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Abstract—*Proven-in-use”, “globally-at-least-equivalent”,
“stress-tested”, are concepts that come up in diverse contexts in
acceptance, certification or licensing of critical systems. Their
common feature is that dependability claims for a system in
a certain operational environment are supported, in part, by
evidence — viz of successful operation — concerning different,
though related, system[s] and/or environment[s], together with
an auxiliary argument that the target system/environment offers
the same, or improved, safety. We propose a formal probabilistic
(Bayesian) organisation for these arguments. Through specific
examples of evidence for the “improvement” argument above,
we demonstrate scenarios in which formalising such arguments
substantially increases confidence in the target system, and show
why this is not always the case. Example scenarios concern
vehicles and nuclear plants. Besides supporting stronger claims,
the mathematical formalisation imposes precise statements of
the bases for “improvement” claims: seemingly similar forms
of prior beliefs are sometimes revealed to imply substantial
differences in the claims they can support.

Index Terms—Reliability claims, statistical testing, safety-
critical systems, ultra-high reliability, conservative Bayesian in-
ference, field testing, not worse than existing systems, software
re-use, globally at least equivalent, proven in use.

I. INTRODUCTION

In dependability assessment, it often happens that favourable
evidence is available in the form of experience of dependable
operation. However, this evidence might not exactly match
the situation for which the assessment is sought. For instance,
“proven in use” evidence plays an important, accepted role
[1,2] in assessing many systems. But there is concern whether
this evidence (of past use) is relevant to the claim made. Due
to this concern, standard IEC61508 [1], for example, sets strict
conditions for accepting such experience as valid evidence: it
must concern an identical system, under identical conditions
of use. Good behaviour of a slightly different system version,
or in slightly different conditions, is not admitted as evidence.
One might object, not unreasonably, that this is too Draconian.
A small change in the system, or in its mode of use, does
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void claims that the previous experience is a sample of the
same stochastic process that the dependability assessment tries
to predict. Yet it is still relevant evidence. True, even small
changes may radically reduce reliability; but this is rare. The
evidence is still relevant, but a little less so; what is hard is
quantifying the effect of this reduced relevance. This neglect
of useful evidence is most disturbing in cases of “ultra-high
reliability” [3-5], where evidence of safe/correct operation is
routinely insufficient.

We noted in previous work [6,7] that a special case of
interest is that in which there is evidence that the change has
been for the better. A general scenario is: dependability (e.g.,
safety) claims are to be supported for a situation (i.e., a system
and an environment it operates in), say B, based on statistical
evidence of good operation in B, and of good operation in
another situation A. We focus on the common cases in which
what changed between A and B is the system and/or its
environment of use. But our mathematical results apply to any
case in which a claim of confidence in improvement (CII) —
from A to B — is justified.

More precisely, we define a CII as confidence in a claim of
B being “no worse than” A, rather than “strictly better”. Thus
defined, CII includes “proven in use” (PIU in what follows) ar-
guments: these commonly only claim similar dependability in
the target environment to that experienced in the environment
of past use.

The above abstract scenario generalises the case of PIU
arguments, to include other common cases where CII plays
a role: e.g., 1) the case of stress testing (in the lab or in
the field) being claimed to be relevant evidence for reliability
assessment; or 2) analysis-based arguments that a system is
“globally at least equivalent” (GALE) to a previous one [8];
or 3) general claims that the system in B is an improvement
on that in A.

Extending our previous work cited [6,7], in this paper we
focus on the crucial passage of translating informal beliefs in
“B being better than A” into formal statements that faithfully
represent the evidence supporting those beliefs. We show that
different formal statements may sometimes produce substantial



differences in the claims supported for B. These differences
might well be missed in informal safety arguments. To this
aim, we propose new specific example scenarios of evidence
supporting CII (Sec. IV), propose two mathematical formula-
tions of CII applicable to these scenarios (“PK” statements,
Sec. V) and demonstrate their implications on the claims
that can be supported. Our contribution includes both these
examples (useful for practitioners) and the insights that they
bring about this approach to using ClI-based arguments.

We study these new scenarios in the context of the method
and assumptions of our previous papers [6,7]:

1) applying conservative Bayesian inference (CBI) [9-11]:
a use of Bayesian inference that aims to avoid the risk of
unwittingly over-optimistic assessment. While Bayesian infer-
ence requires its user to specify a full “prior distribution”, CBI
does not. Instead, it uses, as its input, limited constraints on
the prior, which are easier for experts to argue on the basis of
the evidence. This improves trust that the dependability claims
are the result of the actual evidence, rather than artefacts of
assumptions made for mathematical convenience.

2) treating the common situation in which the claim of
interest concerns a probability of failure per demand (pfd).
Specifically, the failure process is a Bernoulli process: failures
on successive demands are independent events with the same
probability (the pfd). Bernoulli processes are in common use
[1,12]. They give a useful model for many systems where the
main concern is design faults, and/or for limited periods of
operation. We expect similar results to hold for systems with
failure processes in continuous time, and that the approach can
be extended to other forms of reliability functions.

To this general picture, the present work adds the aforemen-
tioned new scenarios of CII evidence, solutions of the related
extremization problems for applying CBI, and illustrations of
the impact of the various forms of evidence on confidence
in claims. We illustrate how the impact of evidence — on
confidence in a claim — can vary significantly, depending on
the nature and strength of the evidence. In particular, we
highlight situations where additional CII evidence improves
confidence in pfd bounds, and situations where it does not.

In the rest of this paper, Sec. II discusses related work, and
Sec. III reviews CBI. Sec. IV then gives example scenarios in
which our models may be applied, and of the different formal
CII statements that apply. Sec. V presents the formal statistical
models, with illustrative examples shown in Sec. VI. Sec. VII
gives a sensitivity analysis, by comparing scenarios that differ
in prior knowledge and supporting evidence for CII. Sec. VIII
gives a final discussion of our results.

II. RELATED WORK

Bayesian methods are well established in reliability and
safety [12]. They support combining various forms of evidence
and direct reliability predictions. The results that we use here
derive mostly from work on the effects of software faults, or
other causes of systematic failure. Software reliability assess-
ment has long been argued to require a statistical approach,
and Bayesian methods are well-suited for it [13-15].

Demonstrating that a system meets its dependability re-
quirements, on the sole basis of observed good behaviour
(few or zero failures over many demands), is in some cases
extremely challenging: it would require observing infeasibly
many failure-free runs by the system being assessed, or require
improbably strong prior evidence [3,4,11]. However, in many
situations, suitable application of Bayesian inference does sup-
port strong claims — e.g. situations with more modest reliability
requirements, or with justifiable estimates of the probability
that certain subsystems will not fail (i.e. a probability of
“perfection”, or of pfd = 0), or with architectural information
to support white-box assessment — [6,16,17].

The present work uses conservative Bayesian inference
(CBI). This approach is suitable for various safety assessment
contexts and produces posterior measures of reliability that
are “guaranteed-to-be-conservative”, but no more conservative
than prior evidence and the observed failure behaviour of the
system will allow. For instance, having seen the system suc-
cessfully handle n demands from its operational environment,
CBI gives conservative values for 1) the probability that the
system fails on the next demand [9], 2) the probability that
the system “survives” the next m demands [10], and 3) the
posterior confidence in an upper bound on the system’s pfd
[11]. CBI has also been applied when (rare) failures occur
among many correctly handled demands [11,18].

The inference program in CBI applications is the same.
An assessor (a) chooses a posterior measure of reliability,
(b) specifies an appropriate likelihood function to characterise
any observed failure/success behaviour, (c) translates prior
evidence into mathematical statements (we will call these
“prior knowledge” statements, PKs), (d) considers all prior
distributions consistent with these PKs, (e) selects, from this
set of priors, a prior that gives the most conservative value
for the posterior measure of interest (this need not be unique
[7]). For brevity, at times we will use wording like “prior
evidence implies a certain effect on a posterior measure”,
where “prior evidence” needs to be read as “the PKs justified
by the prior evidence”. The inference program just outlined is
closely related to robust Bayesian analysis — a general frame-
work for investigating the sensitivity of posterior measures to
uncertainties in the inputs of Bayesian inference [19,20].

Unsurprisingly, adding more constraints to limit the set of
priors makes CBI’s predictions less conservative. Indeed, in
the limiting case in which evidence is enough to justify a
specific prior distribution, CBI reduces to ordinary Bayesian
inference. But even under less extreme circumstances, the
extent to which stronger prior evidence can temper CBI
conservatism has been studied, e.g., when evidence supporting
an estimate of the prior probability of pfd being 0 [21], or close
to it [10,22], can be included in the assessment.

Similarly, for cases where, as in the present paper, claims
for a new system rely on evidence about an older system, we
previously showed how justifiable “probability of perfection”
evidence can result in less conservative claims than if such
evidence were unavailable [7]. We also studied the case of
an autonomous vehicle assessed under new environmental



conditions, given knowledge of the system’s operation under
a different environment in the past [6]. The number of failure-
free miles that need to be driven in the new environment —
to support a given claim with, say, 90% confidence — can be
much less than the number needed to make the same claim if
evidence from that previous environment is unavailable.

III. REVIEW: CBI EXAMPLE

We recall an application of CBI [11]. A Bernoulli process
represents the failure behaviour of a system on a succession
of demands. Let X be the system’s unknown pfd. The system
is observed to successfully handle n demands. The Bernoulli
failure process implies that the probability of observing this
sequence of successes — the likelihood function — takes the
form L(z) = (1 — x)™. Let p be a pfd upper bound with
respect to which an assessor seeks to make a claim. If the
assessor has evidence to support a prior distribution of X,
then the posterior confidence that the system pfd X is better
than p (given that the system survived those n demands) is:
E[L(X)1x<p]

E|L(X

[L(X)] 0
where 15 is an indicator function — it equals 1 when predicate
S is true, and O otherwise.

But available evidence is typically insufficient to fully
justify a given prior for X. Evidence may, instead, support
relatively weaker prior claims, such as those proposed below.

P(X < p, n successes)

n) = =

P(n successes)

Prior Knowledge 1. certainty that the system pfd X is no
better than some p; > 0. That is, P(X > p;) =1.

Prior Knowledge 2. 6 x 100% confidence that the system pfd
X meets, or surpasses, a pfd . That is, P(X <¢&) =6.

Here €, the “engineering goal”, is meant as a pfd that has high
probability 6 of being achieved by system developers required
to build a system with pfd better than p (where p > €).

If one has evidence to support prior knowledge 1 and 2,
the following proposition (proved in [11]) shows that such
knowledge allows one to conservatively gain confidence in a
required pfd bound p upon observing failure-free operation.

Proposition 1. Let D be the set of all probability distributions
Sor the pfd X of a system (i.e. all distributions over [0,1]).
Consider the optimization problem

i <
1%fP(X <pln)

(where € < p), subject to the constraint that there is evidence
the system satisfies prior knowledge 1 and 2.

The prior distribution in Fig. 1 solves this problem because,
upon using this prior, P(X <p|n) = i%fP(X <p|n).

IV. EVIDENCE AND ARGUMENTS FOR IMPROVEMENT
CLAIMS

The first, critical step for this form of argument is to
examine which evidence supports an “improvement” argu-
ment, and translate it into a formal, mathematical CII claim.

P(X <x)
1 ——
2 —
. L x
0 JZ p 1

Fig. 1: A conservative prior cumulative distribution function.

This subsidiary claim will support the linking between the
reasoning about A and about B, so that evidence collected
about A supports confidence regarding B.

Different evidence may justify different forms of CII claims,
thus different final confidence on B. Lack of rigour at this
stage could invalidate any conclusions, despite the rest of the
reasoning being a provably correct series of deductive steps.

We give some examples of what basis a CII claim may have
in evidence; what mathematical form it could then take; and
what factors may prevent absolute confidence in the claim,
thus requiring that it be considered true only with a certain
probability, which we will call ¢, with 0 < ¢ < 1.

1) A and B are two systems to be used in the same
operational environment. B is a newly developed, plug-in
replacement for the older system A. B is built to the same
specification as A, but by newer methods known to yield better
reliability. For instance, its software has been developed with
methods known to be less error-prone, and verified through
better methods, by better staff. One then expects B to be more
reliable than A, as produced by a better technology, thus less
likely to have design faults. However, such beliefs concern the
generality of systems produced by the two different processes,
not A and B specifically: it is possible, though improbable,
that B is worse than A, as B turns out to be an unusually poor
result of a high-quality process; and/or A an unusually good
result of the relatively worse process that produced it. These
unlikely scenarios determine an amount of doubt (1 — ¢).

2) system B is an improvement on system A, identical
except that some known defects have been removed (e.g., some
failure-prone hardware parts were made more reliable, known
design faults were fixed). This would mean that whatever the
true reliability of A, B would probably be more reliable in the
same environment some of the failures that occur in A due
to those defects will not occur in B. This would not be 100%
guaranteed of course: bug fixes sometimes introduce new bugs,
and occasionally reduce reliability. So, the CII claim that can
be made is that whatever the true pfd of A, B’s pfd is better or
not worse, with confidence ¢ limited by how often in similar
circumstances (system complexity, change approval processes)
fixes have actually reduced reliability.

3) system B is obtained by adding to system A some safety
protection: e.g., A is a safety system and B adds another
independent safety monitor with authority to effect the safety
action (“1-out-of-n” scheme). This way of building B ensures



Xy XA
P € 1 P € 1
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Fig. 2: How the different forms of prior knowledge that we define constrain joint prior distributions of (X 4, X g), by associating probabilities

to regions of the Cartesian plane of (xa,xp) values. The forms of prior knowledge are: (a) a marginal probability 6 that version A meets

the engineering goal, [Xa < &]; (b) identical marginal probabilities 6 for both versions; (¢) probabilities that B is no worse than A, i.e.
P(Xp € X4,Xa < a) =¢and P(Xp < X4a) = ¢ (where 0 < ¢ < ¢ and ¢ < «); (d) within the events [p; < Xa < €] and
[ < X4 < 1], the ratio between the probabilities for regions above and below the diagonal is 2 for any M, ¢ such that 0 < M < 1—¢.

that the set of demands on which B fails unsafely, Up, is a
subset of those where A fails unsafely, Up C U,4. Hence,

plig =Y PD)< Y PD)=pfdy, (2

DeUp DeUa

despite our not knowing either the sets U, U 4 or the probabil-
ities associated to them. Thus, the evidence supports a claim
that no matter what the true value of pfd,, pfdg < pfdy.
This claim can usually be considered true with very high
confidence; however, again, there are conceivable, unlikely
scenarios in which adding safety elements increases pfd, and
the historical frequency of such events will determine the
doubt (1 — ¢).

4) A is a testing environment, for a demand-operated con-
trol system that is to be deployed in an operational environ-
ment B. Environment A has been made “stressful” through two
precautions: (a) making the statistical distribution of demands
(sequences of inputs to the system), conditional on each type of
demand, the same as in B; but (b) giving higher probabilities to
types of demands that are known to cause failures with higher
probabilities, due to known limits of the system hardware.
Let us call ¢; the pfd conditional on a demand belonging to
type ¢, for each one of n types of demands; and tiA, tB the
probabilities of demands of that type in environments A and B
respectively. Precaution (a) ensures that no g; value changes
between A and B; and (b) ensures that demand types with
higher g; have higher probabilities in A than in B: for those
i, t! > tB. The pfd values in the two environments are then
as in the equalities below [23]:

pldg =Y tPq; <> tiqi=pfd, 3)
1.n 1.n

where the inequality is due to precaution (b) above. Thus, one
can claim, as in case 3, that no matter what the true value of
pfd 4 is, pfdg < pfd 4. As before, there is some reason for
doubt (1 — ¢), e.g. defects in test generation software might
violate the invariance of the ¢; terms; or the identification of
“stressful” demand types may prove wrong.

T—¢°

5) the same scenario as in 4), but the testing environment is
made stressful by exaggerating the frequency of demand types
that are understood to be more likely to be affected by software
design faults: experience with previous systems indicates that
the pfd tends to be higher for those classes of demands. So,
we could reuse equation (3) but replacing the ¢;, seen now as
random variables, with their expected values. Therefore, pfd 4
and pfd 5 must also be replaced by their expected values, and
the inequality about which the CII claim is made becomes
Elpfd 5] < Elpfd,).

6) A and B are operational environments for a COTS
system (e.g. an industrial PLC) which was developed for
non-critical applications, hence has little formal evidence to
prove its dependability, but has been operated extensively in
A, proving very reliable. Environment B presents fewer of the
input sequences that are generally known to be “stressful” for
this category of products. It is also known that the system
has been used in other environments and never been reported
to be especially unreliable. Hence, there is confidence that
the system will be at least as reliable in B as it was in A;
however with some small but non-negligible probability that
it will prove less reliable, possibly seriously so. The CII claim
that is supported is thus the same as in example 1.

V. CONSERVATIVE CONFIDENCE BOUNDS ON PFD

In this section, we model dependability arguments that
incorporate GALE/PIU evidence. In particular, we extend
CBI methods to derive conservative confidence bounds on a
system’s pfd, for on-demand systems.

For brevity, we talk about “versions” A and B, irrespective
of whether our scenario is 1) system B is a newer version
of system A and both operate in identical environments, with
GALE evidence gathered from both A and B, or 2) the same
system is required to operate in a new environment B different
from a previous environment A (so PIU evidence is gathered
from the system in environment A).

Failures of A and B occur according to independent
Bernoulli processes. Let X 4, Xp be the unknown pfds for
versions A and B, with an unknown joint prior distribution of



(X 4, Xp). Joint prior distributions of (X 4, X ) are depicted
in Fig.s 2-5. On the Cartesian plane of (24,2 ) values, each
figure depicts the partition of the distribution’s domain induced
by constraints on the distribution (“prior knowledge”), and
probability masses associated with subsets and limit points.
After observing n4, np failure-free runs of A and B, one
may compute conservative posterior confidence in a claim
[Xp < p] for some required bound p. The Bernoulli processes
imply a likelihood function L(z,y) = (1 — 2)™4(1 — y)™5.
We seek conservative values of
E[L(XAvXB)]-XBSP]
E[L(X4,X5)]

P(Xp<p|na,np) = 4)
subject to the prior knowledge an assessor possesses. For all of
the scenarios we will consider, prior knowledge 1 applies —i.e.
certainty that X 4 and X p cannot be better than some p;. Prior
knowledge 2 (i.e. having 6 x 100% confidence a version is no
worse than target pfd €) may apply to one or both versions.
In addition, evidence may also support one of the following:

Prior Knowledge 3. confidence in version A’s pfd being o or
better, and in the B version being an improvement:

P(Xp < Xa,Xa<a)=¢ &)

where ¢ < a < 1 and 0 < ¢ < 1. In particular, ¢ is defined
as the value of p when a =1 (see Fig. 2c).

Prior Knowledge 4. confidence in version A’s pfd falling
within some range of values, and version B being an improve-
ment: for some sub-interval I of [0, 1], with ¢ as just defined,

P(Xp < Xa,Xa€l)= 1%*'5(2513()@; <Xp,Xacl) (6
In particular, we consider the case when (6) holds for the
two intervals [p; < Xa < €], [@ < Xa < 1] and, thus (as
probabilities must add up to 1), also holds for [e < X 4 < a
(see Fig. 2d).

We will refer to either of these two forms of prior knowledge
as “confidence in improvement” (CII) and, more generally, we
will use “PK” to refer to prior knowledge.

PK 1, 2, 3 and 4 impose increasingly stringent constraints
on the joint prior distribution of (X 4, Xp) (see Fig. 2).

Equations (5) and (6) are alternative, but related, CII formal-
isations that may be supported by: 1) GALE evidence, or 2)
arguments justifying why PIU evidence (i.e. n4 from version
A) can inspire confidence in version B. They differ in that
PK 3 enforces P(Xp < X4,X4a < «) = ¢, while PK 4
is equivalent to enforcing P(Xp < Xa|X4 € I) = ¢ for
3 choices of the interval I: any one of the 3 “X 4”-intervals
stated in PK 4. By definition, ¢ < ¢, with ¢ = ¢ when o = 1.
So, when o« = 1 and [ is the single interval p; < x4 < 1, PK
3 and PK 4 agree and imply P(Xp < X4) = ¢.

If (6) (PK 4) holds for any sub-interval I, this is a stronger
constraint than either PK 3 or PK 4: it implies B being an im-
provement (over A) is statistically independent of how reliable
Ais—ie. P(Xp < Xa|Xa€l)=¢=PXp < Xy)
for any I (examples 3, 2 in section IV). Observing failure-free

runs of A will not alter confidence in B being an improvement,
ie., P(Xp < X4 |na)=¢. See [24] for proofs.

The problem of determining conservative values of (4) now
becomes a collection of constrained optimization problems,
each subject to varying forms of PK. In each case, the
optimization is over a constrained subset of D, where D is
the set of all prior probability distributions of (X 4, X5). And
each prior that solves the optimization is referred to as “the
most conservative” prior, in the sense that for these priors,
P(XB <p | TLA,HB) = i%fP(XB <p | TLA,TLB). We now
state these optimization problems as three propositions.

Xp x5
1 1
1— 1-6 B -0
% \ Y N
p|>— P2
6 ¢ Q /¢\ 1-¢
‘\'o/ 57—/0/
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21 /‘g 1 a n e 1 X4
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@o¢>1-96 b ¢p>0>1-06

Fig. 3: Prior distributions that solve proposition 2, when evidence
supports (a) PK 2 for only version A, or (b) PK 2 for both versions
(for the parameter ranges given in the respective subcaptions).

Proposition 2 generalises a result in [11]. Its proof mirrors
those for propositions 3 and 4 below, outlined in [24].

Proposition 2. Consider the optimization problem
i%fP(XB <plna,np)

(where € < p), subject to the constraints that there is evidence:
1) A and B satisfy PK 1, 3, witha =1 and ¢ > 1 —6;
2) either A alone, or A and B, satisfy PK 2.

The prior distributions in Fig.s 3a and 3b solve this problem
for certain parameter ranges of the constraints.

Here, the assessor believes P(Xp < X4) = ¢; this is what
(5) means when o = 1. Fig.s 3a and 3b represent cases when
this confidence ¢ is high: i.e. ¢ > 6 and ¢ > 1 — 6 . Due to
this strong CII, these priors (out of all that solve proposition
2) give greatest posterior confidence in [Xp < pl.

The following two propositions are novel (proofs in [24]).

Proposition 3. Consider the optimization problem

i%fP(XB <pl|na,np)
(where € < p), subject to the constraints that there is evidence
versions A and B satisfy PK 1, 2, 3.

Fig. 4 shows prior distributions that solve this problem for
certain parameter ranges of the constraints.

Here, the confidence ¢ is about [Xp < X4 < al.
Analogously to the priors in Fig. 3, Fig.s 4a and 4b solve
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Fig. 4: Prior distributions that solve proposition 3, depending on the
value of « and the strength of evidence supporting the proposition’s
constraints (i.e. the relative sizes of parameters in Fig.s 2b and 2c).
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Fig. 5: Prior distributions that solve proposition 4, depending on «
and the strength of evidence supporting the proposition’s constraints
(i.e. the relative sizes of parameters in Fig.s 2b and 2d).

proposition 3 when ¢ > 6 > 1 — 0 and give the greatest
posterior confidence among the priors in Fig. 4. Note that 4b,
4c and 4d all possess B-version marginal distributions identical
to the single-system CBI prior of proposition 1 (i.e. Fig. 1).

Proposition 4. Consider the optimization problem

i%fP(XB <pl|na,ng)

(where € < p), subject to the constraints that there is evidence
versions A and B satisfy PK 1, 2, 4.

Fig. 5 shows prior distributions that solve this problem for
certain parameter ranges of the constraints.

Again, analogously to the priors in Fig.s 4a and 4b, the
priors in Fig.s 5a and 5b solve proposition 4 when ¢ > 0, i.e.
evidence strongly supports [Xp < X 4].

VI. NUMERICAL ILLUSTRATIONS

The conservative claims derived in Sec. V can be applied
in scenarios with evidence to support the related PKs. These
claims are summarised as formulae in the last column of table
I. Each formula is P(Xp <p | na,ng), computed from the
conservative prior figure indicated in the table row. In [24], we
prove this is the greatest lower bound on P(Xp<p | na,np).

Consider the following two illustrations.

Example 1. Consider a nuclear reactor protection software
(which is simple enough to possibly be perfect [16], thus
p; = 0)! whose old version A has been exposed to n4 = 100
demands without failures in previous operation of the nuclear
reactor. Now a new version B is believed to be more reliable
(with confidence ¢) due to, e.g., employing the same basic
design methods but with more advanced formal verification
techniques. For each version, the assessor has a high 6 x 100%
confidence that the engineering goal ¢ = 107° has been
achieved. So, upon observing no failures in np demands
during operational testing of B, the assessor’s conservative
confidence ¢ x 100% in claim [Xp < 107%] is shown in Fig. 6.

Fig. 6 shows how stronger CII supporting evidence can
result in greater confidence c in a pfd bound, and such benefit
is more obvious when the prior confidence 6 in the engineering
goal is relatively weaker. That is, when 6 = 0.7, increasing ¢
from 0.8 to 0.99 results in a greater improvement in confidence
than when 6 = 0.9 — the gap between the dotted blue curve
and the dashed green curve is bigger than the gap between the
dash-doted red curve and the solid orange curve.

p= 0.000005,p=0.0001,e= 0.00001.111‘: 100

PK. 12,4, a=p -~
0.957 e
- £
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Fig. 6: Example 1. Posterior confidence ¢ in [Xp < 107*] for

various 6 and ¢, as a function of failure-free runs of version B.

The following example uses parameters obtained from [6].

Example 2. An autonomous vehicle (AV) has an unknown
probability of fatality-event per mile (pfm) — an analogue of
pfd. The engineering goal, ¢ = 10710, is 2 orders of magnitude

Tt normally forms one channel of a 1-out-of-n protection system [16,22]



TABLE I: Conservative estimates of P(Xg < p | na,ng ) supported by prior knowledge 1, 2, 3 or 4. Except where explicitly stated
otherwise, prior knowledge 1 and 2 apply to both versions.

prior knowledge conservative priors

inf P(Xp <p|na,np))

PK 1, 2 (only version A) & 3

(p+60—1)L(c, e)

(see Fig.s 2a and 2¢), p = ¢ > 1 — 6 Fig. 3a (@T0-DL(z, )+ (1-®)L(p1, P)T(1- O L(5:0)
PK1,2&3 Fic. 3b (¢p4+0—1)L(e, €)
(see Fig.s 2b and 2¢), p = ¢p >0 >1—0 g - (¢+0—1)L(e,e)+(1—) L(py, P)+(¢—0) L(p,p)
Fig. 4a (p+6—1)L(e,e)+(1—p)L(e, )+ (p—0)L(a, )
' (p+0—1)L(e, e)+(1—p)L(e, )+ (p—0)L(cx, a)+(1—¢)L(p;, p)
. (p+20—1)L(e, €)
Fig. 4b GT20-DL(E O+ (p+1-20)L(p, T (T— PV L1, 7)
PK1,2&3
(see Fig.s 2b and 2¢), e < a < 1
Fig. 4c (20—-1)L(s,e)+(1+p—20)L(a, )
' (20—1)L(e, e)+(1+9—20)L(c, e)+(1—-0)L(py, )
. (20—1)L(e, €)
Fig. 4d @0—DL(, )+ 1-0 L, D)
. $OL(e, €)
Fig. 5a FOL(E, ) FO—0) Lo, P+ (- (101 L (@, TG0 L(op)
PK 1,2 &4
(see Fig.s 2b and 2d), e < a < 1
Fig. 5b $20L(z, €)

$20L(c,€)+¢0(1—¢)L(p1, p)+(1—¢)(¢—0)L(c,p)+¢(¢—0)L(p,p)+0(1—¢)?L(a,c)

safer than the pfm for human drivers®. The risk of catastrophic
hardware failures implies that p; = 10712, The AV company,
upon testing the AV in City-A for n 4 fatality-free miles, wants
to deploy in City-B. The company is confident (6 = 0.9)
that the AV performs no worse than ¢ in each city. And, they
have some confidence ¢ that the road/weather conditions of B
are similar or more favourable, so this environmental change
should not harm safety. What conservative number of new
fatality-free miles np need to be driven in B to claim — with
95% confidence — that the AV is as safe as the average pfm
for human drivers, 1078 (i.e. the claim [Xp < 1078])? The
answer is presented in Fig. 7 as a function of na.
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Fig. 7: Example 2. Number of failure-free runs ng, given n 4 failure-
free runs for A, required to achieve 95% confidence in [Xp < 1078].

In Fig. 7, stronger CII supporting evidence (i.e. increasing
¢) may reduce the required np, or may not — depending on

2The exact statistic in the U.S. (2013) is 1.09e-8, as used by [5], while
for simplicity we round this to 108 in our example.

whether ¢ > 6 > 1 — 60 (e.g. ¢ = 0.95 in prior Fig. 3b) or
0>¢>1—-0(eg ¢=0.8inthe & — 1 limit of either prior
Fig. 4c or 4d). In fact, notice that the relevant formulae for both
Fig. 4c.ar{d 4d ‘(see in table I) give (2071)5?59,_5;%((1?;;;(;71,p)
in the limit. This clearly does not depend on ¢, which is why
the solid curve and dotted curve in 7 are identical.

How much increasing CII reduces np depends on ng4.
Starting from n4 = 0, the more n 4 are observed, the fewer
the np needed to support posterior confidence in the claim —
np may even reach zero. But eventually, as n 4 increases, np
increases without bound. This is because the stated PK does
not exclude the possibility that B is very unreliable if A is very
reliable. In fact, with increasing n4 the posterior probability
of the (x4, zp) point (p;, p) — an undesirable point from a
safety viewpoint — grows arbitrarily close to 1, requiring an
arbitrarily large np to relocate probability to more desirable
points (e.g. to (g, €) below the [Xp = p]| horizontal line) and
improve posterior confidence in the 108, Xp bound. All of
the worst-case priors in Sec. V allow this effect (in line with
previous observations [6]).

VII. SENSITIVITY OF CONSERVATIVE CLAIMS TO
ALTERNATIVE FORMS/STRENGTHS OF EVIDENCE

This section highlights the change in conservative con-
fidence claims, in response to changes in the strength of
supporting dependability evidence and the PKs. A useful
reference scenario is the assessment of a single system (i.e.
proposition 1), where 95% posterior confidence (in a claimed
pfd upper bound p) is supported by a PK 2 confidence of
6 x 100%. In particular, if p = 1078 and 0 = 0.9, the most
conservative prior Fig. 1 implies that n = 7.55e7 failure-free
runs of this system are needed to support the claim [11].



Analysis 1. An analysis of the extent to which CII supporting
evidence can temper conservatism — in particular, reduce
the number of failure-free np runs needed to support 95%
posterior confidence in the claim [Xp < p| — compared with
if alternative evidence is used. We compare ng values related
to the following alternative CII formalisations and PK:

1) PK 1, 2, 3, p = 0¢, a = p, (prior Fig. 4d);

2) PK 1, 2, 3, o = ¢, a = 1, (prior Fig. 3b);

3) PK 1, 2, 4, ¢, a = p, (prior Fig. 5b);

4) PK 1, 2, 3, ¢ =0.95, a = p, (prior Fig.s 4a, 4b);

5) PK 1, 2 (for version A), 3, ¢ = ¢, a = 1, (prior Fig.

3a).

Above, ¢ = 0.95, = 0.9 and p = 1078, And, PK 2 applies
to both versions, except where explicitly stated otherwise.
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Fig. 8: The forms of CII and PK, the strength of supporting evidence
(i.e. the values of 6, ¢, ), and na evidence, all matter (to varying
degrees) in reducing the number of failure-free runs np needed to
support 95% posterior confidence in the claim [Xp < 1078].
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Fig. 9: Stronger forms of CII give greater confidence c¢ in claims.

Asymptotically, for large n 4, all the priors require very
large np to support [Xp < 10~%] (Fig. 8). Because, without
evidence to the contrary, it is conservative to believe that

version B is extremely unreliable when version A is extremely
reliable. None of the PK represent such contrary evidence.

Also, for small n 4, the curves all lie above ng = 7.55¢7
(Fig. 8). Thus, the np each prior needs to support the claim
is more runs than is needed in the single system reference
scenario. This is despite being very confident that B is an
improvement (e.g. ¢ = 0.95). Because, after observing only
one successful run from A, all these priors have posterior
Xp distributions that give less confidence than the single
system prior of Fig. 1. Without evidence to the contrary, it is
conservative to believe version B is extremely reliable when
version A is extremely unreliable. Again, none of the PK
represent such contrary evidence.
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Fig. 10: Weaker CII supporting evidence (¢ = 0.91) gives weaker
confidence c in claims (compared to Fig. 9), but to varying extents
depending on the form of CIIL
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Fig. 11: Stronger CII supporting evidence (¢ = 0.97) gives stronger
confidence c in claims (compared to Fig. 9), but to varying extents
depending on the form of CIIL

Notice how there is a changing ordering of the priors,
in terms of how many np runs they need to support the
claim. Initially, the prior with the strongest CII evidence in
PK 3 (i.e. ¢ = 0.95) requires the fewest np (dotted curve),
while the prior with PK 2 satisfied by only the A version
requires the most np (dash-space curve). Eventually however,
the prior with PK 4 evidence requires the fewest np (dash-dot
curve). While the prior with the weakest PK 3 evidence (i.e.



@ = ¢0) requires the most np (solid curve) — here, statistical
independence (if true) gives a value for ¢ in terms of € and ¢.
Clearly, such statistical independence eventually leads to very
conservative np requirements.

Fig. 9 is an alternative view for analysis 1. If n4 = 7.55e7
—i.e. equal to the failure-free runs needed in the single system
scenario, to support 95% confidence in a 10~8 pfd bound —
then some forms of CII give more confidence than others. In
this sense the CII forms are ordered, from smallest to greatest
confidence, as PK 3 (with a = 1), 4 and 3 (with a < 1).
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Fig. 12: Increasing na evidence leads to greater confidence ¢ in
claims (compared to Fig. 9), but not in all cases.

Fig. 10 shows, by comparison with Fig. 9, how weaker CII-
supporting evidence reduces confidence in claims. Reducing
¢ from 0.95 to 0.91 noticeably reduces confidence in most
claims. However, the inference that uses the independence
assumption ¢ = ¢f shows no change over Fig. 9. This is
because the independence guarantees that 8 > ¢ (since ¢ < 1),
and the probabilities are such that § — ¢ < 1 — 6. So that the
relevant worst-case prior is Fig. 4d (for o = p), which gives
posterior confidence that does not depend on ¢ (see relevant
formula for Fig. 4d in table I). Analogously, Fig. 11 (with
¢ = 0.97) demonstrates how stronger CII evidence leads to
greater confidence in claims, compared to Fig. 9. Confidence
in almost all the claims has increased noticeably; the extent
of this increase depends on the form of CII.

We remarked on how all the priors in this paper require
very large np when n4 is very large (say ns > 10'9). Fig.
12 depicts what happens when nyg = 7.55€9, i.e. 2 orders
of magnitude more than n4 = 7.55e7 in Fig. 9. All of the
priors now give smaller posterior confidence, their respective
curves lying everywhere lower than before. But this drop in
confidence happens at different rates for the different priors.
Notice, the PK 4 prior now gives greater posterior confidence
than a PK 3 prior (with ¢ = 0.95), where it did not before.

Contrastingly, for 107 < n4 < 10°, most of the priors
show less conservatism (i.e. smaller required np) as ngy
increases (Fig. 8). And, for some priors, there exist unique
n values such that, with this failure-free “A” evidence, the

posterior confidence from the priors cannot be higher. Analysis
2 compares how much increase in confidence these n 4 bring.

Analysis 2. An analysis of the increase in confidence that
na can bring. Consider the priors with the following PK.
For each prior, the respective confidence formula in table I
determines n’y — the unique na for the prior such that no
other n 4 supports higher posterior confidence in [Xp < p|:

1) PK 1, 2 (only version A), 3, ¢ = ¢, . =1, n¥y = 5.29e8

(prior Fig. 3a);

2) PK 1, 2, 3, ¢ =¢, a=1, nly =4.60e8 (prior Fig. 3b);

3) PK 1, 2, 4, ¢, a = p, n’y = 4.75€8 (prior Fig. 5b).
Above, ¢ = 0.95, § = 0.9 and p = 1078, And, PK 2 applies
to both versions, except where explicitly stated otherwise.
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Fig. 13: The increase in confidence ¢, due to n’; evidence, depends
on whether PK 2 is satisfied by both versions, and on the CII form.
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Fig. 14: Confidence in the “single system” claim [X < 10™%] upon
observing n failure-free runs of the system, if n = n’,. Here, n’ is
a function of ¢, for prior Fig.s 3a (dash-dot curve), 3b (solid curve),
and 5b (dash curve) of analysis 2.

Fig. 13 shows the greatest amount of posterior confidence
each of these priors can give — the unique n% for each prior



ensures these upper limits are reached for all ng failure-free
evidence from the B version. If claims were supported by n’
rather than, say, the reference n4 = 7.55¢7, then the largest
resulting increase in confidence is experienced by prior Fig.
3a. This prior is supported by “engineering goal” confidence
PK 2 for only the A version. For the other two priors, PK 2
is satisfied by both versions. This suggests that the additional
6x100% confidence (in B satisfying the engineering goal) also
brings a noticeable increase in posterior confidence in claims,
even when n4 # n%. Also note that, unlike the change in
ordering of Fig. 12 due to large n 4, the n’%s do not change
the ordering of the priors in Fig. 9 — so, among these priors,
prior Fig. 5b still gives the greatest confidence.

For each prior in analysis 2, n% is a function of the strength
of CII supporting evidence (i.e. n% is a function of ¢). Very
large n% accompanies very strong CII evidence (Fig. 14). In
fact, if these n’; number of failure-free runs were observed in
the single system reference scenario, the posterior confidence
in a 10~® bound on pfd would be upwards of 99% (Fig. 14)!

VIII. DISCUSSION & CONCLUSION
A. Why CBI; risk of spurious optimism

Assessing system dependability may require integrating
diverse forms of evidence. For an assessor presented with
such evidence, Bayesian methods are a principled statistical
toolkit for dealing with uncertainty. However, they bring the
challenge of specifying a suitable prior distribution — one that
fully captures, and captures only, the assessor’s beliefs about
how reliable the system might be, as justified by evidence.
A prior may be wrong in that it fails to capture all of an
assessor’s beliefs. Or because it encodes additional beliefs not
actually held by the assessor. A wrong prior could, unbeknown
to the assessor, lead to dangerously optimistic assessments, or
unduly undermine confidence in a good system.

In this paper we have made this task of specifying priors
even harder by making claims for B depend, in part, on
evidence about A.

We addressed this problem via conservative Bayesian in-
ference (CBI). CBI’s advantages include: 1) it encourages
assessors to be minimalist, i.e., specify only those beliefs
which can be justified by the evidence; 2) it produces provably
conservative claims (no other prior distribution satisfying the
beliefs will yield more conservative claims); 3) CBI allows
its users to see how much unjustified confidence would be
added by using an individual prior, among the priors allowed
by the PKs, instead of the worst case; 4) by spelling out
worst-case distributions compatible with the stated beliefs,
CBI highlights apparent inadequacies in the beliefs stated,
prompting assessors to review how well the stated beliefs
reflect the evidence.

The prior distributions of Fig.s 3, 4 and 5 each give the
least confidence in an upper bound, p, on B’s pfd, depending
on various forms (and strengths) of reliability evidence. This
evidence includes: observed failure-free operation on sets of
na and np demands; evidence justifying CII probabilities
¢, of B being an improvement over A, or justifying the
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probability @ of a version’s pfd being at least as good as the
engineering goal €.

B. Selection of formal PKs and of parameter values

The formal probabilistic characterisations of ClIs that we
have introduced in the form of PKs 3 and 4 cover a set
of scenarios commonly found in practice. This substantially
broadens the set of scenarios we studied previously [6,7].

The forms of CII (and hence PKs) to use in a CBI safety
argument should be determined by careful consideration of
prior evidence (as we exemplified in Sec. IV). Reasonable
values for ¢ or ¢ would normally be suggested by prudent
use of historical evidence about similar systems.

How to translate available prior evidence into formal PKs
will not always be obvious. In some cases, evidence may
seem to support more than one form of PK. Comparing and
contrasting their implications may then be useful, revealing
gaps in one’s understanding of what the evidence implies.
This exploration can be helped by the fact that sometimes
parameter values related to one form of CII can be derived
from parameter values for another CII form. E.g., if evidence
justifies a probability of A satisfying the required pfd bound,
P(X 4 < p) =1-7, and given PK 3 with o = p, one can then
assign ¢ the value ¢ — -y, the smallest (i.e. most conservative)
value of ¢ consistent with ¢ and ~. Here, v could be the result
of previously applying CBI to version A (Sec. III).

We showed (Sec. VII) how some forms of PK result in more
confidence in a claim than other forms; and some require fewer
failure-free demands than others in order to support a given
claim. We emphasize that one must not use this knowledge
for simply claiming that PK that yields the most favourable
results — an unethical and dangerous practice. The choice of
PKs must be based on the prior evidence alone.

In certain cases, obtaining evidence that might bring added
confidence may be expensive — for instance, if discovering
what one’s ¢ value should be would require analysis of
extensive logs about past projects. A decision is then needed
about whether the added confidence justifies the significant
cost. Our results can inform such considerations.

We observe that parameter values sometimes need not
be specified with great precision. E.g., (see Fig. 7): if CII
supporting evidence is relatively weak (i.e. § > ¢ > 1 — 0)
— i.e. confidence in B being an improvement is less than
confidence that A and B meet their “engineering goal” — then
posterior confidence, and the n4 and np needed to support a
claim, do not depend on ¢.

We have focused on those CBI priors (parameter values for
the PKs) consistent with what we would expect in practice. For
instance, we assumed confidence higher than 50% (i.e. 8 >
1 — 0) that the engineering goal is met: system development
would not usually be started if confidence were lower.

We have also not considered the case of p < ¢, i.e, of a
required bound on pfd lower than the value one has some
confidence of being achieved. Previous studies showed how
this may give zero posterior confidence unless additional prior
knowledge is stated, about values of pfd smaller than p [7,9].



A broader observation is appropriate about the worst-case
priors that CBI produces. Recall, for instance, how in Fig. 8
increasing n 4 eventually undermines confidence in a claim,
requiring increasing np to compensate. This is because the
worst case priors include a probability mass at point (p;, p);
that is, a belief “if A turns out to be extremely good, then B
must be inadequate, but just inadequate enough not to achieve
the desired pfd, p”. We trust that readers will rightly object to
such a belief, because experience would not typically support
it. And yet, such a belief is not refuted by any of the forms of
PK 1 to 4 that an assessor could specify to support a safety
claim. We now discuss the implications of such apparently
unreasonable worst-case priors.

If one followed the steps we recommended, proceeding
from the evidence to carefully spell out which PKs it implies,
and yet the resulting worst-case prior seems absurd, possible
reasons are: 1) the analysis may have been inadequate, and
requires additional PK that capture neglected implications of
the evidence [9,21,22]; 2) that prior, albeit absurd, may be
a limiting case of a class of priors which are themselves
plausible, in which case we cannot rightly forbid it just
because it leads to unpleasant conclusions; 3) the “absurdity”
of the results flags an error we made in deriving the PKs from
the evidence, or in our likelihood function, etc.

Sec. VII also highlights how, unsurprisingly, strongly sup-
ported CII can increase confidence in posterior claims, or re-
duce the np needed for a stated level of confidence. However,
when n 4 is small, all of the worst-case priors require a larger
np than required when making the same claim on B using a
“single-system” CBI prior (see discussion of Fig. 8).

We also highlight how 6 x 100% confidence for both
versions brings a noticeable increase in posterior confidence
— i.e. the difference between the prior from Fig. 3a (only A
version) and the prior from Fig. 3b (both versions) in Fig. 13.
This is true when n4 is not the value n% that guarantees the
greatest posterior confidence. If n4 = n’, 0 for both versions
brings no benefit; what seems to matter then is the form of
CII. Knowing n’; tells us how much more confident, at most,
a claim for B could be, everything else being equal.

Finally, unlike ordinary Bayesian inference, in CBI the form
of prior used needs to depend on the input values. For example,
up until about ny = 102, the dotted curve in Fig. 8 is
generated by the prior in Fig. 4b. Beyond that point, it is
generated by the new worst-case prior in Fig. 4a. These priors
are very different, and erroneously using only one of these for
all ng would give significantly over-optimistic results.

C. Future Work

The forms of formal “prior knowledge” that we have studied
are chosen to be realistic, but do not exhaust those that
may hold in practice. Case studies, especially applying the
kind of scrutiny we have outlined above when CBI produces
apparently unreasonable worst-case priors, may reveal other
forms of prior evidence that can reduce excess conservatism.

In this direction — addressing over-conservative worst-case
priors — a purely mathematical next step is to find a solution
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that fully exploits the form of claim in example 3 (Sec. IV),
requiring (6) to hold for every subinterval in [0, 1]. Using this
form of CII to address example 3 would give more confidence
in claims on pfd, compared with approximating it by PK 4.

We have focused on scenarios in which no failures oc-
curred. This makes sense for certification in critical systems,
regarding systematic failures: usually, if a software failure
occurs, the system is fixed, and reassessed from scratch. If
this reassessment ignores that the fault in the previous version
may undermine assumptions on which the assessment relies,
its result may be over-optimistic [25]. Accordingly, it would
be useful to extend the present work (similarly to [25]), to
assessing version B given failures in version A; or, for less
critical systems, given failures in both A and B.

Some aspects of the mathematical apparatus can be eas-
ily completed if needed. For instance, we do not explicitly
account for the joint probability of both versions satisfying
the engineering goal. There may be reasons for believing
either positive or negative correlation between the two events.
Studying their effects may give more insight into useful forms
of PK that are currently missing. Also, in our scenarios, the
same 0 x 100% confidence applies to both versions. The two
could be different in practice (e.g. due to different approaches
applied in developing versions A and B, or markedly different
operational environments).

Thus far, CBI applications have involved solving con-
strained mathematical optimizations over sets of prior prob-
ability distributions. This captures the uncertainty an assessor
has in adequately specifying what beliefs prior evidence justi-
fies. But the assessor could also have uncertainty in specifying
the probabilistic failure model for the failure-free observations
(i.e., the likelihood function). Extending CBI to assess the
effects of such uncertainty would be a fruitful exercise.

D. Summary of contributions of this paper

In this paper, we have reported: 1) how various practical
scenarios map into formal “prior knowledge” (PK) statements,
to use in conservative Bayesian inference (CBI); 2) convenient
closed form solutions for the worst-case priors and for the
posterior confidence in claimed pfd bounds; 3) sensitivity
analyses, identifying parameter ranges for which evidence
from operation in a system, or environment, A, reduces the
amount np of failure-free operation required in system, or
environment, B for a required confidence in a bound.

Together with our previous work [6,7], by introducing new
examples based on practical scenarios, this paper demonstrates
how CBI can be used to formalise arguments that use claims
like “proven in use” (PIU), “Globally at least equivalent”
(GALE), or “stress tested” — claims derived from operation/test
evidence on related, but not identical, environments of use
or system versions. These examples are a good guide when
translating other forms of prior evidence into formally stated
CBI constraints (“PK”’s).
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