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Abstra
t

Many users of mortality models are interested in using them to

pla
e values on longevity-linked liabilities and se
urities. Modern reg-

ulatory regimes require that the values of liabilities and reserves are


onsistent with market pri
es (if available), whilst the gradual emer-

gen
e of a traded market in longevity risk needs methods for pri
ing

new types of longevity-linked se
urities qui
kly and e�
iently. In this

study, we develop a new forward mortality framework to enable the ef-

�
ient pri
ing of longevity-linked liabilities and se
urities in a market-


onsistent fashion. This approa
h starts from the histori
al data of

the observed mortality rates, i.e., the for
e of mortality. Building on

the dynami
s of age/period/
ohort models of the observed for
e of

mortality, we develop models of forward mortality rates and then use
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a 
hange of measure to in
orporate whatever market information is

available. The resulting forward mortality rates are then used to value

a number of di�erent longevity-linked se
urities, su
h as q-forwards,

s-forwards and longevity swaps.

JEL Classi�
ation: G12

Keywords: Mortality modelling, age/period/
ohort models, forward

mortality rates, Ess
her transform, longevity-linked se
urities

1 Introdu
tion

Many users of mortality models are interested in using them to pla
e val-

ues on longevity-linked liabilities and se
urities. Modern regulatory regimes

require that the values of liabilities and reserves are 
onsistent with mar-

ket pri
es (if available), whilst the gradual emergen
e of a traded market in

longevity risk needs methods for pri
ing new types of longevity-linked se
u-

rities qui
kly and e�
iently. These needs have spurred the development of

in
reasingly sophisti
ated models of mortality rates.

Cairns et al. (2006b) pointed out that the majority of mortality mod-

els that have been proposed are models of the mortality hazard rate, whi
h

is analogous to the short rate of interest. By analogy with interest rate

models, Cairns et al. (2006b) developed formally the 
on
ept of �mortality

forward rates�, whi
h was extended in Miltersen and Persson (2005). How-

ever, the idea of forward mortality rates has a long history, indeed Milevsky

and Promislow (2001) pointed out that �the traditional rates used by a
tu-

aries are really `forward rates' exa
tly analogous to a forward interest rate

implied by existing bond pri
es�.

Su
h forward mortality rates 
ould be used to pri
e longevity-linked se-


urities, in the same fashion as forward interest rates are used to value 
ash-

�ows dependent on future interest rates. Therefore, a number of models for

forward mortality rates have been proposed to date whi
h build upon the

theory of forward interest rates. These have in
luded the models of Barbarin

(2008), Bauer et al. (2008) and Tappe and Weber (2013), whi
h adopted

the Heath-Jarrow-Morton framework used for interest rates in 
ontinuous

time, and the model of Zhu and Bauer (2011a,b, 2014) whi
h adopted a

2



semi-parametri
 fa
tor approa
h in dis
rete time. An alternative approa
h,

developed in Olivier and Je�rey (2004), Smith (2005) and Cairns (2007),

also works in dis
rete time but uses gamma-distributed random variables to

update a forward mortality surfa
e that is initially assumed.

However, it is important not to over-extend the analogy between interest

rates and mortality rates, as the two are fundamentally di�erent pro
esses.

Most obviously, the forward interest rate 
urve at any instant depends only

upon term, whilst forward mortality rates will exist a
ross a surfa
e of ages

and years. Mortality rates typi
ally also in
rease exponentially with age,

unlike interest rates whi
h are typi
ally bounded as term in
reases. More

fundamentally, the analogy between survivorship under a for
e of mortality

and dis
ounting under a for
e of interest, whilst mathemati
ally appealing,

is not exa
t, sin
e mortality will a�e
t the a
tual amount of any 
ash�ow

payable (say, in an annuity or life assuran
e 
ontra
t) in a way that dis-


ounting does not. We therefore do not believe that simply taking existing

models whi
h work well for forward interest rates and applying them dire
tly

to mortality rates is appropriate.

In addition, we must be able to 
alibrate a model of forward mortality

rates to the small number of longevity-linked se
urities in existen
e. This

means that models whi
h start by assuming the existen
e of su�
ient mar-

ket pri
es to de�ne a forward mortality surfa
e (su
h as those based on the

Heath-Jarrow-Morton framework) and then de�ne the dynami
s of this sur-

fa
e are not pra
ti
al. This approa
h is inherited from the interest rate

markets, where liquid markets in bonds a
ross the whole of the relevant term

stru
ture 
an provide su
h information. Unfortunately, this simply does not

hold for the market in longevity-linked se
urities, and will not hold for the

foreseeable future.

Instead, we propose a new approa
h, whi
h is des
ribed in two studies,

of whi
h this is the �rst. Our approa
h starts from the histori
al data on

the observed mortality rates, i.e., the observed for
e of mortality whi
h is

analogous to the short rate of interest. Building on the dynami
s of models

of the observed for
e of mortality, we 
an re
ast them in the form of models

of forward mortality rates and then use a 
hange of measure to in
orporate

whatever market information is available. This approa
h ensures that the

dynami
s of the forward mortality surfa
e are 
onsistent with those observed

3



for the for
e of mortality, in
luding features su
h as �
ohort e�e
ts� whi
h

are unique to mortality rate models, and whi
h helps to ensure demographi


signi�
an
e.

1

We begin our analysis in this paper in Se
tion 2.1 with models of the

for
e of mortality from the age/period/
ohort (APC) family, whi
h have

been spe
i�
ally 
onstru
ted in order to 
apture the dynami
s of mortality

parsimoniously and with demographi
 signi�
an
e. APC mortality models

are 
onsidered in detail in Hunt and Blake (2015i) and en
ompass a broad


lass of existing and popular models of the for
e of mortality, su
h as the Lee-

Carter (Lee and Carter (1992)), Cairns-Blake-Dowd (Cairns et al. (2006a))

and 
lassi
 APC (Hob
raft et al. (1982)) models, as well as many of the ex-

tensions of these models (see Hunt and Blake (2014) for examples). We then

develop the mathemati
al framework required to 
onvert any APC model of

the for
e of mortality into a model of the forward mortality surfa
e in Se
tion

2.2 and Se
tion 2.3. In Se
tion 2.4, we use the dynami
s of the period and


ohort parameters observed in the histori
al data to de�ne a forward surfa
e

of mortality rate. This enables 
onsistent modelling of both the short and

forward mortality rates, and so avoids any in
onsisten
ies between the two.

Se
tion 3 then builds on this by transforming the forward mortality rate

surfa
e, using the Ess
her transform, from a measure 
onsistent with the

�real-world� pro
ess observed in the histori
al data to one 
onsistent with

market pri
es. These �market-
onsistent� forward mortality rates are then

used to pri
e various longevity-linked se
urities. Finally, Se
tion 4 
on
ludes.

The approa
h established in this paper is extended in our se
ond paper,

Hunt and Blake (2015d), whi
h analyses how the forward surfa
e of mor-

tality 
an be updated dynami
ally. This enables the forward mortality rate

framework developed in this paper to be used for managing longevity risk in

a life assuran
e book or in a portfolio of longevity-linked se
urities.

1

Demographi
 signi�
an
e is de�ned in Hunt and Blake (2015i) as the interpretation of

the 
omponents of a model in terms of the underlying biologi
al, medi
al or so
io-e
onomi



auses of 
hanges in mortality rates whi
h generate them.
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2 Forward mortality rates in dis
rete time

2.1 Age/period/
ohort models of the for
e of mortality

In Hunt and Blake (2015i), we dis
ussed dis
rete-time mortality models of

the form

ηx,t = αx +

N
∑

i=1

β(i)
x κ

(i)
t + γt−x (1)

where

• we have histori
al data for ages, x, in the range [1, X ] and periods, t,

in the range [1, τ ] and therefore observations of 
ohorts born in years,

y, in the range [1−X, τ − 1];

• ηx,t = ln(µx,t) is the log-link fun
tion whi
h 
onne
ts the Poisson dis-

tributed death 
ounts, Dx,t, to the proposed predi
tor stru
ture;

• αx is a stati
 fun
tion of age;

• κ
(i)
t are period fun
tions governing the evolution of mortality with time;

• β
(i)
x are age fun
tions modulating the impa
t of the period fun
tion

dynami
s over the age range;

2

and

• γy is a 
ohort fun
tion des
ribing mortality e�e
ts whi
h depend upon

a 
ohort's year of birth and follow that 
ohort through life as it ages.

De�ning βx =
(

β
(i)
x , . . . β

(N)
x

)⊤

and κt =
(

κ
(i)
t , . . . κ

(N)
t

)⊤

, we 
an re-

write Equation 1 as

ηx,t = αx + β⊤

xκt + γt−x (2)

In this paper, we will use the log-link fun
tion ηx,t = ln(µx,t). In Hunt

and Blake (2015i), we dis
ussed how this is appropriate if the death 
ount

2

These 
an be non-parametri
 in the sense of being one �tted without imposing any a

priori shape for the fun
tion a
ross ages, or be parametri
 in the sense of having a spe
i�


fun
tional form, β
(i)
x = f (i)(x; θ(i)) sele
ted a priori. Potentially, parametri
 age fun
tions


an have free parameters θ(i) whi
h are set with referen
e to the data.
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at age x and time t is a (
onditionally independent) Poisson random vari-

able, Dx,t ∼ Po(µx,tE
c
x,t), where Ec

x,t are 
entral exposures to risk. This is

preferred over the alternative 
hoi
e of the logit-link fun
tion and binomially

distributed death 
ounts due to the distributional properties of the forward

mortality rates, as dis
ussed in Se
tion 2.3.

This stru
ture de�nes the 
lass of age/period/
ohort (APC) mortality

models and is very �exible. Many of the most 
ommon mortality models �t

into this stru
ture, for instan
e, the ben
hmark Lee-Carter (LC) model of

Lee and Carter (1992), the 
ohort extension to this denoted H1 in Haberman

and Renshaw (2009), the Cairns-Blake-Dowd (CBD) model of Cairns et al.

(2006a) and many of its extensions in Cairns et al. (2009), the Plat model

of Plat (2009) and the model of Börger et al. (2013). In Hunt and Blake

(2014), we des
ribe a �general pro
edure� for 
onstru
ting bespoke models

within this 
lass whi
h are tailored to the stru
ture within a given dataset.

3

It is, therefore, appropriate to use this 
lass of models of the for
e of mortality

as the starting point for de�ning the forward mortality surfa
e, as dis
ussed

below.

2.2 De�ning forward mortality rates

In a dis
rete-time framework, the for
e of mortality, µx,t, at age x and time

t is assumed to be 
onstant over ea
h age and year, i.e.,

µx+ξ,t+τ = µx,t (3)

x, t ∈ N

ξ, τ ∈ [0, 1)

Therefore, the one-year survival probability from age x at time t to age x+1
at time t + 1, px,t,

4

is equal to px,t = exp(−µx,t). If we further assume that

3

The forward mortality framework des
ribed in this study is not signi�
antly a�e
ted if

the 
ohort parameters are modulated by an age fun
tion, β
(0)
x , as in the model of Renshaw

and Haberman (2006). However, for simpli
ity and the reasons dis
ussed in Hunt and

Blake (2015i), we do not 
onsider su
h models in this study.

4px,t = 1− qx,t, the one-year probability of death.
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survival in ea
h year is 
onditionally independent, this implies

tpx,τ =

t
∏

u=1

px+u,τ+u = exp

(

−
t
∑

u=1

µx+u,τ+u

)

(4)

where tpx,τ is the survival probability of an individual from age x at time τ

to age x+ t at time τ + t.5 If τ + t lies in the future, tpx,τ will be a random

variable, as future values of the for
e of mortality will be subje
t to system-

ati
 mortality risk.

To de�ne the stru
ture of forward mortality rates, we assume that the fun-

damental longevity-linked se
urity

6

of interest, from whi
h all other longevity-

linked se
urities 
an be 
onstru
ted, is the �longevity zero�.

7

A longevity

zero is de�ned in Blake et al. (2006) as a zero-
oupon bond whi
h pays out a

prin
ipal at a future time, dependent on the survivorship of a suitably large


ohort (to redu
e the idiosyn
rati
 risk in the estimation of survival rates)

over the term of the bond.

8

Therefore, a t-year longevity zero at time τ

would have pri
e

Pri
e(t, τ) = B(τ, τ + t)EQ
τ tpx,τ

where B(τ, τ + t) is the time τ pri
e of a t-year zero 
oupon bond paying one

unit at maturity, and where the expe
tation is de�ned under some �market-


onsistent� measure, Q (to be dis
ussed in Se
tion 3).

9

In doing so, we have impli
itly assumed that the longevity risk is inde-

pendent of the other �nan
ial risks in the market, su
h as interest rates and

5

0px,τ = 1 trivially.

6

In this paper, we use the term �se
urity� to refer to any tradable �nan
ial 
ontra
t,

and so also in
lude derivative se
urities su
h as forwards and options in this de�nition.

7

Longevity zeros were also used to de�ne forward mortality rates in Barbarin (2008)

for use in a Heath-Jarrow-Morton framework and in Cairns (2007) and Alai et al. (2013)

to develop extensions of the Olivier-Smith model.

8

It is important that the se
urity used to de�ne the forward mortality rates depends

purely on the systemati
 
omponent of longevity risk, rather than on the idiosyn
rati
 time

of death of any individual lives, in order to avoid the potential for 
on�i
ting de�nitions

of the forward rates des
ribed in Norberg (2010).

9

We adopt the 
onvention that the subs
ript on operators Eτ (.), Varτ (.) or Covτ (.)
denotes 
onditioning on the information available at time τ , i.e., Fτ .

7



in�ation, in both the real-world measure, P, and the market-
onsistent mea-

sure, Q. This is in 
ommon with the majority of studies, su
h as Cairns

et al. (2006b) and Bauer et al. (2008) and with the available eviden
e to

date, as dis
ussed in Loeys et al. (2007). Although there may be some situ-

ations where longevity risk is not independent of other �nan
ial risks in the

real-world measure, as in the examples of Miltersen and Persson (2005), we

believe that these situations are relatively extreme and are better 
onsidered

by s
enario analysis rather than through a sto
hasti
 model. Furthermore,

Dhaene et al. (2013) show that independen
e between longevity risk and

�nan
ial risks in the real-world measure does not automati
ally ensure in-

dependen
e in the market-
onsistent measure. However, more 
ompli
ated

models are required in order to allow for any dependen
e between longevity

and investment risks, whi
h require more market information for 
alibration.

Therefore, we believe that the assumption of independen
e between longevity

risk and other �nan
ial risks is ne
essary and justi�able at this early stage

of development of the longevity risk market.

We de�ne

tP
Q
x,τ (τ) = EQ

τ tpx,τ (5)

= EQ
τ exp

(

−
t
∑

u=1

µx+u,τ+u

)

In this, tP
Q
x,τ(τ) are the market-
onsistent forward survival probabilities,

i.e., the �market's best view� (in the words of Miltersen and Persson (2005))

at τ of the probability of an individual aged x at τ surviving a further t years.

Mathemati
ally, we 
an see that these fa
tors are analogous to dis
ount fa
-

tors based on the pri
es of zero-
oupon bonds. It is this analogy whi
h has

motivated mu
h of the development of forward mortality rate models to date,

whi
h have been mainly adapted from widely used interest rate models. In


ontinuous-time forward rate models, su
h as in Bauer et al. (2008), forward

mortality rates are de�ned from Equation 5 as

νQ
x,t(τ) ≡ − ∂

∂t
ln
(

tP
Q
x−t,τ(τ)

)

via the analogy with forward interest rates. In a dis
rete time model, we

8



modify this to de�ne forward mortality rates as

νQ
x,t(τ) ≡ − ln

(

t−τ+1P
Q
x−t+τ,τ(τ)

t−τP
Q
x−t+τ,τ(τ)

)

(6)

Existing forward mortality models, su
h as those in Cairns (2007) and

Zhu and Bauer (2011b, 2014) use similar de�nitions, but these studies are

interested in the dynami
s of the forward surfa
e of mortality and so are

interested in the behaviour of νx,t(τ + 1)/νx,t(τ) , rather than the forward

mortality rates at τ themselves (whi
h are assumed a priori in these studies).

We dis
uss these dynami
s in Hunt and Blake (2015d). In 
ontrast, this paper

is interested in the 
onne
tion between the for
e of mortality and forward

mortality rates, and so we use the de�nition above to give

tP
Q
x,τ(τ) = exp

(

−
t
∑

u=1

νQ
x+u,τ+u(τ)

)

(7)

Comparing Equations 4 and 7, we see

exp

(

−
t
∑

u=1

νQ
x+u,τ+u

)

= EQ
τ exp

(

−
t
∑

u=1

µx+u,τ+u

)

(8)

whi
h shows the 
onne
tion between the market-
onsistent forward rates and

the expe
tations of the for
e of mortality in the market-
onsistent measure.

By Jensen's inequality

EQ
τ exp

(

−
t
∑

u=1

µx+u,τ+u

)

≥ exp

(

−
t
∑

u=1

EQ
τ µx+u,τ+u

)

(9)

In pra
ti
e, the variation in µx,t is su�
iently small that Equation 9 holds

approximately as an equality over almost all ages and years.

10

We therefore

make the assumption that

exp

(

−
t
∑

u=1

νQ
x+u,τ+u(τ)

)

= exp

(

−
t
∑

u=1

EQ
τ µx+u,t+u

)

(10)

10

This approximation is tested numeri
ally in Appendix B.
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and de�ne the forward mortality rates as

νQ
x,t(τ) = EQ

τ µx,t (11)

Thus, the forward mortality rate at age x and year t is assumed to be equal

to the expe
tation under the market-
onsistent measure of the for
e of mor-

tality at the same age and year, 
onditional on information observed at time

τ . Thus, if we 
an spe
ify the dynami
s of the for
e of mortality (in the

market-
onsistent measure), we are able to �nd the forward mortality rates

dire
tly.

We de�ne the �forward mortality surfa
e� as the 
olle
tion of forward

mortality rates, νQ
x,t(τ) over all ages, x, and future years, t, at a given point

in time, τ . In most 
ases, it is more natural to 
onsider the forward mortal-

ity surfa
e as a single obje
t, sin
e the individual forward mortality rates are

expe
ted to vary smoothly a
ross ages and a
ross future years. However, it is

important to realise that the forward mortality surfa
e is three-dimensional,

de�ned by x, t and τ . In this paper we shall 
onsider its stru
ture a
ross the

dimensions of x and t and how this 
an be determined at the observation

time, τ , whi
h is assumed to be �xed. This 
ontrasts with Hunt and Blake

(2015d), where we dis
uss how the surfa
e varies dynami
ally with τ .

In de�ning the forward mortality surfa
e, we assume that all longevity-

linked se
urities 
an be 
onstru
ted from a portfolio of longevity zeros. We

shall see in Se
tion 3.3 that this is trivially true in the 
ase of longevity

swaps.

11

We extend this by assuming that the value of any other longevity-

linked se
urity at time τ 
an be repli
ated as a portfolio of longevity zeros

and, therefore, written as a fun
tion of the νQ
x,t(τ). Hen
e, the forward sur-

fa
e of mortality 
an be used to give 
onsistent pri
es for all longevity-linked

liabilities and se
urities.

Unfortunately, however, it is 
urrently impossible to reliably spe
ify the

dynami
s of short or forward mortality rates in the market-
onsistent mea-

sure, sin
e an a
tively-traded market in longevity-linked se
urities does not


urrently exist. Indeed, the absen
e of genuine market information on the

pri
es for any longevity-linked se
urities is a 
riti
al problem for all studies

11

It is also true for the valuation of annuities for reserving purposes, sin
e idiosyn
rati


risk is not allowed for in this 
ontext.

10



that seek to value the few longevity-linked se
urities whi
h do exist. There

have been a number of di�erent methods proposed to over
ome this and


alibrate the market-
onsistent measure. For instan
e, Bauer et al. (2008)

proposed using generational life tables (i.e., those whi
h allow mortality rates

to depend upon an individual's year of birth) in order to provide a forward

mortality surfa
e. However, these are updated infrequently and are not based

on market information (and when used to pri
e �nan
ial 
ontra
ts, typi
ally

have margins for risk aversion added to them). Alternatively, Miltersen and

Persson (2005) and Bayraktar and Young (2007) have suggested using the

market for endowment assuran
es for 
alibration purposes, sin
e these have

a similar pri
e stru
ture to longevity zeros. Unfortunately, Norberg (2010)

showed how using se
urities dependent on the idiosyn
rati
 risk of individual

lives, su
h as endowment assuran
es, 
an lead to in
onsistent de�nitions of

the forward mortality rates and so this approa
h is not feasible.

Instead, we propose to use the histori
al data to model the dynami
s of

the for
e of mortality in the �histori
al� or �real-world� measure, P, using

relatively simple APC mortality models, as des
ribed in Se
tion 2.1. These

real-world dynami
s of the for
e of mortality 
an then be used to generate the

forward surfa
e of mortality in the real-world measure by using Equation 11.

Then, in Se
tion 3.1, we show how to 
hange from the real-world to a market-


onsistent measure, Q, using the Ess
her transform whi
h is 
alibrated using

whatever (limited) market information for longevity risk is available. Thus,

real-world data on histori
al mortality rates is used to supplement the limited

market data we have, and in
reasing volumes of market information 
an be

in
orporated into the forward mortality surfa
e as the market for longevity-

linked se
urities develops.

2.3 Forward APC mortality models

Combining Equations 2 and 11, we de�ne forward mortality rates in the

real-world measure, P, as

νP
x,t(τ) = EP

τ exp
(

αx + β⊤

xκt + γt−x

)

(12)

We assume that the age fun
tions are known with 
ertainty at time τ and

therefore the un
ertainty in future mortality rates 
omes from the proje
tion

of κt andγt−x, i.e., the forward mortality surfa
e only allows for pro
ess risk

11



from the proje
tion of the period and 
ohort fun
tions, in the terminology

of Cairns (2000), but not parameter un
ertainty or model risk. In the real-

world measure, we �rst obtain �tted values of κt and γy by �tting the APC

model to the histori
al data. We then estimate the dynami
s of the time

series pro
esses for κt and γy from these �tted values.

If we further assume that our proje
ted κt and γy are normally dis-

tributed, then ηx,t is also normally distributed and 
onsequently µx,t follows

a log-normal distribution.

12

Therefore

νP
x,t(τ) = exp

(

αx + β⊤

xE
P
τκt +

1

2
β⊤

xVar
P
τ (κt)βx + EP

τγt−x +
1

2
VarPτ (γt−x)

)

(13)

The assumption that proje
ted period and 
ohort parameters are nor-

mally distributed is in line with the majority of studies, whi
h use standard

ARIMA methods to proje
t these parameters. If the proje
ted period and 
o-

hort parameters are not normally distributed, however, it is unlikely that the

resulting forward mortality framework would be analyti
ally tra
table. This

is be
ause the distribution of µx,t would not have the �nite moments required.

A number of studies have used alternative methods and distributions to make

proje
tions. These in
lude models whi
h allow for regime 
hanges (Milidonis

et al. (2011) and Lemoine (2014)) or trend 
hanges (Sweeting (2011) and

Hunt and Blake (2015
)) in the pro
esses used to proje
t the parameters.

Another approa
h has been to use other distributions for the innovations in

the time series pro
esses for the period or 
ohort fun
tions (su
h as the t-

distribution, the varian
e-gamma and the normal-inverse-gamma, whi
h were

used to model the innovations for κt in the Lee-Carter model in Wang et al.

(2011)). In some of these 
ases, it may be possible to extend the forward

mortality rate framework to allow for the non-Gaussian distributions. How-

ever, we do not 
onsider alternative distributions for the proje
ted period or


ohort fun
tions further within this study.

12

Note that, if we were using ηx,t = logit(qx,t) in 
onjun
tion with a binomial model for

the death 
ount, then qx,t would follow a �logit-normal� distribution (see Frederi
 and Lad

(2008)). Unfortunately, this is not analyti
ally tra
table and does not possess 
losed form

expressions for the expe
tation. Therefore, we are unable to de�ne a forward mortality

framework in the logit-link fun
tion / binomial death 
ount model as we 
an in the log-link

fun
tion / Poisson death 
ount model.

12



2.4 Proje
ting the APC model

2.4.1 Period fun
tions

Sin
e Lee and Carter (1992), the most 
ommon method used to proje
t

the period fun
tions in an APC mortality model has been the random walk

with drift. This was also used for the CBD model in Cairns et al. (2006a),

the period fun
tions in various mortality models in Cairns et al. (2011) and

Haberman and Renshaw (2011), and the �rst (dominant) period fun
tion in

Plat (2009).

The random walk model is attra
tive as it allows the period fun
tions to

be non-stationary with a variability that in
reases with time, giving biologi-


ally reasonable

13

proje
tions of the for
e of mortality.

In Hunt and Blake (2015f,g), we dis
uss how proje
ted mortality rates

should not depend upon the identi�ability 
onstraints used when �tting the

model to data, and therefore that we should use �well-identi�ed� proje
tion

methods whi
h a
hieve this. In the 
ontext of the random walk with drift

model, this means we should proje
t the period fun
tions using

κt = µXt + κt−1 + ǫt (14)

where Xt is a set of deterministi
 fun
tions (�trends�) 
hosen to ensure iden-

ti�ability and µ are the 
orresponding �drifts�.

14

For example, the 
lassi


random walk with drift pro
ess has a 
onstant trend, Xt = 1, with the

�drift�, µ, found be regressing ∆κt on this trend. Similarly, the random walk

with linear drift introdu
ed in Hunt and Blake (2015g) and Hunt and Blake

(2015
) has 
onstant and linear trends, Xt =
(

1, t
)⊤
, with the drifts found

by regressing ∆κt against Xt in a similar fashion.

13

Introdu
ed in Cairns et al. (2006b) and de�ned as �a method of reasoning used to

establish a 
ausal asso
iation (or relationship) between two fa
tors that is 
onsistent with

existing medi
al knowledge�.

14

Note, we assume that the drifts µ are known at time τ and will not be re-estimated

on the basis of new information arising in the future. Therefore, the forward mortality

framework des
ribed in this paper and in Hunt and Blake (2015d) does not allow for

�re
alibration� risk as de�ned in Cairns (2013), i.e., the risk 
aused by the un
ertainty in

the drift. This risk is potentially substantial, as dis
ussed in Li et al. (2004) and Li (2014).

However, we leave the in
lusion of re
alibration risk to future work.

13



The random drift model in Equation 14 is solved to give

κt = κτ + µχτ,t +

t
∑

s=τ+1

ǫs (15)

where χτ,t =
∑t

s=τ+1Xs. Note that, in the simplest 
ase where we use a


lassi
 random walk with drift to proje
t the period fun
tions, Xt = 1 and

hen
e χτ,t = t− τ . We assume

Eτǫt = 0

Covτ (ǫt, ǫs) = ΣIt−s

where It−s is an indi
ator variable taking a value of unity if t = s and zero

otherwise. This means that the innovations have zero mean and are inde-

pendent a
ross di�erent periods, i.e., they are white noise. In addition, we

assume that the innovations are normally distributed for the reasons dis-


ussed above. From Equation 15, we �nd

EP
τ κt = κτ + µχτ,t (16)

VarPτ (κt) = (t− τ)Σ (17)

In an age/period mortality model without a 
ohort term, su
h as the Lee-

Carter or CBD model, allowing for the un
ertainty in the period fun
tions is

su�
ient in 
onjun
tion with Equation 13, to de�ne forward mortality rates

in the real-world measure. However, more sophisti
ated mortality models

often in
lude 
ohort terms, whose analysis is 
onsiderably more 
ompli
ated,

as we now see.

2.4.2 Cohort fun
tion

Most 
ommon te
hniques for proje
ting the 
ohort fun
tion use standard

ARIMA pro
esses, whi
h assume that there is a 
lear distin
tion between

those 
ohort parameters whi
h are estimated from histori
al data, whi
h are

assumed to be known, and those 
ohort parameters whi
h are proje
ted us-

ing some time series pro
ess. In the forward mortality rate framework, we


an see that this would lead to a sharp dis
ontinuity in the forward mortality

surfa
e. For many purposes, su
h as the valuation of longevity-linked se
u-

rities and liabilities, su
h a dis
ontinuity is 
learly undesirable.

14



To illustrate this problem, 
onsider the 
ase where a (well-identi�ed)

AR(1) pro
ess is used to proje
t the 
ohort parameters

γy − βX̃y = ρ(γy−1 − βX̃y−1) + εy

where X̃y are deterministi
 fun
tions 
orresponding to the unidenti�able

trends in the 
ohort parameters,

15

and β are the 
orresponding regression


oe�
ients (see Hunt and Blake (2015g)). Su
h a pro
ess would be solved to

give

γy = ρy−Y (γY − βX̃Y ) + βX̃y +

y
∑

s=Y+1

ρy−sεs

for y ≥ Y , the year of birth of the last �tted 
ohort parameter.

16

The

varian
e of this pro
ess is

VarPτ (γy) =

{

0 if y ≤ Y
1−ρ2(y−Y )

1−ρ2
σ2

if y > Y

From Equation 13, we see that this would give a dis
ontinuity in the forward

mortality surfa
e at the interfa
e between the �tted and proje
ted 
ohort

parameters. Su
h a dis
ontinuity would give rise to pri
ing anomalies and

therefore 
annot be permitted in a well-designed forward mortality frame-

work. Consequently, we must use alternative pro
esses to proje
t the 
ohort

parameters for use with forward mortality models.

In Hunt and Blake (2015a), we developed a Bayesian approa
h to over-


ome this issue. This assumes that all 
ohort parameters, γy, are random

variables that are not fully observed until 
ohort y is fully extin
t at time

y +X . For observation times τ < y +X, we have partial information based

on observations of the 
ohort to date. This information is summarised in

the estimated 
ohort parameters, γy(τ), found by �tting the APC mortality

model to data to time τ . From the analysis in Hunt and Blake (2015a), we

have

γy|Fτ ∼ N(M(y, τ), V (y, τ)) (18)

15

In general, these have a similar form to the deterministi
 fun
tions for the period

parameters, Xt, in Se
tion 2.4.1.

16

Typi
ally, 
ohort parameters for the last few years of birth are not estimated due to

the la
k of data, for instan
e, see Renshaw and Haberman (2006).
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where

Þτ−y,s ≡
s−1
∏

r=0

(1−Dτ−y+r) (19)

EP
τγy ≡ M(y, τ)

=
∞
∑

s=0

Þτ−y,sρ
s
[

Dτ−yγy(τ) + (1−Dτ−y+s)β(X̃y−s − ρX̃y−s−1)
]

(20)

VarPτ (γy) ≡ V (y, τ)

=

∞
∑

s=0

Þ

2
τ−y,s(1−Dτ−y+s)ρ

2sσ2
(21)

for y ≤ Y , where

M(y, τ) = ρy−Y
(

M(Y, τ)− βX̃Y

)

+ βX̃y (22)

V (y, τ) =
1− ρ2(y−Y )

1− ρ2
σ2 + ρ2(y−Y )V (Y, τ) (23)

for y > Y . In this,

• Dx is the proportion of a 
ohort assumed to still be alive by age x;

• ρ and σ2
are the auto
orrelation and varian
e of the AR(1) pro
ess

assumed to be driving the evolution of the 
ohort parameters;

• X̃y and β are the trends and drifts for the 
ohort parameters as de�ned

above;

17

• γy(τ) are the estimates of the 
ohort parameters, �tted by the mortality

model at time τ ; and

• Fτ is the total information available at time τ , in
luding observations

of the 
ohort parameters up to year of birth y, i.e., {γυ(τ) υ ≤ y}.
17

Note that the drifts, β, depend upon the arbitrary identi�ability 
onstraints 
hosen.

In pra
ti
e, we therefore impose a set of identi�ability 
onstraints su
h that β = 0 to

simplify matters 
onsiderably.

16



In Hunt and Blake (2015a), it was shown that this framework allows the

histori
al and proje
ted 
ohort parameters to be treated 
onsistently, without

any sharp dis
ontinuities in the un
ertainty between them. It was also shown

that these proje
tions are well-identi�ed, in the sense that they do not depend

upon the arbitrary identi�ability 
onstraints made when �tting the model. In

addition, it is shown in Hunt and Blake (2015d) that the Bayesian framework

allows us to update estimates of the 
ohort parameters over a one-year period

to proxy for the impa
t that new data would have on our parameter estimates,

whi
h is essential for risk management purposes. The Bayesian framework

is therefore well adapted for use in a forward mortality 
ontext, and we will

use it for all APC mortality models whi
h in
lude 
ohort parameters.

2.5 Estimation and proje
tion

The framework des
ribed in Se
tions 2.3 and 2.4 is very general and 
an be

used in 
onjun
tion with any APC mortality model for the for
e of mortality.

To see this in pra
ti
e, we 
onsider estimating the forward mortality rates on

male data for the UK for the period 1950 to 2011 and ages 50 to 100 from

the Human Mortality Database (2014) for �ve di�erent APC models:

1. the Lee-Carter (�LC�) model of Lee and Carter (1992);

2. the �CBDX� model dis
ussed in Hunt and Blake (2015f), whi
h extends

the Cairns-Blake-Dowd model of Cairns et al. (2006a) with a stati
 age

fun
tion and uses a log-link fun
tion;

3. the �
lassi
 APC� model of Hob
raft et al. (1982) and others;

4. the �redu
ed Plat� (�RP�) model of Plat (2009) dis
ussed in Hunt and

Blake (2015g);

18

and

5. the model produ
ed by the �general pro
edure� (�GP�) in Hunt and

Blake (2015b) for the data des
ribed above.

18

That is, the simpli�
ation of the main model dis
ussed in Plat (2009) without the

third, high-age term or, equivalently, an extension of the CBDX model with a 
ohort

term.

17



These models have the forms

19

ln(µx,t) = α(LC)
x + β(LC)

x κ
(LC)
t (24)

ln(µx,t) = α(CBDX)
x + κ

(CBDX,1)
t + (x− x̄)κ

(CBDX,2)
t (25)

ln(µx,t) = α(APC)
x + κ

(APC)
t + γ

(APC)
t−x (26)

ln(µx,t) = α(RP )
x + κ

(RP,1)
t + (x− x̄)κ

(RP,2)
t + γ

(RP )
t−x (27)

ln(µx,t) = α(GP )
x +

4
∑

i=1

f (GP,i)(x)κ
(GP,i)
t + γ

(GP )
t−x (28)

The parameters in these models have been estimated by �tting the model

to the UK population data des
ribed above. These �tted parameters have,

in turn, been used to estimate the parameters of the time series pro
esses

dis
ussed in Se
tions 2.4.1 and 2.4.2 for κt and γy (if appli
able). Using these

parameter estimates, we 
an 
al
ulate forward mortality rate surfa
es in the

real-world measure using Equation 12.

These models have been 
hosen to give a reasonable 
ross se
tion of the

di�erent APC mortality models whi
h 
ould be used in pra
ti
e. One of the

advantages of the forward mortality rate framework des
ribed in this paper

is that it allows for 
onsisten
y between the model of the for
e of mortality

and the forward mortality surfa
e. Consequently, as a 
he
k, we 
ompare

these forward surfa
es of mortality for ea
h model to the mean mortality

rates 
al
ulated using Monte Carlo simulations (shown in Figure 1 for the

GP model) and �nd that the small di�eren
e between the two is explained

by sampling error in the simulations.

19

See Hunt and Blake (2015b) for full details of the 
onstru
tion of the GP model. For all

models, we also sele
t age fun
tions whi
h are normalised so that

∑

x |βx| =
∑

x |f(x)| = 1.
This involves either in
luding normalisation 
onstants or 
hoosing age fun
tions whi
h are

�self-normalising� in the sense of Hunt and Blake (2015f). However, for 
larity, these are

not shown, although they are taken into a

ount in the �tting algorithms.

18



Year
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0

0.002

0.004

0.006

0.008

0.01

0.012 ν
P
65,t

(2011)

EP
2011

 µ
65,t

Figure 1: Di�eren
e between forward mortality rates and those obtained

from Monte Carlo simulations using the GP model

3 Pri
ing se
urities and the market pri
e of

longevity risk

3.1 The market-
onsistent measure

In Se
tion 2.4, we 
al
ulated mortality forward rates using the time series

pro
esses estimated from the �tted parameters. This means that the expe
-

tations in Equation 13 were 
al
ulated in the histori
al, real-world measure,

P.

It is obviously important that longevity-linked se
urities pri
es are 
on-

sistent a
ross di�erent types of se
urity in order to limit the potential for

19



pri
ing anomalies and arbitrage opportunities in the market. In addition,

modern solven
y regimes require that liability values and te
hni
al provi-

sions for pension s
hemes and insurers must also be 
onsistent with market

pri
es. Identifying a suitable market-
onsistent measure, Q, is therefore a


riti
al 
omponent of the forward mortality framework.

The starting point of modern �nan
ial theory is to assume that the �-

nan
ial markets are �
omplete� in the sense that every �nan
ial 
laim in

them 
an be hedged perfe
tly using tradable assets. In 
omplete markets,

the market-
onsistent measure exists and is unique. Derivative se
urities in


omplete markets 
an be perfe
tly repli
ated using these underlying se
urities

without risk (and hen
e these measures are also referred to as �risk-neutral�)

and the 
osts of these hedging strategies give the derivatives their unique

pri
es. Complete markets are also free from arbitrage, sin
e all pri
es 
an

be derived using these underlying hedging strategies and any deviation from

these pri
es will be arbitraged away by informed investors. The assumption

of market 
ompleteness is a reasonable one in many 
ontexts, su
h as devel-

oped markets for equities and interest rates in large and advan
ed e
onomies.

However, the market for longevity risk is not 
omplete. Not only are there

insu�
ient tradable longevity-linked se
urities to fully repli
ate all �nan
ial


laims, there are almost no longevity-linked se
urities being a
tively traded,

full stop. Therefore, de�ning a market-
onsistent measure for longevity risk

is a major problem for all mortality models whi
h seek to pri
e longevity-

linked se
urities.

Some studies, for instan
e S
hrager (2006), assume a priori that any mar-

ket will be risk-neutral with respe
t to longevity risk and therefore that the

histori
al and market-
onsistent measures are equal. We believe this is un-

likely, given that any market in longevity risk is likely to be dominated by

parties that su�er �nan
ially from rising life expe
tan
y (see Loeys et al.

(2007)) and therefore will be generally seeking to hedge the risk of future

improvements in mortality rates.

In light of this absen
e of information, Barrieu et al. (2012, p. 224)

suggested that the real-world measure must play a key role in the de�nition

of any market-
onsistent measure:
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What will be a good pri
ing measure for longevity? It is expe
ted

that the histori
al probability measure will play a key role, due

to the reliable data asso
iated with it. Therefore, it seems nat-

ural to look for a pri
ing probability measure equivalent to the

histori
al probability measure. Important fa
tors to 
onsider are

that a relevant pri
ing measure must be: robust with respe
t to

the statisti
al data, and also 
ompatible with the pri
es of the

liquid assets quoted in the market. Therefore, a relevant proba-

bility measure should make the link between the histori
al vision

and the market vision. On
e the subsets of all su
h probability

measures that 
apture the desired information are spe
i�ed, a

sear
h 
an 
ommen
e for the optimal example by maximising the

likelihood or the entropi
 
riterion.

We agree with this analysis, and use the Ess
her transform to de�ne a

market-
onsistent measure that is equivalent to the real-world measure and

that satis�es many of these desirable properties. This transformation is rel-

atively parsimonious, with a small number of free parameters whi
h 
an be


alibrated using any market information we possess. Below, we further show

that the Ess
her transform gives us 
losed form expressions for the market-


onsistent forward mortality rates as shown below, and therefore is relatively

straightforward to implement and robust to 
alibrate to data.

The Ess
her transform has often been used in se
urities pri
ing in im-

perfe
t markets sin
e the work of Gerber and Shiu (1994). As dis
ussed

in Kijima (2005), it is related to other widely used distortion methods for

adjusting to a risk-neutral measure, su
h as the the Wang transform (devel-

oped in Wang (2000, 2002) and Cox et al. (2006), and used in Denuit et al.

(2007) for example), and the Sharpe ratio in modern �nan
ial theory (used

in Milevsky et al. (2005) and Loeys et al. (2007)). It is also 
onsistent with

pri
ing in the real-world measure for an individual with an exponential util-

ity fun
tion, as dis
ussed in Milidonis et al. (2011).

For a risk Xx,t in the P measure, the general Ess
her transform to the Q

measure 
an be de�ned by

EQXx,t =
EP [Xx,t exp(−Zx,t)]

EP exp(−Zx,t)
(29)
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where Zx,t is a random variable 
ontaining the parameters de�ning the market-


onsistent measure.

In the 
ontext of mortality forward rates, we 
hoose Xx,t = µx,t =
exp(ηx,t) and 
orrespondingly de�ne

Zx,t = λ⊤κt + λγγt−x (30)

where λ is an (N × 1) 
olumn ve
tor. Hen
e, there are N + 1 parameters

(whi
h we refer to 
olle
tively as λ(j), j ∈ {1, . . . N, γ}), whi
h 
orrespond to

the N age/period terms (in the ve
tor λ), and the 
ohort term (with single

parameter λ(γ)
) in the general APC mortality model in Equation 2. It is im-

portant to note that the values found for these parameters will depend upon

the spe
i�
s of the underlying model, and so are not 
omparable between

di�erent models.

Due to the pau
ity of genuine market information to pri
e longevity risk,

one might have a natural in
lination to prefer simpler models, su
h as the LC

model (whi
h has only one free parameter for the Ess
her transform). Su
h

models 
ould be felt to be more parsimonious, having fewer market pri
es

for longevity risk and therefore requiring fewer market pri
es for longevity-

linked se
urities in order to 
alibrate the market-
onsistent measure. For

example, 
alibrating the LC model would require only one market pri
e in

order to 
alibrate the market-
onsistent measure, whilst 
alibrating the GP

model in Se
tion 2.5 requires four market pri
es. Using overly simple models,

however, would be a mistake whi
h 
an lead to unreasonable pri
es for other

longevity-linked se
urities as shown in Se
tion 3.3.

Using the Ess
her transform with Equation 11 and this de�nition for Zx,t
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gives

νQ
x,t(τ) = EQ

τ µx,t

= EQ
τ exp(ηx,t)

=
EP

τ exp(−Zx,tηx,t)

EP
τ exp(−Zx,t)

=
EP

τ exp(αx + (βx − λ)⊤ κt + (1− λγ)γt−x)

EP
τ exp(−λ⊤κt − λγγt−x)

= exp

(

αx + β⊤

xE
P
τ κt +

1

2
β⊤

xVar
P
τ (κt)βx + EP

τ γt−x

+
1

2
VarPτ (γt−x)−

1

2
β⊤

xVar
P
τ (κt)λ− 1

2
λ⊤VarPτ (κt)βx − λγVarPτ (γt−x)

)

= exp
(

−β⊤

xVar
P
τ (κt)λ− λγVarPτ (γt−x)

)

νP
x,t(τ) (31)

due to the symmetry of VarPτ (κt).

This gives us 
losed-form expressions whi
h allow us to adjust the forward

mortality rates in the real-world measure to a market-
onsistent measure.

The existen
e of 
losed-form expressions is why we argued that the Ess
her

transform neatly 
omplements the forward mortality framework: these re-

sults 
ould not have been a
hieved with alternative transformations to the

market-
onsistent measure. Sin
e we have already found expressions for

VarPτ (κt) and VarPτ (γy), transforming the forward mortality surfa
e in the

real-world measure into a market-
onsistent measure is simply a matter of

�nding the values of free parameters of the Ess
her transform. This 
an be

done if we have su�
ient pri
es for longevity-linked se
urities, as dis
ussed

in Se
tion 3.2 below.

Through the analogy with utility pri
ing and the Sharpe ratio, we refer

to the parameters of the Ess
her transform as the �market pri
es of longevity

risk� asso
iated with ea
h of the age/period and 
ohort terms. For this anal-

ogy to be reasonable, we would anti
ipate that the parameters, λ(j)
, should

be positive. However, this is not ne
essarily the 
ase in the forward mortality

framework, for the following reasons.

As dis
ussed in Loeys et al. (2007), we anti
ipate that the marginal par-

ti
ipant in the market for longevity-linked se
urities will be a life insurer
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seeking to hedge longevity risk. Su
h a life insurer will be averse to longevity

risk, and so, we would expe
t the market-
onsistent forward mortality rates

to be lower than those in the real-world measure

νQ
x,t(τ) ≤ νP

x,t(τ)

In order for this to be true,

exp
(

−β⊤

xVar
P
τ (κt)λ− λγVarPτ (γt−x)

)

≤ 1

⇒ β⊤

xVar
P
τ (κt)λ+ λγVarPτ (γt−x) ≥ 0

Sin
e VarPτ (κt) is a positive de�nite matrix and VarPτ (γy) ≥ 0, this will 
er-
tainly be true if λγ > 0 and the elements of λ are also positive. However,

individual market pri
es of longevity risk 
an be negative, whilst still ensuring

that hedgers pay a positive pri
e to transfer longevity risk overall. Sin
e some

market pri
es 
an be negative, the term �market pri
es� might be 
onsidered

misleading. Although we shall refer to these parameters as market pri
es in

this paper and in Hunt and Blake (2015d), it should be borne in mind that

they are probably best thought of as simply parameters in the Ess
her trans-

form in Equation 29 rather than true market pri
es of longevity risk based

on an expe
ted utility approa
h (su
h as that dis
ussed in Zhou et al. (2015)).

The Ess
her transform approa
h has some other pra
ti
al advantages, be-

yond the existen
e of 
losed-form expressions for the forward mortality rates.

The forward mortality surfa
e in the real-world measure will be updated only

infrequently, typi
ally on
e every year when new mortality data is released.

However, market information will need to be updated far more frequently, es-

pe
ially as the market for longevity-linked se
urities develops. It is desirable

in pra
ti
e to be able to take the (infrequently 
hanging) P-measure forward

mortality surfa
e and make relatively simple adjustments to this to re�e
t


hanging market information, rather than having to re-estimate the model


ompletely every time the pri
ing information 
hanges.

However, a limitation of the forward mortality framework outlined in this

study is that it is 
urrently unable to pri
e longevity-linked se
urities with

optionality, for example, a 
all option on mortality rates. In order to do this,

the dynami
s of mortality rates in the market-
onsistent measure would need

to be spe
i�ed, in addition to simply the expe
tation, EQ
τ µx,t. We leave the
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extension of the forward mortality framework to the in
lusion of longevity-

linked options to future work.

We also note that, looking solely at the age/period terms, Equations 16

and 17 imply

β⊤

xE
P
τκt + β⊤

xVarτ (κt)λ = β⊤

x [κτ + µχτ,t + (t− τ)Σλ]

= β⊤

x [κτ + µ̂χτ,t]

sin
e t − τ is always one of the deterministi
 fun
tions in χτ,t. Hen
e, we

see that for an age/period model su
h as the LC and CBDX models, the

Ess
her transform to the market-
onsistent measure is equivalent to making

an adjustment to the drift of the random walk in Equation 14. This approa
h

is developed further in Hunt and Blake (2015e). In this form, the use of the

Ess
her transform 
an be 
ompared with some of the other approa
hes that

have been suggested in previous studies. For instan
e, Loeys et al. (2007)

suggested that the pri
e of a q-forward should be 
al
ulated as

qf = (1− (t− τ)λ̃σ2)qe

where σ2
is de�ned as the annual volatility of the mortality rate, i.e., σ2 =

VarP(ln q). We 
an 
ompare this pri
ing formula to what our forward mor-

tality framework would give were we to use the LC model as the underlying

mortality model. This has one period fun
tion, κt, with one asso
iated mar-

ket pri
e of risk, λ. From Equation 31 applied to the LC model, we �nd

νQ
x,t(τ) = exp (−(t− τ)βxΣλ) ν

P
x,t(τ)

We 
an therefore see that the pri
ing formula in Loeys et al. (2007) is similar

in form to Equation 31, although based on forward 
ontra
ts on probabilities

of death, qx,t, rather than the longevity-zeros whi
h are used as the underly-

ing se
urities in this study.

Cairns et al. (2006a) adjusted the drift of the random walk used to

proje
t the period fun
tions dire
tly, in order to in
orporate market pri
es

for longevity risk without re
ourse to the Ess
her transform

µQ = µP − Cλ̃
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where CC⊤ = Σ and λ is a ve
tor of the market pri
es of risk. If su
h an

approa
h were to be used for the CBDX model in a forward mortality rates

framework su
h as above, we would �nd market-
onsistent forward mortality

rates

νQ
x,t(τ) = exp

(

−(t− τ)β⊤

xCλ̃
)

νP
x,t(τ)

Therefore, we see that the approa
h used in Cairns et al. (2006a) is equiv-

alent to that used in this study, ex
ept using Cλ̃ instead of Σλ. Equating

these gives

Cλ̃ = Σλ

λ̃ = C⊤λ

Hen
e, the more rigorous forward mortality framework de�ned in this study

a
hieves results whi
h are 
onsistent with those of Cairns et al. (2006a), but

is also able to justify the otherwise ad ho
 adjustments to the drift made in

that study.

3.2 Calibration of the market-
onsistent measure

As has been mentioned previously, a major problem with forward mortality

models is the la
k of market information to spe
ify the market-
onsistent

measure. An advantage of using the forward mortality framework des
ribed

in this study is that, rather than requiring su�
ient market pri
es to de�ne

the full forward mortality surfa
e, we require only N + 1 pri
es to uniquely

spe
ify the market pri
es of longevity risk used in the Ess
her transform.

This substantially redu
es the market information required.

However, even this simpli�
ation is unlikely to be adequate at present,

given the pau
ity of traded longevity-linked se
urities. Many of those whi
h

do exist, su
h as the extreme mortality bonds listed in Lane (2011), are not

suitable as they involve options on mortality rates whi
h 
annot be pri
ed

using the forward mortality framework as proposed here.

20

For illustrative

purposes, we will demonstrate how the forward mortality rate framework


ould be 
alibrated with respe
t to the sort of information whi
h is available

20

We extend the forward mortality framework to allow for the valuation of longevity-

linked options in Hunt and Blake (2015e).
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urrently or is likely to be available in the foreseeable future, and how this

�external� market in longevity risk 
ould be supplemented by use of an �in-

ternal� market for longevity risk based on the assumptions used to value and

reserve for longevity risk within a life insurer.

21

3.2.1 External market

A number of �external� markets exist for produ
ts whi
h depend upon longevity,

for instan
e the markets for endowment assuran
es and individual annuities.

These were used to provide market information for pri
ing longevity risk in

Bayraktar and Young (2007) and Bauer et al. (2008). However, both of these

produ
ts are sold to individuals, and therefore are subje
t to idiosyn
rati


mortality risk as well as systemati
 longevity risk, whi
h makes them unsuit-

able for use in a forward mortality rate framework, as dis
ussed by Norberg

(2010). Furthermore, insurers will in
lude loadings for expenses and other

risks, in addition to longevity risk when pri
ing these produ
ts, whi
h makes

using them to 
alibrate a forward mortality model problemati
.

Instead, any forward mortality model will need to be 
alibrated using

se
urities dependent on aggregate mortality rates (preferably from national

populations) rather than those that are sold to individuals. Su
h se
urities

are also more likely to be traded, thereby giving informed and responsive

market pri
es. The problem remains, however, that there is 
urrently no

a
tively-traded market in su
h se
urities whi
h 
an be used to provide the

pri
ing information required to 
alibrate the market-
onsistent measure.

To date, probably the most a
tive market in longevity-linked se
urities

has been that for bespoke longevity swaps (see Hunt and Blake (2015k)).

A longevity swap is an agreement between two parties to swap a series of


ash�ows - a �xed leg based on the best estimate of the survivorship of a


ohort but then in
reased by a 
onstant per
entage (the swap margin) and

a �oating leg based on the a
tual survivorship observed for the 
ohort. A

bespoke longevity swap is one whi
h is tailored to the 
hara
teristi
s of a spe-

21

In a sense, the di�eren
e between the external and internal markets for longevity risk


ould be 
ompared to the di�eren
e between using mark-to-market and mark-to-model

valuation methods when valuing se
urities in 
ompany a

ounts, depending upon whether

deep and liquid markets exist for them.
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i�
 population su
h as a pension s
heme. As su
h, bespoke longevity swaps

are unlikely to be widely traded, and a
t more as 
ustomised reinsuran
e


ontra
ts than standardised longevity-linked se
urities whi
h 
ould form the

basis for a market in longevity risk. In 
ontrast, an index-based swap, su
h

as that des
ribed in Dowd et al. (2006), is one where the 
ohort in question

is from a national population. Although index-based longevity swaps have

not yet been widely traded, the development of the bespoke longevity swap

market to date implies that, if a market in longevity risk does develop in the

near future, it is likely that index-based swaps will form a key 
omponent of

it.

For illustrative purposes, we therefore assume the existen
e of a single

index-based longevity swap, whi
h we believe might be typi
al of the sort

of se
urity whi
h may be traded during the early stages of the development

of an external market in longevity-linked se
urities. We assume that this

index-based longevity swap has been written on a standard 
ohort of men in

the UK aged 65 in 2011 and has a term of 35 years (i.e., until the 
ohort is

aged 100). The �oating leg of this swap will therefore have the value

35
∑

t=1

tP
Q
65,τ (τ)B(τ, τ + t)

i.e., the same pri
e as a series of the longevity zeros dis
ussed in Se
tion 2.2.

The �xed-leg 
ash�ows will re�e
t a typi
al �best estimate� agreed between

the 
ontra
ting parties when the swap is initiated. For illustrative purposes,

we assume these 
ash�ows are set by 
al
ulating the survivorship of the ref-

eren
e 
ohort using the �tted mortality rates in τ = 2011 proje
ted using

the �CMI Proje
tion Model� (Continuous Mortality Investigation (2009a,b,

2013)) with a �long-term rate of improvement� assumption of 1.5% p.a..

22

We

denote the survival probabilities of the referen
e 
ohort from time τ to τ + t

using this assumption as tP̃65,τ (τ). While there is 
urrently no a
tive market

in index-based swaps, this assumption is typi
al of those used to de�ne the

�xed leg of bespoke longevity swaps in our experien
e. These 
ash�ows are

then in
reased by a swap premium of 4%, whi
h is a typi
al level on bespoke

22

The use of the CMI Proje
tion Model in this 
ontext is purely illustrative and should

not imply that we believe that this is the best model to use for pri
ing longevity-linked

se
urities, although it is typi
al of what has been used in pra
ti
e in our experien
e.
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swaps in our experien
e.

The pri
e of the swap is therefore

35
∑

t=1

(

tP
Q
65,τ (τ)− 1.04 tP̃65,τ (τ)

)

B(τ, τ + t) (32)

and will be zero at time τ . We therefore 
alibrate the market pri
es of risk

to impose this using standard numeri
al optimisation algorithms. In these


al
ulations, we assume a �at real yield of 1.0% p.a. for the zero-
oupon

bond pri
es, B(τ, τ + t)

For models with only one sour
e of risk (for instan
e, the LC model),

this single, external pri
e is su�
ient to spe
ify the single market pri
e of

longevity risk uniquely. For more 
ompli
ated models, with multiple risk

sour
es, we require additional pri
es in order to spe
ify the market pri
es of

longevity risk.

3.2.2 Internal market

We observe that, while genuine market information is in s
ar
e supply, many

insuran
e 
ompanies will e�e
tively have an internal market for longevity risk

due to the 
ross-subsidies between di�erent lines of business with di�erent

exposures to longevity risk. For instan
e, an insurer whi
h writes both annu-

ity and life assuran
e lines of business has, de fa
to, established an internal

market for longevity risk due to the presen
e of natural hedging between the

two lines of business, as dis
ussed in Cox and Lin (2007). The �pri
e� of

longevity risk in this internal market will �nd expression in the mortality im-

provement assumptions used in the pri
ing and reserving for these di�erent

lines of business. It is therefore natural to use these �internal� market signals

to supplement those 
oming from the genuine external market if there are

insu�
ient traded longevity-linked se
urities to de�ne the market-
onsistent

measure.

Alternatively, an insurer may develop an �internal� pri
e for longevity risk

by analysing the 
ost of longevity reinsuran
e via bespoke longevity swaps.

Although these 
ontra
ts do not solely transfer longevity risk - they also
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transfer basis and idiosyn
rati
 risks - they 
ould still give some indi
ation of

a pri
e for the systemati
 longevity risk present, and so be used to 
alibrate

the market-
onsistent measure.

For example, we assume that the forward mortality framework is being

used by an organisation with an internal, deterministi
 assumption that 
on-

stitutes their �house view� of mortality improvements. This house view would

then feed through into the assumptions used in pri
ing and reserving, and

inform those assumptions that are used for a

ounting and regulatory pur-

poses if there is su�
ient �exibility in how these are set. The existen
e of

su
h a house view would therefore determine the organisation's appetite for

longevity risk a
ross multiple lines of business and so underpin the �internal�

market for longevity risk.

To illustrate the sort of internal market that might be 
onsidered typi
al,

we assume a house view that mortality rates improve in line with the proje
-

tions from the CMI Proje
tion Model with a long-term rate of improvement

of 1.75%.

23

Again, this is in line with the sort of assumptions used to reserve

for and pri
e annuity business in the UK in our experien
e. In order to trans-

late this house view into the market pri
es of longevity risk in our forward

mortality framework, we try to minimise the (weighted) relative distan
e be-

tween the surfa
e of probabilities of dying given by the internal assumption,

q̃x,t, and those given the forward mortality surfa
e in the Q-measure

Qx,t(τ) = 1− exp
(

−νQ
x,t(τ)

)

at 
ertain key ages, subje
t to the swap also being pri
ed fairly at time, τ ,

23

This value of 1.75% 
an be 
ompared with the assumption of a long-term rate of

improvement of 1.5% used for the �xed leg of the index-based longevity swap above.

The long term rate of improvement is likely to be higher on an annuity reserving basis

than for valuing a longevity swap, sin
e it is 
ommon pra
ti
e, in our experien
es, for

annuity providers to in
lude an impli
it margin for pruden
e in their mortality proje
tion.

In 
ontrast, the assumption used in a longevity swap typi
ally re�e
ts a best estimate of

future mortality improvements and risk is expli
itly allow for via the swap premium rather

than an impli
it margin in the mortality assumption.
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i.e.,

min
λ

∑

t,x∈X

B(τ, τ + t)
(q̃x,t −Qx,t)

2

q̃x,t

subje
t to Equation 32 = 0

where X = {50, 55, 60, 65, 70, 75, 80}. This pro
edure is equivalent to deter-

mining the market-
onsistent measure by referen
e to an external market in

q-forwards, as proposed in Coughlan et al. (2007) and dis
ussed in Se
tion

3.3.2 below, if su
h as market existed. We 
onsider these key ages partly to

ensure that the forward mortality surfa
e in the market-
onsistent measure

is biologi
ally reasonable over a wide age range and be
ause, if a market in

q-forwards does emerge, it is at these ages where the market is likely to be

most liquid (see Li and Luo (2012)). Therefore, the use of the internal market

for longevity risk is simply a proxy for information from an external market

for longevity risk, and will be supplanted should a genuine external market

develop.

We use these assumptions for the external and internal markets for longevity

risk in order to 
alibrate the parameters of the Ess
her transform for all �ve

models des
ribed in Se
tion 2.5. These parameters, along with the forward

mortality surfa
es obtained in Se
tion 2.5, allow us to 
onstru
t the forward

mortality surfa
e in the market-
onsistent measure, whi
h 
an then be used

to value other longevity-linked liabilities and se
urities in a market-
onsistent

fashion.

3.3 Pri
ing longevity-linked se
urities

The forward mortality framework des
ribed above provides a single surfa
e

of forward mortality rates, 
alibrated from all the available information on

longevity-linked se
urities. It 
an, therefore, be used to value any other

longevity-linked se
urities and give pri
es 
onsistent with those observed. We

demonstrate this for a range of di�erent longevity-linked se
urities below.

3.3.1 Survivor derivatives

Longevity zeros and s-forwards
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In Se
tion 2.2, we de�ned the forward mortality rates assuming the exis-

ten
e of a market in longevity zeros. These were used as they are the funda-

mental se
urities dependent upon the survivorship of a 
ohort of individuals,

and 
an be used to 
onstru
t more 
ompli
ated survivor se
urities su
h as

annuities and longevity swaps, as dis
ussed below. Related to longevity zeros

are �s-forwards�, as proposed in Dowd (2003), Blake et al. (2006) and the Life

and Longevity Markets Asso
iation,

24

whi
h are forward 
ontra
ts de�ned on

a longevity zero (and hen
e are more 
apital e�
ient).

From Equation 7, we 
an see that

Sx,t(τ) = tP
Q
x,τ = exp

(

−
t
∑

u=1

νQ
x+u,τ+u(τ)

)

where Sx,t(τ) is the forward pri
e of an s-forward at time τ , de�ned on a 
o-

hort aged x at τ , with a maturity of t years. Figure 2 shows s-forward pri
es

de�ned on the 
ohort of individuals aged 65 in 2011 with di�erent maturities.

As 
an be seen, most of the models give broadly 
omparable s-forward

pri
es, espe
ially those 
alibrated using the internal market information. We

note that the LC model gives s-forward pri
es whi
h are slightly di�erent

from these models, with higher probabilities of survival over the �rst few

de
ades followed by a period of higher mortality rates (and hen
e a steeper

gradient for the 
urve), but these are still biologi
ally reasonable.

Annuities

The most relevant longevity-linked instruments for many life insuran
e


ompanies are annuities. For the reasons dis
ussed in Se
tion 3.1 and Nor-

berg (2010), individual annuities 
annot be used to 
alibrate the forward

mortality surfa
e in the market-
onsistent measure, sin
e the 
ash�ows of

these instruments are expli
itly linked to the survivorship of a named indi-

vidual and, hen
e, their pri
es in
lude an allowan
e for individual mortality

risk. In addition, they are not traded, and, therefore, 
annot provide timely

information on their values. However, when a life insurer reserves for a book

24
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Figure 2: S-forward pri
es for �ve di�erent mortality models

of annuities, the idiosyn
rati
 mortality risks are diversi�able and so are not

in
luded in the value of any spe
i�
 annuity but through the additional 
ap-

ital required for the book.

25

In addition, modern solven
y regimes, su
h as

Solven
y II, require the best estimate of the liabilities in respe
t of annuity

poli
ies to be 
al
ulated using market-
onsistent assumptions. Therefore, the

market-
onsistent forward framework 
ould, potentially, be used as the basis

for an insurer's �internal model� under Solven
y II, as dis
ussed in EIOPA

(2014).

26

25

There will therefore be a distin
tion between the pri
e an annuity is sold to the publi


for and the amount it is reserved for by the life insurer, with the additional margin for

idiosyn
rati
 mortality risk 
harged to the individual forming part of the pro�t margin of

the produ
t.

26

This is dis
ussed further in Hunt and Blake (2015j).
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The value of an annuity 
an be dire
tly 
onstru
ted from a portfolio of

longevity zeros using

ax(τ) =
∞
∑

t=0

tP
Q
x,τ (τ)B(τ, τ + t) (33)

To 
al
ulate the values of longevity zeros beyond the maximum age in our

data, we use the topping out pro
edure of Denuit and Goderniaux (2005).

We therefore see that annuity values are very 
losely related to the swap pri
e

given in Equation 32. We 
al
ulate annuity pri
es

27

for men at di�erent ages

in 2011 using the �ve di�erent models, and the results are shown in Figure

3.

We 
an see from this that the di�erent models give broadly similar an-

nuity values. This is not surprising given that they all use the same external

market information (i.e., the swap pri
e) in order to 
alibrate the market-


onsistent measure. Indeed, all the models give exa
tly the same value for

an annuity at age 65, sin
e this is determined by the swap pri
e we have

assumed and an annuity is equivalent to the �oating leg of a longevity swap.

However, the annuity values given by di�erent models diverge slightly as we

move away from this �xed referen
e point, with the LC model giving lower

annuity values at higher ages than the other models.

Index-based longevity swaps

We 
an also use these results to investigate the potential pri
ing of index-

based longevity swaps at di�erent ages. Extending the de�nition of the swap

value in Equation 32 for di�erent ages to

0 =
35
∑

t=1

(

tP
Q
x,τ(τ)− (1 + π) tP̃x,τ(τ)

)

B(τ, τ + t) (34)

we 
an use the same �best estimate� assumption based on the CMI Proje
-

tion Model for the �xed legs of the swaps, to 
al
ulate the implied swap

27

Annuities are valued using a real dis
ount rate of 1% p.a..
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Figure 3: Annuity values for �ve di�erent mortality models

premium, π, on index-based longevity swaps at di�erent ages. The implied

swap premiums are shown in Figure 4.

As 
an be seen, the behaviour of the swap premium depends strongly

upon the model being used. For the 
lassi
 APC, RP and GP models, whi
h

in
lude a 
ohort term, the swap premium slightly in
reases with age, from

around 4% at age 65 to around 6% between ages 75 and 80 (note that a

value of 4% was assumed at age 65). Swap premiums for the CBDX model

de
rease slowly with age, to around 3% at age 75. However, for all of these

models, the swap premium remains positive and do not appear unreasonable

at any age.

In 
ontrast, the LC model gives swap premiums whi
h de
rease rapidly
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Figure 4: Swap premiums for �ve di�erent mortality models

with age, giving negative swap premiums at higher ages (i.e., a premium

would be paid to re
eive the �oating payments on the swap) whi
h does not

appear reasonable. This is be
ause the LC model gives relatively low values

for annuities at higher ages - lower than would be found using the deter-

ministi
 CMI Proje
tion Model. We therefore see that there is a trade-o�.

On the one hand, we would like to use simple models whi
h have relatively

few free parameters and so are simple to 
alibrate from sparse data (and, in

parti
ular, would avoid the use of an internal market for longevity risk). On

the other hand, we also need to obtain plausible pri
es for di�erent longevity-

linked liabilities and se
urities and a
ross a wide range of ages.
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3.3.2 Other longevity-linked se
urities

A number of other longevity-derivatives not based on the survivorship of a


ohort have been proposed, and these 
an also be valued using the forward

mortality framework proposed here. A number of these are illustrated be-

low. However, the important point to note is that any se
urity whi
h does

not have a non-linear payo� (i.e., whi
h is not an option) 
an be valued using

the forward mortality framework proposed in this paper.

q-forwards

Forward 
ontra
ts on future probabilities of death, known as �q-forwards�,

were introdu
ed in Coughlan et al. (2007) and represent another, distin
t,

family of potential longevity-linked se
urities. There have been a number of

hedging transa
tions using q-forwards, as dis
ussed in Blake et al. (2013),

and so q-forwards are one of the major 
ontenders to form the basis of a

traded market for longevity risk if it develops. In addition, the internal mar-

ket assumption, used in Se
tion 3.2 to 
alibrate all of the models other than

the LC model, impli
itly makes use of a market for q-forwards, albeit one

that is internal to the life insurer rather than an externally traded market.

Values for q-forwards at age 75 and di�erent maturities, 
al
ulated using

the forward mortality models, are shown in Figure 5, along with the qx,t val-

ues proje
ted using the CMI Proje
tion Model. For the models whi
h used

the internal market assumption to 
alibrate the market-
onsistent measure,

we see that the q-forward values are broadly 
onsistent with those from the

CMI Proje
tion Model. However, they are not identi
al, sin
e the 
alibration

pro
ess also has to mat
h the swap pri
e exa
tly and minimise the di�eren
e

in q-forward pri
es at ages other than 75. However, be
ause the GP model

has more market pri
es of risk to 
alibrate, it a
hieves a slightly 
loser �t to

the internal market assumption than the other models, in
luding the 
ohort

e�e
t observed around 2025 (i.e., for 
ohorts born around 1950).

In 
ontrast, the LC model gives q-forward values whi
h are very di�erent

from those of the other models, with implausibly rapid de
reases in q-forward

values. Again, this is be
ause, with a single market pri
e for longevity risk,

the LC model has to severely distort the forward mortality surfa
e in the
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Figure 5: q-forward pri
es at age 75 for �ve di�erent mortality models

real-world P-measure in order to pri
e the longevity swap. It 
annot ensure

that mortality rates a
ross a wide range of other ages and years behave in

a plausible fashion in the market-
onsistent measure. We therefore see that

more sophisti
ated underlying APC mortality models, as well as being able

to in
orporate pri
ing information from a wider range of sour
es, will also

tend to give more biologi
ally-reasonable forward surfa
es for mortality in

the market-
onsistent measure.

e-forwards

Period life expe
tan
y is a very 
ommonly used aggregate measure of

mortality rates, sin
e it 
an be 
al
ulated easily from observed data and 
an
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be 
ompared a
ross di�erent populations. It is, therefore, natural to 
onsider

its use as an index for longevity risk transfer, based on the suggestion of

Denuit (2009). In parti
ular, we 
onsider a market in forwards on period

life expe
tan
y, whi
h we refer to as �e-forwards� (from the demographi


symbol for period life expe
tan
y). Using the forward mortality framework,

we 
al
ulate forward period life expe
tan
ies as

E65,t(τ) = 0.5 +
∞
∑

u=1

exp

(

−
u
∑

v=1

νQ
65+v,t(τ)

)

Figure 6 shows the forward period life expe
tan
ies at age 65 from ea
h of

the �ve models in the market-
onsistent measure.

Year
2000 2005 2010 2015 2020 2025 2030 2035 2040 2045 2050

14

16

18

20

22

24

26

28

LC
CBD
APC
RP
GP
Observed

Figure 6: Period life expe
tan
ies at age 65 for �ve di�erent mortality models
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We note that all of the models give forward period life expe
tan
ies whi
h


an be 
onsidered biologi
ally reasonable and 
onsistent with the �ndings of

Oeppen and Vaupel (2002), i.e., that they in
rease roughly linearly. Life

expe
tan
ies from the LC model in
rease slightly faster than the other mod-

els, whi
h otherwise give broadly 
onsistent forward values. This is be
ause

of the use of the internal market to 
alibrate these other models, ensuring

greater 
onsisten
y between their forward mortality surfa
es.

k-forwards

In Hunt and Blake (2015h), we dis
ussed how the indi
es based on the

observed rates of improvement in mortality rates, su
h as the indi
es whi
h

were de�ned in the 
onstru
tion of the Swiss Re Kortis bond, 
ould poten-

tially form the basis for a market in longevity risk. Improvement rates may

be a natural basis for a market in longevity, as they are often used by a
tu-

aries to express long term assumptions regarding the evolution of mortality

rates. Building on this, we also 
onsider the forward value of the index for

men in the UK de�ned by

Kt(τ) =
1

11

85
∑

x=75



1−
[

νQ
x,t(τ)

νQ
x,t−8(τ)

]
1
8





This index was 
onstru
ted to measure the average rate of improvement

in mortality rates between ages 75 and 85 for men in the UK and so 
ould

be used for hedging or transferring longevity risk in a portfolio of annuities.

Unlike the Kortis bond, however, we only 
onsider an index 
onstru
ted for

a single population (i.e., men in the UK) rather than the di�eren
e between

two populations, and only 
onsider pri
ing the index rather than an option

on the index.

28

In Hunt and Blake (2015h) it was suggested that forward 
ontra
ts based

on this Kortis index 
ould form the basis of a market in longevity risk. We

refer to su
h 
ontra
ts as �k-forwards� in the same manner at q-, s- and e-

forwards dis
ussed above. Figure 7 shows the proje
ted k-forward values in

the market-
onsistent measure. As dis
ussed in Hunt and Blake (2015h), the

28

See Hunt and Blake (2015h) for a further dis
ussion of the Swiss Re Kortis bond and

its 
onstru
tion.
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Figure 7: Kortis index values for �ve di�erent mortality models
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Kortis index is designed to be very sensitive to the rates of improvement in

longevity, whi
h are determined by the drift, µ, of the random walk used

for the period parameters. Indeed, for models whi
h la
k a 
ohort term, the

drift in the random walk exa
tly determines the proje
ted index values, and

hen
e they are 
onstant beyond 2020.

29

For the models whi
h in
lude 
ohort

parameters, the value of the index in the short term depends strongly upon

the 
ohort parameters �tted by the model, as dis
ussed in Hunt and Blake

(2015h), resulting in a distin
tive 
urved pattern. In general, the models


ontaining a 
ohort term give market-
onsistent assumptions for the rate of

improvement in longevity whi
h de
rease from its 
urrently observed level of

around 3.5% to around 2% in 20 years' time. This is not surprising given

this is broadly in line with the assumptions used to 
alibrate the market-


onsistent measure, i.e., the CMI Mortality Proje
tion Model with a long

term rate of improvement of either 1.5% or 1.75%.

As in the 
ase of the q-forwards, the index values for the LC model show a

very di�erent evolution due to the limited ability of this model to both pri
e

the market information and give a biologi
ally reasonable forward surfa
e of

mortality. However, the alternative models appear to give index values whi
h

are biologi
ally reasonable and 
onsistent with the histori
al, realised values

for the k-forwards, whi
h potentially means that forwards on the index 
ould

form a viable basis for a market in longevity risk.

Other longevity-linked se
urities

The forward mortality surfa
e 
ould also be used to value life assuran
e

poli
ies in the same manner. In 
onjun
tion with the results of Hunt and

Blake (2015d), the forward mortality framework 
ould therefore be used as a

standard model for both the valuation of a life insurer's te
hni
al provisions

and the assessment of longevity risk within them, in a

ordan
e with the

Solven
y II regulatory regime des
ribed in EIOPA (2014). We des
ribe how

this 
an be a

omplished in Hunt and Blake (2015j). In addition, for life

insurers writing both annuity and assuran
e poli
ies, it may be desirable to

value these 
onsistently in the te
hni
al provisions, in order to a
hieve the

29

Before 2020, the Kortis index is based partly on proje
ted and partly on observed

mortality rates, and hen
e exhibits more variability than after 2020.
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bene�ts from natural hedging dis
ussed in Cox and Lin (2007).

Beyond the examples dis
ussed above, the forward mortality framework


ould be used to value any longevity-linked se
urity with a linear payo� in the

underlying index. Hen
e, although the market for longevity-linked se
urities

is in the early stage of development 
urrently and it is un
lear whi
h form of

se
urities will ultimately 
ome to be traded, we believe that the framework

des
ribed in this paper is �exible enough to be able to pri
e any of them in

a manner 
onsistent with any other pri
es for longevity-linked liabilities and

se
urities whi
h are available.

As dis
ussed previously, one disadvantage of any forward mortality rate

framework as des
ribed in this study is that it 
annot be used to value

longevity-linked options, sin
e it only looks at the expe
ted mortality rates

in the market-
onsistent measure. For example, it 
ould not be used di-

re
tly to value mortality 
atastrophe bonds, su
h as the Swiss Re Vita bond

(dis
ussed in Bauer and Kramer (2007)), Longevity Experien
e Options (de-

s
ribed in Fetiveau and Jia (2014)), bespoke index-based solutions (des
ribed

in Mi
haelson and Mulholland (2014)), a guaranteed annuity option (dis-


ussed in Pelsser (2003) and Ballotta and Haberman (2006)) or a bond sim-

ilar to the Kortis bond with the prin
ipal being a non-linear fun
tion of the

index value. At the present time, we do not think that this is a fatal limita-

tion of the forward mortality rate framework dis
ussed here, as 
urrently the

market for longevity-linked se
urities is not su�
iently developed to allow a

full 
alibration of the forward mortality rate surfa
e, let alone the dynami
s

of the for
e of mortality in the market-
onsistent measure, whi
h is required

to model longevity-linked options. We extend the forward mortality frame-

work developed here to be able to value longevity-linked options in Hunt and

Blake (2015e).

4 Con
lusion

The valuation of longevity-linked liabilities and se
urities requires us to pre-

di
t future rates of mortality. Modern solven
y regulations and the gradual

emergen
e of a market in longevity-linked se
urities require these predi
tions

to in
orporate market information, in order to give pri
es for di�erent se
u-

rities whi
h are 
onsistent with those observed in the marketpla
e. As many
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previous studies have shown, forward mortality models are ideally pla
ed to

a
hieve this.

We therefore believe that the answer to the titular question raised in

Norberg (2010) - are forward mortality rates the way forward? - is yes. Nev-

ertheless, it is important to take on board the 
riti
isms of Norberg (2010)

and to develop a framework spe
i�
ally to model mortality rates, rather than

borrow a pre-existing framework developed for interest rates and to de�ne

this framework using se
urities whi
h do not depend on the idiosyn
rati


timing of individual deaths. This is be
ause, with a properly developed

framework, we 
an derive a model whi
h is 
apable of 
apturing the 
omplex

dynami
s of mortality rates, and so obtain 
onsisten
y between models of

the for
e of mortality and the forward mortality rates.

In this study, we have developed su
h a framework for forward mortal-

ity rates whi
h is based upon the dynami
s of the for
e of mortality given

by the 
lass of age/period/
ohort mortality models. This framework has the

advantage of being easier to estimate from histori
al data than existing mod-

els, with market information being in
orporated via a relatively parsimonious

transformation of the forward mortality rates in the real-world measure. The

framework is also very �exible, as it 
an be used in 
onjun
tion with many

of the most popular models of the for
e of mortality, su
h as those proposed

in Lee and Carter (1992) and Cairns et al. (2006a).

We have shown how market information 
an be in
orporated into the

model and used the resulting forward mortality surfa
e to value a range of

existing and proposed longevity-linked se
urities. All of the pri
es 
al
ulated

from the same model are 
onsistent with ea
h other, as they are derived from

the same forward surfa
e of mortality. This allows for a uni�ed approa
h to

the valuation of a wide range of liabilities and longevity-linked se
urities.

Finally, we note that the main virtue of forward mortality models is their

ability to spe
ify the dynami
s of the forward mortality surfa
e and, hen
e,

their appli
ability to the assessment and management of longevity risk. We

develop these themes in the se
ond part of this study, in Hunt and Blake

(2015d). Together, these two studies show that the framework proposed 
an

provide an integrated solution to many of the valuation and risk manage-

ment problems in respe
t of longevity risk that are fa
ed by life insuran
e
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ompanies.

A Identi�ability and mortality forward rates

In Hunt and Blake (2015f) and Hunt and Blake (2015g), we dis
uss the identi-

�ability issues in AP and APC mortality models, respe
tively. In parti
ular,

we �nd that almost all APC mortality models possess �invariant� transfor-

mations, i.e., transformations of the parameters of the model whi
h leave the

�tted mortality rates un
hanged. In order to �nd a unique set of parame-

ters, we impose a set of identi�ability 
onstraints on them. Typi
ally, these

are 
hosen to give a parti
ular demographi
 signi�
an
e to ea
h term in the

model. However, sin
e any interpretation of demographi
 signi�
an
e is sub-

je
tive, it is important that our 
hoi
e of identi�ability 
onstraints does not

have any impa
t on any 
on
lusions we draw about histori
al or proje
ted

mortality rates. For instan
e, we dis
uss in Hunt and Blake (2015f,g) how

to ensure that proje
ted for
e of mortality is independent of the 
hoi
e of

identi�ability 
onstraint.

It is also important that the forward mortality rate framework des
ribed

in this study is independent of the 
hoi
e of identi�ability 
onstraints used

when �tting the underlying APC model to histori
al data. However, due to

our de�nitions of the forward mortality rates in Equation 11, we see that

νP
x,t(τ) in the real-world measure is automati
ally independent of the iden-

ti�ability 
onstraints if the distribution of µx,τ is also independent of the

identi�ability 
onstraints. We therefore do not need to do any additional

work to ensure identi�ability in the forward rates on
e the methods used to

proje
t the for
e of mortality are well-identi�ed.

We also need to ensure that the forward mortality surfa
e in the market-


onsistent measure is also independent of the 
hoi
e of arbitrary identi�abil-

ity 
onstraints. This is mostly straightforward, as we see that Equation 31

depends upon the forward mortality rates in the real-world measure (whi
h

should be independent of the identi�ability 
onstraints for the reasons dis-


ussed above), the varian
es of the period and 
ohort fun
tions (whi
h are

independent of the allo
ation of any levels and linear trends if the proje
-

tion methods are well-identi�ed, as dis
ussed in Hunt and Blake (2015g))
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and the market pri
es of longevity risk. However, we note that if the model

transformed using

{β̂x, κ̂t} = {
(

A−1
)⊤

βx, Aκt}

then the market pri
es of risk are also transformed in the model to λ̂ =
(A−1)

⊤
λ. Hen
e we see that, not only are the values of the market pri
es of

risk dependent upon the underlying APC model used for the for
e of mortal-

ity, they will also depend upon the normalisation s
heme and spe
i�
ation

of the age fun
tion in the model, and so are not the same a
ross all models

whi
h give the same �tted mortality rates.

B Impa
t of Jensen's inequality

In Se
tion 2.2, it was argued that

tPx,τ = Eτ

[

exp

(

−
t
∑

u=1

µx+u,τ+u

)]

≈ exp

(

−
t
∑

u=1

Eτµx+u,τ+u

)

(35)

due to the relatively low degree of variability in µx,t, and hen
e it was shown

in Se
tion 2.2 that

νx,t(τ) ≈ Eτµx,t

This assumption 
an be tested numeri
ally, as follows.

For simpli
ity, we 
onsider Px,t = Eτ exp(−µx,t). Therefore

Px,t = Eτ exp (− exp (ηx,t))

In Se
tion 2.3, we assume that

ηx,t ∼ N(Mx,t,Vx,t)

and therefore

Eτ exp(−µx,t) ≈ exp (−Eτµx,t) = exp (− exp (Mx,t + 0.5Vx,t)) (36)
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Holland and Ahsanullah (1989) dis
ussed the log-log distribution, where

X is su
h that

ln(− ln(X)) ∼ N(M,V)

We therefore see that Px,τ (τ) is given by the mean of the log-log distribution

if ηx,t is normally distributed. However, the moments of this distribution do

not have a 
losed form solution. Holland and Ahsanullah (1989) showed that

the rth raw moment of the distribution is given by

EXr =
1√
2π

∫

∞

−∞

exp
(

−0.5x2 − r exp[M+ x
√
V]
)

dx

whi
h 
an be 
omputed numeri
ally.

From Se
tion 2.3, we see

Mx,t = αx + β⊤

xEτκt + Eτγt−x

Vx,t = β⊤

xVarτ (κt)βx + Varτ (γt−x)

Hen
e we 
an use the results of Holland and Ahsanullah (1989) to 
om-

pute Px,t numeri
ally, without re
ourse to the approximation in Equation 36.

Using this, we 
al
ulate

Px,t = Eτ exp(−µx,t)

=
1√
2π

∫

∞

−∞

exp
(

−0.5z2 − exp[Mx,t + x
√

Vx,t]
)

dz (37)

numeri
ally and 
ompare it with the values assumed in Equation 36. This

gives us a 
he
k on the a

ura
y of the approximation in Equation 36, whi
h

underpins the forward mortality framework.

Figure 8 shows the ratio of the numeri
al value of Px,t 
al
ulated using

Equation 37 and the approximate value 
al
ulated using Equation 36 for the

�ve mortality models 
onsidered in this paper (in the real-world measure).

We 
an that in the vast majority of 
ases, the di�eren
e that the assumption

makes is less than 0.2% (i.e., ratios less than 1.002) and for no ages and

years does the approximation make more than a 1.5% di�eren
e to the for-

ward mortality rates. This is 
onsistent with the proje
ted mortality rates
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found in Figure 1, whi
h also showed that forward mortality rates (using

the approximation) were very 
lose to those 
al
ulated using Monte Carlo

simulations.

The mortality rates whi
h are most a�e
ted by the approximation are

those at the highest ages and the years of proje
tion furthest into the future,

whi
h makes sense as these are the mortality rates with the greatest levels of

un
ertainty atta
hed to them. However, they are also the least e
onomi
ally

important, sin
e any 
ash�ows that would be a�e
ted by these mortality

rates would be in respe
t of individuals who are very old (and so there is

very little survivorship to these ages) and far into the future (whi
h means

that the present value of the a�e
ted 
ash�ows would be very small due to

dis
ounting). This gives us reassuran
e that the approximation in Equation

35 does not systemati
ally distort the results found using the forward mor-

tality framework derived in this paper, 
ompared with those whi
h 
ould be

found using an exa
t but 
onsiderably more 
ompli
ated framework whi
h

does not make this assumption.
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