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Abstract—Perception of artificial agents is one the grand chal-
lenges of AI research. Deep Learning and data-driven approaches
are successful on constrained problems where perception can be
learned using supervision, but do not scale to open-worlds. In
such case, for autonomous embodied agents with first-person
sensors, perception can be learned end-to-end to solve particular
tasks. However, literature shows that perception is not a purely
passive compression mechanism, and that actions play an im-
portant role in the formulation of abstract representations. We
propose to study perception for these embodied agents, under the
mathematical formalism of group theory in order to make the
link between perception and action. In particular, we consider
the commutative properties of continuous action sequences with
respect to sensory information perceived by such an embodied
agent. We introduce the Sensory Commutativity Probability
(SCP) criterion which measures how much an agent’s degree
of freedom affects the environment in embodied scenarios. We
show how to compute this criterion in different environments,
including realistic robotic setups. We empirically illustrate how
SCP and the commutative properties of action sequences can
be used to learn about objects in the environment and improve
sample-efficiency in Reinforcement Learning.

I. INTRODUCTION

Perception is the medium by which agents organize and
interpret sensory stimuli, in order to reason and act in an
environment using their available actions [1]. We focus on
scenarios where embodied agents are situated in realistic
environments, i.e. the agents face partial observability, coherent
physics, first-person view with high-dimensional state space,
and low-level continuous motor (i.e. action) space with multiple
degrees of freedom.

In classical robotics, we can use a controlled robotic setup
where we utilize external information about the agent and the
environment, such as position, joint parameters, object positions,
and annotated data. This allows the experimenter to distill its
knowledge in the form of priors into the system (e.g. knowledge
of the workspace in the case of an a robot interacting with
objects on a table). However, this information might not be
available in the general case. In Nature, children and animals
do not have access to this information when they are born. They
start from a relatively naive setup, and then build perception
via interaction with the environment. We aim at developing
theories and applications for this tabula-rasa case where the
agent is naive: it can only actuate its motors (without any
description of what they do) and receive observations through
its sensors.

Embodied agents, when acting in their environment, produce
a stream of sensorimotor data, composed of successions of
motor states and sensory information. While most current
approaches for building perception consider that the interpreta-
tion of sensory information is an isolated problem that only
requires extracting relevant information in instantaneous sensor
values [2], [3], several approaches [4], [5], [6], [7] that can be
traced back to 1895 [8], advocate the necessity of studying the
relationship between sensors and motors for the emergence of
perception.

Figure 1: Two action sequences sensory commute if they
produce the same sensory state when played in different orders
from the same starting position. In this example, the action
sequences would not commute if an object would be in the
way of the hand movement.

Inspired by these works, we study the commutativity of
action sequences with respect to sensors, which we term sensory
commutativity, illustrated in Fig. 1. Sensory commutativity
occurs when two sequences of actions played in different
orders lead to the same final sensory state. In order to study the
commutation properties of sequences of actions, we introduce
Sensory Commutativity experiments (SC-experiments), which
consists in having the agent play an action sequence in
two different orders from the same starting point. Sensory
Commutativity Probability (SCP) of a degree of freedom is
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then a measure of how likely two sequences of actions (in
different orders) on this degree of freedom will lead to Sensory
commutation. Note that learning SCP is a priori dependent on
the environment and the morphology of the agent.

We show that this value has intrinsic meaning for the
embodied agent: if the SCP is high then the degree-of-freedom
has a low impact on the environment (e.g. moving a shoulder
is more likely to lead to environment changes than moving a
finger, so SCP for a shoulder is lower than for a finger). By
computing the SCP for each degree of freedom of the agent,
we are able to characterize its motor space without any a priori
knowledge and use this information for subsequent tasks. In
our experiments, we illustrate how SCP, and more generally
SC-experiments, can be used to learn about objects in the
environment and improve sample-efficiency in a Reinforcement
Learning (RL) problem. Our contributions are therefore the
following:
• We provide a mathematical framework to express sensory

commutativity, and theoretical insights on how it can be
useful for building perception for an embodied artificial
agent.

• We introduce Sensory Commutativity experiments and the
Sensory Commutativity Probability criterion: tools based
on the commutative properties of action sequences that
allow learning about the agent and the environment.

• We provide methods to compute them, including in
realistic robotics setups.

• We experimentally show how SC-experiments and SCP
can be useful for object discovery and improving sample-
efficiency in a RL setup. Our code is available in the
supplementary material.

II. RELATED WORK AND MOTIVATION

A. Related work

SensoriMotor theory (SMT) is a theory of perception that
gives prominence to the role of motor information in the emer-
gence of perceptive capabilities [9]. Inspired by philosophical
ideas formulated more than a century ago by H.Poincaré [8],
it led to theoretical results regarding the extraction of the
dimension of space [10], the characterization of displacements
as compensable sensory variations [11], the grounding of the
concept of point of view in the motor space [12], [13], as
well as the characterization of the metric structure of space
via sensorimotor invariants [14]. The present work studies the
commutativity of action sequences with respect to sensory
information and takes inspiration from this literature.

An important insight from this literature is that action and
sensor spaces have a shared underlying structure, since they
are causally linked (sensory changes are caused by actions). It
is suggested that the group structure would be well adapted to
describe those links [15], [8], yet it has never been formalized in
these works. However recently, Symmetry-Based Disentangled
Representation Learning (SBDRL) [16], [4] used group theory
to formalize disentanglement in Representation Learning using
symmetries, i.e. transformations of the environment that leave
some aspects of it unchanged. Groups are composed of
these transformations, and group actions are the effect of the

transformations on the state of the world and representation.
Inspired by this approach, we formalize the group structure
suggested in the SMT theory and use it to define the SCP
criterion.

More generally, the idea of learning how actions influence
sensations, and how this information can be used for exploration
has been investigated in many ways. A large body of work has
investigated developmental robotics [17], [18], with for instance
a concept related to the present work called the slowness
principle [19]. The idea is that meaningful sensory dimensions
change slowly even in the case of rapid actuator changes,
which allows identifying meaningful structures such as objects.
With the SCP criterion, we actively apply action sequences in
different orders and observe the difference in sensors in order
to organize useful degrees of freedom of the agent in terms
of how much they impact sensors. This general idea is also
present in the psychology and neurosciences literature, and is
termed proximo-distal principle [20]: the tendency in infants
for more general functions of limbs to develop before more
specific or fine motor skills. This principle is also visible with
the SCP, which allows to explore sensorimotor relations by
prioritizing degrees of freedom which lead to bigger sensory
changes: fine motor skills have high SCP and general function
of limbs have low SCP.

These principles can be applied to acquire meaningful state
representations in order to learn how to act in the environment.
Our main motivation is to give insights on how sensory
commutativity can allow seeing the problem in a novel way.
We investigate two applications problems: object detection and
sample-efficiency in Reinforcement Learning (RL). For object
detection, we either have well-performing methods based on
computer vision algorithms and largely annotated databases
[21], or algorithms based on data collected by the agent itself
[22], [23], [24]. With sensory commutativity, we fall in the
second category, as we aim at using sensory commutativity as
the tool for detecting objects that the agent can interact with.
About sample effiency in RL, the problem is often dependent on
representations that are used as states. Most recent solution aim
at improving the decision making component of the problem
by building a new learning algorithm (HER [25], SAC [26],
PPO [27], and many more) which are comparatively better on
standard benchmarks. Here, we do not improve the learning
algorithm, but rather try to show that by knowing the agent
better (by computing its SCP criterion), we can improve sample-
efficiency in RL by modifying its exploration strategy.

B. Motivation

Poincaré [8] suggested that the set of compensable trans-
formations of the environment together with the composition
operation forms a group, while [15] further attempted at describ-
ing this group. Using action sequences and their commutative
property, the authors suggested that spatial transformations and
non-spatial transformations can be disentangled.

In this paper we build on those previous works by con-
sidering the set of action sequences, termed Seq(M), and
their commutative properties. We study the group and sub-
group properties of Seq(M), with the aim of organizing the
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motor space M hierarchically. This will be achieved with the
definition of the Sensory Commutativity Probability criterion.

III. COMMUTATIVE PROPERTIES OF ACTION SEQUENCES

A. Formalism choice

In the SMT theory, the agent sensory motor experience is
described as follows:

st = φ(mt, εt) (1)

This formalism, while close to the RL formalism, is centered
around the agent and its perception. At a time t, the agent
is in a particular motor state mt. This means that its motors
are in a particular setup called mt (e.g. the actuator’ torque
and angle). The environment is defined by everything that’s
not the agent. It’s thus an entity that is in a state εt, e.g. a
room with 6 walls plus light sources and objects placed in
different locations. The agent can perceive the world through
its sensorimotor dependencies φ: a function that takes as input
mt and εt and produces sensory inputs from its sensors st.

Next, we would like to describe the dynamics of the world.
This description is generally not present in SMT theory. Thus
Eq.1 is not sufficient to support the description of the dynamics
of the world. We propose to model these dynamics with the
following equation:

mt+1, εt+1 = f(mt, εt,∆
m′

t+1
mt ,∆

ε′t+1
εt ) (2)

The agent can operate motor commands ∆
m′

t+1
mt , which will

in turn change it’s sensory inputs to st+1 through the function
φ. The environment can change also and influence the agent,
represented by ∆

ε′t+1
εt . Taking the initial states and changes as

inputs, the function f yields the new motor command m′t+1,
and a new configuration of the environment ε′t+1. We don’t
generally have that εt+1 = ε′t+1 or mt+1 = m′t+1 since the
agent can affect the environment configuration through its
motor commands or the environment can force movements on
the agent.

In summary, by combining Eq1 and Eq.2, we obtain an
equation that includes the dynamics of the world in classical
SMT formulation:

st+1 = φ(mt+1, εt+1) = φ(f(mt, εt,∆
m′

t+1
mt ,∆

ε′t+1
εt ))

B. Group structure of the set of action sequences Seq(M)

We will now formalize groups and sub-groups of symmetries
in the case of an agent moving in its environment. We study
the set of motor command (or action) sequences of finite
length, referred to as Seq(M), and will attempt at describing
its structure.

Philipona [15] first defined a relation between action se-
quences: h ∼ g if and only if h and g affect the sensors in the
same way. Using our formalism, we can translate this concept
into an equality.

Definition 1. Let (h, g) ∈ Seq(M). h is equivalent to g under
(mt, εt), noted h ∼mt,εt g if and only if they produce the same

sensory states when applied from the same starting situation
of the agent (mt) and the environment (εt):

h ∼mt,εt g ⇐⇒ φ(f(mt, εt, h,∆
εt+1
εt )) = φ(f(mt, εt, g,∆

ε′t+1
εt ))

Intuitively, two actions sequences are equivalent for a
particular motor state and environment state if applying them
lead to the same sensory state. For instance in the case of
multiple-joints arm moving freely in an empty space, there are
multiple different ways of moving the arm from one motor state
to another. This yields action sequences (h1, .., hn) which are
equivalent in this situation (mt, εt), we thus have h ∼mt,εt g.
However in other situations these actions sequences can become
not equivalent, for instance if there are objects on the way as
illustrated in Fig. 2.

For convenience and clarity, we will drop the notation for
dependence on (mt, εt) and thus write h ∼ g whenever there
are no ambiguities in the context. We now consider the structure
of Seq(M) under composition ◦ with respect to the equivalence
∼.

Proposition 1 (Structure of (Seq(M), ∼, ◦)). The following
properties hold:
1. ∼ is an equivalence, i.e. it is reflexive, transitive and
symmetric.
2. (Seq(M), ◦) is a group w.r.t ∼.
3. ◦ is not commutative with respect to ∼.

Proof. 1) = is an equivalence, thus ∼ is an equivalence as
well.

2) All 4 properties of the group definition are satisfied.
(i) For two action sequences (h, g) ∈ Seq(M), the
composition of h and g is still an action sequence
h ◦ g ∈ Seq(M). (ii) ◦ is associative with respect to
=, i.e. g ◦ (h ◦ k) = (g ◦ h) ◦ k thus it follows that
g ◦ (h ◦ k) ∼ (g ◦ h) ◦ k. (iii) The identity element is
the no-op action. (iv) If we suppose that there are no
irreversible phenomenons in the environment, then for a
fixed (mt, εt), all action sequences can be inverted.

3) ◦ is not commutative, as we can always explicitly find
two action sequences that do not commute. For instance
once there exists a movable object in the environment: if
the agent is placed left to the object, then let h be moving
right and g be moving left. h and g do not commute
(Fig. 2).

(Seq(M), ◦) is thus a group w.r.t ∼. This structure is
consistent with the intuitions in SBRL and SMT theories. In the
following, we build on the observation that composing action
sequences is not generally commutative as we can measure to
which degree they commute. We show how this property can
lead the agent to organize and interpret its motor space.

C. Philipona’s conjecture

Philipona [15] already studied how action sequences com-
mute with respect to the sensory information received by
the agent. Notably, Philipona defined commutative residues.
Suppose that an agent doing h1◦h2 leads to a different outcome
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Figure 2: Example of SC-experiment that does not commute. Starting from a common situation, the action sequence played in
two different orders does not lead to the same sensory state.

in observations than doing h2 ◦h1, then a commutative residue
g is an action sequence that the agent has to do to compensate
the difference in sensory experience.

Definition 2. g is a commutative residue of (h1, h2) if and
only if h1 ◦ h2 ∼s h2 ◦ h1 ◦ g. If g is equivalent to no-op (no
action), then h1 and h2 commute.

Starting from this definition, he conjectured that all action
sequences that are not displacements commute with any action
sequences. For instance, moving your arms (displacement
action) then opening the eyes (non-displacement action) will
always commute whereas two displacement actions will not
necessarily commute, depending on which starting situation s
is selected.

Conjecture 1 (Philipona’s conjecture). Let Seq(M) be the
set of action sequences. The subset of Seq(M) composed
of non-displacements action sequences is the sub-group of
Seq(M) that commutes.

We will illustrate this conjecture with experiments in
Sec. IV-C.

D. Sensory commutativity probability of an action sequence
Based on Philipona’s conjecture, we derive a criterion for

characterizing how much each degree of freedom of the agent
affects the world, computable using only sensorimotor data.
We define "degree of freedom" (DOF) as a dimension of the
multidimensional continuous action space of the agent. We
also define what we term a sensory commutativity experiment:
for an action sequence h, the agent plays it in two different
orders starting from the same situation.

Definition 3 (Sensory commutativity experiment (SC-experi-
ment)). Let h be an action sequence of finite length. Let hp
be a random permutation of h (same sequence but different
order).

We define a sensory commutativity experiment (SC-
experiment) as playing h and hp from the same starting point
and comparing the two resulting observations in the agent’s
sensors.

Using the conjecture, we have that for an SC-experiment, the
agent can experience two different sensory outcomes only if
the action sequence h is composed of at least one displacement
action (an action that affects the environment such as moving
limbs or going forward).

However, not all displacement actions are equivalent. The
agent is more likely to observe two different outcomes if the
action sequence is composed of displacement actions that affect
the environment a lot. Consider moving your forearm (elbow
joint) compared to moving your whole arm (shoulder joint): the
latter is more likely to move things around in the environment
and thus induce sensory non-commutativity when played in two
different orders (i.e. having two different sensory outcomes).
An elbow joint should therefore have a higher SCP than a
shoulder joint.

We formalize this intuition by defining the Sensory Com-
mutativity Probability (SCP) of a degree of freedom, averaged
over all starting situations s:

Definition 4 (Sensory commutativity probability of a degree
of freedom). Let Seq(Mk) be the set of motor commands (or
action) sequences of finite length for the kth degree of freedom
of M (motor state space). Let h ∈ Seq(Mk) and let hp be a
random permutation of h (same sequence but different order).

The Sensory Commutativity Probability of the kth degree of
freedom SCP (Mk) is defined as:

SCP (Mk) = Ps,h[h ∼s hp]
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E. Sensory Commutativity Probability computation

We propose a straightforward procedure to estimate the SCP
of each degree of freedom of the agent. We initialize the SCP
value to 0 (SCP←0). We then repeat the following process n
times for each DOF:

- Sample an action sequence using the selected degree of
freedom (a sequence of action where each action is a value
between -1 and 1).

- Play it in 2 different orders starting from the same
randomly chosen state and save the two final sensor images
s1 and s2. Compute the distance between the two images
d(s1, s2).

- Count one (SCP+=1) if d(s1, s2) ≤ t, zero otherwise.
Finally, the estimator of the SCP is the average over the

number of trials (SCP←SCP/n).
The parameters of the algorithm are the selected distance

function d that allows comparing the agent’s observations, the
threshold τ , and the number of iterations n. Note that using a
simulation allows playing the two action sequences of different
orders from the exact same starting position. We discuss the
need for simulation to compute SCP and more generally SC-
experiments in Sec. VI and how to overcome this requirement
for real-life experiments.

F. SC-experiments for object detection

The concept of SCP is based upon comparing outcomes
of SC-experiments and evaluating whether the two resulting
observations are considered equal or not. Going beyond
this equality test, we propose to have a finer analysis of
the differences between the two observations obs1 and obs2
resulting from an SC-experiment.

Comparing obs1 and obs2 leads to three possible outcomes
from which the agent can learn about immovable and movable
objects in the environment.
• obs1 and obs2 are entirely different: the two action

sequences from this starting position do not commute,
because the agent interacted with immovable objects.
Using the position of the agent, we can now map
immovable objects in the environment.

• obs1 and obs2 are identical: the two action sequences
from this starting position commute, because the agent
did not interact with anything in the environment (free
movement). Using the position of the agent, we know that
there are no objects in the current space around it.

• obs1 and obs2 are identical except for a limited area
corresponding to an object that has been moved: it’s the
case where the agent has interacted with a movable object
that did not block the agent’s movement. Hence the two
action sequences would have commuted for most of the
environment, except for the object that has been moved.
We can learn to detect this moving object and track it.

G. Experiments

In order to illustrate all these concepts, the experiments
presented in the remainder of this paper are organized as
follows: we first show how to compute SCP in 2D simple

environments, then in 3D realistic robotic setups. Then, we
show how we can use SC-experiments to learn about immovable
and movable objects in realistic robotics setups. Finally, we
show how SCP can be used for improving sample-efficiency
in RL. Our code is attached in the supplementary material.

IV. SENSORY COMMUTATIVITY PROBABILITY
EXPERIMENTAL ANALYSIS

In this first experimental section, we compute and interpret
the SCP in a 2D and a 3D embodied agent scenarios. In order to
study the properties of SCP and how it relates to the emergence
of the notion of objects, we use simulation environments that
have the following properties: embodied agent, navigable space
with objects to interact with, first-person high-dimensional
observations, low-level high-dimensional action space, and
coherent physics.

A. 2D experimental setup

Figure 3: Simulation used for our experiments. The agent
Polyphemus has a 8 DOF motor space, receives an image of
it’s only eye, and is placed in a room with fixed, movable and
moving elements.

Simulation description. Our first experiment uses Flat-
land [28], a platform for creating 2D RL environments. We
construct an agent called Polyphemus (a Cyclop from the Greek
mythology), that has a base that can move forward and rotate,
a rotatable head and two 2-DOF arms. The agent sees through
its unique eye that has an activable eyelid, for a total of 8 DOF.
The observation received by the agent is a 64x3 line of RGB
pixels (as the world is 2D), which corresponds to the field of
view of 90 degrees. This agent is placed in a room with fixed,
moving, or movable entities, all of different colors. It can move
around and physically interact with these entities. Its point of
view can change through base movement, rotation, and head
rotation. Our simulation is illustrated in Fig. 3. For each degree
of freedom, an action or motor command corresponds to a
change in the longitudinal/angular velocity of the degree of
freedom.

SCP computation. In order to compute the SCP of each
of the 8 agent’s degrees of freedom (Fig. 4, left), we have
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Figure 4: Left: Sensory Commutativity Probability for each de-
gree of freedom. Middle: Naive alternative. Right: Prediction
error alternative.

to select a distance and threshold as mentioned in Sec. III-E.
The distance selected here is simply the mean squared error
between s1 and s2, the observations resulting from the two
sequences of actions of a SC experiment. Because there is no
noise in the dynamics of the environment and the sensor, the
future of the agent is deterministic. Therefore, in this particular
case we can use a threshold of 0. This means that we consider
that two action sequences sensory commutes if and only if
applying the two action sequences from the same initial state
lead to exactly the same sensors. This hard constrain will be
relaxed in subsequent experiments (Sec. IV-B).

Baselines. The SCP criterion derived in this paper
estimates how much each degree of freedom affects the
environment in an embodied agent scenario. We tried two
alternatives to this approach in order to estimate the same
quantity. A straightforward approach to this problem, which
we call the naive alternative (Fig. 4, middle), is to play
action sequences of each degree of freedom and quantify
how much the sensors change. A more involved approach
is to use prediction on the sensory change caused by each
degree of freedom (Fig. 4, right), a common approach used to
improve exploration in RL [29], [30]. We call this alternative
the prediction error approach. The DOF that are harder to
predict could be the ones affecting the environment the most,
and thus the most important for manipulation and navigation.

B. 3D realistic experimental setup

We also compute and interpret the SCP for a realistic em-
bodied agent scenario using the interactive Gibson environment
(iGibson) [31].

Simulation description. iGibson is a simulation environ-
ment for robotics providing fast visual rendering and physics
simulation. It is packed with a dataset with hundreds of large
3D environments reconstructed from real homes and offices,
and interactive objects that can be pushed and actuated. In our
experiments, we use the Rs environment, which is basically a
regular apartment. We place the Fetch robot in this environment
(Fig. 5, left). Fetch is originally a 10-DOF real robot [32]
equipped with a 7-DOF articulated arm, a base with two wheels,
and a liftable torso. Fetch perceives the environment through
a camera placed in his head (Fig. 5, middle).

SCP computation. In the Flatland environment, two
action sequences commuted only if the sensory result of
applying both from the same starting situation was perfectly
equal. We relax the strict equality condition to compute the

SCP for Fetch (Fig. 5, right). Indeed, with real images, only
an offset of one pixel would render the two action sequences
non-sensory commutative. Instead of using the mean squared
error as a distance, we use a perceptual distance using the
VGG16 [33] features of each observation. We thus have
d(s1, s2) = ||V GG16(s1) − V GG16(s2)||22. The choice of
the threshold τ is partly arbitrary, as we are interested in
relative comparisons between degrees of freedom. We verify
in our experiments that our results and conclusions are valid
for a large range of τ .

C. Results

In the Flatland environment, Fig. 4 (Left) shows that only
two actions have an SCP of 1: eyelid and head rotation. All
other actions have an SCP inferior to 1. This is consistent with
Philipona’s conjecture (Sec. III-C): eyelid and head rotation
are the two degrees of freedom that are not associated with
displacements, thus action sequences composed of actions of
these type commute with respect to the sensors. On the contrary,
all other degrees of freedom are associated to displacements,
and thus will eventually induce non-zero commutation residues
when played in different orders from the same starting situation.
We observe the same results in iGibson, presented in Fig. 5:
the torso lift DOF is not associated with displacement in the
environment, so it has an SCP of 1, i.e. it always sensory
commutes. Hence the results are consistent with the conjecture
and can be used by the agent to autonomously discover which
of its actions are associated with displacements or not.

Qualitatively, SCP is inversely proportional to how
each degree of freedom affects the environment. By that
we mean that from the computation of the SCP, we obtain
a hierarchical organization of the action space in which the
more important dimensions for manipulation and navigation are
separated from the dimensions that are not crucial for such tasks.
For instance, we inferred that shoulders should have a lower
SCP than elbows since activating the shoulder joint is more
likely to induce non-commutativity by moving things around or
hitting walls/obstacles. This intuition is verified by our results.
Shoulders and base movement have a lower SCP than elbows
which in turn have a lower SCP than eyelid and head rotation,
as observed in Fig. 4. Without having any prior knowledge
about the simulation, we can automatically organize the agent’s
degrees of freedom in a hierarchy. Moreover, the symmetry of
the action space is kept, as elbow 1 and 2 have equal SCP, and
so do shoulder 1 and 2. We reach the same conclusions on
iGibson (see Fig. 5, right). The wheels have the lowest SCP
since they provide longitudinal movement and rotations for the
robot. Then comes the first DOF of the articulated arm, i.e.
the ones that are closer to its base (like shoulders vs. elbows
in the Flatland experiments). Finally, the highest SCP values
correspond to the arm DOF that are further on its arm and the
torso lift. Once again, we obtain a hierarchical organization of
the action space in which the less important dimensions for
manipulation and navigation are separated from the dimensions
that are not crucial for such tasks.

About the choice of the threshold to compute the SCP, we
tried a range of values for τ , from 20 to 100, and in each case,
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Figure 5: Left: External view of the iGibson simulator where the Fetch robot is in a living room. Middle: Fetch’s first person
view. Right: SCP computed for each of Fetch’s degrees of freedom.

we obtain the same hierarchy and thus the same conclusion,
only the nominal values change, which is irrelevant for the use
of SCP.

In additional experiments presented in A, we verified the
robustness of these results. We computed the SCP for 8 different
combinations of agents and environments (longer/smaller arms,
more/fewer objects) and confirmed our intuitions on the inter-
pretation of SCP described above. In additional experiments
presented in A, we also verified the robustness of these results
in iGibson by computing the SCP for a different type of robot
called JackRabbot [34]. We reach the same conclusions as with
the Fetch robot.

Alternative methods are not adapted. Details for these
two experiments are available in A and results are illustrated
in Fig. 4. Both approaches fail to replace the SCP criterion.
We see that for the naive approach, rotating the head of the
agent changes dramatically what the agent sees, even though
this degree of freedom does not affect the environment. For
the prediction error alternative, we see the same problem with
head rotation and a great difference between the two base
movements (rotation and longitudinal movement) while they
affect the environment in similar ways. Indeed, it’s harder to
predict what’s outside the field of view of the agent so rotation
is harder to predict compared to longitudinal movement. To
conclude, the proposed alternatives could not yield the same
organization of the agent’s DOF.

V. APPLICATIONS OF SENSORY COMMUTATIVITY

A. Sensory Commutativity Probability for object detection

We would like to verify the intuition described in Sec. III-F:
there are three possible outcomes to an SC-experiment
(different observations, identical observations, and identical
observations up to moved objects) and from these outcomes,
the robot can detect and map immovable and movable objects
in the environment, by doing SC-experiments (playing action
sequences in different orders from the same starting point
and comparing the resulting observations obs1 and obs2). Our
experiments are performed in iGibson with the Fetch robot.

1) Method: In order to verify the aforementioned intuition,
Fetch needs to be able to perform an SC-experiment and
then detect: 1) if the two resulting observations are identical
or not, 2) if they are identical except for the parts of an
image corresponding to an object that moved. Studies in
cognitive science indicate that children are capable of doing

this differentiation at a very young age (1 month old) [35], [36],
so we consider that equipping the agent with this basic ability
is a reasonable assumption. Therefore, we equip the agent with
a vision system that gets two observations as input and outputs
two masks which will be all zeros if the two observations are
identical, all ones if they are different, and the mask of the
modified area if something has changed.

We thus train a neural network with generated data to predict
those two masks with two observations as input. We refer to
this model as the "mask predictor".

Dataset. The data is collected in the Placida environment
by starting at a random position in the environment (observation
obs1) and then collecting data for the three possible outcomes:

• no difference: it suffices to keep the same observation and
the corresponding masks are all zeros. The data is (obs1
+ all zeros mask, obs1 + all zeros mask).

• completely different: we move the robot and get a different
observation obs2, the corresponding masks are all ones.
The data is (obs1 + all ones mask, obs2 + all ones mask).

• no difference except moved objects: we randomly disturb
the orientation and position of some movable objects and
get a new observation obs2 identical to obs1 up the moved
objects. The data is (obs1 + moving objects mask, obs2 +
moving objects mask)

The resulting dataset is illustrated in Fig. 6. The objects we
use for training are the original objects found in the interactive
Placida environment, augmented with several object from the
YCB object benchmark [37].

Architecture and training. We then train the neural
network to predict the masks given the observations. This
process is similar to predicting the optical flow of two
consecutive frames in a video. Thus, for the mask predictor,
we compared FlowNet-S [38], a popular baseline for optical
flow prediction, with the state-of-the-art RAFT model [39], and
selected RAFT because of its higher prediction accuracy. We
train the model using the same architecture and optimization
process as in the paper, except for the loss function and the
output activation function. We change the loss function to
a binary cross-entropy loss between the ground truth mask
and the output mask of the network. We select the sigmoid
function as output activation function so that the model outputs
binary masks instead of the original optical flow map output
(2 ∗W ∗H). All training details are available in the original
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Figure 6: Dataset for training the mask predictor and inference results on data collected with SC-experiments. The dataset is
procedurally generated to simulate the three possible scenarii resulting from a SC-experiment. Left: scenario where there are
no changes in the observations. Middle: scenario where the observations are different. Right: scenario where the observations
are identical up to moved objects.

open-source implementation we used1.
Inference. Once the mask predictor is trained, we place

the agent in an environment and perform SC-experiments where
we let it play an action sequence in different orders from the
same starting point. Then, the goal is for the agent to detect
immovable and movable objects using the generated data from
the SC-experiments and the mask predictor. All experimental
details are described in A.

Evaluation. For qualitative and quantitative evalu-
ation, we manually create a test set with 50 tuples
(obs1, obs2,mask1,mask2) of the three possible scenario re-
sulting from a SC-experiment. We cannot construct this dataset
automatically, as the mask has to be manually created by either
assessing if the two observations are different or identifying
which object has moved between the two observations. Using
this dataset, we can first assess the prediction accuracy among
the three possible scenarios.

In the case where an object has moved (see example in lower
right corner of Fig. 6), we can further analyze the accuracy
of the predicted mask using the Jaccard index, or Intersection
over Union (IoU ). It quantifies the overlap between predicted
(p1, p2) and ground-truth (gt1, gt2) masks. It is defined as
IoUi = |pi∩gti|

|pi∪gti| .
2) Experiments and results: Quantitatively, the performance

of the mask predictor on the manually collected test set reach
a prediction accuracy among the three possible scenarios of
82%. We reach an average Jaccard index of 0.85 on the subset
of instances where an object has moved (see example in lower
right corner of Fig. 6).

1https://github.com/princeton-vl/RAFT

Do SC-type experiments allow detecting movable
objects? We compute SC-experiments using a DOF selected
using SCP value. We select the DOF with SCP closest to 0.5
in order for the outcome of SC-experiments to be as diverse
as possible, i.e. the DOF of the arm that is closest to the body
of the agent.

Results presented in Fig. 6 & 8 show that using the mask
detector with the outcome of these SC-experiments allows
to detect objects that have been moved. Note that the mask
detector only detects objects that have moved between the two
resulting observations, rightfully ignoring the other potential
objects that were not moved. After this detection, we can then
use semi-supervised tracking algorithms such as [40] in order
to track the detected object.

Do SC-type experiments allow detecting immovable
objects? Results presented in Fig. 6 show that the mask pre-
dictor is also able to accurately predict when the observations
are different or identical. By isolating those two cases from
the case where only one or a few objects have moved, we
can compute a local SCP value that tells us whether the agent
interacted with an immovable object during the SC-experiment.
We can compute this local SCP value for different starting
positions in the environment, and then construct a map of
immovable objects in the environment. We present this map in
Fig. 7 for the arm’s DOF that is closer to the body of the agent
(we choose this DOF with the same reasoning as the previous
result). Results show that regions with low local SCP value
correspond to regions where there are walls and immovable
objects in the way of Fetch’s arm.

Indeed, in the kitchen part (room at the top), the space is
cramped and so most of the positions indicate low SCP (less
than 0.4) because of the interactions induced with the furniture.

https://github.com/princeton-vl/RAFT
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Figure 7: Local SCP value corresponding to the arm’s DOF
that is closer to the body of the agent, computed over 10 SC-
experiments for each position in the Rs-interactive environment.

In the living room (main room) and the bedroom (at the left),
most empty space show high local SCP (around 0.8 and 1.0).
Notice how the local SCP value is also high around objects that
are low and thus have to low chance to interact with the arm
(bed in the bedroom, low table in the living room). We thus
obtain a mapping of immovable objects in the environment
using SCP.

3) Generalization study: In principle, this movable and
immovable object detection method is designed to work in
any environment, any objects and any field of view. Indeed, it
only relies on having a precise mask predictor, which we show
can be achieved. We thus performed a generalization study
of our method. We performed inference on data with objects,
environments and field of view that were not shown during
training. For this study, we selected the Rs-environment and
the Bolton environment, objects from the YCB benchmark that
were not shown during training, and a bigger field of view (90
versus 45 for training).

In Fig. 8, we show results for the generalization study,
which indicate that the mask predictor can indeed be used
with environments, objects, and field of view that have been
not shown during training. Qualitatively, the mask predictor
seem to be able to precisely predicts which objects has moved.
Quantitatively, the precision of our object detection method
in those generalization scenarios is mostly not affected. We
manually created another test set of 20 instances with out-of-
distribution environments and objects, for the scenario where an
object has moved. We reach an average Jaccard index of 0.78,
with most instances with a Jaccard index of 1, and a few where
the detection is totally missed, thus lowering the average. We
observe that when the detection does not totally miss the object,
the precision of the mask is excellent. The low performance
drop between in-distribution and out-of-distribution test set
(0.05) allows us to conclude that our method generalizes to
new environments, objects and field of view.

4) Alternatives are not adapted: Alternatives to SC-
experiments such as just playing an action sequence and
comparing the first and last observations would detect much
fewer objects because many experiments would result in a
complete image change where the SC-experiments would
highlight only a particular object. Another alternative would
be to start in a position, play an action sequence, and then
go back to this starting point and compare what’s changed.
While this approach would be comparable for movable object
detection, this would not allow detecting immovable objects.

B. Sensory Commutativity for efficient RL

We now illustrate how SCP can be used for unsupervised
exploration, by using it to improve sample-efficiency in an
RL setup. For computational reasons, we experiment with the
Flatland simulator.

1) Experimental setup: We use the PPO2 [27] implemen-
tation from Stable-Baselines [41]. The policy is composed of
a 1D convolutional feature extractor followed by a recurrent
policy. We consider the same agent, Polyphemus, for which
we computed the SCP criterion in Fig. 4. The input of the
policy is the RGB image of what Polyphemus’ eye sees. The
environment considered is a square room with 3 dead zones
(which terminate the episode with a -20 reward) and a goal zone
(which terminates the episode with a +50 reward), illustrated
in Fig. 9. We propose two methods that take advantage of the
SCP to modify the action space of the agent. The goal is to
improve sample-efficiency when learning to solve a task in
this embodied scenario.

SCP-truncated action space. We propose to to focus
exploration on the degrees of freedom that have a high
impact on the environment, by fixating degrees of freedom
corresponding to high SCP. We implement this by halving the
dimension of the action space, keeping only the degrees of
freedom that have the most effect on the environment, i.e. lower
SCP value. We thus keep the base movement and rotation, and
the shoulders joint, while discarding the elbow joints, head
rotation, and eyelid activation. We refer to this method as
SCP-truncated action space. This action space reduction will
simplify the RL task, as long as the necessary actions such as
base motion are selected by the SCP criteria.

SCP-adapted action space. A less involved proposition
is to modify the action sampling interval according to the SCP
value, for each degree of freedom. This method will modify the
exploration dynamics to favor important actions. Suppose that
the sampling interval for each dimension of the action space
is [−1, 1]. If a dimension has high SCP, i.e. it does not affect
the environment a lot, we then reduce the interval from which
actions are sampled [−1 · l(SCP ), 1 · l(SCP )]. The function l
maps the highest SCP to 0 and lowest SCP to 1, then we use a
linear interpolation between those two points to deduce values
for SCP ∈]− 1, 1[. We refer to this method as SCP-adapted
action space.

Comparison protocol. We compare those two strategies
to a baseline policy trained to solve the task with the complete
action space. We average the result of each policy over 30
trials initialized with different random seeds, and we test the
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Figure 8: Generalization study of movable object detection using SC-experiments and a mask predictor trained in the Placida
environment. In all scenarios, our method correctly predicts the mask object. Upper left: Object and environment not seen
during training. Lower left: Object, environment and field of view not seen during training. Upper and lower right: Field of
view not seen during training.

Figure 9: Left: RL task. Right: Results.

statistical significance of our results according to the guidelines
provided by [42].

2) Results: The results are displayed on Fig. 9. First, we
notice that all strategies are viable to solve the task. We now
compare sample-efficiency between the strategies. The policy
trained with SCP-truncated action space can learn how to solve
the task more than twice as fast as the baseline policy. The
discarded degrees of freedom are not crucial in this navigation
task, hence the agent is still able to solve the task using only
the degrees of freedom that have the lowest SCP value. The
policy trained with SCP-adapted action space is less sample-
effective than the SCP-truncated but still learns significantly
faster than the baseline policy.

VI. DISCUSSION AND CONCLUSION

Discussion: extending SCP and SC-experiments to real
life. The difficulty for SCP and SC-experiments in real-life
is that the agent has to be able to play two action sequences
from the same starting point. Thus, in a real-life scenario, the
method has to overcome stochasticity and irreversible actions
(e.g. breaking a glass) which break that assumption. Also, if
an object is moved, you would have to place it back to its

original position. However, this could be overcome by learning
an accurate forward model of the environment that allows the
agent to predict what will happen when it plays an action
sequence. Consider the forward model as a proxy for one of
the experiences. Recent works have made significant progress
in this direction [43], [44]. Using this forward model, the agent
could play one action sequence and then imagine what would
have happened if it had played it in a different order, thus
performing an SC-experiment. We believe this is an important
future work for using sensory commutativity to build perception
for artificial agents, drawing links with the processes of visual
attention and surprise [45].

Conclusion. We studied the sensory commutativity of
action sequences for embodied agent scenarios. We introduced
SC-experiments and the SCP criterion. We showed that SCP
is a good proxy for estimating the effect of each action on the
environment, for 2D and 3D realistic embodied scenarios. We
illustrated the potential usefulness of such criterion and SC-
experiments in general by performing movable and immovable
object detection and improving sample-efficiency in an RL
problem.
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APPENDIX

The SCP criterion derived in this paper estimates how much
each degree of freedom affects the environment in an embodied
agent scenario. In this section we discuss why other approaches
cannot reliably estimate the same quantity.

Naive approach: changes in sensors. A straightforward
approach to this problem would be to play action sequences
of each degree of freedom and quantify how much the sensors
change. We consider the squared difference for a transition,
i.e. the squared difference for two consecutive observations
separated by an action sampled from one dimension of the
action space. We report the mean squared difference over 100k
transitions, for each degree of freedom.

It is clear in our experiment results, shown in Fig. 4, that
the approach fails. For instance, rotating the head of the agent
changes dramatically what the agent sees, even though this
degree of freedom does not affect the environment. It would
have made sense if we had considered the top view (fully-
observable scenario), since rotating the head does not changes
the top view a lot. However in the embodied scenario, this
strategy is not viable. For the same reason, approaches based
only on the changes in the embodied sensors are bound to fail.

Prediction error approach. A more involved approach
would be to use prediction on the sensory change caused by
each degree of freedom, a common approach used to improve
exploration in RL [29], [30]. The DOF that are harder to predict
could be the ones affecting the environment the most, and thus
being the most important for manipulation and navigation. We
tested this alternative in our experiments, by using a feed-
forward neural network to predict the next sensor. The neural
network takes a concatenation of the sensor and action at time
t and predicts the sensor at time t+1. We use the same dataset
of transitions as in our experiments with the naive baseline
(100k transitions for each degree of freedom, 80k for training
and 20k for testing). We trained one model for each degree of
freedom, using a neural network with two linear hidden layers
with the same number of neurons as the input size. We report
the excess prediction error on the held-out test set, i.e. the value
of the prediction error minus the minimum prediction error
among all 8 degrees of freedom. If the method works, higher
excess error prediction should indicate a degree of freedom
with more effect on the environment.

The results are shown in Fig. 4. It turns out that prediction
error is not well correlated with how much a degree of freedom
is important for navigation and manipulation. For instance,
head rotation, which does not affect the environment, is hard
to predict: the agent might not know what’s outside his field of
view. On the contrary, base longitudinal movement affect the
environment a lot and is easier to predict than head rotation.

To conclude, in our experiments we did not find any viable
strategy to replace the SCP criterion. SCP is able to easily
estimate how important a degree of freedom is for acting and
navigating in the environment. The other considered baselines
do not manage to organize the action space in the same
hierarchical way.

In our additional experiments on Flatland, we verify some of
the intuitions we built with the main experiments on Flatland.

For that, we compute the SCP as described in Sec. IV for
different combinations of agents and environments. The agents
and environments tested are displayed on Fig. 10: we use
environments with different numbers of objects (from empty
to 12 objects), and two agents: one with longer arms than the
other.

The results are also displayed on Fig. 10. Our intuitions are
validated since the more objects are place in the environment,
the smaller the value of SCP for DOF that correspond to
interacting with these objects. For instance in the empty space
almost all DOF have a SCP of 1 since there is nothing to
interact with but the walls (that’s SCP is not perfectly 1 for
base movement annd rotation, shoulder and elbow joints).

Also, we notice that if the arms are longer, the SCP for
shoulder and elbow joints is consistently lower for each
environment. Indeed, there is more chance to interact with
objects if the arms are longer, thus inducing a lower SCP.

We follow the same protocol as with the Fetch robot, i.e.
we use the Rs environment and the same algorithm to compute
the SCP for the 7 degrees of freedom of the JackRabbot: two
wheels and a 5-DOF articulated arm. The results are presented
in Fig. 11. We observe the hierarchical organization of the
DOF of the agent, the wheels having a low SCP as they allow
the robot to move around, and the DOF of the articulated arm
having a higher and higher SCP as we move closer to the end
of the arm (and thus closer to fine motor skills).

We provide further details on the object detection experi-
ments:
• The dataset is composed of roughly 10k instances for

each possible outcome (identical, completely different,
identical up to moved objects).

• In order to generate the data for the "completely different"
outcome, we apply a 90 degrees rotation to the robot.

• For the inference results on movable objects, we experi-
mented with two strategies for the action sequence. Either
20 steps random action sequences or pre-determined action
sequences (10 steps where the arm moves left, then 10
steps where the arm moves right).

• For the immovable object detection and creation of the
map, we use random action sequences of 100 steps.



13

Figure 10: SCP computed for different combinations of agents and environments. Columns: environments. Rows: agents.

Figure 11: SCP for the JackRabbot (left) in the Rs environment.
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