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Abstract
The present work investigates the application of Machine Learning and Artificial Neural Networks for tackling the com-
plex issue of transcritical sprays, which are relevant to modern compression-ignition engines. Such conditions imply the
departure of the classical thermodynamic perspective of ideal gas or incompressible liquid, necessitating the use of costly
and elaborate thermodynamic closures to describe property variation and simulation methods. Machine Learning can
assist in several ways in speeding up such calculations, either as a compact, trained thermodynamic model that can be
coupled to the flow solver, or as a surrogate predictive tool of spray characteristics. In this work, such applications are
demonstrated and their performance is assessed against more traditional approaches. Such applications involve the pre-
diction of macroscopic spray characteristics, for example, the spray penetration over time, or the spray distribution in
space and time, and predictions of fluid properties for the thermodynamic states encountered in such applications.
Macroscopic characteristics can be adequately predicted by relatively simple network structures, involving just a hidden
layer of 3–4 neurons, whereas prediction of thermodynamic states requires several layers of 5–20 neurons each. The
results of integrating Artificial Neural Networks in transcritical sprays are rather promising; prediction of thermody-
namic properties at pressures greater than 1bar has effectively zero error, yielding simulations indistinguishable from
standard tabulated approaches with minimal overhead. When used as a regression method for time-histories either of
spray characteristics or spray distributions, the results are within experimental uncertainty of similar experiments, not
included in the training dataset.
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Introduction

Fuel atomisation and mixing is the core in every
Internal Combustion Engine (ICE) operation, be it
classical automotive engines,1 aircraft turbines or aero-
space propulsors,2,3 affecting engine performance and
emissions. More specifically to automotive and trans-
portation sectors, the understanding and prediction of
atomisation phenomena is of utmost importance to
Fuel Injection Equipment (FIE) manufacturers, as they
are effectively tied to vehicle regulations applicable
globally, see the recent Euro-legislation in European
Union4 or the Clean Air Act Amendments in the US.5

However, atomisation is a rather complex topic on its
own,6,7 both from an experimental and numerical
standpoint, given the vast disparity of temporal and
spatial scales in the flow field. To provide some context
to this perspective, the spatial scales of injection in a
modern vehicle may range from 10-2m, corresponding
to the cylinder bore-size,8 to even the 10-6m, corre-
sponding to the miniscule droplets formed due to jet
disintegration; typical jet velocities range from 200m/s
to even 700m/s, for gasoline and diesel FIE respec-
tively, consequently emerging time scales are in the
order of 10-3–10-6 s. Additional complexities arise from
the transient nature of boundaries (moving geometries
of the piston/cylinder or valves), phase change pro-
cesses and finally combustion reactions and emission
formation.

Admittedly, much progress has been made the last
years to promote understanding of fuel atomisation,
from both experimental and computational sides.
Indicatively, on the experimental techniques for spray
diagnostics, notable recent works involve, for example,
the pioneering works of Pickett et al.9 in an effort to
quantify fuel mixing and penetration using Rayleigh
Scattering investigations in high pressure and tempera-
ture Diesel injection. The works of Weiss et al.10 and
Hwang et al.11 discussing the development and applica-
tion of a novel optical 3D tomography technique for
reconstructing the 3D liquid volume fraction of gaso-
line sprays, or Strek et al.12 exploring the capabilities of
X-ray radiography and tomography to determine den-
sity distribution of gasoline sprays. Computational
models have evolved to capture the turbulent mixing of
fuel sprays with the ambient gases, see, for example,
the works of Yue et al.13 in gasoline injectors and
sprays, the fundamental work on highly resolved fuel
break-up by Agarwal and Trujillo14 investigating the
effect of geometrical features of the injector in spray
formation for the Engine Combustion Network (ECN)

Spray-A injector,15 or subsequent investigations of
Battistoni et al.16 in Diesel injector related geometries.

Additional complexities in Diesel fuel injection exist,
due to strong property variations the fuel is subjected
to. Indicatively, for modern Diesel engines, a pressure
variation of more than 2000 bar (modern systems may
even reach 3000 bar17) to effectively 0bar (cavitating
regions in the fuel injector) and a temperature variation
from 363K (high pressure side of the fuel pump) to
more than 1000K (engine cylinder) are expected.
Commonly used assumptions of, for example, incom-
pressible fluids are no longer valid and non-ideal ther-
modynamic effects, such as viscous heating and Joule-
Thomson cooling become important.18,19 Such effects
require accurate thermodynamic closures and have
been progressively described with more advanced mod-
els. Most notable works are the pioneering work of
Knudsen et al.20 utilising cubic Equations of State
(EoS) to model fuel properties, followed chronologi-
cally by Matheis and Hickel21 and Yi et al.,22 both
introducing Vapor-Liquid Equilibrium (VLE) calcula-
tions for the fuel/gas mixture, and Koukouvinis
et al.23,24 examining higher order thermodynamic mod-
els, such as NIST REFPROP25 and Perturbed Chain
Statistical Associating Theory (PC-SAFT).26 All the
aforementioned works, represent rather detailed exam-
ples, involving a high computational cost and requiring
large computing resources, which are not always readily
available on the industrial level. Moreover, such investi-
gations are likely to become more pronounced in the
future, given the interest on investigating even more
extreme injection pressures, see for example, Vera-
Tudela et al.27 where the development and testing of an
experimental injector operating at 5000 bar is discussed.

Even if electrification is a promising candidate for
alternative propulsion in vehicles, the interest on ICEs
is unlikely to diminish, especially for heavy duty and
transportation applications, where high energy density
and vehicle autonomy are required,28,29 hence the need
of development of new and better engine concepts will
undoubtedly persist.30 An additional parameter that
has to be considered is that in an effort to mitigate the
immediate and inevitable environmental consequences,
hydrogen-derived, CO2-neutral synthetic fuels pro-
duced using renewable energy sources (e-fuels) are
increasingly considered for future application.31

Governments at the European level are investigating
and are pushing for H2 technological leadership,32

while significant private sector investments,33,34 have
presented their plans to establish zero net emissions e-
fuel production plants in Europe. Hence, it is expected
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that in the future there will be a need of successfully
designing versatile energy production and propulsion
systems, operating with a variety of fuels derived from
different sources, either synthetic, bio-derived, fossil or
mixtures of all the aforementioned. The modelling of
such fuels, of which measured properties may not be a-
priori known, will require adaptive methods that can
describe fundamental characteristics of operation with
minimal input; to this goal, the use of Machine
Learning is proposed here, as a means of providing
quantitative predictions at unknown conditions using
pre-existing investigations either from experiments or
simulations.

Machine Learning (ML) as a concept has emerged in
the 1960s,35 in the form of learning automata, initially
applied on games. Since then it has expanded and
evolved greatly to cover a wide array of applications
relevant to pattern recognition, feature extraction, clas-
sification and regression, by offering the capability of
processing enormous amount of data and deriving
meaningful relations to be subsequently used, hence
their link to data mining. Nowadays it is being applied
in the form of Artificial Neural Networks (ANNs),
among others, on a vast array of fields spanning across
all human activities, from telecommunications and
medicine to even social studies and arts.36 In the field of
fluid mechanics, ANNs are currently being investigated
as a complementary tool to Computational Fluid
Dynamics (CFD) for accelerating design processes. A
recent thorough review37 discusses a variety of applica-
tions in fluid mechanics, involving flow feature extrac-
tion, turbulence modelling, optimisation and flow
control. A variety of recent works demonstrates the
capability of Neural Networks in modelling various
types of flows, for example, Bhatnagar et al.,38 Sekar
and Khoo39 the flow around different aerodynamic
shapes, although application in multiphase flows is yet
limited; indeed, only a handful of published works exist,
with notable examples the works of Ansari et al.40 and
Sanchez-Gonzalez et al.41 who simulated ‘dam-break’
and liquid sloshing scenarios using Machine Learning,
and the work of Chaussonnet et al.42 who employed
Machine Learning for feature recognition of sprays.

The motivation here is to discuss and present
Machine Learning techniques that will significantly
accelerate e-fuel and FIE development by predicting
simultaneously the in-nozzle flow and its effect on the
characteristics of vapourising liquid fuel sprays at time
scales 3–4 orders of magnitude faster compared to
today’s state-of-the-art experimentation and CFD
simulations. Predictions consider the fuel composition,
FIE design and the varying P-T conditions realised in
combustion systems. Central to this process is the
method predicting the physical properties of the fuel.
Despite that the existing fuel property libraries are lim-
ited to simplified hydrocarbon components, Equations
of State (EoS) using the Perturbed Chain Statistical
Associating Fluid Theory (PC-SAFT) have been effi-
ciently applied to simultaneous predictions of nozzle

flows and sprays for a wide range of fuel composi-
tions.23,43–45 They capture the effect of the variation of
fuel density, viscosity, heat capacity and conductivity
with respect to P-T realised in FIE and ICE (up to
30%, 104%, 40% and 60%, respectively), as well as the
phase-change characteristics among different fuel com-
ponents. Having these aspects in mind, the aim is to
address a variety of applications relevant to high pres-
sure/temperature fuel mixing sprays, in the following
ways:

(a) Regression of thermodynamic properties: the
behaviour of fluids at extreme variations of pres-
sure and temperature departs classical assump-
tions, hence more complex Equations of State
(EoS) are required to describe accurately property
variation (the interested reader is addressed to,
Koukouvinis et al.,23 Vidal et al.43 and Perez
et al.46). Such models, while accurate, are rather
time consuming to solve on the fly during simula-
tion. On the other hand, precomputing the EoS in
a tabular form and then using it through interpo-
lations, whereas effective (see indicatively
Koukouvinis et al.,23 Kyriazis et al.47 and
Dumbser et al.48), can lead to cumbersome tables
and interpolations, especially when considering
multi-component mixtures. Here, ANNs can pro-
vide a tool for creating continuous interpolating
functions with much smaller storage footprint
than tables and faster calculation than the actual
thermodynamic model.

(b) Regression of macroscopic spray characteristics:
often, from an engineering perspective, it is of
interest to know how certain parameters evolve,
such as, for example, the spray penetration over
time, and how they are affected by various fac-
tors. On this aspect, ANNs can be trained against
results over a range of conditions predicted with
CFD for estimating the behaviour of sprays at
unknown conditions.

(c) Regression of spatio-temporal distributions of
sprays: similar to the previous aspect, ANNs can
also be trained against two-dimensional or three-
dimensional (representing either planar or volu-
metric) distributions of a feature of interest, for
example, fuel mass fraction, over time. In this
way, new spray sequences can be generated at
unknown conditions, at a fraction of the cost of
the numerical simulation, as will be demonstrated
later.

The above regression/fitting methods are combined
with numerical modelling; however, it is highlighted
that these operations can be applied either to experi-
mental data (e.g. measurements of properties, high-
speed videos of sprays) and numerical data alike, with-
out loss of generality. The chosen case is Engine
Combustion Network (ECN) Spray-A injector and con-
ditions, mainly due to its simplicity (can relatively
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accurately be approximated as axis-symmetric) and the
fact that its geometry, conditions and data are open to
the public (refer to Engine Combustion
Network15,49,50).

Theoretical details

Short description of the ECN Spray-A

Here a short overview of the Spray-A configuration will
be presented to familiarise the reader with the case of
interest. The Spray-A injector is a single hole, tapered
(kfactor=1.5) Bosch solenoid-activated injector, with
nominal orifice diameter Dout=90mm and orifice
length of 1mm (an illustration of the geometry is pro-
vided in the section 2.3: ‘Fluid simulation model’). The
geometry of the Spray-A injector has been extensively
studied with a variety of experimental techniques,
including optical microscopy, X-ray tomography and
X-ray phase contrast imaging and is publicly avail-
able.15 The standardised spray-A conditions refer to the
injection of dodecane fuel, at 1500 bar and 363K to
inert nitrogen atmosphere of 60 bar and 900K, though
parametric variations of this condition also exist, span-
ning 20.4–80 bar and 700–1200K.50

Thermodynamic model

Accurate modelling of fuel/gas properties is achieved
using the Perturbed Chain Statistical Associating Fluid
Theory (PC-SAFT) EoS, which is a theoretically-
derived model, based on perturbation theory, used to
express relations between all the thermodynamic para-
meters of the fluid. PC-SAFT involves modelling of the
intermolecular potential energy of a fluid using a refer-
ence term, for repulsive interactions and a perturbation
term accounting for attractive interactions. The fluid is
assumed to be composed of spherical segments that
form molecular chains. The attractive interactions, per-
turbations to the reference system, are accounted for
with the dispersion term. Intermolecular interaction
terms accounting for segment self- or cross-associations
are ignored. Hence, each component is characterised by
three pure component parameters, which comprise a
temperature-independent segment diameter, s, a seg-
ment interaction energy, e/k, and a number of segments
per molecule, m; detailed databases for these para-
meters exist for non-associating fluids, such as hydro-
carbons or gases, see Gross and Sadowski26 and
Polishuk.51

The PC-SAFT model provides an expression for the
residual Helmholtz energy; once such an expression is
obtained, all thermodynamic properties can be defined
as functions of that expression. The derivation is rather
lengthy and out of scope for the present work, however
the interested reader can refer to Lemmon and Huber,25

Gross and Sadowski26 and Vidal et al.,43 as an example
of the necessary manipulations. The transport proper-
ties are estimated based on the residual entropy scaling

method for dynamic viscosity52 and thermal conductiv-
ity.53 Identification of VLE is done through the minimi-
sation of the molar Helmholtz free energy, defined in
terms of density, temperature and mixture composition.
This optimisation problem is solved via a combination
of the successive substitution iteration (SSI) and the
Newton minimisation method with a two-step line-
search procedure, and the positive definiteness of the
Hessian is guaranteed by a modified Cholesky decom-
position. The algorithm consists of two stages: first, the
mixture is assumed to be in a single-phase state and its
stability is assessed via the minimisation of the Tangent
Plane Distance (TPD).25 The stability is tested by pur-
posely dividing the homogeneous mixture in two
phases, one of them in an infinitesimal amount and
called ‘trial phase’. For any feasible two-phase mixture,
if a decrease in the Helmholtz free energy is not
achieved, then the mixture is stable. In case the mini-
mum of the TPD is found to be negative, the mixture is
considered unstable and a second stage of phase split-
ting takes place consisting on the search for the global
minimum of the Helmholtz Free Energy. As a result,
the pressure of the fluid and the compositions of both
the liquid and vapour phases are calculated.

It has to be highlighted here, that, the expression of
Helmholtz energy is a rather lengthy polynomial usu-
ally expressed in terms of density, r, and temperature,
T. Hence, manipulations may require numerical inver-
sion, differentiation, non-linear equation system solu-
tion and are not trivial in terms of computational cost;
direct evaluation of the thermodynamic model is often
avoided during a numerical simulation (see
Koukouvinis et al.,23 Kyriazis et al.47 and Dumbser
et al.48). Instead, tabulation, done as a precursor step
of the simulation, and interpolation of properties is
preferred in practical applications. For example, in pre-
vious works of the authors, a thermodynamic table was
used, with resolution of 100 3 400 3 101 correspond-
ing to log10p, T, y intervals, for a range of p:(10Pa–
2500 bar) 3 T:(280–2000K) 3 y:(0–1), respectively.
This results to a rather large file size, containing
4,040,000 entries, which, in ASCII, corresponds to a
file size of 1.25GB (or ;250MB in binary); only for
describing the properties of two components (fuel and
ambient gas, an indicative phase diagram is provided in
Figure 1). It is apparent that for more complex mix-
tures higher dimensional tables are necessary, with con-
siderable storage overhead.

Fluid simulation model

The fluid simulation model presented here, is based on
the Reynolds Averaged Navier Stokes (RANS) equa-
tions solved with Fluent v19.1.54 The software, custo-
mised externally for the thermodynamic model
described above, is used to resolve an axisymmetric
representation of the Spray-A injector, using the pub-
lished radial profile over the injector axis.27 The com-
putational domain is extended downstream by 50mm

4 International J of Engine Research 00(0)



in the axial and 15mm in the radial directions (or by
;56Dout and ;17Dout respectively), to include part of
the spray chamber over which measurements are avail-
able, see Figure 2. As shown in Figure 2(c), the compu-
tational mesh is block-structured quadrilateral and
consists of 50,000 elements, with cell sizes ranging
between 1mm, inside the injector orifice, to 0.5mm
near the farfield, away from the injector axis. At the
injector inlet (cyan boundary), a fixed mass flow rate,
fuel mass fraction and temperature are imposed. At the
fixed pressure outlet (red boundary), a fixed pressure is
imposed, whereas temperature and fuel mass fraction
are fixed in the case of inflow, or set as zero gradient in
the case of outflow.

Briefly stated here, the CFD model corresponds to a
multi-component diffuse interface approach, solving
for mixture/species continuity, momentum and energy
equations, as shown below, respectively:

∂r

∂t
+r � ruð Þ=0 ð1Þ

∂ryC12
∂t

+r � ruyC12ð Þ= �r � J ð2Þ

∂ru

∂t
+r � ru� uð Þ= �rp+r � t ð3Þ

∂rE

∂t
+r � u rE+ pð Þð Þ

=r � leffrT
� �

+r � t � uð Þ+r � hJð Þ
ð4Þ

In the aforementioned equation set, r is density, yC12 is
dodecane mass fraction, J is the diffusion flux, u is the
velocity vector field, p is pressure, t is the viscous stress
tensor, E is the total energy (as the sum of internal
energy, e, and kinetic energy, |u|2/2), leff is the effective
heat conductivity and h is enthalpy (as h= e + p/r).
Turbulence treatment is achieved with a RANS closure,
in particular the standard k-e model, which has

Figure 1. (a) Dodecane/Nitrogen phase diagram, showing density as function of log10p, T and yC12 and (b) detailed view of the
dodecane phase diagram (slice at yC12 = 1). The saturation line is indicated with a dashed line and the critical point with a rhombus. In
both diagrams, the dark shaded region represents the operating conditions of Spray-A.

Figure 2. (a) Illustration of the Spray-A injector, (b) magnification at the tip of the injector; the meshed cutting plane shows the
computational domain treated in axisymmetric configuration, with the dashed-dotted line being the axis of symmetry, and (c)
illustration of the computational mesh, with boundary conditions: mass flow inlet (cyan), symmetry (yellow) and fixed pressure
outlet (red).
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demonstrated robust performance in sprays.55,56 A
more detailed discussion on the specific terms, as well
as extensive validation of the model against mass frac-
tion and temperature distributions from experimental
data made available by ECN (see Engine Combustion
Network49) is provided in detail in a previous publica-
tion by Koukouvinis et al.24

Here, the discussed methodology will be used to
simulate an array of conditions covering the p/T range
of Spray-A parametric investigations. Downstream
ambient pressures that will be used are 20–100bar at
20 bar intervals and temperatures of 700–1200K at
150K intervals forming an array of 20 different cases;
each case requires ;10h to compute (;100k cells on
six processes, time step of 0.5ms, total simulated time
1.5ms). The mass flow rate imposed at the injector
inlet, is adjusted accordingly, based on the ECN tool.57

An indicative instance list near the end of injection is
provided below, in Figure 3. It can be clearly seen that
(i) as downstream pressure increases, the jet

propagation is retarded (ii) as ambient temperature
increases, the jet propagation is slightly accelerated.
Both are a direct consequence of the ambient density
variation.

Machine learning and Artificial Neural Networks

In the present work, Machine Learning will be
employed as a means of regression to approximate
thermodynamic property variations of fluids, as they
undergo injection in a modern fuel injection system, or
to develop surrogate models of spray predictions. To
achieve this purpose, an Artificial Neural Network will
be defined for each case and trained against existing
data, derived from dedicated tools, as outlined above
(the thermodynamic model, or the fluid simulation
model) and utilising Matlab Neural Network tool-
box,58 as the platform for training and exporting the
created networks.

Figure 3. Indicative matrix for the cases examined, shown only for the ending of injection (1.5 ms). The continuous colouring
represents the dodecane mass fraction as it mixes with nitrogen. The continuous white line is a representation of the dodecane jet,
using a threshold value of 1% dodecane mass fraction. In all images, the horizontal axis represents the axis of symmetry.
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The building block of an Artificial Neural Network
is the neuron or perceptron,35,59 which represents the
smallest processing element; a schematic representation
of a network and a neuron is shown in Figure 4(a) and
(b) respectively. In general, it can have one or more
inputs xi, that can be either from the environment or
other neurons; these inputs are multiplied with a weight
wi and are shifted by a bias, w0, to provide an inter-
mediate value, y, as follows:

y=wTx ð5Þ

where w=[w0, w1, w2,.wN] and x=[x0, x1, x2,.xN],
assuming that the bias, w0, is applied to x0=1. Then,
the intermediate value, y, is passed through an activa-
tion function, to provide the output, ŷ, of the neuron,
to be passed to another neuron or is the output
towards the environment. The activation function var-
ies depending on the application; it can be linear,
Gaussian, Heavyside, ramp, sigmoid etc. In the present
work sigmoid will be used as activation function for all
hidden layers and linear for the output layer, as this
was found to provide best performance both in terms
of training and predictions.

Before using the neural network, it is essential to per-
form the so-called training where the weights and biases
of all involved neurons are determined. Often this is
done as an optimisation process, to minimise the error
in predicting the desired output for the input vector of a
known dataset. In the present work, Bayesian
Regularisation backpropagation is used as a method for
training the created neural networks. This method offers
good performance, is capable of handling complex data-
sets and minimises the likelihood of overfitting.60

Applications and results

Predicting fuel properties

A particular complexity of advanced thermodynamic
models is their time-consuming nature when being

evaluated. Indeed, considerable overhead arises from
the way thermodynamic properties are derived; com-
monly, thermodynamic properties are expressed as
functions of the Helmholtz energy, which traditionally
is defined in terms of density, r, and temperature, T.
However, fluid simulation algorithms will require prop-
erties defined with a different variable set, pressure, p,
and temperature, T, or density, r, and internal energy,
e. This necessitates the use of numerical inversion, as
the complex thermodynamic model cannot be analyti-
cally inverted (multiple roots), adding further to the
computational cost. Moreover, calculation of VLE of
two-phase mixtures involves iterative solution of multi-
ple non-linear equations. The interested reader is
addressed to Vidal et al.,61 for a more detailed discus-
sion associated to the cost of evaluating complex ther-
modynamic models, such as PC-SAFT.

Whereas the aforementioned factors may not be that
important for a single evaluation, the additional com-
putational overhead becomes considerable in a simula-
tion, where the thermodynamic model may be
evaluated several times at each time step. Indicatively
for simulations of sprays, the injection duration is ;1–
2ms and the computational time step size may vary
from 1026 s (implicit solvers) to 1029 s (explicit solvers),
showing that there will be at least 103–106 function calls
to the thermodynamic subroutines. In practice, even
the lowest estimation will be significantly higher, as in
implicit solvers the iterative process necessitates multi-
ple evaluations per time step.

A solution to this issue, which is employed in the lit-
erature is the pre-tabulation of properties in a structure
that can be interpolated efficiently. Such examples
involve structured tables with adaptive refinement,48

unstructured tables that conform to saturation curve,47

or very fine structured tables that can be accessed effi-
ciently through indexing.23 Admittedly, such methods
lead to a dramatic reduction of computational cost,
offering the capability of highly accurate simulations,
however the storage of the tabulated properties can be

Figure 4. (a) Representation of a neural network consisting of one input layer, three hidden layers and one output layer and (b)
typical structure of a neuron.
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problematic. Adequate resolution of the table implies a
large table size with many sampling points; this can eas-
ily reach file sizes of several GBs. Inclusion of multiple
species for practical spray applications will further
increase the dimensionality of the tables, rendering their
file size even larger. For example, the tables used in
two-component Spray-A simulations24 had a file size of
;1.25GB; inclusion of only one additional specie with
similar resolution would imply a table size of ;126GB.
It becomes apparent that tabulation will be very cum-
bersome when considering practical applications of
actual fuels or fuel surrogates,43 containing multiple
gaseous or fuel species.

Artifical Neural Networks offer a very attractive
alternative here, as a regression model for thermody-
namic properties. In particular, tables can be used for
the training of a sufficiently complex network, that is
much more versatile in terms of file size (several KB)
and minimal computational overhead. As an example,
two cases will be presented here, one for the prediction
of dodecane properties for different p, T conditions
and for dodecane/nitrogen mixtures at different p, T, y
combinations.

For dodecane modelling, a property table of 40,000
elements was used, spanning over a pressure range of
(10Pa–2500bar) with 100 elements at regular log10p
intervals and temperature range of (280–2000K) with
400 elements at constant T intervals. The Artificial
Neural Network was structured to receive as an input
combinations of (log10p, T) and output r, though appli-
cation is straightforward for other thermodynamic
variables as well. The minimal neural network structure
that was found to have a very good performance in
capturing both sharp density variations near the

saturation curve and the smooth density transition
beyond the critical point was a three layer structure
with (4, 10, 20) hidden neurons respectively. Similarly
to the above, for dodecane/nitrogen mixture modelling
a property table of ;4.106 elements, was used, with res-
olution of 100 3 400 3 101 corresponding to regular
log10p, T, y intervals, for a range of p:(10Pa–
2500 bar) 3 T:(280–2000K) 3 y:(0–1). In that case, the
Artificial Neural Network was structured to receive as
an input combinations of (log10p, T, y) and output r.
The minimal neural network structure that was found
to have a very good performance in capturing both
sharp density variations near the saturation curve of
pure dodecane and the smooth density transition in the
multi-component mixture or pure nitrogen was a four
layer structure with (20, 5, 10, 20) hidden neurons
respectively. From these tables, 90% of the data were
used for training, 5% for validation and 5% for
testing.

In Figure 5(a), an indicative representation of the
obtained regression is shown. It is clear that the ANN
can almost perfectly capture the details of the dodecane
phase diagram (pressure and temperature dependence
only) in just 500 training iterations, done in less than
10min as a single process, with a regression validation
index of effectively unity. As a further test, the quality
of the phase diagram obtained from ANN is assessed
against the more classical method of interpolation and
tabulation. Here, a sampling grid of log10p:(1–8) and
T:(280–1200) with 71 and 123 intervals respectively, is
used to evaluate the performance of both methods. The
resolution is chosen different from the data table, so as
to avoid sampling data points used for training. As
shown in Figure 5(b), error is effectively zero at liquid

Figure 5. (a) Regression quality for reproducing dodecane density with ANN as function of log10 (pressure) and temperature.
‘Training’ refers to the regression of the dataset used for training (90% of data points), ‘test’ refers to the dataset used for testing the
ANN performance (5%). As shown, the regression is practically perfect for both training and testing data and (b) relative error (%)
of the ANN predicted dodecane density, for a range of temperatures and pressures. The hatched region represents Spray-A
operating conditions.
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and supercritical states; it becomes considerable in the
vaporous phase, at pressures below 105 Pa; this is
mainly because at such conditions dodecane vapour
density is very low (below 0.05 kg/m3), hence small
absolute errors are translated to large relative errors.

In Figure 6(a), a similar comparison is shown, this
time for a dodecane/nitrogen mixture, which is admit-
tedly more demanding, due to the larger data set and
higher dimensionality. Indeed, this time 700 iterations
were required and almost 6hrs to compute. However,
despite the added complexity, the agreement is still very
good, shown for a sampling grid of log10p:(1–8), T:(280–
1200) and yC12:(0–1) with 71, 123 and 21 intervals,
respectively. Effectively at medium-high pressures (. 1
bar) the error is zero, with issues arising at low pres-
sures/low densities. ANN performance for training other
thermodynamic variables is similar to density; in fact,
for other variables, such as enthalpy, representation is
even better. The only exception is thermodynamic deri-
vatives and especially partial derivative of density in
respect to temperature and pressure; irrespectively of
attempts to scale the data, so as to assist the optimiser in
finding the proper weights/biases, a good regression was
not possible to be obtained with this network structure.
In any further applications to be discussed hereafter,
numerical differentiation of the trained network output
for density and enthalpy will be used instead.

Combining machine learning and flow simulation

In this section, the p, T, y regression model developed
for dodecane/nitrogen mixture is integrated as a User
Defined Function to the flow solver to provide predic-
tions for the Spray-A case. This is to assess the ANN
thermodynamic functions’ behaviour in a practical case,

examine solver stability and evaluate solution quality
against the more standardised tabulation and interpola-
tion approach.

In Figure 7 an indicative comparison of flow
instances is provided between the two methods. All
images show the difference between the tabulated
approach (which is considered as the reference) against
the ANN implementation; the top part of the images
shows % difference in mass fraction and the bottom in
temperature distribution. It is clearly visible that results
are effectively identical, with deviations of 1% or less
in terms of mass fraction and temperature. For a more
practical comparison, estimations of the liquid and
vapour penetration are provided and are compared
with reference experimental data (see Engine
Combustion Network62,63) in Figure 8. Both vapour
and liquid are estimated based on the ECN guidelines
(for vapour yC12=0.1%64 and for liquid 0.15% liquid
volume fraction65). Again here, it is clearly demon-
strated that the ANN fitting and the tabular interpola-
tion give identical results to the point of being
indiscernible between each other. The results are very
close and/or within experimental uncertainties. In terms
of computational overhead, the use of ANN is rela-
tively small, increasing computational time during exe-
cution by ;10%–15% compared to the table
interpolation and the main overhead being training the
network. Even in that case though, training took ;6h,
whereas the calculation of the input thermodynamic
dataset required a couple of days, so as an additional
step it does not constitute a large increase in computa-
tional cost.

For the interested reader, the regression networks
used in this section are provided as C functions with an
example calling function in the appendix.

Figure 6. (a) Regression quality for reproducing dodecane/nitrogen density with ANN as function of log10 (pressure), temperature
and composition (dodecane mass fraction). ‘Training’ refers to the regression of the dataset used for training (90% of data points),
‘test’ refers to the dataset used for testing the ANN performance (5%). As shown, the regression is practically perfect for both
training and testing data, but some scatter can be observed and (b) relative error (%) of the ANN predicted mixture density, for a
range of temperatures and pressures. The shaded region represents Spray-A operating conditions.
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Predicting macroscopic spray characteristics

Another aspect of ML and ANN that can be exploited,
is regression/fitting of results, computational or experi-
mental, to derive predictions at unknown conditions.
For example, ANNs can be trained against a character-
istic of interest for a specific case, say the penetration

length, width of a spray, etc against different para-
meters, such as ambient conditions, fuel type, injection
pressure, etc.

In this section, an example is provided for predicting
spray penetration over time, as derived from the cases
described in Figure 3. Spray penetration is estimated
for all cases over time, using the 0.1% dodecane mass

Figure 7. The difference between CFD calculations using the tabulated approach and ANN for thermodynamic properties, for
different time instances. Each figure shows at the top side the difference in mass fraction distribution and at the bottom the
respective difference in temperature distribution. The axis of the spray is indicated with the dashed dotted line. Standard Spray-A
case, dodecane injected at 1500 bar/363 K to nitrogen 60 bar/900 K.

Figure 8. Comparison of the spray (both liquid and vapour) penetration, using tabulated interpolation and ANN, for the standard
Spray-A case, dodecane injected at 1500 bar/363 K to nitrogen 60 bar/900 K. Experimental results are also provided for reference
with associated error bars, as obtained from here: vapour,63 liquid.62

10 International J of Engine Research 00(0)



fraction criterion, as shown in Figure 9. The time
dependent penetration can be used as a vector (here 20
different cases by 151 time instances) to act as the out-
put target of a specifically trained ANN, with input the
different p, T conditions.

Given the relatively straightforward relation
between the ambient conditions and the spray pene-
tration over time (see relevant discussion in section
2.3), only a single hidden layer of two neurons was
found enough to obtain a decent model-regression
quality and good predictions, using all the data set of
20 injection cases entirely for training. To demonstrate
the capability of the trained ANN in predicting
unknown conditions, two configurations were chosen
for which experiments are available, namely at ambi-
ent conditions of 50 bar and 1100K66 and 60 bar and
900K.63 Note that such conditions have not been used
for training, so this test acts as validation of the
trained model. As shown in Figure 10(b), the predic-
tions are very close to the actual experiments. In terms
of computational cost, it is trivial, as training lasts less
than a couple of seconds and predictions of penetra-
tion over time for unknown conditions are performed
effectively instantaneously.

Predicting spatial distributions of quantities of interest

An extension of the previous technique is the prediction
of 2D (or even 3D) distributions of sprays using ML.
In the previous section, a single ANN was trained to
predict the time history of a macroscopic characteristic
of a spray. Here, a matrix of ANNs will be trained to
predict all elements of (i, j)-arrays, effectively represent-
ing pixels of image sequences, coloured according to a
quantity of interest (here mass fraction of dodecane),
derived from simulations, representing the spray distri-
bution. Rectangular images are sampled over a range
of 0–50mm and 0–10mm at the axial and radial direc-
tions of the spray, with 401 and 81 elements respec-
tively, every 10ms, leading to a total of 150 frames for
each case. The data for each condition are organised as
a 3D array, with i-index and j-index representing axial
and radial directions respectively and k-index the time
instance (see Figure 11).

For each pixel, that is for each (i, j)-combination, a
time vector of k-elements is constructed. For each
pixel, training is performed using the time vectors cor-
responding to the associated input vector; in the pres-
ent case the ambient pressure and temperature

Figure 9. Summary of spray penetration for all parametric investigations of Spray-A cases, based on the ambient conditions.

Figure 10. (a) Regression plot of the trained ANN output for predicting spray penetration as function of ambient conditions and
(b) example predictions of the trained ANN for two different conditions where experiments are available.
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conditions. Since the training of each pixel is indepen-
dent of the other pixels, training is straightforward to
be performed in parallel. In the end, an (i, j)-array of
trained ANNs is produced, capable of reproducing
the time history of each corresponding pixel, having
the appropriate input vector (here the ambient condi-
tions of the spray chamber). For the training of the
networks, a single hidden layer with three neurons
was employed. The training of the network required
;2 days with six processes. After the training, a new
image sequence at untested conditions can be derived
within ;5min. To assess the quality of the reconstruc-
tion, a direct comparison with CFD results is per-
formed for two conditions that have not been used for
training (a) 50 bar and 1100K and (b) 60 bar and
900K, see Figures 12 and 13, respectively.

As shown in the figure, global agreement between
the simulation and the ANN prediction is satisfactory;
differences are in general well below 5%, with larger
error values at very localised regions (front of the spray,
or sides of the spray). Still, this applies for specific
instances, whereas in general the spray core distribution
is well predicted (effectively zero deviation).

To illustrate this effect even clearer, an indicative
comparison of spray predictions using ANN, against
experimentally quantified vapour mass fraction distri-
butions is shown in Figure 14; as shown, even if a bit
noisy, the agreement is within experimental
uncertainties.

Discussion and conclusion

In this work, several options of implementing ML tech-
niques, such as ANNs, for the prediction of high pres-
sure/high temperature sprays are discussed. Several
techniques are analysed for regression/fitting purposes
that can be used as alternatives to tabulation of

properties, or predicting quantities of interest in
unknown/new conditions.

In terms of surrogate models for approximating
thermodynamic functions, ANNs demonstrated a good
performance in predicting properties both as function
of pressure/temperature and pressure/temperature/
mass fraction of a two-component mixture. For pres-
sures higher than 1 bar, deviation from reference val-
ues, using tabular interpolation, is effectively zero. The
time required for training ANNs against thermody-
namic datasets is much smaller than the derivation of
the datasets themselves, so there is only a small over-
head there. When used in simulations, even though the
ANN regression involves overhead during evaluation,
the additional computational cost is relatively small.
On the other hand, the only alternatives are either eval-
uating the complex thermodynamic model through the
EoS, which is rather demanding, or performing inter-
polations from tables, the latter being the only practical
way in complex cases. Tables have a large storage foot-
print and become very cumbersome as the interpola-
tion dimensionality increases (interpolating pressure,
temperature and the mass fractions of multiple compo-
nents). ANN seems to be a very attractive option there,
as the trained network has a size of several KBs, over a
thousand or million times smaller than a table.

Further applications where ANN can be used, is the
development of surrogate models that can be trained
using existing, validated data, to derive either macro-
scopic spray characteristics, or even spatial distribu-
tions of the spray, over time. In the cases demonstrated,
relatively simple networks (2–3 neurons with one hid-
den layer), can describe adequately the spray penetra-
tion and the mass fraction distribution for Spray-A. It
is important to mention that the training for a single
vector output network, as in the spray penetration pre-
diction, takes a couple of seconds and its evaluation

Figure 11. (a) Discrete pixel representation of the image sequence, obtained by resampling the simulation data for a single
condition. The representation is in the form of a 3D array, with i and j indexes corresponding to spatial dimensions and k index to
time and (b) the time history of each pixel is correlated to the associated input vector and is used to train a pixel-specific network.
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Figure 12. Evaluation of the performance of the ANN predictions; 900 K and 60 bar pressure. Top: Mass fraction distribution
(yC12– %), bottom: Absolute difference in mass fraction distribution (errANN– %). The grey dashed-dotted line indicates the axis of
symmetry of the jet.

Figure 13. Evaluation of the performance of the ANN predictions; 1100 K and 50 bar pressure. Top: Mass fraction distribution
(yC12– %), bottom: Absolute difference in mass fraction distribution (errANN– %). The grey dashed-dotted line indicates the axis of
symmetry of the jet.
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happens instantaneously, whereas the training for two
dimensional arrays of time series (three total dimen-
sions) is much more demanding, however any subse-
quent evaluation takes only several minutes, much
faster than any simulation could produce.

Another aspect worth mentioning is that a very
attractive characteristic of ML is versatility; the dis-
cussed methods here, even if applied in conjunction
with simulations, are not restricted by the input type. It
can be any form of data in an appropriate format, as
high-speed image sequences from optical techniques, X-
ray radiographies, or even volumetric sequences (as in
the work of Hwang et al.11 and Weiss et al.10), although
in the later case the computational cost of training will
be considerably higher due to the much larger number
of voxels to be trained.

Finally, it should be highlighted that this work can
in no way claim that it has explored the full capability
of ML in sprays; admittedly, there are many different
ways where ML can be integrated, using classification
techniques to identify spray characteristics, time series
neural networks for predicting the evolution of sprays,
or even convolutional neural networks and physics
informed deep-learning for predicting flow fields.
Indeed, ML constitute a vast array of techniques that
can be adapted to a multitude of problems and only
recently have such techniques started to be explored in
multiphase flows.
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Appendix. Sample Neural Network C code for
thermodynamic properties of dodecane/nitrogen
mixtures

In the included Matlab files, ANN functions for the
thermodynamic parameters of dodecane/nitrogen mix-
ture are provided as supplementary material. The
included functions are:

rhoFunction.m – density in kg/m3

hFunction.m – enthalpy in J/kg
sFunction.m – entropy in J/kg/K
aFunction.m – speed of sound in m/s
cpFunction.m – heat capacity at p=ct in J/kg/K
mFunction.m – viscosity in Pa.s
kFunction.m – heat conductivity in W/m/K

The input of all these functions is a three-element vec-
tor, containing the decimal logarithm of pressure (in
Pa), the temperature (in K) and the dodecane mass frac-

tion (–). Thermodynamic derivatives
∂r

∂T
,
∂r

∂p
,
∂h

∂p
are

estimated by differentiating the corresponding func-
tions of r and h, since their values are very small and a
good regression could not be obtained. A simple pro-
gram calling all the relevant functions is also included.

Notation

Commonly used abbreviations

ICE Internal Combustion Engines
FIE Fuel Injection Equipment
EoS Equation of State
ECN Engine Combustion Network
NIST National Institute of Standards and

Technology
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https://arxiv.org/pdf/1910.11073.pdf
https://ecn.sandia.gov/data/bkldaal4mixing/
https://ecn.sandia.gov/data/bkldaal4mixing/
https://ecn.sandia.gov/ecn-data-search/
https://www.cmt.upv.es/ECN03.aspx
https://www.cmt.upv.es/ECN03.aspx
https://ecn.sandia.gov/cvdata/assets/datafiles/liq/bkldaAL1-liqDBI.txt
https://ecn.sandia.gov/cvdata/assets/datafiles/liq/bkldaAL1-liqDBI.txt
https://ecn.sandia.gov/cvdata/assets/datafiles/pen/bkldaAL1-pen.txt
https://ecn.sandia.gov/cvdata/assets/datafiles/pen/bkldaAL1-pen.txt
https://ecn.sandia.gov/diesel-spray-combustion/computational-method/modeling-standards/
https://ecn.sandia.gov/diesel-spray-combustion/computational-method/modeling-standards/
https://ecn.sandia.gov/diesel-spray-combustion/computational-method/modeling-standards/
https://ecn.sandia.gov/cvdata/assets/datafiles/pen/bgcdaAL4-pen.txt
https://ecn.sandia.gov/cvdata/assets/datafiles/pen/bgcdaAL4-pen.txt


ML Machine Learning
ANN Artificial Neural Network
PC-
SAFT

Perturbed Chain Statistical Associating
Theory

CFD Computational Fluid Dynamics
VLE Vapor-Liquid-Equilibrium
RANS Reynolds Averaged Navier Stokes

Commonly used symbols

r Mixture density (kg/m3)
u Mixture velocity (m/s)
T Mixture temperature (K)

p Mixture pressure (Pa)
t Stress tensor (Pa)
y Mass fraction (–)
E Total energy (J/kg)
e Internal energy (J/kg)
h Enthalpy (J/kg)
s Entropy (J/kg/K)
l Thermal conductivity (W/m/K)
m Dynamic viscosity (Pa.s)
cp Heat capacity at constant pressure (J/kg/K)
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