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Abstract
A common feature in the modelling and extrapolation of the trends in mortality rates 
over time, based on �tted parametric structures, has tended to involve the treatment 
of a structured �tted main e�ects period component (with possibly a cohort compo-
nent) as a random e�ects time series. In this paper, we follow the lead of Haberman 
and Renshaw (Insurance Math Econ 50:309–333, 2012) and other authors in model-
ling and forecasting mortality improvement rates over time, rather than mortality 
rates. In this context, we assume linear parametric structures for mortality improve-
ment rates, and we examine the feasibility of modelling the main period e�ects (and 
possibly any cohort e�ects) as a random e�ect from the outset. We argue that this 
leads to a more uni�ed approach to model �tting and extrapolation.

Keywords Mortality improvements�· Random e�ects modelling�· Hierarchical 
generalised linear modelling�· Age heteroscedasticity�· Mortality forecasting

1 Introduction

One of the themes of the recent longevity related academic literature has been the 
consideration of the modelling of mortality improvement rates (MIR), rather than 
mortality rates (MR). One of the motivations has been a practical one, as noted by 
Haberman and Renshaw [6], Denuit and Tru�n [4] and Hunt and Villegas [10], 
inter alia. Many standard life tables used by actuaries (and required by regulators) 
for annuity pricing or reserving are increasingly based on an assumption about the 
dynamics of suitably de�ned mortality improvement rates. Thus, Haberman and 
Renshaw [6] and Denuit and Tru�n [4] speci�cally mention current actuarial prac-
tice in Austria, Belgium, Denmark, Switzerland, UK and US that uses mortality 
improvement rates as a building block. Further we note that, in the UK, the Continu-
ous Mortality Investigation Bureau (CMI) has recently developed and recommended 
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a new mortality projection model based on improvement rates: see CMI [3]. These 
developments indicate a need for a sound theoretical foundation for the modelling 
of improvement rates—and this has led to a stream of contributions to the literature. 
We will refer to these di�erent contributions, as appropriate, in the main body of the 
paper.

A second motivation for the interest of the academic literature has been the recog-
nition that there may be theoretical and practical advantages in modelling improve-
ment rates. A key issue in modelling mortality dynamics is understanding the domi-
nant downwards time trend that has manifested itself over at least the last 70�years. 
It is well known in time series work that there are advantages if the underlying pro-
cess that generates the time trend is time-invariant. One of the common methods 
in time series analysis of transforming a so-called non-stationary time series into a 
stationary one is by de-trending the series i.e. taking �rst di�erences: see Li et�al. 
[13], Haberman and Renshaw [6, 7], Mitchell et� al. [14], Hunt and Villegas [10] 
and Bohk-Ewald and Rau [1]. This transformation implies that the mortality trend 
relates to the previous year’s mortality rates rather than the trend in a hidden mor-
tality factor, like � � in the seminal model of Lee and Carter [11]. As we will show 
below, the de�nition of mortality improvement rates is linked to this transformation.

A further point noted by Hunt and Villegas [10] is that by considering mortal-
ity improvements from national data sets, inferences can be made about mortality 
trends in smaller sub-populations, although this requires consideration of longevity 
basis risk (see [8], and [19] for a further discussion).

We refer the reader to the text by Lee et�al. [12] for an account of the general back-
ground to the theoretical modelling aspects underpinning this paper (Sects.�4–6), 
where we develop generalised linear MIR and MR models by the inclusion of ran-
dom e�ects. Quoting from the epilogue to this text (p 360) “We [the authors] sus-
pect that there may be many other new extensions waiting to be explored where the 
ideas underlying this book could be usefully exploited”. We believe that this paper 
provides such an extension.

All the applications presented in this paper were produced using the computer 
package R. Outline details are given in “Appendix II”.

Our main contribution is to show that, by attributing random e�ects to the period 
and cohort components (or just the period components) of a main e�ects age-
period-cohort structured linear predictor from the outset, it is possible to present 
a comprehensive self-contained process for modelling and extrapolating mortality 
improvement rates, which incorporates structured dispersion and an apparent self-
selecting time series. We show that this methodology also extends to the modelling 
and extrapolation of mortality rates provided that the predictor structure is linear. 
We argue that this methodological framework leads to a more uni�ed approach to 
model �tting and extrapolation as a result of treating the time element as a random 
e�ect from the outset, thereby impacting both �tting and extrapolation stages.

The paper is arranged as follows. In Sect.�2, we investigate the inter-relationship 
between two alternative measures of mortality improvement rates. In Sect.�3, we 
focus on a direct and indirect method of modelling mortality improvement rates with 
speci�c reference to the linear age-period-cohort structure, and suggest the inclusion 



of a random e�ects period component. In Sects.�4 and 5, we describe a method of 
�tting respectively Normal-Normal and Poisson-Normal generalised linear mixed 
models, which incorporate �xed and random e�ects components, and have an addi-
tional provision for the joint modelling of a structured dispersion parameter. In 
Sect.�6 we indicate how a simple structured time series can also be incorporated into 
the �tting process. In each of Sects.�4–6, we include an investigation into the poten-
tial of the respective methodology by applying it to the recent UK�male mortality 
experience. Sections�7 and 8 provide a discussion and some concluding comments.

2  Mortality improvement statistics

Ideally, in continuous time, age speci�c mortality improvement rates are quanti�ed 
by the partial derivative of the log-mortality rate, either with respect to period (cal-
endar-year) or with respect to birth-year (cohort). Given that the former approach is 
the most commonly used, we assume this to be the case here unless stated otherwise.

Consider a rectangular age-period Lexis plane divided into annual cells support-
ive of mortality data.�

� �� � � �� � � ��

�
 : age � � � � � � � � � � � �  , period � � �� � �� � � � ��  , and birth-year � � � � �  ,  

where � �� � �������� ������ �� ������  ; � �� � �������� ������� �������� �� ��� ���� � �����  ; 
� �� � ����� � ��� � ������� �� �������� �������� � ���� ���� ��

�  and denote 
� � �� � ��� ������� ���� �� ��������� .

Assuming central rates of mortality throughout, two super�cially di�erent mor-
tality improvement rate statistics have been proposed in the literature and are of 
interest:

Statistic I: � �� �
�� � � � ��

� � � ��� � �� � �� � � �
� � � ��� � �� � � � ��� � �

� ��� � �� � � � ��� � �
 , and

Statistic II: � �� � � � ��� � � �� � ��� � � �� � ��� � � ����  where � � is the di�erencing 
operator and the statistics are computed using the estimate �� � �� � � ��

�
� ��  ; see Haber-

man and Renshaw [6] and Mitchell et�al. [14] respectively for applications.
We investigate next the precise nature of the di�erence between the two statistics. 

Firstly, we note that while both statistics are discrete representations of the partial 
derivative of ��� � � �� , Statistic I is based on the actual partial derivative itself. Sec-
ondly, we recall the monotonic increasing characteristic of the log function. Then a 
comparison of �� � � � �� with � � ��� � � �� , which determines the respective signs of the 
two statistics, associates respectively positive and negative values with actual mor-
tality improvements. In addition, exploratory scatter plots of the two statistics, using 
any rectangular age-period UKmale mortality data array, are found to exhibit perfect 
negative correlation which implies an exact connection between the two statistics.

Indeed, a mathematical tractable relationship between the two statistics reads as 
follows:

� �� � �
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Correcting for the disparity in the sign of � ��  the relationship connecting the two 
statistics reads � �� � � ����

�
� ��

�
�
�
 so that

a convergent power series comprising odd powers only, with the implication that 
the absolute value of � ��  is less than the matching absolute value of � ��  and hence the 
greater accuracy in general. Unless stated otherwise we use Statistic I.

2.1  An application

We utilise the UK male mortality data set, covering the period 1960–2016, ages 0–102, 
and comprising annual death counts and matching central exposures to the risk of 
death, as compiled by the Human Mortality Database [9]. By truncating the data at the 
upper age limit of 102, possible complications arising from the irregular nature of the 
lost fragments including zero entries are avoided. In addition, the number of any such 
fragments lost is extremely small, especially for the early calendar years.

One aspect of the computed empirical MIRs concerns the nature of any information 
provided in respect of patterns in the resulting age pro�les. In order to investigate this 
feature, we have computed and displayed the n-year empirical MIR rolling-averages 
for a range of values of n. One such set of results for the 5-year MIR rolling averages, 
expressed as percentages, and centred on the periods 2014(�1)2006 are depicted in 
the various panels of Fig.�1. (We make frequent use of the notation a(c)b to denote 
sequences of numbers ranging from a to b at intervals of c). In addition we have �tted 
and display a smooth-spline curve in each panel (using the R smooth.spline function 
with a parameter setting of 0.8). We note an identi�able crude pattern in each panel 
subject to a degree of variation between (annually) adjacent panels. We return to this 
issue later in Sect.�4.

3  Mortality improvement rates and�random e�ects

We start from the premise, implicit in Hunt and Villegas [10] that, in continuous time, 
the MIR is quanti�ed by

(with the negative sign ensuring that improvement is positive and deterioration neg-
ative). We focus on linear parametric predictor structures � � �� and speci�cally the famil-
iar main e�ects APC (age-period-cohort) structure, so that

� �� � � ���� �� �
� ��
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comprising respectively age, birth-year and period main e�ects: while partial inte-
gration gives

with the ��  corresponding discrete version

as listed in Table�1 of�Hunt and Villegas [10]. Here �� � �� denotes the transformed lin-
ear predictor and � � � ��� � � ���

 , the initial log-mortality rates (or ‘constant’ of inte-
gration). Alternatively, Eq.�(2) can be rearranged to read as

(2)��� � � �� � �� � �� � � � � � �

�
� � ��

�
�

�

�
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���� �� �

�
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� � ��

(3)��� � � �� � �� � �� � � � � � �

�
� � ��
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�
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��� �

���� �
��

��� �

� �

(4)��� � � �� � � � �� � � � � � �

�
� � �

�
� ���� � � �

Fig. 1  UK males 2004–2016, ages 0–102. 5-year empirical MIR rolling-averages, centred on 
2014(� 1)06, with smooth–spline curves. MIR percentage scale; R smooth–spline parameter setting = 0.8
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subject to the following transformation and rede�nition of symbols

where � ��� �  denote the respective integrands of � and � �
Noting the close relationship between all three structures, MIR may be modelled 

directly using either of the Sect.�2 statistics as Normal responses [6], here in combina-
tion with structure (1), or indirectly using either (3) [10] or (4) (e.g. Richards et�al. [17]; 
CMI [3]) in combination with Poisson responses �� � �� � � ��

�
� ��  and a log-link function.

We note that, subsequent to model �tting, (with the possible exception of the lat-
est UK Continuous Mortality Investigation model), the �xed e�ects parameter � � (and 
sometimes ����  ) are treated as random variables to facilitate model extrapolation. Hence 
we investigate the e�ect of reformulating the modelling assumptions underpinning (1), 
(3) and (4) by including the random e�ects from the outset. To do so, we follow the 
approach of Lee et�al. [12] which is based on hierarchical generalised linear models 
(HGLMs).

4  Normal linear mixed modelling and�MIR

We start by modelling the linear predictor structure (1) treating both � � and ����  as 
random e�ects and using Statistic I of Sect.�2 as responses. In formulating the model 
matrices which follow, the Lexis plane is scanned along the age axis for each increasing 
time period in sequence and we attach the su�x � � � � � �� (subject to exchangeability as 
appropriate), when the need arises to refer to the individual components.

Consider the multivariate normal mixed model

subject to independence with �  =  � �
�  I, �  =  � �

�  I; � �
�
� �

� � � �
�

�
� � �� � � and focus on 

the associated augmented linear model�
�

� �

�
�

�
� �
� �

��
�
�

�
 , abbreviated to � � � � �  , with quasi random e�ects 

responses � � � � � � � � �  and augmented variance–covariance matrix

and the su�x i is introduced to indicate optional �xed e�ects variable dispersion.
Speci�cally, the matrices are designated as follows:
X, � � �  �xed e�ects design matrix. � , � � �  �xed e�ects parameters � �  . Z, 

� � �  random e�ects design matrix. v, � � �  matrix of random e�ects comprising � � 
and ����  . T, � � � � � � � � � � � augmented design matrix. �  , � � � � � � �  augmented 
matrix of �xed parameters and random e�ects. � �  , � � � � � � �  matrix of augmented 
responses comprising either one of the MIR statistics and quasi random e�ects 

� � � � � � � �

�
� � ��

�
� � �� �� � � ��

� � � �� � � ���� � �� ��� � � � � �� �

� � � � � �� � ��� � ��� ��� �� � � � ��� ��� ��

� � �
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responses � � �  E(�  ). � �  , � � � � � augmented diagonal matrix of scale parameters. 
I  and O, respective identity and zero matrices of appropriate size where in terms of 
� � � � � � � � � �� � � � �� � �� � � .

The three constraints � ������ � ������� � ������� � � � �  are applied, which are su�-
cient in number to ensure that the matrix T has full rank.

The model is �tted using the iterative weighted least squares (IWLS) procedure out-
lined in “Appendix I”. Three sets of (Studentised) residuals

are generated where

subject to the respective constraints

We recall that the modelling assumptions imply that the mean values of all three sets 
of residuals are also zero.

4.1  An application

We make use of the UK male mortality data set, period 1960–2016, ages 0–102. We 
remark that the setting of the upper age limit (102) avoids any empty data cells for 
very little loss of other data above the age of 102. Alternatively, the introduction of 
0/1 prior weights can beused to marginally extend the upper age limit.

Details of the �tted mixed e�ects model structure (1), with variable dispersion, 
are presented in Fig.�2, followed by some associated residual plots in Figs.�3, 4, 5. 
Thus the upper two panels in Fig.�2 depict the respective �rst and second moment 
�xed e�ects parameter estimates �� �  and �� �  , while the lower two panels depict the 
respective random e�ects components �� ���  and �� �.

Figure�3, the upper pair of panels in Fig.�4, together with the left hand column 
of panels in Fig.�5 refer to the �rst or primary set of residuals (5); with the cen-
tre and right hand columns of panels (Fig.�5) referring to the respective sets of 
cohort (centre) and period random e�ects residuals. For these sets of residual we 
�nd that

� � � � �� � � ��� � � � � � � � � � � �
�
� � � �

�
�

(5)
�� �

�
�� �

�
� � � �

� �
�� �

�
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� � � ��
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We note the following features from the �gures: the constant nature of the bands 
of residuals in Fig.�3, consistent with the successful capture of dispersion e�ects; the 
generally satisfactory distribution of positive and negative residuals across the Lexis 
plane, with no noteworthy gaps (Fig.�4, upper two panels); and the marginal nature 
of the centre column of Normal and half-Normal plots (Fig.�5) associated with the 
cohort random e�ects. Taken as a whole, the residual plots are indicative that the 
modelling assumptions have been largely met.

We turn next to the replacement of the empirical MIR displayed in Fig.�1 with 
the corresponding �tted MIR. These are reproduced in the panels of Fig.�6, with 

�

�

�� � � � ����� �� � � ��������
�

�

�� � � � ���� �� � � ������

�

�

�� � � � ������ �� � � �������

Fig. 2  UK males 1960–2016, ages 0–102, normal—normal mixed modelling, cohort and period random 
e�ects, structure (1), variable age dispersion. Upper panels: �xed age e�ect. Lower panels: component 
random e�ects



the exception of the lower right panel for 2006. In addition, we have used the same 
parameter setting to generate the matching smooth-spline curves, which are dupli-
cated together with that generated for 2006 in the lower right panel. We note the 
sharpening focus of the patterns in each panel as a consequence. We note also the 
consistent shape of the resulting spline-smoother curves, which are characterised by 
two local extremes, subject to a slight drift in their positioning on the age axis. The 
two lower somewhat detached spline curves (in the lower right panel) are the product 
of the two most recent years, re�ecting the recent decline in mortality improvement 
rates (a particular phenomenon which is analysed further by [5]. Almost without 
exception, for all panels, the readings (in terms of improvement rates) are positive.

Fig. 3  UK males, 1960–2016, ages 0�102. Normal—normal mixed modelling, cohort and period ran-
dom e�ects, structure (1), variable age dispersion. Model residuals plotted respectively against age, 
period and cohort-year
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