply with prescribing guidelines, and the
Number_of_non_compliant_review_prescribing_decisions
determined by the proportion of empiric decisions
reviewed by microbiologists. Model parameter calcula-
tion is discussed in detail in the section Model param-
eterisation using source data.

We made a series of assumptions listed below
when modelling the system behaviour (Table 2).

Model parameterisation using routine data
from hospitals

In order to formulate the variables quantitatively,
we used routinely collected hospital data on pre-
scriptions for treating all patients with Escherichia
coli (E. coli) bacteraemia admitted in 3 NHS Trust
teaching hospitals during March to August 2016. A
total of 150 patients were admitted, 127 patients had
empiric prescribing decisions made by a staff mem-
ber in medical wards, and 1792 prescribing deci-
sions were made during their stay in the medical
wards of 17 different specialties.

Three main parameters were estimated to formu-
late the model using the source data:

� Guideline compliance: we performed binomial
logistic regression analysis to calculate the odds
ratio of prescribing decisions in compliance with
prescribing guideline to test the association
between level of compliance and clinician’s seni-
ority, with specialty and hospital adjusted as con-
founders. The adjusted odds ratio for clinicians
at different specialties were predicted for
Foundation Year 1 doctors (1.00, reference cat-
egory), Foundation Year 2 doctors (1.88, 95% CI:
1.13 to 2.63, p-value: 0.12), core trainees (1.72,
95% CI: 0.10 to 30.48, p-value: 0.71), nurses
(1.01, 95% CI: 1.01 to 1.02, p-value: 0.05), spe-
cialist registrars (0.71, 95% CI: 0.35 to 0.98, p-
value: 0.18), and consultants (0.29, 95% CI: 0.17
to 0.41, p-value: 0.07), which indicated decreased
guideline compliance associated with higher seni-
ority. The odds ratios were used to provide point
estimation of the proportions of junior and
senior staff not following prescribing guidelines
(Junior_staff_not_complying_with_guidelines and
Senior_staff_not_complying_with_guidelines in
Figure 2). The total amount of non-compliant
empiric decisions (Number_of_non_compliant_
empiric_prescribing_decisions) is calculated by
multiplying Patients_with_empiric_prescribing_
decisions and the proportions of non-compliance.

� Microbiology laboratory turnaround time: based
on the length of turnaround time documented in
the source data, the probability of a blood sample
being processed in one day is approximated using

Figure 3. Stock and flow diagram of doctors’ decision-making processes.
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Poisson distribution with k ¼ 0.82. The transit
time (Microbiology_laboratory_turnaround_time) in
the conveyer stock in Figure 2 is determined by
the mean processing time of the Poisson distribu-
tion: t ¼ 1/k ¼ 1.22 days.

� Number of empiric decisions reviewed: an empiric
decision was assumed to have been reviewed by
microbiologists if the laboratory test result was avail-
able. In the source data, 10.2% of patients admitted
did not have blood sample taken, and 6.6% of deliv-
ered blood samples did not have test results pro-
vided. Therefore, the value of the parameter
Proportion_of_empiric_decisions_being_reviewed_by_
microbiologists is calculated as

(1-10.2%) � (1-0.66%) ¼ 84.14%.

All parameter values of the variables included in
the simulation model are listed in Supplementary
Material 1.

Model validation

The model was subjected to a full set of validation
tests. Model validation has been depicted as a
parallel activity, overlapping the other model devel-
opment stages. The validation tests include struc-
ture-verification test, parameter-verification test,
extreme condition test, boundary-adequacy test,
dimensional-consistency test, behaviour reproduc-
tion test, and behaviour sensitivity analysis (Barlas,
1996; Barlas & Carpenter, 1990).

First, six panel workshops were conducted to
provide expert opinion to verify the model structure
and parameters. The experts attending the work-
shops included front-line staff and managers from
the local NHS Trust teaching hospitals, with exten-
sive expertise in infectious diseases and AMS man-
agement in UK settings, health economics modellers
from Public Health England (PHE), infectious dis-
eases modellers and SD modellers. Second, the
model passed the extreme condition test, boundary-

adequacy test, and dimensional-consistency tests
performed. We then performed behaviour reproduc-
tion tests performed by simulating the model to
check its ability to replicate past real world observed
data. The model predicted 92.9% of empiric deci-
sions to be in line with prescribing guidelines. The
estimation was compared to the real-life data, which
is (i) 91.9% reported in the 2017 annual statistics
collected from the same NHS Trust teaching hospi-
tals, and (ii) 93.0% in ESPAUR 2014 report sam-
pling the guideline compliance in 99 NHS Trusts.
Based on these results, the validity of the model was
approved by the expert panel.

Policy analysis and results

Interventions and scenarios

The model was simulated to predict doctors’ pre-
scribing decisions in 100 days for 1000 patients
admitted in medical wards under each scenario. At
empiric stage, the system behaviour was measured
the percentage of compliant empiric decisions under
the scenarios of which the microbiology laboratory
turnaround time was shortened (Scenario1-3); and
the guideline compliance level among senior staff
(specialist registrars and consultants) was increased
with and without influencing doctors with lower
seniority (Scenario 4-10). After review stage, the sys-
tem behaviour was measured by the percentage of
empiric decisions reviewed by microbiologists under
the scenarios which the availability of microbiology
laboratory test results varied (Scenario 11-12))
(Table 3). A symbol “-” in Table 3 indicates that the
value is unchanged from the baseline scenario.

The simulation results suggested that the deci-
sion-making of senior staff in medical wards played
a pivotal role in guideline compliance. The guideline
compliance level under the scenario of improving
senior practice and shortening microbiology turn-
around time (99.4% under Scenario 10) only

Table 2. Assumptions made to simplify the system behaviour.
Assumptions in system

structure and procedures
� The model focusses on a system with closed boundaries within which prescribers’

decision-making processes takes place. It simplifies the real-life practice in medical
wards and microbiology laboratories in English hospitals

� Each patient has at most one blood sample taken for microbiology laboratory testing.
� A proportion of patients will not receive microbiology laboratory test results as either

were not taken, or blood samples went missing, or became contaminated.
� All stock variables in the model are assumed to have a constant rate of change,

meaning patients progress within the model at a constant speed.
Assumptions in doctors � The total number of doctors within the model is constant.

� One doctor makes only one prescribing decision at the empiric stage.
� Doctors’ behaviour is predictable and does not change randomly.
� Doctors’ seniority can be used to predict their behaviour.
� Senior doctors (specialist registrars and consultants), junior doctors (core trainees,

Foundation year 1 and 2 doctors, nurses and pharmacists), and microbiologists are
the three groups of health professionals with distinctive behaviour included in the model.

� Doctors are motivated to prescribe optimally; however, they are not perfectly rational
because of the limitations in their cognitive capability (‘bounded rationality’) when other
influences are present.

Assumptions in patients � Patients passively accept treatment and are not involved in the decision-making processes.
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increased slightly compared to the scenario of
improving senior practice alone (99.3% under
Scenario 9).

The findings provide quantitative evidence for
hospital managers to make decisions in which inter-
ventions are to be implemented. Interventions such
as adopting rapid diagnostic tools or point-of-care
testing to shorten turnaround time can certainly
guide rational use of antibiotics. However, enhanc-
ing senior staff’s, especially specialist registrars’ pre-
scribing practice is predicted to have stronger
impact on overall prescribing practices compared to
improving microbiology laboratory turnaround. The
model results suggest a pivotal role is played by spe-
cialist registrars. Our panel of clinician experts pro-
vided interpretation of these results, that specialist
registrars in general make more empiric decisions
than other senior staff. In our source data, specialist
registrars made the most empiric decisions (37.8%)
compared to other medical staff (19.7% for jun-
ior staff).

Discussion

SD has existed for well over sixty years (Forrester,
1961), but only has gained widespread popularity
within the last 20 years as a specialised method in
public health and healthcare. SD, as a collaborative
approach, enables better understanding of complex
systems and allows dynamic behaviour to be pro-
jected using computer simulation. It is predicted
that, with “what if” scenario testing, SD can be used
as a tool for persuasion and tactical evaluation, and
can inform population-level public policy design in
healthcare (Dangerfield, 1999; Richardson, 1999).
However, despite the effort made in applying SD to
various healthcare issues, the growing body of SD
literature remains as fragmented learning experien-
ces generated from different case studies
in healthcare.

There is no established theory to describe the
fundamental assumptions made to describe health
systems and intelligent agents within the systems
from a complex systems’ perspective, and what the
best practice of SD modelling looks like in simula-
tion for healthcare. In most recent OR literature, the
importance of engaging experts in model develop-
ment and validation stages was recognised
(Robinson, 2019). Simulation in healthcare is unique
(Tako & Robinson, 2015). Three key factors contrib-
ute to impactful application of OR in healthcare,
including expert engagement, use of contextually
relevant data, and communication and feedback of
simulation findings (Bradley et al., 2017).

A growing body of research has applied behav-
ioural science to establish doctors’ mental models
and interpret their behaviour when prescribing anti-
biotics. Here the approach has been explanatory
rather than theoretically based (Manchanda &
Honka, 2005; Theodorou et al., 2009). Those studies
which have employed theoretical models, such as
reasoned action theory, planned behaviour theory,
and the theoretical domains framework (TDF)
(Gallan, 2004; Godin et al., 2008; Rashidian et al.,
2006), make an underlying assumption, that doctors
are perfectly rational when making prescribing deci-
sions; these assumptions are disputable (Murshid &
Mohaidin, 2017; Theodorou et al., 2009; Vancelik
et al., 2007). Prescribing decision-making processes
are heavily (and rationally) weighted towards the
avoidance of tangible, immediate and short-term
risks (i.e., adverse patient outcomes), at the cost of
the potential catastrophic, but abstract and uncertain
future outcome (i.e., emergence and spread of
AMR) (Krockow et al., 2019). Prescribing decision-
making processes are dynamic and not always
rational, influenced by multiple interconnected fac-
tors, and embedded in complex healthcare systems.
A different theoretical model is required to develop
a better understanding of doctors’ decision making

Table 3. ‘What if’ scenarios simulated using the SD model.
Senior staff Junior staff Microbiology Simulation results

Complying
consultants (%)

Complying specialist
registrars (%)

Complying
junior staff (%)

Turnaround
time

Blood samples
taken (%)

Blood samples
processed (%)

Compliant
decisions (%)

Baseline 72.2 88.4 99.8 1.22 days 89.8 93.4 92.9

Empiric stage
1 – – – <3 days – – 92.9
2 – – – <2 days – – 92.9
3 – – – <1 day – – 93.3
4 100 – – – – – 95.3
5 – 100 – – – – 96.8
6 100 100 – – – – 99.0
7 100 Influenced Influenced – – – 95.2
8 – 100 Influenced – – – 96.9
9 100 100 Influenced – – – 99.3
10 100 100 Influenced <1 day – – 99.4
Review stage
11 – – – – 100 – 88.3
12 – – – – – 100 78.7
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and help support the outcome of optimal anti-
biotic use.

In this study, we formulated the SD model using
empirical data from the UK, where optimising anti-
biotic use is a national priority. Stakeholders were
involved in multiple stages of model development to
enhance model credibility and to disseminate policy
implications. We demonstrated that SD is a suitable
analytical tool to investigate complex healthcare
management issues because of its technical strengths
and its fundamental philosophical roots of model
validation (Barlas & Carpenter, 1990). SD enables
quantitative prediction of complex system behaviour
where multiple influences occur and takes into con-
sideration the cognitive limitations of the decision
makers inside the system.

There are four limitations of this study, which
provide scope for future research. First, patients
were assumed to passively accept treatment and dis-
associated from decision-making processes. Second,
the soft variable “fear of under-treating” was not
simulated quantitatively. Third, the time elements
were not included in the model structure. The omit-
ted variables associated with time include delay in
doctors’ behaviour change in response to environ-
mental change, and the variability of speed of
patients progressing within the modelled system.

In future, we plan to expand the model by
including more influence factors, such as patient
knowledge and empowerment to understand treat-
ment decisions better (Rawson et al., 2018), soft var-
iables that measure doctors’ emotions, and time lag
in doctors’ behaviour change, so that the model is
useful in different settings within the NHS. We will
collect additional primary data, and incorporate
adequate discrete scaling methods, to define behav-
ioural “rules” for individual doctors so that these
emotional variables can be simulated quantitatively.

Our study is the first to successfully apply SD
modelling to the important global challenge of
AMR, to explain factors which interact to influence
doctors’ behaviour. Notwithstanding limitations, the
findings of this study have important policy implica-
tions for prescribing behaviour management in hos-
pitals in the UK and beyond.

Conclusions

System dynamics models can effectively capture
structural and behavioural influences that influence
prescribing to simulate doctors’ prescribing practices
– which is an important factor in the development
of antimicrobial resistance that has major health
and economic consequences worldwide.

Antibiotic prescribing practices measured by
guideline adherence can be achieved by improving

senior doctors’ decision-making, reducing turn-
around time of blood culture to less than 24 h for
all patients, and providing microbiology laboratory
test results for all patients. The application of sys-
tems thinking methodologies embracing complexity
and context dependence in behaviour management,
as demonstrated here, has the potential for oper-
ational, implementation and health systems research
relevant for decision making to address major global
health challenges.
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Appendix 1. Model boundary chart of the prescribing decision-making SD model
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