IT City Research Online
UNIVEREIST%(]OggLfNDON

City, University of London Institutional Repository

Citation: Bishop, P. G., Bloomfield, R. E. & Cyra, L. (2013). Combining Testing and Proof
to Gain High Assurance in Software: a Case Study. Paper presented at the IEEE
International Symposium on Software Reliability Engineering (ISSRE 2013), 4 - 7 Nov 2013,
Pasadena, CA, USA.

This is the unspecified version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/2608/

Link to published version:

Copyright: City Research Online aims to make research outputs of City,
University of London available to a wider audience. Copyright and Moral Rights
remain with the author(s) and/or copyright holders. URLs from City Research
Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,
educational, or not-for-profit purposes without prior permission or charge.
Provided that the authors, title and full bibliographic details are credited, a
hyperlink and/or URL is given for the original metadata page and the content is
not changed in any way.

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

Combining Testing and Proof to Gain High
Assurance in Software: a Case Study

Peter Bishop, Robin Bloomfield

City University and Adelard LLP
London, UK
{pgb,reb}@csr.city.ac.uk
{pgb,reb}@adelard.com

Abstract— Dynamic software test methods are generally easy
to use, but the results only apply to the specifitnput values
tested. Static analysis produces results which ammore general,
but can require more effort to perform. There are ptential
benefits in combining both types of techniques bease the
results obtained can be more general than standalendynamic
testing but less resource-intensive than standalorstatic analysis.
This paper presents a specific example of this appach applied
to the verification of continuous monotonic functims. This
approach combines a monotonicity analysis with a dimed set of
tests to demonstrate the accuracy of a software fation over its
entire input range. Unlike “standalone” dynamic mehods, our
approach provides full coverage, and guarantees a awrimal
error. We present a case study of the applicationf@ur approach
to the analysis and testing of the software-implenmted transfer
function in a smart sensor. This demonstrated thatelatively low
levels of effort were needed to apply the approaciWe conclude
by discussing future developments of this approach.

Keywords— test strategies, dynamic analysis, statimalysis,
formal proof

l. INTRODUCTION

Software systems can be analysed using both satic
dynamic methods. Dynamic tests are easy to implerben
only demonstrate correctness at specific inputsjewstatic
analysis can be resource-intensive but the resatisapply to
all the possible inputs. There are potential bémefn

combining both types of techniques because theltsesu

obtained can be more general than standalone dgrtasting
but less resource-intensive than standalone statilysis.

In this paper we present a specific combinatiostatic and
dynamic analysis techniques that can be used tify vitne
accuracy of software which implements monotoniccfioms.
Continuous monotonic functions are often implemeérniethe
software of real-time embedded systems (e.g. whaTscs
measurements are converted into process statesyaloethe
approach described in this paper can be appliedctoal
industrial systems. We describe how to guaranteerthximal
error of the software over the entire input spasing a
combination of static analysis and systematic t8ats also
show that application of our method requires muads leffort
than full formal analysis and far fewer test cabas extensive
testing. The technique was developed as part ofimtong

The authors wish to acknowledge the support ofiKeCINIF research
programme that funded the research presentedsipéper.

Lukasz Cyra

European Commission - Joint Research Centre
Institute for the Protection & Security of the @éh
Ispra, Italy
lukasz.cyra@jrc.ec.europa.eu

research funded by the UK nuclear industry thateigeloping
methods for assessing the behaviour of commerdfathe
shelf smart devices.

In Sections Il and Il we discuss static and dyr@ami
techniques, and methods of their combination. 8ectV
presents our approach to analysing monotonic fonsti
Section V generalises the approach to functionsnokiple
variables. Section VI gives examples of applicabibf the
approach. In Section VII we discuss the level oppsut
provided by the available tools. In Section VIII weesent a
case study of application of the method. Finallg, onclude
and discuss our future plans in Sections IX and X.

Il. STATIC AND DYNAMIC ANALYSIS

Static analysis is the analysis of computer sofwahich
does not require execution of the software. It asnmonly
considered that the use of static analysis to wesibgram
correctness requires specialist expertise and deraile
computational resources but provides sound (thquagsibly
conservative) results. However, there are morddiniorms of
static analysis that are widely used, e.g. allabmpilers are
static code analysers, many software development
environments have tools to compute certain codeicaefe.g.
cyclomatic complexity) and check simple soundnespegrties
(such as type checking, data flow analysis or cbrfilow
analysis).

Static methods of software verification are ventenf
applied in development of safety and security eelatystems,
systems with high reliability requirements and avelopment
of hardware [1]. To this end, methods are provided
specifying properties of systems formally, whiche ahen
demonstrated by analysis of the code using a fopmwdf tool
[2]. Another approach is to analyse abstract modetystems
and infer properties of the systems from the mogels, using
model checking) [3]. Some inferences can be fulljomatic
(e.g. using model checkers or code analysis toated on
automatic Satisfiability Modulo Theories (SMT) sels like
SAL and SMV). For more complex problems, the analys
requires manual intervention and guidance (e.gnguproof
tools like PVS and HOL).

Dynamic analysis techniques, by contrast, depend on
analysis of the behaviour of programs through tegecution

and are routinely used in software development. reéCor
functionality cannot usually be demonstrated over éntire
input space, but only at selected test points énitiput space
(e.g. chosen to achieve full code coverage) [4lwéiler, they
can be applied to complex systems and they areostggpby
mature, industrial quality tools. Dynamic analysshniques
are also supported by tools for test coverage atitm (like
LDRA Testbed and Cantata++). Dynamic technique® als
provide confidence in the tool chain between thgecanalysed
with static techniques and the actual executedafare.

Although, static and dynamic analyses differ sigaiftly,
combination of both approaches is tempting. It msff¢he
prospect of more effective forms of verificatiorither by
reducing test effort, or by increasing the coveragieieved by
the tests.

I1l. METHODS OFCOMBINATION

Efforts to combine static and dynamic analysis laeing
made by two different communities, i.e. hardward software
developers. Currently, there are only a limited hamof
combination strategies and it is recognised thahéu research
is needed [1] to realise the full potential.

Currently, several approaches and tools exist, hwhéde
advantage of these ideas. Depending on the levetexfration
the advantages can differ. To present the diffeenwe
distinguished four levels of combination.

In the most basic form of integration developersidie
which parts of the system should be analysed (eithgr static
or dynamic approaches. Both approaches have differe
advantages and disadvantages and they suit differeblems.
Therefore, in large systems development, static dymhmic
methods can be applied together in an ad-hoc waypport
each other or to analyse different parts of theesagstem.
There even exist solutions which make mutual appibo of
both approaches easy. JNuke [5], for instance, igesvan
interface for writing the analysis logic regardleéshe type of
analysis, and defines a framework in which dynaamalysis
can be used to confirm the findings of static asialy

At the next level of integration, static analysade used
to support dynamic analysis of systems; or vicesae6tatic
analysis can help define comprehensive test suitas,can be
used to increase efficiency of testing, like:

Conformance testing— this is a commonly used
approach (especially to test
protocols implementation) to demonstrate conforraity
protocols with their specifications [6]. Appropeatest

cases are derived automatically from a formal model

Assertions— these are commonly used to provide for

more efficient testing, and increase the coverafje o

testing [7]. Assertions are manually specified by

developers in the code and then they are dynamicall

verified during execution. Assertions can also Bedu

to specify properties of interfaces of differentdutes

so that interface consistency can be checked during
integration.

Automatic invariants/assertions discoveryhere exists
a set of approaches [12] [13] [14] [15] which prbwi
methods for monitoring the application during
execution in order to discover possible code irargs.
This information is then used at the stage of selgc
objectives for the static analysis.

At the third level of integration we can use stati@alysis
not only to plan testing but also to analyse thsulte. Test
results of the system are combined with staticyamlresults
of modules of the system and then the analysis rageeis
estimated by performing static analysis of the cdde ‘0-In
Formal Verification’ method [17] is an example big level of
integration.

Finally at the fourth level, static and dynamic hugts can
be fully combined. A precisely selected set of seste
identified and the test results are enhanced hydbanalysis
to demonstrate that some property holds for thelevdomain
of possible inputs, see, for example [16]. Morenfally, we
can regard a prograni()l as an implementation of a
specificationf’()] that performs a mapping between an input
domainl and an output rang®. The combination of static and
dynamic analysis comprises:

a formal proof of some properB/of programf(0)

a specific set of test inpuff drawn from the input
domainl that meet some success criterion C between
the test input and the result.

This combination of test and proof is designedhovsthat
some behavioural predicaBof the functionf(l)l is true over
the whole input domaih i.e.

P(F@O O CEf@), f'®)= 0BG, f () (1)

The method presented in this paper belongs tofdhigh

telecommunicatiordroup and we think it is an innovative example bfst

integrated approach. In this specific example,ktblavioural
propertyB we need to demonstrate ascuracy,i.e. that the
implemented progranf()] meets some maximal error bound

the protocol and then are used to test the protocdklative to the specificatiofi(0l This is achieved by combining

implementation.

Automatic test case generatiendifferent approaches
to automatic test case generation exist, which igeov
for definition of test case suites with certain gedies
(e.g. path coverage) [8][9] [10] [11].

Detection efficiency during testing can also beroved by
formally defined run-time checks including:

a proof of monotonicity with a carefully selectext of tests.

IV. COMPOSITEVERIFICATION TECHNIQUE FOR
MONOTONICFUNCTIONS

Continuous monotonic functions are often implemerite
software, e.g. to linearise non-linear sensor deta. difficulty
with conventional testing of such functions is thet can only
demonstrate correct response at specific inputegalwith no

knowledge of the implementation, we cannot inteafelthe function the maximal error of implementation caneateed
response between test points as software behammht be the maximal absolute difference between the vahfeshe
discontinuous. To generalise test results to cdlerwhole function in two adjacent test points.

input domain, we use a combined verification appro More formally, if we assume that we have testedttion

Firstly, we must show that the function implemenitethe ([} in two points:x andy and we have demonstrated formally
firmware is monotonic. A monotonic function is anéion that the function is increasing monotonically, rifier any point
f(Dwhich takes its input fronh and fulfils either condition (2) between x and y, the value of the function hasedbtween
or (3) below. f(x) and f(y). Therefore, the maximal error of the

implementation of the function cannot excdedx) — f(y)|

for any of the inputs betweerandy.
Ox2y=fx)==f(y) @
xyal For example, let us take functié) = x + 1 which takes as
input a value from the range <0, 5>. Implementatidrthe
function in C is presented in Fig. 2.

D xzy= (=< f(y) (©)

int f(int x) {
. . . return x+1;
Secondly, we select test points using the spetificaof }

the functionf' () and the desired maximal error guarantee. Tf_ . . .
. Fig. 2. Implementation of a linear function
testing confirms proper implementation of the fiumetfor the

selected inputs we can deduce that the maximal efrthe We can easily prove monotonicity of this functide can
implementation for any other input is not greateert the 4, this by writing a specification of this code anformal

desired maximal error guarantee. If we relate thigie formal |5n4age ‘and using a static analyser to provetimaatically;
definition of composite verification given earlighe predicate 5 \ve can do it manually.

P({(D) is monotonicity as defined in (2) or (3), thecsess

criterion C isf/(t)=f(t) for all testst and the behaviour predicate ~ Examples of code specifications and discussionhefr t
Bis |f’(x)-f(x) | <maxfor all input values x. automatic verification are presented in the follogvisections.

Equation (4) contains a manual proof of monotoyiait this
A graphical illustration of the composite verifitat function.
method is given in Fig. 1. The points on the curepresent
test points, where the correctness of the impleatkfinction

is checked. If we know that the implemented furnctis Xzy=>

monotonic increasing (which is demonstrated foryndlly X+12y+1=> (4)
static analysis or manually by inspection of thdeothen the F(x)> f

values of the implemented function for inputs betwewo ()= 1(y)

adjacent test points is bounded by the valueseofithction in
the test points. It follows that the graph of tihepiemented
function at intermediate points must be within tleetangle
shown in Fig. 1.

Now, let us assume that we have tested the impletiem
of the function for 6 inputs: 0, 1, 2, 3, 4, andabd that the
outputs were correct.

As the difference between the values of two adjatest
inputs is not greater than 1 for any pair, the cositp

output verification technique provides us immediately withe
information that the maximal implementation errof o
Monotonic f(x) =x+ 1 for any input from the range <0, 5>is not greate
function than 1.

We would not be able to obtain the same resultgusin
dynamic analysis (even if we tested the implementafor
thousands of inputs). We would be able to proveectness of

<> maxerror the implementation statically (but using proof aotoes not
give us confidence in the implementation within tineware);
however, for more sophisticated functions suchamfpwould
be much more difficult than a proof of monotonicity

O test points

> This remainder of this section discusses detailshes
method. In the descriptions we focus on functiohty/pe (2),
i.e. increasing monotonic functions. An analogopgraach
Fig. 1. Composite verification technique for monotonic ftioes can be eas"y defined for decreasing monotonic tfans
defined by (3).

input

The maximal error cannot exceed the absolute difies
between the values in the two test points and Her whole

A. Assumptions

Inverse function. The test values are defined %y f'™(y)

This method can be applied when the f0||0\,\,ingWheref"l is the inverse of the specified functig#f(x) and the

assumptions hold:
» We know the specification of the functién
« The specified function is monotonic.

+ We are able to test the implementation of the fondt
and conclude whether the response for a given iisput
correct or not.

B. Analysis of Monotonicity

In comparison to proving correctness, demonstratbn
monotonicity of a function implementatidnis a fairly easy
task.

For most of the software it can be done manuallgyilenr
still giving high level of assurance. To this end gan analyse
the software functions implementing the transfarction in
isolation, proving monotonicity of each of them aegiely.
Then from the superposition of monotonic functioms can
deduce monotonicity of the end-to-end program fionct

Alternatively, if we aim at a very high level of midence,
we can provide a formal proof of monotonicity, whos
correctness is automatically verified by static Igsia tools.
The principle idea of the proof is the same astlier manual
approach. Formal demonstration of monotonicityhieoty is a
relatively easy task, i.e. it is much easier tharmél
demonstration of correctness of implementationparticular,
to specify correctness, we would require a complatel
correct formal specification for each program fimet which
can be difficult to construct and certify. By cadt the
specification of monotonicity is easy to specifglas the same
for all functions. We, however, encountered cerdifficulties
in practical implementation of this idea caused rigsing
functionality in the static analysis tools avaikaloin the market
(see Section VI).

C. Testing

The next step of the method is to define a tesedle,
which specifies test input values that are suffitigo
demonstrate a particular maximal error. These tefyson the
existence of an independent “reference functitfiat can be
used to derive independent test cases for the maieed
function. Different test generation options thatisfa the
maximal error condition are described below.

Function-based approachlf test inputs are evenly spaced

across the input range, it can be shown thaisfthe required
accuracy (expressed as a proportion of full-scatey need
1 +[(1/r)(@may@mea) | teSt points, wher@may is the maximum
slope of the continuous function on the range amsd, and

output valuey are evenly spread over the output range. It can
be shown that the minimum number of tests needed fiven
accuracyr is 14 1/r |. For example for 25% output accuracy,
the minimum number of tests is 5. To compute tlsé values,
the output range is evenly split by 5 output valaesl the
equivalent test input values are calculated by rimvg the
specified transfer functiofi). This approach is illustrated in
Fig. 3. The intervahy is the maximal error (times full-scale)
andx;... % are the derived test points.

Output
f(x)

P'S

I

X3 X4 Xs Input
X

X1 X2

Fig. 3. Defining test points — inverse function

V. GENERALISATION TOFUNCTIONS OFMULTIPLE VARIABLES

The composite verification technique for monotonic
continuous functions can be generalised to funstiafi
multiple variables. This is an important issue ascfions of
this type are commonly used in firmware of smarisses, e.g.
as averaging filters to process the input values.

For functions of multiple variables the monotonicit
analysis must prove that the functions are monotisniespect
to each of the variables.

Let us consider functiof(p,,...,) of n parameters. The
monotonicity analysis must prove that each of thecfions
f10,....f,() defined in (5), where,,... X, can be any point from
the input ranges, is monotonic.

f(2) = T(2X%,,-,X,)

®)
fn(z) = f(xll"”xn—l' Z)

Proving monotonicity for am parameter function will be
more time-consuming, but the proofs of monotonisitare a
lot of content, making the formal analysis easierepeat.

amean IS the average slope of the function on the range To select the test points we can apply a methotbgoas

considered. The maximum and mean slopes are defigad

to the function-based approach presented in SedWoly

the specified functiof’. For example for 1% accuracy, where defining an n-dimensional grid with steps ofx in each

the maximum slope of the transfer function was éwtbe
average slope, we would need 201 test points evapaged
over the smart sensor input range.

dimension. Assuming th&, is the range of input parametgr
andRis the output range, the maximum normalised gradéen

R of '(+) ©) Therefore, ifk te_st_s are sufficient fqr testing functidn k
R op tests are also sufficient to test functibnClearly the same

' result would apply to an arbitrary number of partarefor a
function of this type.

The normalised spacing (Ax/R) for the grid of test points
along input axis depends on the worst case gradient on that

axis a* max and the required maximal normalised emowhen VI FORMAL DEMONSTRATION OFMONOTONICITY
the grid spacing on each axis makes a maximal error Traditionally static analysis tools model softwaes
contributionr/n, the normalised grid spacing on each aigs machines with operations and state variables, wghtain

invariants and initialisation parameters. The dgééin of an
operation, according to this viewpoint, is definesl a tuple
r) composed of [18]:

S——
*
n |}1 max [a name

With this n-dimensional test grid, the required number of * input parameters
test pointSiestis: + output parameters

» restrictions on parameters and the states fromhathie
nia * i
Ny = ni=1,n(r1 + FF:) max_') ®) operation may be called
r « variables that may be modified

So if k tests are needed for a single parameter functmn w * the effects or behaviour of the operation

need= (nK)" tests forn parameters, however, tests may be Thjs strict state-based approach is well suiteghrtigram
reduced if we take account of the specific properdf the gpecifications and can successfully be applied wde range
function. Table 1 below gives examples of additionaof problems. Industrial implementations of this mgzh exist

properties of commonly used two parameter functidr® for analysis of program logic, concurrency, timimgobility,
reduce the required number of test points. security, etc.

While this approach is powerful, there are limitas to a

TABLE 1. TESTING FUNCTIONS OFTWO PARAMETERS strict state-based approach. To specify some piepeof a

, function we have to compare two invocations of Hane

Assumptions about properties of function N“mbfé °f.tezt points function, e.g. for non-interference analysis [1¥he same

quire requirement exists when specifying monotonicity—weuld

f(p, p,) = f(p,, py) k(k +1)/2= k2/2 like to specify the property directly as shown guations (2)

and (3). Unfortunately ACSL (the ANSI/ISO C Spegitfiion

f(p,+¢p,)=f(p,p,+C) 2k -1=2k Language which defines the syntax for writing spemiions

f(p,p,)=9(p,)+h(p,) 2k -1= 2k for programs in C) [20] does not support specifare of this
type.

f(p.. P,) = P(p) * h(p,) K P o | _

g andh are single parameter functions. After. reviewing around twenty p035|ble_ code gnalyeols,

cis a constant we decided to use Frama-C [21], which fulfilled alur

k is the number of test points for a single param@taction to assure the requirements (apart from the specifications invavithe

maximal error is not greater than comparison of function calls). Frama-C is a toolalitis being

actively developed by Commissariat a 'Energie Aiquee and

) o INRIA. Frama-C has a range of plug-ins that carfqoer a
An example proof of this test reduction is givem fhe variety of analyses including

following function (which might typically be usedorf

averaging successive input signals). . coged_saf_ety cgecking including pointers dereferanci
and divisions by zero

f(p., = h +h 9 e observation of possible values of the application
(Py, P2) = (p) + M(p,) - (9) variables at each point of execution

Equation (10) shows that the output of the funcfmmany « slicing the original program into simplified ones

test point can be derived from the outputs ey (KX . T . .
pot W utputs 1), ., (X « proving formal specifications of particular C fuiocts

or the whole application

06, %)) = hx) +h(x;) e integration with the most popular automatic theorem
= 1(h(x) + h(x)) + % (h(x,) + h(x,)) (10) provers and proof assistants
=3 f(x, %) +3 f(x,X) Our case study made use of the Jessy plug-in y@@Eh

performs deductive verification of C programs aated using

ACSL. ACSL provides good support for
relationships between functions’ input and outpuobyvides for
specifying functions entry conditions, and suppdidsmal
specifications of data structures.

As we have already mentioned Frama-C did not mket a

our requirements. To be able to apply it succelysiud had to
find a work-around for the tool limitations. To sjifg

monotonicity, we had to add extra code to the @ogrwhich
invokes the function twice and compares the resBitsadding
this extra code we were able to specify monotoniedt as a
property of a function (dependant on its two intaoes) but as
a property of the input and output values of they fienction

we added to the code. For example, to specify nuoricity of

function f(x) we add another functiomonotonicity check,y)

that compares the result of two invocationg(gf with ACSL

annotations that specify the expected result ofctiraparison
if f(X) is monotonic (see Fig. 4 below).

/I the function of interest

int f(int x) {
/1 body of f()
}

/*@ behaviour monotonicity:
@ ensures x >y ==> \result == 1;

@/

int monotonicity_check(int x, int y) {
return f(x) >=f(y) ? 1: 0;
}

Fig. 4. Monotonicity specification

The comment lines with a “@” prefix are ACSL
specification statements.
VII. CASESTUDY

This section contains the description of a caseystin
which we applied our method of monotonicity analyssing
the composite verification approach to a real-wdedice used
in the nuclear industry.

A. Objectives

For the case study we selected a commercially ablail
smart sensor device from a number of instrumetisvile have
been assessing for deployment on nuclear powetspldhis
smart sensor was a programmable alarm unit thatmessure
plant parameters, transmit the measured value aiseé &an
alarm if a programmable limit is violated.

The alarm unit smart sensor considered in thisystiah
monitor a wide range of plant parameters; for incta
temperature, pressure, flow, position, etc. and bandle
anything from simple annunciation to shut down ofemtire
process. The device can handle up to four relaputsit The
relays can control such devices as warning ligie#ls, pumps,
motors, shut down systems, and so on.

The smart sensor can be configured to:

» read in different types of plant input signal

expressing

» transmit the converted plant value in differentiats
* raise an alarm on high or low measured values
* raise an alarm if internal errors are detected.

The smart sensor software comprises around 12i668 |
of C source code (excluding blank lines and comsjetit is
written in a generic way and is used on severalaisodf the
device. Analysis of the software shows that the gabcessing
is implemented using a sequence of functions asvrsha
Fig 5.

Sensor interface hardware

'

Input_interrupt ‘

Input handler t\

Configuration
parameters

(different sensor types)
Status variables| l

Scaling, trimming and
user lineaizatior

l

Alarm logic

|

Relay output hardware

Reset
Buttor

Fig. 5. Processing functions and data flows

The blocks in the diagram are described in moreaildet
below.

Sensor interface hardware is a piece of hardware that
receives input and makes it available to the softwa

Status variables- are variables set by hardware which
among other things provide information about thevicke
failure

Reset button- is a button on the device which when
pressed resets the alarm if the device is workirg ‘latching”
mode

Configuration parameters- are values in memory which
store information about the model of device and enad
operation of the alarm, e.g. “high-trip”, “low-tfip“latching”,
etc.

Relay output hardware- is a piece of hardware which
transforms a decision of the firmware whether tbagealarm
or not into an electric signal

Input_interrupt— is an interrupt function called whenever
there are new readings available. It reads thecdewgisters,
and copies the values to a selected memory location

Input handler- is a very complex function (over 1000 lines
of code) which depending on the device model t@ns$ the
read byinput_interruptvalues into a common format

Scaling, trimming and linearizatior are three functions
performing transformation of the input signal acting to the
device configuration

C. Analysis Approach

To demonstrate monotonicity of the code we hadstothe
workaround for the tool limitations identified ine&ion VII.

Alarm logic— is a set of functions implementing the alarmThis, however, had significant impact on the analysnd

logic, which based on the value of the transforingdt decide
whether to set the alarm or not.

The objective of the study was to demonstrate that
maximal error of the software implementation of adat
processing of the sensor in a given configuratmad more
than 1% of the input range. To this end we decidagerform
a static analysis to show monotonicity of the tfanfunction,
and to define and perform tests assuring satisfaatif the

difficulty of this task.

First and foremost, the workaround makes it posstbl
demonstrate monotonicity of a function by definiram
additional one, whose properties are equivalethigécclaim we
want to prove (see Section VI for details). WhHéstapproach
is valid, it makes reuse of the specification inglole. For
example in Fig 7, we are not able to infer progsrtof f(I
using a superpositiog(] andh(l properties.

analysis objective in the given configuration.

B. Monotonicity Argument

int f(int x) {
return g(x) + h(x)

To demonstrate that the smart sensor firmware gesvan
output conversion that is monotonic with respedtgsanput, a
safety argument [23] was constructed to identifychtpieces
of the code must be demonstrated to be monotoeéicKy. 6).

Data processing software
Smart sensor

in the smartsensoris >
montnjy description
Argue by logical Smart sensor

components system model

Data processing in the

Data processing in the
front end driver
process is monotonic

data processing
process is monotonic

Argue by
functions

Argue by
functions

User
linearisation
is monotonic

Trimming is

. Scaling is
monotonic

monotonic

input_handler()
is monotonic

input_interrupt()
is monotonic

Fig. 6. Monotonicity argument

To demonstrate that the data processing softwarthén
smart sensor is monotonic, we have to considerstages of
data processing, which correspond to two parts b t
argument:

» The data input — which is responsible for conversib
the input signals into normalised form. This
implemented byinput_interrupf) and input_handle()
which must be demonstrated to be monotonic.

is

e Subsequent data conversion — this is implemented by

functions: trimming(), scaling) and linearisevalu€)
which must also be demonstrated to be monotonic

Fig. 7. Superposition of functions

If we were to use a tool which supports monotoyicit
analysis, we would be able to specify and prove ataricity
of g(and h(Ql Then, very easily we would prove
monotonicity off(0)} referring to the specifications of(éand
h(D. However, because of the limitations of the al#é tools,
we are not able to specify thg()l andh(l)] are monotonic in a
way that can be utilised to demonstrate monotonaif(l)l To
be able to reach any conclusions we had to useobrike
following strategies:

e partly switch to manual proofs,

« specify the functions implemented k(0] and h()
(which is a much more resource intensive taskpun
case study we made use of both of the solutions.

In the smart sensor case study:

* We demonstrated manually that monotonicity of each
of the functions identified in Subsection B implies
monotonicity of the whole transfer function of the
device.

We analysed each of the functions in isolation.

The proofs we performed are summarised in the atig
sections.

D. Front-end Driver Functions

Input_interrupf) is a simple function and its monotonicity
was demonstrated formally in Frama-C.

Creating a complete formal proof forput_handler() on
the other hand, was not possible due to complesityhe
function (over 1000 lines of code) and lack of reses.
Therefore, the following approach was applied:

« Assumptions about the device type were writterhin t
form of ACSL assumptions (using the “ensure”
keyword).

« Slicing was applied to extract the code respondine
calculating process variables for the specific devi

type.

» Monotonicity of certain intermediate variables ged
by the function was formally demonstrated.

*@ lemma multiplication: \forall float x,y,z; (X ¥ && z
>=0.0) ==> x*z >= y*z; */

Manual proofs for the monotonicity of all the sub-
functions invoked bynput_handlef) was provided.

A manual proof was created to show that the rettef
function applies monotonic transformations on the
process variables.

E. Data Processing Functions

To demonstrate monotonicity efimming() and scalind)
we applied the following process:

Certain assumptions were made about values of lgloba
variables, whertrimming) and scaling) are invoked.
We assumed that certain configuration variablesaion
certain values, e.g. that trimming and scalingnis\We
also assumed that certain function parameters rare i
certain relations, e.g. that the upper bound vatue
greater than the lower bound value in the definitd

the scaling parameters.

An additional function was added to the code ireotd
make monotonicity specification feasible (see B)g.

[*@ requires

@ x>y&&
@ SCALING_ENABLED &&
@ TRIMMING_ENABLED &&
@ SC_UPPER_BOUND > SC_LOWER_BOUND &&
@ TR_UPPER_BOUND > TR_LOWER_BOUND
@ ensures
@ \result >=0.0;
@*/
float scaling_monotonicity(float x, float y) {
PV =x;
Trimming();
Scaling();
float rx = PV_Scaled;
PV =y,
Trimming();
Scaling();

float ry = PV_Scaled;
return rx - ry;

Fig. 8. Trimming)) andscaling) monotonicity specification

Fig. 9. Lemma example

Monotonicity of superposition of the two functiongas
specified formally. We demonstrated formally alkth
monotonicity specifications. We executed Frama-C,
which generated a set of verification condition8.the
verification conditions (apart from the lemmas) &er
demonstrated formally by using one of the Frama-C
automated theorem provers (alt ergo 0.8). A scresns
of the results of proving monotonicity sfmming()and
scaling) is shown in Fig. 10.

i gWhy: a verification conditions viewer

File Confhguration Proof

Proof chligations Statistics

¥ User goals 0/3

Lemma constants
Lemma division
Lemma multiplication

b Function DelayMs

Safety S

Function LineariseValue
4 Safety 1
b Functien Sca'L:Lng‘ o J o9
Normal behavier “no_scaling o

b Function Scaling Y

Normal behavior “scaling’ 27727

b Function Scaling A

Safety es

Function Trimming Y
b MNormal behavier “no_trimming' E el

b Functien Trimming Vi

Normal behavier “trimming_ne_trimming_2point' Ea

b Function Trimming o 474
MNormal behavier “trimming_trimming_2point’ 4

b Function Trimming Vi

Safety es

Function scaling_monotonicity 7

Default behavior Y 171

Fig. 10.Frama-C analysis results

« The code was annotated in a way which expresses the The red triangles indicate that the lemmas are nifireck

properties to be demonstrated.

The green ticks indicate that all the verificatimonditions for
the functions have been satisfied. This demonstrabet

Assertions and lemmas required to complete thefproguperposition of the two functions is monotonisegi that the
were added. This step was necessary, because lémmas are correct. It states that multiplicatibbath sides of

demonstrate compliance of the code with thegn

inequality by a non-negative value preservess thi

specification we used automatic theorem proverselationship.

Automatic provers are quite powerful, however, they

are not ideal and sometimes require some help to be Due to limitations of Frama-C and lack of resourtas

able to do their work. In particular, we had to cfye

complete formal verification of the code the lireation

some invariants of the key variables in the code w function was demonstrated to be monotonic manually.

also had to add some lemmas relating to basic

mathematical theorems, as automatic theorem provefs Testing
In our case study we applied the inverse functiggr@ach

do not support calculations on floating point valés
very well. Fig. 9 is an example of such a lemma.

to define the test schedule (see Section 1V), had tonfirmed

proper functioning of the conversion software bgaxing the

tests on the code. Test execution was implementéki form
of integration tests and executed automaticallpgighe CUnit
framework. This step completed our analysis,
demonstrated that the firmware of the smart sepsavides
output within a 1% error band, i.e. that the alarare
guaranteed to work given the input value exceeddithit by
more than 1% of the input range.

G. Analysis Effort

The static analysis took 15 days to perform, wisiems to
be a reasonable expenditure considering the erméidence
that was gained from the quite limited testing. Tdifort
required to perform the analysis was hampered thy ¢d off-
the-shelf tools that could directly perform a mamitity
analysis. Otherwise, we could have obtained theesasults in
a significantly shorter time. We estimate that nanstatic
analysis could have been undertaken in 2 days Wil a
lower confidence that the analysis is correct).

The effort required to perform the testing was anig day.
Since the tests were automated, it would have fessgible to
test at much finer resolutions (e.g. 0.1%) in alsimamount of
time.

VIIl. DISCUSSION

The use of proof applied to the actual code to destnate a
behavioral property is not a common approach. Tllic
static analysis is used to automate test case a@rerfrom
either the code, a formal specification or a fortmahavioural
model.

There are some examples that are similar to ouroapp
where the code is subjected to static analysisré@epsome
property or invariant. For example in [24] a sirfiptl
approximation function in a navigation system igvad to
guarantee some maximum level of error in a trajgctbhis is
similar to our own approach where the invariant seek to
demonstrate is the maximal error. The main diffeeens that
our approach combines testing at selected pointh ai
relatively weak code property (monotonicity) to derstrate
the required invariant (maximal error)

Our method can be successfully applied to situatighich
require high confidence in a given level of accyrée.g. the
level necessary to guarantee safety rather tharmmalpt
performance). This means that the approach is sugied to
cases where software is used to process valuesdnahogue
inputs or values sent to analogue outputs (sucthe@smart
sensor software used in our case study). We caayalgelect a
set of test points to guarantee the maximal ermrbé
significantly lower than the accuracy level of thealogue
hardware of the device.

The approach to the problem we presented in thpemia
based on formal analysis and formal verificationlso The
formal verification tools available did not dirgcgupport this
type of analysis, which impeded the monotonicityalgsis.
Nonetheless, this analysis was still easier togperfthan a
complete proof of correctness.

There is, however,
performed the whole analysis manually by inspectthg

conversion equations within the software (which Idobe
assisted by code slicing tools). This would be meaakier to

whichperform than a formal analysis (e.g. probably dnlg days of

effort to manually assess the monotonicity of tbeversion
functions within the smart sensor software wouldnkeded).
This alternative form of analysis would still prdei high level
of confidence in the correctness of the results tlas
monotonicity of a function is relatively easy totelenine by
code inspection.

The approach to analysing monotonic functions’
implementations has been generalised to functibmsudtiple
variables, which is presented in Section V. Thievjites a
whole set of new applications. The number of testpired
remains reasonable and for many types of funci®tisee same
as for functions of single variables.

Apart from the method presented in this paper we lzdso
been considering enhancements to our approaclngtance:

We could divide the input range into sub-ranges and
consider them in isolation. This in certain sitaa may be
much easier, as definitions of software functiongrothe
whole input domain tend to be very complex. Divisiof the
range into sub-ranges may reduce the number oheteas
considered in each proof step. In this case, howeyart from
proving monotonicity of the function on each of tiamges we
would also need to provide a proof of monotoniatythe
function on combination of the sub-ranges, i.eshow that
monotonicity on the endpoints is preserved andttiatype of
monotonicity on each of the sub-ranges is identadilere the
sub-range functions are either all increasing ladedreasing).

For the special case where the function is linghe
number of tests can be reduced even further. Reduidat the
formal analysis can demonstrate linearity, it idyamecessary
to test the two end points.

More generally, the use of static analysis to galiser
some property from individual test points to a vehdbmain
can have much wider application.

For instance, in nuclear applications, another @rtyp
important to safety is that a trip relay will adiiavhen the
linearised value reaches a trip limit, i.e.:

0, £(x) > lim = trip (11)

So if the relatively short section of trip logic dm is
formally proved to satisfy the trip property in §11his can be
combined with maximal error property, namely that
| (x)f(x) | < maxto show that:

O f'(x) > lim+max= trip (12)

This safety-related property specifies the trip awadur
relative to theactual state of the process over the whole input
range.

an alternative. We could have We think that there is scope for identifying funthe

properties (and especially important safety progertthat

could be verified using a combination of dynamial astatic [4]
analysis. This need not be limited to purely fumcal
properties as the approach can also be appliedote n [5]
functional properties like worst case timing [16].
IX. CONCLUSIONS [6]
In this paper we presented a verification apprdsaded on
a combination of testing and static analysis—thifieation of [7]
the accuracy of monotonic functions. We descritheddtheory
which lies behind the approach and presented astadg of i8]

successful monotonicity analysis of a smart sensed in the
nuclear industry. We conclude that:

» A verification technique that combines monotonicity [g]
analysis with testing at selected inputs has been
successfully demonstrated on an industrial software
example. [10

« The approach enables test results made at selested [11]
points to be generalised to a claim about the acgunf [12]
the software over the whole input space.

e The approach is more rigorous than testing aloog, b [13]
less expensive than full formal proof and couldame
efficient technique for enhancing confidence
software with finite accuracy requirements.

in[14]

e The monotonicity analysis effort could be reduced

further if code analysis tools were available tbaald ~ [19]
directly check for monotonicity (or more generatign
compare different invocations of a function). [16]
We think that there is scope for further reseancthis area,
in particular:
» Enhancing code analysis tools to directly checkligr 7]
required properties (like monotonicity).
18]

» ldentifying other combinations of analysis and itest
that enable functional properties to be demonstratefio)
with a limited number of tests.

[20]
REFERENCES
[1] M. Ernst, “Static and Dynamic Analysis: Synergy dbdality”, Proc.
ICSE Workshop on Dynamic Analysis (WODA '03), 2003. (1]
[2] J. Filliatre, C. Marche, “The Why/Krakatoa/Caducelktform for
Deductive Program Verification”, Lecture Notes ir@puter Science, [22]
vol. 4590, pp. 173-177, Berlin: Springer-Verlagp20
[3] J. Grunbauer, H. Hollmann, J. Jurjens, G. Wimm#&lpdelling and (23]
Verification of Layered Security Protocols: A Bankpplication”,
Lecture Notes in Computer Science, vol. 2788, df-129, Berling: [24]

Springer-Verlag, 2003.

M. Hennell, D. Hedley, M. Woodward, “Quantifying eth Test
Effectiveness of Algol 68 Programs”, Proc. The Siclyde ALGOL 68
Conference, pp. 36-41, 1977.

C. Artho, A. Biere, “Combined Static and Dynamic alysis”, Proc.
Abstract Interpretation of Object-oriented Languad@lOOL) '05,
Paris, France, 2005.

L. Garstecki, “Generating Reliable Conformance Tastes for Parallel
and Distributed Languages, Libraries, and APIs’ctuee Notes in
Computer Science, vol. 3038, pp. 74-81, Berlinir8mr-Verlag, 2004.
J. Bormann, A. Fedeli, R. Frank, K. Winkelmann, tlmned Static and
Dynamic Verification”, Research Report, VersioPROSYD FP6-IST-
507219, 2005.

N. Williams, B. Marre, P. Mouy, M. Roger, “PathCilaw Automatic
Generation of Path Tests by Combining Static andabyic Analysis”,
Proc. Dependable Computing (EDCC ’05), vol. 3468802005, pp.
281-292, 2005.

A. Gotlieb, B. Botella, M. Reuher, “A CLP Framewoadider Computing
Structural Test Data”, Lecture Notes in Artificiateligence, vol. 1891,
Berlin: Springer-Verlag, pp. 399-413, 2000.

] S. Gouraud, A. Denise, M. Gaudel, B. Marre, “A NaWay of

Automating Statistical Testing Methods”, Proc. ASED1, 2001.

N. Sy, Y. Deville, “Consistency Techniques for hmcedural Test
Data Generation”, Proc. ESEC/FSE '03, 2003.

J. Nimmer, M. Ernst, “Static Verification of Dynacaily Detected
Program Invariants: Integrating Daikon and ESC/Jav&oc. RV '01,
2001.

C. Flanagan, R. Joshi, K. Leion, “Annotation Infeze for Modular
Checkers”, Information Processing Letters, 2(51t98, 2001.

C. Flangan, K. Leino, “Houdini, an Annotation Adaist for
ESC/Hava”, Proc. International Symposium of Fori&thods Europe
2001: Formal Methods for Increasing Software Prigitg, Lecture
Notes in Computer Science, vol. 2021, pp. 500-BErlin, 2001.

T. Win, M. Ernst, “Verifying Distributed Algorithmsvia Dynamic
Analysis and Theorem Proving”, Technical report MITS-TR-841,
2002.

E Mera, P Lépez-Garcia, G Puebla, M Carro and MH&tmenegildo.
“Combining Static Analysis and Profiling for Estitiry Execution
Times”, Lecture Notes in Computer Science, 2007ue 4354/2007,
140-154,

Mentor Graphics, “0-In Formal Verification DataStiee
http://www.mentor.com/products/fv/0-in_fv/uploadi®formal-
datasheet.pdf. (URL link 2010)

C. Morgan, “Programming from Specifications”, Pieat Hall
International Series in Computer Science, Hertfoirds 1990.

M. Alba-Castro, M. Alpuente, S. Escobar, “Automateelrtification of
Non-Interference in Rewriting Logic”, vol. 5596, #ia: Springer-
Verlag, 2009.

P. Baudin, P. Cuoq, J. Filliatre, C. Marche, B. Mtm Y. Moy, V.
Prevosto, “ACSL: ANSI/ISO C Specification Languagersion 1.6,
CEA, http://frama-c.com/download/acsl_1.6.pdf. (URIk 2013)
Frama-C, “Software Analyser”, http://frama-c.condéx.html. (URL
link 2013)

Frama-C, “Jessy Plug-in”, http://frama-c.com/jesgiml. (URL link
2013)

Adelard, “ASCAD - The Adelard Safety Case Developmilanual”,
ISBN 0 9533771 0 5, 1998.

Wongpiromsarn, S. Mitra, A. G. Lamperski, and R. Murray.
“Verification of periodically controlled hybrid stems: Application to
an autonomous vehicle”. ACM Trans. Embedded Comgyst.,
11(S2):53, 2012

