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Abstract

Many users of mortality models are interested in using them to
place values on longevity-linked liabilities and securities. Modern reg-
ulatory regimes require that the values of liabilities and reserves are
consistent with market prices (if available), whilst the gradual emer-
gence of a traded market in longevity risk needs methods for pricing
new types of longevity-linked securities quickly and efficiently. In this
study, we develop a new forward mortality framework to enable the ef-
ficient pricing of longevity-linked liabilities and securities in a market-
consistent fashion. This approach starts from the historical data of
the observed mortality rates, i.e., the force of mortality. Building on
the dynamics of age/period/cohort models of the observed force of
mortality, we develop models of forward mortality rates and then use

*Work in this paper was presented at the 49" Actuarial Research Conference in Santa,
Barbara, USA, in July 2014, the Tenth International Longevity Conference in Santiago,
Chile, in September 2014, and the Society of Actuaries Longevity Seminar in Chicago,
USA, in February 2015. We are grateful to participants at these conferences for their
comments and suggestions, to Andrew Cairns and Pietro Millossovich for their helpful
review on an earlier draft of this paper, and to Andrés Villegas for many useful discussions
on this and related topics.



a change of measure to incorporate whatever market information is
available. The resulting forward mortality rates are then used to value
a number of different longevity-linked securities, such as g-forwards,
s-forwards and longevity swaps.

JEL Classification: G12

Keywords: Mortality modelling, age/period/cohort models, forward

mortality rates, Esscher transform, longevity-linked securities

1 Introduction

Many users of mortality models are interested in using them to place val-
ues on longevity-linked liabilities and securities. Modern regulatory regimes
require that the values of liabilities and reserves are consistent with mar-
ket prices (if available), whilst the gradual emergence of a traded market in
longevity risk needs methods for pricing new types of longevity-linked secu-
rities quickly and efficiently. These needs have spurred the development of
increasingly sophisticated models of mortality rates.

Cairns et al. (IM) pointed out that the majority of mortality mod-
els that have been proposed are models of the mortality hazard rate, which
is analogous to the short rate of interest. By analogy with interest rate
models, (Cairns et all (2006H) developed formally the concept of “mortality
forward rates”, which was extended in [Miltersen and Persson (@Dﬁ) How-
ever, the idea of forward mortality rates has a long history, indeed Milevsky
and Promislow (lZDD_]J) pointed out that “the traditional rates used by actu-
aries are really ‘forward rates’ exactly analogous to a forward interest rate
implied by existing bond prices”.

Such forward mortality rates could be used to price longevity-linked se-
curities, in the same fashion as forward interest rates are used to value cash-
flows dependent on future interest rates. Therefore, a number of models for
forward mortality rates have been proposed to date which build upon the
theory of forward interest rates. These have included the models of

(lzm)a [Bauer et_al) (IZDDS) and [Tappe and Weber (lZQlj), which adopted

the Heath-Jarrow-Morton framework used for interest rates in continuous
time, and the model of Zhu_and Bauex (IZQllﬁUH, [2111.4]) which adopted a




semi-parametric factor approach in discrete time. An alternative approach,
developed in (Olivier and Jeffrey (2004), Smith (2005) and [Cairns (@),
also works in discrete time but uses gamma-distributed random variables to
update a forward mortality surface that is initially assumed.

However, it is important not to over-extend the analogy between interest
rates and mortality rates, as the two are fundamentally different processes.
Most obviously, the forward interest rate curve at any instant depends only
upon term, whilst forward mortality rates will exist across a surface of ages
and years. Mortality rates typically also increase exponentially with age,
unlike interest rates which are typically bounded as term increases. More
fundamentally, the analogy between survivorship under a force of mortality
and discounting under a force of interest, whilst mathematically appealing,
is not exact, since mortality will affect the actual amount of any cashflow
payable (say, in an annuity or life assurance contract) in a way that dis-
counting does not. We therefore do not believe that simply taking existing
models which work well for forward interest rates and applying them directly
to mortality rates is appropriate.

In addition, we must be able to calibrate a model of forward mortality
rates to the small number of longevity-linked securities in existence. This
means that models which start by assuming the existence of sufficient mar-
ket prices to define a forward mortality surface (such as those based on the
Heath-Jarrow-Morton framework) and then define the dynamics of this sur-
face are not practical. This approach is inherited from the interest rate
markets, where liquid markets in bonds across the whole of the relevant term
structure can provide such information. Unfortunately, this simply does not
hold for the market in longevity-linked securities, and will not hold for the
foreseeable future.

Instead, we propose a new approach, which is described in two studies,
of which this is the first. Our approach starts from the historical data on
the observed mortality rates, i.e., the observed force of mortality which is
analogous to the short rate of interest. Building on the dynamics of models
of the observed force of mortality, we can recast them in the form of models
of forward mortality rates and then use a change of measure to incorporate
whatever market information is available. This approach ensures that the
dynamics of the forward mortality surface are consistent with those observed



for the force of mortality, including features such as “cohort effects” which
are unique to mortality rate models, and which helps to ensure demographic
significance

We begin our analysis in this paper in Section 1] with models of the
force of mortality from the age/period/cohort (APC) family, which have
been specifically constructed in order to capture the dynamics of mortality
parsimoniously and with demographic significance. APC mortality models
are considered in detail in [Hunt and Blake (2015i) and encompass a broad
class of existing and popular models of the force of mortality, such as the Lee-

Carter (Lee and Carter (1992)), Cairns-Blake-Dowd (Cairns et all (2006a))
and classic APC Mmﬁﬁ_aﬂ (1982)) models, as well as many of the ex-
tensions of these models (see Hunt and Blakd (2014) for examples). We then
develop the mathematical framework required to convert any APC model of
the force of mortality into a model of the forward mortality surface in Section
and Section 2.3l In Section 2.4 we use the dynamics of the period and
cohort parameters observed in the historical data to define a forward surface
of mortality rate. This enables consistent modelling of both the short and
forward mortality rates, and so avoids any inconsistencies between the two.

Section [B] then builds on this by transforming the forward mortality rate
surface, using the Esscher transform, from a measure consistent with the
“real-world” process observed in the historical data to one consistent with
market prices. These “market-consistent” forward mortality rates are then
used to price various longevity-linked securities. Finally, Section M concludes.

The approach established in this paper is extended in our second paper,
Hunt and Blake (2015d), which analyses how the forward surface of mor-
tality can be updated dynamically. This enables the forward mortality rate
framework developed in this paper to be used for managing longevity risk in
a life assurance book or in a portfolio of longevity-linked securities.

"Demographic significance is defined in [Hunt and Blake (2(!15ﬂ) as the interpretation of
the components of a model in terms of the underlying biological, medical or socio-economic
causes of changes in mortality rates which generate them.



2 Forward mortality rates in discrete time

2.1 Age/period/cohort models of the force of mortality
In Hunt and Blake (2015i), we discussed discrete-time mortality models of

the form

N
Net = Oy + Z 59(;.)“?) + Vi—z (1)
=1

where

e we have historical data for ages, x, in the range [1, X| and periods, ¢,
in the range [1, 7] and therefore observations of cohorts born in years,
y, in the range [1 — X, 7 — 1],

® 1, = In(u,,) is the log-link function which connects the Poisson dis-
tributed death counts, D, ,, to the proposed predictor structure;

e «, is a static function of age;

° /iii) are period functions governing the evolution of mortality with time;

° ﬁg(f) are age functions modulating the impact of the period function
dynamics over the age range;ﬁ and

e v, is a cohort function describing mortality effects which depend upon
a cohort’s year of birth and follow that cohort through life as it ages.

) T , T
Defining 3, = < @ :EN)> and k; = </€§Z), /{,EN)) , We can re-
write Equation [ as

Net = Oy + /BIK't + Yi—x (2)

In this paper. we will use the log-link function 7,; = In(u.,). In Hunt
and Blake (|2Q15_l|), we discussed how this is appropriate if the death count

2These can be non-parametric in the sense of being one fitted without imposing any a
priori shape for the function across ages, or be parametric in the sense of having a specific
functional form, 8 = £ (z;0@) selected a priori. Potentially, parametric age functions
can have free parameters #() which are set with reference to the data.



at age = and time t is a (conditionally independent) Poisson random vari-
able, Dy, ~ Po(,uxytE;yt), where Ect are central exposures to risk. This is
preferred over the alternative choice of the logit-link function and binomially
distributed death counts due to the distributional properties of the forward
mortality rates, as discussed in Section

This structure defines the class of age/period/cohort (APC) mortality
models and is very flexible. Many of the most common mortality models fit
into this structure, for instance, the benchmark Lee-Carter (LC) model of

(1992). the cohort extension to this denoted H1 in Haberman
and Renshaw (2009), the Cairns-Blake-Dowd (CBD) model of (Cairn L.
[ﬁ and many of its extensions in |Cairns et al 1 (u)lld the Plat model
of ) and the model of Borger et all (2013). h:[unt_and_Bl&ké
), we descr1be a “general procedure” for constructlng bespoke models
Wlthln this class which are tailored to the structure within a given dataset
It is, therefore, appropriate to use this class of models of the force of mortality
as the starting point for defining the forward mortality surface, as discussed
below.

2.2 Defining forward mortality rates

In a discrete-time framework, the force of mortality, s, ., at age x and time
t is assumed to be constant over each age and year, i.e.,

Hatgt+7 = Hayt (3)
r,teN
§7el01)

Therefore, the one-year survival probability from age = at time ¢ to age x + 1
at time ¢ + 1, pxytﬁris equal to p,; = exp(—piz ). If we further assume that

3The forward mortality framework described in this study is not significantly affected if
the cohort parameters are modulated by an age function, B:E;O), as in the model of Renshaw
and Haberman (2006). However, for simplicity and the reasons discussed in Hunt and
Blake (20151), we do not consider such models in this study.

Ypyt =1 — gz, the one-year probability of death.




survival in each year is conditionally independent, this implies

t t
tPzx,r = pr—l—u,T—i-u =exp | — Z Ha+u,r+u (4)
u=1

u=1

where ;p, - is the survival probability of an individual from age = at time 7
to age x +t at time 7 4t If 7 + ¢ lies in the future, ¢p, , will be a random
variable, as future values of the force of mortality will be subject to system-
atic mortality risk.

To define the structure of forward mortality rates, we assume that the fun-
damental longevity-linked securityﬁ of interest, from which all other longevity-
linked securities can be constructed, is the “longevity zero”ﬂ A longevity
zero is defined in [Blake et all (IZDDﬂ) as a zero-coupon bond which pays out a
principal at a future time, dependent on the survivorship of a suitably large
cohort (to reduce the idiosyncratic risk in the estimation of survival rates)
over the term of the bond Therefore, a t-year longevity zero at time 7
would have price

Price(t, ’7') = B(’T, T+ t)EQT tPx,r

where B(7,T+1) is the time 7 price of a t-year zero coupon bond paying one
unit at maturity, and where the expectation is defined under some “market-
consistent” measure, Q (to be discussed in Section |3I)E

In doing so, we have implicitly assumed that the longevity risk is inde-
pendent of the other financial risks in the market, such as interest rates and

®0ps,r = 1 trivially.

6Tn this paper, we use the term “security” to refer to any tradable financial contract,
and so also include derivative securities such as forwards and options in this definition.

"Longevity zeros were also used to define forward mortality rates in )
for use in a Heath-Jarrow-Morton framework and in [Cairns (2007) and |Alai et all (2013)
to develop extensions of the Olivier-Smith model.

8Tt is important that the security used to define the forward mortality rates depends
purely on the systematic component of longevity risk, rather than on the idiosyncratic time
of death of any individual lives, in order to avoid the potential for conflicting definitions
of the forward rates described in (2010).

9We adopt the convention that the subscript on operators E.(.), Var.(.) or Cov,(.)
denotes conditioning on the information available at time 7, i.e., F..




inflation, in both the real-world measure, P, and the market-consistent mea-
sure, Q. This is in common with the majority of studies, such as Cairns
et al. (IZDDEH) and Bauer et._all ([ZQOE) and with the available evidence to
date, as discussed in [Loeys et al. (IZDD_ﬂ) Although there may be some situ-
ations where longevity risk is not independent of other financial risks in the
real-world measure, as in the examples of Miltersen and Persson (Iﬂ)i)_le), we
believe that these situations are relatively extreme and are better considered
by scenario analysis rather than through a stochastic model. Furthermore,

) show that independence between longevity risk and
financial risks in the real-world measure does not automatically ensure in-
dependence in the market-consistent measure. However, more complicated
models are required in order to allow for any dependence between longevity
and investment risks, which require more market information for calibration.
Therefore, we believe that the assumption of independence between longevity
risk and other financial risks is necessary and justifiable at this early stage
of development of the longevity risk market.

We define

tPg(gT(T) - EQT tPz,r (5)
t
= EQT exp <— Z Mm—i—u,q——i-u)
u=1

In this, ;P2 (7) are the market-consistent forward survival probabilities,
i.e., the “market’s best view” (in the words of Miltersen and Persson (2005))
at 7 of the probability of an individual aged = at 7 surviving a further ¢ years.
Mathematically, we can see that these factors are analogous to discount fac-
tors based on the prices of zero-coupon bonds. It is this analogy which has
motivated much of the development of forward mortality rate models to date,
which have been mainly adapted from widely used interest rate models. In
continuous-time forward rate models, such as in Bauer et al) (Iﬂl)ﬁ), forward
mortality rates are defined from Equation [ as

Q 0

Vx,t(T) = _E In (tPZ(B@—t,T(T))

via the analogy with forward interest rates. In a discrete time model, we



modify this to define forward mortality rates as

A = 1o <P 2 (T >> -

t_TPZ(E@—t—‘rT,T (7-)

Existing forward mortality models, such as those in Cairns (M) and

,[2111_4]) use similar definitions, but these studies are
interested in the dynamics of the forward surface of mortality and so are
interested in the behaviour of v, (7 4+ 1)/v,+(7), rather than the forward
mortality rates at 7 themselves (which are assumed a priori in these studies).

We discuss these dynamics 1n|H11ntJﬂld_BlaJd (|2Q15d| In contrast, this paper

is interested in the connection between the force of mortality and forward
mortality rates, and so we use the definition above to give

tPST( = €Xp ( Z Vﬂc—i—u T+u ) (7)

Comparing Equations [ and [7, we see

t
eXp <_ Z Vg—i—un-—l—u) - T eXp < Z Hxtu T+u> (8)
u=1

which shows the connection between the market-consistent forward rates and
the expectations of the force of mortality in the market-consistent measure.

By Jensen’s inequality

t t
EQT €xp <_ Z Mm—i-U,T—l-u) > exp <_ Z EQT Nm+u,T+U> (9)
u=1

u=1

In practice, the variation in p,, is sufficiently small that Equation [ holds
approximately as an equality over almost all ages and years!™] We therefore
make the assumption that

¢ t
exp (— 2 v%wu(r)) = exp (— D E M) (10)
u=1 u=1

10This approximation is tested numerically in Appendix [Bl




and define the forward mortality rates as
Ve (1) = B iy (11)

Thus, the forward mortality rate at age x and year ¢ is assumed to be equal
to the expectation under the market-consistent measure of the force of mor-
tality at the same age and year, conditional on information observed at time
7. Thus, if we can specify the dynamics of the force of mortality (in the
market-consistent measure), we are able to find the forward mortality rates
directly.

We define the “forward mortality surface” as the collection of forward
mortality rates, Vgt(T) over all ages, x, and future years, ¢, at a given point
in time, 7. In most cases, it is more natural to consider the forward mortal-
ity surface as a single object, since the individual forward mortality rates are
expected to vary smoothly across ages and across future years. However, it is
important to realise that the forward mortality surface is three-dimensional,
defined by z, ¢t and 7. In this paper we shall consider its structure across the
dimensions of x and ¢ and how this can be determined at the observation
time, 7, which is assumed to be fixed. This contrasts with Hunt_and Blake
(I%__LUE'), where we discuss how the surface varies dynamically with 7.

In defining the forward mortality surface, we assume that all longevity-
linked securities can be constructed from a portfolio of longevity zeros. We
shall see in Section B3] that this is trivially true in the case of longevity
swaps We extend this by assuming that the value of any other longevity-
linked security at time 7 can be replicated as a portfolio of longevity zeros
and, therefore, written as a function of the I/St(T). Hence, the forward sur-
face of mortality can be used to give consistent prices for all longevity-linked
liabilities and securities.

Unfortunately, however, it is currently impossible to reliably specify the
dynamics of short or forward mortality rates in the market-consistent mea-
sure, since an actively-traded market in longevity-linked securities does not
currently exist. Indeed, the absence of genuine market information on the
prices for any longevity-linked securities is a critical problem for all studies

1Tt is also true for the valuation of annuities for reserving purposes, since idiosyncratic
risk is not allowed for in this context.

10



that seek to value the few longevity-linked securities which do exist. There
have been a number of different methods proposed to overcome this and
calibrate the market-consistent measure. For instance, Bauer et all (IZDDS)
proposed using generational life tables (i.e., those which allow mortality rates
to depend upon an individual’s year of birth) in order to provide a forward
mortality surface. However, these are updated infrequently and are not based
on market information (and when used to price financial contracts, typically
have margins for risk aversion added to them). Alternatively, Miltersen and
Persson ([2&05) and Bamlﬁ@mld_mlmé (IZDD_ﬂ) have suggested using the
market for endowment assurances for calibration purposes, since these have
a similar price structure to longevity zeros. Unfortunately, MLQ (M)
showed how using securities dependent on the idiosyncratic risk of individual
lives, such as endowment assurances, can lead to inconsistent definitions of
the forward mortality rates and so this approach is not feasible.

Instead, we propose to use the historical data to model the dynamics of
the force of mortality in the “historical” or “real-world” measure, P, using
relatively simple APC mortality models, as described in Section 2.1l These
real-world dynamics of the force of mortality can then be used to generate the
forward surface of mortality in the real-world measure by using Equation [Tl
Then, in Section B.I] we show how to change from the real-world to a market-
consistent measure, Q, using the Esscher transform which is calibrated using
whatever (limited) market information for longevity risk is available. Thus,
real-world data on historical mortality rates is used to supplement the limited
market data we have, and increasing volumes of market information can be
incorporated into the forward mortality surface as the market for longevity-
linked securities develops.

2.3 Forward APC mortality models

Combining Equations [ and [T, we define forward mortality rates in the
real-world measure, P, as

ve (1) = EF exp (a + B, Kt + Vi—s) (12)

We assume that the age functions are known with certainty at time 7 and
therefore the uncertainty in future mortality rates comes from the projection
of k; andy,_,, i.e., the forward mortality surface only allows for process risk

11



from the projection of the period and cohort functions, in the terminology
of ), but not parameter uncertainty or model risk. In the real-
world measure, we first obtain fitted values of k; and ~, by fitting the APC
model to the historical data. We then estimate the dynamics of the time
series processes for k; and 7, from these fitted values.

If we further assume that our projected k; and <, are normally dis-
tributed, then 7, is also normally distributed and consequently i, , follows
a log-normal distribution[] Therefore

1 1
Vf,t(7—> = exp (am + 5IEPT"% + §Blvarf(nt>/gw +E vy + iva"’f(%—w))
(13)

The assumption that projected period and cohort parameters are nor-
mally distributed is in line with the majority of studies, which use standard
ARIMA methods to project these parameters. If the projected period and co-
hort parameters are not normally distributed, however, it is unlikely that the
resulting forward mortality framework would be analytically tractable. This
is because the distribution of j1, ; would not have the finite moments required.
A number of studies have used alternative methods and distributions to make
projections. These include models which allow for regime changes (Milidonis

et al. (2011) and Lemoine (2014)) or trend changes (Sweeting (2011) and
Hunt _and Blake (2!!15d)) in the processes used to project the parameters.

Another approach has been to use other distributions for the innovations in
the time series processes for the period or cohort functions (such as the t-
distribution, the variance-gamma and the normal-inverse-gamma, which were
used to model the innovations for x; in the Lee-Carter model inm

)). In some of these cases, it may be possible to extend the forward
mortality rate framework to allow for the non-Gaussian distributions. How-
ever, we do not consider alternative distributions for the projected period or
cohort functions further within this study.

12Note that, if we were using 7, ; = logit(g: () in conjunction with a binomial model for
the death count, then g, ; would follow a “logit-normal” distribution (see [Frederic and Lad
(M)) Unfortunately, this is not analytically tractable and does not possess closed form
expressions for the expectation. Therefore, we are unable to define a forward mortality
framework in the logit-link function / binomial death count model as we can in the log-link
function / Poisson death count model.

12



2.4 Projecting the APC model

2.4.1 Period functions

Since Lee_and Carter (|l9_9_j), the most common method used to project
the period functions in an APC mortality model has been the random walk
with drift. This was also used for the CBD model in (Cairns et all (u)l)ﬁ_d

the period functions in various mortality models in Cairns et al! (lZQlJJ and

(2011), and the first (dominant) period function in
Platl (2009).

The random walk model is attractive as it allows the period functions to
be non-stationary with a variability that increases with time, giving biologi-
cally reasonabld!3 projections of the force of mortality.

In Hunt and Blakd (2!!15ﬂ,@), we discuss how projected mortality rates

should not depend upon the identifiability constraints used when fitting the
model to data, and therefore that we should use “well-identified” projection
methods which achieve this. In the context of the random walk with drift
model, this means we should project the period functions using

Ky = ,uXt + K1+ € (14)

where X, is a set of deterministic functions (“trends”) chosen to ensure iden-
tifiability and p are the corresponding “drifts”[M For example, the classic
random walk with drift process has a constant trend, X; = 1, with the
“drift”, u, found be regressing Ak, on this trend. Similarly, the random walk

with linear drift introduced in [Hunt and Blake (2015g) and Hunt and Blake

(M) has constant and linear trends, X; = (1, t)T, with the drifts found
by regressing Ax; against X; in a similar fashion.

BIntroduced in [Cairns et all (2006b) and defined as “a method of reasoning used to
establish a causal association (or relationship) between two factors that is consistent with
existing medical knowledge”.

4Note, we assume that the drifts ;4 are known at time 7 and will not be re-estimated
on the basis of new information arising in the future. Therefore, the forward mortality
framework described in this paper and in [Hunt and Blake ([2_0_l5d does not allow for
“recalibration” risk as defined in [Cairns M) i.e., the risk caused by the uncertaint
the drift. This risk is potentially substantial, as dlscussed in[Li et all (m and [Li
However, we leave the inclusion of recalibration risk to future work

13



The random drift model in Equation [I4]is solved to give

t
Ki = Ky + X+t + Z €s (15)
s=71+1
where x,; = ZZ:THXS. Note that, in the simplest case where we use a

classic random walk with drift to project the period functions, X; = 1 and
hence x,; =t — 7. We assume

]E.,-Gt = 0
Cov, (€, €5) = X1,

where I, ; is an indicator variable taking a value of unity if £ = s and zero
otherwise. This means that the innovations have zero mean and are inde-
pendent across different periods, i.e., they are white noise. In addition, we
assume that the innovations are normally distributed for the reasons dis-
cussed above. From Equation [[3] we find

EPT Ky = K + Xt (16)
Vart (k) = (t — 7)% (17)

In an age/period mortality model without a cohort term, such as the Lee-
Carter or CBD model, allowing for the uncertainty in the period functions is
sufficient in conjunction with Equation [[3] to define forward mortality rates
in the real-world measure. However, more sophisticated mortality models
often include cohort terms, whose analysis is considerably more complicated,
as we now see.

2.4.2 Cohort function

Most common techniques for projecting the cohort function use standard
ARIMA processes, which assume that there is a clear distinction between
those cohort parameters which are estimated from historical data, which are
assumed to be known, and those cohort parameters which are projected us-
ing some time series process. In the forward mortality rate framework, we
can see that this would lead to a sharp discontinuity in the forward mortality
surface. For many purposes, such as the valuation of longevity-linked secu-
rities and liabilities, such a discontinuity is clearly undesirable.

14



To illustrate this problem, consider the case where a (well-identified)
AR(1) process is used to project the cohort parameters

YTy — 65(@/ = P('Vy—l - ﬁXy—l) + &y

where Xy are deterministic functions corresponding to the unidentifiable
trends in the cohort parameters and [ are the corresponding regression
coefficients (see [Hunt and Blakd (2015g)). Such a process would be solved to

give

y
V=" Oy = BXy) + BX, + D pP e
s=Y+1

for y > Y, the year of birth of the last fitted cohort parameter The
variance of this process is

0 ify <Y

1— 2(y—Y) 2 .
f_ﬁa if Yy >Y

L () = {
From Equation [[3] we see that this would give a discontinuity in the forward
mortality surface at the interface between the fitted and projected cohort
parameters. Such a discontinuity would give rise to pricing anomalies and
therefore cannot be permitted in a well-designed forward mortality frame-
work. Comnsequently, we must use alternative processes to project the cohort
parameters for use with forward mortality models.

In Hunt and Blakd (20154), we developed a Bayesian approach to over-

come this issue. This assumes that all cohort parameters, -,, are random
variables that are not fully observed until cohort y is fully extinct at time
y + X. For observation times 7 < y 4+ X, we have partial information based
on observations of the cohort to date. This information is summarised in
the estimated cohort parameters, 7, (7), found by fitting the APC mortality

model to data to time 7. From the analysis in [Hunt and Blakd (20154), we

have

Vyl"t.T ~ N(M(:%T)a V(y>7-)) (18)

15In general, these have a similar form to the deterministic functions for the period
parameters, X;, in Section 2411
16T ypically, cohort parameters for the last few years of birth are not estimated due to

the lack of data, for instance, see [Renshaw and Haberman (2006).
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where

|
_

S

Prye = [[(1—Droyir) (19)

T

E' vy = M(y, )

i
o

= Z p'r—y,sps |:D7'—y7y(7-) + (1 - DT—y-i—s)ﬁ(Xy—s - pr—s—l)
s=0

(20)
Varz(v,) = V(y,7)

= Z Pi_y’s(l — DT_y+5)p280'2 (2]‘)

s=0

for y <Y, where
My, 7) = p™ (M(Y,7) = BXy ) + 5%, (22)

1 — p2y=Y)

Viy,7) = 167/)202 + V(Y 7) (23)

for y > Y. In this,
e D, is the proportion of a cohort assumed to still be alive by age x;

e p and o? are the autocorrelation and variance of the AR(1) process
assumed to be driving the evolution of the cohort parameters;

° Xy and [ are the trends and drifts for the cohort parameters as defined
above;

e 7,(7) are the estimates of the cohort parameters, fitted by the mortality
model at time 7; and

e F. is the total information available at time 7, including observations
of the cohort parameters up to year of birth y, i.e., {7,(7) v < y}.

I"Note that the drifts, 3, depend upon the arbitrary identifiability constraints chosen.
In practice, we therefore impose a set of identifiability constraints such that 8 = 0 to
simplify matters considerably.
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In [Hunt and Blake (2015a), it was shown that this framework allows the

historical and projected cohort parameters to be treated consistently, without
any sharp discontinuities in the uncertainty between them. It was also shown
that these projections are well-identified, in the sense that they do not depend
upon the arbitrary identifiability constraints made when fitting the model. In
addition, it is shown in [Hunt and Blake (Iﬁ)bd) that the Bayesian framework
allows us to update estimates of the cohort parameters over a one-year period
to proxy for the impact that new data would have on our parameter estimates,
which is essential for risk management purposes. The Bayesian framework
is therefore well adapted for use in a forward mortality context, and we will
use it for all APC mortality models which include cohort parameters.

2.5 Estimation and projection

The framework described in Sections and 2.4] is very general and can be
used in conjunction with any APC mortality model for the force of mortality.
To see this in practice, we consider estimating the forward mortality rates on
male data for the UK for the period 1950 to 2011 and ages 50 to 100 from

the Human Mortality Databasd (2014) for five different APC models:
1. the Lee-Carter (“LC”) model of Lee and Carterl (1992);

2. the “CBDX” model discussed in [Hunt and Blake (2!!15ﬂ), which extends
the Cairns-Blake-Dowd model of (Cairns et all (Ill)ﬁab with a static age
function and uses a log-link function;

3. the “classic APC” model of Hobcraft. et all (1982) and others;
4. the “reduced Plat” (“RP”) model of Plad (200§) discussed in Hunt and

Blake (2015g){ and

5. the model produced by the “general procedure” (“GP”) in Hunt and
Blake (2015h) for the data described above.

8That is, the simplification of the main model discussed in (2009) without the
third, high-age term or, equivalently, an extension of the CBDX model with a cohort
term.
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These models have the form@

]-n(ugc7t) — (LC _I_ 5 LC KJgLC) (24)

1n(ux7t) — (C’BDX) —I— (CBDX,l) + ([[' . i’)KJgCBDXQ) (25)

In(pe,) = ol + K(APC) + 7 (26)

I (ptay) = alFP) 4 /@ERP D4 (@ — 2)r0? 4 AP (27)
7 GP,i GP

In(f1e) = o) + Z FEPD (@) OPD 4 4C0 (28)

i=1

The parameters in these models have been estimated by fitting the model
to the UK population data described above. These fitted parameters have,
in turn, been used to estimate the parameters of the time series processes
discussed in Sections and 2.4.2for k, and v, (if applicable). Using these
parameter estimates, we can calculate forward mortality rate surfaces in the
real-world measure using Equation

These models have been chosen to give a reasonable cross section of the
different APC mortality models which could be used in practice. One of the
advantages of the forward mortality rate framework described in this paper
is that it allows for consistency between the model of the force of mortality
and the forward mortality surface. Consequently, as a check, we compare
these forward surfaces of mortality for each model to the mean mortality
rates calculated using Monte Carlo simulations (shown in Figure [ for the
GP model) and find that the small difference between the two is explained
by sampling error in the simulations.

19See Hunt and Blakd (2015b) for full details of the construction of the GP model. For all
models, we also select age functions which are normalised so that > [8:| = >, [f(z)] = 1.
This involves either including normalisation constants or choosing age functions which are
“self-normalising” in the sense of [Hunt and Blake (2!!15ﬂ). However, for clarity, these are
not shown, although they are taken into account in the fitting algorithms.
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Figure 1: Difference between forward mortality rates and those obtained
from Monte Carlo simulations using the GP model

3 Pricing securities and the market price of
longevity risk

3.1 The market-consistent measure

In Section 2.4 we calculated mortality forward rates using the time series
processes estimated from the fitted parameters. This means that the expec-
tations in Equation [[3] were calculated in the historical, real-world measure,
P.

It is obviously important that longevity-linked securities prices are con-
sistent across different types of security in order to limit the potential for
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pricing anomalies and arbitrage opportunities in the market. In addition,
modern solvency regimes require that liability values and technical provi-
sions for pension schemes and insurers must also be consistent with market
prices. Identifying a suitable market-consistent measure, Q, is therefore a
critical component of the forward mortality framework.

The starting point of modern financial theory is to assume that the fi-
nancial markets are “complete” in the sense that every financial claim in
them can be hedged perfectly using tradable assets. In complete markets,
the market-consistent measure exists and is unique. Derivative securities in
complete markets can be perfectly replicated using these underlying securities
without risk (and hence these measures are also referred to as “risk-neutral”)
and the costs of these hedging strategies give the derivatives their unique
prices. Complete markets are also free from arbitrage, since all prices can
be derived using these underlying hedging strategies and any deviation from
these prices will be arbitraged away by informed investors. The assumption
of market completeness is a reasonable one in many contexts, such as devel-
oped markets for equities and interest rates in large and advanced economies.

However, the market for longevity risk is not complete. Not only are there
insufficient tradable longevity-linked securities to fully replicate all financial
claims, there are almost no longevity-linked securities being actively traded,
full stop. Therefore, defining a market-consistent measure for longevity risk
is a major problem for all mortality models which seek to price longevity-
linked securities.

Some studies, for instance &Mage_l{ (IM), assume a priori that any mar-
ket will be risk-neutral with respect to longevity risk and therefore that the
historical and market-consistent measures are equal. We believe this is un-
likely, given that any market in longevity risk is likely to be dominated b
parties that suffer financially from rising life expectancy (see m

)) and therefore will be generally seeking to hedge the risk of future
improvements in mortality rates.

In light of this absence of information, [Barrieu et all ([Zﬂld, p. 224)

suggested that the real-world measure must play a key role in the definition
of any market-consistent measure:
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What will be a good pricing measure for longevity? It is expected
that the historical probability measure will play a key role, due
to the reliable data associated with it. Therefore, it seems nat-
ural to look for a pricing probability measure equivalent to the
historical probability measure. Important factors to consider are
that a relevant pricing measure must be: robust with respect to
the statistical data, and also compatible with the prices of the
liquid assets quoted in the market. Therefore, a relevant proba-
bility measure should make the link between the historical vision
and the market vision. Once the subsets of all such probability
measures that capture the desired information are specified, a
search can commence for the optimal example by maximising the
likelihood or the entropic criterion.

We agree with this analysis, and use the Esscher transform to define a
market-consistent measure that is equivalent to the real-world measure and
that satisfies many of these desirable properties. This transformation is rel-
atively parsimonious, with a small number of free parameters which can be
calibrated using any market information we possess. Below, we further show
that the Esscher transform gives us closed form expressions for the market-
consistent forward mortality rates as shown below, and therefore is relatively
straightforward to implement and robust to calibrate to data.

The Esscher transform has often been used in securities pricing in im-

perfect markets since the work of (Gerber and Shiu (IL&M) As discussed
in (@), it is related to other widely used distortion methods for
adjusting to a risk-neutral measure, such as the the Wang transform Edevel—

(I_;ﬁin [Wang (2000, 2002) and [Cox et all (2006), and used in

) for example), and the Sharpe ratio in modern financial theory (used

in [Milevsky et al. (IJ)Q_E:I and [Loeys et all (u)j)_ﬂ It is also consistent with

pricing in the real-world measure for an individual with an exponential util-

ity function, as discussed in [Milidonis et al) (2011)).

For a risk X, ; in the P measure, the general Esscher transform to the Q
measure can be defined by

EP [Xx,t eXp(—Zm)]

ECX,, =
T EPexp(—Zay)

(29)
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where Z, ; is a random variable containing the parameters defining the market-
consistent measure.

In the context of mortality forward rates, we choose X,; = p,: =
exp(n,+) and correspondingly define

Zx,t = ATFLt + )\ﬁ/’}/t_m (30)

where A is an (N x 1) column vector. Hence, there are N + 1 parameters
(which we refer to collectively as AU, j € {1,... N,~}), which correspond to
the IV age/period terms (in the vector A), and the cohort term (with single
parameter A) in the general APC mortality model in Equation Bl It is im-
portant to note that the values found for these parameters will depend upon
the specifics of the underlying model, and so are not comparable between
different models.

Due to the paucity of genuine market information to price longevity risk,
one might have a natural inclination to prefer simpler models, such as the LC
model (which has only one free parameter for the Esscher transform). Such
models could be felt to be more parsimonious, having fewer market prices
for longevity risk and therefore requiring fewer market prices for longevity-
linked securities in order to calibrate the market-consistent measure. For
example, calibrating the LC model would require only one market price in
order to calibrate the market-consistent measure, whilst calibrating the GP
model in Section 2.5l requires four market prices. Using overly simple models,
however, would be a mistake which can lead to unreasonable prices for other
longevity-linked securities as shown in Section [3.3

Using the Esscher transform with Equation [Tl and this definition for Z, ;
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gives

Vgt(T) = EQT Mot
= EQT eXP(nm,t)
_ EF. exp(—ZyMut)
EF,. exp(—Z,+)
_ EF; explan + (B, — N ke (1= N ))
N EF, exp(—AT Ky — Ny_s)

1
= €Xp (ax‘ + BIEPT Ky + 5,6;—V(17°E) (K’t)/ﬁx + EPT Vi—x

1 1 1
—I—iVarf (Ve—z) — iﬁlVarf (Ke) A — §ATVarf (ke)B, — )\VVarf(%_I))

= exp (=B, Vary (k)X — XNVar? (vi_,)) vy ,(7) (31)

z,t

due to the symmetry of Vart (k).

This gives us closed-form expressions which allow us to adjust the forward
mortality rates in the real-world measure to a market-consistent measure.
The existence of closed-form expressions is why we argued that the Esscher
transform neatly complements the forward mortality framework: these re-
sults could not have been achieved with alternative transformations to the
market-consistent measure. Since we have already found expressions for
Vart(k,) and Varf(y,), transforming the forward mortality surface in the
real-world measure into a market-consistent measure is simply a matter of
finding the values of free parameters of the Esscher transform. This can be
done if we have sufficient prices for longevity-linked securities, as discussed
in Section below.

Through the analogy with utility pricing and the Sharpe ratio, we refer
to the parameters of the Esscher transform as the “market prices of longevity
risk” associated with each of the age/period and cohort terms. For this anal-
ogy to be reasonable, we would anticipate that the parameters, A¥), should
be positive. However, this is not necessarily the case in the forward mortality
framework, for the following reasons.

As discussed in [Loeys et al. (IM_ﬂ), we anticipate that the marginal par-
ticipant in the market for longevity-linked securities will be a life insurer
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seeking to hedge longevity risk. Such a life insurer will be averse to longevity
risk, and so, we would expect the market-consistent forward mortality rates
to be lower than those in the real-world measure

V() < vz, (7)

x,t

In order for this to be true,

exp (=8, Vary (k)X — NVary (1—,)) < 1
= B Varf (k)X + NVarf(y,_,) > 0

Since Varf(k,) is a positive definite matrix and VarZ(y,) > 0, this will cer-
tainly be true if AY > 0 and the elements of A are also positive. However,
individual market prices of longevity risk can be negative, whilst still ensuring
that hedgers pay a positive price to transfer longevity risk overall. Since some
market prices can be negative, the term “market prices” might be considered
misleading. Although we shall refer to these parameters as market prices in
this paper and in [Hunt and Blake ([2ﬂl5d|), it should be borne in mind that
they are probably best thought of as simply parameters in the Esscher trans-
form in Equation rather than true market prices of longevity risk based
on an expected utility approach (such as that discussed in|Zhou et all (2015)).

The Esscher transform approach has some other practical advantages, be-
yond the existence of closed-form expressions for the forward mortality rates.
The forward mortality surface in the real-world measure will be updated only
infrequently, typically once every year when new mortality data is released.
However, market information will need to be updated far more frequently, es-
pecially as the market for longevity-linked securities develops. It is desirable
in practice to be able to take the (infrequently changing) P-measure forward
mortality surface and make relatively simple adjustments to this to reflect
changing market information, rather than having to re-estimate the model
completely every time the pricing information changes.

However, a limitation of the forward mortality framework outlined in this
study is that it is currently unable to price longevity-linked securities with
optionality, for example, a call option on mortality rates. In order to do this,
the dynamics of mortality rates in the market-consistent measure would need
to be specified, in addition to simply the expectation, E2, 1, ;. We leave the
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extension of the forward mortality framework to the inclusion of longevity-
linked options to future work.

We also note that, looking solely at the age/period terms, Equations
and [[7 imply

BIEF ki + Bl Var, (k)X = B, [kr + pxrs + (t — T)BA]
- /8;— ["‘"T + /:LXﬂt]

since t — 7 is always one of the deterministic functions in x,,. Hence, we
see that for an age/period model such as the LC and CBDX models, the
Esscher transform to the market-consistent measure is equivalent to making
an adjustment to the drift of the random walk in Equation[I4l This approach
is developed further in [Hunt and Blake (2015¢). In this form, the use of the
Esscher transform can be compared with some of the other approaches that
have been suggested in previous studies. For instance, L)ﬁxulua.ﬂ (Iﬁ)llﬂ)
suggested that the price of a g-forward should be calculated as

¢ =(1— (-7

2 2

where o“ is defined as the annual volatility of the mortality rate, i.e., 0* =
Varf(Ing). We can compare this pricing formula to what our forward mor-
tality framework would give were we to use the LC model as the underlying
mortality model. This has one period function, k;, with one associated mar-
ket price of risk, A\. From Equation BI] applied to the LC model, we find
V(1) = exp (=(t = 7)B,ZN) v, (7)

x,t

We can therefore see that the pricing formula in [Loeys et al) (Iﬂ)l)_ﬂ) is similar
in form to Equation 1], although based on forward contracts on probabilities
of death, g, ¢, rather than the longevity-zeros which are used as the underly-
ing securities in this study.

Cairns et al. (IMTa') adjusted the drift of the random walk used to
project the period functions directly, in order to incorporate market prices
for longevity risk without recourse to the Esscher transform

,uQ:,uP—C'S\
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where CC" = ¥ and A is a vector of the market prices of risk. If such an
approach were to be used for the CBDX model in a forward mortality rates
framework such as above, we would find market-consistent forward mortality
rates

v3.(7) = exp (~(t = )BICA) Vi, (7)

Therefore, we see that the approach used in|Cairns et al. (IMM) is equiv-
alent to that used in this study, except using C'A instead of X\. Equating
these gives

CX =%
A=CTA
Hence, the more rigorous forward mortality framework defined in this study

achieves results which are consistent with those of |Cairns et al. (Iﬁ)miab, but
is also able to justify the otherwise ad hoc adjustments to the drift made in

that study.

3.2 Calibration of the market-consistent measure

As has been mentioned previously, a major problem with forward mortality
models is the lack of market information to specify the market-consistent
measure. An advantage of using the forward mortality framework described
in this study is that, rather than requiring sufficient market prices to define
the full forward mortality surface, we require only N + 1 prices to uniquely
specify the market prices of longevity risk used in the Esscher transform.
This substantially reduces the market information required.

However, even this simplification is unlikely to be adequate at present,
given the paucity of traded longevity-linked securities. Many of those which
do exist, such as the extreme mortality bonds listed in m’ ), are not
suitable as they involve options on mortality rates which cannot be priced
using the forward mortality framework as proposed here For illustrative
purposes, we will demonstrate how the forward mortality rate framework
could be calibrated with respect to the sort of information which is available

20We extend the forward mortality framework to allow for the valuation of longevity-

linked options in [Hunt and Blake (2015¢).
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currently or is likely to be available in the foreseeable future, and how this
“external” market in longevity risk could be supplemented by use of an “in-
ternal” market for longevity risk based on the assumptions used to value and
reserve for longevity risk within a life insurer ]

3.2.1 External market

A number of “external” markets exist for products which depend upon longevity,
for instance the markets for endowment assurances and individual annuities.
These were used to provide market information for pricing longevity risk in

) and Bauer et al] (2008). However, both of these
products are sold to individuals, and therefore are subject to idiosyncratic
mortality risk as well as systematic longevity risk, which makes them unsuit-
able for use in a forward mortality rate framework, as discussed by
M) Furthermore, insurers will include loadings for expenses and other
risks, in addition to longevity risk when pricing these products, which makes
using them to calibrate a forward mortality model problematic.

Instead, any forward mortality model will need to be calibrated using
securities dependent on aggregate mortality rates (preferably from national
populations) rather than those that are sold to individuals. Such securities
are also more likely to be traded, thereby giving informed and responsive
market prices. The problem remains, however, that there is currently no
actively-traded market in such securities which can be used to provide the
pricing information required to calibrate the market-consistent measure.

To date, probably the most active market in longevity-linked securities
has been that for bespoke longevity swaps (see Hunt_ and Blakd (2015k)).
A longevity swap is an agreement between two parties to swap a series of
cashflows - a fixed leg based on the best estimate of the survivorship of a
cohort but then increased by a constant percentage (the swap margin) and
a floating leg based on the actual survivorship observed for the cohort. A
bespoke longevity swap is one which is tailored to the characteristics of a spe-

2lIn a sense, the difference between the external and internal markets for longevity risk
could be compared to the difference between using mark-to-market and mark-to-model
valuation methods when valuing securities in company accounts, depending upon whether
deep and liquid markets exist for them.
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cific population such as a pension scheme. As such, bespoke longevity swaps
are unlikely to be widely traded, and act more as customised reinsurance
contracts than standardised longevity-linked securities which could form the
basis for a market in longevity risk. In contrast, an index-based swap, such
as that described in [Dowd et. all (IZDD_d), is one where the cohort in question
is from a national population. Although index-based longevity swaps have
not yet been widely traded, the development of the bespoke longevity swap
market to date implies that, if a market in longevity risk does develop in the
near future, it is likely that index-based swaps will form a key component of
it.

For illustrative purposes, we therefore assume the existence of a single
index-based longevity swap, which we believe might be typical of the sort
of security which may be traded during the early stages of the development
of an external market in longevity-linked securities. We assume that this
index-based longevity swap has been written on a standard cohort of men in
the UK aged 65 in 2011 and has a term of 35 years (i.e., until the cohort is
aged 100). The floating leg of this swap will therefore have the value

35
> P (T)B(r. T +1)

t=1

i.e., the same price as a series of the longevity zeros discussed in Section 2.2
The fixed-leg cashflows will reflect a typical “best estimate” agreed between
the contracting parties when the swap is initiated. For illustrative purposes,
we assume these cashflows are set by calculating the survivorship of the ref-
erence cohort using the fitted mortality rates in 7 = 2011 projected usin

the “CMI Projection Model” ntin Mortality Investigati (Immuﬂg,
)) with a “long-term rate of improvement” assumption of 1.5% p.a. We
denote the survival probabilities of the reference cohort from time 7 to 7+t
using this assumption as ;Pgs (7). While there is currently no active market
in index-based swaps, this assumption is typical of those used to define the
fixed leg of bespoke longevity swaps in our experience. These cashflows are
then increased by a swap premium of 4%, which is a typical level on bespoke

22The use of the CMI Projection Model in this context is purely illustrative and should
not imply that we believe that this is the best model to use for pricing longevity-linked
securities, although it is typical of what has been used in practice in our experience.
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swaps in our experience.

The price of the swap is therefore

35

> (iPR(7) = 104 Ps (7)) B(r. 7 + 1) (32)

t=1

and will be zero at time 7. We therefore calibrate the market prices of risk
to impose this using standard numerical optimisation algorithms. In these
calculations, we assume a flat real yield of 1.0% p.a. for the zero-coupon
bond prices, B(T, T +t)

For models with only one source of risk (for instance, the LC model),
this single, external price is sufficient to specify the single market price of
longevity risk uniquely. For more complicated models, with multiple risk
sources, we require additional prices in order to specify the market prices of
longevity risk.

3.2.2 Internal market

We observe that, while genuine market information is in scarce supply, many
insurance companies will effectively have an internal market for longevity risk
due to the cross-subsidies between different lines of business with different
exposures to longevity risk. For instance, an insurer which writes both annu-
ity and life assurance lines of business has, de facto, established an internal
market for longevity risk due to the presence of natural hedging between the
two lines of business, as discussed in [Cox and Linl ([ZQOj) The “price” of
longevity risk in this internal market will find expression in the mortality im-
provement assumptions used in the pricing and reserving for these different
lines of business. It is therefore natural to use these “internal” market signals
to supplement those coming from the genuine external market if there are
insufficient traded longevity-linked securities to define the market-consistent
measure.

Alternatively, an insurer may develop an “internal” price for longevity risk
by analysing the cost of longevity reinsurance via bespoke longevity swaps.
Although these contracts do not solely transfer longevity risk - they also
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transfer basis and idiosyncratic risks - they could still give some indication of
a price for the systematic longevity risk present, and so be used to calibrate
the market-consistent measure.

For example, we assume that the forward mortality framework is being
used by an organisation with an internal, deterministic assumption that con-
stitutes their “house view” of mortality improvements. This house view would
then feed through into the assumptions used in pricing and reserving, and
inform those assumptions that are used for accounting and regulatory pur-
poses if there is sufficient flexibility in how these are set. The existence of
such a house view would therefore determine the organisation’s appetite for
longevity risk across multiple lines of business and so underpin the “internal”
market for longevity risk.

To illustrate the sort of internal market that might be considered typical,
we assume a house view that mortality rates improve in line with the projec-
tions from the CMI Projection Model with a long-term rate of improvement
of 1.75% P4 Again, this is in line with the sort of assumptions used to reserve
for and price annuity business in the UK in our experience. In order to trans-
late this house view into the market prices of longevity risk in our forward
mortality framework, we try to minimise the (weighted) relative distance be-
tween the surface of probabilities of dying given by the internal assumption,
dxt, and those given the forward mortality surface in the Q-measure

Q,4(7) =1 —exp (—v2,(7))

at certain key ages, subject to the swap also being priced fairly at time, 7,

23This value of 1.75% can be compared with the assumption of a long-term rate of
improvement, of 1.5% used for the fixed leg of the index-based longevity swap above.
The long term rate of improvement is likely to be higher on an annuity reserving basis
than for valuing a longevity swap, since it is common practice, in our experiences, for
annuity providers to include an implicit margin for prudence in their mortality projection.
In contrast, the assumption used in a longevity swap typically reflects a best estimate of
future mortality improvements and risk is explicitly allow for via the swap premium rather
than an implicit margin in the mortality assumption.
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ie.,

. (q~x7t - Q:c7t)2
min Z B(r, 7+ t)——————

q:v7t
subject to Equation 321 = 0

where X = {50, 55,60, 65,70, 75,80}. This procedure is equivalent to deter-
mining the market-consistent measure by reference to an external market in
g-forwards, as proposed in |Coughlan et all (Iﬂl)_ﬂ) and discussed in Section
below, if such as market existed. We consider these key ages partly to
ensure that the forward mortality surface in the market-consistent measure
is biologically reasonable over a wide age range and because, if a market in
g-forwards does emerge, it is at these ages where the market is likely to be
most liquid (see Li and Lud (2012)). Therefore, the use of the internal market
for longevity risk is simply a proxy for information from an external market
for longevity risk, and will be supplanted should a genuine external market
develop.

We use these assumptions for the external and internal markets for longevity
risk in order to calibrate the parameters of the Esscher transform for all five
models described in Section These parameters, along with the forward
mortality surfaces obtained in Section [Z.5] allow us to construct the forward
mortality surface in the market-consistent measure, which can then be used
to value other longevity-linked liabilities and securities in a market-consistent
fashion.

3.3 Pricing longevity-linked securities

The forward mortality framework described above provides a single surface
of forward mortality rates, calibrated from all the available information on
longevity-linked securities. It can, therefore, be used to value any other
longevity-linked securities and give prices consistent with those observed. We
demonstrate this for a range of different longevity-linked securities below.

3.3.1 Survivor derivatives

Longevity zeros and s-forwards
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In Section .21 we defined the forward mortality rates assuming the exis-
tence of a market in longevity zeros. These were used as they are the funda-
mental securities dependent upon the survivorship of a cohort of individuals,
and can be used to construct more complicated survivor securities such as
annuities and longevity swaps, as discussed below. Related to longevity zeros
are “s-forwards”, as proposed in|D (2003), Blake et al! (2006) and the Life
and Longevity Markets AssociationE which are forward contracts defined on
a longevity zero (and hence are more capital efficient).

From Equation [[, we can see that

t
Spi(1) = P, = exp (— > V9+u,T+u(T)>
u=1

where S, ,(7) is the forward price of an s-forward at time 7, defined on a co-
hort aged x at 7, with a maturity of ¢ years. Figure 21 shows s-forward prices
defined on the cohort of individuals aged 65 in 2011 with different maturities.

As can be seen, most of the models give broadly comparable s-forward
prices, especially those calibrated using the internal market information. We
note that the LC model gives s-forward prices which are slightly different
from these models, with higher probabilities of survival over the first few
decades followed by a period of higher mortality rates (and hence a steeper
gradient for the curve), but these are still biologically reasonable.

Annuities

The most relevant longevity-linked instruments for many life insurance
companies are annuities. For the reasons discussed in Section [3.1] and Nor-
berg VM), individual annuities cannot be used to calibrate the forward
mortality surface in the market-consistent measure, since the cashflows of
these instruments are explicitly linked to the survivorship of a named indi-
vidual and, hence, their prices include an allowance for individual mortality
risk. In addition, they are not traded, and, therefore, cannot provide timely
information on their values. However, when a life insurer reserves for a book

Znttp://www.1llma.org/
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Figure 2: S-forward prices for five different mortality models

of annuities, the idiosyncratic mortality risks are diversifiable and so are not
included in the value of any specific annuity but through the additional cap-
ital required for the book!*J In addition, modern solvency regimes, such as
Solvency II, require the best estimate of the liabilities in respect of annuity
policies to be calculated using market-consistent assumptions. Therefore, the
market-consistent forward framework could, potentially, be used as the basis
for an insurer’s “internal model” under Solvency II, as discussed in

(2014) B9

25There will therefore be a distinction between the price an annuity is sold to the public
for and the amount it is reserved for by the life insurer, with the additional margin for
idiosyncratic mortality risk charged to the individual forming part of the profit margin of
the product.

26This is discussed further in [Hunt and Blakd (2015§).
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The value of an annuity can be directly constructed from a portfolio of
longevity zeros using

a,(7) =Y _PE(r)B(r,7 +1) (33)

t=0

To calculate the values of longevity zeros beyond the maximum age in our
data, we use the topping out procedure of Denuit. and Goderniaux ([2&05)
We therefore see that annuity values are very closely related to the swap price
given in Equation We calculate annuity price for men at different ages
in 2011 using the five different models, and the results are shown in Figure

Bl

We can see from this that the different models give broadly similar an-
nuity values. This is not surprising given that they all use the same external
market information (i.e., the swap price) in order to calibrate the market-
consistent measure. Indeed, all the models give exactly the same value for
an annuity at age 65, since this is determined by the swap price we have
assumed and an annuity is equivalent to the floating leg of a longevity swap.
However, the annuity values given by different models diverge slightly as we
move away from this fixed reference point, with the LC model giving lower
annuity values at higher ages than the other models.

Index-based longevity swaps

We can also use these results to investigate the potential pricing of index-
based longevity swaps at different ages. Extending the definition of the swap
value in Equation 2] for different ages to

35

0= (iPL(T) = (L+7) Par(r)) B(r.7 +1) (34)

t=1

we can use the same “best estimate” assumption based on the CMI Projec-
tion Model for the fixed legs of the swaps, to calculate the implied swap

27 Annuities are valued using a real discount rate of 1% p.a..
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Figure 3: Annuity values for five different mortality models

premium, 7, on index-based longevity swaps at different ages. The implied
swap premiums are shown in Figure [l

As can be seen, the behaviour of the swap premium depends strongly
upon the model being used. For the classic APC, RP and GP models, which
include a cohort term, the swap premium slightly increases with age, from
around 4% at age 65 to around 6% between ages 75 and 80 (note that a
value of 4% was assumed at age 65). Swap premiums for the CBDX model
decrease slowly with age, to around 3% at age 75. However, for all of these
models, the swap premium remains positive and do not appear unreasonable
at any age.

In contrast, the LC model gives swap premiums which decrease rapidly
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Figure 4: Swap premiums for five different mortality models

with age, giving negative swap premiums at higher ages (i.e., a premium
would be paid to receive the floating payments on the swap) which does not
appear reasonable. This is because the LC model gives relatively low values
for annuities at higher ages - lower than would be found using the deter-
ministic CMI Projection Model. We therefore see that there is a trade-off.
On the one hand, we would like to use simple models which have relatively
few free parameters and so are simple to calibrate from sparse data (and, in
particular, would avoid the use of an internal market for longevity risk). On
the other hand, we also need to obtain plausible prices for different longevity-
linked liabilities and securities and across a wide range of ages.
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3.3.2 Other longevity-linked securities

A number of other longevity-derivatives not based on the survivorship of a
cohort have been proposed, and these can also be valued using the forward
mortality framework proposed here. A number of these are illustrated be-
low. However, the important point to note is that any security which does
not have a non-linear payoff (i.e., which is not an option) can be valued using
the forward mortality framework proposed in this paper.

qg-forwards

Forward contracts on future probabilities of death, known as “q-forwards”,

were introduced in |Coughlan et al. (Iﬂl)_ﬂ) and represent another, distinct,

family of potential longevity-linked securities. There have been a number of
hedging transactions using q-forwards, as discussed in Blake et_al ([21113),
and so g-forwards are one of the major contenders to form the basis of a
traded market for longevity risk if it develops. In addition, the internal mar-
ket assumption, used in Section to calibrate all of the models other than
the LC model, implicitly makes use of a market for g-forwards, albeit one
that is internal to the life insurer rather than an externally traded market.

Values for g-forwards at age 75 and different maturities, calculated using
the forward mortality models, are shown in Figure Bl along with the g, val-
ues projected using the CMI Projection Model. For the models which used
the internal market assumption to calibrate the market-consistent measure,
we see that the g-forward values are broadly consistent with those from the
CMI Projection Model. However, they are not identical, since the calibration
process also has to match the swap price exactly and minimise the difference
in g-forward prices at ages other than 75. However, because the GP model
has more market prices of risk to calibrate, it achieves a slightly closer fit to
the internal market assumption than the other models, including the cohort
effect observed around 2025 (i.e., for cohorts born around 1950).

In contrast, the LC model gives g-forward values which are very different
from those of the other models, with implausibly rapid decreases in g-forward
values. Again, this is because, with a single market price for longevity risk,
the LC model has to severely distort the forward mortality surface in the
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Figure 5: g-forward prices at age 75 for five different mortality models

real-world P-measure in order to price the longevity swap. It cannot ensure
that mortality rates across a wide range of other ages and years behave in
a plausible fashion in the market-consistent measure. We therefore see that
more sophisticated underlying APC mortality models, as well as being able
to incorporate pricing information from a wider range of sources, will also
tend to give more biologically-reasonable forward surfaces for mortality in
the market-consistent measure.

e-forwards

Period life expectancy is a very commonly used aggregate measure of
mortality rates, since it can be calculated easily from observed data and can
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be compared across different populations. It is, therefore, natural to consider
its use as an index for longevity risk transfer, based on the suggestion of

). In particular, we consider a market in forwards on period
life expectancy, which we refer to as “e-forwards” (from the demographic
symbol for period life expectancy). Using the forward mortality framework,
we calculate forward period life expectancies as

Ees.4(T) = 0.5 + ZGXP <_ Z V(%Jrv,t(T))
u=1 v=1

Figure [6] shows the forward period life expectancies at age 65 from each of
the five models in the market-consistent measure.

28 T T T T T T T T T
LC
= = = CBD
2 APC
RP
= = =GP
24
—>— Observed
22 1
20 1
18 1
16 ¢ 1
14 1 1 1 1 1 1 1 1 1
2000 2005 2010 2015 2020 2025 2030 2035 2040 2045 2050

Year

Figure 6: Period life expectancies at age 65 for five different mortality models
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We note that all of the models give forward period life expectancies which
can be considered biologically reasonable and consistent with the findings of
Oeppen_and Vaupel (2002), i.e., that they increase roughly linearly. Life
expectancies from the LC model increase slightly faster than the other mod-
els, which otherwise give broadly consistent forward values. This is because
of the use of the internal market to calibrate these other models, ensuring
greater consistency between their forward mortality surfaces.

k-forwards

In Hunt and Blakd (2015h), we discussed how the indices based on the

observed rates of improvement in mortality rates, such as the indices which
were defined in the construction of the Swiss Re Kortis bond, could poten-
tially form the basis for a market in longevity risk. Improvement rates may
be a natural basis for a market in longevity, as they are often used by actu-
aries to express long term assumptions regarding the evolution of mortality
rates. Building on this, we also consider the forward value of the index for
men in the UK defined by

85 Q 3
- 1 Vm,t(T)
Ki(1) = 11 9;75 1— [71/%_8(7‘)]

This index was constructed to measure the average rate of improvement
in mortality rates between ages 75 and 85 for men in the UK and so could
be used for hedging or transferring longevity risk in a portfolio of annuities.
Unlike the Kortis bond, however, we only consider an index constructed for
a single population (i.e., men in the UK) rather than the difference between
two populations, and only consider pricing the index rather than an option
on the index 3

In Hunt. and Blake (2015h) it was suggested that forward contracts based

on this Kortis index could form the basis of a market in longevity risk. We
refer to such contracts as “k-forwards” in the same manner at -, s- and e-
forwards discussed above. Figure [ shows the projected k-forward values in

the market-consistent measure. As discussed in Hunt. and Blake (2015h), the

28See |Hunt and Blake (2015h) for a further discussion of the Swiss Re Kortis bond and
its construction.

40



Figure 7: Kortis

0.04

0.035

0.03

0.025

0.02

0.015

0.01

0.005

0

2000 2005 2010 2015 2020 2025 2030

index values for five different mortality models

= = =GP
—>— Observed

Year

41

2035 2040 2045

2050



Kortis index is designed to be very sensitive to the rates of improvement in
longevity, which are determined by the drift, u, of the random walk used
for the period parameters. Indeed, for models which lack a cohort term, the
drift in the random walk exactly determines the projected index values, and
hence they are constant beyond 20201 For the models which include cohort
parameters, the value of the index in the short term depends strongly upon
the cohort parameters fitted by the model, as discussed in Hunt_and Blakd

), resulting in a distinctive curved pattern. In general, the models
containing a cohort term give market-consistent assumptions for the rate of
improvement in longevity which decrease from its currently observed level of
around 3.5% to around 2% in 20 years’ time. This is not surprising given
this is broadly in line with the assumptions used to calibrate the market-
consistent measure, i.e., the CMI Mortality Projection Model with a long
term rate of improvement of either 1.5% or 1.75%.

As in the case of the g-forwards, the index values for the L.C model show a
very different evolution due to the limited ability of this model to both price
the market information and give a biologically reasonable forward surface of
mortality. However, the alternative models appear to give index values which
are biologically reasonable and consistent with the historical, realised values
for the k-forwards, which potentially means that forwards on the index could
form a viable basis for a market in longevity risk.

Other longevity-linked securities

The forward mortality surface could also be used to value life assurance
policies in the same manner. In conjunction with the results of Hunt and
Blake (2015d), the forward mortality framework could therefore be used as a
standard model for both the valuation of a life insurer’s technical provisions
and the assessment of longevity risk within them, in accordance with the
Solvency II regulatory regime described in [EIOPA (M) We describe how
this can be accomplished in Hunt and Blake (2015j). In addition, for life
insurers writing both annuity and assurance policies, it may be desirable to
value these consistently in the technical provisions, in order to achieve the

29Before 2020, the Kortis index is based partly on projected and partly on observed
mortality rates, and hence exhibits more variability than after 2020.
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benefits from natural hedging discussed in (Cox and Linl (2007).

Beyond the examples discussed above, the forward mortality framework
could be used to value any longevity-linked security with a linear payoff in the
underlying index. Hence, although the market for longevity-linked securities
is in the early stage of development currently and it is unclear which form of
securities will ultimately come to be traded, we believe that the framework
described in this paper is flexible enough to be able to price any of them in
a manner consistent with any other prices for longevity-linked liabilities and
securities which are available.

As discussed previously, one disadvantage of any forward mortality rate
framework as described in this study is that it cannot be used to value
longevity-linked options, since it only looks at the expected mortality rates
in the market-consistent measure. For example, it could not be used di-
rectly to value mortality catastrophe bonds, such as the Swiss Re Vita bond
(discussed in Bauer and Kramer (2007)), Longevity Experience Options (de-
scribed in [Fetiveau and Jia (2014)), bespoke index-based solutions (described
in Michaelson_and Mulholland (2014)), a guaranteed annuity option (dis-
cussed in [Pelsser (2003) and Ballotta and Habermanl (2006)) or a bond sim-

ilar to the Kortis bond with the principal being a non-linear function of the
index value. At the present time, we do not think that this is a fatal limita-
tion of the forward mortality rate framework discussed here, as currently the
market for longevity-linked securities is not sufficiently developed to allow a
full calibration of the forward mortality rate surface, let alone the dynamics
of the force of mortality in the market-consistent measure, which is required
to model longevity-linked options. We extend the forward mortality frame-
work developed here to be able to value longevity-linked options in Hunt and

Blake (20156).

4 Conclusion

The valuation of longevity-linked liabilities and securities requires us to pre-
dict future rates of mortality. Modern solvency regulations and the gradual
emergence of a market in longevity-linked securities require these predictions
to incorporate market information, in order to give prices for different secu-
rities which are consistent with those observed in the marketplace. As many
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previous studies have shown, forward mortality models are ideally placed to
achieve this.

We therefore believe that the answer to the titular question raised in
Mlﬁté (IZQld) - are forward mortality rates the way forward? - is yes. Nev-
ertheless, it is important to take on board the criticisms of Norberg (M)
and to develop a framework specifically to model mortality rates, rather than
borrow a pre-existing framework developed for interest rates and to define
this framework using securities which do not depend on the idiosyncratic
timing of individual deaths. This is because, with a properly developed
framework, we can derive a model which is capable of capturing the complex
dynamics of mortality rates, and so obtain consistency between models of
the force of mortality and the forward mortality rates.

In this study, we have developed such a framework for forward mortal-
ity rates which is based upon the dynamics of the force of mortality given
by the class of age/period/cohort mortality models. This framework has the
advantage of being easier to estimate from historical data than existing mod-
els, with market information being incorporated via a relatively parsimonious
transformation of the forward mortality rates in the real-world measure. The
framework is also very flexible, as it can be used in conjunction with many
of the most popular models of the force of mortality, such as those proposed

in Lee and Carter (1992) and (Cairns et all (20064).

We have shown how market information can be incorporated into the
model and used the resulting forward mortality surface to value a range of
existing and proposed longevity-linked securities. All of the prices calculated
from the same model are consistent with each other, as they are derived from
the same forward surface of mortality. This allows for a unified approach to
the valuation of a wide range of liabilities and longevity-linked securities.

Finally, we note that the main virtue of forward mortality models is their
ability to specify the dynamics of the forward mortality surface and, hence,
their applicability to the assessment and management of longevity risk. We
develop these themes in the second part of this study, in
(IZE) Together, these two studies show that the framework proposed can
provide an integrated solution to many of the valuation and risk manage-
ment problems in respect of longevity risk that are faced by life insurance
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companies.

A Identifiability and mortality forward rates
In Hunt and Blake (2015f) and [Hunt and Blakd (2015g), we discuss the identi-

fiability issues in AP and APC mortality models, respectively. In particular,
we find that almost all APC mortality models possess “invariant” transfor-
mations, i.e., transformations of the parameters of the model which leave the
fitted mortality rates unchanged. In order to find a unique set of parame-
ters, we impose a set of identifiability constraints on them. Typically, these
are chosen to give a particular demographic significance to each term in the
model. However, since any interpretation of demographic significance is sub-
jective, it is important that our choice of identifiability constraints does not
have any impact on any conclusions we draw about historical or projected
mortality rates. For instance, we discuss in Hunt _and Blake (IMJB]) how
to ensure that projected force of mortality is independent of the choice of
identifiability constraint.

It is also important that the forward mortality rate framework described
in this study is independent of the choice of identifiability constraints used
when fitting the underlying APC model to historical data. However, due to
our definitions of the forward mortality rates in Equation [[Il, we see that
Vy4(7) in the real-world measure is automatically independent of the iden-
tifiability constraints if the distribution of p, . is also independent of the
identifiability constraints. We therefore do not need to do any additional
work to ensure identifiability in the forward rates once the methods used to

project the force of mortality are well-identified.

We also need to ensure that the forward mortality surface in the market-
consistent measure is also independent of the choice of arbitrary identifiabil-
ity constraints. This is mostly straightforward, as we see that Equation 31l
depends upon the forward mortality rates in the real-world measure (which
should be independent of the identifiability constraints for the reasons dis-
cussed above), the variances of the period and cohort functions (which are
independent of the allocation of any levels and linear trends if the projec-

tion methods are well-identified, as discussed in Hunt and Blakd (2015g))
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and the market prices of longevity risk. However, we note that if the model
transformed using

(B, kel = {(A)' B,, Ak}

then the market prices of risk are also transformed in the model to A=
(A_l)T A. Hence we see that, not only are the values of the market prices of
risk dependent upon the underlying APC model used for the force of mortal-
ity, they will also depend upon the normalisation scheme and specification
of the age function in the model, and so are not the same across all models
which give the same fitted mortality rates.

B Impact of Jensen’s inequality

In Section 22] it was argued that

t
€xp <_ Z Nm—i—u,T—l—u)]
u=1
t
~ exp <_ Z E'rlux-i-u,T-I—u) (35)
u=1

due to the relatively low degree of variability in j,, and hence it was shown
in Section [Z2] that

th,T = ET

Ve (T) = Erplay
This assumption can be tested numerically, as follows.
For simplicity, we consider P,; = E, exp(—ft,,¢). Therefore
Pry = Erexp (—exp (1))
In Section .3l we assume that
Nt ™~ N(M:at, V:c,t)
and therefore

E, exp(—fizs) = exp (—Epiz1) = exp (—exp (Mg + 0.5V, 4)) (36)
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Holland and Ahsanullah (IM) discussed the log-log distribution, where
X is such that

In(—In(X)) ~ N(M, V)

We therefore see that P, -(7) is given by the mean of the log-log distribution
if 1, + is normally distributed. However, the moments of this distribution do
not have a closed form solution. [Holland and Ahsanullahl (1989) showed that
the 7" raw moment of the distribution is given by

1 o0
EX" = —/ ex (—0.5x2—r ex M—l—xﬁ)dm
Vol p| )
which can be computed numerically.

From Section 23] we see

Mx,t =y + IBI]ETK% + ETfYt—x
Vit = /BIVCLTT(F:’t)B:C + Var (vi-.)
Hence we can use the results of Holland and Ahsanullah (1989) to com-

pute P, numerically, without recourse to the approximation in Equation [36]
Using this, we calculate

P:c7t - ET eXp(_,UJx,t)
1 o0
= — exp (—0.522 — exp[M; + 21/ Ves] ) dz 37
= e pMetay/Vol) e (30)

numerically and compare it with the values assumed in Equation B6l This
gives us a check on the accuracy of the approximation in Equation 36l which
underpins the forward mortality framework.

Figure B shows the ratio of the numerical value of P, ; calculated using
Equation B7 and the approximate value calculated using Equation [B6] for the
five mortality models considered in this paper (in the real-world measure).
We can that in the vast majority of cases, the difference that the assumption
makes is less than 0.2% (i.e., ratios less than 1.002) and for no ages and
years does the approximation make more than a 1.5% difference to the for-
ward mortality rates. This is consistent with the projected mortality rates
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found in Figure [I which also showed that forward mortality rates (using
the approximation) were very close to those calculated using Monte Carlo
simulations.

The mortality rates which are most affected by the approximation are
those at the highest ages and the years of projection furthest into the future,
which makes sense as these are the mortality rates with the greatest levels of
uncertainty attached to them. However, they are also the least economically
important, since any cashflows that would be affected by these mortality
rates would be in respect of individuals who are very old (and so there is
very little survivorship to these ages) and far into the future (which means
that the present value of the affected cashflows would be very small due to
discounting). This gives us reassurance that the approximation in Equation
does not systematically distort the results found using the forward mor-
tality framework derived in this paper, compared with those which could be
found using an exact but considerably more complicated framework which
does not make this assumption.
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