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Abstract

This paper develops a new ensemble-based approach to point and interval forecasting, and focus on

total electricity supply. The proposed approach combines Bootstrap Aggregation (Bagging), time

series methods and a novel pruning routine that performs feature selection before the aggregation of

forecasts. Monthly time series of the total electricity supplied between January 2000 and September

2020 in 16 countries are considered. Forecasting performance in different horizons is examined. As

the data includes the COVID-19 pandemic that affected countries in different ways, with some

visible changes in electricity demand, the likely impact of unusual observations on this proposal

is also examined. A comparative, multi-step-ahead forecasting with out-of-sample evaluation is

conducted using several forecasting accuracy metrics and detailed robustness checks. The results

endorse the strength and resilience of the proposed approach in delivering not only accurate point

forecasts, but also reliable prediction intervals under different economic settings. Moreover, the

methodology presented herein is flexible, in the sense that it can be used to generate reliable point

and interval forecasts for any time series in short and medium horizons.
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1. Introduction

The importance of reliable energy planning cannot be overstated. Every day, corporate leaders, grid

operators, regulators, and policymakers are faced with the challenge of making decisions based on

the most up-to-date information and their expectations about energy systems. However, developing

an energy plan is not straightforward. A major concern, which is inherent to most decision-making,

is the uncertainty of future outcomes. In this context, predictions of electricity to be supplied are

essential for minimizing energy costs, securing capacity and providing quality services.

Unsurprisingly, extensive research has been conducted to forecast future electricity supply or

aggregate consumption1, with varying degrees of success. Methodological proposals range from

classic forecasting approaches, such as exponential smoothing (Wu et al., 2013) and ARIMA (Elamin

& Fukushige, 2018), hybrid methods that combine traditional forecasting with machine learning (De

Oliveira & Cyrino Oliveira, 2018; Jiang et al., 2020), wavelet transforms and adaptive models (Bashir

& El-Hawary, 2009; Bahrami et al., 2014), grey-based models (Xie et al., 2020; Zhu et al., 2020),

hierarchical linear models (da Silva et al., 2019), among others. Indeed, a review by Kuster et al.

(2017) highlights a growing effort towards forecasting electricity supply and demand. Nevertheless,

and despite improvements in forecasting accuracy within the electricity sector, the literature has

been focused on point forecasts, and as such, it has emphasized a best-guess strategy.

Having reliable prediction intervals (PIs) for future electricity demand is perhaps more important

than precisely balancing supply and demand, as prediction intervals reduce the random variation in

classic single-valued load time series forecasts (Petropoulos et al., 2020), and can minimize the risk

inherent to decision-making within the management of power systems. Hence, the present study

extends a class of ensemble-based approaches, namely Bootstrap aggregation (Bagging) algorithms,

which have traditionally been used for point forecast generation, to deliver accurate prediction

intervals. Specifically, Bagging algorithms are combined with time series methods and novel pruning

routines, which are capable of feature selection, to forecast and generate prediction intervals of total

electricity supply. This approach contrasts with previous proposals for prediction interval forecasting

in three ways: first, it delivers prediction intervals without the need to generate point forecasts. This

is important, as generally a two-step process is adopted, whereby the point forecast is estimated,

and then a prediction interval is constructed. In the present study, a hybrid ensemble-based method

is developed, drawing on knowledge from statistics, machine learning and forecasting, and prediction

intervals are directly generated. Moreover, the results demonstrate that this new approach is also

1Total national electricity supply is computed by considering the sum of a country’s indigenous production and
adding and subtracting, respectively, the imports from and exports to other countries, when applicable. The total
supply is a close proxy to total electricity consumption, given that the latter can be obtained by subtracting from the
former the country’s Transmission and Distribution (T&D) Losses and the amount of energy used for pumped storage
(IEA, 2021).
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capable of improving the quality of point forecasts, given the feature selection property of the

pruning strategy. Another important point that distinguishes our proposal from existing methods

concerns generalization and robustness. Given its hybrid ensemble properties, different stylized facts

in the time series (nonlinearities, stochastic components, heteroscedasticity, unusual periods) can

be addressed. Finally, the prediction intervals generated via the proposed approach are unlikely

to increase significantly over the forecasting horizon, which is characteristic of most prediction

intervals. This is particularly important for decision-making in the energy industry, where companies

are subject to varying and significant degrees of uncertainty in future electricity supply, but can

only address a certain limit, given the high costs involved in energy storage systems and capacity

management.

The paper unfolds as follows. The next section describes how Bootstrap aggregation (Bagging)

algorithms can be combined with time series methods and tackle different sources of uncertainty in

building predictive models from data, namely: measurement (data) uncertainty, model uncertainty,

and parameter uncertainty (Petropoulos et al., 2018). Section 3 summarizes the most recent methods

for prediction interval generation. Together these two sections set the context of the proposed

approach, which is described in Section 4. This new approach involves extending previous Bagging

algorithms, so that prediction intervals are generated, and the development of pruning routines for

improving forecasting accuracy. Section 5 describes the data that are used to evaluate forecasting

performance, and Section 6 summarizes the results and their implications and highlights directions

for future research. Finally, Section 7 concludes.

2. Bagging for point forecasts

The underlying idea of Bagging for time series forecasting is to use predictors that are built on

bootstrapped versions of the original data. This method is summarized in Figure 1, where its four

stages are highlighted.

The first stage concerns pretreatment and decomposition. An initial transformation is conducted to

stabilize the variance of the original time series and reduce the skewness of its distribution, when

necessary. Subsequently, the transformed series is decomposed into three key components (trend,

seasonal and remainder), using a selected decomposition method.

The second stage concerns the generation of replicas of the original time series. A bootstrap method

is applied to the remainder of the decomposition. The new version of the remainder, which shares

the same properties of the original component but present slightly different values, is added to the

trend and seasonal components, and the transformation is inverted. This procedure is repeated

J − 1 times, so that a total of J series is included in the ensemble (the original series and its J − 1

replicas). The replicas have the same unit of measurement and share the same stylized facts of the
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actual, observed time series. Their values, however, are slightly different from the latter. Replicas

constitute an ensemble of alternative outputs of the underlying stochastic process of the time series,

since the observed time series is one of the many possible outcomes from the true data generation

process. In short, by considering multiple replicas, measurement uncertainty is addressed.

Figure 1: The main stages involved in Bagging for point forecast generation.

In the third stage, forecasts are generated for the original series and for each replica in the ensemble,

using a selected forecasting method. Models are estimated for the original series and for each

replica, so that model parameters vary according to the values in each series. Based on these models,

forecasts are independently generated for each series throughout the forecast horizon. Finally,

all forecasts are combined using an aggregation strategy, such as median aggregation or pruning

followed by median aggregation (our proposed approach). Therefore, as Petropoulos et al. (2018)

argued, Bagging algorithms can tackle the measurement uncertainty as well as two other sources

of uncertainty that are derived from former: model uncertainty, which refers to the uncertainty

linked with the selection of the ‘optimal’ model form; and parameter uncertainty, which is due to the

selection of the best set of parameters. Yet, Bagging approaches can differ in many aspects/steps

of the methodology. In the following subsections, each stage in our proposal is described, and any

differences from existing Bagging routines for univariate time series forecasting are also highlighted.
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2.1. Pretreatment and decomposition

In most forecasting ensembles, the time series is initially filtered or smoothed. A common procedure

for treating time series data is the Box–Cox (BC) transformation (Box & Cox, 1964), which

is attractive because it can simultaneously stabilize the variance, reduce the skewness of the

distribution, and ensure that the components of the time series are additive (Petropoulos et al.,

2018). Unsurprisingly, several recent studies in forecasting have applied this transformation (Bergmeir

et al., 2016; De Oliveira & Cyrino Oliveira, 2018; Petropoulos et al., 2018; Meira et al., 2021).

The BC transformation is defined as follows:

ωt =

log (yt) , λ = 0(
yλt − 1

)
/λ , λ 6= 0

(1)

where yt represents the original time series, ωt its transformed version, and λ is the transformation

parameter. In all Bagging approaches considered, we restrict λ to lie in the interval [0, 1] and use the

method of Guerrero (1993) to choose its value, following recent studies on Bagging for forecasting,

such as Bergmeir et al. (2016), De Oliveira & Cyrino Oliveira (2018), Dantas & Cyrino Oliveira

(2018) and Meira et al. (2021). In short, the chosen method partitions the original data into subseries

of length equal to the seasonality (or length two, if the series is non-seasonal). Subsequently, the

sample mean m and the standard deviation s are calculated for each of the subseries, and λ is chosen

in such a way that the coefficient of variation of s/(m(1− λ)) across the subseries is minimized.

Following the initial treatment, time series decomposition can be applied, since the estimation error

obtained from further aggregating the extrapolated sub-series is expected to be lower than the

estimation error for the whole series. Two types of decomposition have become widespread in the

literature: Seasonal-Trend decomposition using Loess (STL) (Cleveland et al., 1990), and Empirical

Mode Decomposition (EMD) (Huang et al., 1998). The former consists of six sequential smoothing

operations employing Locally-Weighted Regression (Loess) that decompose the series into three

additive components: trend, seasonal and remainder. When compared to other decomposition

methods, STL is robust to outliers, can deal with any type of seasonality regardless of the data-

frequency, and allows for controlling trend-cycle smoothness (Hyndman & Athanasopoulos, 2021).

By contrast, EMD decomposes the time series into a sum of oscillatory Intrinsic Mode Functions

(IMFs) that are symmetric with respect to their local zero-mean. The number of extrema and

zero-crossings for each IMF are, by definition, equal or allowed to differ at most by one in the whole

data. IMFs are more regular and thus easier to forecast.

Most ensembles adopt STL, prior to generating replicas of the time series. STL has also been

integrated to hybrid forecasting methods, such as the Bagged.BLD.MBB.ETS by Bergmeir et al.

(2016) and the Bootstrap Model Combination of Petropoulos et al. (2018). However, EMD has
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also shown encouraging performance, e.g., EMD-Holt-Winters Bootstrap aggregation (Bagging) of

Awajan et al. (2018) and the Interval Decomposition Ensemble (IDE) of Sun et al. (2018), which

combined bivariate Empirical Mode Decomposition, Interval Multilayer Perceptron and Interval

Holt’s exponential smoothing method.

2.2. Replica generation

The second stage of Bagging approaches concerns the generation of replicas, which are alternative

series that share common properties of the original data. This can be achieved in different ways

(e.g. Monte Carlo simulation, or by resampling key components of the time series). Our proposal

considers replica generation via bootstrapping the remainder component from an STL decomposition.

Two points are key when using bootstrap for time series. The first is the prerequisite of stationarity,

and this is often fulfilled by the remainder. Secondly, the method must ensure that every value from

the original series can be placed anywhere in the bootstrapped series. In this proposal, we deal with

this second issue in three different ways, as follows.

Moving Blocks Bootstrap

The Moving Blocks Bootstrap (MBB) of Künsch (1989) draws data blocks of equal size from the

time series until the desired length is achieved. Hence, for a series of length n, with a block size of

l, n− l + 1 (overlapping) possible blocks exist. However, in order to address any non-stationarity

and/or autocorrelation in the data, Bergmeir et al. (2016) proposes drawing [n/l] + 2 blocks from

the remainder series of a STL Decomposition, and discarding a random number of values, between

zero and l − 1, from the beginning of the bootstrapped series. Subsequently, to obtain a series

with the same length as the (original) remainder series, they further discard as many values as

necessary. This process ensures that the bootstrapped series do not necessarily begin or end on a

block boundary. Finally, the trend and seasonality are combined with the bootstrapped remainder.

Their method requires, however, that a block size parameter is set. In this work, we adopt the MBB

approach for resampling and use a block size l = 24, following previous empirical studies on monthly

time series (Bergmeir et al., 2016; Petropoulos et al., 2018; Meira et al., 2021).

Circular Blocks Bootstrap

The Circular Blocks Bootstrap (CBB) by Politis & Romano (1991) is akin to MBB in that it suggests

sampling data blocks of equal size until the desired series length is achieved. According to CBB,

however, the time series are ‘wrapped’ in a circle before resampling takes place. That is, the start

of the ‘construction’ of the blocks can occur in any instance, since the time series is ‘enveloped’.

This procedure aims to ensure that the first and last l − 1 observations are not subsampled, which
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theoretically makes the CBB superior to MBB. Our choice of block size (l) for CBB follows the

same empirical guidelines for monthly series (24 observations).

Linear Process Bootstrap

The Linear Process Bootstrap (LPB) is a five-step algorithm devised by McMurry & Politis (2010)

that allows resampling time series with drops in the autocovariance structure without the need to

explicitly estimate coefficients. Operating similarly to the Moving Average (MA) sieve bootstrap

counterpart, the LPB estimates the autocovariance matrix of the selected series by fitting a MA-type

autocovariance function. Subsequently, the algorithm pre-whitens the noise with the estimated

autocovariance matrix, and generates bootstraps from the pre-whitened noise. Finally, it post-colors

the bootstrap noise with the estimated autocovariance matrix.

2.3. Forecasting

Following replica generation, forecasting models are applied to the original data and each of its

replicas separately. Exponential smoothing methods are frequently considered at this stage, given

their simplicity and ability to adapt to many different situations (Goodwin, 2010). For example,

exponential smoothing models have been recently applied in combination with bootstrap methods

to forecast electricity consumption (De Oliveira & Cyrino Oliveira, 2018).

In addition to their simplicity and ease of adaptation, exponential smoothing formulations have a the-

oretical foundation in state space modelling (Ord et al., 1997), which has allowed for straightforward

implementations in statistical packages (Hyndman et al., 2002, 2008; Hyndman & Athanasopoulos,

2021). Exponential smoothing models, when defined according to this framework, are known as

ETS, an acronym for ‘ExponenTial Smoothing’ or ‘Error, Trend and Seasonal’, thus reflecting

the components of the time series that are allowed to vary across formulations. The possible

combinations for the trend and seasonal components are depicted in Table 1. In addition, since

the error term can be either additive or multiplicative, a total of 30 different formulations can be

achieved.

Components Seasonal

Trend None (N) Additive (A) Multiplicative (M)

None (N) N, N N, A N, M
Additive (A) A, N A, A A, M
Additive Damped (Ad) Ad, N Ad, A Ad, M
Multiplicative (M) M, N M, A M, M
Multiplicative Damped (Md) Md, N Md, A Md, M

Table 1: Possible combinations of seasonal and trend components under the ETS state-space framework.
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The ETS algorithm selects one combination for each series in the ensemble (the original series and

its replicas). The best model for each time series is then used to generate forecasts for the desired

forecast horizon (number of steps ahead).

Other families of models can be considered to generate the forecasts in Bagging approaches. ARIMA

(Autoregressive, Integrated, Moving Average) formulations, first devised by Box & Jenkins (1970),

are a straightforward alternative. They are similar to exponential smoothing as they can model

trends and seasonal patterns, but are based on autocorrelation and partial autocorrelation functions

of the time series (or transformed stationary series) rather than a structural view of the time series

(level, trend and seasonality). ARIMA models may also be automated, and have been recently

applied in combination with bootstrap methods to forecast electricity consumption (De Oliveira &

Cyrino Oliveira, 2018).

Ensembles of Neural Networks (NNs) have also been used for over 30 years, especially within the

artificial intelligence community, and may include a variety of methods (Barrow & Crone, 2016; Li

et al., 2016; Szafranek, 2019). They are generally seen as a means to make the most of computing

power to address the uncertainty in individual point forecasts. As Rendon-Sanchez & de Menezes

(2019) noted in their review of the literature, ensembles of NNs have been particularly successful

in forecasting short-term electricity demand, and were inspirational in the development of hybrid

approaches that combine forecasts.

Finally, Misiorek et al. (2006) review other linear and non-linear alternatives that were previously

used to forecast electricity spot prices. Most of these methods could be extended to electricity

supply forecasting in the context of Bagging algorithms, as in our case.

2.4. Aggregation

The final stage in Bagging consists of aggregating (combining) forecasts. The median is usually

favored as it may counter the effects of occasional poor forecasts in the generated (bagged) ensemble

– see, for instance, Bergmeir et al. (2016); Dantas et al. (2017); De Oliveira & Cyrino Oliveira (2018).

In this study, we use the median forecast as a benchmark. For reference purposes, we will refer to

the traditional median aggregation strategy in Bagging ensembles as ‘BaggedETS’, as proposed by

Bergmeir et al. (2016).

Petropoulos et al. (2018) proposed a more sophisticated combination strategy known as Bootstrap

Model Combination (BMC), which at first sight is similar to the approach of Bergmeir et al.

(2016) since replicas are obtained by resampling the remainder from a STL decomposition and

are independently predicted using exponential smoothing. However, replicas are used to drive the

selection of the best-fit model, and forecasts are combined using weights reflecting the frequency

that the selected model specifications were identified as best-fit on the pool of replicas. Considering
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all series from two forecast competitions, M (Makridakis et al., 1982) and M3 (Makridakis & Hibon,

2000), the BMC outperformed the approach of Bergmeir et al. (2016).

Pruning, as presented in Section 4.2, is an alternative way to combine the forecasts in a bagged

ensemble, because it uses the information retrieved by the prediction intervals to conduct feature

selection on the ensemble. In doing so, unwanted forecasts (and corresponding intervals) are removed

from the pool of forecasts prior to aggregation. It should be noted that pruning is one of many

possibilities to conduct feature selection in ensemble forecasting. Other recent approaches include the

hierarchical group-lasso regularization of Lim & Hastie (2015), the Information-Theoretic Criteria

devised by Abedinia et al. (2017), the Max-Relevance and Min-Redundancy feature selection filter

of Duan et al. (2018), and a recent Bayesian Bootstrap aggregation algorithm proposed by Song

et al. (2021).

3. Generating prediction intervals

This section summarizes traditional methods for prediction interval generation, and highlights their

main differences. In general, prediction intervals for point forecasts are either based on neural

network architectures or follow a two-step process, whereby a forecast is estimated and then, based

on an estimate of uncertainty, an interval is constructed. From a neural network perspective,

prediction intervals include Delta (Hwang & Ding, 1997), Bayesian (Bishop, 1995) and bootstrap

techniques (Heskes, 1996). Khosravi et al. (2010), for instance, construct prediction intervals for

outputs of Neural Networks (NNs) via Delta and Bayesian techniques. The downside of these

methods is that they make special assumptions about the data distribution. The delta and Bayesian

techniques require that the variance of forecasts should be constant, while the bootstrap for NN-based

predictions requires a smooth variance. These assumptions can make intervals less reliable when

time series are volatile with changing variance.

Two-step prediction interval estimation based on residuals, in turn, has been a common strategy

since the seminal paper of Chatfield (1993). More recently, Khosravi et al. (2013) use Moving Blocks

Bootstrapped Neural Networks and Generalized Auto Regressive Conditional Heteroscedasticity

(GARCH) models to construct prediction intervals for hourly electricity prices in the Australian and

New York energy markets. Vilar et al. (2018), by contrast, use residual-based bootstrap procedures

to construct prediction intervals associated with the functional nonparametric autoregressive model

and the semi-functional partial linear model. Sulandari et al. (2020), in turn, bootstrap the residuals

of a hybrid SSA-LRF-NN (Singular Spectrum Analysis, Linear Recurrent Formula and Neural

Networks) algorithm to generate prediction intervals. Moreover, Du et al. (2020) develop an interval

forecasting approach using the predictions from a hybrid forecasting model combining variational

mode decomposition and an optimized outlier-robust extreme learning machine, and the results
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of five distribution functions tailored to mining the traits of metal prices. The downside of these

proposals is that the quality of prediction intervals depends on both the quality of the point forecasts

and the proxies for uncertainty adopted (e.g. standard deviation of the residuals or quantiles of the

bootstrapped residuals distribution).

4. Proposed methodology

In this section, we extend Bagging strategies presented earlier for point forecast generation to

generate prediction intervals. In addition, a variant of the pruning routine developed in Meira et al.

(2021) is proposed, which focuses on improving the quality of prediction intervals, but can also

increase the accuracy of the point forecasts.

4.1. Extending previous Bagging approaches for interval generation

In this study, prediction intervals are created through Bagging replicating the process for point

forecasts, as outlined in the Section 2. That is, besides aggregating the point forecasts, their

corresponding prediction intervals are combined using the median. This is possible because, regardless

of the resampling approach (MBB, CBB or LPB), the point forecasts in each ensemble are generated

via ETS, with corresponding prediction intervals, given a predefined coverage level. For instance, if a

95% coverage is aimed, a prediction interval is generated using the 2.5% quantile as lower limit and

the 97.5% quantile for the upper limit (Hyndman et al., 2008). In other words, let J be the number

of forecasts involved in the Bagging ensemble (forecasts of the original data and the J − 1 replicas

generated); the upper and lower limits of the Bagged prediction interval can be obtained as follows:

Ut,Bagging = median [Ut,1, ..., Ut,J ]

Lt,Bagging = median [Lt,1, ..., Lt,J ]
(2)

where Ut,1, ..., Ut,J and Lt,1, ..., Lt,J are the upper and lower limits of the J point forecasts in the

ensemble, respectively. Equation 2 is applied for each step in the forecast lead time, i.e., t = 1, ..., h.

Figure 2 summarizes the generation of Bagged Point Forecasts (PFs) and Prediction Intervals (PIs).

BaggedETS aggregates the J Point Forecasts (PFs) and their J corresponding Prediction Intervals

(PIs) using their medians.
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Figure 2: Generation of point forecasts and corresponding prediction intervals via BaggedETS.

4.2. Pruning

Following Meira et al. (2021), the rationale behind pruning for Bagging in forecasting algorithms is to

compare the J prediction intervals corresponding to each of the J forecasts in the bagged ensemble,

and discard those showing unusual behaviors, before final aggregation. To that end, pruning collects

the upper and lower limits of the prediction intervals and conducts an outlier detection procedure

in the two sets separately. In other words, it searches for outliers among the J upper prediction

interval limits and among the J lower prediction interval limits. Outliers are defined as any values

lying outside the range of ±1.5× IQR, where IQR = Q3 −Q1 is the interquartile range.

The outlier detection procedure in pruning is conducted for every step in the forecast horizon and

considers all competing upper (or lower) limits, regardless of whether one or several of these limits

have already been identified as outlier in a previous step. Finally, every point forecast (and prediction

interval) associated with an upper or lower limit that was identified as outlier (even if just once)

throughout the forecast horizon is discarded from the ensemble before aggregation. Hence, at the

end of the outlier detection procedure, two sets of forecasts (and corresponding prediction intervals)

are recommended to be discarded: j1, corresponding to the forecasts whose upper prediction interval

limits were judged outliers among the other upper limits; and j2, corresponding to the forecasts

whose lower interval limits were judged outliers among the other lower limits. Given that j1 and

j2 are subsets of the same number of forecasts in the original Bagging ensemble, the final set of

forecasts to be removed via pruning is given by k = j1 + j2 − (j1 ∩ j2). After removing outliers

during pruning, the BaggedETS routine proceeds as usual: by aggregating the remaining J −k point

forecasts via the median in order to generate the final point forecast, as well as their corresponding

11



upper and lower prediction limits so as to generate the final prediction interval. Figure 3 illustrates

the main steps of pruning.

Figure 3: Pruning for BaggedETS routines, where k = j1 + j2 − (j1 ∩ j2) is the set of point forecasts (and
prediction intervals) to be removed from the ensemble of J forecasts, prior to median aggregation.

5. Data and evaluation setup

The dataset consists of monthly series of total electricity supplied (in gigawatt-hours, GWh), which

were collected from the Statistical Office of the International Energy Agency (IEA, 2021), and span

16 countries from January 2000 to September 2020. Observations from January 2000 to September

2018 are considered as training set. The test set comprises the last 24 observations: October

2018 – September 2020. Figures 4 and 5 depict the original time series. As can be noted, total

electricity supply differs considerably between countries. In addition, some series appear to have

been significantly affected by the economic distress brought by the COVID-19 pandemic, particularly

during the months of March and April 2020, when the negative impacts of social distancing and
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lockdown measures were present. Although prediction intervals for electricity supply are desired

to be sharp, in the sense that they should not be too large in amplitude, they should also be wide

enough to allow for possible downturns in periods of economic stress.

Figure 4: Total electricity supplied in gigawatt-hours (GWh) per country. Source: IEA (2021).
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Figure 5: Total electricity supplied in gigawatt-hours (GWh) per country. Source: IEA (2021).

We compare our approach with several forecasting methods, which are summarized in Table 2. We

note that implementation is conducted using the R programming language (R Core Team, 2021)

and related packages. More specifically, R version 4.0.2 (2020-06-22) and forecast version 8.12 for

ETS and ARIMA modelling are adopted. Furthermore, a parallel implementation was utilized,
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which relied on the following packages: doSNOW (1.0.18), foreach (1.5.0) and snow (0.4–3). For

this particular study, 99 replicas were generated per ensemble. All resampling procedures were

conducted using the same random seed, which was set to 123 using the set.seed() function in R

before bootstrapping.

Method Implementation / Source Short description

Traditional benchmarks

ETS R forecast package
ets() function

Automatic Error, Trend and
Seasonality specification

ARIMA R forecast package
auto.arima() function

Automatically-selected
(S)ARIMA model

Holt-Winters R forecast package
hw()

Three parameter additive
Holt-Winters method

Competing Bagging approaches

BaggedETS Bergmeir et al. (2016) see Section 2.4 for details

BMC Petropoulos et al. (2018) see Section 2.4 for details

Table 2: Selected methods for comparison with the proposed approaches. Notes:
ets() and auto.arima() are used for model selection. The forecast() func-
tion is then applied to generate the forecasts. ‘BaggedETS’ is a shortening for
Bagged.BLD.MBB.ETS, proposed by Bergmeir et al. (2016) which considered
the Moving Blocks Bootstrap (MBB) as the resampling algorithm. We consider
BaggedETS with MBB, and two other alternatives for resampling: Circular Blocks
Bootstrap (CBB) and Linear Process Bootstrap (LPB) . We name these strate-
gies CBB BaggedETS and LPB BaggedETS. BMC stands for Bootstrap Model
Combination.

To gauge the accuracy of the forecasts, we summarize the results according to the average and

average rank across all time series based on several metrics. For point forecasts, we use the Mean

Absolute Scaled Errors (MASEs) and the symmetric Mean Absolute Percentage Errors (sMAPEs),

which are defined as follows:

MASE =
1

h

∑h
t=1

∣∣∣Yt − Ŷt∣∣∣
1

n−m
∑n

t=m+1 |Yt − Yt−m|
(3)

sMAPE =
1

h

h∑
t=1

2
∣∣∣Yt − Ŷt∣∣∣
|Yt|+

∣∣∣Ŷt∣∣∣ × 100% (4)

where Yt and Ŷt are the actual and forecasted values of the series, respectively; t is the forecast

lead time from 1 to h steps ahead; n is the number of train set observations; and m is the seasonal

period.
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For prediction intervals, Mean Scaled Interval Scores (MSISs) are adopted, i.e.:

MSIS =
1

h

∑h
t=1 (Ut − Lt) +

2
α (Lt − Yt)1 {Yt < Lt}+ 2

α (Yt − Ut)1 {Yt > Ut}
1

n−m
∑n

t=m+1 |Yt − Yt−m|
(5)

where Ut and Lt are the upper and lower limits of the prediction interval produced using the selected

method and 1− α is the desired (theoretical) coverage level.

For all metrics herein considered, the lower the values, the more accurate the point forecasts (or

prediction intervals, depending on the case) are. Given their advantage of being scale independent,

both MASE and sMAPE rank among the most used metrics in point forecast evaluation. As a

result, they are usually considered as the official evaluation metrics for point forecasts in forecasting

competitions – see, for instance, the recent M4 Competition (Makridakis et al., 2018). The MSIS, in

turn, introduces penalties for the width (Ut − Lt) of the prediction interval and for the instances

where the actual values lie outside the specified bounds of the interval, thus offering a good balance

between spread and coverage (hit rates).

For robustness assessments, besides the average and average rank across all time series of the above

metrics, we also compare the boxplots of the values obtained for each metric, when the methods

were individually applied to each country involved in the analysis.

6. Results and discussion

6.1. On forecasting performance

Forecasting performance for point forecasts and prediction intervals evaluation is summarized in

Tables 3 and 4, respectively. Averages and average ranks of the accuracy metrics (sMAPE, MASE

and MSIS) across all time series are provided. For each metric, the best performance is highlighted

in bold, whilst the second best appears in italics. Overall, the best point forecasts are based on

combining the MBB algorithm for resampling with the Pruning routine as an additional, intermediary

step before aggregation. The same holds for prediction intervals, since the MBB PrunedBaggedETS

provides the lowest values for average MSIS, regardless of the desired hit rate (theoretical coverage

for the prediction interval). In terms of average rank MSIS, MBB PrunedBaggedETS also provides

the most competitive results, as it is only outperformed by the MBB BaggedETS approach on a

single occasion, when the desired coverage rate is 95%.
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Resampling
Algorithm

Combining
Method

Average
sMAPE

Avg. Rank
sMAPE

Average
MASE

Avg. Rank
MASE

Bagging approaches

MBB Pruned BaggedETS 4.096 5.438 1.036 5.063
MBB BaggedETS 4.109 5.438 1.039 5.188
MBB BMC 4.206 6.875 1.103 7.219
CBB Pruned BaggedETS 4.117 6.094 1.043 5.969
CBB BaggedETS 4.120 5.906 1.044 5.781
CBB BMC 4.236 6.938 1.108 7.094
LPB Pruned BaggedETS 4.132 5.938 1.050 5.938
LPB BaggedETS 4.153 5.875 1.054 5.875
LPB BMC 4.289 7.438 1.120 7.875

Traditional benchmarks

None ETS 4.284 6.125 1.128 6.125
None ARIMA 4.350 6.750 1.114 6.750
None Holt-Winters 4.868 9.188 1.260 9.125

Table 3: Electricity supplied – 24 steps (October 2018 – September 2020) – Point forecasts
evaluation. Average and average rank of the evaluation metrics across all countries considering
24 steps ahead forecasts (best in bold, second best in italics). MBB, CBB and LPB stand for
Moving Blocks Bootstrap, Circular Blocks Bootstrap and Linear Process Bootstrap, respectively.
Block size for the MBB and CBB algorithms comprises 24 observations. BMC stands for
Bootstrap Model Combination.

The combined use of CBB for resampling and Pruning before aggregation is also competitive. It

outperforms the traditional benchmarks and the other Bagging approaches. Among the latter, the

ensembles that consider the LPB algorithm for resampling provide the least competitive forecasts

and prediction intervals. Yet, their performances, in most cases, are still superior to the traditional

benchmarks.

For each resampling algorithm considered, the Pruned BaggedETS ensembles outperformed the

BMC approaches not only in terms of prediction intervals, but also for point forecasts. This is

an important contribution of this paper, as it demonstrates that strategies initially developed to

sharpen prediction intervals are also capable of improving point forecasts. Given this finding, it

should be noted that the BMC has been claimed to be better than the original BaggedETS routine

of Bergmeir et al. (2016) for point forecasts, following its performance on forecasting time series

from two large competitions (M and M3). This highlights the potential of the extensions to Bagging

that are introduced in the present study.
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Resampling
Algorithm

Combining
Method

80%
coverage

85%
coverage

90%
coverage

95%
coverage

Average MSIS

MBB Pruned BaggedETS 4.810 5.297 6.010 7.246
MBB BaggedETS 4.852 5.345 6.052 7.265
MBB BMC 5.244 5.746 6.403 7.472
CBB Pruned BaggedETS 4.862 5.349 6.058 7.333
CBB BaggedETS 4.898 5.388 6.093 7.352
CBB BMC 5.256 5.759 6.409 7.463
LPB Pruned BaggedETS 4.927 5.436 6.178 7.519
LPB BaggedETS 4.971 5.472 6.206 7.530
LPB BMC 5.278 5.788 6.442 7.521
None ETS 5.287 5.780 6.460 7.684
None ARIMA 5.448 6.044 6.917 8.606
None Holt-Winters 5.952 6.466 7.173 8.401

Average Rank MSIS

MBB Pruned BaggedETS 3.813 4.438 4.688 5.188
MBB BaggedETS 5.125 5.125 5.125 5.063
MBB BMC 6.188 6.500 6.250 6.063
CBB Pruned BaggedETS 5.125 5.375 5.000 5.438
CBB BaggedETS 6.188 6.375 5.875 5.438
CBB BMC 6.750 6.625 6.500 6.625
LPB Pruned BaggedETS 6.063 5.563 5.813 6.188
LPB BaggedETS 7.188 6.688 6.563 6.250
LPB BMC 6.875 7.188 7.000 6.875
None ETS 6.438 6.125 7.313 7.063
None ARIMA 7.375 7.750 7.813 8.500
None Holt-Winters 10.875 10.250 10.063 9.313

Table 4: Electricity supplied – 24 steps (October 2018 – September 2020) – Prediction
intervals evaluation considering four different theoretical coverages. Average MSISs and
average rank MSISs across all countries considering 24 steps ahead forecasts (best in
bold, second best in italics). Other notes: please refer to Table 3.

6.2. Distribution of forecast error metrics

We compare the distributions of the error metrics when the methods are individually applied to

each time series via boxplots. These are depicted in Figures 6 and 7 for sMAPE and MASE values,

respectively, and in Figures 8 and 9 for MSIS values, where for simplicity, boxplots of MSIS computed

at the 90% and 95% theoretical hit rates are presented.
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Figure 6: Boxplots – sMAPE values for each forecasting method considered.

Figure 7: Boxplots – MASE values for each forecasting method considered.
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Figure 8: Boxplots – 90% theoretical coverage MSIS values for each forecasting method considered.

Figure 9: Boxplots – 95% theoretical coverage MSIS values for each forecasting method considered.
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The boxplots for point and interval forecast metrics are in line with the average results described in

the previous section, in the sense that they suggest better performances from the ensemble methods.

Among the latter, the only difference from Table 3 is that the CBB and LPB Pruned BaggedETS

have slightly lower median MASEs than the MBB Pruned BaggedETS, which ranked first in terms

of lowest average and average rank values for sMAPE and MASE. The differences in median sMAPE

among pruned approaches are practically nonexistent. Overall, we can infer that not only pruned

bagging approaches result in lower averages, but they also appear to be less sensitive to outliers.

6.3. Does performance vary with country?

Turning the attention to the individual (per country) performance of the best identified method in

Tables 3 and 4 (method in bold), Figures 10 and 11 illustrate the differences between the forecasts

obtained via the MBB Pruned BaggedETS approach and the observed values throughout the test

set period for each country. The figures also depict the prediction intervals generated using the

same strategy. In half of the cases considered, the actual values remain within the boundaries of

the generated prediction intervals, despite the large forecasting horizon (24 months ahead) and,

particularly, the COVID-19 pandemic. For the countries in which total electricity supplied registered

values outside the boundaries of the prediction intervals, the actual levels remained below the lower

limit of the prediction intervals for two or three months (maximum). This situation occurred mostly

during March and April 2020, when the negative impacts of social distancing and lockdown measures

due to the widespread dissemination of the new coronavirus led to a significant fall in business and

consumer demand, factory closures, and supply chain disruptions. The downturn in total electricity

supply, however, did not last long, given the rapid resumption of electricity consumption in the

summer (with the exception of New Zealand, all countries herein considered experience summer

between June and August). This endorses the importance of having reliable prediction intervals, to

support capacity management.
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Figure 10: 24 steps ahead forecasting: forecasts and prediction intervals in blue, actual values in red.
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Figure 11: 24 steps ahead forecasting: forecasts and prediction intervals in blue, actual values in red.

6.4. Robustness checks for prediction intervals

In this section, we evaluate prediction intervals under alternative forecasting horizons and test set

sample sizes. We consider two different periods which were not affected by the COVID-19 pandemic:

the first comprised the months between October 2018 and May 2019; and the second comprised the
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eight subsequent months: June 2019 to January 2020. The average accuracy, based on MSIS, for

both periods is summarized in Table 52.

Resampling
Algorithm

Combining
Method

Avg MSIS
(80% cov)

Avg MSIS
(85% cov)

Avg MSIS
(90% cov)

Avg MSIS
(95% cov)

October 2018 – May 2019

MBB Pruned BaggedETS 3.120 3.397 3.795 4.469
MBB BaggedETS 3.163 3.450 3.855 4.525
MBB BMC 3.790 4.125 4.541 5.169
CBB Pruned BaggedETS 3.231 3.510 3.898 4.568
CBB BaggedETS 3.260 3.552 3.941 4.614
CBB BMC 3.792 4.126 4.535 5.159
LPB Pruned BaggedETS 3.218 3.506 3.906 4.649
LPB BaggedETS 3.250 3.533 3.925 4.656
LPB BMC 3.804 4.137 4.558 5.188
None ETS 3.728 4.027 4.461 5.077
None ARIMA 3.390 3.659 3.987 4.498
None Holt-Winters 3.850 4.140 4.559 5.155

June 2019 – January 2020

MBB Pruned BaggedETS 3.978 4.340 4.843 5.512
MBB BaggedETS 4.028 4.399 4.898 5.527
MBB BMC 4.576 5.035 5.606 6.576
CBB Pruned BaggedETS 4.018 4.399 4.925 5.604
CBB BaggedETS 4.094 4.480 5.015 5.665
CBB BMC 4.586 5.045 5.621 6.599
LPB Pruned BaggedETS 4.065 4.463 5.013 5.713
LPB BaggedETS 4.116 4.505 5.063 5.742
LPB BMC 4.571 5.026 5.599 6.561
None ETS 4.504 4.887 5.427 6.363
None ARIMA 4.543 4.938 5.407 6.065
None Holt-Winters 5.280 5.756 6.291 7.004

Table 5: Prediction interval evaluation under alternative forecasting horizons (est in bold,
second best in italics).

The relative performance across methods is consistent, with MBB Pruned BaggedETS outperforming

the other methods for all theoretical coverages considered. Pruned BaggedETS approaches perform

better than the their original counterparts (BaggedETS with no pruning conducted) and the BMC

method, regardless of the resampling algorithm considered (MBB, CBB or LPB). This is a substantial

improvement over previous methods.

2Average rank MSIS results are not shown to conserve space, but can be made available upon request.
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6.5. Sensitivity analysis

We consider point and interval forecasting performance under alternative settings. First, the accuracy

of the prediction intervals generated by several methods for a wider range of theoretical coverage

levels is assessed. Secondly, the average hit rates (actual coverages) and spreads (widths of the

prediction intervals) of the same methods included in the first analysis are assessed, with respect

to sharpness and calibration. The third analysis concentrates on the average values of the point

forecasts and prediction interval error metrics for the Pruned BaggedETS approaches when different

measures of outlier detection in pruning are taken into consideration. Finally, the performance of

Bagging approaches when a larger number of replicas is considered (999 replicas, in lieu of 99, as in

previous sections) is addressed.

6.5.1. Interval accuracy for multiple theoretical coverage levels

Figure 12 illustrates the average MSIS obtained from four different forecasting methods for the

80% to 99% range of desired (theoretical) coverage levels. The four methods considered are: the

Automatic Error, Trend and Seasonality specification (ETS algorithm), applied to the original

series; the Bootstrap Model Combination (BMC); the BaggedETS; and the Pruned BaggedETS. All

Bagging approaches used the Moving Blocks Bootstrap (MBB) algorithm as resampling method, for

comparison purposes3.

Figure 12: Sensitivity analysis – Average MSIS at different theoretical (desired) coverage levels (80% to 99%).

As previously observed, all ensemble approaches perform considerably better than the single ETS

method, regardless of the desired coverage level. Among Bagging algorithms, the Pruned BaggedETS

3The comparisons among Bagging approaches that used alternative resampling methods (CBB or LPB) are not
depicted here to conserve space but can be made available upon request.
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approach is the most competitive for almost all range of theoretical coverage levels, outperforming

the other methods up to the 97% level. When a 98 or 99% coverage is desired, the BMC delivers

better results, since its prediction intervals are considerably wider than those generated using

BaggedETS or Pruned BaggedETS.

6.5.2. Sharpness and calibration

In order to assess the sharpness and calibration of the generated prediction intervals, we plot the

average hit rates per method – the average of their actual, observed coverage levels for each time

series –, against their average spreads – their average interval widths divided by the in-sample

mean of each time series. A prediction interval is sharp when it is capable of achieving the desired

(theoretical) coverage level using a small width, i.e., when the difference between its upper and lower

limit is not large, when compared with competing methods. Calibration concerns the ability of the

forecasting method to deliver a prediction interval with approximately the same coverage level as

the desired coverage level. In other words, the closer the hit rate is to the theoretical coverage, the

more calibrated the prediction interval is.

The results of the analysis are depicted in Figure 13, where the average hit rates of the same

methods considered in the previous subsection are shown against their average spreads (average

standardized widths of their prediction intervals). The figure indicates that, for the same hit rate,

the Pruned BaggedETS and the BaggedETS approaches generate narrower prediction intervals than

the BMC and ETS methods. Hence, the first pair is sharper. In addition, Figure 13 highlights that

the prediction intervals originated via the Pruned BaggedETS and the BaggedETS approaches are

better calibrated than the others, since they usually deliver hit rates that are close to the expected

hit rates. For instance, the first points of every curve in the figure indicate the hit rates and spreads

of the involved methods when an 80% coverage level is desired. At this level, the hit rates of the

Pruned BaggedETS and the BaggedETS approaches are close to 80% (the desired coverage), while

the ETS prediction interval covered almost 85% of all observed values.
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Figure 13: Sensitivity analysis – Average hit rates versus average spread (width) of the prediction intervals.

6.5.3. Different measures of outlier detection

We now focus on the possible differences arising in Pruned Bagging approaches when different

measures of outlier detection are considered. The results are summarized in Table 6, for point

forecasts and prediction intervals error metrics, and in Figure 14, where the MSIS values across a

wide range of theoretical coverage levels are plotted.

Overall, the analysis favors less rigid metrics for prediction interval outlier detection in pruning.

For instance, the values of the average error metrics for pruning approaches that considered only

the interquartile range (with no multipliers) for outlier detection were slightly lower than the error

metrics of the pruning strategies that used larger interquartile ranges to the same end.
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Resampling
Algorithm

Combining
Method

Average
sMAPE

Average
MASE

Avg MSIS
(90% cov)

Avg MSIS
(95% cov)

Pruning using IQR for outlier detection

MBB Pruned BaggedETS 4.101 1.036 5.996 7.236
CBB Pruned BaggedETS 4.090 1.037 6.028 7.290
LPB Pruned BaggedETS 4.090 1.042 6.190 7.542

Pruning using 1.5× IQR for outlier detection

MBB Pruned BaggedETS 4.096 1.036 6.010 7.246
CBB Pruned BaggedETS 4.117 1.043 6.058 7.333
LPB Pruned BaggedETS 4.132 1.050 6.178 7.519

Pruning using 3× IQR for outlier detection

MBB Pruned BaggedETS 4.108 1.039 6.051 7.268
CBB Pruned BaggedETS 4.118 1.043 6.096 7.356
LPB Pruned BaggedETS 4.154 1.055 6.215 7.551

Traditional benchmarks

None ETS 4.284 1.128 6.460 7.684
None ARIMA 4.350 1.114 6.917 8.606
None Holt-Winters 4.868 1.260 7.173 8.401

Table 6: Sensitivity analysis – Point and interval forecasting accuracy evaluation for pruned
approaches using different measures for outlier detection in pruning. Notes: The forecasting
horizon is 24 steps (October 2018 – September 2020). Best results are highlighted in bold and
the second best in italics.

Figure 14: Sensitivity analysis – Average MSIS – MBB Pruned BaggedETS.
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6.5.4. Sensitivity to the number of replicas

In order to assess the sensitivity of our proposal to the number of replicas that are generated in

its second stage, 24 steps-ahead forecasting performance is compared when 99 and 999 replicas are

used. The results are compiled in Table 7. In brief, differences in forecasting performance are not

substantial, and perhaps surprising, slightly better results appear to be achieved with 99 replicas.

Nonetheless, it can be observed that Bagging and, particularly, with the addition of pruning, can

generate reliable forecasts and prediction intervals for different ensemble sizes.

Resampling
Algorithm

Combining
Method

Average
sMAPE

Average
MASE

Avg MSIS
(90% cov)

Avg MSIS
(95% cov)

Bagging approaches using 99 replicas

MBB Pruned BaggedETS 4.096 1.036 6.010 7.246
MBB BaggedETS 4.109 1.039 6.052 7.265
MBB BMC 4.206 1.103 6.403 7.472
CBB Pruned BaggedETS 4.117 1.043 6.058 7.333
CBB BaggedETS 4.120 1.044 6.093 7.352
CBB BMC 4.236 1.108 6.409 7.463
LPB Pruned BaggedETS 4.132 1.050 6.178 7.519
LPB BaggedETS 4.153 1.054 6.206 7.530
LPB BMC 4.289 1.120 6.442 7.521

Bagging approaches using 999 replicas

MBB Pruned BaggedETS 4.116 1.041 6.041 7.260
MBB BaggedETS 4.126 1.043 6.068 7.277
MBB BMC 4.198 1.103 6.412 7.472
CBB Pruned BaggedETS 4.103 1.039 6.023 7.281
CBB BaggedETS 4.114 1.042 6.059 7.316
CBB BMC 4.225 1.106 6.408 7.486
LPB Pruned BaggedETS 4.099 1.040 6.107 7.445
LPB BaggedETS 4.114 1.043 6.126 7.451
LPB BMC 4.282 1.116 6.414 7.497

Traditional benchmarks

None ETS 4.284 1.128 6.460 7.684
None ARIMA 4.350 1.114 6.917 8.606
None Holt-Winters 4.868 1.260 7.173 8.401

Table 7: Sensitivity analysis – Performance of Bagging approaches using different numbers of
replicas. Notes: The forecasting horizon is 24 steps (October 2018 – September 2020). Best
results are highlighted in bold and the second best in italics.

6.6. Discussion, implications and suggestions for further research

Overall, the results imply that the proposed methodology is adequate and robust to forecast

electricity supply over both short and considerably long time horizons, as well as during periods of
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considerable economic stress. Moreover, the prediction intervals generated do not increase much in

amplitude over the forecasting horizon, which is rare in traditional forecasting approaches. This

is particularly important for decision-making in the energy industry, since the more accurate and

sharper the prediction intervals are, the easier it is to plan, thus the method has the potential for

real savings in the sector.

The present study demonstrates the value of pruning prior to aggregation in forecasting ensembles.

According to our results, the odds of obtaining undesirable outputs are substantially reduced,

given that most outliers are removed from the ensemble. It should be noted that, in several

countries, electricity demand (and consequently the need for electricity supply) depends on certain

macroeconomic indicators, as for example Gross Domestic Product, Gross Fixed Capital Formation

and Final Domestic Consumption (Nafidi et al., 2016; Streimikiene & Kasperowicz, 2016). Hence,

one may consider a multivariate setting, in order to address the influence of external factors on

electricity time series (Maçaira et al., 2018). We emphasize, however, that multivariate formulations

usually under perform when forecasting several steps ahead. Hence, the combination of ensemble

methods and univariate forecasting techniques is a promising avenue for a wide range of time series

in different industries/sectors.

As methodological extensions of this research, investigations of other decomposition schemes and

bootstrap algorithms constitute a future research agenda. For country-specific assessments, further

studies may benefit from a hierarchical disaggregation approach. For electricity supply forecasting,

this would imply using the proposed methods for each class of the domestic electric supply system.

Such class-tailored analyses may contribute to a more in-depth understanding of the demand for

electricity across countries, thus also potentially improving the quality of the final forecasts for total

supply.

7. Summary and conclusions

Accurate prediction intervals of electricity to be supplied plays an increasingly important role in

the energy sector, as both over-forecasting and under-forecasting may result in financial losses,

particularly in privatized and deregulated markets. Following the philosophy of the ‘wisdom of the

crowds’, this study proposes a novel, ensemble-based approach to generate accurate and precise

forecasts and prediction intervals of electricity supply over considerably long periods and for several

economies. The methodology combines Bagging algorithms, time series methods and new pruning

routines capable of feature selection before aggregation.

In all, the results obtained in this study endorse the strength and resilience of the proposed approaches

even in periods of economic distress. The performance gains are noteworthy since accurate forecasts

and, particularly, prediction intervals for electricity supply, are paramount for profit/cost optimization
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and investment strategies in the energy sector. They also provide valuable inputs for policymakers

and regulators concerned with the provision of energy infrastructure, affordable high-quality services,

and security of supply. Moreover, this new methodology is flexible, for it can be used in different

contexts.
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