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and deferred annuities. The glide paths are approximated by averaging the asset proportions of 
stochastic optimal investment solutions. The objective function consists of power utility in 
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Glide paths for a retirement plan 
with deferred annuities 

Investment strategies that incorporate “glide paths” are widely used for pension 

planning. Asset classes can be roughly divided into two categories: a risky asset class, such as 

equity, and a less risky asset class, such as developed economy government bonds. The glide 

path investment strategy typically reduces the equity proportion and increases the bond 

proportion in the investment portfolio as an individual approaches retirement. However, these 

strategies do not typically include deferred annuities as an asset class, even though an annuity 

is normally an important source of a retirees’ income. Annuity markets have started to give 

investors the freedom to use deferred annuities.  U.S. insurance companies began selling 

deferred income annuities (DIA) in 2011. Currently more than sixteen insurers offer the 

product (Chen et al., 2019). LIMRA estimate that total annuity sales in 2019 were $241.7 

billion while deferred income annuity sales were a much smaller $2.5 billion.  Academic 

research has paid relatively little attention to how these products can be integrated into a pre-

retirement investment portfolio. The US Treasury allows target date funds to include deferred 

annuities among their assets in 401(k) plans (United States Department of Treasury, 2014). 

Many retirement funds, however, apply more traditional, simple glide path strategies where the 

allocation to the risky asset class declines as a linear function of the individual’s age.  In doing 

so they fail to maximize an investor’s utility in terms of retirement income (Merton, 2014). 

Starting with a stochastic optimal investment solution to a retirement planning problem, 

we calculate glide paths that include traditional asset classes – cash, bonds, and equities – but 
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which also incorporate deferred annuities. The objective function that we specify maximizes 

the expected value of a sum of time-separable power utility (constant relative risk aversion) 

functions expressed in terms of a secured retirement income at retirement and a bequest before 

retirement. In order to solve the optimization problem, we employ multi-stage stochastic 

programming (MSP) which is widely used in operations research (Ziemba, 2003). We then 

implement a strategy that averages the proportions of the optimal investment and deferred 

annuity allocations over time as our new glide path strategy.1 In particular, we extend the 

approach of Konicz et al. (2016), but we focus on the accumulation phase. 

There are a significant number of papers that explore the optimal choice involving 

immediate fixed, variable and inflation-linked annuities. Most studies focus on various types 

of annuity strategies only at or after retirement (i.e., in a decumulation phase). Koijen et al. 

(2011) present the optimal full-annuitization portfolio of fixed, inflation-indexed and variable 

annuities with changes in state values upon retirement and its hedging strategy in the pre-

retirement period. In the hedging strategy, the optimal composition of nominal and inflation-

linked bonds depends upon the annuity strategy that will be used at retirement. Also, Boulier 

et al. (2001), Deelstra et al. (2003) and Cairns et al. (2006) show the optimal dynamic asset 

allocations for enhancing the utility of lifetime consumption when there is hedging demand for 

annuity risk. 

There are fewer studies, however, that focus on the optimal investment and deferred 

annuity choice for an individual prior to retirement (Horneff et al., 2010; Maurer et al., 2013; 

 

1 For more examples of MSP applications to individual retirement planning, see Consigli et 
al. (2012), Dempster and Medova (2011), and Konicz et al. (2016). 
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Huang et al., 2017). They generally assume that: the individual has an uncertain labour income 

stream; that the individual invests their disposal income in risk-free bonds and risky stocks; 

and that the individual is able to buy deferred annuities at any time before retirement. The 

deferred annuities begin to pay lifetime benefits at a fixed retirement date. The individual may 

also have state or defined-benefit-type pension entitlements, which pay lifetime retirement 

income as some function of their final salary. These studies show that deferred annuities have 

a crucial role in increasing welfare gains. The optimal strategy is to start purchasing deferred 

annuities early (from age 40) and to continue to purchase them over time until they comprise 

about 80 percent of the final portfolio at retirement (Horneff et al., 2010; Maurer et al., 2013). 

Huang et al. (2017) consider purchases of deferred annuities where the interest rate 

process is mean-reverting. Deferred annuities are, of course, expensive in the current low 

interest rate environment. If the interest rate process is mean-reverting, Huang et al. (2017) 

show that a risk-neutral person should wait until the yield reaches the long-term average before 

buying deferred annuities. For a risk-averse investor, there exists an entry boundary for interest 

rates, at which the investor begins to buy deferred annuities.  There is also an exit boundary at 

which the investor spends all of their remaining wealth to buy deferred annuities. Huang et al. 

(2017) provide an asymptotic approximation for the boundary strategy. However, no 

investment uncertainty and additional cash inflow is assumed, that is, there is no capital growth 

and no contributions from labour income. 

The optimal timing for annuitization is another important decision in retirement 

planning. Horneff et al. (2008, 2009) investigate optimal dynamic annuitization and investment 

choices on immediate constant-payment annuities during the retirement period and with 

immediate variable-payment annuities as well as allocations to stocks and bonds prior to 
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retirement. Buying an increasing quantity of immediate annuities enhances the individual’s 

welfare. The optimal equity allocation over time declines, which corresponds to the typical 

life-cycle pattern; the optimal bond allocation increases over time. Blake et al. (2003) examine 

the performance of distribution strategies using constant-payment annuities, equity-linked 

annuities and equity-linked income-drawdown. They note that a higher bequest motive and a 

larger fund size lead to a later annuitization age. Without the bequest motive, the optimal 

annuitization age is very sensitive to relative risk aversion. For a highly risk-averse individual, 

immediate annuitization is optimal.   

In this paper, we adopt the general framework of these earlier studies, but we focus here 

on the appropriate glide-path strategy for a personal retirement plan where deferred annuity 

purchases are available in the accumulation phase. Using multi-stage stochastic programming 

(MSP), we find an optimal solution to the optimization problem and use average proportions 

of the optimal investment and deferred annuity allocations over time as the glide path strategy. 

The investment opportunities are time-varying. Compared with simulation and dynamic 

programming which are widely used for solving retirement planning problems numerically, 

MSP enables us to incorporate sophisticated financial market models and realistic constraints, 

such as those on asset classes, transaction costs and taxes.  

We investigate the performance of our glide paths with different fee structures and 

personal preferences by comparing these strategies with conventional retirement-plan 

strategies, such as a constant-mix, glide-path and “100 − 𝑎𝑔𝑒” investment strategies.  Our 

main contribution to the retirement planning literature in this paper is the introduction of a new, 

optimally-based glide path, that incorporates deferred annuities in the accumulation phase.  Our 

results show that this new approach is superior to traditional glide paths in terms expected 
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retirement income per unit risk.  Many retirement funds currently apply simple glide path 

strategies that do not allow for the incorporation of deferred annuities. Also, the traditional 

glide path strategies fail to maximize an investor’s utility in terms of retirement income.  

The rest of this article is organized as follows. We describe the portfolio optimization 

problem, the price dynamics of available assets and the construction of our new glide paths 

with deferred annuities in the Section entitled ‘Investment for a Retirement Plan’. In the Section 

entitled ‘Financial Modelling and Data’, the time-varying and predictable market movements 

of equity returns and yield curves are defined using a vector autoregressive model with the 

Nelson-Siegel model. We solve the model by applying a multi-stage stochastic programming 

approach. Descriptions of the model formulation are given in the Section entitled ‘Multi-stage 

Stochastic Programming Formulation’. We investigate the numerical results of stochastic 

optimal solutions produced by the multi-stage stochastic programming approach and by the 

new glide paths in the Section entitled ‘Results’. 

Investment for a Retirement Plan 

The investment problem. We consider an individual investor who has a personal 

retirement plan at time 0, who is δ years of age and who retires at time 𝑇. During the retirement 

planning period [0, 𝑇) they contribute a fixed proportion ϕ of their labour income 𝐿! (at time 

𝑡) every year to the retirement plan. The individual can hold cash, bond and equity funds in the 

retirement plan, which is worth 𝑊! at time 𝑡 and can make withdrawals.  The individual can 

only buy deferred annuities which will pay out at time 𝑇 (if the individual survives until this 

date) every year from time 𝑇  until the individual’s death. In our model the annuities are 

irreversible contracts, which means that the individual can only purchase annuities. Every unit 
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of annuity that is bought pays out a secured income of £1 annually in retirement. If the 

individual dies before retirement, then the annuities do not pay out and are terminated, but the 

wealth in their fund is bequeathed to the individual’s heirs. If they survive until retirement, then 

the accumulated wealth in the plan is fully annuitized to purchase an immediate annuity. 

During the retirement planning period [0, 𝑇), the individual selects an asset allocation, 

including deferred annuities, in order to maximize the expected utility of retirement income 

and of the bequest before retirement. Note that we consider investment for a retirement plan 

only, and therefore we assume that the individual can separate the utility from retirement 

income from the utility derived from pre-retirement consumption. 

The individual investor has a power utility function 𝑢(𝑡, 𝑥) = 𝑒"#!𝑥$"%/(1 − 𝛾) in 

terms of cash flow or wealth 𝑥 at time 𝑡. Their utility therefore has a constant relative risk 

aversion (CRRA) parameter γ. As γ tends to one, the utility function becomes log utility. We 

assume that all retirement income is used for consumption, so that the utility function is defined 

in terms of the income generated by the annuities. The time impatience parameter 0 ≤ ρ ≤ 1 

reflects the individual’s preference for early cash flow compared to late cash flow. The utility 

function is also defined with regards to the bequest amount 𝑊! before retirement. 

We adopt standard, actuarial notation to represent survival and death probabilities. The 

probability that a 𝛿-year-old person survives until age 𝛿 + 𝑡 is denoted as 𝑝! &. The probability 

that a person aged (𝛿 + 𝑡 ) years dies over the following Δ𝑡  years is denoted as 𝑞'! &(! , 

abbreviated to 𝑞&(! when Δ𝑡 = 1. For practical purposes, we also assume that a person cannot 

live beyond age 𝜔, which is the maximum age in an actuarial life table, so the individual 

investor dies before or at time 𝜏 = 𝜔 − 𝛿, since they are 𝛿 years old at time 0. 
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Let the total number of units of deferred annuities purchased by time 𝑡 be 𝑋),!, where 

the subscript 𝐴 stands for annuities. Since each unit of annuity provides £1 annually during 

retirement, the secured retirement income by time 𝑡 is 𝑋),!. If the annuity price is 𝑆),!, then the 

investor pays 𝑆),!C𝑋),! − 𝑋),!"$D to buy annuities at time 𝑡 ∈ [0, 𝑇] (with 𝑋),"$ = 0). 

We also assume that the investor buys and sells units or shares in a cash, bond or an 

equity fund, denoted 𝐶, 𝐵, and 𝐸 respectively . 2  Let 𝑋+,! be the number of units of the bond 

fund held in the retirement plan at time 𝑡, and 𝑆+,!  be the price of bond units at time 𝑡. A 

corresponding notation holds for the cash and equity funds. At time 𝑡, the individual decides 

how much to hold in cash, bonds, and equities, and how many annuity units to buy. The 

decision variable for the individual at time 𝑡 ∈ [0, 𝑇) is therefore 𝑋! = J𝑋,,! , 𝑋+,! , 𝑋-,! , 𝑋),!K
.. 

The retirement planning problem consists of the objective function, budget constraints, 

and variable constraints given by the equation below: 

max
/!,!∈[2,3)

 𝔼2 P Q 𝑝! &𝑢C𝑡, 𝑋),3D
!∈[3,5)

	+ Q 𝑝! & ⋅ 𝑞&(! ⋅ 𝜅%𝑢(𝑡 + 1,𝑊!($)
!∈[2,3)

U, (1a) 

𝑠. 𝑡. 𝑊!($ = 𝑊! + 𝜙 ⋅ 𝐿! − 𝑆),!C𝑋),! − 𝑋),!"$D + ∑ C𝑆6,!($ − 𝑆6,!D𝑋6,!	6∈{,,+,-}  
 for 𝑡 ∈ [0, 𝑇), 

(1b) 

 𝑋),! ≥ 𝑋),!"$ for 𝑡 ∈ [0, 𝑇], (1c) 

 𝑋),3 = 𝑋),3"$ + 𝑊3/𝑆),3 , (1d) 

 

2 We can think of these funds as being mutual funds. 
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 𝑋6,! ≥ 0  for 𝑖 ∈ {𝐶, 𝐵, 𝐸, 𝐴} and 𝑡 ∈ [0, 𝑇), (1e) 

 𝑋6,3 = 0 for 𝑖 ∈ {𝐶, 𝐵, 𝐸}, (1f) 

 𝑊! ≥ 0  for 𝑡 ∈ [0, 𝑇], (1g) 

 𝑊2 = 𝑤2 ,			𝑋),"$ = 0 w.p. 1. (1h) 

 In Equation (1a) above, the decision variables over which expected utility is maximized 

are the portfolio and annuity purchase decisions over the planning horizon [0, 𝑇). Since the 

retirement income secured through deferred annuity purchases by retirement time 𝑇 is 𝑋),3, the 

utility of secured income at time 𝑡 ∈ [𝑇, 𝜏) during retirement is 𝑢C𝑡, 𝑋),3D = 𝑒"#!C𝑋),3D
$"%/

(1 − 𝛾). A bequest parameter κ  captures the importance of bequest relative to retirement 

income. If the individual dies during period [𝑡, 𝑡 + 1), then wealth 𝑊!($ constitutes a bequest, 

so that the utility of the bequest is then 𝜅% ⋅ 𝑢(𝑡 + 1,𝑊!($) = 𝜅% ⋅ 𝑒"#(!($)(𝑊!($)$"%/(1 −

𝛾). 

 The budget constraint, in Equation (1b) above, shows the dynamics of wealth 𝑊! in the 

retirement plan. Wealth is increased by a contribution which is a fixed proportion 𝜙 of labour 

income 𝐿!, as well as by changes in the price of the cash, bond, and equity funds, C𝑆6,!($ − 𝑆6,!D 

for 𝑖 = {𝐶, 𝐵, 𝐸} . Wealth in the retirement plan is reduced if there is a withdrawal of 

𝑆),!C𝑋),! − 𝑋),!"$D to buy deferred annuities at time 𝑡. 

 The constraint in Equation (1c) means that annuities can be bought but not sold, while 

the constraint in Equation (1e) means that short sales are not allowed. The terminal conditions 

at retirement time 𝑇 in Equations (1d) and (1f) assert that cash, bond, and equity holdings are 

sold, and all wealth in the retirement plan is annuitized. Equation (1g) ensures that wealth 
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remains positive. The initial conditions in Equation (1h) state that the investor has a known 

initial wealth and no deferred annuity at time 0. 

 The objective function emphasizes that income during retirement, rather than wealth at 

retirement, is the key variable for pensioners. This is not new in the retirement planning 

literature (Blake et al., 2003; Charupat and Milevsky, 2002; Horneff et al., 2008; Huang et al., 

2017; Koijen et al., 2011). The terminal wealth utility cannot measure retirement income and 

annuity risks properly (Merton, 2014). Although we select income-based utility, the most ideal 

and practical model would be a consumption-based utility maximization model. For simplicity, 

we assume that the individual investor spends all of their annuity income to subsidise their 

consumption after retirement. 

Our objective function has limitations. It is implicit in such a function that income-

generating financial instruments, such as annuities, are the best financial product for retirees. 

If annuities are priced with a loading factor to allow for fees and expenses, they will be less 

appealing than other financial assets. We also assume full annuitization at retirement so that if 

the bequest to heirs after retirement is an important concern, the objective function would have 

to be modified accordingly. Similarly, if the individual has an irregular consumption pattern 

during retirement, or desires a high degree of liquidity, the objective function would also have 

to be changed to accommodate this. 

Available assets. The individual can rebalance their portfolio and buy deferred 

annuities at regular intervals of length Δ𝑡 years. There are 𝑁 ∈ ℕ such regular intervals in the 

retirement planning period [0, 𝑇)  (i.e. 𝑇 = 𝑁 ⋅ Δ𝑡 ) (see Figure 1). Defining 𝑅6,!  as the 
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accumulated log-return of asset 𝑖 ∈ {𝐶, 𝐵, 𝐸} from time 𝑡 − Δ𝑡 to 𝑡, the price 𝑆6,!  of asset 𝑖 

evolves according to the following: 

 S;,< = S;,<"'< ⋅ expC𝑅6,!D for 𝑖 ∈ {𝐶, 𝐵, 𝐸}, (2) 

where 𝑆6,2 = 1 without loss of generality.  

Figure 1 here. 

The gross return of the long-term bond fund with a maturity of 𝑀 years over a holding 

period of length Δ𝑡 from time 𝑡 − Δ𝑡 to 𝑡 is approximated by 

 R=,< = 𝑀 ⋅ 𝑦(𝛽!"'! , 𝑀, 𝜆) − (𝑀 − Δ𝑡) ⋅ 𝑦(𝛽! , 𝑀 − Δ𝑡, 𝜆). (3) 

The term 𝑦(𝛽! , 𝑀, 𝜆) denotes the 𝑀-year spot rate at time 𝑡, determined by the Nelson-Siegel 

term structure model, with parameters 𝛽!  and 𝜆 , to be specified shortly. Accordingly, the 

dynamics of the bond fund price is obtained by substituting 𝑅6,!  from Equation (3) into 

Equation (2). 

The gross return generated by the cash fund is defined by changing the bond maturity 

𝑀 in Equation (3) to Δ𝑡. The cash fund return from time 𝑡 − Δ𝑡 to 𝑡, is therefore given by 

 R,,< = Δt ⋅ y(β<"'<, Δ𝑡, 𝜆). (4) 

Of course, this cash fund return at time 𝑡 does not depend on the current spot rate y(β<, Δ𝑡, 𝜆) 

at time 𝑡, but on the past spot rate y(β<"'<, Δ𝑡, 𝜆). 

For a policyholder aged 𝛿 + 𝑡 at time 𝑡, the fair actuarial price of a deferred annuity 

contract paying £1 of annual retirement income for a lifetime starting at retirement at time 𝑇 is 
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S>,< = Q 𝑃? &(!

5"!

?@A"<

⋅ expC−s ⋅ y(β<, s, λ)D. (5) 

We assume static pricing mortality rates here. 

Glide paths with deferred annuities. We approximate a new glide path by averaging 

stochastic optimal deferred annuity and investment allocations (in percent) over the planning 

horizon [0, 𝑇). Let 𝐺6,! be the glide-path strategy (in percent) for asset 𝑖 at time 𝑡 and it is given 

by 

𝐺6,! = 𝔼2 r
𝑆6,!𝑋6,!

∑ 𝑆B,!𝑋B,!B∈{,,+,-,)}
s t  for 𝑖 ∈ {𝐶, 𝐵, 𝐸, 𝐴}. (6) 

The glide paths can be constructed with and without deferred annuities.  

The glide path strategy is not an optimal investment solution to our retirement planning 

problem. One alternative could be to construct an optimization problem to search for an optimal 

glide path {𝐺6,!} as one of the decision variables. Constraints to control after-rebalancing asset 

allocations, however, are to be non-linear equations. Finding a global, or close-to-global 

optimal solution is a hard problem for any currently-available solvers. Our new glide-path 

strategy can be a good starting point for searching for a better solution. 

There are some practical advantages of glide path strategies over the optimal stochastic 

strategy. First, they can deliver a complex investment strategy to individuals in a way which is 

easy for individuals to understand. If the strategy is deployed and then updated regularly, then 

the final retirement income derived for the glide path and optimal stochastic strategies should 

be the same, since they are identical at time 0.  
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Financial Modelling and Data 

In order to incorporate interest rate uncertainty into the deferred annuity price, a 

stochastic term structure model is required. We choose the Nelson-Siegel model along with a 

vector autoregressive (VAR) model for stochastic equity and bond returns.3 This allows our 

model to incorporate asset return predictabilities and to use a continuous yield curve for pricing 

not only the cash and bond funds, but also annuities. 

The entire yield curve is determined by a fitted Nelson-Siegel model with three 

parameters: 𝛽$,! (level), 𝛽C,! (slope), and 𝛽D,! (curvature).  The Nelson-Siegel model for the 𝑠-

year spot rate at time 𝑡 is as follows: 

 
𝑦(𝛽! , 𝑠, 𝜆) = 𝛽$,! + C𝛽C,! + 𝛽D,!Du

1 − 𝑒"E?

𝜆𝑠 v − 𝛽D,!𝑒"E?, (7) 

where the scaling parameter 𝜆 is a constant. Here, 𝛽! = J𝛽$,! , 𝛽C,! , 𝛽D,!K
.. 

To incorporate predictabilities of asset returns and the three parameters in the Nelson-

Siegel model, we use a VAR(1) model (for details, see Barberis, 2000; Campbell et al., 2003). 

In particular, a VAR model combining the interest rate model and equity returns is used, as in 

Ferstl and Weissensteiner (2011), Pedersen et al. (2013) and Konicz et al. (2016). Our VAR 

model is given by 

 𝑧! = Φ2 +Φ$𝑧!"$ + 𝑣! , (8) 

 

3 Ferstl and Weissensteiner (2011) combine the Nelson-Siegel formulation with the VAR 
model, which is proposed by Boender et al. (2008). 
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where 𝑧! = J𝑟! , 𝛽$,! , 𝛽C,! , 𝛽D,!K
. . Here, 𝑟!  is the monthly log-returns generated by the equity 

fund. The accumulated return on the equity fund 𝑅-,!, defined in Equation (2) as the log-return 

from time 𝑡 − Δ𝑡 to 𝑡, is simply a sum of the monthly log returns. In Equation (8), Φ2 is a 

column vector of intercepts, Φ$ is a 4 × 4 matrix of the slope coefficients of the VAR model, 

and v! is a column vector of iid innovations ∼ 𝑁(0, 𝛴F), where 𝛴F = 𝔼[𝑣𝑣.]. 4  

We use monthly yield curve data calculated by the Bank of England with 0.5 to 25-year 

spot rates, and returns generated by the FTSE 100 collected from the Bloomberg from January 

1993 to December 2013. By minimizing the sum of squared errors between the fitted and 

historical yield curves, we estimate 𝜆 = 0.382 in Equation (7). Our estimates for Φ2 and Φ$ 

in Equation (8), along with 𝑡-statistics, are presented in Table 1. The level of 𝑅C for the equity 

equation is low, making it is difficult to confirm that return predictability in the UK equity 

market exists. The eigenvalues of Φ$ have moduli less than one, so that the unconditional 

expected mean and covariance in Equations (9) and (10) exist. Table 2 presents the correlations 

and standard deviation (multiplied by 100) of the residuals.  Table 3 presents the unconditional 

expected mean 𝜇FF of 𝑧!. 

Table 1 here. 

 

4 If all eigenvalues of Φ$ have moduli less than one, the stochastic process in Equation (8) is 
stable with the unconditional expected mean 𝜇FF and covariance 𝛤FF of 𝑧! in the steady states: 

 𝜇FF = (𝐼 − Φ$)"$Φ2,  
 𝑣𝑒𝑐(𝛤FF) = (𝐼 − Φ$⊗Φ$)"$𝑣𝑒𝑐(𝛴F),  

where 𝐼  is an identity matrix, the operator ⊗  is the Kronecker product, and 𝑣𝑒𝑐  is a 
vectorisation function, which transforms a 𝐾 × 𝐾 matrix into a 𝐾C × 1 vector. 
 



14 

 

Table 2 here. 

Table 3 here. 

Multi-stage Stochastic Programming Formulation 

Scenario generation.  An MSP model can be constructed in a nodal form by using state 

variables generated in a scenario tree. The scenario tree starts at the initial stage from a unique 

root node which branches out to several “children” nodes at the second time stage. Each of 

these child nodes themselves branch out to further nodes at the third time stage, and so on. The 

nodes at the terminal stage are known as leaf nodes. A scenario is the path followed from the 

root node through descendant nodes to a leaf node. The tree is non-recombining.  Some helpful 

notation pertaining to the scenario tree and the scale of the optimisation problem formulated 

here is set out in Appendix A.  

The optimization problem. The objective function and constraints set out in Equation 

(1) for the general problem can now be formulated within the scenario tree as a multi-stage 

stochastic programming problem. The notation transfers in a straightforward way, except that 

we index by node rather than by time. For example, 𝑋6,G refers to the number of units of asset 

𝑖 ∈ {𝐶, 𝐵, 𝐸, 𝐴} held at node 𝑛 in the scenario tree. We also distinguish between buy and sell 

decisions, so that 𝑋6,G
HIJ is the number of units of asset 𝑖 to buy at node n and 𝑋6,G?KLL is the number 

of units of asset 𝑖 to sell at node 𝑛. Recalling that deferred annuities cannot be sold, the decision 

variable for the individual at node 𝑛  is therefore 𝑋G = J𝑋,,G
HIJ , 𝑋,,G?KLL , 𝑋+,G

HIJ , 𝑋+,G?KLL , 𝑋-,G
HIJ ,

𝑋-,G?KLL , 𝑋),G
HIJK

.
 for 𝑛 ∈ 𝒩.  
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The objective function in Equation (1a) is rewritten in a nodal form as follows: 

max
{/",G∈𝒩}

P Q Q 𝑝! &
G∈𝒩#!∈[3,5]

	𝑢C𝑡, 𝑋),GD	𝒑𝒓G

+ Q Q 𝑝! &
G∈𝒩!$%!

𝑞O! &(!
!∈[2,3)

𝑢(𝑡 + 𝛥𝑡,𝑊G)	𝒑𝒓GU 

(9) 

where it is implicit that summations occur over the time stages in the scenario tree during the 

planning phase when 𝑡 ∈ [0, 𝑇]. 

A cash balance constraint, shown in Equation (10), controls cash inflows and outflows. 

Below φ6? and φ6I indicate a percentage selling fee and upfront fee respectively for asset 𝑖 ∈

{𝐶, 𝐵, 𝐸, 𝐴} and 𝑤2 represents non-random, positive initial wealth. 

 𝟙{G@G&}𝑤2 + 𝟙{G∉𝒩#}𝜙 ⋅ 𝐿G ⋅ Δ𝑡 + ∑ 𝑋6,G?KLL6∈{,,+,-} 𝑆6,G(1 − 𝜑6?) =
∑ 𝑋6,G

HIJ
6∈{,,+,-,)} 𝑆6,G(1 + 𝜑6I)  for 𝑛 ∈ 𝒩, 

(10) 

 An asset inventory constraint shown in Equation (11) tracks the number 𝑋6,G of units of 

asset 𝑖 ∈ {𝐶, 𝐵, 𝐸, 𝐴} held at node 𝑛. Below φ6Q  indicates a percentage management fee for 

asset 𝑖. 

 𝑋6,G = 𝟙{G∉G&}𝑋6,G'(1 − 𝜑6
Q) + 𝑋6,G

HIJ − 𝑋6,G?KLL for  𝑛 ∈ 𝒩 (11) 

Wealth in the retirement plan, which includes cash, bond and equity funds, and excludes 

purchased deferred annuities, satisfies the following equations: 

 𝑊G = ∑ 𝑋6,G'6∈{,,+,-} 𝑆6,G(1 − 𝜑6Q) for 𝑛 ∈ 𝒩 ∖ 𝑛2. (12) 
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Variable constraints appear below and complete the multi-stage stochastic 

programming formulation which is equivalent to the general optimization problem in Equation 

(1). 

 𝑋6,G, X6,R
HIJ , X6,R?KLL ≥ 0  for 𝑖 = {𝐶, 𝐵, 𝐸} and 𝑛 ∈ 𝒩, (13a) 

 𝑋),G, 𝑋),G
HIJ ≥ 0  for 𝑛 ∈ 𝒩, (13b) 

 𝑋6,G = X6,R
HIJ = 0 	 for 𝑖 = {𝐶, 𝐵, 𝐸} and 𝑛 ∈ 𝒩3 . (13c) 

The terminal condition in Equation (1d) is self-constrained through Equations (10), (11) and 

(13). The non-negative wealth condition of Equation (1g) is not imposed because it is satisfied 

in Equation (12) since asset prices are positive and no short-selling is allowed in Equations 

(11) and (13a). Wealth is initialized at the non-random amount 𝑤2 specified on the l.h.s. of 

Equation (10). 

 Following Equation (10) to Equation (13), on every node in the scenario tree, the cash 

balance, asset inventory and other constraints are set. Finally, we use an interior point solver 

MOSEK to find optimal investment and deferred annuity choices by maximizing the non-linear 

objective function in Equation (9) subject to the linear constraints in Equations (10) to (13). 

Hilli et al. (2016), Konicz and Mulvey (2015), and Konicz et al. (2016) use the MOSEK for 

pension asset-liability management and financial planning applications. 

Results 

Numerical examples. We start with a benchmark case in which a 40-year-old 

individual (δ = 40) intends to retire at age 65 (𝑇 = 25). Their goal is to maximize and secure 
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their retirement benefits in nominal terms and to set aside a portion of the portfolio as a bequest 

in the event of them dying before retirement. In their retirement plan they can invest in a cash 

fund (maturity 𝑀 = 5 years), a bond fund (maturity 𝑀 = 20 years), an equity fund and in 

deferred annuities as described earlier. To price the deferred annuity, we use a U.K. mortality 

table based on 2000-2006 experience.5 

The individual can rebalance the portfolio and buy deferred annuities every 5 years 

(Δ𝑡 = 5) so there are six stages (five periods) in the scenario tree spanning the 25-year planning 

horizon. The individual has an initial wealth of 𝑤2 = £80,000 which represents the initial 

value of the retirement plan. Annual wage is fixed at £40,000 throughout. Contributions to the 

retirement plan are £4,000 p.a. (𝜙 = 10	𝑝𝑒𝑟𝑐𝑒𝑛𝑡). Because of the incidence of cash flows in 

our model, the contribution is, in effect, £20,000 every five years in advance (𝜙 ⋅ 𝐿G ⋅ Δ𝑡 =

£20,000 for 𝑛 ∈ 𝒩 ∖𝒩3). 

In the benchmark case, the individual is a male with risk aversion coefficient γ = 3, 

time preference ρ = 0 and bequest parameter κ = 0. For the bond and equity funds, upfront 

and selling fees are φ6I = φ6? = 0.5	𝑝𝑒𝑟𝑐𝑒𝑛𝑡 for 𝑖 ∈ {𝐵, 𝐸}, following Geyer et al. (2009) and 

Konicz et al. (2014). Expense loadings on annuities are φ)I = 3.0	percent. This is a similar 

level to the one used by Horneff et al. (2010) and Huang et al. (2017). The cash fund has no 

fees, and management fees for all assets are ignored. Alternative cases are also considered with 

different individual preference parameters and transaction costs. 

 

5 Institute and Faculty of Actuaries, S1PML/S1PFL - All pensioners (excluding dependants), 
male/female lives (www.actuaries.org.uk). 
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We also consider three different fee structures from the benchmark, which we denote 

case I. A higher fee on bond and equity transactions from 0.5 to 1.0 percent but the same 

loading as the benchmark case, is referred to as Case II. While Case III uses a higher loading 

on annuities of 5.0 percent, but the same transaction fee as in the benchmark case. Case IV 

increases both transaction fees and loading to 1.0 percent and 5.0 percent, respectively. 

To control the glide path operation within scenarios we should take transaction fees into 

account, so that after-rebalancing asset proportions match the target glide path strategy 𝐺6,!. 

Let 𝐺�6,G be the current proportion of asset 𝑖 ∈ {𝐶, 𝐵, 𝐸, 𝐴}  at node 𝑛 before rebalancing but 

after making the contribution 𝜙 ⋅ 𝐿G into the cash account. We rebalance asset allocations from 

𝐺�6,G  to 𝐺6,!  after fees at every node 𝑛 ∈ 𝒩 ∖𝒩3 . The total transaction and loading costs 

denoting 𝑓𝑒𝑒G are calculated by 

 
𝑓𝑒𝑒G =

∑ 𝑠6∈{,,+,-,)} 𝑖𝑔𝑛(𝑖)C𝐺6,! − 𝐺�6,GDφ;
1 + ∑ 𝑠∀6 𝑖𝑔𝑛(𝑖)𝐺6,!φ;

(𝑊G + 𝜙 ⋅ 𝐿G), (16) 

where a function 𝑠𝑖𝑔𝑛(𝑖) returns +1 when C𝐺6,! − 𝐺�6,GD > 0 and −1 when C𝐺6,! − 𝐺�6,GD ≤ 0. 

If 𝐺6,! = 𝐺�6,G  for all 𝑖 ∈ 	 {𝐶, 𝐵, 𝐸, 𝐴}, then no fees occur since rebalancing is not required. 

Management fees are ignored, but it is not non-trivial. If the current proportion of deferred 

annuity to wealth plus contribution is greater than that in the glide path, we do not change the 

deferred annuity allocation (𝑋),G is equal to 𝑋),G') and calculate the total transaction cost in 

Equation (16), excluding the deferred annuity. In that case, 𝐺6,!  and 𝐺�6,G  are adjusted by 

considering only assets 𝑖 ∈ {𝐶, 𝐵, 𝐸}  as one portfolio and 𝑊G  deducted by 𝑆),G𝑋),G'  in 

Equation (16). 
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Traditional glide path strategies. We consider two traditional glide paths. The 

“Equity-to-Bond” glide-path starts with 80 percent in equities, a proportion that falls by 6 

percent points every five years, with the proportion invested in bonds rising commensurately. 

The “Equity-to-Cash” glide-path also starts with 80 percent in equities, a proportion that falls 

by 6 percentage points every five years, with the proportion invested in cash rising 

commensurately.  The equity allocations in the traditional glide-path strategies match those 

suggested by Vanguard (Daga et al., 2016).  

Table 4 presents basic statistics for the retirement income secured by the representative 

individual for a range of the risk aversion parameters, 𝛾, (1, 3, 5, and 8) and the fee structures 

of cases I, II, III, and IV. The first column indicates the risk aversion parameter and fee 

structure for each row. The first row for each pair shows the results for the strategy where the 

investor applies the Equity-to-Bond glide path strategy and purchases an immediate annuity at 

retirement.  The second row shows equivalent statistics, but where the individual implements 

the Equity-to-Cash glide path, etc. 

Table 4 here. 

Distributional properties from the Mean to 95th percentile values of the retirement 

income are identical for the (1, I), (3, II), (5, III), and (8, IV) cases because the strategies do 

not depend on the individual’s risk preference, but are identical and deterministic. The Equity-

to-Bond strategy shows a higher mean value, but also has a higher standard deviation (StdDev) 

than the Equity-to-Cash strategy. This causes a lower expected retirement income per unit of 

risk (Mean/StdDev) so that we cannot say that the Equity-to-Bond strategy is more efficient 

than the Equity-to-Cash strategy. 
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The last column shows the certainty equivalent value of retirement income (CE) to the 

expected utility of the retirement income at retirement. The Equity-to-Bond strategy produces 

a higher CE value than the Equity-to-Cash strategy, since investing in the bond with a 20-year 

maturity is less risky than investing in cash (5-year zero bond) in terms of a price change in 

one unit of retirement income (i.e. immediate annuity price). In addition, the CE values depends 

upon each individual’s risk preference, although the retirement income has the same 

distribution in both cases. A glide path strategy can be less valuable to a more risk-averse 

investor. The CE value of the retirement income ranges between about £4,000 to 6,000 per 

year. In all four fee cases, I to IV, CE values are lower when transaction fees or expense loading 

on the annuity are higher. Results with Monte Carlo simulation in Table B.2 also show similarly 

consistent results. 

Optimal Stochastic Strategies. The stochastic investment strategy that results from 

solving the multi-stage stochastic programming problem, utilizes full information about the 

realized and expected values of the predictable and time-varying financial variables (for details, 

see Owadally et al. (2018)).  Figure 2 shows the percentiles and average of the total optimally 

secured retirement income (SRI) generated by employing the MSP approach for the benchmark 

model, as a function of age.  The left panel of Figure 2 shows the total secured retirement 

income. The right panel shows the extra retirement income gained by purchasing deferred 

annuities. This benchmark case shows that the optimal strategy to secure retirement income 

involves buying deferred annuities regularly during the individual’s working lifetime, starting 

fairly early and accelerating in the last years before retirement. The result is robust for other 

investor profiles. Supplementary results are presented with different risk aversion, time 

preference and bequest parameters in following sections and in Table B.1. 
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Figure 2 here. 

Average optimal asset allocations over the 25-year planning horizon are presented in 

Figure 3. The bar graphs show average asset allocations including deferred annuities (DAs) for 

three different constant relative risk aversion (CRRA) parameters. The chart corresponding to 

CRRA=3 shows the asset allocation for the benchmark case. The proportion of deferred annuity 

holding in overall wealth increases on average, as retirement approaches, while bond and equity 

holdings decline. The fall in equity holdings over time is consistent with findings in the lifetime 

finance literature and the typical recommendations of financial advisors. Bonds clearly play a 

significant role in the investor’s portfolio.  As well as being a relatively “safe asset class”, they 

also represent a partial hedge against the future price changes of deferred annuities. 

Figure 3 here. 

Bonds are the largest asset holdings among cash, bond and equity funds over the 

planning horizon, but the hedging demand seems weaker as retirement draws closer. Cairns et 

al. (2006) and Koijen et al. (2011) find an opposite hedging pattern using a bond, which shows 

that the hedging demand is stronger as retirement draws closer. They, however, do not consider 

deferred annuities so that the individual has no means of securing their retirement income in 

advance. 

The optimal allocation to the cash fund increases initially and then declines. The cash 

account provides liquidity for future deferred annuity purchases, especially when bond and 

equity prices are low. 

Figures 2 and 3 demonstrate that there is a potentially important role for deferred 

annuities in the accumulation phase.  To see just how important, we can compare these results 
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to those where we exclude deferred annuities from the asset allocation choice where we instead 

only allow the investor to purchase an immediate annuity at retirement.   

Table 5 presents statistics equivalent to those in Table 4, but for optimal stochastic 

strategies with deferred annuity (DA) and with immediate annuity (IA). The first row for each 

pair of risk aversion level and fee structure shows the results for the strategy where the investor 

can purchase a deferred annuity.  The second row shows equivalent statistics but where the 

individual is restricted to an immediate annuity only.  In each case the difference between the 

retirement income mean is economically small. However, for each level of γ the individual 

achieves higher expected retirement income per unit risk (Mean/StdDev) when deferred 

annuities are available compared to when they are not. The last column, “CE”, shows that the 

certainty equivalent values of retirement income are also higher when deferred annuities are 

available in all cases. The analysis shows that the availability of deferred annuities provides 

the individual with not only a higher welfare value but also a more efficient (higher mean-

variance) retirement-income distribution.   

Table 5 here. 

Comparing Table 5 with Table 4, we find that the optimal stochastic strategies produce 

more efficient retirement income distributions (i.e. higher Mean/StdDev values) and higher 

certainty equivalent value in all cases. The differences in the certainty equivalent values are 

particularly large, about £26,000 to £34,000 per year, which grow with the risk aversion 

parameter.  

A glide-path approach with deferred annuities. Implementing the optimal stochastic 

strategy, however, is likely to be too complex for individual investors or their advisors to 
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understand. To this end, we now introduce an investment glide path. The glide path 𝐺6,! , 

described in equation (6), defines the proportion of asset 𝑖 in the retirement plan, including a 

proportion in a deferred annuity as a function of time. It can be written in the following nodal 

form:  

𝐺6,! = ∑ r𝐩𝐫G ⋅ �
𝑆6,G𝑋6,G

∑ 𝑆B,G𝑋B,GB∈,,+,-,)
s �tG∈𝒩!  for 𝑡 ∈ [0, 𝑇) and 𝑖 ∈ {𝐶, 𝐵, 𝐸, 𝐴}.  

Our numerical results show that this glide path guarantees a better welfare value in terms of 

certainty equivalent retirement income than traditional glide paths, constant-mix investment, 

and “100	 − 	𝑎𝑔𝑒” strategies, which are widely used in the retirement planning industry. 

Table 6 shows that the outcomes delivered with the introduction of 𝐺6,! (in percent) 

with different transaction costs on bond and equity funds and expense loadings on deferred 

annuities. All average portfolio allocations are calculated after fees as in Equation (6). When 

the expense loading increases by 2.0 percent to 5.0 percent (see I and III or II and IV panels), 

the glide path lowers deferred annuity proportions through the planning horizon. When 

transaction costs (upfront and selling fees) on bond and equity funds increase by 0.5 percent to 

1.0 percent (see I and II or III and IV panels), the new glide path results show higher deferred 

annuity proportions and lower other proportions in other asset classes through the planning 

horizon. When the fees on bond and equity funds increase, cash fund allocations increase 

through the planning period because transaction fees on the cash fund are set to zero. 

Table 6 here. 

The results in Table 7 with Table 4 and Table 5 demonstrate that the introduction of 

𝐺6,!  produces the most efficient distribution of retirement income and a higher certainty 
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equivalent value of retirement income than traditional glide path strategies. The Mean/StdDev 

values are much higher than the stochastic optimal strategies. The difference in the certainty 

equivalent values between the traditional and new glide path is about £3,000 to 12,000 per year. 

A more risk-averse individual is likely to see a larger difference in the certainty equivalent 

value. A certainty equivalent gap between the new glide path and the optimal stochastic 

strategies decreases as the individual becomes more risk averse. 

Table 7 here. 

It is also helpful to compare our glide path strategies with other deterministic strategies used in 

practice. We measure two performance metrics: the expected retirement income per unit risk 

and the certainty equivalent retirement income. This is done for fourteen different strategies 

and the results are displayed in Figure 4.  The fourteen strategies labelled on Figure 4 are as 

follows:  

(A) stochastic optimal strategy with deferred annuities (DA) available including an 
immediate annuity (IA) at retirement; 

(B) stochastic optimal strategy without DAs but including an IA at retirement;  
(C) cash only;  

(D) bond only;  
(E) 70/30 bond/equity;  

(F) 50/50 bond/equity;  
(G) 30/70 bond/equity;  

(H) equity only;  
(I) glide path starting from 80/20 equity/bond with equity decreasing and bond increasing 
by 6 percent point every 5 years;  
(J) glide path starting from 80/20 equity/cash with equity decreasing and cash increasing 
by 6 percent point every 5 years;  

(K) (100 − 𝑎𝑔𝑒) percent in equity and the rest in bond;  

(L) (100 − 𝑎𝑔𝑒) percent equity and the rest in cash;  
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(M) glide path strategy with DA available including an IA at retirement; and  
(N) glide path strategy without DAs, but including an IA at retirement.  

 

Figure 4 Here. 

 

Figure 4 shows that our glide paths with and without DAs ((M) and (N) have a better 

performance than any of the deterministic investment strategies ((C) to (L)) in terms of the 

expected retirement income per unit risk. For the certainty equivalent retirement income our 

new glide path performs better than the typical glide path strategies ((I) to (J)), but also better 

than any constant-mix strategies ((C) to (H)) and “𝑎𝑔𝑒 − 100” strategies ((K) and (L)). The 

stochastic optimal strategies ((A) and (B)) clearly show the highest certainty equivalent 

retirement income. Strategy (H) (equity only) has the worst performance among the fourteen 

strategies, under both performance metrics. 

Conclusions 

Using multi-stage stochastic programming, we specify an optimization model with the 

objective function to maximize the expected value of a series of power utility functions of 

secured retirement income from purchased annuities at retirement and a bequest before 

retirement. Then we propose and construct new glide paths by averaging optimal stochastic 

asset allocations which are achieved by solving the retirement planning problem. The multi-

stage stochastic programming approach enables us to incorporate sophisticated financial 

market models and realistic constraints, such as constraints on assets, transaction costs, and 

taxes. 
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Numerical results show that our glide path strategies provide the individual with a 

higher welfare value, and a more efficient investment portfolio than any conventional 

deterministic strategies, such as constant-mix, traditional glide-path, and “ 100 − 𝑎𝑔𝑒 ” 

investment strategies. The new glide path strategies also make retirement income and wealth 

more responsive to personal preferences: risk aversion, time impatience and bequest motive.  

The welfare value is determined by the certainty equivalent value of the expected utility 

of secured retirement income. The welfare value gap between our glide paths and the 

deterministic strategies widens as the investor is more risk-averse. The expected retirement 

income per unit risk, as a measure of efficiency, is the highest. Ours also shows that the closer-

to-optimal certainty equivalent values of the expected utility of bequest over the planning 

horizon. The existence of a bequest motive results in more allocations to the cash fund and 

delayed, or lower allocations to deferred annuities. The findings are robust to different fee 

structures and to the availability of deferred annuities. 

The glide path strategy is not an optimal investment solution to our retirement planning 

problem. However, there is one clear, practical advantage of the glide path strategy over the 

optimal stochastic strategy: it would be easier to explain the idea to individual investors, since 

the new glide path strategy is simply a deterministic function of time. Furthermore, if the glide 

path is updated regularly, the results from the glide path and optimal stochastic strategies will 

not be very different. This is because their strategies are identical at the time they are updated.  

Our glide path strategies have limitations. The model assumes full annuitization at 

retirement. This implies that annuities are the best income-generating financial instrument. It 

would have to be modified if the individual wishes to make bequest to heirs after retirement, if 
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the post retirement consumption pattern is irregular, or if a higher degree of liquidity during 

retirement is required. 

We have not taken account of inflation rates which affect consumer prices, housing 

assets, and wages. Uncertainties in labour income, labour supply, and fiscal policy issues are 

also ignored. Various types of annuity products, such as index-linked annuities, are not 

covered. Term assurance and health insurance covering long-term care and critical illnesses are 

also not considered here. They can affect the optimal retirement planning and our glide path 

strategy. The results that we have here are influenced by the discretization of state and time in 

a multi-stage stochastic programming model. In practice, individuals may wish to rebalance 

their portfolios more often. These limitations will be carefully investigated in our future studies. 
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Figures 

 
Figure 1. retirement planning and retirement periods from time 0 to 𝜏. 

Note: Maximum life span of an individual is denoted by 𝜏. One increment indicates one year. The time length 
of 𝛥𝑡 is greater than one year. 

Source: Author’s drawing 

 

  

Figure 2. Percentiles and average of optimally secured retirement income (SRI) in total 

(left) and increments (right). 

Note: Constant relative risk aversion, time preference, and bequest parameters are 𝛾 = 3.0, 𝜌 = 0.0, and 𝜅 =
0.0 respectively. Upfront and selling fees are 0.0% for the cash fund and 0.5% for the bond and equity funds. 
Expense loadings on annuities are 3.0%. Management fees are ignored. 

Source: Author’s calculations 
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Figure 3. Optimal investment and deferred annuity (DA) allocations on average over the 25-year 

retirement planning period. 

Note: Constant relative risk aversion, time preference, and bequest parameters are 𝛾 = {1.0,3.0,5.0}, 𝜌 = 0.0, and 
𝜅 = 0.0 respectively. Upfront and selling fees are 0.0% for the cash fund and 0.5% for the bond and equity funds. 
Expense loadings on annuities are 3.0%. Management fees are ignored. 

Source: Author’s calculations 
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Figure 4. Certainty equivalent retirement income (£1,000 p.a.) and expected retirement 

income per unit risk for various investment strategies. 

Note: Constant relative risk aversion, time preference, and bequest parameters are 𝛾 = 5.0, 𝜌 = 0.0, and 𝜅 =
0.0 respectively. Upfront and selling fees are 0.0% for the cash fund and 0.5% for the bond and equity funds. 
Expense loadings on annuities are 3.0%. Management fees are ignored. 

Source: Author’s calculations 

 

 

 

 

 

  

A. Stochastic/DA

B. Stochasitc/IA

C. Cash 
Only

D. Bond 
Only

E.F.

G.

H. Equity 
Only

I.

J.

K.

L.

M. New 
Glide Path 

with DA

N. New 
Glide Path 

with IA

15.00

25.00

35.00

45.00

55.00

65.00

75.00

0.00 2.00 4.00 6.00 8.00

C
er

ta
in

ty
 E

qu
iv

al
en

t R
et

ire
m

en
t I

nc
om

e
(£

1,
00

0 
p.

a.
)

Expected Retirement Income Per Unit Risk



36 

 

Tables 

Table 1. VAR(1) parameters and t-statistics 

 
𝑐 

𝐴 
𝑅C  𝑟!"$ β$,!"$ βC,!"$ βD,!"$ 

𝑟! -0.0093 0.0136 0.2446 0.0037 -0.0980 0.0125 
t-value (-0.9961) (0.2158) (1.3086) (0.0266) (-0.9722)   
β$,! 0.0070 0.0033 0.8620 -0.0325 0.0229 0.9700 
t-value (4.6116) (0.3216) (28.5657) (-1.467) (1.4069)   
βC,! -0.0044 0.0128 0.0777 1.0008 0.0072 0.9771 
t-value (-4.1225) (1.7827) (3.6479) (63.9633) (0.6246)   
βD,! -0.0024 0.0084 0.0514 0.0206 0.9560 0.9336 
t-value (-1.3018) (0.6857) (1.4191) (0.7742) (48.9678)  

Note: The scale parameter of a Nelson-Siegel term structure model is set to λ = 0.3820; t-statistics in parenthesis. 

Source: Author’s calculations using monthly data of FTSE 100 from Bloomberg and fitted yield curves from the 
Bank of England from January 1993 to December 2013. 

 

Table 2. Cross correlations and standard deviations of residuals of the VAR(1) model 

 𝑟 𝛽! 𝛽" 𝛽# 
𝑟 4.0371a -0.0354 0.1487 -0.0180 
𝛽! -0.0354 0.6518 a -0.7944 -0.2002 
𝛽" 0.1487 -0.7944 0.4599 a 0.0577 
𝛽# -0.0180 -0.2002 0.0577 0.7821 a 

a Standard deviations along the leading diagonal are multiplied by 100. 

Source: Author’s calculations using monthly data of FTSE 100 from Bloomberg and fitted yield curves from the 
Bank of England from January 1993 to December 2013. 
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Table 3. Unconditional expected mean for the steady state of the VAR(1) model 

 𝑟 𝛽$ 𝛽C 𝛽D 
𝜇FF 0.0040 0.0559 -0.0204 0.0028 

Source: Author’s calculations using monthly data of FTSE 100 from Bloomberg and fitted yield curves from the 
Bank of England from January 1993 to December 2013. 

 

Table 4. Secured retirement income (£1,000 p.a.) with traditional glide paths strategies 
 

(γ, Fee) Strategy Mean StdDev Mean 
/StdDev 5th Pctl. 50th 

Pctl. 
95th 
Pctl. 

CEa 

(1, I) Glide Path (Equity-to-Bond) 56.7035 29.3254 1.9336 25.2069 49.8009 111.6777 50.8701 
 Glide Path (Equity-to-Cash) 50.9596 26.0188 1.9586 22.6747 44.9320 99.6784 45.8309 
(3, I) Glide Path (Equity-to-Bond) 56.7035 29.3254 1.9336 25.2069 49.8009 111.6777 42.0999 
 Glide Path (Equity-to-Cash) 50.9596 26.0188 1.9586 22.6747 44.9320 99.6784 37.9459 
(5, I) Glide Path (Equity-to-Bond) 56.7035 29.3254 1.9336 25.2069 49.8009 111.6777 35.9490 
 Glide Path (Equity-to-Cash) 50.9596 26.0188 1.9586 22.6747 44.9320 99.6784 31.9471 
(8, I) Glide Path (Equity-to-Bond) 56.7035 29.3254 1.9336 25.2069 49.8009 111.6777 29.4541 
 Glide Path (Equity-to-Cash) 50.9596 26.0188 1.9586 22.6747 44.9320 99.6784 23.5369 
(3, II) Glide Path (Equity-to-Bond) 56.0250 28.9221 1.9371 24.9271 49.2240 110.2747 41.6249 
 Glide Path (Equity-to-Cash) 50.6072 25.8031 1.9613 22.5237 44.6347 98.9885 37.7004 
(3, III) Glide Path (Equity-to-Bond) 55.6235 28.7668 1.9336 24.7268 48.8523 109.5505 41.2980 
 Glide Path (Equity-to-Cash) 49.9890 25.5232 1.9586 22.2428 44.0761 97.7797 37.2231 
(3, IV) Glide Path (Equity-to-Bond) 54.9579 28.3712 1.9371 24.4523 48.2864 108.1742 40.8321 
 Glide Path (Equity-to-Cash) 49.6432 25.3116 1.9613 22.0947 43.7846 97.1030 36.9823 
 

a Certainty equivalent values (£1,000 p.a.) to the expected utility of total secured retirement income at retirement 
is achieved by solving 𝑢()6𝔼8𝑢6𝑇, 𝑋*,,;<; = 𝐶𝐸; 𝜌 is ignored.  
 
Note: Time preference and bequest coefficients are 𝜌 = 0.0 and κ = 0.0 respectively. Upfront and selling fees 
are 0.0% for the cash fund and 0.5% for the bond and equity funds. Expense loadings on annuities are 3.0%. 
Management fees are ignored. 

Source: Author’s calculations.  
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Table 5. Secured retirement income (£1,000 p.a.) with optimal stochastic strategies 

 

(γ, Fee) Strategy Mean StdDev Mean 
/StdDev 5th Pctl. 50th 

Pctl. 
95th 
Pctl. 

CEc 

(1, I) Optimal Stochastic (DA) a 84.4278 39.2811 2.1493 42.7146 74.4599 153.8579 77.6503 
 Optimal Stochastic (IA) b 84.0361 41.3745 2.0311 41.0811 73.4270 159.3199 76.6090 
(3, I) Optimal Stochastic (DA) a 78.7150 27.4172 2.8710 51.4306 71.1775 129.1346 69.5943 
 Optimal Stochastic (IA) b 78.9958 31.2850 2.5250 47.1265 70.9477 137.1415 67.1678 
(5, I) Optimal Stochastic (DA) a 73.6425 19.8589 3.7083 54.1586 68.3343 111.1304 65.7513 
 Optimal Stochastic (IA) b 73.4983 23.4197 3.1383 48.3573 67.8831 118.1316 61.7649 
(8, I) Optimal Stochastic (DA) a 68.5278 12.6923 5.3992 55.6949 65.3895 92.1032 63.0439 
 Optimal Stochastic (IA) b 66.3027 15.5565 4.2621 48.4511 62.9585 94.8632 56.4775 
(3, II) Optimal Stochastic (DA) a 77.1447 26.1122 2.9544 50.9577 69.9292 123.9188 68.6372 
 Optimal Stochastic (IA) b 77.1241 30.0299 2.5682 46.4664 69.6668 132.3535 65.9366 
(3, III) Optimal Stochastic (DA) a 77.2157 26.8949 2.8710 50.4510 69.8217 126.6758 68.2687 
 Optimal Stochastic (IA) b 77.4911 30.6891 2.5250 46.2288 69.5965 134.5292 65.8885 
(3, IV) Optimal Stochastic (DA) a 75.6757 25.6162 2.9542 49.9870 68.5980 121.5595 67.3299 
 Optimal Stochastic (IA) b 75.6550 29.4574 2.5683 45.5814 68.3409 129.8324 64.6807 
 

a This strategy is results from the MSP model. Deferred annuities are available at any time before retirement and 
immediate annuities are available only at retirement. 
b This strategy is results from the MSP model. Deferred annuities are not available and immediate annuities are 
only available at retirement. 
c Certainty equivalent values (£1,000 p.a.) to the expected utility of total secured retirement income at retirement 
is achieved by solving 𝑢()6𝔼8𝑢6𝑇, 𝑋*,,;<; = 𝐶𝐸; 𝜌 is ignored.  
 
Note: Time preference and bequest coefficients are 𝜌 = 0.0 and κ = 0.0 respectively. Upfront and selling fees 
are 0.0% for the cash fund and 0.5% for the bond and equity funds. Expense loadings on annuities are 3.0%. 
Management fees are ignored. 

Source: Author’s calculations. 
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Table 6. New glide path strategies (%) with transaction costs and loadings 

 I. transaction fees 0.5%, loadings 3.0%  II. transaction fees 1.0%, loadings 3.0% 

Age Cash Bond Equity Deferred 
Annuity 

 Cash Bond Equity Deferred 
Annuity 

40 0.00 82.11 17.89 0.00  0.00 82.90 17.10 0.00 
45 10.23 50.44 24.41 14.92  11.57 48.65 24.49 15.29 
50 16.57 30.08 24.18 29.18  16.60 28.59 23.58 31.24 
55 10.17 28.33 18.74 42.76  9.86 24.71 18.11 47.32 
60 5.49 16.27 13.96 64.28  5.14 14.26 12.87 67.73 
65 0.00 0.00 0.00 100.00  0.00 0.00 0.00 100.00 
 III. transaction fees 0.5%, loadings 5.0%  IV. transaction fees 1.0%, loadings 5.0% 

Age Cash Bond Equity Deferred 
Annuity 

 Cash Bond Equity Deferred 
Annuity 

40 0.00 82.11 17.89 0.00  0.00 82.90 17.10 0.00 
45 10.23 50.54 24.43 14.79  11.57 48.76 24.51 15.16 
50 16.59 30.25 24.23 28.93  16.62 28.76 23.63 30.99 
55 10.22 28.51 18.84 42.43  9.91 24.89 18.21 46.99 
60 5.53 16.37 14.08 64.02  5.18 14.35 12.98 67.49 
65 0.00 0.00 0.00 100.00  0.00 0.00 0.00 100.00 

Note: The four columns in Panel I to IV indicate averages of the optimal investment and deferred annuity portfolio 
allocations (%) for the 25-year planning horizon. From the first column, cash, bond, equity funds, and deferred 
annuities at the given age. The averages are expected values of 15,552 scenarios. Constant relative risk aversion, 
time preference, and bequest coefficients are γ = 3.0, ρ = 0.0, and κ = 0.0 respectively. Management fees are 
ignored. 

Source: Author’s calculations. 
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Table 7. Secured retirement income (£1,000 p.a.) with new glide path strategies 

 

(γ, Fee) Strategy Mean StdDev Mean 
/StdDev 5th Pctl. 50th 

Pctl. 
95th 
Pctl. 

CEa 

(1, I) New Glide Path (DA)  55.2794 14.5486 3.7997 37.1458 52.4395 83.0214 53.5782 
 New Glide Path (IA) 54.0513 15.0967 3.5803 35.1125 51.1400 82.9814 52.1801 
(3, I) New Glide Path (DA)  56.2114 10.2498 5.4842 43.0266 54.3734 74.9434 53.8455 
 New Glide Path (IA) 52.8994 10.8345 4.8825 38.8616 51.2222 72.9027 50.0871 
(5, I) New Glide Path (DA)  57.1546 8.2102 6.9614 46.2752 55.8850 71.9669 54.7220 
 New Glide Path (IA) 52.0794 8.5139 6.1170 40.6307 50.9710 67.4378 49.1856 
(8, I) New Glide Path (DA)  58.1580 6.2038 9.3745 49.8476 57.2504 69.6580 56.0398 
 New Glide Path (IA) 51.3827 7.0719 7.2657 41.4260 50.6603 64.0532 48.1055 
(3, II) New Glide Path (DA)  55.8751 9.9935 5.5911 43.0460 54.0264 74.0873 53.6054 
 New Glide Path (IA) 52.2684 10.4600 4.9970 38.6516 50.6598 71.5107 49.6012 
(3, III) New Glide Path (DA)  55.1501 10.0393 5.4934 42.2313 53.3500 73.4798 52.8364 
 New Glide Path (IA) 51.8918 10.6281 4.8825 38.1214 50.2466 71.5141 49.1331 
(3, IV) New Glide Path (DA)  54.8209 9.7876 5.6011 42.2542 53.0089 72.6823 52.6015 
 New Glide Path (IA) 51.2728 10.2608 4.9970 37.9154 49.6949 70.1486 48.6564 
 

a Certainty equivalent values (£1,000 p.a.) to the expected utility of total secured retirement income at retirement 
is achieved by solving 𝑢()6𝔼8𝑢6𝑇, 𝑋*,,;<; = 𝐶𝐸; 𝜌 is ignored.  
 
Note: Time preference and bequest coefficients are 𝜌 = 0.0 and κ = 0.0 respectively. Upfront and selling fees 
are 0.0% for the cash fund and 0.5% for the bond and equity funds. Expense loadings on annuities are 3.0%. 
Management fees are ignored. 

Source: Author’s calculations. 
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Appendix A.  The MSP Scenario tree 

The root node of the scenario tree is denoted by !!. Let " be the set of all nodes in the 

tree, and "" be the set of nodes at time #. For our retirement planning problem, time 0 is the 

first stage and retirement time % is the terminal stage. Thus, "! = {!!} contains the root node 

only, "# is the set of leaf nodes, and " = ⋃ """∈[!,#] . The unconditional probability that a 

node, !, occurs is *+(  and, clearly ∑ *+((∈)! = 1. A node ! ≠ !!  will branch off from a 

parent node, denoted by !*. A node ! ∉ "# will give rise to a set of children nodes, denoted 

by n+. 

In the operations research literature, scenario trees are generated using three main 

methods: scenario reduction, state aggregation and moment matching (see Geyer et al., 2010). 

We choose the moment matching method (Høyland and Wallace, 2001; Klaassen, 2002) for 

generating scenario trees of accumulated equity returns and three Nelson-Siegel model 

parameters. The first-period sub-tree has outcomes corresponding to each child node in the set 

n!+. The outcomes for the first period sub-tree are obtained by matching the first four moments 

of the distributions of state variables. For the second-period sub-trees, the conditional outcomes 

are obtained by matching the first four moments of the conditional distributions on outcomes 

of the first-period sub-tree. This procedure is executed sequentially for the third, fourth sub-

trees and so on until the final-period sub-trees. By doing so, we ensure that all conditional 

distribution properties are fully matched throughout the multi-period scenario tree. 

The scenario tree that we construct in our multi-stage stochastic programming problem 

has six stages. The time interval between the stage is Δ#, so the stages occur at time 0, Δ#, 2Δ#, 
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…, and % = 5Δ# . At each node ! , we store the state variables 45(, 7(, β,,(, β-,(, β.,(9 

employing the same notation as before except that we index by node ! rather than by time. 

Thus, if node ! occurs at time #, 5( denotes the equity log-return over a Δ#-long time interval 

ending at time # (Equation (2)); 7( denotes equity log-return over a month ending at time # 

(Equation (8)); and β,,(, β-,( and β.,( denote the Nelson-Siegel model parameters at time # 

(Equation (7)). At the root node !!, the initial state values are set to equal the unconditional 

expected means in Table 3. In the scenario tree, every non-terminal node branches off to six 

children nodes. Six outcomes are the minimum required to perfectly match the first four 

moments of the five state variables. 

Validating arbitrage opportunities among the financial assets (cash, bond and equity 

funds) is dealt with by using the two methods of Klaassen (2002) for two arbitrage types ex-

post and the method of Geyer et al. (2014) for no-arbitrage bounds ex-ante. The detailed step 

procedures can be found in Owadally et al. (2018). 

Since there are six child nodes for every non-terminal node and there are six stages (five 

periods) there are therefore 6/ = 7,776 scenarios and ∑ 60/
01! = 9,331 nodes. To improve the 

stability of our results, we aggregate two independently-generated scenario trees, with identical 

root nodes, into one large scenario tree (see Høyland and Wallace, 2001). This means that the 

total number of scenarios is 15,552 and the total number of nodes is 18,661.1  

 

1 Generating each scenario takes about 20 minutes with Matlab by using a parallel loop parfor 
on a HP desktop computer with Intel CPU i7-7700 3.60 Ghz and 32 Gbyte memory. 
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From the generated outcomes on each node, the asset prices given in Equations (2) to 

(5) can be rewritten in a nodal form. Recall that any node ! in the scenario tree (except for the 

root node !!) branches off from a parent node !* at the previous time stage. The asset price in 

Equation (2), for example, is transformed into the nodal form simply by replacing # with ! and 

# − Δ# with !* as follows: 

 ?2,( = ?2,(" ⋅ expDR3,4F for ! ∈ " ∖ n! and I ∈ {J, K, L}, 
 

where ?2,(# = 1. Other pricing formulas are transformed in a similar way. 
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Appendix B 

Table B.1. Average Stochastic Optimal Strategies (%) and Total Secured Retirement Income (£1,000 p.a.)  

with Various Risk Aversion (γ), Time Preference (ρ), and Bequest Motive (κ) Parameters 

Age 
γ = 	1.0, ρ = 0.02, κ = 2.0  γ = 	1.0, ρ = 0.02, κ = 10.0 

Avg. Stochastic Optimal Strategy  Total Secured Retirement Income  Avg. Stochastic Optimal Strategy  Total Secured Retirement Income 
Cash Bond Equity DA  Avg. 5th 50th 95th  Cash Bond Equity DA  Avg. 5th 50th 95th 

40 0.00 75.60 24.40 0.00  0.00 0.00 0.00 0.00  0.00 75.79 24.21 0.00  0.00 0.00 0.00 0.00 
45 9.94 55.88 31.80 2.38  2.13 0.00 0.00 25.38  9.89 57.83 31.85 0.42  0.35 0.00 0.00 0.02 
50 12.46 44.17 40.44 2.93  2.61 0.00 0.00 18.30  12.78 45.70 41.02 0.50  0.35 0.00 0.00 0.01 
55 14.00 48.58 33.60 3.81  3.26 0.00 0.00 23.32  14.59 50.79 34.16 0.46  0.36 0.00 0.00 0.03 
60 10.80 33.74 32.79 22.68  17.94 0.00 0.01 67.02  16.21 43.89 35.41 4.49  3.52 0.00 0.02 23.18 
65 0.00 0.00 0.00 100.00   84.48 42.07 74.31 155.72   0.00 0.00 0.00 100.00   84.19 41.23 73.54 158.47 

Age 
γ = 	3.0, ρ = 0.02, κ = 2.0  γ = 	3.0, ρ = 0.02, κ = 10.0 

Avg. Stochastic Optimal Strategy  Total Secured Retirement Income  Avg. Stochastic Optimal Strategy  Total Secured Retirement Income 
Cash Bond Equity DA  Avg. 5th 50th 95th  Cash Bond Equity DA  Avg. 5th 50th 95th 

40 0.00 82.06 17.94 0.00  0.00 0.00 0.00 0.00  15.27 67.74 16.99 0.00  0.00 0.00 0.00 0.00 
45 10.37 53.41 24.42 11.80  7.58 0.00 0.00 48.03  14.38 60.76 24.86 0.00  0.00 0.00 0.00 0.00 
50 16.94 34.45 24.94 23.67  16.19 0.00 15.55 55.67  20.57 52.95 26.48 0.00  0.00 0.00 0.00 0.00 
55 11.69 33.46 19.67 35.18  24.81 0.00 24.43 59.25  18.66 58.91 22.43 0.00  0.00 0.00 0.00 0.00 
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60 8.28 22.24 16.04 53.44  40.33 2.21 40.45 76.35  23.11 48.50 20.73 7.66  5.69 0.00 1.54 18.06 
65 0.00 0.00 0.00 100.00  78.95 50.89 71.35 130.96  0.00 0.00 0.00 100.00  78.81 47.15 71.44 134.22 

Age 
γ = 	5.0, ρ = 0.02, κ = 2.0  γ = 	5.0, ρ = 0.02, κ = 10.0 

Avg. Stochastic Optimal Strategy  Total Secured Retirement Income  Avg. Stochastic Optimal Strategy  Total Secured Retirement Income 
Cash Bond Equity DA  Avg. 5th 50th 95th  Cash Bond Equity DA  Avg. 5th 50th 95th 

40 0.00 83.09 12.93 3.98  1.69 1.69 1.69 1.69  58.82 32.34 8.84 0.00  0.00 0.00 0.00 0.00 
45 10.97 48.81 16.85 23.37  13.06 1.69 10.08 41.10  34.97 47.45 17.57 0.00  0.00 0.00 0.00 0.00 
50 15.56 28.55 15.79 40.10  24.70 2.06 24.10 48.65  27.50 54.75 17.75 0.00  0.00 0.00 0.00 0.00 
55 9.29 26.40 12.87 51.44  34.10 10.79 34.60 53.32  21.57 63.51 14.92 0.00  0.00 0.00 0.00 0.00 
60 6.96 17.66 10.57 64.81  46.47 21.08 46.17 77.22  26.14 49.62 13.84 10.40  7.15 0.00 7.53 15.77 
65 0.00 0.00 0.00 100.00  74.20 53.14 68.60 114.30  0.00 0.00 0.00 100.00  72.19 46.17 67.83 111.82 

Age 
γ = 	8.0, ρ = 0.02, κ = 2.0  γ = 	8.0, ρ = 0.02, κ = 10.0 

Avg. Stochastic Optimal Strategy  Total Secured Retirement Income  Avg. Stochastic Optimal Strategy  Total Secured Retirement Income 
Cash Bond Equity DA  Avg. 5th 50th 95th  Cash Bond Equity DA  Avg. 5th 50th 95th 

40 4.28 73.39 6.59 15.74  6.69 6.69 6.69 6.69  77.67 16.84 5.49 0.00  0.00 0.00 0.00 0.00 
45 11.75 48.45 8.41 31.40  16.01 6.69 17.07 27.19  66.39 23.89 9.72 0.00  0.00 0.00 0.00 0.00 
50 13.40 28.03 9.95 48.62  27.95 14.13 29.17 42.29  54.13 35.67 10.20 0.00  0.00 0.00 0.00 0.00 
55 8.62 24.15 8.51 58.73  36.78 21.07 36.79 52.94  29.04 60.93 10.01 0.02  0.01 0.00 0.00 0.00 
60 6.80 15.66 7.25 70.29  47.52 30.21 46.98 67.37  31.49 48.69 9.17 10.65  6.42 0.00 6.40 14.28 
65 0.00 0.00 0.00 100.00  69.33 53.94 65.98 94.95  0.00 0.00 0.00 100.00  62.10 41.93 59.30 91.41 

Age 
γ = 	1.0, ρ = 0.04, κ = 2.0  γ = 	1.0, ρ = 0.04, κ = 10.0 

Avg. Stochastic Optimal Strategy  Total Secured Retirement Income  Avg. Stochastic Optimal Strategy  Total Secured Retirement Income 
Cash Bond Equity DA  Avg. 5th 50th 95th  Cash Bond Equity DA  Avg. 5th 50th 95th 

40 0.00 75.61 24.39 0.00  0.00 0.00 0.00 0.00  0.00 75.79 24.21 0.00  0.00 0.00 0.00 0.00 
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45 9.94 56.20 31.80 2.06  1.83 0.00 0.00 20.64  9.92 58.19 31.83 0.06  0.05 0.00 0.00 0.00 
50 12.50 44.57 40.55 2.38  2.05 0.00 0.00 12.66  12.95 45.93 41.04 0.08  0.05 0.00 0.00 0.00 
55 14.18 49.25 33.69 2.88  2.44 0.00 0.00 17.48  14.71 51.01 34.21 0.08  0.05 0.00 0.00 0.00 
60 11.26 34.82 33.16 20.77  16.37 0.00 0.01 63.67  16.95 44.90 35.60 2.55  2.01 0.00 0.01 16.00 
65 0.00 0.00 0.00 100.00  84.47 42.05 74.30 156.19  0.00 0.00 0.00 100.00  84.12 41.15 73.45 158.84 

Age 
γ = 	3.0, ρ = 0.04, κ = 2.0  γ = 	3.0, ρ = 0.04, κ = 10.0 

Avg. Stochastic Optimal Strategy  Total Secured Retirement Income  Avg. Stochastic Optimal Strategy  Total Secured Retirement Income 
Cash Bond Equity DA  Avg. 5th 50th 95th  Cash Bond Equity DA  Avg. 5th 50th 95th 

40 0.00 82.05 17.95 0.00  0.00 0.00 0.00 0.00  21.15 62.33 16.52 0.00  0.00 0.00 0.00 0.00 
45 10.41 54.21 24.42 10.95  7.05 0.00 0.00 44.81  15.73 59.63 24.64 0.00  0.00 0.00 0.00 0.00 
50 17.09 35.50 25.12 22.29  15.23 0.00 14.44 52.03  20.84 52.62 26.54 0.00  0.00 0.00 0.00 0.00 
55 12.00 34.42 19.88 33.70  23.74 0.00 22.72 55.27  18.77 58.74 22.49 0.00  0.00 0.00 0.00 0.00 
60 8.58 22.83 16.26 52.33  39.49 2.20 39.80 74.65  23.84 49.49 20.83 5.84  4.32 0.00 0.01 14.77 
65 0.00 0.00 0.00 100.00   79.02 50.78 71.39 131.60   0.00 0.00 0.00 100.00   78.62 46.99 71.36 133.90 

Age 
γ = 	5.0, ρ = 0.04, κ = 2.0  γ = 	5.0, ρ = 0.04, κ = 10.0 

Avg. Stochastic Optimal Strategy  Total Secured Retirement Income  Avg. Stochastic Optimal Strategy  Total Secured Retirement Income 
Cash Bond Equity DA  Avg. 5th 50th 95th  Cash Bond Equity DA  Avg. 5th 50th 95th 

40 0.00 85.04 12.95 2.01  0.86 0.86 0.86 0.86  60.42 30.76 8.81 0.00  0.00 0.00 0.00 0.00 
45 11.62 50.94 16.69 20.76  11.78 0.86 9.00 38.52  38.08 44.66 17.26 0.00  0.00 0.00 0.00 0.00 
50 16.10 29.91 15.86 38.14  23.55 1.59 22.77 46.25  29.54 52.63 17.83 0.00  0.00 0.00 0.00 0.00 
55 9.64 27.24 13.04 50.08  33.19 10.25 33.86 52.54  22.04 62.91 15.05 0.00  0.00 0.00 0.00 0.00 
60 7.19 18.10 10.68 64.03  45.94 20.76 45.56 76.80  26.94 50.50 13.90 8.66  5.90 0.00 5.95 13.56 
65 0.00 0.00 0.00 100.00  74.28 52.97 68.67 114.84  0.00 0.00 0.00 100.00  71.93 45.62 67.55 111.84 

Age γ = 	8.0, ρ = 0.04, κ = 2.0  γ = 	8.0, ρ = 0.04, κ = 10.0 
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Avg. Stochastic Optimal Strategy  Total Secured Retirement Income  Avg. Stochastic Optimal Strategy  Total Secured Retirement Income 
Cash Bond Equity DA  Avg. 5th 50th 95th  Cash Bond Equity DA  Avg. 5th 50th 95th 

40 5.07 77.29 6.04 11.60  4.93 4.93 4.93 4.93  77.93 16.56 5.51 0.00  0.00 0.00 0.00 0.00 
45 12.62 51.17 7.89 28.33  14.58 4.93 15.75 25.08  67.06 23.20 9.74 0.00  0.00 0.00 0.00 0.00 
50 13.92 29.08 9.96 47.04  27.02 12.97 28.45 41.37  57.08 32.69 10.22 0.01  0.01 0.00 0.00 0.00 
55 8.91 24.81 8.55 57.73  36.11 19.62 36.26 52.23  31.31 58.65 10.02 0.02  0.02 0.00 0.00 0.01 
60 6.96 15.94 7.28 69.82  47.17 29.87 46.77 66.67  32.25 49.22 9.20 9.33  5.56 0.00 5.41 13.08 
65 0.00 0.00 0.00 100.00  69.29 53.69 65.98 94.69  0.00 0.00 0.00 100.00  61.78 41.62 58.94 91.26 

Note: Upfront and selling fees are 0.0% for the cash fund and 0.5% for the bond and equity funds. Expense loadings on annuities are 3.0%. Management fees are ignored. 

Source: Author’s Calculation 
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Table B.2. Monte Carlo Simulation Results (£1,000 p.a.) with different risk aversion and fee structures 

(γ, Feea) Strategy Mean StdDev Mean 
/StdDev 5th Pctl. 50th 

Pctl. 
95th 
Pctl. CEb 

(1, I) New Glide Path (DA)  55.2354 14.3625 3.8458 36.5790 52.8877 81.8111 53.5514 
 New Glide Path (IA) 54.0105 14.9657 3.6090 34.7661 51.4905 81.7533 52.1548 
 Glide Path (Equity-to-Bond) 56.6303 28.8644 1.9619 24.8626 49.9473 110.7636 50.8668 
 Glide Path (Equity-to-Cash) 50.9162 25.6795 1.9828 22.5801 45.0195 98.9467 45.8338 
(3, I) New Glide Path (DA)  56.1819 9.9666 5.6370 42.2370 54.9670 74.2333 53.7750 
 New Glide Path (IA) 52.8627 10.5864 4.9934 38.3043 51.4654 72.1647 50.0278 
 Glide Path (Equity-to-Bond) 56.6303 28.8644 1.9619 24.8626 49.9473 110.7636 41.9321 
 Glide Path (Equity-to-Cash) 50.9162 25.6795 1.9828 22.5801 45.0195 98.9467 37.9330 
(5, I) New Glide Path (DA)  57.1334 7.9538 7.1831 45.5161 56.3952 71.2707 54.5818 
 New Glide Path (IA) 52.0478 8.2361 6.3195 40.1720 51.2051 66.8108 49.0862 
 Glide Path (Equity-to-Bond) 56.6303 28.8644 1.9619 24.8626 49.9473 110.7636 35.4050 
 Glide Path (Equity-to-Cash) 50.9162 25.6795 1.9828 22.5801 45.0195 98.9467 32.1310 
(8, I) New Glide Path (DA)  58.1401 6.0280 9.6450 49.2704 57.6070 68.8223 55.8784 
 New Glide Path (IA) 51.3565 6.8259 7.5238 41.1714 50.8061 63.4013 48.0088 
 Glide Path (Equity-to-Bond) 56.6303 28.8644 1.9619 24.8626 49.9473 110.7636 28.4282 
 Glide Path (Equity-to-Cash) 50.9162 25.6795 1.9828 22.5801 45.0195 98.9467 25.8880 
(3, II) New Glide Path (DA)  55.8462 9.7047 5.7545 42.2138 54.6927 73.4043 53.5415 
 New Glide Path (IA) 52.2352 10.2227 5.1097 38.1173 50.9105 70.8437 49.5485 
 Glide Path (Equity-to-Bond) 55.9526 28.4682 1.9654 24.5905 49.3711 109.3376 41.4596 
 Glide Path (Equity-to-Cash) 50.5617 25.4659 1.9855 22.4375 44.7213 98.1971 37.6860 
(3, III) New Glide Path (DA)  55.1213 9.7612 5.6470 41.4591 53.9340 72.7986 52.7673 
 New Glide Path (IA) 51.8558 10.3848 4.9934 37.5747 50.4851 70.7902 49.0749 
 Glide Path (Equity-to-Bond) 55.5516 28.3146 1.9619 24.3890 48.9959 108.6538 41.1334 
 Glide Path (Equity-to-Cash) 49.9463 25.1903 1.9828 22.1500 44.1620 97.0620 37.2105 
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(3, IV) New Glide Path (DA)  54.7926 9.5040 5.7652 41.4375 53.6653 71.9870 52.5389 
 New Glide Path (IA) 51.2402 10.0280 5.1097 37.3913 49.9408 69.4943 48.6047 
 Glide Path (Equity-to-Bond) 54.8869 27.9260 1.9654 24.1221 48.4307 107.2550 40.6699 
 Glide Path (Equity-to-Cash) 49.5986 24.9809 1.9855 22.0101 43.8695 96.3267 36.9682 

 

a Fee structure labelling refers to Table 6. 
b Certainty equivalent values to the expected utility of total secured retirement income at retirement is achieved by solving "!"#$%"#&, (#,%)*) = ,-; ρ is ignored. 

Note: For the upper panel, time preference, and bequest coefficients are ρ = 0.0 and κ = 0.0 respectively. Upfront and selling fees are 0.0% for the cash fund and 0.5% for the 
bond and equity funds. Expense loadings on annuities are 3.0%. Management fees are ignored. For the lower panel, constant risk aversion, time preference, and bequest 
coefficients are γ = 3.0, ρ = 0.0 and κ = 0.0 respectively. 

Source: Author’s calculations. 

 


	JoPEFSubmission_CoverPage (1).pdf
	JoPEF Resubmission Manuscript (1).pdf
	JoPEF Resubmission Appendix (1).pdf

