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Abstract

Temporal continual learning (TCL) is introduced in this thesis as an extension of
continual learning (CL). While traditional CL has been applied to sequential tasks,
extending CL to TCL aims to allow machines to accumulate speci ¢ knowledge of
temporal states, to addressoncept drift (CD) problems. This approach is shown to
hold considerable bene ts in domains where non-stationary time-series are used for
decision-making, particularly in nance.

A TCL framework called continual learning augmentation(CLA) is introduced,
to drive long-term decision making in complex, multivariate, temporal problems.
Moreover, CLA uses an external memory structure to store learner parameters from
particular past temporal states for recall in the future. The contributions of this work
are fourfold: First, a temporal, state-based, external memory structure is developed.
Second, this is used to memory augment well-understood base-learners, such as LSTM,
feed-forward neural networks (FFNN) and linear regression. Third, a remember-gate,
based on residual-change, learns in an open-world fashion to de ne di erent states
for which learner-parameters are stored along with a contextual reference of the state.
Fourthly, a memory recall-gate is developed, based on various time-series similarity
approaches, which can compare the current input space with the contextual references
stored in memory, recalling the most appropriate learner parameters for use in the
current period.

In testing, CLA is found to improve the performance of LSTM, FFNN, and linear
regression learners applied to a complex, real-world nance task: stock selection in
international and emerging equities investing. Several di erent similarity approaches
are tested in CLA's remember-gate, with dynamic time warping (DTW) outperforming
simple Euclidean distance (ED), while auto-encoder (AE) distance is found to both
mitigate the resource overheads of DTW and provide better performance. A hybrid
approach is also introducedwarp-AE, which performs well. In addition, a visualisation
is introduced to allow CLA to be interpreted by domain experts in terms of which
memory did what and when. A complex application is used to test TCL and a ve-
point statistical testing framework is introduced. This thesis elucidates the research
of the last ve years regarding TCL.

Keywords : Continual learning, time-series, memory, neural network.
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Chapter 1

Introduction

Temporal continual learning (TCL) is introduced in this thesis to address two
important problems in machine learning (ML) research: theontinual learning (CL)
[186] problem, where knowledge of tasks is retained to prevent forgetting in the learning
process, ancconcept drift (CD) [235], where adapting to temporally changing states
is needed for decision-making. In addition, TCL is an extension of traditional CL
(also known as lifelong-ML (LML) [219]), for temporally changing states in temporal
datasets with a large cross-sectional component. This work contributes to the body
of knowledge addressing CL combined witboncept drift adaptation (CDA), which is
applied to time series and cross-sectional data in a nance context.

This thesis introduces, develops and tests a TCL frameworkontinual learning
augmentation(CLA), which uses an external memory structure to store parameters of
learners from past temporal states, for recall and application in the future when a state
appears to be reoccurring. Moreover, CLA makes four key contributions to extending
traditional-CL to TCL. First, a temporal, state-based, external memory structure is
developed. Second, this is used to augment well-understood base learners using TCL,
including LSTM, feed-forward neural networks (FFNN) and OLS regression; thirdly,

a remember-gate based on residual-change allows learner parameters to be stored
with a contextual reference relating to the input space where the learner may be best
applied; fourthly, a recall-gate based on time series similarity compares the current
input space with memory, contextual references to recall and balance memories for
use in the current period.

The TCL problem is addressed by CLA using well-understood elements of ML and
data-mining research, which are re-purposed, combined, extended, and applied and
then tested on complex nancial datasets. A multi-point performance benchmarking
framework is introduced to evaluate a TCL approach applied to a nancial man-
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agement task. Additionally, memory addressing that allows potential interpretation
through visualisation is also introduced.

Some of the sharpest criticisms of CL research have noted that it is essential "to
embrace more complex datasets” [62], which this work directly addresses, making it
philosophically di erent from traditional CL research. Much CL research tends to use
overly simpli ed and highly stylised datasets, with little consideration of real-world
complexities [166]. This has tended to be limiting for CL research, hobbling many
conclusions, introducing many unrealistic assumptions and hampering (and generally
preventing) real-world applications (see [166, 144]). In contrast, this research aims to
gain deeper insight by conducting more in-depth testing and analysis on more complex
datasets in a more complex real-world task. As a result, this research provides highly
di erentiated insight, contributing to addressing the TCL problem in the real-world.

This introduction is laid out as follows. Section 1.1 introduces and motivates
TCL, Section 1.2 lists the hypotheses and research questions addressed in this thesis,
providing the critical path taken to achieve a real-world TCL approach: CLA. Section
1.3 describes the contributions made in this thesis. Section 1.4 details the author's
related publications and Section 1.5 describes the structure of this thesis.

1.1 Motivations

In this section the motivations for TCL are described. Section 1.1.1 describes the
motivation for traditional CL, while Section 1.1.2 addresses the bene ts of extending
CL to temporal datasets in nance. Section 1.1.3 expresses the motivations for TCL's
as a selective marriage of ML, CL, and CDA, which is elaborated on in Section 1.1.4,
as TCL is further motivated by the shortcomings of these approaches in the context
of the TCL problem.

1.1.1 Motivations for Traditional Continual Learning

The broad motivation for CL is that achieving arti cial general intelligence (AGI)
requires some form of open-world CL process. Therefore, achieving AGI would be
hampered, perhaps impossible, without an answer to CL [209]. By accumulating
knowledge of di erent tasks, CL aims to avoidcatastrophic forgetting (CF) while
improving learning outcomes. The concept of a task in CL is analogous to the concept
of a state in time series data (more so when the cross-sectional component at each
time-point is greater, see Section 2.3).

Tasks are de ned as batches of generally isolated data, associated with discrete
classes, groups of classes, domains, or areas of a problem space. Intra-task data

12



are generally considered to be independently and identically and distributedi(d.)
whereas inter-task data are not. Time series states are de ned as a concept similar to
tasks, but are assumed to be associated with the changing distribution of continuous
data, which tends to come with a high degree of uncertainty in the number, de nition,
and separation of states.

The problem of time-evolving datasets has been addressed in tdaptive learning
literature, speci cally by CDA. CDA approaches tend to focus on adaptation to
changing states of a stream of data to improve forecasting accuracy. However,
while states in CDA appear somewhat analogous to tasks in CL, the di erences are
signi cant and have implications for interpretability, state-based memory addressing,
and CF. CDA memory structures tend to be minimalist, based on ensembles and
instance-based learners with a typical onus on stream processing speed and resource
parsimony. Additionally, CDA tends to focus on classi cation rather than regression.
The onus of CDA is on fast adaptation to streaming data more than committing
machine resources to remembering representations of distinct past events, supporting
interpretable outcomes, or addressing state-oriented CF.

While CDA has important ideas to contribute to TCL, the focus of CL on
longer term knowledge is more relevant to TCL. The motivating themes for TCL are
discussed.

1.1.2 Extending CL to Temporal Learning in Finance

Time series are omnipresent in modern human activity, and drawing inference from
data with a time dimension is a vital area of research. Time series exist in many
domains, including biology [14], geology [90], space exploration [96, 239], robotics
[161], and human motion [222] and are ubiquitous in nance [69, 72, 149]. Research
involving time series has involved di erent disciplines, including computer science,
statistics and econometrics. Arguably, time series analysis has previously been limited
by its formative research in the 1970s (principally [19]), but more recently, the testing
of potentially far more powerful approaches has indicated that deeper inference and
stronger modelling outcomes are possible [63]. This provides a strong motivation to
investigate TCL, which is likely to be a sequential problem in the real world.

It has long been appreciated that an approach that has a very large number of
sequential computational steps coupled with an e ective learning algorithm would
be powerful [212]. In fact the expressive power of a ML model is highly correlated
with the number of sequential computational steps that it is possible to for it to learn
[244]. However, very few if any CL approaches have been applied that attempt to
continually learn repeating patterns and states in multivariate time series. This is
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the application of the CL approaches researched in this study.

The use of time series has been of great importance in nance, for example, in
capital allocation. Sequential learning of the information also has many bene ts,
with many learners being exposed to CF through down-weighting older data-points
or using sliding windows. Therefore, successfully applying a CL approach to nance
might bring several tangible bene ts. First, the nancial data-set is large and complex
and provides a challenging proving ground for the framework introduced in this study,
which might be applied to other areas of human endeavour. Secondly, the e cient
operation of markets is critical for the meritocratic allocation of capital in an economy
and therefore for ensuring the basis of social mobility that will provide security for our
children and grandchildren. The approaches researched in this study may facilitate a
more e cient method of allocating capital.

1.1.3 Motivation for TCL as a Selective Marriage of CDA
and CL

The key motivations for this work are threefold: rst, provide open-world learning

in a real-world, temporal context where states can be remembered and recalled to
improve outcomes; second, to augment well-known and understood base learners with
these bene ts; and third, the use of CL memory should be interpretable to determine
which memory did what and when. These motivations appear common to traditional
ML, CL, and selected CDA approaches; however, TCL contrasts with each of these
three and the marriage of these approaches in TCL must be highly selective.

1. Machine learning: closed-world learningML has been shown to be a powerful
tool but generally focuses on closed-world learning, where states (tasks and/or
classes) are pre-de ned in the training data. Prior knowledge of states tends
to be a limiting assumption, especially in time-evolving datasets, a limitation
associated with CF (discussed later in this thesis).

2. CL: task de nition, task dependency and classi cation CL seeks to address
CF by providing the learning process with old and new information. In many
cases, CL memory structures are used to do this, including parameter shar-
ing, but generally with the limiting assumptions that tasks are well de ned,
have assumed dependencies, are labelled, and are of a limited and, perhaps,
known number. These assumptions signi cantly limit the application of CL
to real-world temporal data, which tend to have ill-de ned states and varying
dependencies and are rarely labelled. Moreover, almost all CL approaches are
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classi cation based rather than regression based, which deeply limits time series
analysis.

3. CDA: minimalist memory: CDA approaches have been developed to cope with
unpredictable, changing states in temporal data. However, they are usually
classi cation based and tend to focus on streams of data. This generally
requires expediencies, such as instance-based base learners and minimalist,
generally uninterpretable knowledge bases (KBs; introduced in Chapter 2).
These limitations are not appropriate for addressing CF using state-oriented,
interpretable memory augmentation. In addition, CL approaches have made
far greater advances into memory augmentation than CDA approaches, many
attempting to capture the interplay between bothepisodic memory(speci c
experience) andsemantic memory(general structured knowledge). In contrast,
CDA can generally be described as having a minimalist form of semantic
memory.

While each approach has important elements that are needed for e ective TCL,
the limitations of each present major impediments. If these could be mitigated and
the strengths of each approach combined, it would be highly advantageous: (1),
harness the power of ML and address (2) the CF problem in temporally changing
datasets, while coping with (3)concept-drift. However, the many draw-backs of the
approaches that address these problems, in themselves, motivate the development of
a TCL approach. These are described next.

1.1.4 Limitations of CL Approaches as a Motivator for TCL
Limiting Assumptions

While many CL approaches have been developed, very few have been practically
applied to complex real-world problems. The reason is that, with many outstanding
guestions in CL, studies have tended to use over-simpli ed datasets to ease experi-
mentation. This is viewed as so serious that some critics of CL research have noted
that the stylised nature of test datasets may have resulted in illusory progress towards
CL [62].

In summary, CL approaches are typically limited by one or more assumptions
that tend to con ict with the need for a real-world capability: [144, 62, 166]:

1. Tasks are easily de ned (and mostly labelled),

2. No task overlap is assumed,
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3. Then number of tasks is known,
4. Task dependency is assumed,

5. Performance measures tend to be reported as an average over tasks.

These oversimplifying expediencies may have in uenced CL architectures, limited
experimentation and conclusions, and generally prevented real-world application.
Oversimpli cations associated with the relationship between tasks and time appear
to be the most limiting for applications to datasets with temporally changing states.

Task de nition and the number of tasks to learn are assumed by many CL
approaches. Popular testing datasets are both labelled and stylised, such as MNIST
[134], CIFAR-10 [128] (with or without perturbation) and others. In the real-world,
tasks may not be so conveniently labelled, may overlap, may be di cult to de ne
and separate, and their number may not be known [62]. These descriptions are
particularly notable for states in nancial time series.

Simplifying assumptions relating to task dependencies and the predictability of
change is likely to have important limitations on CL in the real-world, and in a
time-varying context. For instance, real-world tasks (or states) encountered over time,
such as daily versus weekly weather conditions, tend to have inter-dependencies that
can vary greatly, making many parameter-sharing CL approaches, for which task
dependence tends to be a condition, questionable for application in real-world tasks.

Estimating the performance of CL approaches also tends to be problematic, where
many CL researchers use an arithmetic average performance metric over a number
of tasks, which limits the value of conclusions that can be drawn [144]. In nance,
economics, and in many other real-world domains, performance is inherently geometric
not arithmetic. For example, should a house price fall by -50% and rise by +50% the
resulting change is not 0%, rather it is -25%. Therefore, something as simple as a
awed performance estimation can be expected to produce a deleterious impact on
the sequential accuracy of a CL approach and perhaps di erent assumptions and even
architectures. The philosophy of the testing in this thesis is di erent with empirical
testing being conducted on a smaller selection of more complex real-world datasets
on which deeper analysis is also conducted.

Complexity

Generalisation of CL approaches is also a concern given that CL probably requires a
higher level of complexity when compared to more traditional ML approaches. The

risk is exempli ed by one of the most well-known memory augmented approaches,
di erential neural computers (DNC) [87], which has 891,000 parameters [66]. Under
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the bounds of classic statistical learning theory, the training instances to support a

parameterisation of this complexity would be in excess of those available in many
domains. However, complexity is not a straightforward consideration. Considerations
such asVC dimension [225] have proved controversial in deep learning research and
are likely to be inadequate [15, 83], but this does not mean that ignoring the principle

of parsimony would be wise.

Interpretability

While a successful CL approach focused on time series may yield great potential
bene ts across many disparate and important domains, the interpretability of how
CL knowledge is accumulated and used is also an important challenge. While the
importance of forming knowledge of important past events is self-evident, it is also as
important to be able to explain how this knowledge can be fairly, safely, and legally
remembered, recalled, and used. A CL approach should ideally be able to express
how, when and which memory is a ected or used. This study introduces an approach
to make CL memory usage more interpretable.

1.1.5 Limitations of CDA Approaches as a Motivator for
TCL

Cross-sectional data

Most streaming approaches use the passage of time to construct an ensemble of diverse,
generally instance-based learners from a narrow stream of data. However, temporal
data with a large cross-sectional component presents the opportunity to examine
discrete cross-sectional and temporal distributions. Most streaming approaches are
not intended for application to these distributions. This recasts the CD problem,
where a state is observed through CD in a data stream, as the temporal change in
discrete cross-sectional states. In other words it is much more like a CL task but with

a temporal dimension. The literature review did not identify any streaming approach
that makes a clear distinction between cross-sectional and streaming data.

Limited Memory

Clear commonalities exist between TCL and the streaming problem; however, stream-
ing approaches are potentially more resource-challenged given the onus on the speed
of adaptation to large volumes of streaming data, when compared to the typical
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datasets used in CL approaches. This generally necessitates expedient memory usage
for streaming approaches and leads to generally minimalist memory concepts.

Catastrophic Forgetting

Catastrophic forgetting (CF) is still an open problem for CL and streaming approaches
alike; however, as streaming approaches tend to have less well-developed memory
structures, CF is likely to be a bigger impediment for them. Streaming approaches
attempt to respond to changes in streaming data with an onus on speed of adaptation
and forecasting and a general aversion to resource hungry memory approaches. This
makes the probability of CF greater in these types of approaches and therefore far
less interesting for cross-sectional state based TCL. Overall, no ML approach found
in the literature review directly addresses long-versus-short term dependencies in
time series while considering CD. This indicates that CF is still very much an open
question for CDA approaches.

1.2 Hypotheses and Research Questions

The hypotheses are the following:

A real-world problem based on a state-varying time series with a large
cross-sectional component can be addressed in a sequential, open-world
fashion that addresses CF.

This can be addressed by remembering models of temporal states and
recalling these models in future periods when the input space is similar
to an associated past state.

Several related research questions are also posited:

1. Open-world TCL approach : Can time series data with a large cross-sectional
component, commonly found in nance and other domains, be separated into
states sequentially?

2. Remembering using residual change-points: Can abruptly changing states be
identi ed in noisy, multivariate time series with a large cross-sectional component
used as remember cues in a state based memory structure?

3. Memory recall using similarity: Can similarity measures be used to identify
repeating states in noisy time series and then be used to drive memory recall
cues?
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4.

Temporal, state based memory addressing: Can a memory structure be popu-
lated with state-based memory concepts to allow potential interpretability of
which state-based memory, from which time period did what and when?

1.3 Contributions

1.3.1 Major Contributions

1.

Time series memory structure: A framework is researched to build, maintain
and use a state based and addressed memory structure. This is di erent from
traditional CL, in that memory is applied to time series states rather than tasks.
It is also an extension of CD, as TCL memories are related to states and can
be stored inde nitely.

. Simple learner memory augmentation: Recurrent, FFNN and OLS regression

learners can be memory augmented using a generalised, deep architecture.

Recall-gate : Data-mining approaches for time series similarity are repurposed
for use in a TCL memory gate, an approach not known to be adopted in the
CL literature. This is used to drive pattern recognition in time series input
data to propose memories to recall.

Remember-gate based on residual change: The useeadidual changeis well
known in the CDA literature but is not known to be used for memory gating in
the explicit, state-based external memory structures that are researched in this
study.

1.3.2 Minor Contributions

1.

Open-world learning in the real-world : Real-world applied TCL approaches are
reported in this thesis which are tested on real-world temporal data problems
and are e ective in tested contexts. A review of the literature indicates that this

is one of only a few time series applied, open-world CL approaches. (While many
CDA approaches have been tested in open-world time series data, approaches
with long-term memory structures that are not associated with an adaptive
ensemble are not known).

Potentially Interpretable memory: It is possible to extract memory remember
and recall information from the memory structure introduced in this work. A
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visualisation to explain which memory, did what and when is developed to allow
interpretation by domain experts.
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1.5 Thesis Layout

The remainder of this thesis is organized as follows.

Chapter 2 reviews literature relating to CL, time series learners, and CDA. Chapter
3 addresses literature relevant to developing TCL memory addressing concepts: time
series similarity and change-points.

Chapter 4 introduces TCL memory-gating, bridging the elds of ML, CL, and
CDA to develop TCL remember and recall gates.

Chapter 5 introduces the CLA approach, describing how similarity driven recall
and change driven remember gates are integrated into a TCL framework.

Chapter 6 reports empirical testing of CLA on complex nancial management
tasks.

Finally, Chapter 7 summarises the qualitative and quantitative conclusions of this
work and suggests directions for future research.
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Chapter 2

Literature Review: Continual
Learning and Time series

This chapter discusses literature relating to CF, CL, and CDA as it relates to TCL.

Section 2.1 covers CF. Section 2.2 discusses CL, focusing on memory augmentation.
Section 2.3 discusses time series learning paradigms, including adaptive learning (AL)
and CDA. Finally, Section 2.4 bridges the themes of CL and CD to describe the TCL
problem.

2.1 Catastrophic Forgetting

Catastrophic forgetting (CF) a ects learners that are applied to sequentially evolving
datasets. Furthermore, CF describes where past learned information is lost after
attempting to learn newer information and has been found to have a strongly delete-
rious e ect on arti cial neural networks (ANNSs) [67, 151]. This is a problem, because
ANNs have so far provided the most successful applications of ML and arti cial
intelligence (Al) technology. Research into CL has addressed the CF problem.

While CF remains an open question, many techniques have been developed to
address it including gated neural networks [95], explicit memory structures [233],
prototypical addressing [211], weight adaptation [93, 213], task rehearsal [210], concept-
drift based [81], generative memory orientated approaches [165] and encoder based
lifelong learning [220] to name a few. This varied research area has tended to
come under the unifying heading, CL, which has been described as having two
main subdivisions: regularisation and memory augmentation. This study focuses on
multi-column memory architectures, which are included in the above subdivisions.
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2.2 Continual Learning

Following an increase in interest in CL, particularly over the past ve years, a number
of priorities have emerged, clearly distinguishing CL from other forms of ML, which
traditionally have not been designed to cope with sequentially changing problems:

1. Open-world learning: learning new states (or tasks) in a dynamic environment,

2. Knowledge remembering: remembering a representation of the past state that
can be used for knowledge transfer and/or strengthening future outcomes,

3. Knowledge recall: recognising the re-occurrence of a task (or state), recalling
knowledge associated with similar tasks, and applying this knowledge, and,

4. Memory management: consolidating memories and forgetting memories where
appropriate.

More recently CL has also started to encompass the following:

5. Forward knowledge transfer: using knowledge to help future learning,

6. Backward knowledge transfer: using new knowledge to enhance past knowledge,
7. Interpretability: interpretable learning and use of knowledge.

As researchers have addressed these initial challenges of CL, other problems have
emerged, such as the overhead of external memory structures [176], problems with
weight saturation [123] and transfer learning [144, 64], and the drawbacks of outright
complexity [245]. While most CL approaches aim to learn sequentially, only a fraction
of CL approaches have been focused on time series [111, 86, 140, 65]. How e ective
these approaches would be in dealing with long term CL of noisy, non-stationary time
series is unclear, particularly those commonly found in nance. However, perhaps
the most challenging problem for CL is stability-plasticity [91].

The stability-plasticity dilemma describes whether a system should tend towards
stable, more xed parameters over time or tend towards plasticity with more easily
adapted parameters. A system with too much stability becomes unable to adapt to
a changing distribution and therefore is exposed to CF, whereas a system that is
too adaptable to new information could corrupt older knowledge. Stability-plasticity
is a problem su ered by both arti cial and human neural systems and is an open
question, with much research focused on this area (eg [123]).
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Task dependency assumptions have become perhaps the most important driver of
design choice for CL approaches with instance-based memory chosen for expediency in
streaming applications [70] and parameter-sharing-based memory in tasks with higher
task dependencies [123]. If tasks are likely to be highly dependent or if tasks are easy
to tell apart, parameter-sharing or a fully connected (FC) architecture may make
sense because it may allow transfer learning, consolidation, and attention features.
This describes many pet applications used by CL researchers (for example [191, 221]).
However, if tasks are more independent or if they are more di cult to tell apart, the
bene ts of parameter-sharing and traditional FC architecture start to make less sense.
This situation tends to describe noisy time series applications, and as we observe, an
architecture that allows parameter ring-fencing (as opposed to parameter-sharing) is
likely to be more stable in this environment.

CL Families

An array of CL categories have emerged in recent years as researchers have sought to
di erentiate and classify their own work. First, a commonly used classi cation for
CL approaches is as follows [47]:

1. Regularisation (see Section 2.2 below),
2. Replay based (see Section 2.2.1 below),
3. Parameter isolation (see Section 2.2.2 below).

Parameter isolation describes the work in this study, where distinct parameterisations
are stored for future use. Second, a probabilistic classi cation is sometimes used [62]:

1. Prior-focused (see Section 2.2 below)
2. Likelihood focused (see pseudo-rehearsal in Section 2.2.1 below)

This thesis addresses a likelihood approach, determining the implicit probability
of which memory to recall and when. In this thesis, the following classi cations are
considered to allow a detailed review of memory augmentation in relation to TCL.
The remainder of this section will be laid out in this manner:

1. Regularisation (Section 2.2 below),
2. Memory augmentation

(a) Simple memory structures (Section 2.2 below),
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(b) Task rehearsal and pseudo rehearsal (Section 2.2.1 below),
(c) Memory augmented neural nets (Section 2.2.1 below),
(d) Multi-column memory architectures (Section 2.2.2 below).

Where the work in this study is focused on memory augmentation using multi-column
architecture, that is discussed below.

Regularisation

A somewhat di erent approach is that of parameter-sharing, or regularisation. Form-
ing generalisations over the same parameters comes with the potential bene t of lower
resource usage along with the possibility of being able to share knowledge between
tasks. Most research in this category has roots in multitask-learning (MTL) [26].

These approaches aim to jointly learn tasks using common parameters. The aims of
parameter-sharing are threefold:

1. Consolidation: Consolidate knowledge of multiple tasks in a single neural
architecture,

2. Multitask-learning: Inductive transfer is performed by learning multiple tasks
simultaneously,

3. Transfer-learning: Use past knowledge to better learn new knowledge (and vice
versa).

Using shared parameters, MTL aims to learn multiple tasks at the same time.
The regularisation this induces by requiring a learner to perform well on multiple
related tasks is an alternative to standard regularisation. This is known as inductive
transfer, and it improves generalisation using the domain information contained in
the training signals of related tasks as an inductive bias. It does this by learning
tasks in parallel while using a shared representation; what is learned for each task
can help other tasks be learned better [26].

Transfer learning and MTL can be achieved by ne-tuning and consolidation
with examples including [46, 221]. Generally, a new task is learned while older task
parameters might be used to ne-tune the learning process. This can be as simple
as using older task parameters as initialisation weights for the new learner [167].
However, the motivation to transfer knowledge and consolidate it has led to deeper
research into regularisation CL.

One highly in uential thread is elastic weight consolidation (EWC) [123], which
includes a regularisation term that forces learner parameters, when learning a new
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task, to remain close to the parameters of the network trained on previous tasks.
In addition, EWC has been used as the basis for a number of CL approaches [135,
221, 142, 249]. The appeal is that consolidating knowledge is likely to be more
scaleable than more resource-hungry approaches, such as task rehearsal. However,
while addressing scalability concerns, EWC su ers from weight saturation, leading
to the phenomenon oblackout catastrophe Noted in standard Hop eld networks
[41], a blackout catastrophe is when network capacity is saturated, resulting in the
inability to store new information e ectively, with the practical implication that older
knowledge is corrupted. This remains an open question for regularisation approaches.
Some researchers have attempted to mitigate this issue by segregating memories
before regularisation. Gradient of episodic memory(GEM) is such an approach
[144], focusing on forward and backward transfer of knowledge. However backwards
transfer of knowledge, while a principle aim of CL, risks corrupting older knowledge,
particularly if the implicit assumption of parameter scaling is violated. Thus tasks are
less interdependent than expected. It is unclear whether this approach to backward
transfer is sensible in a noisy time series environment where the underlying function
is not necessarily known, even after the event.

Learning without forgetting (LwF) [136] regularises predictions rather than weights
using the consolidation introduced in [123]. This is carried out using a convolutional
neural network (CNN), with shared weights between tasks, in which only the last
classi cation layer in task specic, similar to Siamese nets. Unfortunately, LwF
performance tends to drop when exposed to a sequence of tasks drawn from di erent
distributions [220]. The reason is that LwF only outperforms ne-tuning when the
two tasks are su ciently related. This can be addressed through a thresholding
approach, which defers memory addressing to a form of similarity gate [221]. This is
likely to make the approach unsuited to non-stationary or multi-modal time series
inputs.

Overall, shared parameter approaches o er huge potential for inductive transfer
and the possibility of greater scalability through consolidation. Unfortunately, the
assumption of task dependency is not likely to be appropriate for noisy time series
domains and is therefore of questionable immediate relevance to a real-world temporal
CL approach. This problem is likely to be exacerbated for domains with limited data
points, where researchers have adopted more highly paramaterized, FC architectures in
the belief that parameter sharing approaches would bene t from forming a generalised,
di erentiable form for feature extraction, ne-tuning and joint training [79].
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2.2.1 Memory Augmentation

The CL approaches that use external memory to address CF require an appropriate
memory addressing mechanism (a way of storing and recalling a memory). Memory
addressing is generally based on a similarity measure, such as cosine similarity [85, 87,
168] kernel weighting [228], linear models [211], or instance-based similarities, many
using nearest neighbours [112, 213, 185] and more recently, autoencoders (AE) [5, 220].
However, no single approach has been widely adopted as a generic solution. Simple
memory structures tend to store examples and tend to be more resource intensive,
whereas more complex CL memory structures tend to make limiting assumptions
about task dependency and the discernibility of tasks. Conventional CL memory
approaches are not obviously well suited to assessing similarity in noisy multivariate
time series. The primary challenge for TCL memory addressing is that, although the
input data are not expected to bei:i:d: in any CL approach, the vast majority of

CL approaches expect recognisably distinct tasks to be presented sequentially. Clear
delineation of states cannot be assumed in many real-world time series, particularly
in nance.

In contrast, data-mining researchers have extensively researched noise invariant
time series distance measures [27], to determine similarity for time series classi cation
(TSC). Hundreds of TSC approaches have been proposed over the last ve years alone
[9]. In the next section, TSC and time series similarity are reviewed and memory
augmented approaches are covered. Speci c to deep learning for TSC has only been
extensively studied over the past two to three years and has not been thoroughly
explored.

Knowledge Bases

ML memory structures belong to a broader super-set referred to as knowledge bases
(KB). A KB refers to any knowledge storing element of a ML approach and, by
de nition, is an attribute of an approach that provides knowledge to enhance learning
outcomes (Figure 2.1). In their most simple form, KBs are instance-based, such as
k-nearest neighbours [7, 203], but have become signi cantly more capable in recent
years, becoming stores of latent parameters [192], model parameters [32], exemplars
[209], and more. This section provides an overview of the most notable KB approach;
memory.

While many forms of KBs have been used, one of the more versatile and potentially
interpretable approaches is known as past information store (P1S) [31], referred to
as simplymemory in this thesis. The KB's of this nature contain information relating
to past learning, including past results, training data, intermediate results or nal
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Figure 2.1. CL System: Reproduced from Chen et al. (2018) [31]
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models. However, PIS have not been used in temporal CL. Other KBs are possible,
where PIS data are further abstracted into meta-information. A subset of PIS KBs

is referred to as memory approaches, because they aim to emulate the associative
memory exhibited by humans and tend to consist of structures or parameters for
storing past representations, for recall in the future. This study focuses on memory
approaches for use in TCL.

Simple Memory Structures

The rst serious research into, what has now become memory augmentation, was
conducted by Hop eld in the 1980s [97]. Hop eld introduced a simple, associative
memory architecture designed to store patterns in low-energy states. This was followed
by Boltzmann machines [2] and sparse distributed memory [114]. However these
approaches su ered from a limited capacity and bottlenecks in reading and writing
to memory.

Research and development of memory has tended to originate from applications
for language and writing recognition which is a very di erent application from
multivariate time series datasets. In the 1990s, researchers investigated recurrent,
neural architectures with Hochreiter's development of LSTM [95], which were much
later simpli ed to result in gated recurrent units (GRU) [35]. These approaches
performed well on analysing writing and similar tasks but it is unclear whether the
hard gated structures within these approaches are necessary or desirable in the context
of TCL, which is examined later in this thesis.

Task Rehearsal and Pseudo Rehearsal

Task rehearsal approaches retain samples, or representations of samples in a KB,
from past tasks that are replayed as a new task is learned [210]. The intention is to
attain joint training of more than one task so that CF does not occur.Rehearsal
approaches use stored exemplars for joint training [185] whijgseudo rehearsal
[188, 189] approaches approximate past samples. However, the overhead for stored
exemplars increases linearly with the number of tasks stored, and the resource and
complexity overhead for pseudo rehearsal can be signi cant. In this sense, rehearsal
approaches are also memory approaches, carrying a KB comprising samples or
representations. More recently, generative approaches have been introduced [82],
which have been employed in rehearsal to represent the inter-task data generating
distribution. These approaches are known agenerative replay[206, 227, 247, 190,
101, 131, 165] and allow joint training on many tasks through a process of generating
samples. While these approaches have selectively been found to outperform other CL
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approaches on more simple tasks [165], generative approaches have more complexity
and resource overhead and additional problems, which is exempli ed by timeode
collapseproblem. However, as with other forms of CL, to date, pseudo-rehearsal
methods have only been evaluated using relatively low complexity datasets [166],
which is likely to have resulted in limiting conclusions. Much has been written on
generative approaches. Thus we direct the reader to excellent reviews and research
(including [165]).

Di erential Neural Computers

One of the most technically accomplished memory augmented neural network (MANN)
approaches is the neural Turing machine (NTM), developed by Alex Graves et al. [85]
and later, di erentiable neural computers (DNC) [87]. DNC can learn algorithmic
tasks, navigation problems, question answering tasks and also learn relational data.
With this exibility come costs and constraining assumptions that are not appropriate
for TCL. In this section, NTM and DNC are briey reviewed, advantages and
disadvantages are covered, with nally a summary of lessons learned that should
in uence the development of TCL approaches.

The NTM and DNC consists of a controller, such as a feed-forward network or
LSTM, which interacts with an external memory module using a number of read
and write heads [85]. Memory encoding and retrieval in a NTM external memory
structure is fast, with representations via vectors being placed into or taken out of
memory potentially at every sequential-step. This feature allows NTM to support
meta-learning and low-shot prediction, as it is capable of both long-term storage via
slow updates of its weights, and short-term storage via its external memory structure.

In terms of architectures these approaches are FC and have fully di erentiable
memory addressing with the ability to crystallise explicit, slot-based memories in
a memory matrix and then recall a distribution over these memories. This smooth
memory recall distribution (rather than using a sharp, single memory recall distri-
bution) is advantageous because tasks (and states) are unlikely to perfectly repeat.
However, the expense of memory addressing is a problem for DNCs, which requires a
search over a large portion of its memory matrix, and therefore needs a large portion
of the matrix to be held in machine memory. Subsequent research has attempted to
address this issue [176], but DNCs and related approaches still su er from several,
important limiting assumptions in a TCL context. Firstly, DNC's assume sequential
task dependency, where in the case of TCL, dependencies may vary and must also be
considered in the cross-sectional distribution (this point is expanded on in 3.1). It is
unclear how DNC's would deal with non-stationarities for example. Secondly, DNC's
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assume absolute task dependency, where a smooth distribution of memories will be
recalled to address the current task at hand. While this would also be advantageous
for TCL, the training requirements for a fully di erentiable architecture might exceed
the data points available at a given time. Thirdly, task delineation is assumed to be
equally possible for all tasks and associated memory references. In a TCL context
this is rarely if ever the case where states in nancial time-series are ill delineated,
may overlap or may present false indications of delineation (known a&gtualCD ).
These are all questionable assumptions in a real-world time series context. Therefore,
it may not be a coincidence that few if any practical applications have been found
for DNCs [176], and it is unlikely that a fully di erentiable model of this complexity
would scale up to large problems well [244].

In spite of this, DNC's remain one of the most impressive developments in machine
learning research of the past 10 years. Many ideas behind DNCs will be relevant for
TCL and should be used to enhance TCL approaches in the future, however as we
will come on to see, the disadvantages of DNCs make it unlikely they will even be
directly applied to TCL. The advantages of DNCs:

1. Fully di erentiable
. Explicit memory
. Implicit memory (controller)

2
3
4. Sequential patterns remembered
5. Smooths sharp functions

6

. CL capable: Where DNCs have been shown to learn over longer time periods
than , say, LSTMs [99]

However, several important draw backs con ict with the aims of TCL and make
it unlikely DNCs would provide a good template for such an approach:

1. Complexity: DNC has approximately 891,000 parameters, as applied, [66] and
in many real-world data sets (and even with an aggressive interpretation of VC
dimension) it is highly unlikely that there are enough data points to support
this level of parameterisation. This would make DNC an inappropriate basis
for application to a real-world TCL.

2. Prone to over t: DNCs are prone to over- tting and su er instability throughout
the learning process [99]. In a noisy real-world time series context, overtis a
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dangerous possibility and this draw back makes DNC inappropriate for use in
TCL.

3. Interpretability: While Graves et al produced powerful visualisations of the
smooth memory recall of the DNC, it is di cult to see how these might actually
be used in more than just an indicative capacity, for example for de nitive
regulatory scrutiny of modelling outcomes. It would be far more appropriate to
be able to identify a principle TCL memory driving the outcome in question,
which could then be scrutinised, rather than to display a wide and sparse
distribution. This is something that TCL aims to achieve.

4. Memory sizing has been found to be an important consideration with DNCs
[157] where bad choices over memory sizing can then lead to sub-optimal
performance. It seems more appropriate for TCL approaches to have a more
simple and perhaps a sparser memory addressing approach which would be less
likely to be as sensitive to resource or sizing issues.

5. Weak parallelism: In the same fashion as RNNs, the sequential learning of
a DNC is challenging to parallelise. An alternative, multi-column memory
structure, such as [191], would more easily support parallel processing and the
speed e ciencies this enjoys and would thus be more ideal for a TCL approach.

6. Access of full memory required: A full memory read is required by DNC which
can be expensive. It would be preferable for scalability and e ciency to be
able to store and select relevant memories should the memory structure exceed
machine memory resources (ie as virtual memory or as an /O function from
disk) through a more simple balancing process, before loading them and acting
upon them in memory.

7. Rigid architecture: The fully di erentiable nature of DNC precludes easy
incorporation of domain (eg business) logic into modelling outcomes. Typically,
business logic (for example) is sacrosanct and would ideally be setup as rules to
guide a learning process. In DNC's case these rules would most likely need to be
installed as part of a pipeline which would potentially be far less e cient. More
e ective would be a CL approach that could rely on a domain speci ¢ base
learner, in which domain logic might be incorporated and on which memory
actions might be executed.

This said, DNC o ers several important guides for TCL researchers, in many ways
reading like a reiteration of the motivations of TCL in this thesis:
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. Parsimony: A TCL approach should be as parsimonious as possible, at least
until the initial open questions have been adequately addressed, aiming for a
minimalist parameterisation.

. Avoid variance prone approaches: A noisy real-world time series context, where
the signal to noise ratio might be low, avoiding variance prone approaches is a

priority.

. Interpretability: Memory use should ideally be explainable and interpretable
for domain experts.

. Memory sizing, an important consideration for DNCs [157], has an important
bearing on interpreting which, in turn, may hinder the e ective sizing memory
and lead to sub-optimal performance. It seems more appropriate for TCL
approaches to have a more simple memory addressing approach that is less
likely to be as memory hungry or as sensitive to resources.

. Parallelism: Scalability of a TCL approach would be bene cial and an easily
parallelised architecture would provide processing scaleability.

. Flexibility of learners: To allow a TCL approach to be agnostic to the base
learner used, would be highly bene cial.

. Learning process: In a domain with limited data points, the parameters to learn
should be as parsimonious as possible. This assumption might be relaxed after
initial questions around the TCL problem are resolved.

In summary, as powerful as DNCs are, there are many assumptions and costs

that are either not appropriate or necessary for a TCL approach. These lessons will
be expanded upon in the later chapters 4 and 5 and describes the TCL approach
introduced in this thesis.

2.2.2 Multi-column Memory Architectures

Multi column architectures have been e ectively used in CL [191] and have many
commonalities with mixture of experts (ME) approaches [104]. While CL essentially
seeks to learn a time and task generalisation, ME attempts to nd a speci ¢ selection
of specialist models, each relating to di erent regions of an input space before
selecting the most appropriate models for the current task [242]. This gives ME three
distinctive aims that each have relevance to CL:
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YSpecialisation: individual experts specialise on smaller parts of a larger problem,
YPartitions: it allows the input space to be partitioned,

YLearner exibility: Many di erent learner types can be applied.

Another interesting benet of ME approaches is that columnar architecture
naturally has a parallel structure, with obvious bene ts for processing a highly
parallelised architecture in a real-world setting [202]. This creates a series of questions
that CL and ME share: How can one divide the input space into regions? How
to specialise models in each region? How can one combine the output of each
model? These problems are remarkably similar to the challenges of applying memory
augmentation and cause ME approaches to use a gating function to select the correct
expert. Contemporaneous research using multi-column architecture is most similar
to the work in this study but with generally remaining concerns about traditional CL
approaches (as detailed in 1.1.1.4)

Many di erent gating approaches have been used in ME approaches, but most seek
to relate the error of the learner to the nature of the input space. Gaussian mixture
models [183], softmax of gaussian processes [236], Dirichlet distribution [59], Dirichlet
process [152], ANNs [108], max/min networks [57], and probit function [77] have all
been tested. Furthermore, ME has also been applied to huge conditional computation
problems, incorporating billions of parameters [202] (although this complexity is
self-defeating for an approach that principally intends to subdivide a problem for the
sake of parsimony). Most notably, Aljundi et al. has come closest to bringing ME and
CL together [221], using thesimilarity of the input space as a method of indexing
experts, using anexpert gate. However, the generallysharp model selection of ME
and the lack of a time-dimension or memory concept (i.e. remembering, forgetting,
recalling) has limited this thread of research in its application to problem spaces that
change and repeat over time.

Progressive neural networkd191] are one example of a recent columnar CL
approach, proposed to store pre-trained learner parameters in a columnar architecture.
This columnar architecture initially allows distinct parameterisations between learners
but includes lateral connections for transfer learning between tasks or columns.
However, this distinct memory architecture would not be advantageous in tasks
where establishing dependencies between memories has a higher error, meaning
that transferring or consolidating knowledge would have a higher probability of
corrupting older knowledge. In TCL problems, where the signal-to-noise levels of
a real-world time series make determining dependencies di cult in some cases, the
limiting assumptions of task dependency and discernibility could be problematic.
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Next, this study examines the di erent CL architectures for their potential bene ts
and costs to a noisy, real-world, applied TCL approach. In this case, a multi-column
CL memory architecture resulting in parameter ring-fencing, rather than sharing
using lateral connections, is likely to be more appropriate.

2.3 Time series Learning Paradigms

Time series are ubiquitous in modern human activity and much intellectual capital
has been invested in better understanding the methods of associating, classifying,
and modelling this form of data. They are extensively found in domains ranging from
biological taxonomy and video streaming to social media time lines and nance.

Time series are used for forecasting, classi cation, transformation or interpretative
modelling to describe a temporal process. Three major questions need to be addressed
by researchers of any discipline when modelling time series:

Y How can one deal with discrete versus continuous time? [160]
Y How can one train a time series approach: sequential or batch training?
Y How can one ascertain and represent temporal dependencies?

Each of these elements is discussed in turn.

While a rule of thumb for time series sampling from continuous series has been
long known [160], many time series are not sampled at the appropriate frequency,
owing to costs and practicability. An example is gross domestic product (GDP),
where periodicity is lower than might be desirable owing to the cost and practicability
constraints on data collection. This section reviews time series approaches, de ning
their functional form and discussing how the shape of a time series can in uence the
choice of learner: sequential or sliding window, and whether cross-sectional modelling
IS more appropriate than time sequential modelling.

Time series Functional Form

Multivariate time series, which are commonly found in databases, follow the general
form:
"Xt o Xt 1k Xe ki ® X (2.1)

wheret is a discrete time-step ofl total steps, k is a single time series ok , where
K 1 for univariate time series andk A1 for multivariate time series.i is an instance
of N instances, which may be sampled at each time-step and for each time seKes
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A time series of T time-steps,K series, andN instances can also be represented
using matrix notation, X , the notation used in this thesis. An example time series is
a univariate arrhythmia series, wher&K 1, and T is the number of discrete samples
taken over time for a patienti. In addition, T is considered thetime dimension,
stretching over time. The number of patients ) that may be sampled at each time
slice, is considered theross sectionaldimension of a time series. As we will observe,
the relative size ofT wrt | wrt K will in uence the choice of learner and training
approach.

Time series are also generally assumed to be generated by the prodessf a
generally hidden, underlying function:

P X (2.2)

whereP is generally assumed not to be a random process, where the main aim
of time series analysis tends to be to functionally approximate in some way. This
leads to the question of which learner one might use to achieve this aim, which is
most heavily in uenced by the shape and availability of the time series data.

Sequential versus Cross-sectional Data

While the nature of a time series process in uences the choice of learner and training
approach, data availability is, in practice, almost as important. Time series data
de ned sequentially through time (ie wrt T), in terms of the number of time series
involved (ie wrt K), and cross-sectionally wrtN. Generally, if T S N, the onus is
placed on modelling temporal dependencies before cross-sectional relationships. This
would prioritise nding temporal dependencies before relationships shared across
instances. WhereT R N, the onus might change to nding relationships across
instances rather than prioritising temporal dependencies. These two extremes might
be represented by a sun-spot time series, whefeS N when compared with
nancial credit-scoring, whereT R N. In the rst case, there is only one sun, and
while di erent observations may be collated, it is assumed only one accurate and
comprehensive sun-spot record exists. In this case, assumiig 1, all inference must

be made temporally. WhereN 1 by choice or by necessity (as in this example),

it is called stochastic training. However, in the case of credit-scoring, whelke A1

and N A1, batch training can be used, where many instances are used in training.
This is an important distinction, as the characteristics of borrowers in a single time
slice could be more important than the temporal dependencies of an individual
borrower. This can be described as the subtle di erence between a CL problem,
where cross-sectional past states should be remembered, and a simple time series
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problem, where time-sequential dependencies should be addressed. Depending on
whether the informational content is cross-sectional versus time-sequential data, this
would in uence our choice of learner, as discussed in the next section.

2.3.1 Time series Learners

This far, ML researchers have proposed many approaches for time series modelling
including neural networks [159],expectation-maximization [78], support vector re-
gression [158], Gaussian process regression [231], kernel regression [16], Gaussian
mixture models [120], kernel PCA [180], recurrent approaches [13, 122, 24, 6] and
others. Most of these approaches forecast a single point ahead, use a sliding window
of input data, and do not fully address long-versus short-term temporal dependencies.
Additionally, in many cases, it is unclear whether these approaches can e ectively
deal with changing states in a time series, also known as CD[196]. Furthermore, a
family of approaches callecdaptive learningthat have been developed to cope with
this. These approaches aim to update predictive models as they step forward through
time.

Time series approaches can separated into four modelling paradigms, each with
many learners.

Y Traditional time series models: Such models tend to assume a certain distribution
of the data (eg linear regression),

Y Sliding window: Dividing a sequence into a series of discrete steps allows the
application of a range of learners (eg FFNN),

Y Recurrent: The learners attempt to model a sequence as a sequential process (eg
LSTM),

Y On-line: Generally these are stochastic and batch approaches to learning.

However, some major common challenges for all time series and sequential learn-
ing problems [49]: the modelling of long-versus short-term temporal dependencies,
including in cross-sectional data. Although each paradigm has provided very power-
ful learners for a range of problems, no single approach adequately deals with this
distinction between long and short-term dependencies. This is a manifestation of CF
speci ¢ to time series modelling. In this section, an overview of time series learning
paradigms is presented.
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Traditional Time series Models

Traditional time series approaches tend to assume that time series conform to a
speci c distribution, most commonly a normal distribution, and seek to model an
underlying time series process. Probably the most popular time series modelling
approaches are OLS regression (e.g. [61]) and autoregressive integrated moving
average (ARIMA) [20]. The popularity of these models is owed to their ease of use,
exibility, and transparency, and the availability of an extensive statistical toolkit,
such as the box-Jenkins methodology, for model selection. However, with transparency
and exibility comes limitations. For almost all approaches, including ARIMA and
OLS regression, the assumption of linearity becomes unrealistic in many practical
situations. To overcome this drawback, nonlinear models have been proposed [250]
but these are more complex to implement and interpret [3], and in this sense, they
might present a poor compromise.

Also available are online learners, referred to as stochastic learners, when they
operate on only a single example at each iteration [42]. These learners tend to be
faster to train but tend not to support cross-sectional data and are inferior to batch
learning approaches [200]. As a result of these drawbacks, this study does not focus
on these approaches.

More highly parameterized ML approaches have also been applied to time series
modelling. These approaches present the opportunity to move away from traditional,
parametric time series approaches and to lever the higher complexity of ML approaches
to draw deeper inferences from time series data than may be possible with traditional
approaches.

Sliding Window

Sliding window describes a dynamic, step-forward process where, generally, data with
a xed temporal range are used as the input for a learner, for example an FFNN,
and where every input position represents a xed time lag from a speci c time series
(Figure 2.2). This window steps forward in discrete time with the learner, generally
training and forecasting at every step. Sliding window approaches have the advantage
that they can use one of many well-understood and well-researched learners and are
relatively straight-forward to apply and interpret. The key disadvantage is that a
xed time window must be selected.

Sliding windows can be of a) a xed size, which generally limits temporal inference
to within the window, b) an expanding size, where the start period is xed while the
window continues to expand, which can come with a signi cant resource overhead,
or ¢) a variable-sized sliding window, sometimes used in adaptive ML. The major
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Figure 2.2: Time Series Paradigms: Sliding Window
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shortcoming is that an arbitrary window length must be selected and, over time, all
information that moves out of this sliding window is forgotten. Serious questions
have also been raised about some applications [137].

Many di erent learners have been applied to sliding windows in sequential learning
tasks, such as OLS regression, FFNN, [172, 171], and support vector machines (SVM)
[218], and more time series specialised approaches, such as time delay neural networks
(TDNN) [230], CNN [256, 12].

Although specialised learners, such as TDNN and CNN, seem appealing, they
have greater constraints than generalist learners.

Moreover, TDNN and CNN approaches use max-pooling to learn latent repre-
sentations of subsequence features. However, the down-sampling required by such
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approaches imposes additional temporal constraints requiring further setup choices
to be made. This is likely to be a serious problem because, in the case of CNNs, if
the down-sampling reduces the dimensions of the input space too much, longer term
features might be missed and if the dimensions are not su ciently reduced, over- t
might result. In the case of TDNNSs, time dependencies generally need to be chosen,
so that the input data can factor in temporal dependencies as the sliding window
passes over the input data. Clearly, imposing these dependencies is far from ideal, as
a time series approach should principally be learning these for itself.

Recurrent Architectures

Recurrent neural network (RNN) approaches, such as LSTMs, address the arbitrary
window size concern of sliding windows but have to model potentially complex cross-
sectional and short and long-term temporal relationships sequentially. Additionally,
whereas a simple FFNN has complexity relating to it$eedforward depth RNNs
have two additional dimensions of complexityrecurrent depth and recurrent skip
coe cient , giving RNNs three degrees of complexity [251]:

Yreedforward depth:  Similar to FFNN, this represents the complexity of the non-
linear input-output transformation. In an RNN, input-output transformation
has to be dealt with in combination with two other degrees of complexity.

YRecurrent depth:  The average maximum number of nonlinear transformations
per time step.

YRecurrent skip:  Skip connections across multiple time steps may help improve
the performance on long-term dependency problems.

Although RNNs are Turing equivalent, performance in long-term memory tasks
has generally been poor [126], indicating that despite their promise, RNNs are no
panacea for time series modelling. Early research has reported that RNNs were able to
learn short-term patterns but had di culty capturing global behaviour [154] because
the fraction of the gradient due to information fromn time steps ago approaches zero
asn becomes large [18]. Speci c adaptations have been required to allow RNNs to
perform well over long and short-term dependencies [29]. This has been addressed by
some researchers, for example LSTNet adds a recurrent-skip layer [130], but most
add additional challenges (in this case the skip length of the recurrent-skip layer must
be manually tuned in order to match the period of the data).

Furthermore, LSTMs are probably the most popular form of RNN. However, the
performance of LSTMs verses that of sliding window approaches has been mixed.
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On the one hand, researchers have shown that LSTMs are able to solve time series
problems that sliding window approaches, such as FFNNs, have not. On the other

hand, sliding window approaches have outperformed LSTMs on seemingly more
simple time series problems [76]. In addition, RNNs have been found to be poor at

representing long term dependencies in time-series [34], which is a major shortcoming
when applied to the TCL problem.

Another major draw back of RNNSs is their interpretability. Explaining how an
RNN achieves temporal and cross-sectional functional approximation, in terms of the
parameterisations is challenging. Speci c approaches have been developed to attempt
to make RNNs more interpetable [89]. Moreover, recurrent approaches are exposed
to exploding gradients [94].

Time series Data Mining in the Context of Memory

Considering time series data-mining techniques in the context of memory augmentation
and CL is relatively novel. It is also not clear that any current thread of research
associated with memory augmentation and modelling can be appropriately applied to
multivariate time series modelling in a nancial context. Some fall short in real-world
challenges [176], some in their application to complex multivariate time series, and
some when considering CF [67, 151], which can result from an approach without an
explicit memory of a past event and its outcome (motif discovery and data mining).
While memory augmented models are well researched, development has tended to
originate from applications to language and writing recognition, which almost certainly
have a far more regular distribution of outcomes than many multivariate datasets (eg
nancial time series data). Secondly, many sequential learners have been repurposed
as time-series model, such as recurrent learners, convolutional architectures and
attention mechanisms, as we will come on to see this comes with disadvantages.
Approaches such as LSTM [95], and GRU [36] perform well on handwriting
and similar associated tasks, but whether the \hard" gated structures within these
approaches are necessary or desirable for time series modelling is unclear. Memory
augmented modelling, after the NTM and DNC [85, 87], is a closer cousin of TCL,
with a fully di erentiable architecture and the ability to crystallise explicit memories
and then to retrieve a distribution over these memories. One of the disadvantages
of this and associated approaches, which researchers have attempted to address
in subsequent research [55], is the requirement to search over a large portion of
the systems's \memory matrix”, requiring a large portion of the matrix to be held
in \machine memory". Notably, few if any practical applications have been found
for neural Turing machines at time of writing [55] and it is unlikely that a fully
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di erentiable approach of this complexity would scale up to large problems well [244].
Although not a memory modelling approach, and therefore exposed to CF [67, 151],
ME [104] provide a blueprint to combine the outputs of di erent models in a highly
parallelisable architecture, which can (and has been) deployed in a real-world setting
[202]. Contemporaneous research, using \multi-column architecture” is most similar
to the work in this study [191] with the problem of parsimony remaining: when
should memory be e ciently crystalised? When should one parsimoniously retrieve
memories? How can one balance these memories? This study seeks to address these
three key questions.

While simple Euclidean distance (ED) o ers a rudimentary approach, it has a
high sensitivity to the timing of data-points, which has been addressed by dynamic
time warping (DTW) [193]. However, DTW requires normalised data and is com-
putationally expensive, although some mitigating measures have been developed
[254].

2.3.2 Deep Neural Networks as Time series Models

While deep neural networks (DNNs) have been very successfully applied to such
challenges as computer vision and other snapshot-based challenges, considerably
fewer studies have applied DNNs to time series forecasting. While DNNs promise the
capture of non-linear interdependencies in time series, their successes have not been
easy to replicate in time series modelling [217, 63]. It has become clear that fairly
discrete ML approaches are required to deal with time series.

In addition, DNNs can be a ected by perturbations in input data [217], which
a human viewing a visualisation of the data would hardly notice, but which can
a ect forecasting outcomes. This strongly indicates that a naive application of DNNs
to noisy (ie perturbed) time series would be misguided. Rather than functionally
approximating an underlying time series process, a more straight forward application
of DNNs is TSC, an important eld for research that is relevant for this study and is
covered in the next chapter.

It has long been appreciated that a learner with a very large number of sequential
computational steps would be immensely powerful [212]. Put another way, the
expressive power of a learner is highly correlated with the number of sequential
computational steps that it is possible to for it to learn. In this important regard,

ML approaches have greater potential than traditional time series models, as the
deeper a neural network is, the greater the number of sequential computational steps
[244]. However, it is not a straightforward task to apply deep learning to a noisy,
perturbed dataset [197]. Now reviewed are some selected deep learning approaches
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that have shown promise as time series learners.

ES-RNN

One of the most successful recent ML approaches for univariate time series modelling
is exponential smoothing-recurrent neural networkéES-RNNs),developed by Slawek
Smyl et al. at Uber, which won the M4 forecasting competition in 2018. The ES-RNN

is a hybrid approach using traditional exponential smoothing coupled with RNNs.
However, the M4 competition is applied to generally univariate time series forecasting
problems, with few if any cross-sectional components in the test datasets. Nonetheless,
augmenting an approach such as ES-RNN with an external memory structure would
be an interesting thread for TCL research.

CNNs

Convolutional networks (CNN) [133] have been re-purposed for CL, developed for
sequence learning and applied to time-series data. CL approaches, such as LwF and
derived approaches (see 2.2) use CNNs highly selectively in their architecture. CNNs
have also been extensively applied to sequence modelling [198, 92]. This has included
use in speech recognition [230], part-of-speech tagging [39], semantic role labelling
[195], sentence classi cation [113] and document classi cation [253]. Convolutional
architectures have also been found to reach state-of-the-art accuracy in sequential
modelling, when compared to RNNs [11]. More recently researchers have aimed to
combine the sequential learning of RNNs with the encodings of CNNs [204, 21] and
this approach has also bee applied to time series [23]. These approaches generally
replaces the FC layers in a LSTM with convolutional layers, to gain the bene ts of
convolutions in the process of recurrent learning. These and similar approaches have
produced good sequential learning results but retain many of the disadvantages of
both recurrent and convolutional approaches, which makes them less appropriate for
an application to TCL in a noisy real-world context. Speci cally problematic are the
three dimensions of complexity recurrent learning entails that lead to issues regarding
explainability, problematic for TCL and which are enumerated in 2.3.1 but CNNs
come with their own set backs also.

CNNs have been extensively used for TSC [44, 232, 132, 139], with encouraging
performance. However, beyond TSC, temporal learning in a noisy problem space is
unlikely to be as appropriate using CNNs for two main reasons:

1. Tuning of hyperpraamters is non-trivial: CNNs require three hyperparameterrs
to be tuned, in addition to conventional ANNSs: Iter size, pooling-size and
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training epochs. The choice of these hyperparameter values can have a substan-
tial impact on performance and thus the noisier and more temporally variable
the time-series subsequences being considered the greater the possibility of
over t or bias.

2. Max pooling: Use max-pooling to learn latent representations of subsequence
and recurrent features, requires down-sampling which in turn imposes additional
temporal constraints. This is likely to be a problem for TCL, because in the
case of CNNs, if the down-sampling reduces the dimensions of the input space
too much, longer term features might be missed and if the dimensions are not
su ciently reduced, over-t might result.

In a noisy real-wold time series context where data points are limited, temporal
dependencies are indistinct and false-alarms are probable, it is likely that CNNs
would prove challenged. Some of the shortcomings of CNNs have been addressed by
attention which is discussed next.

Attention

Attention mechanisms were developed [10] to draw inference from hidden units in
existing machine learning approaches and have been developed on natural language
processing (NLP) problems but have also been applied to TSC [130].

RNNs [205] and CNNs [248] have both had attention mechanisms applied. Un-
fortunately, for reasons discussed in this chapter, both RNNs and CNNs are less
appropriate architectures for TCL but an appropriate application of attention is likely
to be bene cial, and should be investigated after TCL's initial research questions
have been addressed.

Attention as a process is divided into four steps [10], 1) encoding, 2) learning
attention weights, 3) creating context vector, 4) decoding. The aim is to determine
a weight for di erent elements of, generally, a hidden layer and thus learn a latent
representation of how these hidden units should be attended to (ie how much weight
is given to them in the nal modelling outcome). In this sense attention is a broad
concept and there are clear applications for it in TCL, but current implementations
have major draw backs that make their application to TCL problematic.

One important example of an attention based approach is the transformer network
[226], which avoids convolutions and recurrence. This inspired a number of progenitor
approaches which have been applied to NLP, such as BERT, [48], GPT [175] and
XLNet [240]. Of these BERT, for example, is described as a self attention approach
(after [33]) where an attention mechanism is conducted on the inputs. Attention
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has also been widely used with RNNs for sequence learning tasks. These generally
aim to use attention mechanisms to nd dependencies in sequences over the long or
short term [10]. Attention o ers three distinct advantages over recurrent learners:

1) arguably better learning of long and short term dependencies; 2) parallelisable
architecture, and; 3) explainability using, for example, attention heat maps.

However, attention applied to time series has been complicated owing to: 1) the
limitations of the input of the base learner (usually an RNN), 2) these approaches
have generally been used for classi cation tasks rather than time series forecasting.

Several approaches have attempted to apply attention mechanisms speci cally
to time series forecasting, again, generally using RNNs. One example is DA-RNN
[174] which has a two stage approach, rst selecting input series in the encoder, while
learning a temporal attention mechanism in the decoder.

While results have been impressive using attention mechanisms, the use of recurrent
learners to apply attention mechanisms to time series problems has major draw backs
for TCL. In short, attention mechanisms are only as good as the learner they are
attending to and in the case of RNNs, the numerous disadvantages of these learners
may outweigh the bene ts of attention in an application to TCL.

Speci ¢ disadvantages in applying attention to RNNs follow:

1. Several parameters require tuning: The number of time steps to use, the size of
hidden states for the encoder and the size of hidden states for the decoder.

2. Time series noise: Simple attention approaches with multiple variables in each
time step may fails to ignore variables which are noisy in terms of forecasting
utility [205].

3. Averaging across time-steps: typical attention mechanisms average information
across multiple time steps which might result in a failure to detect temporal
patterns useful for forecasting.

In spite of the draw backs of attention, the dividing line between success and
failure of an approach is likely to relate the choice of base model and the application.
It is therefore likely that a selective application of attention to a TCL approach would
prove useful and should be investigated, but not before the more immediate problems
of TCL, posed in this thesis, have been addressed.

2.3.3 Concept Drift Adaptation

In the literature, CDA has been studied in di erent areas of ML and data-mining
research including pattern mining, data stream mining, information retrieval, and
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Table 2.1: Adaptive Learning Strategies

Step change, Evolving change
Single model| Detectors Forgetting
Ensemble Contextual | Dynamic ensembles

recommender systems [258]. Moreover, CDA is an advanced time series learning
paradigm, developed to adapt a temporal learning process to CD. It has many
commonalities with CL but di erent priorities:

1. Incremental learning: learn from training data, streamed continuously.

2. Detecting change: determine changes in the underlying data process behind
this stream of data, generally referred to as CD.

3. Responding to change: the onus is placed on the speed of adaptation and
forecasting.

4. Diversity: models should be preserved for future use.

These priorities have generally resulted in approaches that are dependent on
ensemble e ects to retain and combine models for incremental learning. Some
approaches have touched on the more committed knowledge management problem
of CL but rather than learning individual tasks or states, CDA can avoid this issue
and generally uses the passage of time to construct an ensemble of diverse, normally
instance-based parameters. In addition, CDA approaches are associated with detecting
and responding to change in streaming data, with many having the onus on speed
of adaptation and forecasting. In this sense, CDA does not directly address the CF
problem that CL seeks to address.

The following are categories of adaptive learning strategies based on [258]:

Many di erent AL approaches been developed, including those based on decision
trees [224], clustering [43], association rules [177], support vector machines [125, 246],
random forests [1], neural networks [238] and many others. These approaches are
focused on dealing with CD, but notably only a small minority of approaches use the
idea of a reoccurring concept (eg 10% of approaches reviewed in [102]), a minority
are based on neural networks (eg 8% of approaches reviewed in [102]) and almost all
are classi cation based [102]. In addition, simple memory-based CDA approaches
have also been researched [73, 215], but all reviewed approaches fall well short of
state-distinct memory to allow the use of reoccurring concepts for regression tasks.
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Adaptive Learning

Aiming to optimise the expense of computational resources against predictive accuracy,
AL is an advanced form of incremental learning [74], generally supervised and typically
designed for higher-speed processing of data streams. In addition, CDA approaches
are the most advanced form of AL and are sensitive to changes between dependent
and independent variables over time, such as CD [196, 235].

Furthermore, AL procedures can be conducted as an online process or a batch
process following the general form below:

1. Forecast: New input data arrives X, and a forecast is madey{* 1, by a learner,
t-

2. Assess: Over time, oncg; ; becomes observable the error of can be assessed.
3. Adapt: A function of the error is used to update . is updated to ;.

Incremental or online data-mining methods, such as [223, 73], continuously re ne a
model as new data arrives, attempting to achieve the performance of a batch learning
but with streaming data.

However, these approaches tend to focus on accuracy at the current time point,
rather than on a motivation for deeper inference from past states or episodes. For
example [52] uses an incremental decision tree algorithm for streams comprising
discrete data with this focus in mind. Again, this results in a focus away from the
TCL's priorities, of distinct state based memory concepts that can be explained.

Concept Dirift

The term CD describes how a stream of data can change (or appear to change) over
time owing to non-stationaries, multi-modalities, or similar aspects (known as regime
change or state change in econometrics and nance). This describveal CD [234],
where an underlying function undergoes a change; X x P"X; 1». However, CD
can appear to be occurring owing to more spurious e ects, such as sampling, weak
model generalisation or changes in the local feature space. This is knowrvaial

CD [194] and occurs where a functiorf,, a functional approximator for the true
underlying distribution, undergoes a change, where” X ¢ X P"X;e.

Concept Drift Adaptation

By addressing CD, CDA improves on the idea of AL [196]. Approaches have been
developed to deal with CD which have been applied to smart grids [153], email
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classi cation [25], industrial processes [169], nance [216], and more. Moreover, CDA
aims to identify changes in the input state to then illicit a response. This is di erent
from the aim of TCL, which aims to learn a state (or task) to avoid CF. The resulting
approaches are therefore quite di erent in priority and design.

Simple CDA approaches use sliding windows to assess change, being extended
to an adaptable window size [235, 147, 124], even using support vector machines to
adjust size [125]. Memory concepts are limited in the CDA literature and extend to
gradual forgetting , where input samples are retained after the sliding window has
passed over them and are generally decay-weighted (ie down-weighted based on their
age). Linear and exponential decay have been used [127, 124]. Generally, KBs consist
of either using example instances, exemplars that are stored and used in training,
or a sliding-window approach where a moving window of data is used to train and
adapt the approach. These approaches tend to be limited in scope and power because
accommodating large volumes of streaming data in machine memory may not be
feasible in some areas of application.

2.3.4 CDA Memory

While many CDA approaches are based on a single learner and tend not to have mem-
ory structures, because these approaches seek to adapt the current model while older
parameterisations are discarded, more advanced forms have KBs. Using exemplars
and instances [70], CDA memory is generally ensemble based, aiming to adapt to
change quickly. Model-repositories have also been used [81], where parameterisations
are saved. In addition, CDA memory is discussed in this section regarding how it
di ers from CL memory in purpose and function.

While there are similarities to CD and TCL problems, the use of memory in either
system makes a key distinction. Regarding CD, rst, separating the in uence of past
knowledge on modelling outcomes is likely to be di cult in a typical CDA ensemble.
Second, this means interpretability is likely to be a ected. For example, which
parameter, remembered during which period in uenced which modelling outcome?
Third, as these systems tend to focus on the current forecasting challenge, the retained
knowledge is less about understanding the temporal interaction between past and
current states and more about adapting to the current environment.

Ensemble Memory

Generally, CDA ensemble memory is motivated by both accuracy and diversity among
the ensemble of learners [53, 129], a slightly di erent motivation compared to CL
memory. This generally results in CDA memory structures being far more simple
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Figure 2.3: CDA Memory Reproduced from Gama et al. 2014
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than CL simply because of the economies that are required in processing streams of
data.

On the one hand, AL has resulted in simple approaches to adapt the learning
process, such as self adjusting memory k-nearest neighbours (SAMKNN). This example
simply weights a short-term learner versus a longer term learner based on the current
period performance [145].

Most approaches are purely instance-based, evolving a CDA ensemble approach,
such as changing rules or adding exemplars, over time. Research that is contempora-
neous with this study provides a good example of how these systems work [215] and
why the imperative is di erent for TCL. In this instance-based system, the balancing
decision and decision to add a decision tree to the ensemble is basedlioersity
using the Yules Q-statistic [243]. This has proved to be very e ective in certain tasks
but has several problems.

Model Repository

One close comparison of the aims of TCL with CDA is provided bgnodel-repository
approaches (eg [81]). While di erent forms of model-repository memory exist in the
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Figure 2.4: Idealised CDA Architecture Reproduced from Gama et al 2014
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CDA literature, most are, again, for simple models to aid forecasting more than to
understand and interpret the association between the state they represent and the
period in which they are applied. As one example, [81] uses naive Bayes learners,
which are stored in a model repository and reused based on a contextual cue.

There are clear commonalities between the TCL and CDA however, CDA memory
approaches are focused on adapting a learner for drift in a stream of data, which is
considerably more resource challenged than many CL approaches. Therefore, CDA
memory approaches generally necessitate expedient memory usage.

Architectures Compared: CL versus CDA

On a trivial level, CDA and CL architectures look similar. Figures 2.4 and 2.5
show generaslied CDA and CL architectures respectively. Both architectures show a
memory/KB and both show a learning element associated with memory, in uencing
outcomes. This is where the main commonalities end:

1) CL KB learner: While CDA favours AL, CL places an onus on learning tasks
and identifying previously learned tasks to assist outcomes and learning.

2) Change detection: This is a critical part of CDA architecture. In addition,
CL generally does not place the same onus on understanding task discernibility or
dependency, owing to the limiting assumptions made by many CL approaches.

3) Task manager: A CL system identies new tasks or repeats older tasks,
generally using task-based memory. However, CDA tends to balance knowledge to
adapt outcomes, with generally less distinction between states and less understanding
of individual states.
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Figure 2.5: Idealised CL Architecture Reproduced from Chen and Liu 2016
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Figure 2.6: Idealised TCL Architecture
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2.4 Marrying Continual Learning and Concept Drift

Temporal continual learning combines the concepts of CL's task manager and CDA's
change detection to identify previously learned states and new states. The KB learner
of CL is generally associated with understanding distinct tasks, while CDA has a
more simple and less resource-expensive memory concept. Additionally, TCL seeks
to adopt the distinct memory concept of states from CL, while avoiding the limiting
assumptions generally made by CL, to allow open-world learning of these states
as they occur in a time-sequential manner, similar to CDA. Figure 2.6 shows the
comparative form of TCL, borrowing from both CL and CDA architectures in three
main ways:

1. State manager: CDA aims to identify ill-de ned, changing states in sequential
data but lacks a state manager to deal with a distinct state concept within the
system. For CL, a distinct task concept is generally central to the approach.
Moreover, TCL attempts to combine the bene cial elements of both CDA and
CL by learning changing states in sequential data, similar to CDA, but combining
this with a distinct state concept, which is used for memory addressing, similar
to CL. This aims to allow TCL to build state-based memories over time in an
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open-world manner.

. State-based memory: CDA and CL have di erent memory needs. Generally,
CL assumes tasks have interdependencies and can be discerned and stored as
distinct task concepts in memory. In addition, CDA generally does not have a
distinct concept for states but instead tends to assume elements of dependency,
usually de ned by instances. This allows CL to develop a more advanced concept
of a task that can be more interpretable, whereas CDA can only develop a more
simple concept that is generally less interpretable. Furthermore, TCL draws
from CL in having distinct concepts held in memory and using these concepts

to form a context for future input, while being similar to CDA in that these
concepts are states rather than tasks.

. The base learner is distinct from memory: Both CL and CDA approaches have
been developed using a wide range of sequential learning approaches but the
chosen approach tends to be integral to the system. In addition, TCL can
be designed to use sequential learners that are architecturally distinct from
a memory structure and the knowledge-based learner. This might allow the
interchangeable use of well-understood base learners, which would add to the
interpretability of outcomes and memory management.
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Chapter 3

Literature Review: Memory
Addressing

CL memory approaches using external memory structures require an appropriate
memory addressing mechanism: a method of storing and recalling memory. This
chapter combines selective areas of CL, ML, time series research, and CD to build
two concepts that are useful for driving TCL recall gates and remember gates: time

series similarity and change points.

Section 3.1 describes how similarity has been used in CL and CDA and introduces
how it can be used to drive a TCL recall gate by comparing contextual cues stored
with state-based memories with the current input space. Section 3.2 discusses residual
change to drive a remember gate capable of open-world learning and of supporting
state-based memory augmentation.

3.1 Time series Similarity

Time series similarity, particularly cross-sectional similarity, is a key concept for
TCL. Identifying repeating patterns or distributions and judging similarity between
subsequences, past and present, can form the basis for contextual memory addressing,
speci cally recall cues. This concept is covered in this section with a focus on the
defacto benchmark approach for TSC: DTW [193].

3.1.1 Time series Classi cation

Time series similarity research has primarily been motivated by the need to classify
time series data in the real-world. Moreover, TSC has been conducted from tdata
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mining thread of computer science research, which has remained fairly distinct from
other ML approaches, perhaps owing to the real-world constraints imposed by the
practical matter of the task: minimising classi cation errors using computationally
inexpensive approaches that can sift through massive, noisy, real-world datasets.
Hundreds of separate approaches for TSC have been developed over the past decade,
divided into three categories [9]:

1. Whole series: Comparison of two series,
2. Subsequences: Select and compare partial sequences of a time series, and

3. Motif based: Identify and compare short patterns.

Additionally, the following variations are sometimes considered:
Y Dictionary: Frequency of recurring patterns,
Y Combinations: Combines shapelet and dictionary approaches, and
Y Model based: Model tting and comparison.

While time series similarity has predominantly been associated with pattern
repeats in large databases, TCL systems should be more concerned with detecting
and responding to changing tasks or states presented to the system. In a time series
context, this means gauging whether the distribution of the input series has changed
or, better still, whether a signature is available to identify a given task or state
should it approximately reoccur in the future. The most obviously relevant family of
data-mining approaches for this are whole series, but motif-based approaches may be
useful, and these areas are expanded upon in this paper.

Two main considerations are required for TSC: representation and similarity.
Representation refers to how the data are transformed before a distance calculation to
determine similarity can be applied. Many transformations exist, such as the discrete
Fourier transformation [60], discrete wavelet transform [28], symbolic approximation
[117], and perceptually important point [68]. However, a greater focus has been on
the choice of similarity metric, which is where this study is focused. Various measures
have been used, including ED [59], DTW [193], hidden Markov models [162], ARMA
[237], compression-based dissimilarity measure [118], spatial assembling distance [30],
and others [4]. The di erent categories of TSC, exempli ed by DTW, are discussed
next.
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Whole Series and Subsequences

The research inwhole seriesand subsequencd SC has shown that, despite the
multitude of algorithms applied to the challenge, a simple nearest neighbour (1NN)
classi er has proved exceptionally di cult to beat, with the best similarity measure
being speci c to the domain of application [17]. Although hundreds of alternative
similarity measures have been developed over the last 10 years, numerous authors have
reported that variants of DTW, most commonly INN-DTW, are the best measure

in most domains [178]. In fact, DTW has become the defacto benchmark for TSC
problems [9]. Moroever, DTW has the exibility to compare to sequences of di erent
lengths (although the bene t of this feature has been debated [184]).

However, DTW has a quadratic expense and is analytically intractable, prompting
the development of many variants that are generally focused on speed-up measures
[150, 252, 119]. The deeper question for TCL is whether a similarity measure, such
as DTW, would be e ective for memory addressing, and further, whether DTW is
e ective or whether a less resource-costly alternative would be as good.

Time series Motifs

Time series motifs [138] are pairs of individual time series or subsequences of longer
time series that are similar to each other. (These have also been described as primitive
shapes [45] or frequent patterns [98]). Again, DTW can be applied as an approach to
nd motifs. Motifs represent repeating patterns in noisy and long time series data.
Figure 3.1 shows an example of a time series motif, where a repeating pattern is
hidden in a seemingly noisy time series (seen at A, B, and C). In addition to using
the changing distribution of input data to determine context, repeating patterns of
this nature could also, in principle, be used to determine contextual memory cues in
complex noisy data.

Lin et al. (2002) [138] noted the truism that the discovery of associated rules in
time series rst requires the discovery of motifs. It is posited here that those rules
could be used to drive memory gates in a TCL framework. However, the challenges
to achieving this are signi cant.

Time series motifs (or shapelets) are typically used in unsupervised data mining
or for analytical functions. Considerable research has focused on time series motif
discovery across a variety of domains. Perhaps the most challenging aspect of motif
discovery is that motifs are generally of a variable and unknown length, and it has
been suggested that exact algorithms to determine motif length [156] are likely to
be intractable because of the high expense of computation involved [155]. This
challenge can alternatively be described as attempting to nd generalised distance
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Figure 3.1: Motif example in astronomical data.

0 500 1000 15000 2000 Eﬁﬂlﬂ
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B
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Note: Motif example in astronomical data: A, B, and C represent a very similar (as
seen in the lower chart) repeating pattern or \motif".
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measures that are invariant to noise. ldentifying what is and what is not \noise"
represents a key challenge. However, despite the practical challenges, intuitively,
the idea behind motifs applies to the real-world, including nance. For example,
it is generally accepted that stocks with growing earnings are likely to make good
investments because stocks or currency pairs that have a strong price momentum
tend to continue to appreciate. To make the point in a multivariate context, consider
the consequences of the identi cation of the following hypothetical motif: a company
with fast-growing earnings but with a falling price. It intuitively follows that motif
discovery in nancial data could be extremely interesting. However, the noisy nature
of nancial time series makes applying current techniques a huge challenge. One
example within a nance dataset is of dividend payments, which can be seen in Figure
3.2. A repeating three-dimensional (3D) motif occurs (highlighted) in 2013, 2014,
and 2015.

Statistics have also addressed time series similarity to some extent, mainly wrt
the goodness of t. This work generally attempts to establish statistical tests for
comparing two probability distributions, the most notable being the non-parametric
Kolmogorov-Smirnov two-sample test. An empirical distribution function is compared
to an assumed distribution to determine whether it was drawn from the assumed
distribution. However, whereK A2, this presents problems [110]. Nonetheless, the
basic idea of the ordering of the cumulative distribution functions of two distributions
and cross-comparing is applicable for similarity associated with cross-sectional data.

3.1.2 Dynamic Time Warping Distance

As DTW can identify phase-invariant repeating patterns, it might also be used as
a measure of contextual similarity and therefore provide cues for a memory recall
gate. Variations of DTW may also be appropriate in this application, such as time
warp edit [150], using an elastic distance metric, weighted DTW [252], which adds a
penalty based on the warping distance, and derivative DTW [119], which uses the
(estimated) local derivatives of the data.

Common problems exist among DTW variants: the expense of multivariate time
series [199] (although this has been contested [184]) and the need for direct comparison
of raw instances within the datasetX ; to judge similarity with a subsequence from a
di erent temporal context, X ,,. However, e ciency measures have been introduced,
such as adding constraints to the warping path [193, 179]. A plain-vanilla DTW
approach is described below, with details of the speci c DTW customisation used
described in Chapter 5).

Mathematically, DTW requires two time series to compare:
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Figure 3.2: Three-dimensional (3D) motifs.

Note: Motifs can also be higher dimensional. This is an example of a three-dimensional
(3D) motif in a nance time series relating to company accounting and stock valuation
data. See the repeating 3D shape (red/yellow), in 2015, 2014, and 2013, which
represents the level of dividend payments (when considered in terms of the hand-
picked features:earnings and propensityand valuation and capital structure.
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Figure 3.3: Dynamic time warping versus Euclidean distance.

Note: Motif example in astronomical data: A, B, and C represent a very similar (as
seen in the lower chart) repeating pattern or \motif".
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Figure 3.4: Dynamic time warping, multivariate warping paths of nancial time
series.

Note: An example of warping paths showing two instances (left and right), each with
four associated time series. The diagonal yellow line represents the warping path
between one instance time series and another.
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Q ;o i heandC cy; ;i 10 Gy, (3.1)

with the length of n and m, respectively. Then x m similarity matrix, M , is then
de ned to represent the phase-invariant \mapping" ofQ onto C, where the element
Mprw ij indicates the distanced g;c+ between the data pointsg and ¢. The
point-to-point mapping betweenQ and C is represented byw , and the path of least
resistance is throughM, or the \time warping path". An example of the warping
paths this creates is shown in Figure 3.4, where two instances (securities) are sampled
at random from X, and X ; before their four associated time series have warping
paths generated and are both evaluated for DTW distance.

The warping path has the following characteristicsW  "wy;wy; :::;we max"m;ne B
K Bm n 1, where the elementvy “i;j  indicates the probable alignment and
matching relationship betweerx; andy;. If a path is the lowest-cost path between
two series, the corresponding DTW distance is required to meet the following:

K
DTW™Q;C- mvjner A, W wWe Wos sl Wi (3.2)
k1
whered-ke d"g;c e represents contiguous elements in the matrit prw , and each
one is represented agy “i;j * on path W .

While the warping path can express an extremely interesting mapping between
two series, the nal DTW distance measure of two time series can be calculated using
dynamic programming on the warping path accumulated througiv . The following
represents this, where the warping path leads to the current calli;j ¢ from the
minimum distance adjacent cells:

ey dxiyje min™rti LjesrTij o LesrTio 1) lee (3.3)
wherer”i;j ¢ is accumulated as the dynamic programming determines the warping
path and wherei | andj J, it represents the time warping distance between
seriesQ; and Cy;. Series with high similarity can be e ectively identi ed because
the best alignment and matching relationship between two series are de ned by the
dynamic time distance. Many variants and tweaks have been proposed for DTW to

exploit the phase-invariant distance while attempting to mitigate the resource cost of
the approach.

3.1.3 Autoencoder Distance

Autoencoders have been used by CL researchers to gauge task similarity in the context
of MTL [5] and for memory consolidation [220, 257]. (A separate application of
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AEs in CL has been for generative replay [165, 206] in pseudo-task rehearsal, using
variational autoencodersand generative adversarial approaches after [84]). In this
context, AEs are useful to gauge the similarity of tasks usingeconstruction loss
the distance between input data passed into an AE and the reconstruction returned.
However, assessing the similarity between more stylised CL tasks is likely to be more
straightforward than assessing the similarity between the noisy multivariate time
series in a TCL approach.

Research into AEs, outside of CL, has introduced di erent AE variants, such as
masked AEsfor distribution estimation [75], stacked AEs[13], and others. However,
research into SAEs, designed to bene t data representation, [182, 181, 51, 163] appears
most relevant to TCL. By forcing a sparsity condition, it is possible to represent
larger amounts of data using fewer latent variables, giving the bene ts of compression,
dimensional reduction, some invariance to noise, and easier classi cation [182]. The
noise-invariance properties of AE sparsity are particularly interesting in a CL and
TCL context, but AEs have only been narrowly investigated [5, 220]. As one of the few
examples of AE use in a CL approach at the time of writing, Aljundi et al. [5] found
that AEs with a degree of sparse representation using recti ed linear units (ReLU) as
activation functions in the encoder gave bene cial sparsity to AE representation for
task identi cation and selection. Taking this idea further, it is possible to introduce
additional sparsity conditions to AEs, such as sparsity-based regularisation (and
traditional regularisation) [164]. The AEs that employ this are sometimes referred to
as SAEs. Achieving more sparsity in AEs using sparse activation functions and the
addition of sparse regularisation is highly likely to have a promising application in
time series similarity.

3.2 Change Points

Open-world learning of di erent time series and cross-sectional states might also be
described as a time series change-point detection problem. If states are to be de ned
and learned and their re-occurrence detected, detecting changes between states is
necessary. This has been investigated in the CD literature to some extent but at a
generally minimalist level; therefore, an overview of the di erent change approaches
is conducted here to determine the most appropriate approach for the state-based
memory addressing of TCLs. A wide range of change-point detection approaches
have been proposed with many similar ideas being given di erent names in di erent
elds of research. This has created a confusing array of overlapping nomenclatures
and ideas, each with their own terminology and related concepts in di erent elds,
for example:
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1. Econometrics: Regime change,
2. Statistics: Change points, and
3. Adaptive learning/streaming: CD and co-variance shift.

All change approaches have signi cant drawbacks, and at least some of these
drawbacks can be mitigated by taking a minimalist approach for the purpose required.
Given the aim of TCL for open-world learning, state-based memory augmentation,
applicability to multivariate time series, and the aim to generically support time
series learnerssequential changeising a simpleresidual changeapproach is highly
appropriate.

Subsection 3.2.1 presents an overview of change approaches. Section 3.2.2 describes
an example of states in a nancial time series. Section 3.2.3 describes popular examples
of change approaches. Section 3.2.4 explains in more detail the important concept of
residual change, and Section 3.2.5 describes the use of change as a memory concept
in CDA approaches while contrasting the needs of TCL.

3.2.1 Change Concepts

Many alternative approaches have been used for change-point detection, including
non-parametric approaches [80], relative density [141, 115], and AL algorithms [70]
extending to a number of ML approaches [100]. Several types of change have been
identi ed, including the following:

Y Sequential change,
Y Statistical process change, and
Y Change between distributions.

Change-point problems, in many cases, have tended to be framed as univariate.
However, many real-world problems are multivariate, which further complicates
assessing change. One solution to this has been to use the sequential change in the
residual multivariate time series learner. This can turn a multivariate problem into a
much simpler univariate problem:residual change More recent problems, given the
modern high generation of data, need to deal with change in multivariate time series
data that have a large cross-sectional component. This type of dataset is relevant to
the TCL problem, and residual changeis proposed as the appropriate change-point
approach. First, we describe the variation in research across econometrics, statistics,
and AL (and CDA, more speci cally).
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Change in Econometrics In econometrics, the problem of change points is some-
times referred to as regime change. Regime switching models [121] and change-point
detection [170] provide a simpli ed answer to identifying changing states in time
series with the major disadvantage that change points between states (or regimes) are
notoriously di cult to identify out of sample [58], and existing econometric approaches
are limited by long-term, generally parametric assumptions in their attempts [56, 255,
208]. The study of change points in statistics is discussed next.

Change in Statistics Researchers have attempted to address the change-point
problem using several approaches, many based on the sequential probability ratio test
[173], cumulative sum (CUSUM) [54], and exponentially weighted moving average
(EWMA) [187]. These approaches have traditionally been applied to input data but
have also been used on the error of time series predictors [70], residual change, which
is @ much more interesting area of application for TCL, as we observe herein.

Change in Adaptive Learning/Streaming Change in sequential distribution
has also been used in change-point detection, for example, using the Hellinger distance
to detect changes in bias between training and test data distributions [37] and the drift
detection method used in AL [109]. This idea has also been used for change detection
in sequential batch learning [50]. Additionally, more complex change detection has
also been proposed by monitoring multiple analytics, such as performance indicators,
accuracy, recall, and precision [125]. In addition, the use of residual change [71]
and change to drive memory cues, which is covered later, were addressed in the CD
literature.

3.2.2 Example of States in Financial Time Series

Anecdotally, an example of a well-known regime shift that occurs in nancial mar-
kets is that between value (i.e. tending to be in older industries, such as banks,
telecommunications, and utilities) and growth stocks (such as technology). Figure 3.5
illustrates that stocks that are considered to be value have periods of out-performance
and under-performance. Considerable debate exists regarding the driving causes and
leading indicators of this, but an approach that could successfully learn these change
points would make a successful investment strategy.
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Figure 3.5: Changing States: Value versus Growth.

Note: An example of regime shifts is arguably the shift between value and growth
stocks, shown here in emerging markets. Source: MSCI.
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3.2.3 Traditional Change

Both developed in the 1950s, CUSUM and EWMA are still among the most popular
change approaches [107, 8, 207, 214]. Both are parametric approaches, requiring a
critical value to be speci ed that would represent a change. For example, CUSUM,
as the name suggests, sequentially sums data points in a time series, whereas EWMA
calculates the exponentially weighted average. In either case, when the derived value
exceeds a determined critical level, this is assumed to represent change. Determining
this critical value is the crux of these approaches (sometimes known asline
thresholding). Moreover, CUSUM provides a threshold representing a decision rule
for a sequential, generally univariate input series:

g mMmax 0,0 1 "Xt gy Oe; (3.4)

wherex; is the latest value in a time series, is the change that is permitted, and

is a user-de ned threshold to give the decision rulg. Aj. This means the CUSUM
test rests on the selection of the values ofand j. This can result in more Type

| errors if these values are too low (and more Type Il errors if the values are too
high). Statistical tests have been developed for CUSUM to determine the values of
these parameters, including the related Page-Hinkley (PH) [54], Shiryaev and Roberts
method, and Shiryaev's Bayesian test.

Parametric implementations of approaches such as CUSUM and EWMA are
likely to be disadvantageous in a world potentially exposed to non-stationarities.
A non-parametric approach is likely to be advantageous. However, thresholding
approaches are appealing for their simplicity and because threshold values might be
sequentially learned over time in a TCL framework. An additional consideration is
the need to support multivariate time series and allow for a generic application to
time series learners, which is made possible usirggidual changeas discussed in the
next section.

3.2.4 Residual Change

The choice of the series in which to judge change is a critical choice with many change
approaches focusing on a change in the input data. However, no guarantee exists that
a change point in a time series represents a signi cant change in the accuracy of an
applied model, a far more useful perspective for learning di erent states in TCL. An

alternative approach is to focus omresidual changethe change in the absolute error

of a learner, aiming to capture as much information as possible regarding changes in
the relation between independent and dependent variables. The main advantage of
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this approach is that it can be applied to any learner in principle. Di erent forms of
residual change have been developed in the past [22, 106, 105, 146, 103]. However,
many change-point detection approaches assume a single or known number of change
points in a series and are less applicable to a priori change points or multivariate
series [241]. As we observe, residual change in the CDA literature [71] has been used
to drive decisions, such as forcing the training of a new model when a change was
detected in an absolute error series. However, driving decisions from change points
has the disadvantage that false alarms can be triggered if a change is inaccurately
detected, for example, when an out-of-sample residual increases though over- tting
rather than from a change in state. However, if it was possible to sequentially learn a
critical change threshold sequentially over time for a given learner, the risk of false
alarms might be mitigated.

3.2.5 Change as a Memory Concept

The concept of residual change has also been extensively researched in the CD
literature, where it is known asconcept drift (CD). Discussed earlier in this thesis,
CD has been used to drive simple memory cues in CDA. The idea is that di erent
forms of drift should logically illicit di erent memory actions, which can be harnessed
and expanded for TCL.

Concept drift is analogous to residual change in the CD literature, and relates
to a change in the relationship between the independent and dependent variables of
a given time series function. This is commonly used to infer whether an apparent
change in state has occurred, perhaps where inferred through a change in the input
distribution and/or through a change in the e cacy of the learner applied to it. For
instance, an apparent change may result from a sampling e ect or perhaps from model
over- t, which are both examples ofvirtual drift [234]. However, a genuine change
may occur in the underlying state of the input distribution, known asreal CD [194].
Both types of drift have been used to provide cues to CDA approaches. First, when
real drift occurs, adaptation should follow [194]. Second, whernrtual drift occurs,
model generalisation might be improved, or the data could be resampled [234] [70]
before training, which might be bene cial. Both cues have been used in CDA but
can also be used in TCL to act as a cue for richer, more interpretable state-oriented
memory concepts, rather than the minimalist and outcome-oriented responses that are
typical in CDA. However, driving decisions from change points has the disadvantage
that false alarms can be triggered, for example, in the case of virtual drift where
an out-of-sample absolute error increases though over- tting rather than from a
change in state. This might be mitigated by sequentially learning a critical change

68



Table 3.1: Adaptive Learning Based on Concept Drift

State Changed?
Yes No

Learner Yes Real concept drift Virtual concept drift
(Remember & Train) (Forget & Tune)
Absolute Error . .
Increased? NoO Recurrent concept drift | No concept drift
' (No Change) (No Change)

This table represents changes in the true state of a temporal series (top) as interpreted
using changes in absolute learner error (residual change, left). These concept drift
cues can be translated into memory cues for the continual learning problem to form

state-based memory cues for temporal continual learning.

threshold over longer periods for a given learner, which TCL, with its richer memory,
should ideally be able to support. If false alarms can be reduced through sequential
learning of thresholds, it may be possible to learn how the degree of changel CD)
in uences state-based memory addressing to make state-based remembering more
accurate and more interpretable. In additional to this, if the number of thresholds
needed can be minimised, be learned over the very long term, and be non-parametric,
this is clearly advantageous for TCL. Additionally, interpretingrecurrent CD (Figure
3.1) might also be translated to the TCL problem, where attention and balancing
between state-based memories might be introduced to improve state-based memory
recall.

The concept of real drift, referred to as residual change in this study, as a memory
cue is expanded on in Chapter 5.
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Chapter 4

TCL Remember and Recall Gates

This chapter introduces TCL remember gate and recall gates. These provide the
basis of the CLA framework, which is fully introduced in the next chapter. Section

4.2 discusses memory addressing concepts for recall, whereas Section 4.1 covers
remembering. Section 4.1.1 sets out the empirical case for a memory-recall gate
applied to noisy temporal datasets based on time series similarity. Section 4.2.1
presents the statistical case for a memory-remember gate based on residual change.

4.1 Memory Recall Cues

Time series similarity, particularly cross-sectional similarity, is a key concept for
TCL. ldentifying repeating patterns or distributions, or motifs, and judging similarity
between subsequences, past versus present, can form the basis for contextual memory
addressing, speci cally recall cues. This section examines several distance measures,
from which (dis)similarity is established in empirical testing. Tests are reported using
synthetic datasets to examine time-sequential similarity combined with cross-sectional
similarity.

4.1.1 Univariate Time series Similarity

Simple, univariate time series, time-sequential similarity is likely to be more important
for datasets with a smaller cross-sectional component (perhalds T). This describes
relatively simple time series problems where a less complex similarity approach might
be more appropriate. However, in the real world, many samples might exist at
each time point, adding a cross-sectional component to the problem that should be
accounted for. For TCL, it would be of varying importance to examine time-sequential
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and cross-sectional similarity, determined by the shape of the considered dataset. For
domains with fewer samples at each time-point (perhags T), time-sequential
similarity might be more important. For domains where many more instances exist
at each time point (i.e. N AAT), cross-sectional similarity might be more important.
Real-world datasets are noisy, and understanding how both time-sequential and
cross-sectional similarity are a ected by noise is therefore important. To allow these
perspectives to be tested, a stylised test dataset was created and used to assess how
di erent similarity approaches perform on controlled perturbations (which has been
noted to be very important [83]). In the next sections, testing is reported rst on
time-sequential similarity and, second, on both cross-sectional and time-sequential
similarity.

Univariate Experimental Setup

Stylised tests were designed to establish the e ectiveness of di erent univariate time se-
ries similarity approaches in dealing with noise while trying to identify time-sequential
pattern repeats (motifs). This involved observing the successful identi cation of
pattern repeats while avoiding spurious identi cation of patterns when no pattern
was present.

A simple sine wave was taken as @otif to identify and was repeated 20 times
at equal distances apart and was interspersed with normally distributed random
values between -1 and 1. This formed a time series of 2,000 data points in which
the motif was hidden. The 20 sine waves in the series were perturbed in a step-wise
fashion over 10 steps of increasing perturbation. Firstly, each wave was perturbed
by phase, stretching the sine waves by an increasing amount. Second, each wave
was perturbed by noise by introducing an increasing amount of random distortion
to the waves at each step. This was done for 10 steps in each dimension, creating a
10x10 grid of increasing perturbations. Cell1; 1 represented a test on the data with
no perturbation. Cell “10, 1+ was heavily perturbed by phase with no perturbation
by cross-section, while cell1; 10 had no perturbation by phase but was heavily
perturbed by cross-section. Each cell was used to test similarity approaches.

Each similarity approach was tested 100 times relating to each cell in the 10x10
perturbation grid. By taking the motif and calculating the distance between this and
the 20 perturbed sine waves in the series and then calculating the distance between
random numbers interspersing the perturbed sine waves in the series, two average
distance calculations were found for each measure at each point in the matrix: the
average distance between the motif and perturbed sine waves in the ser@g,., and
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Figure 4.1: Time-sequential Similarity Testing: Noise

Note: Perturbing by phase and noise. Time-sequential similarity tests, using a sine
wave as a motif, examined how the e ectiveness of the approach varied with phase.
The blue line indicates the motif, and red indicates a random variable. Top left:
Unperturbed sine wave (blue) interspersed with random variables (red). Bottom
left: Sine wave mildly perturbed by noise (blue). Top right: Sine wave moderately
perturbed by noise (blue). Bottom right: Sine wave heavily perturbed by noise (blue)
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Figure 4.2: Univariate Similarity Testing: Phase

Note: Perturbing by phase. Top: Unperturbed sine wave. Bottom: Sine wave heavily
perturbed by phase.
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the average distance between the motif and interspersing random numbeblggse :
D YDtrue DfalseYa (4-1)

whereD is a measure of the performance of the tested distance measurg,is the
full series standard deviation oD, and D~" p~ ne is a test statistic. Statistical
testing was conducted to test for the di erence of means (using tatest). Ideally,
an e ective distance measure should show a low di erence between the motif and
perturbed waves, whereas the distance between the motif and noise should be fairly
consistently high. However, as the perturbations of the sine wave increased, the
distance was expected to also increase, ideally in a strictly increasing fashion.

While many similarity approaches exist, ED was tested as a baseline with DTW
as a common benchmark approach, while the AE distance was examined following the
work by [221] but as a means of gauging distance between cross-sectional distributions.

Univariate Distance Measures

Four distance measures were used to calculate univariate distance. First, ED was
tested:

N
DEo 1N Q ED" Xi; Xy e (4.2)
i0

whereX ,, and X ; are time series subsequencds, is the dissimilarity, and N is the
number of samples to take. Second, the DTW distance is as follows:

N
Dotw 1N Q DTW Xy s Xy (4.3)
i 0

Third, AE reconstruction was used to calculate distance, similar to [221], and RelLU
were used in the encoder. The AE reconstruction loss function results in a form of
AE, sometimes known as a SAE, as follows:

N K

L 1IN QQ AXk;n XQn'Z weights Sparsity (4.4)
nlk 1

where is the coe cient for the L2 regularisation term, and is the coe cient for
the sparsity regularisation term based on Kullback{Leibler divergence [164]. The AE
distance calculation is as follows:

. N
Dhe RmiXie 1-NQ ED Xy a h Xeeee; (4.5)
i 0
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whereED " Xy;a h™ X eee is the reconstruction loss of the current inputX; is calcu-
lated as the ED, anda and h are the encoder and decoder functions, respectively.

Fourth, a DTW ltered AE distance, warp-AE, is introduced, which is intended
to result in a phase-invariant AE reconstruction. This was expected to result in two
bene cial e ects: gaining the bene ts of lower resource usage of AE compared to
DTW while bene ting from the phase-invariant loss of DTW:

N
Duwag "X m;Xte 1-NQ DTW X ;a h X eee: (4.6)
i 0
By adding the DTW lter before the reconstruction loss is calculated, it may be
possible to add a degree of phase invariance to the AE reconstruction loss. This is
tested later in this thesis.

Univariate Results and Discussion

The ED tests showed a fairly linear deterioration in similarity with both phase and
noise, as shown in Figure 4.3. This indicated a relatively stable relationship between
perturbation and distance in the univariate tests. DTW showed a slower deterioration
as the noise was introduced, indicating a greater invariance to these perturbations.
This was stable up to the fourth noise step, but from the fth, it became unstable,
showing random values to be more similar to the target pattern (see the values that
become negative at Step 5). The time dimension showed similar results with better
performance than ED up until the fourth step but with instability from the fth step
onward. This indicated that DTW was relatively phase-invariant versus ED but only
up to a point.

Both AE and warp-AE distance performed poorly on all univariate tests. The
motif was, on average, not discerned from the noisy subsequences. As AE is used to
reproduce a distribution, its poor performance in terms of discerning the univariate
time-sequential pattern (as opposed to the cross-sectional distribution) was noted.
It further implies that, for univariate pattern recognition, AE is a poor choice of
similarity measure for driving TCL memory gating.

4.1.2 Cross-sectional Similarity

Next, the tests were designed and conducted to gauge the e ectiveness of di erent
distance approaches when applied to time series cross-sectional distributions rather
than just univariate time series. This involved synthesising distributions with both

time-sequential and cross-sectional perturbations for skew. Speci cally, these were

75



Figure 4.3: Univariate Similarity Testing: Results.

Note: The chart shows the results from all cells iny,i. The y-axis is the distance
between the perturbed motif and the true motif minus the distance been the random
values and the true motif stated as an average. The higher the value, the greater the
e ectiveness of the distance measure. Note that ED and DTW are identical when
matching the perfect pattern repeats. The x-axis shows 10 steps of noise perturbation,
and the z-axis shows 10 steps of phase perturbation.
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tests to determine the similarity between the distribution of instances cross-sectionally
and time-sequentially. This is important because most real-world time series learning
problems have a more signi cant cross-sectional dimension (i.e. many instances at
each time point). For example, stock-related data in nancial datasets, credit-scoring
data, and datasets such as the UCI EEG database dataset, have at least 122 instances
at each time point. In this case, where cross-sectional data are more plentiful than
time-sequential data, it is likely to be more interesting to gauge a changing distribution
across the cross-sectional distributions at each time step than to gauge sequential
motifs. A stylised test dataset was generated to assess a number of time series distance
measures.

Cross-sectional Experimental Setup

For each distance measure, 100 di erent tests were conducted, this time on time series
cross-sectional distributions that were perturbed using skew. The motif was a 500x500
matrix, X , simulating a dataset with 500 time steps with each time step having

a 500-sample cross-sectional distribution. Using a functiad, a pseudo-random,
normally distributed variable y; was sampled for each time step, and in each time
step, this value was used as the mean from which to seed the 500 cross-sectional
samples. This same procedure was conducted to form the perturbed datg, , except
that, for the cross-sectional distribution at each time step, a pseudo-random, normally
distributed variable was sampled with a certain amount of skew imposed,ong, In
each test:

Xm "W N~ Long ®:*® (4-7)

where the mean is 1, and the standard deviation is 0:2. Cross-sectional
samples were skewed by another amountg,.ss®, as follows:

Xt ~Xt;i N Ayi; ;  Cross®- (48)

For each test, the parameters ;ong and cross Were increased with 10 steps of 0.1
each, in a range from 0 to 0.9, which resulted in a 10x10 grid,s, of test results of
di erent combinations of temporal and cross-sectional skew.

For each column in the grid, c;ss Was increased by 0.1, skewing the random
variables drawn for the time-sequential distribution by that value on which testing
would be conducted. For each row,cr.ss Was increased by 0.1, skewing the random
variables drawn for the cross-sectional distribution by that value. Elementcsi1
therefore represented an unperturbed distribution, whereas element ;.;o represented
a cross-sectionally unperturbed distribution (skew = 0) and a heavily skewed (i.e.
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perturbed) temporal distribution (skew = 1). In addition, 1010 represented a
heavily perturbed cross-sectional (skew = 1) and temporal distribution (skew = 1).
This created the example distributions for which the probability density functions
(pdf s) are shown in Figure 4.4.

Cross-sectional Distance Measures

As before, each similarity approach was tested, 100 times relating to each cell in

cs. However, in these tests di erences in distribution were estimated. The increases
in distance between motif and test distribution that were expected with each step
of perturbation were tested using the Mann-Kendall test [148, 116] to determine if
statistically signi cant monotonicity from increasing distance existed. Additionally,
the di erences between motif and perturbed distributions were independently exam-
ined (using a Kolmogorov-Smirnov (KS) test), to determine if the chosen distance
measures faced a trivial or non trivial task in calculating these distances.

Similarity approaches were adjusted to cope with the cross-sectional distribution.

This involved using a sampling based approach for ED and DTW.

Euclidean distance = Sampling-based ED was used to reduce processing time, only
selecting a subset oN randomly sampled instances fronX ,, and X ;, sampling over
rows, each of which represent di erent securities in the dataset, before comparing all
time series associated with each pairing:

. N ..
DEp K m;Xe 1N QEDXE, -p.; X, 0% (4.9)
i 0
whereD is the dissimilarity, N is the number of samples to take and,"De;r,"De
are random integers between 1 anD.

Dynamic Time Warping E ciencies were also introduced to DTW to reduce
some of the computational expense: applying traditional constraints to the warping
path [193, 179] and using a sampling-based implementation. Sampling-based DTW
was also used, only applied to a subset & randomly sampled instances fronX ,

and X {, sampling over rows, each of which represent di erent securities in the dataset,
before comparing all time series associated with each pairing:

N
D "X m:Xte 1N Q DTW Xy 0o Xtr,De*; (4.10)

i 0
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whereD is the expected distanceN is the number of samples, and,"De;r,"De are
random integers between 1 an@®. Note that this is a multivariate variant of DTW;
therefore, all related time series of every instance sampledXn,, are compared to
those sampled fromX ;. The mean sampled distance is used to determine the nal
DTW similarity.

A DTW setup was used that applied traditional constraints to the warping path:

. N A
Dotw KmiXe 1INQ DTW K Xye; (4.11)
i 0
where D is the expected distance andN is the number of samples in the sliding
window used.

AE Distance and warp-AE Distance As previously described, the AE distances
used were calculated in a generic manner, with the capability of reconstructing the
cross-sectional distribution of the data.

Testing for Similarity

It is possible to determine whether a distance measure has captured the increasing
degrees of perturbation by cross-section and time sequence, individually and in
combination. A highly e ective distance measure would show a strictly increasing
distance as perturbation increases. This can be approximated as a monotonicity, which
was tested using the Mann-Kendall test. A null hypothesisly p 0 indicated that

a similarity measure did not show a statistically signi cant monotonicity, while the
alternative hypothesis,H, px 0:0 indicated that monotonicity could not be rejected.
Rejection of the alternative hypothesis may indicate that a similarity approach is less
appropriate for use in TCL memory gates applied to noisy time-sequential data with

a cross-sectional component.

To sense check these distribution results, Kolmogorov-Smirnov tests were con-
ducted on each test to determine whether the perturbations resulted in statistically
signi cant di erences between distributions. Should these tests indicate little di er-
ence between distributions, it would also indicate that measuring distances between
di erent permutations should be fairly trivial. If the Kolmogorov-Smirnov test results
indicated a statistically signi cant di erence between distributions, it would indicate
that measuring distances is more challenging. The Kolmogorov-Smirnov test showed
statistically signi cant di erences in almost all pairings, indicating the di culty of
interpreting time series similarity with conventional approaches and that measuring
distances in this context is indeed non-trivial.
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Figure 4.4: Distribution Distance Testing: Results

Note: These charts show examples of probability density functionpd s) of randomly
generated, perturbed distributions used to test di erent similarity measures.
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Cross-sectional Results and Discussion

Cross-sectional testing produced greater insights than univariate testing, where
combining a cross-sectional distribution with a time-series distribution was likely to
be a more realistic case than perturbations of a simple univariate time-series formed
of a sine wave. Performance of the distance measures was also starkly di erent
when considering a cross-sectional element, with AE distance measures performing
particularly well.

Mann-Kendall p-values were calculated for all cases where positive monotonicity
was observed between Steps 1 and 5 and for the diagonal gf from 1 to 10.
This identi ed which approaches resulted in increasing distances with the degree
of perturbation (i.e. those that appeared to be e ective in identifying the target
distribution from the noise). In addition, AE and warp-AE showed the strongest
monotonicity in these tests, with the ED showing as the least strong. The results
are shown in Table 4.1. All approaches showed statistically signi cant monotonicity
at the 5% level for cross-sectional perturbation in ., indicating that all might be
used e ectively in TCL. However, in time-sequential perturbations in ;., only AE
and warp-AE showed a monotonic increase in distance as the perturbation increased.
The diagonal results were also tested and showed that only AE and warp-AE had
statistically signi cant monotonicity at the 5% level. The results more broadly showed
that distances plateaued cross-sectionally from Step 5.

These tests also showed that, in this setting, gauging distance time-sequentially is
more challenging for the approaches tested than gauging distances cross-sectionally.
First, given that many datasets in the real world come with a cross-sectional element,
and given the degree of monotonicity observed in the distribution testing, this indicates
that of all these approaches are likely to be suitable for application to TCL memory
gates, but the tests indicate that AE-based approaches are likely to be the most
e ective.
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Figure 4.5: Distribution Similarity Testing: Results

Note: These charts show how perturbing a random normal distribution time-
sequentially and cross-sectionally in uences similarity in a time series context.
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Table 4.1: Cross-sectional and Longitudinal Perturbation
Tests

Diagonal Monotonicity Test* (p-value)
ED DTW AE WAE
| na | na \ 0.0% | 0.0% |

Cross-sectional: Step 1-5 Monotonicity Test* (p-value)
ED DTW AE WAE
] 0.0% \ 0.0% \ 0.0% \ 0.0% \

Longitudinal: Step 1-5 Monotonicity Test* (p-value)
ED DTW AE WAE
| na | na \ 1.40% | 3.60% |

*Mann-Kendall p-value, na: wrong sign for monotonicity. Notes:
The results of monotonicity testing to examine whether calculated
distances increased as perturbation increased. The Mann-Kendall test
p-values are shown. First, the diagonal of the grid ;; was tested,
then the rstrow of 1. and rst column of .;. Na indicates that
the monotonicity had the wrong sign, implying an decrease in distance
as the perturbation increased.

A simple method of describing how similarity and abrupt change can be used
in memory gating for TCL is shown in Figure 4.6. In this example, Figure 4.6(1a)
shows motifs (sequential patterns) providing a recall cue, where contextual similarity
might prompt memory recalled from a memory structure. Figure 4.6(1b) shows how
change points could cause the remembering of memories in a memory structure. This
process of de ning states using the change in a learner's residual is described in this
chapter. Taking this simple framework, a description of how change might be applied
to TCL remember gates follows.

4.2 Memory Remember Cues

4.2.1 De ning States Using Residual Change

One approach to addressing the stability-plasticity dilemma is using a FC architecture
to learn this payo , with the signi cant disadvantage of complexity. An alternative is
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Figure 4.6: Temporal CL: Remember and Recall

Note: Simple sequential motifs driving TCL.
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to use a thresholding approach, which can be de ned by a single hyperparametég,i ,
denoting a con dence interval for change between temporal states or the marginal
benet of plasticity over stability. These ideas are related to CD [70] and have
partially been investigated in the CDA literature [71], but these ideas are expanded
here for application to TCL.

Assume we have a learner,g, parameterised by g, which can functionally
approximate each time-varying state in a time series but su ers from CF (i.e. it
cannot generalise over all states). We also assume that a state may reoccur at some
future time. This describes the idea of CD [70], where the target distribution may
change over time.

Change in the underlying function can be observed by identifying a change
point g in the out-of-sample absolute error process of g, an approximation of
the underlying function where the degree of chande can be de ned as follows:

D~ gS8t* s logdE g~d gy : (4.12)

What degree of change warrants remembering? Contrary to the principle of
consolidation [123], with all else equal, memory should be expanded at a rate that
achieves the highest marginal bene t given the available resources. This can be
described in terms of cost and bene t. What level of imperfection of a learner in a
given state warrants incurring the cost of remembering? This is a slightly di erent
twist on the stability-plasticity dilemma, where plasticity can be thought of as a
necessary cost for achieving CL, rather than as a bene t. If we now assume that the
parameters g. that are observed at the change pointg can be recalled when the
respective states reoccur, the marginal cosMC, per unit of g for remembering
these parameters can then be stated as follows:

MC f dcd ge; (4.13)

wherec is the cost in resources for remembering . If we assume memory recall and
remembering are perfect and error free, this implies that the highest sensitivity to
change would be better with all else equal:

argminf “dcd ge; (4.14)
g ;cBC

where C is the total amount of resources available. However, in a real-world context,
the change in g might not only re ect a change in the state but could also re ect
changes in the sampling error or another false signal. If we assume the learner
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generalises to the current state perfectly, the sampling error can be represented by
the following:

Dx AXt 1951’ Q IOg@(t 1~X t‘ ; (415)
X>X
where training data areX ; ; and the current input is X , while Dy represents the
sampling error in this discrete time step. This means that a state change poidti
can be de ned as g, which is adjusted forDy as follows:

JCrit B fADx L (416)

However, the problem is that inferringJc,i; is generally intractable. Fortunately,
regardless of the applied learner, a generic approach can be used to approxindate .
As we observe, a memory management framework can be logically derived from these
terms without needing to de ne or approximate a functional combination of these
two processes.

4.2.2 Learning Residual Change

Theoretically, for a fair model of a state, g is approximatelyi:i:d: with a zero-valued
mean. Therefore, the current model ceases to be a fair representation of the current
state when g exceeds a certain con dence interval, in turn implying either a change
in state, a sampling error, or a failure of the learner to generalise to the current
state. In other words, a material deviation of the level of g is enough to indicate an
important change in relation to dependent and independent variables that can be
used in memory addressing. This con dence intervallc,i; , represents a critical level
for g, indicating that a change point has occurred in the state:

- .. 1 + Cdcrii
M Tmﬁ : o3 ~ ;J - ep B;t Crit
ms m J B;t Crit 0 Bit @JCrit )

However, in the real world, ani:i:d: constraint to g is unrealistic; therefore, the
assumption of a Gaussian distribution is likely to be unsafe. If we relax tha:d:
constraint and consider alternative statistical interpretations of change ing, this
o ers di erent options for de ning and learning Jc;it :

(4.17)

YCentral limits and the law of large numbers: Normality with the passage of
time,
YAlternative parametric: Assumption of a distribution of g other than Gaussian.
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YNon-parametric:  ChebycheV's inequality.

First, the passage of time is important for the interpretation of g (i.e. the
number of samples,, in the vector g). Under the central limits, if we average ZI_B
over time, we would expect a convergence to the state (i.e. sample) variance and,
ultimately, the inter-state (i.e. population) variance over time. However, the law of
large numbers indicates that the mean of the temporal distribution tends towards the
population mean, which we might assume to be zero in the case of a learner residual
observed over time.

This indicates that change is easier to discern over longer periods of time. This
may present itself as a growing stability in a system driven by change points. As we
observe in later sections, this occurs in practice, in relation to the memory remember
gate proposed in this study (Figure 6.5). This has also been observed and used for
change-point detection in CDA approaches [71] but not to drive memory augmentation
for a CL problem.

Second, a simple parametric interpretation ofg (e.g. at-distribution) could be
used. However, this would require anticipating the standard deviation ofz as it
stepped forward out of sample. An error in this assumption could cause too many or
too few remember cues to occur.

Third, a non-parametric alternative is to de ne a con dence interval noting
Chebychev's inequality, de ned as , standard deviations:

2

K

B

P” 8 Ajcrit* B (4.18)

Given a simple statistical interpretation of g based on Chebychev's inequality,
this approach could be used in either early or late periods in the run time of a CL
approach. In turn, this might allow critical levels to be determined in earlier and
later periods. Using this principle, it is possible to leard¢,y as a non-parametric
threshold.

In addition to considering Jci to be a critical level, it can also be thought of
as a hyperparameter of a CL system, which is possible to learn (or tune) over time.
This learning process should aim to nd an in ection point forj ¢, that produces
greater empirical net rewards from any nal modelling outcome. Thereforgc,; can
be optimised at every time step to result in a level of sensitivity for remembering that
forms an external memoryM , resulting in the lowest empirical forecasting error for
the CLA approach over the study term until time T
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Jere  argminf X jcri *; (4.19)

jcrit >jgrid
wheref is a CL approach expressed as a function of the input series ajgl ,
yielding g (the absolute error of the base learner at time). Moreover, jgrid is

a multi-point, equidistant set between the minimum and maximum values ofg,
essentially a discretisation of the observed distribution of .

4.2.3 Stability-Plasticity Threshold: Complexity

Generally, CL requires a higher level of complexity when compared to other ML
approaches. Statistical learning theory notes that complexity comes with a cost [88].
If an approach proves too complex based on the number of training examples and
distribution of the test data, the approach will over-t with rami cations for the
generalisation out of sample. In ML (and deep learning, particularly), this is an open
discussion [15, 83], but it seems wise to adhere to the principle of parsimony in the
design of CL approaches.

A major advantage of using a hyperparameter-driven remember gate and not
driving remembering using an FC approach is the natural reduction in parameters
and model complexity. We can informally consider this question in the context of
the Vapnik-Chervonenkis dimension (VC) [225], noting the denominatas, ¢ of the
famous VC dimension formula: and the commonly used rule of thumkhe rule of 1Q
describing the minimum ratio of training cases to parameters.

If evc remains low, VC dimension suggests that fewer training instances can be
used to result in the same con dence in a learner. However, in the real world, this
cannot be assumed. While an approach could employ a more complex learner in order
to generalise, this would reduce optimism in the approach. The alternative is to use a
more simple learner and to respond to changes in residual by training the learner. An
extension to this case is to use residual change to form a memory structure to allow
long-term generalisation with a lower number of parameters and higher optimism.

As an example, DNC [87] has approximately 891,000 parameters [66]. In many
real-world datasets, there are simply not enough data points to adhere to tllee rule
of 10. A working example can be considered to illustrate this point and to explain
how the proposed TCL memory gates may have a signi cant complexity bene t.

In a nancial context, around 3,000 investable equity securities exist in emerg-
ing markets, most with a ve-year history, which is approximately 15,000 training
instances. A commonly available commercial data-vendor, S&P CapitallQ, supplies
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as standard 2,385 separate data items with a weighted average annual frequency of
38 observations per annum. This results in around 90,630 observations per security,
per annum, over a period of ve to ten years.

In this case, model complexity might be up to 1,500 parameters. This is signi -
cantly less than DNC's parameterisation and the parameterisation of many DNNs, but
IS su cient to parameterise a simpler base learner and tune simple hyperparameters.
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Chapter 5

Continual Learning Augmentation

This chapter introduces CLA, a TCL framework. Section 5.1 relates the concepts of
remember gates and recall gates together into the CLA framework using instance-
based similarity approaches (ED and DTW) applied to sliding window base learners.
Section 5.2 extends CLA to AE similarity approaches applied to sliding window and
sequential-base learners.

5.1 CLA: Sliding Window Learners and Instance-
based Similarity

In this section, a TCL framework is developed based on the remember and recall
concepts discussed earlier in this thesis: CLA. The CLA memory augments a conven-
tional learner for time series regression. The aim is to allow well-understood learners
to be used in a CL framework in an explainable way. The memory functions of
CLA are applied as a sliding window, stepping forward through time over the input
data of one or more time series. The approach is initialised with an empty memory
structure M after a base learner has been chosen to augment,parameterised by

g. This base learner can be a sequential approach or a sliding window approach
and can be applied to a multivariate input series< , with K variables overT time
steps. The chosen base learner produces a forecast val(ie in each period over
time. A remembergate,j, appends a new memoryl ™ to M on aremember cue
de ned by the change in the base learner's absolute error at the time poitit A recall
gate g balances a mixture of base learner and memory forecasts to result in the nal
outcome ofy{*;. Figure 5.1 shows the functional steps of remembering and recalling
learner memories.
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Figure 5.1. Columnar Architecture

Note: (a) A base learner, g, parameterised by g, is run, stepping forward through
time, training at each time step. (b) This base learner is structured as a column
containing parameters, g, and a contextual referenceX ;. Initially the base model is
run as normal, completing a forward pass with the input dataX ; to forecast /g% 1).
(c) As time steps on,y; 1 becomes observable and a backward pass is conducted where
the absolute error of the base learner,s , determines if a change point has occurred,
On a change, the remember gatg copies the base learner column to a new memory
column in M . The base learner is then trained. (d) Over time more change points
will be detected and more memory columns will be added. At each time step, all
memory columns are run using the current input dataX ;. The forecast results of
all the columns (including the base learner column) are balanced by the recall gate
g which uses the similarity of the current input, X, ; with the contextual reference
of each memoryX ,, to weight the output of each column,yy and ¢y, 1 of M , to
result in $- 1.).
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5.1.1 Memory Management

Repeating patterns are required in the input data to provide memory cues to remember
and recall di erent past states. Model parameters are trained in a given past state,
m,» Which can then be applied if that state approximately reoccurs in the future.
When CLA forms a memory, it is stored as a column in an explicit memory structure,
similar to [38], which changes in size over time as new memories are remembered and
old ones are forgotten. Each memory column consists of a copy of a past base model
parameterisation, ,, and the training data X , used to learn those parameters:
"X'm; me. As the sliding window steps into a new period, CLA recalls one or more
model memories by comparing the latest input dataX ;) with the training data
stored in each memory columnX ,,). Memories with training data that are more
similar to the current input series have a higher weight applied to their output.,.: 1)
and therefore make a greater contribution to the nal CLA output % 1).

5.1.2 Remember Gate

Remembering is triggered by changes in the absolute error series of the base learner,

B, as the approach steps forward through time. These changes are assumed to be
associated with changes in the state, which are indicated by the functign which
de nes a change and stores a pairing of the parameterisation of the base modgl
and the contextual referenceX ;. Figure 5.1(c) shows how a change is detected by
function j from a backward pass, which then results in a new memory column being
appended toM :

M TOX 0 g0 X o meZ: (5.1)

Immediately after the remember event has occurred, a new base model is trained on
the current input, overwriting 5.

Theoretically, for a fair model of a state, g is approximatelyi:i:d: with a zero-
valued mean. Therefore, the current base mode ceases to be a fair representation of
the current state when g exceeds a certain con dence interval, implying a change
in state. This is interpreted as a non-parametric threshold for the reasons described
in Chapter 4. As discussed in Chapter 2, thidc,iy represents a critical level for g,
indicating a change point has occurred in the state. Memories are only stored when
the observed absolute error seriesg , spikes above a critical levelJcy :

The term Jc,i is a hyperparameter, optimised at every time step, to result in a
level of sensitivity to remembering that forms an external memon , resulting in
the lowest empirical forecasting error for the CLA approach over the study term until
time T:
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Algorithm 1 Remember Gatg

Require: Initialise memory structure M
Require: Initialise Jciit
Require: Train base learner g ¢
# Step through time, period by period
for all time stepst=1in T do
# Base learner is run...
) "Xt Bt 1°
# y; becomes observable

#
#o CLA back-pass starts ............
Bt L Yy

if SB;t L Iciit then
Xm Xt 1 store raw training instances
append learner memory X ,; gt 1* to M
end if
# CLA Learns Jcit sensitivity
Jerit learn and updateJc i
Bovrriiinn, CLA backpass ends ............
#
Bt Xt git® overwrite base learner
end for
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Jerit argmin "X ¢;jcrit *; (5.2)
jcrit >igrid;Mc @

wheref is the CLA approach expressed as a function of the input series ajgli ,
yielding g (the absolute error of the base model at tim¢). In addition, jgrid is a
20-point equidistant set between the minimum and maximum values og . M is the
number of memories in the memory structureg is the marginal cost of a memory
and C is the total cost in resources available.(Please see 4.2.2 for a discussion of
marginal cost in relation to remembering). This function, in e ect, balances the
stability-plasticity of the CLA framework to the optimum empirical level at each time
point.

5.1.3 Recall Gate

The recall of memories takes place in functiog, which calculates$,.~; 1., a mixture
of the predictions from the current base model and model memories:

P OX M e (5.3)

The mixture coe cients are based on comparing the similarity of the current time-
varying context X ; with the contextual referencesX ,, stored with each individual
memory. Memories that are more similar to the current context have a greater
weight in the nal modelling outcome of CLA. To calculate contextual similarity,
DTW is used. However, multivariate DTW is computationally expensive [199]. In
addition to applying traditional constraints to the warping path, a sampling-based
implementation reduces the expense further. (This is explained in detail earlier in
this thesis). The mean sampled distance is used to determine the similarity between
the current context and that of each memory.

In addition, DTW is only applied to a subset ofN randomly sampled instances
from X , and X ¢, sampling over rows, each of which represents di erent securities in
the dataset:

N
D "X m:Xte 1N Q DTW Xy, -0e; Xt De*; (5.4)
i 0

whereD is the expected distanceN is the number of samples, and,"De;r,"De are
random integers between 1 an®.
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5.1.4 Balancing

Two di erent approaches to memory balancing were used: rst, théest individual
(i.e. lowest distance) model memory:

Yt 1 Oest Xt;M e, (5.5)

whereggest IS an output function to select the model memory that is most similar to
the current context:

argminD X ;X ¢ (5.6)
m

where ¥, ; is the regression output. Second, aimilarity-weighted ensemble of all
model memoriesgsimweight X t;M ¢, is as follows:

M DX ;X o
% X me 1 — ; (5.7)
e le ‘ " Pm 16 Xm;xt'

whereM is the number of memories in the memory structurd! . As a past state is
unlikely to perfectly repeat, a continuous function for balancing model memories is
more likely to generalise better [87] than choosing the best single model (which is
indeed found to be the case).

5.2 CLA: Recurrent Learners and Autoencoder
Similarity

A number of re nements were made to CLA to allow recursive and sliding window

learners to be augmented using the architecture. A schema of the overall approach

is shown in Figure 5.2. The speci c re nements made to CLA are explained next.
Figure 5.2 shows the functional steps of remembering and recalling learner memories.

5.2.1 Memory Management Based on AEs

As the sliding window steps into a new period, CLA recalls one or more learner
memories by comparing the latest input data X ;) with a representation of the
training data stored in each memory columnX ). Memories with training data
that are more similar to the current input series have a higher weight applied to their
output (¥m:+ 1) and therefore make a greater contribution to the nal CLA output

(9 1)
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Figure 5.2: Continual Learning Augmentation Architecture

Note: Continual learning augmentation architecture. Backward pass: extractg: 1,
st 1 from the base learner, and; becomes observableRemember gatej, assesses
Sg:t 1Sor change. Memory column is added t& . Forward pass: outputs of learner
memories and base learner are balanced by trexall gate g.
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5.2.2 Remembering

Figure 5.2 shows how a change is detected pywhich then results in a new memory

column being appended tiM :

M TR e Ry weZ

(5.8)

Algorithm 2 Remember gatg

Require: Initialise memory structure M
Require: Initialise Jcit
Require: Train base learner g ¢
# Step through time, period by period
for all time-stepst=1in T do
# Base learner is run...
W “Xt1; Bt 1°
# y; becomes observable

#
Hoiiien CLA backpass starts ............
Bt L Yy

if SgitLJcrit then
m X 1 representation of training data
append learner memoryAﬁm; gt 1° tOM
end if
# CLA Learns Jcit sensitivity
Jerit learn and updateJci
#o CLA backpass ends ............
#
Bt Xt git® overwrite base learner
end for

5.2.3 Autoencoder-based Recall Gate

The recall of memories takes place in the recall gatge which calculates$y,.- 1., a
mixture of the predictions from the current base learner and from learner memories:

Pr 1. GXM e

(5.9)

The mixture coe cients are derived by comparing the similarity of the current time
varying context X ; with the contextual referencesk ,, stored with each individual
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memory. Memories that are more similar to the current context have a greater weight
in the nal outcome of CLA.

5.2.4 Recall: Testing Measures of Similarity

Several approaches for calculating contextual similarity are tested separately, using
the CLA approach. Each is used to de nek.,, either by simply storing past
training examples or by using a process of contextual learning, essentially learning a
representation of base-learner training data. .

ED and DTW are applied rst. Both approaches requireﬁm to be raw training
examples, which are required to be stored in each respective memory column, making
both approaches relatively resource-hungry. Second, AE distance is used through a
process of contextual learning. Rather than needing to store many training examples
in @ memory column, only the AE parameters are needed to form a reconstruction of
the training data with the disadvantage that an AE must be trained in every time
step. Third, a DTW ltered AE distance, introduced earlier in this thesis, is used:
warp-AE. Again, an AE needs to be trained at every time step, but DTW processing
expense is reduced because it is only run on AE reconstructions. We describe each
approach in turn.

As described earlier in this thesis, ED and DTW are applied only to a subset of
N randomly sampled instances fronk » and X , sampling over rows, each of which
represents di erent securities in the dataset:

. N ..
Dep Rm;Xte 1NQEDXE, -p.: X, 0. (5.10)
i0

. N ..
Dotw “Rm; X 1IN QODTWAX%;H»D.;XWAD& (5.11)
|
where D is the dissimilarity, N is the number of samples, and,"De;r,"De are
random integers between 1 an®.

The AE distance is used in a similar fashion to Aljundi et al. [5], using ReLU to
avoid over- tting. However, the use of AEs in CLA is di erent. Moreover, AEs are
used for contextual learning for memory management to cope with noisy, real-world,
multivariate time series. The use of ReLU aims to allow generalisation over the noise
of otherwise similar time series subsequences. Additionally, the similarities returned
from the AE implementation of CLA are also used to balance memory weighting:

. N
Dae " Rm:Xie 1N Q ED X a h™Xees; (5.12)
i 0
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whereED " Xy;a h™ X eee is the reconstruction loss of the current inputX; is calcu-
lated as the ED, anda and h are the encoder and decoder functions, respectively.
warp-AE is designed to bene t from the lower memory usage of AEs compared to
DTW while bene ting from the phase-invariant loss of DTW:

. N
Duwae Rm;Xt* 1-NQ DTW X;a h Xyees: (5.13)
i 0

These (dis)similarities are used to determine memories to recall frokh and to
determine how to weight the contribution of each memory for the nal outcome of
CLA, ¥ 1.. These dierent similarity functions were each tested in the memory
recall gate for CLA, in turn, gaining new insight concerning the e ectiveness of each
similarity approach in the CL system, when applied to a complex multivariate time
series problem.

5.2.5 Balancing

The base learner and all recalled memories are weighted by similarity to produce the
nal outcome of CLA, using the recall gateg"X ;M e:

M IﬁAﬁ .Xt.
% X me 1 . ; (5.14)
t 1 le ts m Pm 16 ﬁm;xt.

where M is the number of memories in the memory structurél . The previous
research indicated this was the most powerful approach over selecting the best single
memory [172]. (Notably, both balancing approaches signi cantly outperform equal
weighing of all memories, indicating that CLA is gaining signi cantly more than a
simple ensemble e ect).
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Chapter 6

Experimentation

This chapter introduces a testing framework for TCL and then reports experimentation
using CLA applied to a real-world, temporal dataset with a large cross-sectional
component: international and emerging equity stock selection simulations. Section
6.1 describes the development tools used in experimentation. Section 6.2 proposes
a testing framework to benchmark the performance of TCL approaches. Section
6.3 introduces and reports experiments on an international equity dataset, using
CLA con gured with instance-based similarity approaches and sliding-window base
learners. The experimental setup, results, and discussion are detailed. Section 6.4
introduces and reports on the experimentation on an emerging market equity dataset
and uses CLA con gured with AE similarity and recurrent-base learners. Again, the
experimental setup, results, and discussion are detailed.

6.1 Tools and Software

MATLAB, Microsoft .NET, Excel, and SQL Server databases were used to drive
experimentation. MATLAB's Deep Learning Toolbox was used for implementations
of FFNNs, LSTMs, and AEs, whereas the functions for CLA were all developed from
rst principles and were encapsulated in MATLAB classes. Microsoft .NET was used
to process data before parsing to MATLAB for analysis. Extensive programming was
required in .NET and MATLAB to this end, including a trading simulation engine.
Signi cant e ort was expended for sanity checking results, including unit-testing and
diagnostics in the code to avoid classic errors, such as data snooping. In addition, SQL
Server was extensively used with several extraction scripts written for this purpose.
Microsoft Excel was also used to shape and perform minor processing of the data,
whereas MATLAB was also used for the statistical analysis of the results.
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6.2 Testing for Augmentation Bene ts

In this section, a framework for analysing the empirical results of TCL is discussed.
This allows for the development and testing of gating that is applied in TCL when
augmenting generic base learners in later experimentation. First, the simulated
investment performance of a strategy is often used as a benchmark for examining
investment models. A statistical framework has been developed in the nance
literature to allow robust testing of such performance, which is discussed in this
section. Second, a simple framework for examining the augmentation bene t of an
approach is introduced.

6.2.1 Investment Returns as a Benchmark for TCL

The return of a strategy being non-zero can be tested using a simple ratio of risk to
return, the Sharpe ratio [201]. A higher Sharpe ratio indicates higher returns per unit
of risk (i.e. to a statistically signi cant level); therefore, a higher Sharpe ratio indicates
a superior strategy. The Sharpe ratio can be tested for statistical signi cance, with
the null hypothesisHy p 0O or the strategy return is not statistically signi cantly

di erent from a return of zero, whereas the alternative hypothesis isl, px 0:0. This
uses a non-centred studerii-test, with N 1 degrees of freedom [201]. Second, we can
test how a TCL approach might augment a base learner by comparing the performance
of the augmented learner with the unaugmented learner using amformation ratio
(IR), which we tested. These approaches are well known in the nance literature.
Much debate has ensued over controlling statistical testing for various violations that
nancial return data present [143]. We review each measure in turn and how they
are used to benchmark performance in experimental testing in this thesis.

Statistical Testing: Outright Bene t

To test whether the total outright performance of a strategy is statistically signi cant,
a Sharpe ratio is calculated. This can be translated into &statistic and tested with
the null hypothesisHy, p 0, or the outright bene t is not statistically signi cantly

di erent from a return of zero, whereas the alternative hypothesis i$l, p x 0:0.
First, the strategy returns and standard derivations are needed. The annualised total
return (TR) is as follows:

n
T Rp M . 1 r p’| . Ta "‘Tperiod l; (6 . l)
i1
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whereT, is the number of years over which returns were generatag,;. The annualised
excess return is the following:

n
Rp ML rpi reelaend (6.2)
i1
wherery,; is the risk-free rate. The standard deviation of the returns is as follows:

6 —
A n

b A Q rpi re; (6.3)
i1

where Tperiod IS the number of observations per annum. The Sharpe rati§R, is as
follows:

SRy, 1000 Rpe~ p: (6.4)
In addition, the t-statistic is commonly expressed as follows [201]:

»

tSR SRp Tperiod; (6-5)

A t-test can be conducted where the null hypothesis 8o p 0:0 (i.e. the excess
return is not statistically signi cantly di erent from zero), whereas the alternative
hypothesis isH, px 0:0. The p-values can be stated for eactrstatistic given.

Statistical Testing of Continual Learning Augmentation Bene t

It also useful to test the performance of an augmented learner when compared to
an unaugmented base learner to understand more about the bene ts or drawbacks
of augmentation. To do this, we can take the relative return (RR) of the simulated
performance of an augmented learner relative to the simulated performance of an
unaugmented base learner:

n
RRp M1 I'p;i"“"\l Moie 1 (6.6)
i1
wherer,; is the return of an augmented learners and,; is the simulated return of
an unaugmented base learner. The standard deviation of the relative retuRR, is
known as thetracking error (in this case, it is not annualised):

27
TE, A Q71 rpe~"1 ryjee: (6.7)
i1

102



Similar to the Sharpe ratio, this can be expressed as a ratio, an IR, from which
a t-statistic can be derived and on which a furthet-test can be conducted, where
the null hypothesis isHy; p 0:0 (i.e. the augmentation bene t is not statistically
signi cantly di erent from zero), whereas the alternative hypothesis isH, px 0:0:

IRy, 100" RRpe~TE; (6.8)
The t-statistic can be expressed as follows:

»
tir IR p"'AT Ep Tperiod.: (69)

Consistency of Augmentation

As well as testing the overall average augmentation bene t in terms of simulated
returns, we can also test the consistency of any augmentation bene t using thé
rate of the relative returns, RR,. This is stated as the percentage of time pointg,

in T, where an approach delivers a positive bene RR, AO: pctP os This provides
an understanding of the consistency of the bene t. For instance, if the returns were
bene cial from an approach tested over 10 years, but all those returns came in just a
few periods, it might indicate an unstable result.

The sign test [40] that is used to statistically test the hit rate is a non-parametric
test of limited statistical power and tends to be used in conjunction with other tests
and observations. The null hypothesi¢l, p 0:50 implies that the strategy does not
produce a hit rate that is di erent from a 50/50 split between positive and negative
returning periods, while the alternative hypothesis i1, px 0:50.

Cross-sectional Augmentation

It is also common practice in nancial analysis to examine the cross-sectional perfor-
mance of a model, where instances in the cross-section tend to be di erent securities.
This can be approached using a trading signal (or factor) calculated for each security
and by sorting all securities by this signal at each time point independently across the
term of the study. The returns of di erent quantiles can be calculated and assessed
at a given frequency of rebalancing. This allows the analysis of a signal where the
highest quantile in the sort order is expected to generate the highest return, and
the lowest quantile is expected to result in the lowest return. Deciles are typically
used. (See [58] for an exhaustive description of these techniques.) It is possible to
examine these deciles for monotonicity, where a strictly increasing pattern is ideally
expected from decile 1 (lowest forecast return) to decile 10 (highest forecast return),
for example. This in turn can be statistically tested in two ways.

103



First, the Mann-Kendall, non-parametric test for monotonicity can be used. The
Mann-Kendall test is commonly employed to detect monotonic trends in environmental
time series. The null hypothesidd, is that the data come from a population with
independent realisations and are identically distributed. The alternative hypothesis
H, is that the data follow a monotonic trend. Second, a line of best t is plotted
across the return deciles, and this is assessed usingFatest whereHg, 0 (i.e.
no di erence exists between the slope and interceptl, x 0. These tests can be
conducted where the outright bene t tests are not conclusive to give an impression of
whether any augmentation is occurring.

6.2.2 Augmentation Cost/Bene t

To determine whether applying augmentation is bene cial (or even sensible), it is
important to understand the cost and bene ts of augmentation wrt to the base learner
to be augmented. This dynamic can be partly described by th@ugmentation slopge
a simple approach introduced in this section.

If a model is to be bene cially augmented in any way, the base learner must be
less than perfect. This is simply because augmentation, unless perfect itself, would
detract from model accuracy. The error of the augmentation approachy, , must not
exceed the error of the base modelg, and any bene t of augmentation,og, :

m @g ®pm: (6.10)

Generically, the e ectiveness of an augmentation approach can simply be de ned
by the line of best t of gg and g. This can be used to determine the break-even
point of the augmentation bene t, which is explained in terms of the base learner
error. The intercept term \ and augmentation slope \ express a function of
augmentation bene t. Moreover, \, is the xed bene t of augmentation, whereas
the slope \ represents the combined error distributions for the base learner error
and augmentation error. Although the intercept is more easily interpreted, the slope
shows the change in augmentation bene t wrt the level of accuracy of a base learner.
This dynamic is particularly important if the following criteria are true:

1. The base learner requires changing initialisation weights or hyperparameters if
training is non-convex.

2. The learner is applied to di erent datasets, across which errors may vary.

The less accurate and broader the range of the error distribution of the base
learner, the more potential exists for augmentation with all else equal (Figure 6.1),
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Figure 6.1: Augmentation Slope

Note: (Top-left) Interplay between the base learner and augmentation approach is
shown as a stylised cone anchored by the red square, denoting a \perfect" model with
0 where the augmentation can only add to the model error. The purple square
denotes thebreak-evenpoint, where the base model error equals the error augmenta-
tion. The green square is the point of rational augmentation, where augmentation
bene ts the base learner by a good margin. (Top-right) The degree of augmentation
can be judged by the intercept and (Bottom-left) theaugmentation slope A negative
slope implies a stronger augmentation bene t for every increase in the base learner
error. (Bottom-right) It may be possible to recognise conditions under which the
base learner error increases, which allows the selective application of augmentation.
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implying that a negative slope coe cient ( ) is an expected outcome. This is
referred to as theaugmentation slope hypothesisvhich can be tested by statistically
testing the line of best t between the augmentation error and base learner error
using anF -test whereHo: 0 (i.e. no di erence between slope and intercept) and
Ha: xO0.

This simple model of augmentation can be used to test the e cacy of an aug-
mentation approach, where the intercept and slope can be considered to have a
t-distribution, making it possible to test the signi cance of the standard error of
these coe cients. It may also be possible to anticipate the break-even augmentation
of a CL approach applied to a certain dataset, which would further imply that the
meta-learning of an augmentation bene t might be possible in an end-to-end CL
framework. As we observe, this can approximately be achieved using a threshold
value Jg;it -

6.3 Sliding Window Learners and Instance-based
Similarity
6.3.1 Experimental Setup

The CLA approach was used in a regression task to forecast future expected returns of
individual equity securities to drive an equity investment simulation in international
developed and emerging market equities, a broad universe of opportunities. This is a
cross-sectional forecasting task using two types of regression base learner: an FFNN
(CLA-FFNN) and a linear (CLA-LIN) model. Moreover, DTW was taken as the
similarity approach to drive the recall gate. Di erent memory-balancing approaches
were also tested. Stock-level characteristics were used as the input dataset to batch-
train both learners over all stocks in each period, forecasting @$%otal returns 12
months ahead for each stock. When a forecast was in the top (bottom) decile, it
was interpreted as a buy (sell) signal, and the corresponding simulated positions
were taken in a crawl-forward fashion to result in indicative investment returns. The
construction of the dataset is described, and the experimental setup is explained.

Dataset

Stock-level characteristics are commonly expressed usifagtors [61], and although
CLA is designed as a complete reassessment of quantitative nance modelling ap-
proaches, factors are used here for comparative purposes. These were estimated
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in-sample at each time step by regressing the style factor excess returns against each
stock-level USD excess return stream:

Fi:t it MKT;iit XMKT:t V ALt XV ALt iit s (6.11)
wherer;, is the excess return of stock in period t, Xyxr:t IS the excess return of the

All Countries World Ex-USA Equities Index, and xy a..t is the relative return of the
All Countries World Ex-USA Value Equities Index.

Simulation Setup

Stock-level factor loadings populate a matrixX , which comprises the input data.
Each row represents a stock appearing in the index at tinte(up to 4,500 stocks), and
each column is related to a coe cient calculated on a speci ¢ time lag. In addition,

X resulted from winsorising the raw input to eliminate outliers. An FFNN was
trained in each period by separating the input data into training, cross-validation,
and testing sets in 75/5/20 proportions. Separately, a simple linear regression learner
was trained on 100% of the training data available at every time step. Long/short
model portfolios were constructed every six months over the study term, simulating a
rebalance every six months, using equally weighted long (buys) and short positions
(sells). The simulation encompassed 4,500 international equities covering more than 30
countries across developed and emerging markets, corresponding to the All Countries
World Ex-USA Equities Index between 2001 and 2017 To account for the DTW
sampling approach used, multiple simulation test runs were conducted for each test.
Fifty simulations were run per test for this purpose. Both thebestand separately
similarity-weighted balancing approaches were tested. Testing was rst conducted to
investigate whether the results for CLA exhibited only an ensemble e ect. An equally
weighted balancing approach was also tested and generated weaker positive TRs
relative to both the bestand similarity-weighted balancing approaches, demonstrating
that CLA exhibits more than an ensemble e ect.

Learner Setup

Both base learners were trained on cross-sectional data to give a simple model of the
form:

E'Re X (6.12)

INote that the rst 24 months were used as a training period while testing, which was entirely
out of sample and free from known data snooping biases, which started in 2003.
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whereE"Re is the expected return. The CLA-LIN base learner consisted of simple
linear parameters, , while the CLA-FFNN base learner was a shallow neural network
approach. Both were trained using an L1 loss function. The CLA-FFNN consisted of
one hidden layer of 10 units and sigmoid activations. Tuning measures were tested,
such as testing di erence activations, the hidden layer size, depth, and L2 versus L1
loss functions. The bene ts were marginal.

6.3.2 Simulation Results
Long Only Tests

The CLA results for long and long/short simulations showed a signi cant return
bene t over FFNN- and linear-base models, whereas tests of balancing approaches
showed that the similarity-weighted approach outperformed thebestapproach. Long
only tests produced positive absolute median TR (Figure 6.2 left) with statistically
signi cant Sharpe ratios (a statistic representing risk-adjusted TRs) at the 5% level
or better, across all tests, indicating that the overall results of the CLA augmented
learners were bene cial (Table 6.1(a)). On the basis of the median results, the CLA-
FFNN produced better TRs than the CLA-LIN. The results for di erent balancing
showed that the similarity-weighted approach outperformed thebest approach for
CLA-FFNN and for the CLA-LIN base learners in terms of TRs.

Next, the augmentation bene t was considered (i.e. when CLA-FFNN and CLA-
LIN were compared to simple base learner performance; Table 6.1). While both
CLA-FFNN and CLA-LIN augmented base learner performance, CLA-LIN generated
a higher RR (Figure 6.2 right). For the similarity-weighted balancing tests, the
t-statistics of the IR were statistically signi cant for the median results at the 10%
level or better for the FFNN tests and linear test. Sign tests on the augmentation hit
rates for these tests were also statistically signi cant at the 5% level.

However, for the best approach tests, augmentation of both CLA-FFNN and
CLA-LIN did not produce IRs with statistically signi cant t-statistics, although
the hit rates for both tests were 76.5% and 60.8%, respectively, with statistically
signi cant p-values at the 5% level from aign test This indicated that augmentation
was evidenced but at a weaker level than faimilarity-weighted tests.

Of all the tests conducted at this stage, the strongest augmentation bene t by
return alone was for CLA-FFNN, using similarity-weighted balancing, generating
1.85%, followed by CLA-LIN using similarity-weighted balancing at 1.77%. It is also
notable that all sign tests for augmentation across all median tests were statistically
signi cant at the 5% level, with CLA-LIN generating a 100% hit rate insimilarity-
weightedtesting. The positive performance of both CLA-FFNN and CLA-LIN tests
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indicates that the CLA approach augmented both types of learner e ectively.
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Table 6.1: Long Only Simulation Tests, DTW, FFNN/Linear Base Learner, Similar-
ity/Best (2002-2017 simulation tests)

a) CLA Result: Total Return b) Augmentation: Relative to Base
Learner
Obs T TRp p SRp tsr P RRP TEp |Rp tir P
1 2 3 4 5 6 7
Min 50 187 8.80% 5.82% 0.63 2.48 1.39% -2.67% 1.09% -1.08 -4.25 0.00%
Median 50 187 13.19% 6.39% 0.84 332 0.11% 1.05% 1.66% 0.27 1.08 28.17%
3 Mean 50 187 12.90% 7.00% 0.75 2.97 0.33% 0.97% 2.37% 0.18 0.70 48.56%
& Max 50 187 15.68% 8.61% 0.73 2.90 0.42% 480% 4.11% 0.49 195 5.22%
pctPos pctNeg p
Hit Rate 50 187 76.5% 23.5% 0.0%
% a) CLA Result: Total Return b) Augmentation: Relative to Base
T E Learner
5‘ a] Obs T TRy p SRy, tsr p RR, TE, IRp tr p
O 1 2 3 4 5 6 7
Min 50 187 11.10% 5.27% 0.87 3.42 0.08% -2.71% 1.48% -1.83 -3.18 0.17%
Median 50 187 14.11% 5.81% 0.99 3.89 0.01% 185% 1.81% 1.02 1.74 8.36%
% Mean 50 187 13.93% 5.93% 0.95 3.77 0.02% 1.71% 1.99% 0.86 1.46 14.50%
= Max 50 187 15.36% 8.12% 0.76 3.02 0.29% 487% 4.04% 1.21 2.02 4.51%
%) pctPos  pctNeg p
Hit Rate 50 187 90.1% 9.9% 0.0%
a) CLA Result: Total Return b) Augmentation: Relative to Base
Learner
Obs T TRy p SRy, tsr p RR, TE, IRp tr p
1 2 3 4 5 6 7
Min 50 187 8.26% 5.97% 0.58 2.28 2.39% -2.24% 1.12% -2.01 -3.48 0.06%
Median 50 187 11.12% 6.36% 0.72 2.84 0.50% 0.37% 1.48% 0.25 0.43 66.85%
3 Mean 50 187 11.30% 6.70% 0.69 2.74 0.68% 0.52% 1.91% 0.27 0.47 64.14%
& Max 50 187 14.67% 8.59% 0.69 2.73 0.69% 3.58% 4.00% 0.89 1.51 13.36%
pctPos pctNeg p
Hit Rate 50 187 60.8% 39.2% 4.6%
b a) CLA Result: Total Return b) Augmentation: Relative to Base
- E Learner
Ila Obs T TRy P SR, tsr p RRp TE, IRy, tr p
o 1 2 3 4 5 6 7
Min 50 187 12.09% 5.63% 0.88 3.47 0.06% 124% 1.69% 0.73 125 21.25%
Median 50 187 12.69% 5.72% 0.91 3.58 0.04% 1.77% 1.77% 1.00 1.70 9.07%
% Mean 50 187 12.69% 5.72% 0.91 3.58 0.04% 1.78% 1.77% 1.00 1.71 8.94%
= Max 50 187 13.83% 5.81% 0.97 3.82 0.02% 2.79% 1.88% 149 251 1.28%
%) pctPos pctNeg p
Hit Rate 50 187 100.0% 0.0% 0.0%

Notes: Long only investment simulations. Both CLA-FFNN and CLA-LIN were tested usin@pest (besf
balancing and then usingdsimweight (Similarity weighted). For each test, the minimum, maximum, mean,
and median total return results are shown. Further,T R, (1) is the annualised total return, , (2) is
the standard deviation, andSR, (3) is the Sharpe ratio. The augmentation bene t is shown aRR,
(5), the annualised relative return of CLA over the base learner, the tracking error iBE; (6), and the
information ratio is IR, (7). The p-values of thet-statistics of the SR, (4) and IR, are shown. The
results of the sign tests are also shown for the hit ratepctP os
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Figure 6.2: 6.3: Result Summary

Note: LSTM vs FFNN, long/short tests: Plot of median augmentation bene t by
balancing method: best or similarity weighted

Long/Short Tests

The simulation results for long/short tests showed similarly positive results as the
long only tests (Table 6.2). Whereas the long only tests demonstrated the ability of
CLA to better forecast winning stocks, the long/short tests were designed to show
whether CLA could also better identify the weakest stocks (i.e. those stocks to short).

The CLA approach produced positive absolute returns for all median long/short
tests. Three of the four median tests showed TRs with a statistically signi cant
Sharpe ratiot-statistics at the 5% level. The exception was for the median CLA-LIN
using best balancing.

On the basis of the median results, the CLA-FFNN produced better total results
than the CLA-LIN. The results for the di erent balancing approaches showed that
the similarity-weighted approach outperformed thebest approach for CLA-FFNN
and for the CLA-LIN base learners.

Next, the augmentation bene t was considered. When long/short CLA-FFNN
and CLA-LIN were compared to simple base learner performance (Table 6.2), all
RRs for the median tests were positive, indicating a positive augmentation bene t for
CLA. These tests also showed the IR, a statistic representing risk-adjusted returns
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with statistically signi cant t-statistics at the 5% level for three of the four conducted
tests. As with long only testing, CLA-LIN using the best approach was the one
median test that did not have a statistically signi cant IR, although the hit rate
was 76.5%, with a statistically signi cant p-value at the 5% level from a sign test.
(In fact, this test was the weakest test in terms of value added from shorting the
weakest stocks). The strongest augmentation bene t was demonstrated in CLA-
LIN with similarity-weighted balancing at 5.34%, followed by CLA-FFNN similarity
weighted at 4.24%. Again, all sign tests for augmentation across all median tests
were statistically signi cant at the 5% level, with CLA-LIN generating a 100% hit
rate in similarity-weighted testing.

Given that the augmentation bene ts of long/short returns were more than double
the equivalent of the long only, it indicates that CLA was particularly e ective at
identifying stocks that produced a poor future return and at shorting these weak
performers. This might indicate that CLA has a stabilising e ect on corner cases in
the conducted tests.
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Table 6.2: Long/Short Simulation Test, DTW, FFNN/Linear Base Learner, Similar-
ity/Best Balancing

a) CLA Result: Total Return b) Augmentation: Relative to Base
Learner
Obs T TRp p SRD tsr P RRp TEp IRF‘ tir P
1 2 3 4 5 6 7

Min 50 187 -1.84% 2.87% -0.28 -1.11 26.82% -5.98% 2.00% -1.34 -5.29 0.00%

Median 50 187 4.23% 3.51% 0.51 2.02 4.45% 147% 3.24% 0.20 0.77 44.20%
3 Mean 50 187 432% 3.97% 0.46 1.83 6.93% 152% 3.60% 0.18 0.72 47.36%
& Max 50 187 11.06% 11.06% 0.11 0.11 11.06% 11.06% 11.06% 0.11 0.11 11.06%
pctPos pctNeg p
Hit Rate 50 187 76.5% 23.5% 0.0%
% a) CLA Result: Total Return b) Augmentation: Relative to Base
B E Learner
i‘ [a] Obs T TRp p SRp tsr P RRp TEp |Rp tir p
O 1 2 3 4 5 6 7
Min 50 187 3.75% 2.70% 0.59 234 2.04% -0.72% 2.72% -0.11 -0.45 65.08%
Median 50 187 7.18% 3.15% 0.96 3.77 0.02% 4.24% 3.33% 054 214 337%
-% Mean 50 187 7.10% 3.21% 0.93 3.66 0.03% 4.06% 3.66% 0.47 186 6.40%
= Max 50 187 9.14% 4.69% 0.81 320 0.16% 7.33% 8.81% 0.35 1.38 17.01%
%) pctPos pctNeg p
Hit Rate 50 187 94.1% 59% 0.0%
a) CLA Result: Total Return b) Augmentation: Relative to Base
Learner
Obs T TRp p SRD tsr P RRp TEp |Rp tir P
1 2 3 4 5 6 7
Min 50 187 -3.65% 3.01% -0.54 -2.12 3.54% -341% 2.16% -0.70 -2.76 0.63%
Median 50 187 2.75% 3.37% 0.35 1.38 16.86% 3.01% 2.85% 0.45 179 7.54%
3 Mean 50 187 254% 3.64% 0.30 1.18 24.01% 281% 3.14% 0.38 151 13.24%
2 Max 50 187 7.95% 5.26% 0.63 2.49 1.36% 8.24% 5.05% 0.68 2.69 0.78%
pctPos pctNeg p
Hit Rate 50 187 86.3% 13.7% 0.0%
z a) CLA Result: Total Return b) Augmentation: Relative to Base
i E Learner
d a] Obs T TRp p SRp tsr P RRp TEp |Rp tir P
1 2 3 4 5 6 7
Min 50 187 445% 385% 0.49 1.94 536% 472% 3.21% 0.62 246 1.47%
Median 50 187 5.05% 4.03% 0.53 2.09 3.76% 5.34% 3.32% 0.68 2.68 0.79%
-% Mean 50 187 5.11% 4.03% 0.54 212 3.54% 539% 3.32% 0.69 271 0.74%
= Max 50 187 6.50% 4.23% 0.65 255 1.15% 6.77% 3.48% 0.82 3.22 0.15%
%) pctPos pctNeg p
Hit Rate 50 187 100.0% 0.0% 0.0%

Notes: Long/short investment simulations. Similar tests to the long only were run but instead of just
simulated purchases of the highest ranked stocks, short positions of a similar value were also taken in the
lowest ranked stocks. For each test, the minimum, maximum, mean, and median TR results are shown,
where TR, (1) is the annualised total return, , (2) is the standard deviation, andSR;, (3) is the Sharpe
ratio. The augmentation bene t is shown asRR;, (5), the annualised relative return of CLA over the base
learner, the tracking error isT E (6), and the information ratio is IR, (7). The p-values of thet-statistics

of the SR, (4) and IR, are shown. The results of sign tests are also shown for the hit rat@stP os
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Augmentation Bene ts

Examining the distributions of the simulations for each CLA-FFNN test in Figures 6.3
and 6.4, as the base learner error increases, the augmentation bene t also increases,
a rming the augmentation bene t heuristic This is a negative slope in Figure 6.3,
indicating a stronger augmentation bene t when the base learner error is higher, and
vice versa. This property is exhibited by both CLA-FFNN simulation results in long
only and long/short tests. The positive intercept terms for all CLA-FFNN tests (long
and long/short) also indicate a positive outright bene t of CLA. These augmentation
dynamics can further be examined using interpolations.

The R? are shown for the augmentation slopes for both the CLA-FFNN and CLA-
LIN tests. The long-only tests show CLA-FFNN with similarity-weighted balancing
with an augmentation slope ofR? 56:9% and anF -statistic that is statistically
signi cant at the 5% level. Best tests using CLA-FFNN had an augmentation slope of
R? 7:5%, with an F -statistic (3.98) that is statistically signi cant at the 10% level
(p = 5.16%). The positive intercepts are also interesting for each slope, 0.1138 and
0.0594, forsimilarity-weighted and best balancing, respectively, (both witht-statistics
that are statistically signi cant at the 5% level). This is a further indication of the
positive augmentation bene t provided by CLA.

Long/short tests showsimilarity weighted CLA-FFNN with an augmentation
slope ofR? 70:3% and anF -statistic that is statistically signi cant at the 5% level.
The best-weightedests using CLA-FFNN had an augmentation slope dR? 16:7%
and an F -statistic (9.97) that is statistically signi cant at the 5% level. Again, the
augmentation slopes have positive intercepts for each slope, 0.0636 and 0.0328, for
the similarity-weighted and best approaches, respectively (both with-statistics that
are statistically signi cant at the 5% level).

Figure 6.3 shows thesimilarity-weighted and best balancing approaches for the
CLA-FFNN and CLA-LIN. Note that CLA-LIN when applied using either balancing
approach, show very little variation in terms of TRs k-axis), whereas the CLA-FFNN
shows a wide variation, primarily owing to random-weight initialisation used by the
FFNN (and not by CLA-LIN). Linear tests show high positive median values for
long and long/short tests (Figure 5.1). In summary, the negative slopes exhibited
particularly by the CLA-FFNN tests are supportive of the augmentation bene t

Memory Dynamics

While the dynamics of remember and recall events of every CLA simulation run
would be challenging to show succinctly, how CLA works can still be shown. Figure
6.5 shows the absolute error series of the base modegl,over one of the simulation
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Figure 6.3: Memory Dynamics: Long Only

Note: Long only tests: Plot of all simulations for each test. The total return of
the approach k-axis) against the augmentation bene t (relative return versus base
model, y-axis). Augmentation slopesare shown as simple linear lines of best t.
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Figure 6.4: Memory Dynamics: Long/Short

Note: Long/Short only tests: Plot of the total return of the approach k-axis) against
the augmentation bene t (relative return versus base model-axis). Augmentation
slopesare shown as simple linear lines of best t.
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runs of CLA-FFNN. As CLA steps through time (left to right), Jc,it is learned in
discrete time. In addition, Jci; oscillates in the early periods before stabilising after
the initial few years of the study period. This was typical of all conducted CLA tests
and indicates that, after the initial variability, Jc,ix becomes stable within about 18
months of the model inception (Figure 6.5). This is consistent with the statistical
basis for a residual change-driven remember gate described earlier in this study, where
the central limits would indicate that the greater the samples in g, the further its
distribution tends towards normal.

It is also interesting that the level ofJcy appears to mirror the level of g over
this period. It appears that Jc,iy is adjusted down as the base learner absolute error
series also falls. This implies that the base learner achieved better forecasting towards
the end of the study period, which causedc,i; to decrease to achieve an optimal
remembering level.

The spikes in g also appear signi cant in the domain of application. After early
oscillation, 2006 represents the start of the subprime crisis, where 2008 represents the
failure of Lehman Brothers, and 2009 indicates the signi cant rally that followed the
substantial quantitative easing by Western central banks. In addition, 2013 and 2014
represent the start of the European Central Bank's announcement of quantitative
easing.

As Jciit can be considered a latent variable related to the distribution ofg as
states change in the input data, a stable learned value 38¢,; could be interpreted
as an indication of the stability of the residual change-based remember gate.

Explainable Memory

The CLA approach produces results that can be explained by examining which past
learners have been applied to which approximately repeating states, and with further
investigation, can explain why. Figure 6.6 shows an example of a simulation run,
where 6.6a shows how the value 81 would have changed if invested in an investment
strategy driven by CLA and, separately, by the base model. Figure 6.6(b) shows the
memory structure of CLA, where a new memory can theoretically be appended at
every step forwards in the simulation, although only four memories were remembered
in this example.

Two memories are examined. First, a memory formed in the period ending July
2006, which is used by CLA to outperform the base model in the period Sep 2007
to Oct 2008. Interestingly, this is over the period of theQuant Quake until just
after the collapse of Lehman Brothers during the 2008 nancial crisis. Second, a
memory formed in the period ending December 2009 is used by CLA between 2011
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Figure 6.5: Memory Dynamics (CLA-FFNN): LearningJc;i

Note: Jcit is learned over time to de ne change points in the absolute error series
g Of the base learner. It is notable that, as time passes, the error series becomes
more stable, and as a resulfj,ci; . This is consistent with the central limits described
earlier in this thesis.
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Figure 6.6: Memory Dynamics: Explainable Memory Addressing

Note: Explainable memory: How recalled memories contribute to simulation perfor-
mance. The graph in a) uses a single example simulation and shows the growth of
a $1 investment in 2003, using strategies driven by CLA or the base model, and b)
shows a representation of the CLA memory structure, a memory triangle, where each
row in the expanding triangle represents a potential memory. This external memory
structure can grow by one memory at each step forward in the simulation, although,
in practice, only four memories were remembered in this simulation. The top row
in the memory-triangle graphic represents the base model. The memory with the
highest weight in each period is highlighted.
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and mid-2014, the period a ected by the eurozone crisis and subsequent recovery. It
is also used by CLA, albeit to a far lesser e ect, in late 2016.

6.3.3 Discussion

In all cases, CLA using DTW and eitherbestor similarity-weighted balancing with
either FFNN or linear base learners has been shown to be capable of accumulating
knowledge of changing states over time to produce a statistically signi cant augmen-
tation benet. Given our ability to examine memory remember and recall events
and the sequential learning of ot , CLA is able to separate the temporal problem
space sequentially into di erent states, and these memories can be used to aid future
decision-making. Residual change, as a memory concept, has been e ectively applied
to TCL. Multivariate DTW has also been successfully applied as a similarity measure
to drive a recall gate in a TCL memory structure.

The combined statistical testing framework has been used to establish that CLA
has signi cantly augmented base learners in the application to the tested problem,
which includes the 1) Sharpe ratio of the outright benet of CLA, 2) IR of the
augmentation bene t, 3) hit rates of the consistency of the augmentation, and 4)
augmentation curve properties usingaugmentation-slopeanalysis.

Moreover, CLA produces a positive, statistically signi cant forecasting bene t
using FFNN and linear base models. Long and long/short tests show positive and
statistically signi cant outright returns and a positive and statistically signi cant
augmentation bene t relative to the base learners. Theimilarity-weighted model
memories produce stronger results than simply picking theest model memory. If
CLA were exploited in practice, the outperformance shown here would likely give a
signi cant advantage to investment strategy returns.

6.4 Recurrent Learners and AE Similarity

6.4.1 Experimental Setup

First, a sliding window approach was tested using an FFNN and then a sequential
learner, an LSTM. The FFNN applied as a sliding window was the best performer.
Second, dierent time series similarity approaches were tested, which were used
to drive CLA's memory-recall gate. The simple ED was found to underperform
noise-invariant similarity approaches, DTW, and AEs. The best performing similarity
approach was a hybrid introduced in this study, warp-AE. Third, the augmentation
slope was again used to analyse the CLA results.
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Figure 6.7: Summary of Test Results

Note: LSTM vs FFNN, Long Short tests: Plot of median augmentation bene t by
distance measure.

Again, four-point statistical testing was conducted and indicated the augmentation
bene ts of CLA. In these tests, a fth point was also introduced, monotonicity testing,
which raised the bar further for analysing augmentation.

In the next section, an investment simulation setup is described, speci cally
addressing the use of SAEs or use in the CLA remember gate with warp-AE. In
the second section, experiments are described for the sliding window and sequential
learners, which were applied with di erent similarity approaches. Moreover, the
bene ts and costs of CL implementation choices are discussed, and memory use is
explained. Finally, the results of the experiments in this chapter are discussed.

Dataset

Factor loadings, as described above, were again used as a simple dataset for testing
CLA.

As before, stock-level factor loadings populate a matrix{ , which comprised the
input data. Each row represents a stock appearing in the index at time(up to 5,500
stocks) and each column is related to a coe cient calculated on a speci c time lag.
In addition, X resulted from winsorising the raw input to eliminate any outliers.
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Simulation Setup

Again, a regression task to forecast the future expected returns of individual equity
securities was used, but this time, it just focused on an alternative dataset of emerging
market equities. This is used to drive equity investment simulations. The dataset
consisted of stock-level characteristics at each time step. Tests were conducted to show
the relative performance of a sliding window base learner, FFNN, and a sequential
base learner, LSTM. Di erent similarity approaches were also used to drive the
memory recall gate: ED, DTW, AE, and warp-AE.

In addition, the base learners were again batch-trained over all stocks at each
time step, forecasting TRs in USD 12 months ahead for each stock. For the sliding
window learner, a year-long, xed-length sliding window of four quarters was used for
training, and for the sequential learner, all historic data up to the current time were
used for training. A stock-level forecast in the top (bottom) decile of the stocks in a
period was interpreted as a buy (sell) signal. Only long/short tests were examined
for these sequential tests.

The long/short model portfolios were constructed (i.e. rebalanced) every 6 months
over the study term using equally weighted long (buys) and short positions (sells).
The simulation encompassed 5,500 equities in total, covering 26 countries across
emerging markets, corresponding to an Emerging Market Equities Index between
2006 and 2017. To account for the DTW sampling approach used and the di erences
in the random initialisation of neural components, several simulations were carried
out per test.

Additionally, the monotonicity testing was conducted. As each conducted test
resulted in a return forecast for each stock in each period, it was possible to calculate
the performance for each decile of stocks in the sort order for each test. This resulted
in 10 simulations conducted for every test. This was conducted over the test term for
all tests. At each rebalance date in the simulation, all stocks were sorted by expected
return. Whereas the top and bottom deciles of the stocks were taken to be buys
for the main tests, deciles 2 to 10 were also selected to result in a total of 10 long
only portfolio strategy simulations, each equating to a decile. These decile portfolios
were used for monotonicity analysis to analyse, for example, whether decile 10 (the
highest expected return for forecasted stocks) outperformed decile 9 and whether 9
outperformed 8 and so on. (Please see [58] for an exhaustive explanation).

Learner Setup

The CLA-FFNN base learner took the form demonstrated in Figure 6.3.1, whereas
the CLA-LSTM setup used an expanding window with more hidden units. The
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LSTM base learner was trained using an Adam optimiser with 100 hidden units and a
learning rate of 0.005, using an L2 loss. Again, the tuning measures were tested, such
as di erent numbers of hidden units, and the bene ts were again marginal. Changing
the training window size had a material bearing on performance. If a sliding window
was used to train the LSTM, the performance was greatly reduced compared to using
an expanding window containing all past data. This has a material bearing on the
resource usage of LSTM approaches versus FFNN when used in CLA.

6.4.2 Simulation Results

The CLA results showed a signi cant augmentation bene t for both base learners
(see Figure 6.7, right). While tests of similarity approaches favoured adjustments for
noise over simple ED, All CLA-FFNN TRs were positive, whereas most CLA-LSTM
TRs were negative (see Figure 6.7, left). It was noted, however, that for median
results, CLA provided a positive augmentation bene t (RR) over base learners in all
cases.

Testing established that CLA-LSTM was not particularly e ective, with only one
test giving a positive TR (CLA-LSTM, warp-AE). The CLA-FFNN showed more
promising returns with all four median tests showing positive TRs. These results
might encourage the use of sliding window approaches, such as FFNN, over LSTMs
in complex tasks driven by noisy time series of this nature. The CLA approach was
found to augment all implementations of both learners. The results are illustrated
in Table 6.3) for CLA-FFNN and in Table 6.4 for CLA-LSTM. We rst discuss the
di erences between CLA-FFNN and CLA-LSTM, then ED vs DTW similarity for
both learners. Then, we compare the AE distance.

The CLA-FFNN outperformed all the equivalent sequential learner tests in terms
of TR, while the Sharpe ratios (Figure 6.9) were also superior. However, the augmen-
tation bene t, gauged by RR and IR, was superior for CLA-LSTMs (6.8), although
most augmentation tests for both learners were statistically signi cant at the 5%
level (albeit the overall TR was still lower for all LSTM tests). All median tests
evidenced a high consistency of augmentation by CLA. This was shown in the high
hit rates with statistically signi cant sign tests at the 5% level for all median tests.
This indicated that CLA had augmented both FFNN and LSTM learners using all
distance approaches.

Tests of the di erent similarity approaches used in the recall gate showed varied
results. The ED underperformed DTW tests for both CLA-FFNN and CLA-LSTM,
in terms of both TR and augmentation bene t: RR and IR. This implies that the
invariance to phase that DTW provides is an important consideration in a real-world
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context. This was also demonstrated by the statistically signi cant IRt-statistics
at the 10% level for DTW and not for the ED tests on both learners. (As noted
though, all median tests for both learners showed high positive hit rates, indicating
that augmentation occurred for all cases).

Next, the AE tests were examined for both learners. The AE distance showed
higher TRs than DTW and demonstrated IRs with statistically signi cant t-statistics
at the 10% level for both CLA-LSTM and CLA-FFNN, indicating that the AE
distance is an appropriate approach. Moreover, warp-AE generated the highest single
median test RR (5.87%) and IR (0.76) of all these tests, implying that adding a
DTW lter to the AE distance is an interesting approach in this context. Whereas
CLA-FFNN exhibited higher outright performance (TR), CLA-LSTM demonstrated
a better augmentation bene t (RR). Again, all median tests using AE and warp-AE
evidenced a high consistency of augmentation by CLA. This was shown in the high hit
rates with statistically signi cant sign tests at the 5% level for all median tests. (We
also observe thataugmentation slopesstatistically support this in the next section).

In summary, CLA proved successful for both LSTMs and FFNN approaches in
all similarity tests with the weakest performance from the ED (in terms of RR and
statistical signi cance). In addition, CLA across all tests generated RR of between
3.18% (CLA-FFNN, DTW) and 5.87% (CLA-LSTM, warp-AE) of augmentation
bene ts, depending on the similarity measure used, except for ED. Moreover, CLA-
LSTM produced stronger augmentation results than CLA-FFNN, with generally
higher RR and higher IRs. The FFNN augmentation showed good results with
IRs ranging from 0.51 to 0.62 across similarity measures, witkstatistics that were
statistically signi cant at the 10% level, with the exception of ED (IR = 0.20).
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CLA-FFNN

Table 6.3: Long/Short Simulation Test, FFNN Base Learner

a) CLA Result: Total Return

b) Augmentation: Relative to Base

Learner
Obs T TRy P SR, tsr p RRp TEp IRy, tr p
1 2 3 4 5 6 7
Min 5 187 -4.69% 2.65% -0.79 -2.73 0.72% -1.96% 1.17% -0.73 -2.55 1.18%
Median 5 187 0.57% 2.83% 0.09 0.30 76.14% 0.75% 1.63% 0.20 0.70 48.74%
a Mean 5 187 -0.26% 3.17% -0.04 -0.12 90.08% 0.65% 1.63% 0.17 0.60 54.87%
w Max 5 187 2.86% 490% 0.25 0.86 38.85% 292% 6.61% 0.19 0.66 51.00%
pctPos pctNeg p
Hit Rate 5 187 86.3% 13.7% 0.00%
a) CLA Result: Total Return b) Augmentation: Relative to Base
Learner
Obs T TRy p SR, tsr p RRp TEp IRy,  tr p
1 2 3 4 5 6 7
Min 5 187 1.16% 255% 0.20 0.68 49.72% -0.80% 1.96% -0.18 -0.62 53.43%
Median 5 187 2.34% 2.84% 0.35 1.23 22.24% 3.18% 2.26% 0.60 2.10 3.78%
= Mean 5 187 2.48% 3.15% 0.34 1.17 24.33% 3.06% 2.26% 0.58 2.02 4.52%
E Max 5 187 11.06% 11.06% 0.11 0.11 11.06% 11.06% 11.06% 0.11 0.11 11.06%
pctPos pctNeg p
- Hit Rate 5 187 76.5% 235% 0.00%
Q
%’ a) CLA Result: Total Return b) Augmentation: Relative to Base
= Learner
2 Obs T TRy p SR, tsr p RRp TEp IRy, tir p
= 1 2 3 4 5 6 7
E Min 5 187 -0.87% 6.04% -0.06 -0.22 82.79% -0.48% 2.08% -0.10 -0.35 72.80%
n Median 5 187 2.07% 6.04% -0.06 -0.22 82.79% 401% 2.74% 0.62 218 3.12%
w Mean 5 187 3.00% 6.47% 0.14 0.48 63.51% 3.65% 2.74% 057 1.98 4.91%
< Max 5 187 8.13% 7.89% 0.16 056 57.33% 8.36% 4.01% 0.87 3.04 0.28%
pctPos pctNeg p
Hit Rate 5 187 100.0% 0.0% 0.00%
a) CLA Result: Total Return b) Augmentation: Relative to Base
Learner
Obs T TR, b SR,  tsr p RR, TE, IR, tr p
1 2 3 4 5 6 7
Min 5 187 -4.04% 2.70% -0.66 -2.30 2.28% -6.55% 1.97% -1.49 -521 0.00%
Median 5 187 3.59% 3.13% 049 169 9.27% 3.23% 2.69% 051 179 7.57%
w Mean 5 187 2.66% 354% 032 111 26.69% 1.90% 2.69% 0.30 1.06 29.01%
g Max 5 187 6.17% 498% 052 181 7.26% 6.53% 3.59% 0.76 2.67 0.85%
pctPos pctNeg p
Hit Rate 5 187 94.1% 59% 0.00%

Notes: Long-short investment simulation results on the emerging market equity universe using an FFNN
base learner. See the median results from ve simulation runs per test. The simulations were for long/short
emerging market equities between 2006 and 2017. No transaction costs were considered.
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ED

CLA-LSTM
Similarity Weighted
DTW

AE

WAE

Notes: Long-short investment simulation results on the emerging market equity universe using the LSTM
base learner. See the median results from ve simulation runs per test. The simulations were for long/short

Table 6.4: Long/Short Simulation Test, LSTM Base Learner

Min
Median
Mean
Max

Hit Rate

Min
Median
Mean
Max

Hit Rate

Min
Median
Mean
Max

Hit Rate

Min
Median
Mean
Max

Hit Rate

a) CLA Result: Total Return

b) Augmentation: Relative to Base

Learner
Obs T TRy p SR, tsr p RRp TE, IR, tr p
1 2 3 4 5 6 7
5 187 -563% 3.35% -0.75 -2.60 1.02% -2.04% 3.15% -0.28 -0.99 32.31%
5 187 -2.86% 3.57% -0.35 -1.22 22.34% 0.62% 3.28% 0.08 0.29 77.52%
5 187 -285% 3.56% -0.35 -1.22 22.43% 1.95% 3.28% 0.26 0.89 37.41%
5 187 -0.35% 3.73% -0.04 -0.14 88.78% 8.95% 3.69% 1.01 352 0.06%
pctPos pctNeg p
5 187 86.3% 13.7% 0.00%
a) CLA Result: Total Return b) Augmentation: Relative to Base
Learner
Obs T TRy p SR, tsr p RR, TE, IR, tr p
1 2 3 4 5 6 7
5 187 -2.84% 4.34% -0.29 -2.28 2.40% 0.33% 2.81% 0.05 0.18 86.11%
5 187 -1.75% 4.58% -0.17 -1.33 18.50% 4.07% 3.33% 052 182 7.13%
5 187 -150% 457% -0.14 -1.15 25.28% 4.18% 3.33% 0.54 187 6.39%
5 187 11.06% 11.06% 0.11 0.11 11.06% 11.06% 11.06% 0.11 0.11 11.06%
pctPos pctNeg p
5 187 76.5% 235% 0.00%
a) CLA Result: Total Return b) Augmentation: Relative to Base
Learner
Obs T TRy p SR, tsr p RRp TE, IR, tr p
1 2 3 4 5 6 7
5 187 -3.28% 3.29% -0.44 -1.52 12.96% -1.35% 2.18% -0.27 -0.95 34.48%
5 187 -0.55% 3.45% -0.07 -0.24 81.07% 465% 2.64% 0.75 2.61 1.00%
5 187 -0.22%  3.48% -0.03 -0.09 92.54% 481% 2.64% 0.77 270 0.78%
5 187 2.15% 3.64% 025 0.88 38.02% 11.34% 3.20% 1.46 5.08 0.00%
pctPos pctNeg p
5 187 100.0% 0.0% 0.00%
a) CLA Result: Total Return b) Augmentation: Relative to Base
Learner
Obs T TRy p SR, tsr p RRp TE, IRy, tr p
1 2 3 4 5 6 7
5 187 -0.39% 4.60% -0.04 -0.13 89.89% 253% 2.79% 0.39 135 17.76%
5 187 0.87% 4.81% 0.08 0.27 78.69% 587% 3.27% 0.76 2.64 0.92%
5 187 0.97% 4.75% 0.09 0.30 76.09% 6.18% 3.27% 0.80 2.77 0.63%
5 187 2.15% 485% 0.19 0.66 51.02% 11.34% 3.80% 1.23 4.28 0.00%
pctPos pctNeg p
5 187 94.1% 5.9% 0.00%

emerging market equities between 2006 and 2017. No transaction costs were considered.

Augmentation Benet

The augmentation dynamic of these tests can be analysed as amgmentation slope
(Figure 6.8), where both CLA-FFNN and CLA-LSTM tests show the characteristic
negative slope across tests. This supports tligmentation bene t heuristic where
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the greater a base learner error, the higher the augmentation that is possible. In this
section, we take the analysis further by examining thibreak-evencost of augmentation,
which can be modelled from theaugmentation slope

The line equations of theaugmentation slopede ne both the bene t and cost of
each learner's augmentation. For CLA-FFNN, the augmentation slope (i.e. the line of
best tin Figure 6.8) has R2 71%, with a statistically signi cant F-statistic at the
5% level. For CLA-LSTM, R? 28%, with a statistically signi cant F -statistic (8.54)
at the 5% level p = 0.78%). In the case of CLA-FFNN, a 2.0% intercept or xed
bene t of augmentation exists, while the variable cost/bene t increases by 0.76% for
every 1% weaker the base learner performs (and deteriorates by 0.76% for every 1%
increase). For CLA-LSTM, the xed cost of augmentation is -1.0% while the variable
cost/bene t of augmentation is 1.03% for every 1% weaker the base model performs.
The variable cost/bene ts imply that if the FFNN and LSTM base learners generally
performed atA 2.0% andA 0.0%, respectively, the augmentation bene t of CLA
would, on average, become a net cost. In other words, this is the implieceak-even
point of the CLA approach using these speci ¢ models and datasets, given the task
at hand. Notably, although CLA-LSTM appears to bene t more than CLA-FFNN
from augmentation overall, CLA-FFNN is less dependent on the performance of the
base learner than CLA-LSTM. Both learners bene t from CLA augmentation. The
FFNN base learner is a better proposition for a CL-based approach using CLA, with
a higher xed benet and a higher break-even performance level.

Monotonicity Analysis

Although statistical testing has strongly indicated an augmentation bene t for CLA in
this testing, we add another analytical dimension: monotonicity testing. As described
earlier, for every test conducted in this section, 10 simulations were run, where decile
10 was a simulation generated using the most attractive stocks, and decile 1 was the
least attractive according to the expected return forecasts of CLA. The result would
ideally be that, for all tests, a strictly increasing TR would occur from the decile 1
portfolio simulation to that for decile 10 for every test. Clearly, this is a very high
bar to set, but this style of monotonicity testing was conducted on the median test
results from these tests: CLA-FFNN and CLA-LSTM for each of the four tested
distance measures. These results are shown as RR of the CLA augmented learner
versus the base learner.

For each of the four CLA-FFNN median test results, RR, Figure 6.10 showed a
generally positively monotonic result, where the lower decile portfolios underperformed
the higher deciles, noting the positive slopes of the interpolation lines. This indicated
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that CLA augmented the base FFNN learner as expected.

Again, for each of the four CLA-LSTM median test results, RR, Figure 6.9
showed a generally positively monotonic result, where the lower decile portfolios
underperformed the higher deciles, noting the positive slopes of the interpolation
lines. This indicated that CLA augmented the base FFNN learner as expected.

Statistical testing was conducted to determine statistically signi cant monotonicity
using the Mann-Kendall test and a test for the lines of best t (shown in Figures
6.10 and 6.9). These test results can be seen in Table 6.5 and show a good degree of
statistically signi cant monotonicity in the augmentation results. Moreover, CLA-
FFNN has statistically signi cant Mann-Kendall p-values for DTW and AE at the 10%
level. Additionally, CLA-LSTM has statistically signi cant Mann-Kendall p-values
for AE and DTW at the 10% level. In both cases, thd--test and the R? support
these results.

Whereas AE and warp-AE show strong results in the rst four points of testing,
in the fth, an approximately positive monotonicity can be observed from the decile
TR and line of best- t slopes. This is not statistically signi cant. Additionally, the
augmentation bene t provided by the ED may not be high enough to be statistically
signi cant in terms of the Sharpe ratio or IR but is statistically signi cant in terms
of the hit rate and monotonicity of results, perhaps indicating a lower degree of
augmentation from the ED.

Table 6.5: Augmentation Monotonicity

Mann-Kendall Linear line of best t
p R? F-stat p
Euclidean distance 10.7% 32.40 3.84 8.6%
% Dynamic time warping 15.2% 32.90 3.92 8.3%
L Autoencoder 47.4% 20.50 2.07 18.9%
Warp-autoencoder 0.2% 79.10 30.20 0.0%
s Euclidean distance 20.1% 5.24 0.44 52.5%
(IT) Dynamic time warping 28.3% 10.01 0.90 37.1%
- Autoencoder 3.8% 57.20 10.70 1.2%
Warp-autoencoder 3.2% 54.60 9.64 1.5%

Notes: Statistical testing of monotonicity over the quantile charts for Figure 6.9.
Mann-Kendall p-values are listed along withR? and the statistical testing of a linear
interpolation over the quantiles. FFNN: feed-forward neural network; LSTM: long
short-term memory.
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Similarity Versus Error

Because CLA depends on similarity to guide memory selection, some level of cor-
relation is expected to exist between the similarity of a learner memory and the
out-of-sample error. This was found to be the case where the results of each similarity
approach were tested for consistency in the correlation between the distance and
error. This could be observed over time and cross-sectionally for each memory at
each time step.

Memory-recall diagnostics were used to test the consistency of correlation between
distance and error across memories. Using the expanding triangle of memories, seen in
Figure 6.11, all possible memories were compared with the out-of-sample performance
of each. At each time step, a cross-sectional correlation coe cient was calculated
across memories. Separately, time series correlation coe cients were calculated for
each memory over time. Each was tested using a sign test, and the results are reported
in Table 6.6. This was intended to sense check the assumption that the error was
dependent on similarity.

As expected, each similarity correlated fairly consistently with the forecasting
error across memories in a given period and over time, with the sign tests showing
signi cant p-values at the 5% level for all approaches cross-sectionally and over
time. This would indicate that the di erent conducted similarity tests are generally
associated with the model error, which indicates that these similarity measures are,
in principle, good drivers of recall for a CL recall gate in a noisy time series context.
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Table 6.6: Similarity vs Error in Memory Recall

Cross-sectional Correlation
ED DTW AE WAE
pctPos 70%  79% 7% 79%
pctNeg 28% 21% 23% 21%
p-value 0.33% 0.00% 0.01% 0.00%

Time series Correlation
ED DTW AE WAE
pctPos 98% 77% 65%  100%
pctNeg 2%  23% 35% 0%
p-value 0.00% 0.01% 1.78% 0.00%

Notes: Correlations of similarity and forecasting
error for sampled simulation runs for each simi-
larity approach. pctPos: the percentage occur-
rence of positively signed correlation coe cients
taken a) cross-sectionally (i.e. the correlation
of similarity and error across all memories at
each time step) and b) longitudinally (i.e. the
correlation of similarity and error across all time
steps for each memory).

Explainable Memory

The CLA approach produces outcomes that can be explained and attributed to its
memory. Figure 6.11 shows an example of one simulation run using a FFNN learner
and AE distance and shows how certain memories were applied at certain time points
to result in speci ¢ outcomes. The expanding triangle (bottom) shows how memories
can be added at each time step forward that the learner takes. Bold lines represent
memories that dominated memory recall at di erent points in time. In this case, at
least three memories are remembered (lower chart, black lines) and recalled at di erent
times. A learner memory remembered in January 2007, a period of turbulence in the
nancial markets, adds the most value (top: note the largest increase in the area
chart (CLA return) versus the line (base learner return)). This memory is more
appropriate than the base learner in the period of the 2008 nancial crisis and its
aftermath involving concerted scal stimulus (September 2008 to December 2010).
It was again recalled in 2013 and then in 2016, which are both periods where scal
stimulus also dominated the market returns (in Europe and China, respectively).

130



Memory Resource Cost

The choice of distance measure came with a material di erence in machine memory
overhead. ED and DTW approaches being far more memory intensive than AE
approaches. ED and DTW required training exemplars to be stored as a contextual
reference in each memory column. In this experiment this resulted in approximately
30,000 64bit oating point variables requiring storing for each memory. Each memory
might therefore require 240KB to store a single contextual reference. (Notably given
32GB RAM resources of a modern, high spec personal computer, this would allow for
over 130,000 separate memories to be saved in RAM alone, more than enough for the
domain considered herein). However, the use of AEs dramatically reduced memory
requirements. Given the typical encoder/decoder AE used in this study was a two
layered AEs of ten and ve hidden units respectively, the memory required equated
to approximately 2x200 64bit oating point variables for an AE contextual reference
in each memory column. This in turn equated to 3.2KB per memory, only 1.3% of
the memory required for the equivalent ED or DTW driven remember-gate.

6.4.3 Discussion

We have empirically demonstrated that, when applied to a real-world nancial task
involving noisy time series, a sliding window learner (CLA-FFNN) is superior to a
sequential learner (CLA-LSTM) in this application with this con guration. Testing

di erent similarity approaches applied to a recall gate showed poor performance of
the simple ED when compared to DTW. This strongly implies that the timing of data
points is crucial in this task and likely in other real-world problems involving noisy
time series. Simulation tests also showed that the AE distance is a good alternative to
DTW. These results imply that AE dimensionality reduction and generalisation (using
ReLU in this case) are almost equivalent to DTW-driven memory recall. warp-AE
was proposed to bene t from both the generalisation of AEs and the phase invariance
of DTW, an approach that produced the strongest investment performance and
augmentation bene t of the similarity approaches that were tested. The analysis of
the results using the augmentation-slope statistical test framework introduced in this
study demonstrated a higher bene t for CLA-FFNN when compared to CLA-LSTMs;
despite the seemingly higher augmentation bene t per se of LSTMs.

In summary, the most successful CL choices in these tests were found to be
the sliding window CLA-FFNN learner combined with a recall gate using warp-AE
similarity. These tests also arm CLA as a real-world TCL approach with the
exibility to augment CL using di erent types of learners. As has been noted, this
distance variant also came with a substantial resource economy when compared to
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ED and DTW.
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Figure 6.8: Augmentation Slopes

Note: LSTM vs FFENN, long/short tests: Plot of all simulations for each test. The
total return of the approach (x-axis) against the augmentation bene t (relative return
versus base model-axis). Augmentation slopesare shown as simple linear lines of

best t.
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Figure 6.9: Monotonicity of Augmentation: CLA-LSTM Median Test Deciles

Note: Augmentation bene t monotonicity is noted in all distance measures by a
positive slope coe cient: RR, of each decile portfolio of CLA-LSTM, annualised over
the study term. Decile 1 relates to a portfolio of stocks in the lowest 10% returns
forecasted by CLA-LSTM at each rebalance date, simulated as described.
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Figure 6.10: Monotonicity of Augmentation: CLA-FFNN Median Test Deciles

Note: Augmentation bene t monotonicity is noted in all distance measures by a
positive slope coe cient: RR,, of each decile portfolio of CLA-FFNN, annualised over
the study term. Decile 1 refers to a portfolio of stocks in the lowest 10% returns
forecasted by CLA-FFNN at each rebalance date, simulated as described.
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Figure 6.11: Memory Dynamics: Explainable Memory Addressing

Note: Explainable memory: Simple diagnostics reveal the recall of learner memories.
Top: Investment returns of an unaugmented LSTM learner (line) shown next to CLA
returns attributed by the highest weighted recalled memory (area). Lower chart:
Representation of the CLA memory structure where each row in the expanding triangle
represents a potential learner memory. The highest weighted recalled memories are
highlighted.
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Chapter 7

Conclusions

This thesis has addressed the principle hypothesis underlying TCL that real-world
problem based on a state-varying time series with a large cross-sectional component
can be addressed in a sequential, open-world fashion that addresses TWks has
been achieved by the development of CLA and its successful application to complex
real-world nancial management tasks.

The secondary hypothesis was also addresdegd remembering models of temporal
states, recalling these models in future periods when the input space is similar to an
associated past state This has been achieved through the development of CLA'S
remember and recall gates.

Four key research questions underlying the motivations for TCL were also ad-
dressed:

1. Open-world TCL: CLA has been shown to be able to de ne state-based memories
without prior de nition.

2. Remembering using residual change: Residual change has been implemented as
a threshold that can be learned by the CLA framework over time.

3. Memory recall using similarity: Di erent similarity approaches have been shown
to have varying in uence on the augmentation bene t from the CLA framework.
It has been shown that similarity measures based on AE and warp-AE produced
the most compelling augmentation in the CLA approach, as tested here.

4. Temporal state-based memory addressing: The combination of CLA's recall
and remember gates have been shown to be able to de ne and address temporal
states and to apply these states e ectively in future periods. The strong
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implication of this is that past states approximately repeat and that knowledge
of these can be stored and used in the future.

Section 7.1 makes summarising and concluding remarks about CLA, empirical
testing, and potential interpretability. Section 7.2 summarises the contributions of
this work, and Section 7.3 explores possible future areas of research for TCL.

7.1 Continual Learning Augmentation

The CLA framework has allowed di erent elements of CL, ML, time series research,
and CDA to be combined and, in some cases, repurposed to create a TCL memory-
augmentation approach that has been shown to improve the performance of time series-
based learners in speci ¢ real-world nancial tasks. Testing shows that, when applied
to complex real-world nancial management tasks, CLA can signi cantly augment
the performance of base learners, such as LSTM, FFNN, and OLS regression. The
dynamics of augmentation are also studied using various statistical tests introduced
to the CL context, including augmentation slope

The CLA framework has been shown to be capable of using a remember gate
in de ning and accumulating knowledge of temporally changing time series states
and is capable of recalling this knowledge using a recall gate when these past states
appear to approximately reoccur. This has been achieved in a potentially explainable
way. Moreover, CLA is di erent from traditional CL approaches that tend to make
limiting assumptions of easy task delineation, dependencies, and more. Traditional
CL approaches have also been limited by development and testing in relation to overly
simplistic datasets, which is directly addressed in this research using complex, noisy
data in a real-world application.

In addition, CLA also extends CDA approaches with distinct memory concepts
and state-based addressing in several ways, including the use of an explainable memory
addressing visualisation. Further, CLA can signi cantly augment LSTMs, which
indicates that, in certain cases, the explicit long-term memory structure of CLA can
contribute to the implicit recurrent memory of LSTMs. The implications of these
ndings are likely to be signi cant.

Certain con gurations of CLA gates are less e ective than others. This has been
expressed as both outright nancial performance and the bene t of augmentation.
The main ndings are described below.

Remember gate  The residual change an old idea, can be repurposed for a TCL
memory recall gate to separate time series into explicit and di erent state-based
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memories analogous to tasks in conventional CL and, in this regard, is di erent from
conventional CDA memory. In turn, this can allow a system to learn and remember
states of a time series in an open-world fashion. These ideas are also found to work
e ectively in a speci c real-world context during testing. It is possible to sequentially
learn the change threshold, the critical valudcrit . The development of old ideas

to facilitate a TCL remember gate is likely to be a signi cant development in time
series modelling and, more importantly, in understanding how TCL might be applied
to real-world situations.

Recall gate  The recall gate for CLA was researched and tested using di erent forms
of similarity. Di erent similarity approaches had di erent e ects on the performance

of the recall gate. Testing of di erent similarity approaches that were applied to this
recall gate showed poor performance for the simple ED when compared to DTW.
This strongly implies that the timing of data points is important in the tested tasks
and, likely, in other real-world problems involving noisy time series.

Most interesting was that the AE distance was generally more e ective in both
synthetic and real-world testing than DTW, which relies on a more resource-expensive
memory, containing training examples. These results con rm that AEs used in TCL
can be e ective, as indicated in the CL research. The AE dimensionality reduction
and generalisation, which were implemented using ReLU with sparse regularisation,
are shown in testing to improve the DTW-driven TCL memory recall. warp-AE was
proposed to bene t from both the generalisation of AEs and the phase invariance of
DTW, an approach that performed well in testing.

In summary, testing established that, in a speci c real-world context, the DTW
distance is more e ective than the simple ED. Additionally, the AE distance, which
uses a latent representation of a state, is generally more e ective in both synthetic
and real-world testing than DTW. This indicated that the sparse form of AE repre-
sentations was more e ective in the tested contexts than the more resource-intensive
use of training examples in DTW. Moreover, warp-AE, which applies a DTW lter to
an AE reconstruction, improves performance further in both synthetic (Figure 4.1.1)
and real-world testing (Figure 6), indicating that a bene t exists from the phase
invariance of distance calculations in the context of the testing.

Augmentation dynamics A simple empirical approach for examining the cost/bene t
of TCL results was also introducedaugmentation slope This made it possible to
compare theaugmentation slope®f di erent CLA con gurations and base learners to
better understand the dynamics of augmentation. This con rmed a higher augmenta-
tion bene t for FFNN when compared to LSTM base learners, despite that LSTMs
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seem to have a higher augmentation benet per se. The degree of augmentation
possible generally increases with the level of base model error. This was shown by
the negativeaugmentation-slopecoe cients in testing.

Accuracy of outcomes If CLA were exploited in practice for an investment ap-
proach, indications are that CLA would provide a signi cant advantage to investment
strategy returns. Moreover, CLA produces positive, statistically signi cant outcomes
for certain base learners in the tested real-world nancial management tasks. Both
long and long/short tests showed positive and statistically signi cant augmentation
bene ts for linear, FFNN, and LSTM base learners. Most interesting is perhaps the
statistically signi cant augmentation benet over LSTMs. However, the outright
returns of CLA-LSTMs were poor when compared to CLA-FFNN. Of the di erent
similarity weighting schemes in the recall gate, the weighting of learner memories using
similarity produces stronger results than simply picking théestlearner memory.

In summary, the most successful TCL choice was a sliding window FFNN learner
combined with a recall gate using AE-based similarity. These real-world empirical
tests bare out the more stylised, synthetic-based empirical testing that was also
carried out on time series similarity approaches, which also found AE-based similarity
to be superior to the ED and DTW distance on longitudinal and cross-sectional
similarity testing. Testing in this thesis also a rms CLA as a real-world applicable
approach with the exibility to augment di erent types of learners in CL.

Explainable of memory use The memory structure of CLA and the visualisations
introduced here can potentially be interpreted by domain experts in terms of which
past state is relevant to forecasting in the current state. This allows objective
comparisons to be made between relevant past states and the current state and allows
for a better understanding of the characteristics of the current state in the context of
similar past states. This information is expected to be helpful to provide insight to
domain experts to guide decision-making.

7.2 Contributions

In this research, it has been shown that a TCL framework, CLA, can acquire knowledge
sequentially, related to time series with a large cross-sectional component. This has
been shown in experimental testing using a real-world nancial problem: international
and emerging market equity investing. On the broader question of CF, the CLA
framework has, to some extent, addressed this, but CF remains an open question.
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The remember gate for CLA was developed, and residual change thresholds can
be learned over time to de ne changing temporal states. This change threshold is
essentially the stability-plasticity trade-o for the CLA framework. These change
points are e ective cues for remembering learner parameters with a contextual
reference. This memory information is useful in identifying an approximate recurrence
of the memorised state and for recalling the appropriate learner parameters from an
external memory structure.

A recall gate based on similarity was also researched and was e ective in testing.
Di erent similarity approaches were tested to compare the contextual reference in
each memory with the current input space. Where the similarity was high, a memory
would be chosen and its learner parameters were applied to the current input space.
Di erent distance approaches have di erent levels of success in synthetic testing and
in application to a real-world task.

Di erent memory balancing schemes were also tested to either select the single
most similar memory, to equally weight all memories in the external memory, or to
weight memories by similarity. In addition, CLA is con gured to produce e ective
results in testing. Some con gurations were relatively e ective, and some less so.

Furthermore, CLA can successfully augment several types of time series learners
in the tests. Based on the introduced CLA framework and the testing, the posited
hypothesis cannot be rejected. The four research questions have also been successfully
addressed with speci ¢ major contributions as follows:

1. Time series memory structure: The CLA approach has been researched to
build, maintain, and use a state-based and addressed memory structure. This
is slightly di erent from the reviewed CL approaches, in that it is applied to
time series states rather than tasks. It is also an extension of the minimalist
memory concepts of CDA, as TCL memories are related to states and can be
stored inde nitely.

2. Simple learner memory augmentation: Recurrent FFNN and OLS regression
learners can be memory-augmented using a generalised deep architecture.

3. Recall gate: Data-mining approaches for time series similarity are repurposed
for use in a TCL memory gate, an approach not known to be adopted in the
CL literature. This is used to drive pattern recognition in multivariate time
series input data to propose memories to recall. This is believed to be a novel
recall gate.

4. Remember gate based on multivariate residual change: The useresidual
changeis well known in the drift adaptation and concept change literature but
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may be a novel approach for memory gating in the explicit, state-based external
memory structure researched in this study.

Minor contributions of this work follow:

1. Open-world learning in the real-world: Real-world applied TCL approaches are
reported in this thesis. These approaches were tested on real-world temporal
data problems and were e ective in the tested contexts. A review of the
literature indicates that this is one of only a few time series applied to open-
world CL approaches. While many CDA approaches operate on streams of data,
they do not have task-based learners.

2. Potentially Interpretable memory: It is possible to extract memory remember
and recall information from the memory structure introduced in this work. A
visualisation to explain which memory, did what and when is developed to allow
interpretation by domain experts.

7.3 Future Work

Our results indicate that CLA may be e ectively applied to other problems on noisy
and non-stationary time series problems inside and outside of the nance domain.
While the framework presented in this thesis is directly applicable to quantitative
investment, CLA is also intended for application to other elds.

7.3.1 Residual Change Distribution

It is also noted than the nature of absolute error change, as a memory concept,
could hold more bene ts for memory augmentation or model selection, as has been
investigated in the CD literature where change in the absolute erradistribution
could be used in TCL to better identify changing states and to better learn more
appropriate parameterisations.

7.3.2 Abrupt Change versus Gradual Change

While driving the remember-gate using abrupt change has been demonstrably suc-
cessful, using change-points, it is also possible that in certain datasets or applications
gradual change might be more important. Future work might investigate gradual
change, such as is proposed in [229], as an additional driver of remember-cues.
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7.3.3 Applying Domain Knowledge Proactively

It might be possible to inject synthetic memories of speci ¢ anticipated events, and
thus incorporate the speci ¢ domain knowledge of experts in the memory structure.

It is envisaged that this could be achieved by using past events as a basis to model
expected outcomes. For example, should an event such as the global nancial crisis
occur again, perhaps banks would be less likely to su er re-capitalisations owing
to changes in policy makers decisions that would be exogenous to the base learner
used. In this case a more benign outcome could be incorporated into the base learner
parameters for the banking sector should a similar event appear to be occurring again.

7.3.4 Abrupt Change versus Gradual Change

While driving the remember-gate using abrupt change has been demonstrably suc-
cessful, using change-points, it is also possible that in certain datasets or applications
gradual change might be more important. Future work might investigate gradual
change, such as is proposed in [229], as an additional driver of remember-cues.

7.3.5 Remember the Best of a State

Further tests have been conducted on change, and although the CLA implementation
developed in this thesis uses abrupt change as a delineator of states and a cue to
remember, in the latest testing, remember cues based on a fall in absolute error
might prove more e ective. This can be considered as remembering the "best learner"
parameters within a state (ie between two change points). Univariate testing showed
that saving learner parameters when the absolute error fell below a certain critical
level was more e ective than remembering when the absolute error rose over a certain
level. It might also be the case that an upper and lower change threshold might be
most e ective (i.e. identifying an uncommonly poor or accurate model of a state and
responding to either event). More testing should be conducted to determine whether
this change was made or whether it would make the results any less interpretable in
the context of changing states in the dataset.

7.3.6 Attention

Attention mechanisms could be added to the CLA framework to improve the perfor-
mance of the recall-gate and remember-gate, now important research questions have
been addressed in this thesis relating to TCL. Firstly, the AE similarity function in
the recall-gate, where attention could be applied to the input data to optimise the
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similarity calculation for each memory. Secondly, attention might also be used in the
balancing function of the recall-gate.

It is envisaged that, instead of simply balancing learner memories using a closed-
form similarity function, it may be possible to weight inputs to a similarity function
and apply attention. This would essentially learn attention for a similarity function
over time for each learner memory, which is likely to improve the performance of the
remember gate in the CLA approach. Other forms of similarity might also be tested
in this framework, such as CNNs and restricted Boltzmann machines to further assess
reconstruction-based similarity.

In addition to a more e ective remember gate, this attention mechanism could be
used to forget memories more e ciently. If a similarity function resulted in down-
weighting inputs to the extent that it never applied a high weight in the balancing
function of CLA, this implies that the memory should be forgotten. It is likely that
this additional forget gate could also be implemented using a forget threshold to be
learned, which might look very similar to the process of learnindici .

Including attention mechanisms would involve a higher degree of parameterisation
of the approach, a disadvantage, but it might be possible to robustly improve modelling
outcomes. This would technically be a straightforward extension of the approach but
would increase the complexity, which, in the real-world, would require considerable
work to mitigate, perhaps centred on regularisation.

7.3.7 The Continual Learning Augmentation Unit

The most interesting area for future development of the CLA approach is in the
construction of a genericCLA unit for use in existing ML architectures. It is envisaged
that a CLA unit would wrap other units or elements of existing ML architectures in

a similar way as shown in this study where base learners, such as linear, FFNN, and
LSTM have been augmented by CL. The same principle might be applied to layers or
larger architectural elements of an existing ML system, which is otherwise exposed to
CF. The CLA unit would accept inputs from upstream layers (or units) and create
memories based on the backpass of downstream errors into the CLA-wrapped element
of the architecture. In this way, it could support CL in speci ¢ areas of an existing
ML approach or in the overall approach itself, as has been demonstrated is possible
with LSTM, FFNN, and linear learners in this thesis. It would also be possible to use
CLA to trigger a retraining event of the ML architecture, should change be detected.
Thus, a traditional ML approach could be made state/task aware and therefore could
support many tasks in an open-world fashion. This is envisaged as the next area
of development of the CLA framework and would allow more extensive and generic
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testing in areas of any type of sequential learning.
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