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 Symbols and Abbreviations: 

 

 
ARM:                  Age-related Maculopathy 

 

AMD:                  Age-Related Macular Degeneration 

 

BlinD:  Basal Linear deposit 

 

BlamD:    Basal laminar deposit 

 

CAD:                   Colour Assessment and Diagnosis test 

 

CMT:   Central Macular Thickness 

 

CNV:                  Choroidal neovascularisation 

 

CD:  Cuticular Drusen 

 

CV:                     Colour Vision 

 

CS:                      Contrast Sensitivity 

 

cSLO:                 Confocal Scanning Laser Ophthalmoscope 

 

DA:                    Dark Adaptation 

 

EC:             Esterified Cholesterol. 

 

EOD:                Early Onset Drusen 

 

FAF:              Fundus Autofluorescence 

 

FAM :             Fundus Autofluorescence in Age-related macular degeneration 

 

FAZ:                 Foveal Avascular Zone 

 

GA:             Geographic Atrophy 

 

ICL:                   Inner collagenous layer 

 

ICGA:  Indocyanine Green Angiogram 

 

IT:                       Ishihara Test 

 

L cones:               Long Wavelength Sensitive Cones 

 

LCD:  Large Colloid drusen 

 

M cones:             Middle or Medium Wavelength Sensitive Cones 

 

MP:                    Macular pigment 
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ML-DH:            Malattia leventinese-Doyne honeycomb retinal dystrophy  

 

mfERG:             Multifocal Electectroretinography 

 

NA:                   Normal Aging 

 

OCT:          Ocular CoherenceTopography 

 

OCL:              Outer Collagenous Layer 

PST:                 Photostress Test 

RPE:               Retinal Pigment Epithelium 

RPD:               Reticular Drusen 

RG:             Red Green 

 

SDOCT:          Spectral domain OCT 

 

SD:                  Standard Deviation 

 

S cones:           Short Wavelength Sensitive Cones 

SDD:                Subretinal Drusenoid Debris 

SF:                     Spatial Frequency 

SW gratings:      Sine Wave gratings 

SWAP:              Short Wave Automated Perimetry 

SNU:                  Standard Normal Units 

TCS:                  Temporal contrast sensitivity 

TDOCT:           Time Domain OCT 

UC:                    Unesterified Cholesterol 

UHROCT:        Ultra-high resolution OCT 

VF:                      Visual Field 

VA:                    Visual Acuity 

VEGF:              Vascular Endothelial Growth Factor 

WARMGS:      Wisconsin Age-Related Maculopathy Grading Scheme 

YB:   Yellow Blue 
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 Abstract: 

Purpose:   To assess colour vision in Age-related macular degeneration (AMD) while 

relating chromatic sensitivity to the severity of AMD and AMD morphologies such as drusen 

and reticular pseudodrusen. To evaluate if chromatic functional loss precedes structural 

changes in initial stages of AMD, and if it can be a valuable risk stratification tool for 

advanced AMD.  

 

Methods:  

Chromatic sensitivity was tested using the Colour Assessment and Diagnosis (CAD) test 

developed by City, University of London and correlated to the structural changes from fundus 

photography and spectral domain OCT. All patients were asymptomatic with a visual acuity 

of 6/12 or better. CAD thresholds were compared to clinical classification in all AMD eyes 

(Ferris et al., 2013);  Soft drusen and Reticular drusen (RPD); Central macular thickness 

(CMT); Fundus autofluorescence (FAF) pattern (Einbock et al., 2005; Wong et al., 2014) and 

Soft drusen characteristics (Bird et al., 1995). Cases of conversion to ‘Wet’ AMD were 

identified through a repeat clinical assessment after the first 12 months. Chromatic sensitivity 

in early onset drusen (EOD) included comparing their colour thresholds to AMD eyes. 

Student t-test were used for correlation and P<0.05 was considered significant. 

Results 

All eyes with AMD had chromatic sensitivity loss in either one of RG / YB or both 

(p<0.0001) in comparison to the age-matched normative data set.  
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The eyes involved exhibited a range of colour thresholds measured on CAD system (CAD 

thresholds) affecting both the colour mechanisms but YB losses were at a higher magnitude 

than RG losses (p<0.001).  There was no correlation to the AMD severity grades in clinical 

classification because of large inter-subject variability within each group. Intermediate AMD 

was the largest group. 

Mean chromatic sensitivity increased from normal aging (NA) to soft drusen to reticular 

drusen, NA< soft drusen< RPD (R
2
=0.9).

 
Even though EOD (n=10) had the same 

morphological appearance of drusen as ARM, lower and better CAD thresholds were 

recorded. 
 

 Reticular drusen revealed the highest mean CAD thresholds for RG (~ 19 units) and for YB 

(~14 units), followed by soft drusen group (~ 7 units for both RG/YB).   Comparison of CAD 

thresholds in soft drusen and RPD groups with all other groups (Normative, NA, EOD) was 

statistically significant (p<0.0001).
 

Forty nine eyes with soft drusen were stratified for drusen morphology, number, size, the area 

covered and the main location of the drusen on the ETDRS grid. 

Drusen size was the only characteristic feature found to be significantly associated with both 

RG / YB chromatic sensitivity loss. Grade 5 eyes were statistically different compared to the 

rest of the grades (p<0.0003 RG and p<0.02 YB). 

Autofluorescence was performed in 76 eyes and the results assigned to the 8 FAF patterns 

from FAM study (Einbock et al., 2005). The patchy pattern of FAF had the highest CAD 

thresholds and this was in agreement with the FAM group as being the high-risk pattern. 
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CMT was measured in 88 eyes, 3 eyes were noted to have early GA and they showed very 

severe loss of RG and YB thresholds. The p value correlating the CAD thresholds of eyes 

with CMT<200 and >200 µm was statistically significant with P<0.01 for RG and <0.002 for 

YB. 

 Review of baseline CAD thresholds in cases converted to wet AMD at the end of 12 months, 

revealed six eyes had converted to wet AMD. The baseline CAD thresholds of these eyes 

were not conclusive of being predictive of the impending change to wet AMD. 

Conclusions:   

The visual acuity and hence the integrity of cone photoreceptors remains relatively unaffected 

in early and intermediate stages of AMD. The processing of cone signals in the retina can 

however be heavily disrupted with subsequent loss of both YB and RG chromatic sensitivity 

in the eyes. The greatest losses relate to eyes with reticular pseudodrusen. Chromatic 

sensitivity change was indicative in early macular thinning but failed to herald the onset of 

wet AMD in our study sample. 
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 Introduction: 
 

Early signs of age related macular degeneration (AMD), characterised by drusen and 

pigmentary changes in the macula, have a global prevalence of 8.01% in people aged 50 

years or older, whereas the prevalence of the sight threatening late AMD which includes 

geographic atrophy (GA) and choroidal neovascularisation (CNV) is 0.37
 
(Wong et al., 

2014).
 
Early AMD is characterised by the presence of medium sized drusen (≥ 63<125 μm) 

without pigmentary abnormalities while eyes with large drusen or with pigmentary 

abnormalities associated with at least medium drusen are termed as intermediate AMD by 

Beckman’s classification.  Five -year risks of progressing to late AMD are 50% for the 

highest intermediate AMD risk group (Ferris et al., 2013). However, it is acknowledged that 

classification based on colour photographs or biomicroscopy alone ignores changes relevant 

to the disorder such as RPE dysfunction, loss of photoreceptor function, or the development 

of reticular pseudodrusen.  

The main ocular structures involved in AMD are photoreceptors, RPE, Bruch’s membrane, 

and choriocapillaries. There is a progressive decline in RPE and photoreceptors which results 

in GA (Bird, 2010). Such evolution to GA is currently thought to be a default end pathway 

for AMD; whereas wet AMD is the reactive outcome that targets a subset of AMD patients 

with a particular genetic predisposition as this can occur at any stage of the default pathway 

(Neelam et al., 2009) . 

AMD intervention should therefore be targeted at the earliest stage of the disease to prevent 

development of GA and the potential for CNV. Wet AMD or CNV also require a diagnostic 

tool which can identify AMD changes from as early as the preclinical stage of the disease. 

Significant histological changes occurred long before the clinical manifestation of drusen and 
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pigmentary changes are observable  (Sarks et al., 1988). Although structural changes can be 

accessed through OCT and autofluorescence, these methods do not quantify the degenerative 

transition accurately, diffused deposits through Bruch’s membrane cannot be differentiated 

by imaging techniques and histological changes (Curcio et al., 2013).  

Hence functional assessment should have a high potential to detect / monitor AMD as it can 

in conjunction with the imaging modalities, provide a powerful tool for quantitative tracking 

of early stage AMD. 

There is a lack of functional markers for disease progression and endpoint, as visual acuity 

may not be affected until later in the disease (Wu et al., 2014). People with intermediate 

AMD experience functional deficits such as delayed dark adaptation and focal deficits in 

retinal sensitivity, recent studies have correlated the decreased function to structural markers 

on spectral domain optical coherence tomography (SDOCT) (Wu et al., 2014; Vujosevic et 

al., 2016). With the advent of infrared reflectance, there is significant interest in reticular 

pseudodrusen (RPD). These deposits are internal to the retinal pigment epithelium and the 

presence of RPD is significantly associated with a decrease in scotopic thresholds suggesting 

rod dysfunction (Flamendorf et al., 2015). To date, cone dysfunction has not been evaluated 

using chromatic sensitivity in people with AMD, with or without RPD.  

Normal colour vision is trichromatic and involves comparison of signals generated in short 

wavelength (S), middle wavelength (M) and long wavelength (L) sensitive cones. The RG 

(Red Green) channels utilizes L and M while YB (Yellow Blue) utilizes M, L and S cones 

(Konstantakopoulou, 2012). L and M cones peak at the fovea but the S cones which 

constitute only  8-10% of the photoreceptors peak at the foveal slope (Kolb, 1991).
  

 When 

assessing YB chromatic sensitivity using the CAD test the L and M cone signals remain 

unchanged with ‘yellow’ and ‘blue’ hues being signalled entirely by changes in the signals 
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for the S -cone (Rodriguez-Carmona, 2012) .Young, normal trichromats requires only 0.4% L 

and 0.8% M-cone contrast changes to detect RG colour differences (at threshold) while 7% 

S-cone contrast changes are needed in the case of YB colour differences.    

The high sensitivity for detection of RG or YB colour signals and the large number of stages 

involved in chromatic processing makes colour assessment particularly suitable for detecting 

changes caused by the retinal disease. Impairment of colour vision (CV) is one of the earliest 

detectable changes in the visual process during the presence of a retinal disease. 

 A systematic review of 15 studies revealed loss of chromatic sensitivity with a tendency 

towards yellow-blue (YB) defect in retinal diseases (Neelam et al., 2009). Reports also show 

a correlation of changes in chromatic sensitivity with disease progression in AMD (O'Neill-

Biba et al., 2010). It is suggested that colour saturation is affected earlier than hue 

discrimination (Neelam et al., 2009). The Colour Assessment and Diagnosis test (CAD) 

developed by City, University of London quantifies both saturation and thresholds and 

accurately detects early stages of AMD functional defects (O'Neill-Biba et al., 2010). The 

pilot study by O'Neill-Biba et al., showed significant but unequal loss of YB and RG 

sensitivity in 18 subjects of AMD with YB showing the greatest loss. They also found a 

correlation with the severity of AMD classification.  

The above pilot study formed a basis for the present study to understand chromatic loss in a 

larger sample size as well to compare to various clinical criteria. 
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Aims of the study: 
 

 To study chromatic sensitivity in AMD using the CAD system to quantify the RG and 

YB thresholds and to compare these thresholds against the upper limits established for 

healthy aging.   

 To quantify the severity of colour vision loss in AMD and to correlate the RG and YB 

losses with the estimated progression of disease through AMD grading of the macula, 

based on examination of fundus photographs.   

 To examine how the severity of RG and YB loss relates to drusen’s spatial 

characteristics, and autofluorescence and spectral domain optical coherence 

tomography (OCT) imaging of the retina.     

 To study the colour vision change in early onset drusen (EOD), as studying colour 

changes in drusen not related to AMD will help us to attribute the CAD changes 

beyond the structural changes of drusen.  

  

The thesis is structured to understand in detail the anatomical, physiological and pathological 

factors involved in AMD. The dissertation also addresses the visual psychophysical tests in 

AMD and their role in detecting early changes of visual function in AMD. With this 

background the dissertation goes ahead to discuss the chromatic sensitivity in AMD with the 

aid of the results of the present study.
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1. Anatomy and physiology of the eye with special relevance 

to AMD: 

 

 The Human Eye: 

 

  

Figure 1.1: Drawing of a section through the human eye with a schematic enlargement of the 

retina (http://webvision.med.utah.edu). 

 

The structures of the eye (Figure 1.1) concerned with the development of AMD have been 

described in the section below with due relevance to pathogenesis of the condition. 

 The choroid which is the vascular layer between the sclera and the retina lies behind the 

ciliary body. The choroid is the main oxygen and nutrient supplier to the outer retina and the 

Retinal Pigment Epithelium (RPE) through its choriocapillaris. The inner part of the choroid 

is called Bruch's membrane and plays a major part in Age-Related Macular Degeneration 

(AMD) and other chorioretinal diseases (Curcio et al., 2013).  

http://webvision.med.utah.edu/
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. 

1.1 Bruch’s Membrane: 

 

Bruch’s membrane is a thin (2–4 μm), acellular, five-layered extracellular matrix located 

between the retina and choroid, Bruch’s membrane lies between the metabolically active 

Retinal Pigment Epithelium (RPE) and a capillary bed (choriocapillaris) and thus, serves two 

major functions as the substratum of the RPE and a vessel wall (Marshall, 1998) . As a vessel 

wall of the choroid, Bruch's membrane's primary function is structural, as its structure is like 

vascular intima, with subendothelial extracellular matrix and an elastic layer corresponding to 

the internal elastic lamina. The abluminal surface of Bruch’s differs from other vessel walls 

as it abuts a basal lamina, that of the RPE. The luminal surface faces a fenestrated vascular 

endothelium and Basal lamina, making Bruch’s membrane structurally analogous to the renal 

glomerulus and providing a basis for commonality between retinal and kidney disease 

(Weiner et al., 2011). The importance of fluid and macromolecular transportation across the 

renal glomerulus is well known (Maddox and Brenner, 1977). Transportation is the second 

most important function of Bruch’s membrane (Curcio et al., 2013).  

 

Hogans five layered nomenclature for Bruch's membrane mentioned below is commonly 

used;  

1. RPE basal Lamina (RPE-BL). 

2. Inner Collagenous layer (ICL). 

3. Elastic Layer (EL). 

4. Outer Collagenous layer (OCL). 
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5. Choriocapillaris basal lamina (ChC-BL). 

Aging is the largest risk factor for developing AMD 
 
(Smith, 2001) and Bruch's membrane 

undergoes significant age-related changes. 

 

1.1.1a Lipid Accumulation in Bruch's membrane:  

Debris deposition in ICL and OCL starts in the second decade in the macula and is delayed in 

the equatorial regions, a regional lag noted for individual components (Johnson et al., 2007). 

The most prominent changes in this regard are the accumulation of lipids. Clinical 

observations on fluid-filled RPE detachments in older adults led to Bird and Marshall's 

hypothesis that a lipophilic barrier in Bruch's membrane blocked a normal, outwardly 

directed fluid efflux from the RPE (Bird and Marshall, 1986) as opposed to leakage from 

CNV. 

Lipoproteins can be assembled from several sources, including outer segments, remnant 

components from the photoreceptor nutrient supply system, and endogenous synthesis. 

According to this model (Curcio et al., 2011), plasma lipoproteins serve as vehicles for 

delivery of lipophilic nutrients, carotenoids (Loane et al., 2008), Vitamin E, and cholesterol 

to photoreceptors by RPE, which has functional receptors for low-density lipoproteins (LDL) 

and high-density lipoprotein (HDL)  (Tserentsoodol et al., 2006). Nutrients are stripped from 

these lipoproteins by the RPE for delivery to the photoreceptors, and the remnants are 

repacked for secretion into the Bruch's membrane as a part of apo B-, containing lipoproteins 

where they begin to accumulate with time and become toxically modified to instigate 

inflammation in AMD. 
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Transportation across Bruch's membrane is increasingly hindered with age, due, at least 

partly, to the marked age-related accumulation of esterified cholesterol (EC) rich lipoproteins 

in this tissue impending pumping of fluid from RPE. Around 90% of the decline in the 

transport of some species from the choroid (Moore and Clover, 2001; Hussain et al., 2010) 

may include lipophilic essentials delivered by the lipoproteins.  

This decline in transportation capabilities is thought to have functional consequences for the 

photoreceptors. A well-characterized change occurring through the lifespan of individuals 

with healthy macula is slowed dark adaptation attributed to impaired translocation of 

retinoids across the RPE-Bruch's interface (Jackson et al., 2002). 

 

1.1.2 Relevance to Age- related macular degeneration: 

During aging and AMD, characteristic extracellular lesions accumulate in tissue 

compartments anterior to the ICL, known as drusen and basal deposits (Sarks 1976, Booij et 

al., 2010). These lipid-containing aggregations ultimately impact RPE and photoreceptor 

health by impairing transport, causing inflammation and predisposing to CNV. Basal linear 

Deposit (BlinD) forms consequently to lipoprotein accumulation in Bruch's membrane and 

formation of lipid wall, likely to involve oxidation of individual lipid classes and local 

inflammation. Drusen could form by similar mechanisms, plus lipoprotein aggregation and 

other undefined processes that cause the distinctive dome-shaped of these lesions. Basal 

laminar deposits (BlamD) are formed parallel to lipid deposition in Bruch's and may indicate 

RPE stress (Curcio et al., 2013).  
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1.1.2a Drusen: 

In a fundus view, drusen are yellow-white deposits 30-300 µm in diameter posterior to the 

RPE. On OCT they appear as variable hypo-reflective spaces in the same location (Khanifar 

et al., 2008). Histologically, drusen are focal, domed lesions between RPE basal lamina and 

the ICL of the Bruch's membrane in the same subretinal tissue compartment as the lipid wall 

and BlinD (Figure 1.2.1). 

 

 

Figure 1.2.1: Aging and AMD macula showing RPE and Bruch's membrane.  

Panel A -RPE and Bruch's membrane: 1. RPE basal lamina; 2. Inner collagenous layer; 3. Elastic layer; 4. 

Outer collagenous layer; 5. Choriocapillary endothelium basal lamina;Panel B: Changes in Aging and AMD 

leading to Drusen: Basal Laminar deposits (BlamD), Basal linear deposits (BlindD) and Druse are labeled. 

Reproduced from http; //Project Macula.cis.uab.edu adapted from Curcio-Ryan 2012. 

  

 

Found in older adults (Klein et al., 1992), Drusen are more common in the peripheral retina 

than in the macula. Drusen are typically classified as "hard" and "soft" by the appearance of 

their borders. Soft drusen confer a high risk of advanced disease and are found only in the 

macula (Rudolf et al., 2008). 
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The RPE has been implicated as a source of many drusen components, via budding of 

membrane-bound packets of cytoplasm or secretion, but the components are not well 

characterised. Most prominent constituents are lipids identified as esterified cholesterol 

(EC) and unesterified cholesterol (UC), phosphatidylcholine, phospholipids and ceramides. 

Other components include vitronectin, TIMP-3, complement factor H, complement 

components C3 and C8, crystallins and Zinc (Curcio et al., 2013). 

 

1.1.2b Basal Linear deposit (BlinD) and Basal Laminar deposit (BlamD): 

BlinD is a thin (0.4-2µm) layer located in the same sub-RPE space as soft drusen. BlinD 

and soft drusen are alternate forms of the same pathology and can't be interchanged. Both 

the lesions are permissive for CNV. 

BlamD forms small pockets between the RPE and the RPE-BL in many normal older eyes 

or a continuous layer as thick as 15µm in AMD eyes. Some authors consider a continuous 

layer of BlamD a histological definition of AMD (Yamada et al., 2006).  

Ultrastructurally BlamD resembles a basement membrane with material containing laminin, 

fibronectin, and type VI collagen. Thick Blam D with advanced AMD risk contains lipid 

including EC and UC, also containing Vitronectin, MMP-7, TIMP-3, C3 and C5b-9 (Curcio 

et al., 2005). BlamD is a reliable marker of RPE stress (Marmorstein et al., 2007). 

 

1.1.2c Reticular Drusen: 

Located in subretinal space, subretinal drusenoid debris (SDD) was first described by Sarks 

(Sarks, 1976). They are similar to drusen in composition and are enriched in UC, apoE, 
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vitronectin and complement factor H (Figure 1.2.2). Like drusen they lack markers for 

photoreceptors, Muller cells, and RPE processes. 

Clinically called Reticular drusen on fundus view and SDD on cross -sectional view, they 

are present in 60% of the eyes with geographic atrophy. SDD appears as focal deposits near 

the fovea and part of large sheets elsewhere in the macula (Spaide and Curcio, 2010).This 

coherent morphology suggests a specific formative process, possibly involving microglia 

resident in that compartment (Xu,  2008). 

SDD are a candidate for a histological correlation of reticular pseudodrusen whereas basal 

linear deposits (BlindD) correlate to drusen. Curcio (2013) describes SDD as isolated or 

confluent drusenoid dollops punctuated by tufts of RPE apical processes and associated 

with photoreceptor perturbation. Histological studies in donor's eyes by Curcio et al (2013) 

found SDD and BlinD in 85.0% and 90.0% of non-neovascular AMD donor eyes 

respectively. SDD was thick (median 9.4µm) and more abundant in perifovea than fovea 

whereas BlinD was thin (median 2.1%) and more abundant in the fovea than the perifovea. 

SDD is preferentially localized to the perifovea where the rods are in high density and 

BlinD is thickest in the fovea, where there is a high density of cones thus suggesting that 

SDD and BlinD reflect differential aspects of rod and cone physiology, linking together 

macular photoreceptor topography and AMD pathology. This study showed that rods may 

play an important path physiological stimulus for the development of AMD due to the 

formation of SDD. A component of dry AMD, SDD is a recognised risk factor for the 

development of both geographic and choroidal neovascularisation. 
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Figure 1.2.2: Biogenesis of Sub-RPE and Sub-Retinal AMD lesions: Model (Curcio etal.,2013),  Panel  

left and  center is a Aging Eye without AMD and right panel  is a eye with AMD. 

1) Plasma lipoproteins entering RPE. 2) ApoB, E lipoproteins secreted by RPE (gold circles) are assembled 

from multiple lipid sources.3) Lipoproteins accumulate throughout adulthood creating a lipid wall on BrM’s 

inner surface.4) Lipoproteins fuse and form lipid pools and form UC-rich lipoproteins (Unesterified 

cholesterol) within BlindD/soft drusen.5) Disks in rod Outer segment lose UC and gain docosahexaenoate in 

transit from OS base to tip. 6) Cone OS maintain high UC content along with their length, this enters RPE via 

disk shedding, lysosomal uptake, and acid lipase activity. 

 

 

Model of biogenesis of sub -RPE and sub retinal AMD lesions by Curcio et al (2013) 

(Figure 1.2.2) shows that plasma lipoproteins delivered by lipophilic nutrients enter RPE. 

ApoB, E Liporproteins secreted basolaterally by the RPE are assembled from multiple lipid 

sources and lipoproteins accumulate throughout adulthood creating a lipid wall on the 

bruch’s membrane inner surface. Lipoproteins fuse and form lipid pools along with UC-rich 

lipoproteins within BlindD/soft drusen. Disks in rod outer segment lose UC and gain 
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docosahexaenoate (DHA) in transit from outer segment (OS) base to tip, OS derived DHA 

is stored as triglycerides in RPE after phogocytosis, return to OS. The HDL particles 

cycling between RPE and photoreceptors could handle both transfers and retention within 

inter photoreceptor matrix as UC containing SDD, especially under rod-rich perifovea. 

Cone OS maintain high UC content along their length; this enters RPE via disk shedding, 

lysosomal uptake and acid lipase activity. UC is released for intercellular transfer, 

esterification and assembly into basolaterally- secreted lipoproteins especially under cone 

rich fovea. 

Curcio described the histological appearance in 22 eyes of 20 Caucasian donors and SDD 

was found as either isolated or as confluent drusenoid moulds or dollops (Curcio et al., 

2013). Photoreceptor structural changes were noted such as OS shortening, with inner 

segment deflection /absence and large SDD encroaching on photoreceptors were seen. 

Photoreceptor outer segments, mostly rods appear associated with microvilli bundles 

wrapping around SDD moulds to reach the RPE. Whether this implies that some RPE does 

not touch photoreceptors is not certain. 

 

1.1.2d Thick basal laminar deposits in adult-onset autosomal dominant inherited 

disorders: 

Three autosomal dominant inherited disorders with adult onset-Sorsby fundus dystrophy, 

Late-Onset Retinal Degeneration (LORD) and Malattia leventinese-Doyne honeycomb 

retinal dystrophy (ML-DH) share phenotypic similarities with AMD. The mutant genes 

encoding these conditions localise with BlamD, suggesting its key role in drusen formation. 

Sorsby and LORD are notable for thick BlamD and areas of retinal atrophy (Isashiki et al., 

1999) involving macula and the periphery. ML-DH is notable for peripapillary deposits and 
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radially distributed drusen. The deposits of EC, UC, and apoB in BlamD may represent 

native lipoproteins in transit from RPE to the choriocapillaris rather than 

deposition/aggregations of plasma LDL as originally speculated (Curcio et al., 2013). 

 

1.1.2e Response to retention hypothesis of AMD: 

The parallels between the pathology of arterial intima of large arteries and that of Bruch’s 

membrane are striking. Both feature cholesterol-rich lesions in subendothelial 

compartments within the systemic circulation involving the same biological molecules 

(Friedman, 2000). According to the response-to-retention hypothesis of atherosclerosis, 

plasma lipoproteins cross the vascular endothelium of large arteries, bind to extracellular 

matrix and initiate oxidative and non-oxidative processes leading to inflammation, 

macrophage recruitment and neovascularization, which eventually leads to diseases. 

 

1.1.2f Neovascular AMD: 

CNV involves VEGF stimulation of choriocapillaris endothelium, a compromise to Bruch's 

membrane and participation of macrophages (Grossniklaus and Green, 2004).Impaired 

transport across the Bruch's membrane in AMD, increasingly isolates the RPE from its 

metabolic source in the choriocapillaris and enhances the challenge of waste product 

disposal. VEGF released as stress signal initiates an angiogenic response by the 

endothelium. However, Bruch's membrane compromise is essential for CNV to proceed. 
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1.2 Choroid:  

The choroid is the posterior part of the uvea, the middle tunic of the eye (Fig 1.3). It 

develops from different cell lines (mesenchyme) than the RPE and retina, which develop 

from the neural ectoderm. The choroid is comprised of blood vessels, melanocytes, 

fibroblasts, resident immune competent cells and supporting collagenous and elastic 

connective tissues. 

As one of the most vascularized tissue in the body, its functions are supplying oxygen and 

nutrients to the outer retina, thermoregulation via heat dissipation, modulation of 

Intraocular pressure (IOP) via vasomotor control of blood flow and drainage of aqueous 

humor via the uveoscleral outflow (Nickla and Wallman, 2010). 

 

Figure 1.3: Photomicrograph of the three tunics at the back of the Primate eye. 

 Retina, Choroid, and Sclera have been labelled. (Remington, 2005). 

 

The choroid extends from the margins of the optic nerve to the pars plana, where it 

becomes the ciliary body. It is most commonly described as having 5 layers starting from 

the retinal side namely the Bruch's membrane, the choriocapillaris, the two vascular layers 

(Haller's and Sattler's) and the suprachoroid (Figure 1.4). 
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Figure 1.4: Histology of the choroid: A) Schematic diagram of the layers of the choroid. (LA, 

2005)B) Semithin resin section of the outer retina and the choroid in the primate eye. RPE: retinal 

pigment epithelium; CC; choriocapillaris; Sattler's Layer; HL: Haller's layer (Forrester, 2002). 

 

1.2.1 Choriocapillaris: 

The choriocapillaris is a highly anastomosed network of capillaries, forming a thin sheet 

opposed to Bruch's membrane. The fibrous basement membrane of the choriocapillaris 

forms the outermost layer of the Bruch's membrane. The capillaries are 10µm thick at the 

fovea where the density is the thickest and it thins down to 7µm in the periphery. They 

arise from the arterioles in the Sattler's layer and give rise to the hexagonal (lobular) 

domain of a single layer of capillaries, giving rise to its characteristic patchy appearance. 

They are fenestrated with a large spread of area as the velocity of the red blood cells is 77% 

of the velocity in the retinal capillaries (Wajer et al., 2000). The fenestrations are highly 

permeable to proteins contributing to the high oncotic pressure in the extravascular stroma 

aiding the movement of fluid from the retina into the choroid. 
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Adjacent to the Sattler's layer, is a fibrous layer connected to the outer fibrous layer of the 

Bruch's membrane by columns of collagen fibers running between the capillaries. These 

columns or "pillars" may function to keep the capillary diameter constant (Krebs, 1991). 

1.2.2 Choroid vascular layers and the suprachoroid: 

The vascular region consists of the outer Haller's layer of large blood vessels and inner 

Sattler's layer of medium and small arteries and arterioles that feed the capillary network 

and veins. 

The suprachoroid space the transitional zone between the choroid and the sclera contains 

the elements of, collagen fibers, fibroblasts, and melanocytes. 

 

1.2.3 Choroid Blood flow: Nourishment of the retina: 

In spite of the presence of the retinal blood vessels, the major blood supply to the retina is 

from the choroid. The photoreceptors are extremely, metabolically active and consume over 

90% of the oxygen delivered to the retina, especially in the dark when active transport of 

ions is required for ion homeostasis. In the darkness, ninety percent of the oxygen comes 

from the choroid (Linsenmeier et al., 1981; Linsenmeier and Braun, 1992).  

To obtain this high transport of oxygen from the choroid, despite the barriers of Bruch's 

membrane the RPE requires a steep gradient of oxygen tension, which is maintained by the 

high blood flow in the choroid, probably the highest of any tissue in the body and tenfold 

higher than the brain (Alm, 1992; Alm and Bill, 1973). Consequently, the oxygen tension in 

the choroid stays high with an arterial/venous difference of only 3% versus 38% for the 

retinal circulation. The retinal vessels keep the inner retinal PO2 at about 20 mm Hg 
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(Wangsa-Wirawan and Linsenmeier, 2003) where the oxygen tension is much lower than it 

is at the photoreceptors. 

In the retina, the capillaries are continuous with no fenestrations constituting the blood-

ocular barrier, requiring a special transport system to transport glucose and amino acids. 

The choroid circulation being fenestrated is crucial to transport nutrients and oxygen across 

RPE to the retina. The high protein permeability also establishes high oncotic pressure, 

contributing to the movement of fluid out of the retina through the stroma and suprachoroid 

and out of the sclera (Bill, 1962; Marmor et al., 1980). 

 

 1.2.4 Age-related maculopathy/AMD relevance: 

Water, ions, nutrients and plasma -borne protein molecules move in both directions across 

Bruch's membrane. Impairment of this movement occurs in some disease states and in 

normal aging which can have serious consequences on visual function.  The choroid is 

approximately 200 µm thick at birth and decreases to about 80µm at the age of 90 

(Ramrattan et al., 1994). The thickness of the choriocapillaris and the capillary lumen 

diameters decreases with age and AMD (Ramrattan et al., 1994; Spraul et al., 1999). If a 

decrease in choroid blood flow results in decreased clearance of debris from RPE cells, 

there might be pathological changes in the Bruch's membrane, but it is also possible that the 

RPE changes might be the primary factor in the underlying change in the choroid (Nickla 

and Wallman, 2010). 

In dry AMD the submacular choriocapillaris degenerates; it is unknown if this is the cause 

or consequence of the inflammatory response that causes the pathological changes in the 
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choroidal/RPE extracellular matrix (Zarbin, 2004). However, recent evidence shows that 

the atrophy of the RPE occurs first (McLeod et al., 2009). 

In wet AMD, the choroid neovascularisation (CNV) occurs in response to the synthesis of 

vascular endothelial growth factor (VEGF) released as a result of the oxidative stress of the 

RPE. In this form of AMD, choriocapillaris degeneration occurs first in the presence of a 

viable RPE, suggesting that the neovascularisation is in response to the ischemia induced 

by the primary capillary degeneration with subsequent effects on the RPE (McLeod et al., 

2009). 

 

1.3 Retina: 

The retina remains the best-studied part of the human brain, embryologically part of the 

central nervous system (Duke-Elder, 1963) but readily accessible to examination for both 

scientists and clinicians. An estimated 80% of all the sensory information in humans is 

thought to be of retinal origin (Sharma, 2003)  indicating the importance of retinal 

functioning for the ability to interact with the outside world. 
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Figure 1.5:  Schematic diagram showing the whole retina: an Optic nerve in the center surrounded 

by the posterior pole, Peripheral retina extending into the ora serrata shown, ciliary nerve, arteries 

and Vortex veins labelled  (www.slideshare.net/retina -preliminary). 

 

The retina extends from the ora serrata in the anterior to the optic discs posterior, it is 

divided into peripheral retina and the posterior pole (Figure 1.5). The retina has ten layers 

(Figure 1.6); the innermost layer is the retinal pigment epithelium (RPE) which is a 

monolayer of pigmented cells transporting metabolic end products from the sub retinal 

space to blood as well as supplying nutrients to photoreceptors from blood. The second 

layer after the RPE is the photoreceptor layer which consists of specialized neuronal cells 

capable of photo transduction and converting the light energy into signals stimulating the 

biological process of vision. The third layer is the external limiting layer/membrane 

(ELM)/outer limiting membrane (OLM) which separates the inner segment portions of the 

photoreceptors from the nucleus in their cells. This is followed by the fourth layer which is 

the outer nuclear layer (ONL) consisting of the cell bodies of rods and cones. Projections of 

http://www.slideshare.net/retina


ANATOMY & PHYSIOLOGY RELAVANT TO AMD 

 

41 

 

the rods and cones synapsing with the dendrites of the bipolar cells form the fifth outer 

plexiform layer (OPL). The sixth layer, inner nuclear layer (INL) is formed by the nuclei of 

the amacrine, bipolar and horizontal cells, this is followed by the synapses of the bipolar 

cell axons with the ganglion cells in the inner plexiform layer (IPL). The eighth layer is the 

ganglion cell layer (GCL) consisting of the nuclei of ganglion cells, the axons of which 

become the optic nerve fibres and eventually form the nerve fibre layer (ninth layer). The 

internal Limiting layer/membrane (ILM) is the tenth layer forming a boundary between the 

retina and the vitreous body formed by astrocytes and the end feet of Muller cells (retinal 

glial cells). 

 

Figure 1.6: Light micrograph of a vertical section through central human retina, the layers of the 

retina as visualized have been labelled (www.webvision.med.utah.edu). The ten Layers of the 

retina are; 1. Retinal pigment epithelium (RPE); 2. Photoreceptor; 3.External limiting 

Layer/membrane (ELM)/Outer limiting membrane (OLM); 4. Outer nuclear layer (ONL); 5. Outer 

Plexiform layer (OPL); 6. Inner Nuclear Layer (INL); 7. Inner Plexiform layer (IPL); 8. Ganglion cell 

layer (GCL); 9. Nerve fibre Layer; 10. Internal Limiting layer/membrane (ILM) 
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1.3 .1 The Macula: 

The adult posterior pole (anatomical macula or area centralis) is about 4.5-6 mm in 

diameter and is centered on the fovea between the superior and inferior arcades. The 

macula is about 1.5 mm or one disc diameter in size (Kincaid, 1991). 

 

The most central part of the macula, the fovea is formed by a central 0.35 mm wide 

depression representing the retinal region of greatest visual acuity (Oyster, 1999). 

The foveola has the highest density of cone photoreceptors (199,000/mm
2
), which are 

narrowed and elongated in this location to maximize light detection further (Curcio and 

Allen, 1990). The long axons of the foveal cones form Henle's layer as they radiate out of 

the central depression. The fovea develops by an opposing process of outward displacement 

of cells of the inner nuclear and ganglion cell layers, while the cone photoreceptors migrate 

towards the center (Hendrickson, 1993). Rod photoreceptors are excluded from the foveal 

outer retina ("rod free zone"). As a result, the foveola contains only the cone photoreceptors 

and some Muller cells, The central 500µm of the fovea contains no retinal capillaries (the 

foveal avascular Zone or FAZ), making the fovea dependent on blood supply from the 

choriocapillaries (Figure 1.7). 
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Figure 1.7: Vertical section of the human fovea (Yamada 1969). 

Microscopic section showing the layers of the retina at the macula, the foveola contains only cone 

and some muller cells. OS, IS outer segment and inner segment of photoreceptor cell; OLM, outer 

limiting membrane; ONL outer nuclear layer; H, Henle fibers; INL inner nuclear layer; ILM inner 

limiting membrane; G, ganglion cells. 

 

1.3 .2 Peripheral retina: 

The peripheral retina comprises of the remaining retina outside the temporal retinal arteries.  

The central retina is thicker compared to the peripheral retina due to the dense packing of 

the cone photoreceptors and their associated bipolar and ganglion cells compared to the 

central retina. The central retina is cone dominated and peripheral retina is rod dominated. 

The ampulla of the vortex veins lies just posterior to the equator, while the long posterior 

ciliary arteries and nerves mark the horizontal meridian. The ora serrata marks the anterior 

termination of the sensory retina and the beginning of the pars plana of the ciliary body, 

making this space a relatively safe site for surgical access to the posterior segment and also 

for intravitreal injections. 
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1.3.3 Retinal Pigment Epithelium: 

The retinal pigment epithelium (RPE) is a monolayer of pigmented cells forming a part of 

the blood/retina barrier (Olaf, 2005). The apical membrane of the RPE faces the 

photoreceptors outer segments; these long apical microvilli surround the light-sensitive 

outer segments to make close structural interactions. The outer basolateral membrane of the 

RPE faces the fenestrated endothelium of the choriocapillaris. Embryologic development of 

RPE and the photoreceptors are interrelated with RPE secreting factors needed for the 

survival and differentiation of photoreceptors.  

The RPE transports ions, water, and metabolic end products from the subretinal space to the 

blood and nutrients like glucose, retinol, and fatty acids from the blood to the 

photoreceptors. 

 1.3.3a Functions of the RPE: 

The functions of the RPE are summarised in Figure 1.8, 

1. RPE has a major role in photoreceptor excitability. It performs this function by aiding in 

the visual cycle and converting all-trans-retinal into 11-cis-retinal, by maintaining voltage 

dependent ion composition in the sub-retinal space and by phagocytosis of the shed outer 

segments of the photoreceptors. 

2. The secretory function of the RPE is to be responsible for providing a variety of growth  

factors which help to maintain the structural integrity of choriocapillary and photoreceptors  

endothelium.  RPE also establishes the immune privilege of the eye by secreting  

immunosuppressant factors (Streilein et al., 2002)  as the failure of any of these factors  

lead to the degeneration of the retina, loss of visual functioning and eventual blindness. 
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 Figure 1.8: Schematic summary of various RPE functions; PEDF, pigment epithelial growth 

factor; VEGF, Vascular epithelial growth factor; (Olaf ,2005). 

 

3.  RPE helps in absorption of light and increases the optical quality of the retinal image by 

forming a darkly pigmented wall cover which absorbs light that is not absorbed in 

photoreceptors and scattered light. Light entering the pupil is focused onto the macula lutea 

by the lens which concentrates the light energy onto the retina. The outer retina is exposed 

to oxygen rich environment as the blood perfusion of choriocapillaris is high (Alm and Bill, 

1972). There is a negligible oxygen extraction along the passage through the 

choriocapillaris as the venous blood here shows 90% O2 concentration in comparison to 

retinal vessels which have 45% O2 saturation. The retina appears to float on oxygen-rich 

blood filled vessels which are ideal to allow photo-oxidation and subsequent oxidative 

damages. The photo-oxidative damage is also increased by a load of reactive oxygen 

species produced by the phagocytosis of shed photoreceptor outer segments (Miceli et al., 

1994). 
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 4. RPE aids in the defense against photo-oxidative stress. This function has been described 

by Boulton and Dayhaw-Baker (2001) there are three levels of defenses against oxidative 

damage; 

a. Absorption and filtration of light by pigments: 

 General light absorption is by melanin in melanosomes, absorption of blue light is by 

carotenoids in photoreceptors which are lutein and zeaxanthin. Blue light is the most 

dangerous for RPE cells in the adult eye as it permits photo-oxidation of lipofuscin 

components to cell toxic substances (Ben-Shabat et al., 2001) . As a light absorbing 

pigment, lipofuscin be beneficial for visual function. However, its concentration reaches a 

toxic level in older eyes (Olaf, 2005). 

b. Anti-Oxidants: 

RPE contains high levels of enzymatic antioxidants such as superoxide dismutase ( Miceli,  

1994) catalase, non-enzymatic antioxidants like carotenoids, ascorbate, alpha-tocopherol, 

and beta carotene (Beatty,1999). This is supplemented by melanin and glutathione which 

primarily function as anti-oxidants. 

c. Repair Mechanism: 

The third line of defense is the cell's physiological ability to repair damaged DNA, lipids, 

and proteins. 

 

1.3.3b Age-related maculopathy/ AMD relevance: 

An increase in the oxidative stress due to reduction in the protective mechanisms or an 

increase in the number of active photo-oxidative reaction species is believed to contribute 

to the pathogenesis of AMD (Boulton,1991). 
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 One starting point is the accumulation of lipofuscin in the RPE; age-dependent changes 

like reduction in the cell density of RPE, accumulation of toxic substances secondary to 

reduction of alpha-tocopherol, the decline in melanocytes and increase in lipofuscin are 

seen. Oxidative stress can be seen as an accumulation of advanced -glycation end products 

(AGEs) in Bruch's membrane which have an important role in inducing CNV. 

Drusen which are the most important sign of AMD are metabolic end products from both 

RPE and photoreceptors. Detailed analysis of the protein composition of drusen has led to 

alternate theories.  In one theory the formation of drusen begins with the loss of RPE that 

are removed by an inflammatory event. The resultant gap is closed by an adjacent RPE that 

secretes a new extracellular matrix (Hageman,2001). This is supported by the detection of 

active dendritic cells and complement system in drusen (Mullins, 2000).The other theory is 

that the hydrophobic and lipoprotein material may be the debris left from incomplete 

degradation of cells (Sakaguchi , 2002). 

 

1.3.4: Photoreceptors: 

A photoreceptor cell is a specialized neuron in the retina capable of photo transduction and 

converts light energy into signals that stimulate the biological processes. The two classic 

cells are cones and rods; there are two to three types of cone photoreceptors and a single 

type of rod photoreceptor. 
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Figure 1.9: Schematic diagram of Rods and Cones.  Although generally similar in structure, 

rods (A) and cones (B) differ in their size and shape, as well as the arrangement of membranous 

disks in their outer segments (Purves,2001).  

 

As the name suggests cones are conical whereas rods are slim rod-shaped structures 

arranged in a single row below the OLM (outer limiting membrane) with their inner and 

outer segments protruding into the subretinal space towards the RPE. Rod/Cone cell bodies 

make up the outer nuclear layer, while apical processes of RPE envelop the photoreceptor’s 

outer segments. 

The photoreceptors (Figure 1.9) consist of an outer segment, an inner segment, a cell body 

and a synaptic terminal.  

The outer segment of a photoreceptor is filled with stacks of membranes containing visual 

pigment molecules like rhodopsins. The inner segment contains mitochondria, ribosomes, 

and membranes where opsin molecules are assembled and passed to be part of the outer 
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segment discs. The cell body contains nucleus of the photoreceptor cell and the synaptic 

terminal is where neurotransmission to second order neurons occurs. 

Outer and inner segments of the rods are generally thinner than of the cones. Rod’s inner 

segments are 2 microns and the cone's about 6 microns in diameter, however at the fovea 

where there are only cone photoreceptors the central cones are even thinner than the 

average rods at about 1.5 microns diameter. 

The stacks of discs containing visual pigments in the outer segments of the photoreceptors 

are constantly renewed. New discs are added at the base of the outer segment at the cilium; 

at the same time, old discs are displaced up the outer segment and are pinched off at the tips 

and engulfed by the apical processes of the pigment epithelium. These discarded discs 

become known as phagosomes of the pigment epithelium cells. They are then broken by 

lysis. Photoreceptor outer segment discs are phagocytosed by the pigment epithelium 

shortly afterward (Young, 1971). 

 

 

 

 

 

 

 

 



ANATOMY & PHYSIOLOGY RELAVANT TO AMD 

 

50 

 

1.3.4 a Different types of cone photoreceptors: 

 

Figure 1.10: Types of Photoreceptor cells. 

Short -wavelength cones (blue), Medium cones (Green) and Long wavelength (Red) and rods. 

Reproduced from (Kolb, 2013). 

 

The long wavelength sensitive, L-cones, are maximally sensitive to wavelengths peaking 

around 560 nm. Medium wavelengths cones, M-cones, peak around 530nm and short 

wavelengths, S-cones, have peaks varying from 430 nm (Baylor et al., 1987) to 445 nm 

(Dobelle et al. 1969) (Figure 1.10) 

Colour processing is associated with two main channels that emerge from opponent 

processing. Colour opponency was initially suggested by Hering in 1874 (translated in 

1964) and involves the comparison of signals  between different cone inputs. The RG 

channel utilizes differences between the inputs of L and M Cones, while YB channel 

compares signals derived from the M and L cones to the signals originating from the S 

cones. The overlapping sensitivities of the three cone pigments allow an astonishing 

number of combinations of excitation levels, which in turn lead to the perception of many 

distinct colours. 
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S cones have the lowest spatial density in the foveal pit and constitute 3-5% of the cones, 

reaching a maximum density of 15% on the foveal slope (1 degree from the foveal pit) and 

forming an even 8% of the total population elsewhere in the retina (Ahnelt et al., 1987).  

Marc and Sperling (1977) found the distribution of L -cones at about 33% of the cones 

throughout the retina, whereas the M-cones peak in the fovea at 64% and vary between 

52% and 59% elsewhere in the retina. However, others found the L-cones to outnumber the 

M-cones in fovea and perifoveal psychophysical testing paradigms (Cicerine and Nerger, 

1989). They further established the L: M ratio to be 2:1 in the human fovea centralis. The 

latest laser interferometry (Roorda 1999; Williams and Hofer et al 2005) found a 

considerable variation amongst individuals. Roorda et al (1999) found values of 75.8% L 

with 20.0% M versus 50.6% L with 44.2% M in two male subjects. Hoofer et al (2005) 

found that males with normal colour vision varied in the ratio of L to M cones from 1.1: 1 

to 16.5:1, all subjects had nearly identical S-cone densities. Hoofer et al (2005) suggested 

that the assignment of L and M pigment, although highly irregular, is not a completely 

random process and may be a compromise of the visual system between the needs of the 

spatial and colour vision. 

 

 1.3.4 b The density of Rods and Cones in the human retina: 

Photoreceptors are organized in a mosaic hexagonal pattern at the fovea and start to break 

up, while still maintaining an organized architecture of cones evenly spaced with rings of 

rods. The cone density is highest in the foveal pit and falls rapidly outside the fovea to a 

fairly even density in the peripheral retina (Osterberg, 1935; Curcio et al 1987). There is a 
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peak of rod photoreceptors around the fovea at about 4.5mm or 18 degrees from the foveal 

pit. The optic nerve head forms the ‘blindspot’ since it is free of photoreceptors.   

 

 

Figure 1.11: Graph showing rod /cone densities along horizontal meridian. 

 The graph shows that the cone density is highest at the foveal pit, and rod density peaks at about 

4.5 mm or 18 degrees from the foveal pit. (Kolb,2013).  

 

 

Rods are so sensitive that they can actually detect a single quantum of light. Rod sensitivity 

appears to be achieved at a compromise, since the rods are much slower to respond and the 

signals from rods may arrive as much as 1/10
th

 of a second later than those from cones 

under lighting conditions where both can be activated (MacLeod, 1972). In addition, the 

signals from many rods are summed up and converge to single ganglion cells, hence the 

loss of spatial resolution.   

 

If we consider the macula to be an area of 6 mm in diameter subtending an angle of 21.5°of 

visual angle centered on the fovea (Klein, 1991), the small cone dominated fovea would be 

only 0.8 mm (2.75
0
) in diameter surrounded by the rod –dominated parafovea (Curcio and 
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Allen 1990). In young adults, rods outnumber cones in the macula by 9:1. In the entire eye, 

rods outnumber cones 20:1, so the macula can be considered cone-enriched but not cone 

dominated.  

1.3.4 c Age-related maculopathy and AMD relevance: 

In the macula of older adults, lacking grossly visible drusen and pigmentary change, 

(without any ARM) the cones in the cone-dominated part are stable at approximately 

32,000 through the ninth decade (Curcio et al., 1993). In contrast, the rods in the macula of 

the same eye decrease by 30%. The greatest loss occurs in the parafoveal (1-3 mm from the 

fovea or 3.5
o
-10

o
 from the fixation). With respect to photoreceptor topography at different 

stages of ARM, the foveal cone mosaic of eyes with large drusen and thick basal deposits 

appears to be similar to age – matched controls (Curcio, 1996) and the total number of 

cones were normal. 

In contrast at the parafovea, the cones appeared to be large and misshapen as few rods 

remained. Furthermore in eyes with late ARM, virtually all surviving photoreceptors in the 

macula were cones with a reversal of the normal predominance of rods. The mean scotopic 

loss is maybe greater in magnitude than the mean photopic sensitivity loss in the majority 

of ARM patients, as noted by Curcio et al (2000). 

 

 1.3.5 Ganglion cells: 

Visual signals are transmitted and processed in bipolar, horizontal, amacrine and 

interplexiform cells within the retina. Finally, the ganglion cells are responsible for 

transmitting the processed information from the retina to the brain. Because of the 

anatomical distance between the retina and the brain, the ganglion cell axons require 
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effective mechanisms for the transport of metabolites and organelles away from (antegrade) 

and back to (retrograde) the ganglion cell nucleus. Most transportations is slow and 

anterograde. Axon transportation is an active process that requires adenosine triphosphate 

(ATP) which is supplied by the mitochondria in the axon. 

The ganglion cell layer (GCL) contains about 1.2 million ganglion cells, the thickness of 

the GCL is greatest in the perifoveal macula consisting of 8-10 rows of nuclei (60-80μm), it 

decreases to a single row outside the macula (10-2 μm) and is absent from the fovea itself 

(Sharma  2003; Kincaid and Green1999). 

 

 1.3.5 a Aging and Age-related maculopathy/AMD relevance: 

The tissues present within the eyes ages along with us and this, in turn, influences the 

amount of light that reaches the retina (Owsley, 1987). Age-related changes in the optics of 

the eye contribute to the decline of some visual functions. Changes in the retina and in 

particular the loss of photoreceptors and ganglion cells in healthy aging also contributes to 

loss of visual performance (Enoch, 1999, Elliot, 2012).  The retinal ganglion cells (RGC) 

synapse into the lateral geniculate nucleus (LGN) of the thalamus, which in turn relays into 

the primary visual cortex.  Neural changes along the visual pathways from the retina to the 

striate cortex can also contribute to declining visual function. 

MRI of the human LGN shows approximately a 15% reduction in structural volume 

between 20 and 70 years of age (Li, 2012). Histological analysis of postmortem tissue 

indicates a more dramatic decline (30%) (Selemon, 2007). Despite these changes in tissue 

volume, the number of neurons in the LGN regardless of species does not change (Selemon 

,2007; Ahmad, 1993; Diaz, 1999), but the RGC neuron itself may be more vulnerable. The 
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vulnerability is indicted by the diminished size and complexity of RGC axons (Samuel, 

2011), slow axonal transport (Karlsson, 1992), and through the age-related shrinkage of the 

distal superior colliculus volume as seen in animal studies (Crish, 2010) . 

Unlike the photoreceptor cells and bipolar cell axons which are unmyelinated, only the 

short segment of the RGC axon is unmyelinated. Myelination starts once the RGC axon 

penetrates the laminar portion of the optic nerve. The RGC axons also differ from the 

photoreceptor axon in being very thin, optimized for minimal firing rate and usage of 

energy (Niven, 2008, Wang, 2007), but the small size of the RGC axons has implications 

for susceptibility to Ca
2+

 homeostasis and cytoskeleton degradation. A small axon, 

especially one with an inefficient and unmyelinated segment, is also at a disadvantage 

should the available ATP (adenosine triphosphate) diminish due to slow axoplasmic flow.  

Aging is also associated with a decline in the ATP available for hydrolysis which is 

necessary for release of stored energy. 

Most studies find robust and regular age-related decline in axon number (Mikelberg  1989; 

Morrison  1990; Jonas  1992). The rate of human axonal loss is 0.5% annually (Harwerth, 

2008) resulting in an approximate 40% decline over a life span (Neufeld AH 2003). This 

suggests that survival of unmyelinated segment in the retina and nerve head is coupled 

tightly to the survival of distal axon segment in the nerve itself. 
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 2.  Age-related macular degeneration: 

2.1 Introduction to AMD: 

Hutchinson first described the condition in 1874 as "Symmetrical central choroidal-retinal 

disease occurring in senile persons" (Kolar, 2013). About 25 years ago the term "Age-

related maculopathy (ARM)" was accepted and the end stage of the disease was 

acknowledged as "Age -related macular degeneration (AMD)" (De Jong, 2006) .More 

recent classifications (Ferris et al., 2013) have classified eyes into normal aging, early 

AMD, intermediate AMD and late AMD. The term AMD has since been used for both early 

and late stage of the disease. 

AMD is a multi-factorial maculopathy characterized by late-onset progressive 

neurodegeneration of photoreceptors and retinal pigment epithelium (RPE) (Miller, 2013). 

AMD is the commonest cause of severe visual impairment or blindness in the developed 

world. It is estimated that a quarter of a million older adults in the UK alone suffer from 

blindness due to the condition (Ferris et al., 2013). The World Health Organization (WHO) 

indicates that AMD ranks third after cataract and glaucoma as a leading cause of blindness 

globally. 

AMD typically is classified into two phenotypic categories: Wet AMD and geographic 

atrophy (GA). In wet AMD choroid neovascularization breaks through the neuroretina, 

causing leaky vessels, haemorrhages, and lipid deposits which eventually lead to a scarring 

process in the macular area. All retinal structures including photoreceptors are destroyed. In 

GA there is progressive atrophy of RPE and secondary photoreceptors. To the end of the 

20th century wet AMD was practically untreatable, however, new pharmaceuticals based 

on suppression of vascular endothelial growth factor (VEGF) have completely changed the 
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course of treatment of this condition as nearly 95% of the patients can be prevented from 

visual loss and 40% of them can improve vision (Lim et al., 2012). 

 

 2.2 Epidemiology, risk factors, and natural history: 

Many epidemiological studies have been published during the past 30 years. In a meta-

analysis of a population-based studies in Caucasians aged 40 and over , the estimated 

prevalence of early age-related maculopathy was 6.8% and late age-related macular 

degeneration was 1.5% (Smith et al., 2001). A recent systematic literature review of 39 

studies (Wong et al., 2014) showed a pooled prevalence of early, late and other forms of 

AMD to be 8.01%, 0.37% and 8.69% respectively. 

 The Baltimore Eye Study in 1999 reported epidemiological data from other ethnic groups, 

which showed that late AMD was nine to ten times more prevalent in white than in black 

participant and was almost similar in Asians. However, PCV (polypoidal choroidal 

vasculopathy) accounts for 50% of wet AMD in Asians and only 8-13% in white people 

(Laude et al., 2010) . Another variant of wet AMD is RAP (retinal angiomatous proliferans) 

which accounts for 12-15% of wet AMD; (Gupta et al., 2010)  RAP usually does not 

respond to the standard management of wet AMD. 

 

 2.2a Risk factors: 

The major risk factor for age-related maculopathy is age; more than 10% of the people 

older than 80 years have late AMD. Sex has been consistently reported as a risk factor with 

females being affected  the most (Smith et al., 2001). 
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The major systemic risk factor is smoking (Seddon et al., 1996) .Smoking 20 cigarettes a 

day doubles the risk of developing AMD. Other systemic risks such as obesity, 

hypertension, diabetes, and strokes are also found to be associated in people with AMD 

(Chakravarthy et al., 2010). 

 

Low dietary intake of vitamin A, C, E, Zinc, Lutein and Omega-3 fatty acids can also affect 

the probability of developing AMD. An unhealthy life style related to cardiovascular risk 

factors is postulated to be related to ARM and consequent AMD (Lim et al., 2012). 

 

 2.2 b Genetic Factors: 

 In the last ten years several genes have been found to have a role in AMD. The 

pathogenesis of AMD has been linked to inflammatory and immunological  

processes, therefore, the complement factor H gene (CFH) have been implicated. 

Other confirmed genes in the complement pathway are C2, CFB, C3 and CFI (Penfold et 

al., 2001). Collagen pathway genes, extracellular matrix pathway gene TIMP3 and finally 

the angiogenesis pathway genes (VEGFA) have been associated in a Meta -analysis of two 

AMD genome-wide association studies (Yu et al., 2011). 

The gene pathways are associated with onset, progression and bilateral involvement of 

AMD, but environmental factors may modify individual susceptibility. Genetic variations 

can also influence differential responses to treatment for AMD which is an emerging 

research area. 
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2.3 Normal Aging: 

Aging is a physiological process involving all body organs and tissues including the eye. 

Each body cell has a planned cell cycle leading to apoptosis or cell death but in tissues with 

no restoration of extinct mitotic cells like the retina, there is a high chance of aging 

especially after the 75
th 

year of life. 

Clinically, aging is the loss of foveal reflex which in effect is the loss of cells from the 

inner retinal layers around the foveola and FAZ (Foveal avascular zone) (Laatikainen and 

Larinkari, 1977). In the macular area, there can be a presence of hard drusen which are not 

ARM but signs of normal aging (Klein et al., 1992). Doppler velocimetry shows a decrease 

in blood flow to the macular area (Groh et al., 1996). There is a detectable reduction of peri 

foveolar  arterioles and venules together with the enlargement of the FAZ (Ibrahim , 1998) 

as well as the retinal ganglion cell amounts (Gao and Hollyfield, 1992). 

Visual acuity remains relatively unaffected at this stage but there can be a decrease of other 

visual functions such as adaptation to darkness, contrast sensitivity, colour  vision, and 

stereopsis (Sandberg and Gaudio, 1995).  

The macula undergoes a spectrum of changes in the normal eye. In a subset of individuals, 

these changes can progress to pathology manifest as AMD (Zarbin, 2004). Healthy young 

maculae tend to have a sharp foveal light reflex on biomicroscopy, caused by the concave 

shape of the fovea. As the macula ages, this reflex is blunted by possibly the decrease in the 

photoreceptors density, swallowing of the foveal pit and enlargement of the capillary-free 

zone (Laatikainen and Larinkari 1977). Several small well-defined drusen are usually 

present in the elderly (Klein et al., 1992). The irregularity of the RPE may cause a stippled 

background of varying degrees. 
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Photoreceptor drop out is caused mostly by the loss of rods (Curcio et al., 1993). Foveal 

cone density may, however, remain constant until the ninth decade. Lipofuscin accumulates 

in the RPE and it deteriorates over time. BLamD (basal laminar deposits) are between RPE 

basal plasma membrane and basement membrane in the subretinal space. BLamD are seen 

uniformly distributed by the seventh decade, they are considered normal aging if there are 

focal lesions (Miller, 2013) which are seen as small "hard drusen". However, BLamD is 

often not visible clinically and represents more of a histological finding. An eye with early 

BLamD has a normal clinical fundus appearance. 

 

2. 4 Early and intermediate AMD:  

Age-related maculopathy (ARM) is a disorder of the macular area of the retina, most often 

clinically apparent after 50 years of age, characterised by any of the following primary 

items, without indication that they are secondary to another disorder (International ARM 

epidemiological study group, 1995) (Bird et al., 1995).  

The first primary characteristic item is drusen (Figure 2.1 a) which are discrete whitish-

yellow spots external to the neuroretina or the RPE. They may be soft and confluent, often 

with indistinct borders. Soft distinct drusen have uniform density with sharp edges. Soft 

indistinct drusen have decreasing density from the center outwards with fuzzy edges. Hard 

drusen, usually present in eyes with or without ARM, do not characterise the disorder 

themselves. 

The second item is an area of increased pigmentation or hyperpigmentation (in the outer 

retina or choroid) associated with drusen (Figure 2.1 b). The third are areas of 
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depigmentation or hypopigmentation of the RPE, most often more sharply demarcated than 

drusen, without any visibility of choroidal vessels (Figure 2.1c)  

a) b) 

   c) 

  Figure 2.1: Fundus photograph in study patients showing the three primary items in ARM. a) 

Drusen b) Pigmentary change with Drusen c) Hypopigmentation. 
 

 

 2.4 a Drusen:  

Drusen are one of the earliest clinical signs of age-related macular degeneration (AMD) and 

are characterized based on their texture (hard or soft), borders (distinct or indistinct), and 

their size: small (<63 μm), intermediate (>63 μm but <125 μm), or large (≥125 μm) (Klein et 
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al., 2002; Seddon et al., 2006). Lesions similar to drusen, both in histology and clinical 

appearance, are also seen in choroidal tumors, chronic inflammation and degenerative 

conditions of the eye. Drusen are yellowish white deposits of extracellular material located 

between the retinal pigment epithelium (RPE) and the inner collagenous zone of the Bruch's 

membrane; they are the result of aging. However, drusen seen in varied conditions have a 

similar clinical and histological appearance. When viewed ophthalmoscopically, drusen 

appear as dots ranging in colour from white to yellow sometimes with a crystalline, glittering 

look. 

The occurrence of drusen is however not a static phenomenon. Their presence is 

characterized by dynamic changes. Hard drusen can grow and change to soft drusen. Soft 

drusen can grow and coalesce into large confluent bodies which lead to detachment of RPE. 

Numerous longitudinal studies have demonstrated correlations between total drusen area and 

the maximum drusen size, with the risk of progression to advanced AMD (Klein et al., 2002; 

Bressler et al., 1990; Davis et al., 2005; van Leeuwen et al., 2003; Wang et al., 2003). Large, 

soft, confluent drusen are associated with a higher risk for development of advanced AMD 

(Klein et al., 2007;Pauleikhoff et al., 1990; Ferris et al., 2005). 

2.4 b Changes in RPE: 

Irregularities in RPE are associated with all stages of macular degeneration. Focal 

hyperpigmentation arises from changes at the level of the RPE. Hyperpigmentation can also 

be seen as the migration of the RPE cells into the subretinal space. Focal hypopigmentation is 

commonly seen with chorioretinal anastomosis. Focal hypopigmentation is associated with 

areas of drusen, which leads to the thinning of the RPE cell layer and reduction of melanin 
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content. Low melanin content has been associated with high risk of transition to wet AMD 

(Kolar, 2013). 

 2.4 c Histology: 

In AMD with RPE degeneration, the patchy BLam D seen in normal aging develops an 

overlying layer of diffuse, thick, amorphous and hyalinized material which can become 

nodular elevations (Bressler et al., 1994).  Clinical correlation of this late form is not fully 

established but its presence can be inferred by pigmentary changes (Sarks et al., 2007). 

Focal hyperpigmentation correlates histologically with RPE hypertrophy and migration of 

pigmented cells to sub-RPE and subretinal space and may represent compromised RPE 

cells that can no longer support the photoreceptors. 

BLinD forms layers of membranous debris between the RPE basement membrane and the 

inner collagenous layer, within the bruch’s membrane. BLinD are thought to be lipoprotein 

particles which appear clinically as soft drusen (Sarks et al., 2007).  

Multilayer BLinD cause separation of RPE from the Bruch's membrane leading to CNV 

making their way into this space. 

BLinD can also accumulate as focal aggregations of basal mounds between the RPE basal 

membrane and plasma membrane, as they do not manifest as drusen but cause pigmentary 

changes and primary geographic atrophy without the appearance of drusen (Sarks et al., 

2007). 

 

2.5: Reticular Pseudo drusen (RPD): 

Reticular drusen or subretinal drusenoid deposits represent a subphenotype of AMD that was 

first identified on blue light (red free) fundus photography (Mimoun et al., 1990) .They 



AGE-RELATED MACULAR DEGENERATION 

 

64 

 

clinically appear as yellowish, faint, interlacing networks that most commonly occur along 

the arcades and do not fluoresce on FA. Imaging with OCT particularly spectral domain OCT 

(SD-OCT) has been shown to be effective in detecting reticular pseudodrusen. SD- OCT 

shows numerous drusenoid deposits above the RPE in the subretinal space (Schmitz-

Valckenberg et al., 2010; Zweifel et al., 2010). This is contrary to the previous histological 

studies which localized the changes to the choroid. The origin of these lesions is unclear but 

may represent direct photoreceptor damage (Curcio et al., 2013). Reticular pseudo drusen 

were initially associated with neovascular AMD (Arnold et al., 1995; Cohen et al., 2007) but 

recent studies show they represent a risk factor for progression to geographic atrophy (Klein 

et al., 2008b; Pumariega et al., 2011). 
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  a) 

    Panel showing b and c 

Figure 2.2: Reticular Drusen in a study patient. a) Fundus photo b) Infrared picture C) OCT 

Scan.  Fundus photograph shows the pale yellow lesions of RPD, lesions are seen more clearly and 

distinct on Infrared imaging (IR) and OCT scan. Reticular IR is seen as groups of hyporeflective 

lesions against a background of mild hyperreflectance. Spectral domain OCT showing the 

characteristic subretinal deposits of RPD. 

 

Several multimodal imaging studies showed that RPD are most prevalent in the superior 

macula and that FAF, IR and SD-OCT are superior to other modalities, like colour fundus 

photography, in detecting RPD (Alten and Eter, 2015).  

Based on a comparison of different imaging modalities used for visualisation of RPD, 

Sivaprasad et al (2016) recommended that at least 2 modalities be used to detect and confirm 

the diagnosis of RPD. Currently SD-OCT and IR are preferred for screening of RPD (Smith 

et al., 2009; Sohrab et al., 2011; Ueda-Arakawa et al., 2013). The sensitivity of IR for 

detection of RPD has been reported to be about 95% although it has also been found to have 
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the highest false positives in cSLO imaging (Suzuki et al., 2014), probably due to the similar 

characteristics shared by RPD and soft drusen. Ueda-Arakawa and colleagues also found high 

sensitivity (94.6%) and specificity (98.4%) for SD-OCT alone. In addition, red free confocal 

blue reflectance and ICG were all highly specific (73-100%) for detecting RPD, despite being 

less sensitive than IR and SD-OCT (Ueda-Arakawa et al., 2013).   

 2.5a Genetic and environmental factors: 

Both groups AMD / ARM and RPD share the same major genetic and environmental factors 

and showed no significant differences suggesting RPD occurs in the same genotype and 

epidemiological background as AMD (Puche et al., 2013). Yet, a significant association 

between ages, later age of AMD onset, gender, and risk of systemic hypertension have been 

noted (Boddu et al., 2014). The link implies that further genetic studies to verify the exact 

correlation between RPD and AMD risk alleles are needed. 

2.5 b Path physiology: 

The exact path physiology underlying the formation of RPD remains unknown but the OCT 

enface imaging provides information on some of its features. Spaide, Curcio, and co-workers 

showed through histological examinations that RPD is located internal to the retinal pigment 

epithelium (RPE) and hypothesized that the biological substrate of the RPD is generated at 

the level of the RPE and the photoreceptor’s outer segments (Curcio et al., 2013; Spaide, 

2013). 

There has been a relation of RPD to choroidal watershed zone, suggesting choroidal hypoxia 

in RPD pathogenesis (Alten and Eter, 2015). Reduced choroidal thickness, choroidal volume 

and narrow and sparse choroidal vessels have been reported in these patients. (Alten and Eter, 
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2015). The relationship between RPD and choroidal thinning is not expected to be a simple 

direct correlation and may be related to other factors (Mrejen et al., 2014).  

Spaide (2013) showed regression of these lesions with accompanying outer retinal atrophy 

and loss of underlying choroidal thickness, proposing the term outer retinal atrophy as a new 

entity to late stage AMD. He suggests that the reduction in RPE function leads to 

dysfunctional transport of the RPE and the Muller cells, resulting in an accumulation of 

material in the outer retina. This material also impedes normal transportation of outer 

segments towards the RPE, with attenuation of the photoreceptor metabolic activity less 

oxygen is needed resulting in choroidal thinning. 

Marsiglia and colleagues (2013) reported that GA expanded particularly in the areas affected 

by RPD and conclude that RPD represents an early manifestation of the process leading to 

GA.  

 2.5 c Histology: 

The histological correlate that presumably corresponds to the appearance of the RPD in 

various imaging modalities was called subretinal drusenoid deposits (SDD). Some of the 

materials found in soft drusen are also found in SDD, but the lack of opsins suggests that the 

material is not derived from the retinoids. SDD, unlike soft drusen, are histologically rich in 

unesterified cholesterol and poor in esterified cholesterol. 

Due to the small lesion size, their confluent reticular pattern spreads beyond the central 

macula, thus quantification of RPD in terms of total affected area is more challenging than 

the other AMD phenotypes. 
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Multimodal imaging studies have shown that RPD are more prevalent in the superior macula 

and that FAF, IR, and SD -OCT yield more information than fundus photographs, fundus 

fluorescent angiogram and indocyanine green angiography (Alten and Eter, 2015)
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2.6. Late or advanced Age-Related Macular Degeneration: 

The late stages of ARM, that will be called age-related macular degeneration (AMD),  cause 

severe visual loss and are the most common cause of blindness in people ≥ 50 years in the 

western world (Amoaku, 2008).
 
Due to the expectation of longer life expectancy in the 

population, it is anticipated that prevalence of late stages of AMD and its associated visual 

disability will increase in the 21
st
 century. 

Two main forms of AMD occur, Dry and Wet. The dry form accounts for 90%, whilst wet 

AMD occurs in the remaining 10%. The severe visual loss in 90% of the cases is due to wet 

AMD (Ferris et al., 1984). 

 

 2.6.1. Dry AMD:  

The dry form is more prevalent and is a slow and progressive disease, and is characterized 

by GA as an end-stage disease. GA is any sharply delineated roughly round or oval area of 

hypopigmentation / depigmentation or apparent absence of the RPE in which choroidal 

vessels are more visible than the surrounding areas. There is a degeneration of the outer 

retinal cells (RPE cells) with subsequent profound retinal dysfunction due to the loss of 

photoreceptors and retinal neurons. The chorioretinal atrophy has no obvious defects in 

Bruch's membrane. Clinical studies show a decrease in the chorioretinal blood flow 

(Grunwald et al., 1998). Chorioretinal atrophy includes atrophy of the outer hematoretinal 

barrier (HRB) without appreciable leakage. It seems that the barrier function maintained 

and the atrophic area remains dry. 

GA not only involves RPE but also the choriocapillaries and the retina. All three entities are 

inseparable and the atrophy of one of them leads to the irreversible atrophy of the other 
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two. GA can be primary or secondary based on the absorption of the soft drusen, after 

flattening of a RPE detachment or as a consequence of a CNV regression, or rupture of the 

RPE (Kolar, 2013). 

 Both forms of AMD come with painless loss of central vision with preservation of the 

peripheral field of vision. Individuals with dry AMD complain of blurred vision and 

difficulty in seeing minute details clearly. Late GA compromises basic tasks such as 

recognition of faces, reading signs and other activities of daily living due to the presence of 

a central scotoma. Wet AMD in turn causes distortion of central vision as sudden distortion 

or profound loss of central vision indicates the conversion to wet AMD. Self-monitoring 

with an Amsler grid is critical and can help detect disease progression as early as possible 

(Noble and Chaudhary, 2010). Systematic  review and meta-analysis from small 

preliminary studies show promising test performance for Amsler grid to rule out wet AMD 

in the screening setting (Faes et al., 2014). To what extent these findings can be extended to 

clinical practice needs to be established, as the sensitivity of Amsler charts to detect 

macular disease is less than 50% because of the phenomenon of perceptual completion, 

whereby regular objects are “filled in” across the scotoma (Crossland and Rubin, 2007). 

Patients with primary GA have problems with near vision in particular, which are caused by 

paracentral scotomas, the inability to adapt to the darkness and deterioration of contrast 

sensitivity (Sunness et al., 1997). Magnifying aids can be useful in AMD but in GA they 

might carry the magnified image into the paracentral scotomas and have no beneficial 

effect. The vision varies depending on the ability to find a central functioning retina within 

the zone of GA (Sunness et al., 1999). Long-term prognosis depends on the first location of 

the GA. The interval from first developing the first spot of GA to legal blindness is about 9 

years (Maguire and Vine, 1986). The average rate of progression in GA is about 139 
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microns per year. Affected eyes carry an 8% annual risk of decline in visual acuity from 

20/50 to 20/100 (Schatz and McDonald, 1989). 

 

 

a)

 b and c 

Figure 2.3: Dry AMD (GA). a) Fundus Photo b) Infra-red imaging c) OCT scan of the macula. 

Fundus photo shows a sharply demarcated atrophic area and the OCT scan shows the loss of the 

retina layers in GA. Images are from a study patient who incidentally had early stage AMD in the 

other eye and was recruited in the study. 
 

GA occurs bilaterally. The second eye is affected in about 50% of the cases.  Area covered 

by GA in the second eye is around 20% smaller. Most cases of GA develop in areas noted 

to have large drusen. The life cycle of long standing drusen is commonly characterized by 

the initial development of hyperpigmentation followed by hypopigmentation as the drusen 

regresses to GA (Klein et al., 2008a). 
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Research suggests that the RPE oxidant injury and drusen formation recruits macrophages 

to the site which are beneficial or harmful depending on their activation status. Non-

activated or scavenging macrophages may remove deposits without further injury but 

activated or reparative macrophages can promote complications and progression to late 

disease through the release of inflammatory mediators and growth factors (Cousins et al., 

2004) . 

 

2.6.2 Wet AMD:     

Wet AMD occurs less commonly but is far more aggressive than dry AMD.  

 It is characterized by abnormal blood vessel growth (choroidal neovascularization) in the 

choriocapillaris through Bruch's membrane, ultimately leading to blood and protein leakage 

below the macula. Bleeding, leaking and scarring from these blood vessels eventually 

causes irreversible damages to the photoreceptors and rapid loss to the vision if left 

untreated. Until recently, no effective treatments were known for wet macular degeneration. 

However, new drugs, called antiangiogenic or anti-VEGF (Anti-Vascular Endothelial 

Growth Factor) agents, can stimulate the regression of the abnormal blood vessels and 

stabilize vision when injected directly into the vitreous humor of the eye 

The wet form of AMD is characterized by the occurrence of RPE detachment, choroidal 

neovascularisation (CNV) and subretinal hemorrhage at the macula. 

The terminal stage of wet AMD is a disciform scar. In recent times there have been two 

more entities added to wet AMD; Angiomatose Retinal Proliferans (RAP) and Polypoid 

Choroidal Vasculopathy (PCV) (Kolar, 2013). 
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 2.6.2aa Wet AMD Characteristics: 

 1. RPE detachment/Pigment epithelial detachment (PED): 

The RPE detachment is characterized by the elevation of the RPE layer from the Bruch’s 

membrane. The RPE detachment can be a drusenoid PED with multiple soft drusens, a 

serous PED/RPE detachment with serous elevation but with no leak on FFA or it could be a 

haemorrhagic PED/fibrovascular PED which contains a CNVM.  

   a)

 b  and c 

 

Figure 2.4:  Wet AMD in a study subject.  a) Fundus Photo showing the fibrosing PED, b) IR picture 

and c) OCT scan showing the drusenoid PED with intraretinal fluid. This is the other eye of a study 

patient and she is already on anti- VEGF treatment and shows a resolving lesion. 

 

 

The PED can result in a persistent RPE detachment, or a flattened PED leading to GA 

(Blair, 1975), or a rupture of the PED with CNVM  leading to disciform scar (Green, 1983), 

or may lead lastly to the development of CNVM without rupturing. 
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The most common complication of a PED is the development of a CNV (Figure 2.4). 

Increasing age is the basic risk factor in the development of CNV in subjects of RPE 

detachment. A study showed that elderly people have a larger RPE detachment with more 

fluid and are more likely to develop CNV (Yannuzzi et al., 2001). 

 

2. Choroidal neovascular membrane: 

CNV occurs when there is a breach in the Bruch’s membrane leading to the newly formed 

choroidal blood vessels to grow under the RPE and later into the subretinal space. The 

presence of neuroretinal oedema in ARM is the sign of CNV activity. A typical picture of a 

CNV is a subretinally localized grayish lesion which may vary in size, location, and 

thickness. 

Based on its FFA activity it can be classified as classic or occult. A classic membrane is 

usually well defined and its edges lined with a subretinal hemorrhage. On   FFA it can be 

seen from early stages as a well-demarcated lesion that does not increase in its size in the 

later stages of the FFA. 

 

a) 
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b)                                                               c) 

Figure 2.5: FA of Classic CNV: a) Fundus photo showing a typical grayish lesion lined with 

subretinal blood. b) early stage of classic CNV with a well-demarcated lesion and block of 

fluorescence on its border due to subretinal blood.c)Late stages of classic CNV on FA, a well-

demarcated lesion that does not increase in its size from an early stage(Kolar, 2013). 
 

Occult CNV is more evident on biomicroscopy and OCT. There may be subretinal 

haemorrhage or oedema of the neuroretina. Changes are visible at the level of the RPE. FA 

shows a late mottled leak with an increase in lesion size in comparison to the early stage. 

 According to Gass (Gass, 1967) occult CNVM  is characterised by a neovascular complex 

between the RPE and the choriocapillaris whereas a classic CNVM is the spread of the 

neovascular complex in the space between the RPE and neuroretina, It does imply that 

classic arises from the occult in response to the breach of Bruch’s membrane continuity 

(Kolar, 2013). 

 

3. Disciform Scar 

Choroid hemorrhage and connective-tissue proliferation between the retinal 

pigment epithelium (RPE) and Bruch's membrane causes an elevation of the foveal 

retina resulting in a disciform scar. This reduces visual acuity and results in poor 

vision (Figure 2.6). 
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Figure 2.6: Disciform scar in the other eye of a study patient. a) Fundus photo showing extensive 

scarring in the macular area. b) IR picture and c) OCT showing the subfoveal scar. 
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2.7 Imaging Modalities in AMD 

2.7.1. Grading of ARM /AMD on Fundus photographs: 

There are a number of classification schemes for AMD. The aim of these schemes is to 

provide a common nomenclature so that the prevalence and development of AMD over 

time can be compared between studies which are often undertaken at different geographical 

locations. 

The main classification schemes share similar features and are largely based on the 

Wisconsin Age-Related Maculopathy Grading Scheme (WARMGS). This grading system 

is based on the presence and severity of the characteristic features of AMD namely drusen, 

pigmentary irregularities, GA, and neovascularisation. 

The WARMGS has been in use for over 2 decades and attempts have been made to simplify 

it for both clinical and research use. The first attempt was in the mid-nineties when a 

consensus group met and developed the early age-related maculopathy (ARM) international 

classification system. ARM has now come to be known as early age-related macular 

degeneration (Ferris et al., 2013). 

The Age-Related Eye Disease Study (AREDS) is an ongoing multicenter prospective cohort 

study of the clinical course, prognosis, and risk factors for age-related macular degeneration 

(AMD) and cataract. Between 1992 and 1998, 11 retina clinics enrolled 4757 people aged 55 

to 80 years in AREDS. An important goal of AREDS has been to develop a severity scale for 

AMD, to provide baseline risk categories, to allow tracking of progression along the scale, 

and to define surrogate outcomes for progression to advanced AMD (Davis et al., 2005) 

(AREDS 17). Various reports on grading have been described in AREDS report 1 to 18 

(Ferris et al., 2005).  Although ARM has been described for over 100 years, there is neither a 
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standard agreement on the definition of specific lesions nor a generally accepted 

classification system.  

AREDS report 6 is a simple ARM grading, dividing the ARM into 4 groups. 

Further AREDS classifications recognized the importance of drusen size, drusen 

area and presence of pigmentary changes in each of the 3 nested areas of the grid 

as a whole, as a risk factor for progression to AMD and included these parameters 

into the classification (Davis et al., 2005, Ferris et al., 2005). 

Described below is AREDS report 6 (Figure 2.7.1 and 2.7.2 and Table 1) as this is 

the earliest of the AERDS classification and the later grading evolved from the 

terminologies used in this report. 

 

The severity of ARM has been classified with standard circles and grid as follows: 

 

Figure 2.7.1 (AREDS Report 6): The Age-Related Eye Disease Study set of graduated measurement 

circles, for the estimating area involved by various abnormalities. The symbols designated are; C 

for central, I for inner, and O for outer subfields. Diameters in the average fundus corresponding to 

the circles are C-0: 0.042 disk diameter; C-1: 0.083 disk diameter; C-2: 0.167 disk diameter; I-1: 

0.120 disk diameter; I-2: 0.241 disk diameter; O-1: 0.219 disk diameter; O-2: 0.439 disk diameter. 

Disc diameter is 1500 µm by clinical convention but the most accurate estimate is 1800-2000 µm. 

Transparent grid templates with graduated measurement circles made for disc diameter 1, 500, 

1800 and 2000 µm for our study. 
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Figure 2.7.2 (AREDS report 6): The Age-Related Eye Disease Study (AREDS); Maculopathy Grading 

Grid. The radius of the inner circle corresponds to 1/3 disk diameter in the fundus of an average 

eye; the radius of the middle circle to 1 disk diameters; and the radius of the outer circle to 2 disk 

diameters. 
 

  

Table 1. Age-related macular degeneration abnormalities included in the Age-Related Eye 

Disease Study Grading System and their codes (AREDS Report 6). 
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The international classification for ARM and AMD recognised the need for an internationally 

accepted nomenclature for ARM. They recognised a need for a uniform grading system 

useful in cross-sectional, longitudinal or case-control epidemiological studies.  It stimulates 

researchers to use their system or modifications derived from it that will permit more 

comparable data collection.  

The international ARM classification graded drusen, morphology, type, number, size, the 

area covered by drusen and the main location of the drusen.  It also included a severity 

grading for hypo and hyperpigmented lesions. The modified international ARM classification 

used in this study has been described in the methods section of the dissertation. 

Both WARMGS and the ARM classification give considerable details on the size and surface 

features of drusen and the presence or absence of pigmentary irregularities. Although the 

severity scales are moderately good at predicting the progression from early to late AMD, 

these groupings cannot be achieved without the standardised systematic grading of 

stereoscopic fundus images, thus restricting their applicability in the clinical setting. 

The initiative for macular research classification committee 2013 (Ferris et al., 2013) 

proposed a basic clinical classification scale to predict the risk of late AMD that can be 

used in clinical practice and classified eyes into normal aging, early AMD, intermediate 

AMD and Late AMD. 

Ferris et al (2013) acknowledged that several AMD classification schemes, grading systems 

and severity scales have been developed in literature in an effort to provide standards to 

assist clinicians and researchers in the diagnosis and management of this important 

disorder. There has been no universally accepted precise definition for diagnosis and 

staging of the AMD phenotype. There is not even consensus on basic terminology with 
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some groups using AMD and others using age-related maculopathy or ARM or ARMD. 

Furthermore the terms such as early and intermediate have different meanings in various 

classification systems. The AMD classification proposed by Ferris et al (2013) focuses on 

the development of large drusen and pigmentary abnormalities leading to neovascular 

AMD, geographic atrophy (GA) or both. Ferris et al (2013) hoped that consensus 

recommendations from their committee will result in a simple unified classification scheme 

that can be used worldwide. 

 

2.7.2 Optical coherence tomography (OCT): 

OCT is a medical imaging technology that can perform high-resolution cross-sectional 

imaging of tissue morphology in situ and in real time. OCT imaging is in principle similar to 

ultrasound, except that it uses light rather than sound and measures the echo time delay and 

magnitude of reflected or backscattered light using low-coherence interferometry. Cross-

sectional images are generated by directing an optical beam onto a tissue and scanning it in 

the transverse direction, thus yielding a data set that can be displayed as false-colour or 

grayscale images. 

In ophthalmology, OCT has become a standard diagnostic technique and provides detailed 

images and quantitative morphometric information on retinal structure (Huang et al., 1991). It 

has become an essential tool to diagnose wet AMD and to help treatment decisions in wet 

AMD. 

Time domain OCT (TD-OCT) (eg StratusOCT, Carl Zeiss Meditec, Dublin, California) 

acquires two-dimensional cross-sectional retinal images consisting of 512 A-lines with axial 

resolutions of 10 µ in 1.28s. Ultra-high resolution (UHR) OCT imaging also utilizes time 
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domain technology and could achieve axial resolutions of about 3 µm, but needs longer 

acquisition times to obtain a scan (Wollstein et al., 2005; Drexler et al., 1999). Repeatability 

of retinal thickness and volume measurements are important to make the important 

retreatment decisions. Eriksson et al  (2012) found that in eyes affected by wet AMD, there 

were small differences in repeatability and reproducibility when comparing quantitative maps 

in Stratus and Cirrus OCT. However, they found that when the software for manual 

correction for foveal position in Cirrus OCT was used, the variability decreased markedly, 

the repeatability was close to what has been reported in normal eyes. This demonstrated a 

significant, potential advantage of spectral –domain over time domain OCT. 

 

In spectral Domain OCT (eg Spectralis, Germany, Heidelberg engineering; Cirrus, Dublin, 

California, Carl Zeiss Meditec) (SDOCT) technology, the light from the reference arm 

interferes with the light reflected from the layers of the retina, generating spectral interference 

fringes. The SD-OCT acquires in-depth information by analysing the interference pattern in 

the spectrum of mixed reflected lights (Wojtkowski et al., 2004). SDOCTs use a 

fundamentally different detection method which utilizes a spectrometer which is more 

efficient allowing for a 150-fold improvement in sensitivity compared to TDOCT (Nassif et 

al.; 2004, Yi et al.; 2009). The axial resolution of about 2µm is possible with the latest 

SDOCT. 

 The multi-layered structure of the retina is clearly visible and the RPE and Bruch's 

membrane are also partially delineated (Figure 2.8). Most of the incident light from the OCT 

is reflected before it reaches the RPE. Variations in RPE pigmentations may allow some light 

to reach the choroid, but it is insufficient to resolve choroidal structure in detail. Although 

functions such as 'Enhanced Depth imaging" facilitate assessment of choroidal features such 
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as choroidal thickness. OCT is excellent in detecting separation of the retina from the RPE, 

its basement membrane and any interruptions in the RPE layer. Thickening of the retina and 

the presence of intra-retinal fluid are easily detected, CNV can be visualised and its position 

in relation to RPE can be ascertained. The composition of tissues like RPE proliferation, 

perfusing CNV, fibrosis or organised haemorrhage cannot be ascertained, as all of these have 

similar characteristics. Some OCT systems have combined FFA and ICG capabilities which 

will improve the correlation of the different information.  

Currently, in vivo imaging of drusen has been limited to fundus photography which is the 

gold standard of phenotyping for epidemiologic studies and fluorescein angiography in 

selected cases. Optical coherence tomography (OCT) allows imaging of drusen (Figure 2.9) 

and other areas of RPE elevation in cross-section and could be an easy and useful tool in 

epidemiological studies. 

 

Figure 2.8: Normal in Vivo OCT scan of the human retina. Multilayered structure of the retina 

visualised and labelled.  ( Sherman and Epshtein 2012) 

 

Furthermore, recent studies have shown the potential of SD-OCT to quantify geometrical 

parameters of the RPE such as deformations associated with drusen.  SDOCT has also been 
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used for manual measurement of drusen volume, semiautomatic measurement of drusen area, 

size as well as for automatic detection and measurement of drusen area, height and volume 

(Yehoshua et al., 2013; Khanifar et al., 2008). 

Yehoshua et al  (2013) used an automated algorithm and found poor agreement between 

drusen area measurements obtained from SD-OCT images and colour fundus photos. Drusen 

area measurements on colour fundus images were larger than those through SD-OCT scans. 

This difference can be attributed to the fact that the OCT algorithm defines drusen in terms of 

RPE deformations above a certain threshold, and will not include small, flat drusen and 

subretinal drusenoid deposits. The two approaches provide complementary information about 

drusen. 

 

 a) 

 b)                                                                       

Figure 2.9:  OCT scan in AMD showing drusen in study patient. a) Fundus Photo, b) IR picture, c) 

OCT scan. The drusen were seen on fundus photo, IR and OCT scan helps correlate the 

information. 
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2.7.3 Fundus Autofluorescence (FAF): 

Fundus autofluorescence (FAF) topographically maps lipofuscin distribution of the retinal 

pigment epithelial cell monolayer. Confocal Scanning laser ophthalmoscope (cSLO) allows 

imaging FAF over larger retinal areas up to 55 degrees using low-power laser source to scan 

the retina in x and y directions (Webb et al., 1987). To reduce the background noise and to 

enhance image contrast, a series of several single FAF images are usually recorded (Schmitz-

Valckenberg et al., 2009). For the final FAF image, a number of frames (usually 4 to 32) are 

averaged and pixel values normalised. Given the high sensitivity of cSLO and high frame rate 

up to 16 frames per second, FAF imaging can be performed within seconds and at low 

excitation energy levels, that are well below the maximum retinal irradiance limits of lasers 

established by the American National standards Institute and other international standards. 

The HRA2 system is the commercially available FAF system with excitation wavelength of 

488 nm and emitted light detected above 500 nm. Fundus camera uses different excitation 

and emission filters compared with the cSLO,535-580 nm excitation bandwidth, and 615-715 

nm emission bandwidth ( Spaide, 2007). Thus, due to the use of different filters compared to 

cSLO, it might show other retinal fluorophores, though the evidence is still lacking.  Per 

definition low pixel values (dark) illustrates low intensities and high pixel values (bright) 

illustrates high intensities respectively. 

2.7.4 Normal Fundus on FAF: The topographical distribution of FAF in normal eyes 

demonstrates a consistent pattern. A diffuse FAF signal over the posterior pole can be seen. 

Retinal vessels and optic nerves are seen dark, characterised by the very low signal, which 

could be because of the absorption of haemoglobin in the retinal vessels and the absence of 

autofluorescence material in the optic nerve. Figure 2.10 shows the minimal change pattern 
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of FAF due to AMD at the macula and normal appearance of optic disc and retinal vessels as 

described above. 

 

 

Figure 2.10: FAF in AMD subject from the study. The subject showed a minimal change 

pattern, topographical distribution of FAF intensity shows typical background signals with 

shadows on optic disc (absence of autofluorescent material) and retinal vessels (absorption), 

intensity is markedly decreased over the fovea due to absorption of the blue light by yellow 

macular pigment. 

 

FAF gives an indication of the health of the RPE (Figure 2.10). Lesions causing visual loss 

in age-related maculopathy (ARM) are related to ageing changes in the retinal pigment 

epithelium (RPE), Bruch’s membrane, and the choroid (Pauleikhoff et al., 1990; Bird, 

2010). These changes play a key role in the pathogenesis of the disease. Diffuse and focal 

deposits of debris in Bruch’s membrane (focal and diffuse drusen) are hallmarks of ageing 

(Bressler et al., 1990). In post-mitotic RPE cells, autofluorescent lipofuscin granules 

accumulate with age in the lysosomal compartment. These are mainly by-products of 

constant phagocytosis of disc sheds from photoreceptors outer segments. It is suggested 

that the photo-oxidation of RPE lipofuscin could serve as a trigger for the complement 

system predisposing the macula to pathological alterations, contributing to chronic 

inflammation over time (Delori et al.,2000). 
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Drusen are composed of a variety of materials including lipids, proteins, and advanced 

glycation end products (Dorey et al.,, 1993). With the advent of confocal scanning laser 

ophthalmoscopy it is possible to visualise in vivo fundus autofluorescence (FAF) which is 

mainly mediated by accumulation of lipofuscin in the RPE (Delori et al., 2000, Lois et al., 

2002). The Fundus FAF in Age-related Macular Degeneration Study Group (FAM-Study 

Group) (Einbock et al., 2005) aims to identify FAF changes as predictive factors for the 

progression of age-related macular degeneration (AMD).  

Different FAF patterns may be related to high-risk characteristics and may provide new 

predictive factors for the development of late ARMD and visual loss. The identification of 

these high-risk FAF patterns in patients with AMD may be helpful in identifying those to be 

targeted for monitoring and those to be segregated for future therapeutic intervention 

(Einbock et al., 2005). Einbock et al (2005) discussed that the aim of their study was to 

correlate between FAF changes and the natural history of AMD. They argued that all 

previous classification schemes for AMD use fundus photography to identify pigmentary 

changes and the type or the size of the drusen. FAF provides additional information on the 

status of the RPE and expands the spectrum of possible risk factors. 

In general, FAF changes are not strongly correlated to the visible fundus changes in patients 

of AMD as the changes are indicative of the lipofuscin accumulation and the health of the 

RPE.   Einbock et al (2005) found that areas of increased FAF may correlate to areas of 

hyperpigmentation, yellowish soft drusen or normal fundus appearance. However not all 

drusen exhibited increased FAF as only large drusen exhibited increased FAF in their study. 

They also found areas of reticular drusen showing a reticular pattern of decreased FAF 

surrounded by normal FAF. Hypopigmentation was associated with decreased FAF 

suggestive of absence of RPE or degeneration. The speckled pattern showed no correlation to 
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drusen or visible fundus change and indicated the presence of different fluorophores 

contained by lipofuscin and different states of RPE degeneration (Delori et al., 2000). 
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2.8 Drusen not related to AMD: 

"Soft Drusen" are defined as deposits located between RPE and the inner collagenous layer of 

Bruch's membrane. These lesions usually appear after the age of 50 and are associated with 

AMD.  

2.8.1. Early onset Drusen (EOD): 

Younger people can have similar deposits called "Early Onset Drusen"(EOD). These lesions 

have been recently classified into three entities called Large Colloid Drusen (LCD), Malattia 

Leventinese  Doyne honeycomb retinal dystrophy (ML-DH), and Cuticular Drusen (CD) 

(Guigui et al., 2011). Studies have described the multimodal morphological features of EOD 

as deposits classically located under the RPE similar to soft drusen observed in AMD (Piguet 

et al.; 1995, Stone et al., 1999; Leys et al., 1991). 

Large colloid drusen (LCD) are identified on fundus examination as large, bilateral and 

yellowish lesions in the macular areas and/or in the periphery of the retina. LCD’s are 

hyperautofluorescent and appear in the late stages of ICGA as hypoautofluorescent centre 

surrounded by hyperfluorescent halo which is again bordered by a hypofluorescent ring. 

In ML-DH, colour fundus shows drusen of different sizes. The smaller 

drusen have a radial distribution whereas the larger drusen are located in the macular area. 

FAF shows hyper autofluorescence of large drusen showing a hypofluorescent halo. Cuticular 

Drusen’s (CD) are small, round and yellowish lesions randomly scattered in the macula and 

in the middle periphery of the retina. In the late stages of FA, the drusen are hyperfluorescent 

with a typical "star in the sky" pattern. 
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The diagnosis of EOD is classically based on fundus examination and angiographic features. 

Recently SD-OCT has been used to detect the different EOD entities and to define drusen as 

deposits observed under the RPE. There has been an association between reticular pseudo 

drusen and EOD. SD-OCT with high resolution allows histological imaging of drusen located 

above and below the RPE. Curcio et al (2013) hypothesized that the RPE is polarized and 

bidirectional secretion of lipoproteins participating in lesion formation above and below the 

RPE, explaining the simultaneous soft and reticular drusen in patients of EOD and AMD. 

 

2.8.2. Sorsby’s fundus Dystrophy: 

This dominantly inherited dystrophy originally described by Sorby has been well 

characterised (Sorsby and Mason, 1949). In some patients, a confluent yellow deposit at the 

level of the RPE is associated with GA or CNV (Polkinghorne et al., 1989; Steinmetz et al., 

1992).  

Drusen like deposits are seen along the arcades and nasal to the optic disc rather than at the 

central macula. The diffuse nature of the change is revealed by FFA. Drusen over the fovea is 

not a frequent finding in this disorder, making the visible distinction between Sorsby's fundus 

dystrophy and AMD. 

 

2.8.3. Adult Onset Vitelliform Macular Dystrophy (AVMD): 

AVMD was first reported by Gass in 1974 and is characterised by a yellow, solitary, round or 

oval subretinal macular lesion that resembles juvenile onset macular dystrophy and Best's 

disease. Other characteristics include the age of onset between 30-50 years, an asymptomatic 

or mild decrease of visual acuity and normal or subnormal electrooculograms (EOGs) (Gass, 
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1974). Clinicopathological studies show massive accumulation of lipofuscin pigments within 

the RPE and a loss of RPE and the photoreceptor cell layer with infiltration of pigment-

containing macrophages in the central area (Arnold, 2003). Multifocal ERGs (MfERG) were 

found to be impaired not only in the macular areas but throughout the posterior pole in 

AVMD. OCT showed a highly reflective fusiform-thickened layer at the level of RPE and 

choriocapillaris in patients with a submacular vitelliform lesion (Gass et al., 1985; Cohen et 

al.,1994). 
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3. Visual Psychophysics: 
 

Visual psychophysics (Psycho=perception, physics=physical nature of the stimuli) is the 

science of studying visual perception and sensation by determining the relationship between 

controlled visual stimuli and a subject's response (Brenton, 1989). Psychophysical tests which 

depend on the functional status of the photoreceptors, may detect subtle alterations in the 

macula before morphological changes are apparent on ophthalmoscopy or before traditional 

measures of visual acuity show deterioration. These tests have the potential to be useful tools 

in assessing and monitoring patients with an early stage of AMD and maybe of predictive 

value with respect to progression onto wet AMD or geographic atrophy. 

In this chapter, the various psychophysical tests which help in early detection of AMD, 

including the colour vision test used in our study, are discussed. 

The majority of psychophysical tests are based on the concept of threshold testing where the 

threshold is the point where a given visual stimulus may just be detectable or undetectable. 

The investigator has a large degree of freedom to vary the stimulus patterns in space, time, 

brightness and colour. The method of adjustment, the method of limits, the modified methods 

of limits (staircase) and the method of constant stimuli represent just a few modes of 

presenting the stimulus during testing (Kalloniatis and Luu., 2005). During the testing, the 

subjects need to commit to an answer to minimize variations in obtained threshold. There can 

be a Yes / No segment or a "Forced choice" procedure where the subject chooses one from 

two or more intervals as the one corresponding to the stimulus (Kalloniatis and Luu., 2005). 

 Testing in scotopic conditions involves responses from rods which mediate retinal sensitivity 

in the periphery at low light levels. Photopic conditions test mostly cone responses which 
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mediate central retinal sensitivity at higher light levels.  Furthermore, the psychophysical 

tests assess rods and cones simultaneously under mesopic conditions. 

The psychophysical tests study spatial vision, temporal responses such as rapid flicker and 

motion perception, visual adaptation, visual field testing and chromatic sensitivity.  

 

3.1 Spatial vision: 

Examines how the patterns of light on the retinal are resolved and detected by the visual 

system. The various tests of spatial vision examine high contrast VA, low contrast VA, 

hyperacuity, reading speed and contrast sensitivity (Neelam et al., 2009). 

 

 3.1.1. High contrast Visual acuity (VA); 

 Visual acuity, the acuteness of vision, is a measure of the spatial resolving ability of the 

visual system under conditions of very high contrast. In terms of contrast sensitivity (CS), 

VA is a measure of the highest spatial frequency that can be detected at 100% contrast 

(Owsley, 2003). Visual acuity is the identification or the recognition stage of the visual 

pyramid and if this stage is intact then we can safely assume that the stage of detection and 

resolution are intact. The detection stage is limited by optical attenuation and spatial 

summation of neural receptive field, the resolution stage is limited by spacing of receptive 

fields of visual neurons (sampling) and the identification stage is limited by several factors 

such as attention, memory and cognitive functions (Thorndyke,1977). 

VA is the standard test of visual functions and is the most commonly used indicator of spatial 

vision in clinical practices and research studies. When the recognition stage is measured for 
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the purpose of research, the patient is encouraged to guess as he/she approaches the limit of 

resolution (forced choice methodology) in order to ensure the threshold measure is recorded. 

The Snellen optotype test chart remains the most popular method of assessing vision in 

clinical practices and the ETDRS LogMAR has emerged as the test of choice for measuring 

threshold acuity in vision research (Neelam et al., 2009). 

 

 3.1.1 .1 Visual Acuity and AMD: 

Patients with GA and CNV, the two most advanced forms of ARM exhibit a significant loss 

in VA.  The loss is seen mostly when the signs of advanced ARM involve the central or inner 

subfields of the ETDRS grid (Neelam et al., 2009). 

Geographic atrophy progresses gradually over time, sparing the foveal center until the late 

stage of disease and is associated with slow and gradual deterioration in VA. The percentage 

of fovea involved within the atrophic area is the most important predictor of VA. The 

photoreceptor mosaic is at the front end of the neural system as the processing of visual 

information starts with a sampling of the retinal image by this mosaic. Death or dysfunction 

of photoreceptors in ARM causes reduced density and/or increased irregularity of the mosaic. 

Furthermore, VA is limited by the density of the cone and by the spacing between the cones, 

as predicted by the sampling theory of Nyquist. The sampling theorem states that a signal that 

is sampled at regular intervals can be reconstructed from its samples without loss of 

information if the original signal has no frequencies above ½ the sampling frequency. This 

critical frequency is commonly referred to as the Nyquist limit of the sampling array 

(William , 1987), therefore to decrease VA by one-half (i.e., to reduce spacing by 50%), the 

sampling density must be reduced by approximately 75%. In other words, a majority of the 
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photoreceptors in the fovea must become dysfunctional or die before significant loss of VA is 

evident in ARM (Geller, 1992), causing inconsistency between the severity of morphological 

changes in advanced ARM and VA. 

In conclusion, VA is a poor indicator of the quality of life such as face recognition and 

mobility in advanced ARM and incapable of quantifying functional deficits in early ARM. 

Nevertheless, despite its limitations, VA measured under standard conditions using logMAR 

charts is the most common outcome measure in clinical trials. 

 

3.1.2 Low Contrast Visual acuity (LCVA): 

Low contrast visual acuity, which is related to contrast sensitivity with a correlation range of 

0.3 to 0.5 (Owsley,1990; Regan,1988) is assessed using low contrast or variable contrast 

letters charts. These charts have a similar design to conventional acuity charts and have 

letters decreasing in size down the chart, although the letters are presented at relatively low 

contrast (<85% contrast). Some commonly used low-contrast visual acuity (LCVA) charts 

with good test - retest variability include the Regan chart and Bailey-Lowe chart 

Four studies investigated LCVA in patients with AMD, and the data from all these studies 

suggests that there is a reduction in LCVA in AMD. Kleiner et al (1998) investigated LCVA 

using Regan letter charts in 52 patients with drusen, and demonstrated a significant decrease 

in LCVA in AMD patients when compared with age-matched controls. This reduction was 

magnified as the contrast of the chart was further lowered to 9% and 3% (Kleiner et al., 

1988). Furthermore, patients with AMD demonstrated a significant trend of decreasing 

number of letters read correctly with increasing number of drusen. Similarly, Lovie -Kitchin 

and Feigl, Abadi et al and Cheng et al in three different studies observed that LCVA is 
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reduced in patients with AMD (Lovie-Kitchin and Feigl, 2005; Abadi and Pantazidou, 1996; 

Cheng and Vingrys, 1993). 

3.1.3 Hyperacuity 

Hyperacuity measures the ability to detect misalignment of objects at the fovea and is 

approximately 10-fold higher than VA (Hogg et al., 2003). The tasks of hyperacuity include 

detection of offset between two lines, recognising space discrimination (SD), radial 

frequency patterns (RF), identifying deformed patterns from a cluster of perfect circles to 

assess hyperacuity (Wang et al., 2002) . Although extra striate cortex maybe responsible for 

processing SD, it needs uncontaminated information from lower levels of the visual system 

reflecting the integrity of the photoreceptor mosaic. 

SD involves integration across a wide retinal region and therefore is more sensitive than 

conventional VA to irregular sampling or under sampling caused by photoreceptor 

dysfunction or death in patients with AMD. 

Wang et al (2002) observed that patients with early  stage AMD had significant deficits in 

performing SD in spite of good VA and CS. Hyperacuity testing has emerged as an early 

detecting tool for patients  with AMD, especially at home, in order to catch wet AMD early. 

A study by  Chen and Adelman (2016) explored the Hyperacuity App (HAC) as a potential 

screen and showed 92.3% sensitivity and 61.5% specificity in distinguishing patients who 

required treatment and those who did not  in wet AMD. 

3.1.4 Contrast sensitivity: 

The term contrast is a physical dimension and refers to the light-dark transition of a border or 

an edge in an image that delineates the existence of a pattern or object (Owsley, 2003). The 

amount of contrast required by an individual to either detect a sinusoidal grating or to 
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recognise letters or to make some spatial judgement as to the location or the presence or 

absence of spatial features in the target is known as contrast threshold. The reciprocal of this 

threshold contrast is known as contrast sensitivity (CS).  

The CS function refers to a curve where CS is plotted as a function of spatial                                                    

frequency (SF) on log-log coordinates and represents minimum contrast required for 

detection of sine-wave (SW) gratings of various SF. The most common way of measuring CS 

in clinical research is by varying the contrast of SW gratings, which consists of striped 

patterns matched with uniformly gray targets of similar luminance. Although these tests 

measure CS over a range of SFs they are relatively expensive and time consuming, and, 

therefore unsuitable for clinical practice (Woods and Wood, 1995). Letter - optotype charts, 

such as Pelli-Robson chart, represent an alternative and common method of measuring CS in 

clinical studies. CS measured by these charts is moderately associated with VA and highly 

predictive of reading performance (Whittaker and Lovie-Kitchin, 1994, Rohaly and Owsley, 

1993). 

Studies that investigated CS function in patients with ARM (Neelam et al., 2009) suggest that 

there is a loss of CS across all SF in patients with ARM. Three studies found a significant 

correlation between the disease severity of ARM and loss of CS (Kleiner et al., 1988 ,Midena 

et al., 1997; Stangos et al., 1995). A plausible mechanism underlying loss of CS function in 

early stage AMD may reflect decreased efficiency for lateral inhibitory mechanisms that are 

mediated by horizontal and amacrine cells (Brown, 1983). Loss of CS greatly influences the 

vision-related quality of life by impairing activities of daily living such as eating, dressing 

pouring drinks etc. CS may alter the reading speed and may alter the understanding of printed 

words and most vitally may affect the task of face/object recognition. Patients with AMD 

also complain of  visual disability associated with changing levels of luminance suggesting a 
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compromise of adaptation mechanism in the disease process of AMD (Brown and Garner, 

1983).  Maynard et al (2016) found mesopic Pelli-Robson CS functional deficits before 

photopic CS in early and intermediate AMD that can be differentiated from aging and they 

proposed this test for early detection of retinal dysfunction. 

In conclusion, patients with AMD have significant disruption of CS function at high and 

medium SF, measurable up to eight degrees of retinal eccentricity. Furthermore, a 

progressive loss of CS function may reflect disease progression; however such a loss is 

unable to identify eyes at a particularly high risk for developing wet AMD. Lastly 

measurements of CS function may provide insight into the extent of functional disability in  

AMD patients with no apparent loss of VA (Neelam et al., 2009). 

3.2 Temporal Function : 

Temporal function represents the response of an eye to a flickering stimulus, and can be 

assessed for non-periodic stimuli. Temporal summation refers to the eye's ability to sum the 

effects of individual quanta of light over time which occurs at a critical period. A flickering 

light stimulus may detect functional changes in the retina of AMD patients earlier than static 

stimuli (Phipps et al., 2004). The flicker stimulus induces an increased metabolic demand 

(Kiryu et al., 1995) which is not met in an AMD eye and has a decreased oxygenation from a 

compromised  choroidal circulation (Arden et al., 2005). 

 

3.2.1 Temporal Resolution: 

When intermittent stimuli are presented to an eye, the stimuli appear to stay on, but only with 

a change in intensity or motion (flicker). However, if the rate of presentation of intermittent 

stimuli exceeds a certain rate/frequency, then the perception of flicker ceases and is replaced 



Visual Psychophysics  

 

99 

 

with a sensation of steady light, and  such a frequency is known as critical flicker frequency 

(CCF) ( Kalloniatis and Luu 2005). Hammond et al ( 1998 and 2005) demonstrated that 

subjects with the highest macular pigment (MP) density have about 25% higher CFF values 

than subjects with lowest MP density, suggesting that MP optical density may exert a 

protective effect on visual health across lifespan. 

3.2.2: Temporal contrast sensitivity (TCS): 

The temporal contrast sensitivity (TCS) measures the temporal frequency characteristics of 

the human eye by varying the modulation depth of a sinusoidal flicker, and can be analysed 

in a manner similar to the measurement of contrast thresholds for a spatially modulated 

stimulus. Brown and Lovie-Kitchin (1989) found TCS function in AMD patients to be 

significantly decreased across a wide range of frequencies with predominant disruptions at 

low and medium frequencies, which might be related to alterations in photoreceptors, their 

connections or reduced function due to functional loss in the RPE. 

 3.3 Visual adaptation in ARM: 

Visual adaptation refers to a remarkable ability of the eye to function over a wide range of 

luminances (greater than 9 log units) and is made possible through a coordinated action of the 

mechanical, photochemical and neural process in the visual system (Lamb and Pugh,2004; 

Barbur and Stockman, 2010). The integrity of these visual processes can be assessed using 

psychophysical tests such as the dark adaptation of rods, cones, and the glare recovery test. 
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 3.3.1 Dark adaptation (DA); 

 Dark adaptation refers to the slow recovery of visual sensitivity in the dark following an 

exposure to intense light that bleaches a large percentage of the visual pigments in the 

photoreceptors and includes recovery /regeneration of photoreceptor pigments. The dark 

adaption curve consists of two distinct regions of recovery; photopic, scotopic and kinetic 

state functions. In biochemical terms, this process includes recovery of visual threshold, 

resumption of circulating currents in the photoreceptors and regeneration of the photoreceptor 

pigment. 

With increasing age, there is progressive thickening of the Bruch's membrane acting as a 

barrier to transport vitamin A to RPE and the transportation of 11-cis retinal from RPE to 

rod’s outer segments delaying the regeneration of rhodopsin. Although both  rods and cones 

degenerate in AMD, rod’s loss precedes cone’s loss in 75% of early and late ARM eyes 

(Curcio et al., 2000). 

Patients with AMD often complain of difficulty in performing various activities at night 

under  low levels of illumination such as driving and reading in spite of good vision 

(Steinmetz et al., 1993)  suggesting abnormal DA. 

 Neelam et al (2009) reviewed twelve studies that investigated DA function in ARM where 

all except two found reduction in scotopic retinal sensitivity (RS), furthermore, five of the six 

studies evaluating kinetic function observed prolongation in the time course for pigment 

regeneration in patients with AMD. These findings confirm the greater vulnerability of rod 

photoreceptors in AMD. Eisner and co-workers (1992) reported that the prolonged time 

course for foveal photopic DA in combination with abnormalities in colour matching may 

identify eyes at risk for wet AMD. 
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Flamendorf et al (2015) found impairments in DA increased with age, worse visual acuity, 

presence of RPD, AMD severity and decreased subfoveal choroidal thickness, with the 

presence of RPD conferring the largest parameter estimate. 

 

3.3.2 The Photostress Test: 

The Photostress test (PST), also known as glare recovery or dazzling test, refers to a 

technique for assessing the dynamic response of the retina following exposure to a controlled 

glare source and measuring the time course required for the return of retinal sensitivity, in 

terms of two most common predefined visual tasks, the VA and CS (Collins, 1989). The 

recovery is believed to be largely due to the regeneration of cone pigments and is presumably 

dependent on the anatomical and biochemical events that occur at RPE-photoreceptor 

complex following the photopic process of vision (Alpern et al., 1971). It is believed that a 

higher degree of  functional recovery is required for restoration of baseline VA than for CS 

(Severin et al., 1963).  The PST is quantitative and involves precise delivery of photo stress. 

Though easy to perform, the PST lacks standardized techniques for performing the test and 

also has wide variation in the observed recovery time.  Any macular disease is capable of 

altering the PST’s response, and the pathology can reside in the photoreceptors, the RPE, 

Bruch's membrane or the choriocapillaris. 

Fourteen studies have investigated PST in AMD patients and all except two have 

demonstrated prolonged PST (Neelam et al., 2009). It is unsurprising that patients with AMD 

may become acutely symptomatic while going indoors on a bright day, driving through a 

tunnel in day time or viewing oncoming headlights at night due to slow recovery of vision 

after exposure to glare (Sandberg et al., 1998). 
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3.4 Perimetry: 

The term perimetry is interchangeable with visual field testing. This psychophysical test 

measures the visual function of  the  eye at topographically defined loci in the visual field and 

is based on the concept of visual threshold testing.  The visual field (VF) is that portion of the 

external environment of an observer wherein the steadily fixating eye can detect visual 

stimuli, and the normal subject extends 110 degrees temporally, 60 degrees superiorly, 65 

degrees nasally and 75 degrees inferiorly. In three-dimensional view, the VF is represented as 

a "hill of vision" with a peak sensitivity at the fixation and a gradual decline towards the 

periphery (Lynn et al.,,1980).  

 Furthermore ,when VF is mapped topographically on the surface of the striate cortex, the 

projection is  largest for the central  VF, and  decreases progressively towards the peripheral 

VF (Mora et al., 1989). In other words, there is decreasing amount of visual cortex devoted to 

each degree of the VF as one proceeds from the fixation into the periphery. According to De 

Valois et al , the eventual cortical magnification of the central retina is such that 

approximately 25% of the striate cortex is devoted to the processing of the central 2.5 degrees 

of the VF (De Valois , 1988). 

Conventional perimetry also known as white-on white perimetry is static peimetry used in the 

clinical setting. Conventional perimetry has evolved to give way to flicker perimetry, SW 

automated perimetry (SWAP), frequency doubling technology (FDT) and fundus perimetry 

(microperimetry).  Microperimetry has evolved as a useful tool in AMD as it is the diagnostic 

technique which allows  us to exactly correlate, in real  time, the sensitivity threshold of any 

individual point of the retina with its clinical (biomicroscopic and OCT)  appearance which 



Visual Psychophysics  

 

103 

 

was made possible by  the introduction of the scanning laser ophthalmoscopy (Midena and 

Pilotto, 2017). 

A systematic review of 16 studies (Neelam et al., 2009) showed that 14 studies  revealed that 

early stage AMD is associated with a decrease in the mean retinal sensitivity in the central 

VF. Furthermore, the VF defect is prominent in the parafoveal region and spares fixation till 

the end. 

Midena et al (2007) examined retinal sensitivity over areas of drusen and pigment 

abnormalities using microperimetry and patients with early stage AMD. He found a 

statistically significant decrease in retinal sensitivity over large drusen and pigment 

abnormalities and this was more noticeable when large drusen and pigment abnormalities 

were found together. 

With 52% of ARM patients having large VF defects and 84% of the ARM patients having 

localized depression of greater than 10db in the foveal region, Phipps et al (2004) discovered 

that flickering perimetry produces larger and deeper defects than static perimetry. 

3.5 Colour Vision (CV): 

Colour vision (CV) represents the ability to discriminate between stimuli, which differ in 

spectral composition, regardless of other dimensions such as intensity. External objects 

reflect a variety of wavelengths and the observer constructs a colour percept based on the 

photoreceptor responses to the wavelength distribution and spatial variables (Swanson and 

Cohen, 2003).   

Normal colour vision is called trichromatic as it relies on three different cone photopigments. 

Photopigments can be maximally sensitive to short-, middle- or long wavelength sensitive or 

S, M and L respectively. 
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Figure 3.1 : The Stockman & Sharpe (2000) 100 quantal fuundamentals, normalized to equal peak 

values of 1.0 on a linear vertical scale. S cones show maximum sensitivity at ~ 445 nm, M cones at ~ 

540 nm and L cones at ~ 565 nm (data from  www.cvrl.org). 

 

 

Colour processing is associated with two main channels from opponent processing. The RG 

channels utilizes differences between the inputs of L and M cones whilst YB channel 

compares signals from M and L cones with the signals generated by the stimulus in S cones 

(Hering 1964). The overlapping sensitivities of the three cone photopigments allow for an 

astonishing number of combinations of these signals and hence the perception of a large 

number of different colours.  Normal colour perception depends on the normal functioning of 

the photoreceptors as the primary requisite alongside the functioning of the rest of the visual 

apparatus. It can be interpreted that early changes in the photoreceptors can be affected via 

the colour vision before manifesting on the routine clinical tests such as the visual acuity.  
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It is proposed that S cones are more vulnerable to damage in AMD due to the following 

reasons: 

Firstly, the S-cone pathway is prone to damage due to its territorial nature of overlapping 

receptive fields, resulting in corresponding area of scotoma with not even a single S 

bipolar/ganglion cell damage (Boycott and Wassle, 1991).  

Secondly, psychophysical pathways of SWS (short wave sensitive) cones have a more limited 

response range resulting in larger disease related changes in thresholds and apparent 

vulnerability to retinal disease (Hood et al., 1984). 

Thirdly, the S-cones may be more susceptible to alterations in the metabolic environment of 

the RPE –photoreceptor complex, such as photopigment turnover due to an increase in the 

diffusion distance compared to other cone system (Spraul et al., 1999). Lastly the SW 

sensitive pathway may be selectively damaged during the pathogenesis of ARM attributable 

to relatively lower levels of MP. 

 Haegerstrom-Portnoy et al (1988) observed a relative preservation of S-cone sensitivity at 

the fovea where the MP density is highest,  compared to the para fovea in the elderly. AMD 

represents a gradual transition from aging to degenerative change and suggests a role for MP 

in preserving S-cone sensitivity and possible prevention of development of ARM. Eisner et al 

( 1991, 1992) demonstrated in two different studies that lower S-cone sensitivities was 

associated with high risk features (confluent drusen, pigmentary changes) with subsequent 

development of CNV in the fellow eye of patients with unilateral CNV. 

 

 3.5.1 Colour vision tests : 
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A CV test examines the ability of an observer to discriminate different wavelengths and 

describes a defect in terms of abnormality in colour matching, colour discrimination, colour 

detection and spatial arrangements based on minimum colour differences.  The most common 

colour tests and  the CAD test  are discussed below

 3.5.1 .1The Ishihara test (IT): 

The Ishihara pseudoisochromatic plates makes use of static luminance and chromatic contrast 

masking to isolate the use of colour signals and reveal red-green (RG) chromatic sensitivity. 

The test does not assess loss of YB sensitivity ( Barbur et al, 2016). The IT cannot be used 

reliably to determine the severity of colour vision loss (Rodriguez-Carmona, 2012). The 

Ishihara pseudoisochromatic plates consists of a series of numbers outlined by different 

coloured dots and uses camouflage to exploit the expected colour confusions of colour 

deficient observers (Belcher et al., 1958). The most common IT test is a 38 –plate edition 

recommended for clinical use. The first 25 plates contain single or double –digit numerals 

and the remaining 13 plates are for non-verbal subjects. The Ishihara test employs a range of 

designs, such as transformation, vanishing or hidden digits to detect and analyse colour 

deficiency. Plate 1 is for demonstration, 2-9 are for transformation plates, 10-17 are for 

vanishing plates, 18-21 are for hidden plates and 22-25 are for classification plates. (Figure 

3.2) 
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a)                                           b)                             c)                                 d) 

Figure 3.2: The Ishihara pseudoisochromatic plate test; a) Demonstration plate which is visible to 

normal and colour deficient persons b) Vanishing plate which only persons with normal colour 

vision can recognise the figure c) Hidden plate which only persons with colour vison defect can 

identify the figure. d) Diagnostic plate which is intended to determine the type of colour vision 

defect and severity of it. (Creative commons CCO1.0 universal public domain dedication) 

 

3.5.1.2 Nagel anomaloscope: 

The Nagel anomalsocope is based on colour matching and is often regarded as the standard 

clinical reference test for identifying and diagnosing red/green colour deficiency (National 

Research Council-National Academy of Sciences, 1981). This instrument produces a disc 

stimulus that consists of two half fields which are viewed in an optical system. 

Subjects are then asked to use two control knobs to completely match the two halves of the 

circle in both colour and brightness. The ratio of the red/green mixture field is altered 

systematically by the examiner until the limits of the matching range are found. The matching 

range and the match midpoint should also provide an indication of the severity of the RG 

colour vision loss. An observation was made, in this regard, that subjects with variant L-M 

cone pigments make relatively normal matches but exhibit reduced RG chromatic sensitivity 

(Barbur, 2008). These observations and need for an experienced examiner makes the Nagel 

anomaloscope less attractive, particularly when some level of colour deficiency may go un-

noticed. 
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 Figure 3.3: A, Nagel anomaloscope B. The stimulus as seen by the subject. 

(Model 1, Schmidt and Haenach, Germany) 

 

 3.5.1.3 Farnsworth – Munsell 100 Hue test: 

This system was developed by Dean Farnsworth in the 1940s and it tests the ability to isolate 

and arrange minute differences in various colour targets with constant value and chroma that 

cover all the visual hues described by Munsell colour system (Figure 3.4). There are several 

variations of the test, one featuring 100 colour hues and one featuring 15 colour hues. 

 The test was originally taken in an environment with physical hue tiles, but now it is 

undertaken on computer consoles. An accurate quantification of colour vision accuracy is 

particularly important to designers, photographers and colourists, who rely on accurate colour 

vision to produce quality content. 

  

 Figure 3.4: The Munsell colour system. It shows a circle of hues at value 5 chroma 6, the neutral 

values from 0-10,and the chromas of purple-blue (5PB) at value 5 (Creative Commons Attribution). 
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3.5.1.4The Colour Assessment and Diagnosis (CAD): 

The Colour Assessment and Diagnosis (CAD) test was developed at City, University of 

London. The CAD test measures the smallest colour signal strength needed to just see 

different colours. The test has been explained in the Material and Methods (4.2.4). The CAD 

test has a number of advantages over conventional tests,  in terms of isolation of colour 

signals as well as sensitivity and accuracy (Barbur et al , 2016). 

a)  Isolation of colour signals is achieved by masking luminance contrast signals generated by 

the moving coloured stimulus that are only photopically isoluminant for the standard CIE 

normal observer. This is particularly important since there is a large variation in L: M cone 

ratio within normal trichromats (Carroll, 2002)  and the colour deficient observers will 

introduce variations in the perceived luminance contrast of most coloured stimuli. When 

using dynamic luminance contrast masking, the applicants cannot make use of any other cues 

apart from colour to see the moving target and to carry out the task. 

b) The severity of both red-green (RG) and  yellow-blue (YB) colour vision loss is quantified 

in standard Normal Units (SNU) which are easy to understand (Barbur, 2006). 

c) The CAD test has close to 100% sensitivity and specificity in detecting congenital colour 

deficiencies and in classifying the type of deficiency involved.  In terms of sensitivity, the 

CAD can detect even minimal colour deficiencies (particularly in subjects with acquired loss 

of chromatic sensitivity) that may produce variable results or pass unnoticed in conventional 

colour vision test. (Barbur, 2006). 

d) The availability of  built in, monocular and binocular normal, upper threshold limits from 

6 to 85 years of age makes the CAD test particularly useful in allowing for normal aging 

changes and in diagnosing acquired loss of RG and YB colour vision. 
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3.5.2. Acquired colour vision deficiency: 

 Acquired colour vision deficiency occurs as a result of ocular, neurologic or systemic 

disease. A wide array of conditions may affect colour vision, ranging from disease of the 

ocular media through to the pathology of the visual cortex. Traditionally, acquired colour 

vision deficiency is considered as a separate entity from congenital colour vision deficiency, 

although emerging clinical and molecular genetic data would suggest a certain degree of 

overlap (Simunovic, 2016).  The below section on acquired deficiency is not exhaustive and 

reviews common conditions without a large hereditary component to the disease. 

 3.5.2.1 Disorders of the ocular media: 

Possibly the most common mechanism of acquired colour vision deficiency is a so-called 

absorption mechanism secondary to the age –associated increase in optical density of the lens 

pigments (Norren and Vos, 1974). Intraocular lens is characteristically yellow in colour and 

absorbs short wave-length visible light, because of the gradual nature of such changes, 

patients seldom notice any change in colour. Further-more, there is evidence to suggest that 

increased media absorption may be offset by increased S-cone sensitivity (Johnson et al., 

1988). Implanted intraocular lenses with yellow tints modulate the spectral quality of light 

when compared to aphakia (van de Kraats and van Norren, 2007) and the empirical evidence 

supports this assertion (Simunovic, 2012). 

 3.5.2.2 Retinal disorders: 

 a) Age related macular degeneration: 

Our ability to monitor retinal structure in AMD has improved with the advent of modern 

imaging techniques and quite a few attempts have been made in this regard to relate this 

progress with functions in terms of colour vision. 
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Systematic review of studies which have investigated chromatic function in patients with 

ARM (Neelam et al., 2009) reviewed a total of 15 studies from 1978 to 2005. The studies 

used Farnsworth -Munsell 100 hue test, Farnsworth D15 test, anomaloscope and colour 

contrast sensitivity using computer graphics system. They performed colour tests in ARM 

case groups and control groups and the sample size ranged from 10-47 cases. Most studies 

concluded on an optimistic note and found a blue yellow defect (Bowman et al., 1978; Smith 

et al., 1988; Feigl et al., 2005; Frennesson et al., 1995). A positive relationship between 

severity of retinal changes and elevation of YB colour thresholds were found in some studies 

(Applegate et al 1987, Eisner et al 1994, Cheng et al 1993, Holz et al 1995, Arden et al 2004). 

Two studies found no difference in the colour thresholds of ARM group and the control 

group (Atchinson et al., 1990; Midena et al., 1997). The chromatic sensitivity loss as a result 

of disruption of cone receptors and subsequent neuronal pathways can be classified as an 

acquired defect in AMD. Furthermore, YB loss is the most common acquired colour vision 

defect in macular pathology (Verriest, 1963). 

Midena et al (1997) could not demonstrate a colour abnormality using FM100 hue test in 47 

patients of ARM. Their observation were not consistent with the majority of the studies and 

according to the investigators, one possible explanation is the lack of commercially available 

tests to detect the subtle changes in early ARM. Similarly Atchinson et al (1990) failed to 

elicit a colour defect in their 10 ARM patients probably because of the presence of hard 

drusen/pigmentary changes which represent normal aging changes. 

The test of colour sensitivity (FM100, D15) determines colour contract thresholds in protan, 

deutran and tritan confusion axes and three studies used Ardens computer graphic system. It 
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podiscrimination and tests like the CAD system quantifying saturation and thresholds will be 

useful to determine early ARM defects. 

The pilot study by   O’Neill–Biba (O'Neill-Biba et al., 2010)   tested colour vision using the 

CAD system in 18 AMD subjects (36 eyes). They found 30 (83%) eyes to have elevated M-L 

mechanism and tritan thresholds. They concluded that the initial loss was YB followed by 

both RG and YB loss of sensitivity in the later stages of the disease. They graded  AMD into 

5 categories and found a positive correlation between chromatic sensitivity loss and disease 

severity. 

 

 b) Diabetic retinopathy: 

Diabetic retinopathy is commonly associated with acquired colour vision deficiency. About 

half of the patients in the Early Treatment of Diabetic Retinopathy Study were found to have 

abnormalities on the F-M 100  (Fong et al., 1999). Andrade and colleagues  (2014) found 

diabetic patients as a group showed higher FM  100 scores then the controls but the FM 100 

test was not able to differentiate the diabetic group with retinopathy from the diabetic group 

without retinopathy.  A Pilot study at City, University of London using the CAD test 

observed that diabetic subjects exhibited equal and highly correlated reduction in RG and YB 

sensitivity using the CAD test (O'Neill-Biba et al., 2010). 

 3.5.2.3 Optic nerve disorders: 

 a)Glaucoma: 

Glaucoma is the term applied to a collection of optic neuropathies that  may have acute or 

chronic forms and share common features of loss of retinal ganglion cells and 
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excavation/cupping of the optic nerve head (Weinreb et al., 2014). Several early studies 

suggested that glaucoma causes an acquired M-L mechanism deficiency (Pokorny et al.,, 

1979). However, such studies concentrated on patients with advanced diseases as it is now 

generally accepted that glaucoma first causes an acquired S-mechanism deficiency on 

conventional colour vision tests such as FM 100 Hue and desaturated D-15 (Sample et al., 

1986). Much of the attention over the past few decades has been directed at detecting loss of 

function before evident on conventional perimetric visual fields.  SWAP, which is short wave 

length blue on yellow perimetry   generated interest  for early detection of galucoma  

(Monhart, 2007) . 

There are other miscellaneous causes of loss of colour vision such as drugs, toxins and 

hypoxia.(Simunovic, 2016).Acquired colour vision deficiency is a common condition and 

even though its precise prevalence is unknown ,the available evidence suggest it is more 

common than congenital colour deficiency in populations aged 40 and more (Schneck et al., 

2014). 
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4. Material and Methods:  
 

 All subjects were recruited from the medical retina clinic at Kings College Hospital, London. 

The study was approved by the NRES ethical committee London-East and City, University of 

London. The prospective study included patients / subjects of AMD aged 55 and over. Ninety 

eyes of 67 participants were included. They had AMD in one or both eyes with vision of 6/12 

or better. All subjects with bilateral AMD were asymptomatic and were referred from their 

opticians for a routine opinion. AMD patients with the other eye treated for wet AMD were 

recruited from the Anti -VEGF clinics.  

 

4.1 Inclusion and exclusion criteria:  

Subjects were excluded for diabetes, glaucoma, significant cataract or any other significant 

ocular pathology by ophthalmic history and examination. The significance of cataract was 

determined by the symptomatic history, visual acuity, examination and was based on the 

clarity of fundus details. Any lenticular opacity which obscured fine fundus details and 

imaging was excluded. A careful selection of subjects was made based on their mental ability 

to understand the test and physical ability to perform the test using the keypad. A short test 

programme which is a teaching mode on the CAD system was used to determine suitability 

for the actual definitive test and for inclusion into the study.  
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4.2 Study design: 

Suitable subjects (AMD and early onset drusen) in the Medical Retina Clinic who were 

attending a routine appointment were approached and the study was discussed with them. 

They were handed a patient information leaflet about the study and given one hour to read 

and consider it. The interested subjects were given a choice to perform the CAD test during 

the same day or at another convenient time.  The subjects who were keen to perform the test 

on the day were seen as part of their clinical care.  After receiving informed consent, they 

underwent a detailed history; both ophthalmic and general medical history was taken 

including drug history and smoking status. Ophthalmological examination, best corrected 

visual acuity, colour fundus imaging and OCT scans were performed as a part of their routine 

ophthalmological care and the CAD test was performed as a part of the study. The patients 

had their pupils dilated for OCT, fundus photograph and ophthalmological examinations. The 

CAD test was performed either dilated or undilated depending on the availability of the 

patient’s time during the course of the clinical appointment to aid effective use of patient’s 

time. The negligible effect of pupil size and mild lenticular opacity has been discussed in 

confounding factors of the CAD test (4.2.4.1).  The subjects were recruited over a period of 2 

years and a follow up of only the clinical notes was conducted at the end of 12 months for 

each subject. 

4.2.1 Visual acuity measurements: 

The subjects had both monocular and binocular visual acuity recordings by a trained nurse/ 

ophthalmic assistant on an ETDRS letter chart.  Vision was recorded with their distance 

glasses on and when they reached the letter that they could last identify, a pinhole was 

introduced to check for the best corrected VA.  VA was recorded separately in each eye using 
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an occluder. The patient was encouraged to guess any letters that were difficult to read and 

instructed to make a definite decision and were allowed to move on to the next line, only if 

they had identified at least one letter on the previous line in order to access the threshold of 

visual acuity testing. 

ETDRS score was calculated as follows; each letter correctly identified was circled on the 

visual acuity form. Any letters read incorrectly was deleted and letters for which no guess is 

made were left unmarked. Each letter scores one point. The total for each line is recorded in 

the right –hand column (maximum 5), the scores for each line were added at the bottom. If 

the score was 20 or more, then 30 points were added automatically and the final score was 

then recorded. 

4.2.2 Photographic imaging of the Retina: 

Fundus photographs were obtained using Topcon fundus camera which was performed by 

experienced medical photographers as part of routine care.  The protocol was one single 30 

degree shot of the posterior pole which included the disc and the macula. The photographers 

used the same magnification for all subjects. The disc was included in the picture for the 

investigator to compare the disc among subjects and ensure that a uniform magnification was 

used for all subjects. 

4.2.3Optical Coherence Topography (OCT):  SDOCT (Spectralis; Heidelberg 

Engineering, Heidelberg, Germany) allows high-speed, high resolution, confocal laser 

imaging of the retina. It allows for simultaneous cross sectional OCT and infrared imaging 

(870 nm) as well as simultaneous OCT and FAF imaging (488 nm excitation and 500 nm 

barrier). The beam of a super luminescence doide (SLD) scans  across the retina to produce a 

cross sectional B-scan image (Spectralis Catalogue, 2007). 
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 The protocol for OCT was a volume scan on a 20 × 20 degrees cube, with 49 raster lines, 

each containing 1064 pixels, separated by 125µm, used to acquire macular scan centred on 

the anatomical fovea. The OCT measurements were carried out by experienced medical 

photographers as a part of clinical care. The scans were analysed qualitatively to identify 

drusen and RPD along with the fundus photographs. Infrared reflectance imaging done 

alongside the macular scans was used to confirm the presence of RPD.   

 

4.2.4 Colour Assessment and Diagnosis (CAD) test: 

Every subject was assessed for colour vision using the Colour Assessment and Diagnosis 

(CAD) test. The test was performed in a dimly lit room with sufficient ambient light. The test 

was performed binocularly and then monocularly in each eye for 15 patients, this protocol 

was time consuming and exhaustive for the subject. After reconsidering this protocol it was 

decided that only monocular tests be done to obtain useful data needed for analysis. 

The CAD was initially devised as a binocular test when it was primarily used for congenital 

colour blindness diagnosis. The software has since been modified for use in monocular 

conditions for acquired colour deficiency and the test has been named monocular medical on 

the CAD system. The monocular test results obtained have been compared to monocular 

normative data to give a diagnosis at the end of the test. The system used in this study had the 

monocular medical mode installed on it. 

The patients were seated at a 3 meters distance from the CAD system and they used their best 

corrected glasses for the test.  The concept of the test and the procedure of response was 

explained to the patient.  They were allowed to practice on the short test programme which 

produces highly saturated colour stimulus to understand the test. If a subject scored 100 
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percent on this practise they were ready to take the definitive test programme. The test 

programme was divided into RG and YB programmes to allow for rest between the tests.  

The CAD test ideally takes up to 12 minutes to complete and to produce a result. The test can 

last up to 20-25 minutes in the event of abnormal thresholds, which increases the confusion 

of patient performance. The test can also be prolonged when the subject fails to press the 

response button at the beep.   Using only monocular tests, without repeating test on binocular 

programme and divided RG / YB programmes helped prevent patient fatigue. 

The CAD test made it possible to isolate the use of colour signals and to measure small 

changes in chromatic sensitivity. The fundamental principles of the Ishihara pseudoisochro-

matic plates had been employed in novel tests generated on visual displays to test for RG and 

YB chromatic sensitivity (Barbur 2004, 2011.). The colour assessment and diagnosis (CAD) 

test enhanced the masking of luminance contrast signals by employing dynamic, random, 

luminance contrast noise without changing the time-averaged, local luminance of the checks. 

The CAD test has been used in several studies to investigate variability in RG and YB 

sensitivity in normal trichromats and in subjects with congenital and/or acquired loss of 

chromatic sensitivity (O'Neill-Biba et al., 2010). The CAD test employs a dynamic 

spatiotemporal masking technique that isolates the use of colour signals without affecting the 

subject’s chromatic sensitivity. The colour-defined stimulus is buried in dynamic luminance 

contrast noise (as shown in Figure 4.1a) and travels diagonally across a square region defined 

by the noise. The use of dynamic, luminance contrast noise ensures that detection of any 

residual luminance contrast signals in the ‘isoluminant’ colour-defined stimulus is masked so 

that the subject can only perceive the moving target by processing chromatic signals (Barbur, 

1994). In the absence of chromatic signals, the subject fails to see the coloured target, even 
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for chromatic displacement amplitudes that are limited only by the phosphors of the display 

(Barbur et al., 2006). The standard CAD test employs sixteen interleaved directions specified 

in the CIE 1931 – (x, y) colour space. After each presentation (Figure 4.1a), the subject’s task 

is to press one of four buttons, to indicate the direction of motion of the colour-defined 

stimulus. The randomly interleaved staircases produce colour thresholds (Figure 4.1.b) for 

each of the directions measured. This distance is proportional to the cone contrast signals 

generated by each colour (Barbur and Rodriguez-Carmona, 2012). 

Typical data for a normal trichromat are shown by the coloured symbols in (Figure 4.2) and 

the solid black symbols show median threshold values of 330 normal trichromats. The area of 

the diagram associated with normal colour vision is shown in grey and represents the 2.5 and 

97.5% statistical limits of RG and YB thresholds in normal trichromats (Rodriguez-Carmona 

2006, Barbur, 2006) The pattern of colour vision loss for the 16 directions measured with the 

standard CAD test provides the information needed to diagnose normal trichromacy and to 

detect and classify accurately both congenital and acquired colour deficiency. 

 

 

Figure 4.1 a: Shows screen dumps of 

suprathreshold CAD test stimuli that correspond 

to the RG and YB axes; Colour defined stimulus 

buried in in luminance contrast noise 
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Figure 4.1  b: Screen shot of CAD test result; the colour thresholds are produced at the end of the 

test. 

 

 

 

 

 

 

 

Figure 4.2: Normative data for CAD test shows the mean ellipse for young, normal trichromats 

(solid discs) together with the corresponding confidence limits measured in 333 subjects.   The 

green, red and blue lines show the colour confusion bands for deutan, protan and tritan-like 

observers and the coloured symbols show CAD test thresholds for a typical, normal trichromat. 
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4.2.4.1Confounding factors: 

a) Pupil size: CAD test was done irrespective of pharmacological pupil dilatation, 

Corrections have not been made to account for changes in effective retinal Luminance caused 

by the Stiles–Crawford effect, because the change in luminous efficiency at either extreme is 

(i.e., 2.75 and 7.1 mm) with respect to the efficiency computed for the mean pupil size (i.e., 

4.36 mm) is less than 0.14 log units (Barbur, 2012). The mean luminance employed in the 

CAD test (i.e., 24 cd/m
2
) is well above the range of the luminance effects (Barbur, 2006).  

b) Lens opacities; Subjects with nuclear sclerosis, significant cortical or posterior 

subcapsular cataract dense enough to obscure the details of a dilated fundal view were not 

included in the study. A grading scale like the LOCS III was initially adopted to grade any 

lenticular changes noted in spite of clear fundus details. This grading was discarded after 

discussion among the investigators. Experiments at City, University of London found that YB 

remain independent of absorption of short wavelength by the lens (Rodriguez-Carmona, 

2006) provided sufficient ambient light is available to avoid large reductions in retinal 

illuminance for blue light. 
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4.2.5 Severity grading of AMD using fundus photographic imaging 

a) International Classification and grading system (Bird etl al 1995) 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2: International classification and grading system for ARM /AMD (International 

ARM/AMD study group Bird et al 1995) 
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location 

 

Drusen 
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1 )Questionable                                                                                                                                                          
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1) <63µm 
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e outer 

circle 

 

1)>10% 

    

2)hard 
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 2)1-9                                                                       

 

2)≥63 µm <125 µm                        

 

2)in the 
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subfield 

 

2)>25% 
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)                                             
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3)≥125 µm<175µm                        

 

3)in the 
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subfield 

4)>50% 
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crystalline/calcifi
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5)≥250µm                                             

  

Hyper- 

Pigmentation 
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1)Questionable                                                                            1)Questionable                                                                            2)in the outer subfield 

2)Present 

(<63µm)                             

2)Present 

(<63µm)                              

3)in the middle subfield 

3)Present( ≥63µm) 3)Present (≥63µm 4)in the central subfield 
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 Bird et al (1995) proposed the above grading scheme to encourage researchers to use the 

grading system or the modifications derived from the grading to permit improved 

understanding and comparison of results. This classification is elaborate and takes into 

consideration the drusen morphology, size, number, area covered and main location of the 

drusen on the ETDRS grid.  

All aspects of the classification except 1.2 in the original classification were used, this sub 

classifies the   predominant   drusen type in the outer circle of the grid. After analysing the 

macular area using the three circles of the ETDRS grid (Figure 2.7.2) Drusen morphology 

(1.1), number (1.3), size (1.4) and area covered (1.6) were analysed mainly for the inner 

circle. The inner grid was analysed for the drusen parameters as the CAD system 

theoretically measures the central 5 degrees of the fundus which lies in the inner circle of the 

grid.  

 Bird et al (1995) discussed that 30 to 35 degree photographic field is the standard use in 

AMD studies and the magnification provided by a 30 degree field is usually adequate to 

determine most lesions with AMD. They called for variations to be limited between 25 to 40 

degree and for a grid template to be used for uniformity of results between studies.   

In the present study 30 degree photographic field was used and fundus transparencies were 

prepared with ETDR grid and circles C0,C1,C2,C3,and C4  measuring 1/24, 1/12, 1/8.6, 1/6 and 

1/3 of the disc diameter, according to the measurement of the disc on the photograph. The 

same computer monitor was used for all subjects to maintain uniformity. RV was the main 

investigator performing the measurements after a formal meeting and agreement with SS. SS 

was also sought, in case of doubt in measurement of any subject. 
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 b)Clinical classification: 

We used clinical classification by Ferris et al (2013), initiative for macular research 

classification Committee, for a broader and simpler view of colour thresholds over the range 

of AMD. 

 

Table 3: Clinical classification of age related macular degeneration; Macular Research 

classification committee added category 3.5 for classification in our study, to get more detail in 

correlation. 

 

 

4.3 Optical Cohorence Topography (OCT): Heidelberg Spectralis (Spectral 

domain OCT)  for  drusen volume calculation, identification of drusen morphology and FAF 

imaging. 

Grade  AMD Severity grade Drusen  size in 

µm 

Pigment  

 0  No signs  nil  Absent 

1  Normal  ≤63 µm  Absent 

2  Early  (>63≤125)  Absent 

3  Intermediate  (>125 >250µm) Present 

4  Late  Geographic 

atrophy/Wet AMD  
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a)Drusen volume calculation: 

Drusen volume in mm³ was calculated across 9 OCT sections and 480µm on either side of 

fovea using J Image (NIH public domain software). This corresponds to centre of the grid and 

central 5degree of vision.  On each of the 9 scans any drusen seen was calculated for volume 

using the image J software and the total volume across the 9 scans was recorded. Drusen 

volume for each eye classified as grade 1 (no drusen), grade 2(<0.1mm
3
) grade3 (0.1-

0.5mm
3
), grade 4 (>0.5mm

3
). 

a)

b) 

 Figure4.3: a) Example of an OCT scan analysed on Image J. b) Image J (NIH public domain soft 

ware) which was used to anlalyse drusen colume. 

 

b)Drusen Morphology on OCT scan:  

We used OCT scan for IR images, AF and identification of drusen deposits / reticular 

pseudodrusen on OCT sections. We have mainly used IR and SD-OCT scan to identify our 

subject’s eye with reticular pseudodrusen (RPD). 

We divided our patients into: 

a) Reticular drusen only without soft drusen  

b) Soft drusen only without Reticular drusen  
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c) Combined lesion: CR- predominant reticular (>50%),  

d)  Combined lesion CS- Predominant soft drusen (>50%). 

CR and CS were included under RPD for analysis. 

Reticular pseudodrusen were identified on IR imaging as groups of hypo-reflectant lesions 

against a mildly hyper-reflectant background and as well-defined and regular patterns 

reticular pseudodrusen. RPD were confirmed by the presence of subretinal drusenoid deposits 

on SD-OCT imaging obtained on the same instance as IR imaging. Large (≥125 μm) soft 

drusen were identified on colour photographs by their characteristic yellow, indistinct 

appearance and confirmed by the presence of mounds of deposits under the retinal pigment 

epithelium on SD-OCT imaging. 

 

Fig 4.4.A)Soft Drusen (SD)  in a study subject 
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 Fig 4.4.B) Reticular Drusen (RD) in a  study subject 

 

 Fig 4.4.C) Combined drusen -predominance of soft drusen (CS) in a study subject 

Figure 4.4 :  Three divisions of reticular drusen subjects graded for the study. A)  SD- Soft drusen 

only.  B)  RPD Reticular drusen only  C) COMBINED -predominance of soft drusen .  All three images 

are from study subjects. 

 

c) Autofluroscence (FAF): 

 FAF of the macula was performed using the infrared mode. The Fundus AF in Age-related 

Macular Degeneration Study Group (FAM Study Group) (Einbock et al., 2005) aims to 

identify AF changes as predictive factors for the progression of age-related macular 

degeneration (AMD). Different AF patterns maybe related to high-risk characteristics and 

may provide new predictive factors for the development of late AMD and visual loss. The 

identification of these high-risk AF patterns in patients with AMD may be helpful in 

identifying those to be targeted for monitoring and for possible future therapeutic 

intervention. 
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 Fig 4.5: AF pattern according to the classification of the International Fundus Autofluorescence 

Classification Group:  a. normal pattern, b. minimal change pattern, c. focal increase pattern, d. 

lace- like pattern, e. reticular pattern, f. speckled pattern, g. patchy pattern, h. linear pattern, i. 

focal plaque-like pattern 

 

Statistics: All statistical tests were carried out using SPSS V.17.0 (SPSS, Chicago, IL, USA). 

Measured RG and YB thresholds in patients with AMD were compared against age-matched 

normative data.  The measured thresholds were related to the severity of AMD grading. 

Thresholds measured in eyes with RPD were also compared against those measured in eyes 

without RPD. Student tests were used to determine if the two set of data are significantly 

different from each other as P <0.05 was considered significant.  

At the start of the study apriori calculation made the following assumptions; normal 

monocular threshold of 1.29 (SD 0.63) and normal group size of 32. Using these parameters 

81% power could be achieved with an alpha of 0.05 for a sample size of 38. It was proposed 
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to double the sample size (38x2) to assess accurately the variability in chromatic sensitivity 

loss (RG and YB) within each disease group. 

 During the analysis of the study it was realised that the sample size needed to demonstrate a 

significant effect, does not apply well to the present study as every subject tested had 

thresholds outside the normal range.  However, a large sample size can provide useful 

information on the distribution of patients within clinical categories. It was concluded that 

given the large variability observed in clinical categories, it would have been impossible to    

compute sample size with any credibility.  
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 5. Results: 

5.1:Demographics: 

 5.1.1. Subjects : 

 We recruited a total of 67 subjects with AMD for the study. CAD tests were conducted in 90 

eyes out of the 134 present in 67 patients (26 males and 41 females). Age of the patients 

ranged from 55 to 88 years, the median age being 75 years.  

Subjects      Eyes tested     Age (Median±SD)        Range         Male: Female       VA range 

67                   90                     70± 7.73              55-88 yrs             1:1.57             6/5-6/18(Snellen chart) 

                                                                                                                              (91-61 ETDRS lettters) 

Table 4: Demographics of the study group. 

 

Out of the 67 subjects, 23 subjects who had bilateral AMD were eligible for the study had 

monocular CAD test performed on both the eyes, while 44 subjects  who were eligible in one 

eye performed monocular CAD test in that eye. This was because the other eye had either wet 

AMD or advanced dry AMD with vision less than 6/18.The Visual acuity (VA) ranged from 

6/5 to 6/18, VA in most cases was recorded on ETDRS letter chart and converted to Snellen 

visual acuity. 

 All the subjects were recruited from AMD clinics at Kings College Hospital. All subjects 

were deemed asymptomatic in the study eye, as they did not report difficulty in vision and 

were not aware of any colour or contrast difficulties in everyday life. The subjects with 

bilateral AMD were in the hospital setting for a regular check after a referral from the 

optometrist for AMD.  The subjects with other eye late AMD were in the hospital for 

treatment of the affected eye. 
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5.1.2 History of Smoking: 

History of smoking was available in 25 subjects, 3 of the subjects were non-smokers although 

one admitted being a passive smoker. All except one had given up smoking at the time of the 

study. The average amount consumed was 10 cigarettes per day for an average of 20 years. 

The average duration since cessation of smoking was 20 years.  Smoking is the most 

important modifiable risk factor for AMD development and progression (Velilla et al., 2013). 

Quitting smoking reduces the risk of AMD, and after 20 years of cessation the risk of 

developing AMD is the same as for non-smokers (Hughes et al., 2007, Rennie et al., 2012). 

Beaver Dam Offspring study confirmed that smoking 11 or more packs (level of smoking is 

classified as pack years) was associated with early stage AMD (Klein et al., 2010). Other 

studies in Korea and Japan also demonstrated that level of smoking was associated with early 

and late AMD (Moon et al., 2012, Tamakoshi et al., 1997). 

5.1.3 Range of Visual acuity in the study sample: 

Eyes with best corrected visual acuity of 6/18 (61 ETDRS letters) or better were recruited for 

the study. This cut-off was chosen to make sure that early stages of AMD were recruited.  

This level of vision also made sure that the stimulus of the CAD was seen accurately at 3 

meters for reliable performance of the test. The distribution of visual acuity across four 

grades of clinical classification of AMD has been described in Figure 5.1. There was no 

statistically significant difference in the visual acuity measurements among the different 

severity scales. 
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Figure 5.1: Distribution of visual acuity in ETDRS letters in our study sample shown in the four 

severity grades of clinical classification of AMD. 

 

5.2 Chromatic sensitivity results in the AMD study group 

All 90 eyes with AMD had subnormal age corrected colour vision either RG/YB thresholds 

or both in comparison to the age corrected normative data.  The distribution of thresholds 

spread over the whole scale of severity and ranged from 2.5 to 36.59 CAD units (for RG) and 

2.7 to 18.21 (for YB). This is a significant loss as the normative monocular CAD limits for 55 

- 88 years is YB= 1.2 to 2.7 ± 2SD; RG= 1.3 to 2.4± 2SD (Barbur et al., 2015). 
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A.      B.  

Figure 5.2 (A, B): Distribution of RG and YB thresholds measured in the 90 eyes examined in the 

study. Panel A shows the independent ranking of RG and YB thresholds. The thresholds span the full 

range from just greater than the upper normal limits to the maximum chromatic saturations 

possible in the RG and YB directions.    Panel B shows the relationship between the RG and YB 

thresholds measured in the same eye. Although in general, most eyes exhibit greater YB losses, 

when the correlation is limited to a maximum of 18.2 CAD units (i.e., the largest YB threshold limit 

imposed by the largest chromatic saturation possible on the visual display), linear regression 

analysis yields an r2 value of 0.35 (YB = 3.482 + 0.724*RG) and the two tailed is P< 0.001. 

 

 

The Figure 5.2 (A) shows the distribution of the CAD thresholds in the study group of 90 

AMD eyes. The results are interesting as the loss seems to cover the whole scale of severity 

with some eyes having a mild loss and some having a very severe loss, with the latter being 

limited only by the phosphors of the visual display employed in the CAD test. The 

corresponding RG and YB thresholds in 5.2 (A) describe the independent ranking of RG and 

YB thresholds within the examined eyes. The results show the saturation of both RG and YB 

thresholds caused by the limits of the visual display.   

The lower normal sensitivity for detection of yellow-blue changes may be due to the much 

reduced S-cone density in the retina but when expressed in SN CAD units, the median 

thresholds corresponds to one unit for both RG and YB discrimination. The lower upper limit 
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for YB thresholds is caused by the much larger YB colour signals needed at threshold by 

comparison with the RG colour signal.   

In Figure 5.2 (B) the patient’s RG threshold in each of the eyes examined in the study is 

plotted against the corresponding YB threshold. The results illustrate the proportional 

increase in both RG and YB thresholds.  The independent ranking of RG and YB thresholds 

of AMD eyes, after eliminating those with thresholds above 18.2 CAD units to account for 

the maximum possible YB limit, reveals higher YB thresholds when compared to RG (P 

>0.0019) suggesting that loss of YB sensitivity tends to precede RG. The linear regression 

analysis limited to data below 18.2 CAD units, yields an r
2
 value of 0.35 (Panel B). The two 

thresholds are therefore correlated. 

5.2.1 Chromatic loss in AMD compared to age matched normals. 

The results were compared to the monocular normative CAD data for age matched normal’s 

available ( Barbur and  Rodriguez  -Carmona, 2015).The normative data were obtained for a 

large sample size of 720 eyes and included subjects from 4-90 years of age. The large 

majority of the subjects were from Damme Optometri practice (Kersteren,Netherlands) and 

they were filtered for congenital colour vision deficiency, with  medical conditions such as 

diabetes, hypertension, abnormal fundus appearance including drusen (Figure 5.3). 

 There is a gradual and linear increase in sensitivity from younger age groups and the best 

chromatic sensitivity corresponds to approximately 20 years of age, depending on a number 

of factors including improvements in attention ability and performance. The second phase 

must be linked to healthy aging and is likely to involve physiological changes that also follow 

a gradual linear decline in sensitivity. 
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   A)                                                                                    B) 

Figure 5.3(A,B) : RB/YB monocular CAD thresholds in age corrected normal population. 

The original monocular data measured at City University London and the Damme Optometric 

practice in Netherlands (Kresteren). CAD thresholds obtained in 720 eyes,The age range of subjects 

was from 4 to 90 years of age. RG and YB CAD thresholds were measured separately for each eye. 

Exclusions criteria were applied to 'filter' out subjects with congenital and acquired colour vision 

deficiencies. The filters were defined according to the following criteria:1. Congenital colour 

deficiency (exhibiting elevated RG and normal YB thresholds). 2. Subjects with medical conditions 

(MC) such as diabetes, hypertension and ocular abnormalities which may cause acquired loss of 

chromatic sensitivity.3. Subjects with abnormal fundus appearance or drusen. 4. Subjects who 

exhibited a statistically significant difference in RG and or YB chromatic sensitivity between the 

two eyes. The indexes employed to describe the asymmetry between the two eyes were the 

difference in monocular thresholds referenced to the best eye. 

 

The results show a linear increase in colour thresholds of 1% per year for RG and around 

1.6% for YB over the remaining life span. The loss of myelinated RGC axons and cell bodies 

with increasing age follows a similar trend and may account in part for the observed loss. As 

the colour vision relies largely on normal cone signals and integrity of retina and visual 

pathways, the small changes in optics of the eye caused by small changes in refraction, pupil 

size and scattered light have little effect, on the colour vision, when the task is to measure 
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colour thresholds with large stimuli against a background of high luminance (Barbur et al., 

1997; Barbur and Rodriguez-Carmona, 2012). 

The study by Barbur et al 2015 establishes the reliable upper threshold limits for RG and YB 

colour vision which enables detection of the earliest signs of acquired loss of chromatic 

sensitivity and hence the presence of anatomical and physiological changes other than those 

attributable to normal aging. 

 

 

 

A) 

 

 

 

 

 

B) 

Figure 5.4(A): RG CAD values of AMD subjects plotted against age matched normals; (B): YB CAD 

values of AMD subjects plotted against age matched normals. The normative data are based on  

720 eyes filtered for congenital and acquired colour deficiencies. RG/YB thresholds of 90 eyes with   

AMD were significantly higher than the normative data. 
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 When chromatic sensitivity was measured in standard normal CAD units, the AMD subjects 

were significantly higher than the normal population. The two- tailed P value was less than 

0.0001 for both RG and YB thresholds of AMD subjects compared to RG and YB of 

normative data. This difference was considered to be highly significant, which was equivalent 

to saying that one can be certain that RG and YB colour vision is strongly affected in AMD. 

5.2.2. Grading the Severity of Chromatic loss in AMD group: 

The AMD subject group had been stratified according to severity of chromatic sensitivity loss 

as they presented with in the study. Severity grading has been described in methods section 

4.1. 

 Mild Moderate Severe V.Severe 

RG 46%(n=42)  25.5%(n=23) 6.6%(n=6) 21.1%(n=19) 

YB 33.3%(n=30) 33.3%(n=30) 14.4%(n=13) 18.8%(n=17) 

 

Table 5: showing the distribution of severity of chromatic loss in AMD subjects. 

 

46% of the eyes had mild loss of chromatic sensitivity with RG thresholds where as only 

33.3% of the eyes had mild loss of chromatic sensitivity with YB thresholds. This shows that 

the YB thresholds were affected and progressed earlier than RG as suggested by various 

studies in the past (Neelam et al., 2009). 

A majority of the AMD subjects had mild to moderate chromatic sensitivity loss with both 

RG/YB thresholds rather than having severe to very severe loss. This could be the reason that 

chromatic sensitivity loss has not been recognised so far, however we have made an attempt 
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in further sections to identify causes of severe to very severe chromatic losses in these 

subjects. 

.  

Figure 5.5: Stratification of AMD subjects based on CAD thresholds. AMD subject divided according 

to the severity of their CAD threshold losses. Majority had mild to moderate losses; YB showing 

early progression in comparison to the RG thresholds 

 

5.3:  Correlating Clinical classification on fundus photographs to 

chromatic sensitivity: 

To understand the distribution of AMD pathology in our study group we separated the 

subjects according to clinical classification of AMD (Ferris et al., 2013).This is a quick and 

basic clinical classification aiding clinicians to assess risk of progression to late AMD. This 

classification mainly used the size of the drusen. Eyes with drusen size ≤63 µm were 

considered as normal aging, whereas eyes >63≤125 were considered as early aging, and size 
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larger than this, with or without pigmentary changes, as intermediate aging. They included 

wet AMD and GA as late AMD.  

  

Figure 5.6: AMD Demography in the study group: The 90 AMD eyes classified according to clinical 

classification of AMD and the most common group of subjects who performed the CAD test were in 

the intermediate AMD stage. 

 

A majority of our AMD group was classified as intermediate AMD (77.7%, n=70). Three 

eyes met the criteria for normal aging (3.33%), 8 eyes for early AMD (8.88%) and 9 eyes for 

late AMD (10%). Eyes classified as late AMD were recruited as an early stage of the disease 

but found to have incidental early geographic atrophy or an isolated cyst on OCT during 

result analysis, in spite of good visual acuity. The grades were correlated with the RG/YB 

thresholds to look for any correlation as the severity of grades increased on the clinical 

classification. There was a gradual increase in the mean of the thresholds  with increasing 

severity  of grades. There was a wide variablity in thresholds with large SD in each group of 
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the classification as a result of which the P value comparing the eyes with early AMD to the 

eyes with  higher intemediate AMD was not significant.  

Figure 5.7: Spread in RG and YB thresholds within the four groups formed using the clinical 

classification criteria.  1 = Normal, 2 = Early, 3 = Intermediate, 4 = Late. Individuals CAD thresholds 

of each eye are plotted for each of the 4 groups, the whiskers show the 5th and 95th percentile, while 

the mean value is plotted as an outline square. Although the results show a gradual increase in 

mean thresholds, the difference between group 2 and 3 was not statistically significant due to large 

inter subject variability. The ‘Late’ AMD group in eyes with early GA had more severe loss of both 

RG and YB colour vision.   
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  CC                  1                 2                         3                                        4       

n                    3                   8                         70                                            9                        

RG           2.43(0.3)        5.63(2.2)            10.63 (10.3)                          24.14(7.0)                                

YB         3.27(0.8)         7.43(3.7)              9.42(5.2)                           14.49(14.4) 

Table 6: Showing mean chromatic sensitivity in each grade of the clinical classification with 

Standard deviation (SD). 

 
  

5.4: Chromatic sensitivity correlated to Age related Drusen 

Categories: 

The AMD group had been further subdivided to examine the effect of different types of 

drusen on chromatic sensitivity and to study chromatic sensitivity while soft drusen had been 

classified and graded in detail according to the international classification and grading system 

for ARM (Age related maculopathy)/ AMD (Bird et al., 1995). 

Seventy one eyes were available to grade for drusen morphology grading, after excluding 

eyes with only pigmentary change but no drusen, eyes with early GA and eyes with 

coincidental cysts on OCT. 

49 eyes had only soft drusen, 9 eyes had reticular drusen, 11 eyes had reticular drusen with 

soft drusen and  3 eyes had small drusen (<63µm), which is not classified as AMD. 
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                  Normal Aging                     Soft Drusen                          Reticular Drusen 

    n                           2                                 49                                      20  

RG(SD)               2.43(0.3)                          7.69(7.4)                             18.85(12.6) 

YB(SD)              3.27(0.8)                           7.85(4.3)                              14.03(4.4) 

Table 7: Showing number of eyes under each category of Age related Drusen; mean chromatic 

sensitivities in each category with standard deviations shown. 

 

 

Figure 5.8: Spread in RG and YB thresholds in eyes classed as normal aging, soft drusen and those 

with reticular drusen. The latter showed significantly larger RG and YB thresholds. The ‘None’ 

group included 3 subjects classed as having changes attributed to normal aging as well as age 

matched normal eyes from normative database. The whiskers show the 5th and 95th percentile, 

while the mean value is plotted as an outline square. This box plot shows the eyes with reticular 

drusen have worse CAD thresholds and the chromatic sensitivity worsen as we move from normal 

aging to Soft Drusen to Reticular Drusen. 
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Subjects with reticular drusen had the highest mean CAD thresholds (i.e., RG = 18.9 and YB 

= 14 CAD units). Subjects within the soft drusen group had mean RG CAD thresholds of 7.7 

and YB thresholds of 7.9. Typical examples are shown in Figure 7a and 7b. 

Both the SD and the RPD groups showed significantly larger thresholds when compared with 

the normal group (p<0.0001). The mean difference between the SD and RPD groups was also 

statistically significant (p< 0.0001 for both RG and YB). The subjects within the reticular 

drusen group were more affected than those in the SD group.  
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Figure 5.9a: Example of eye with soft drusen showing a moderate loss of chromatic sensitivity.1. Fundus 

photo 2.OCT scan 3. CAD results 

CAD Thresholds

RG: 4.53

YB: 7.34

(Moderate loss of colour vision)

(1)

(2)

(3)

Figure 5.9b: Example of images from eye with reticular drusen showing severe loss of chromatic 

sensitivity. 1. Fundus photo, 2.OCT scan, and 3. CAD results 

CAD thresholds 

RG:21.38

YB: 13.54

(Severe loss of colour vision)

(1)

(2)

(3)
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5.5: Chromatic Loss correlated to Fundus Grading in Soft Drusen: 

All eyes with soft drusen (49 eyes) were stratified based on soft drusen morphology, size, 

number, area covered and main location of the drusen on the ETDRS grid. The grading was 

first applied to the central subfield of the ETDRS grid, and then on the whole grid. The 

findings were not conclusive for the central subfield, thus the results of the whole grid are 

mentioned. 

5.5.1 Drusen Morphology: 

Drusen morphology was graded from 0-5 and classified according to the International 

Classification and Grading System for AMD (Please see Table 2). 

 

          Questionable(1)           Intermediate(3)     Large(4)          Soft/serogranular(5)         

   n                     1                              10                       16                   22                                                      

RG                   2.29                     4.7(1.8)              6.2(3.3)           10.36(1.8)                             

YB                    3.06                    5.6(1.6)             8.3(3.9)             5.6(1.6)        

 

Table 8: Showing CAD thresholds in soft drusen eyes classified according to increasing drusen 

morphology grades. Mean CAD units with SD displayed. R2 for the mean CAD thresholds over 

increasing grade of morphology showed a good linear trend of 0.9 for both RG and YB 

thresholds, but there was a wide variability of CAD units as indicated by the SD. 
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a)                                                                        b) 

 

Figure 5.10: Trend of chromatic loss in increasing drusen morphology grading: a. Results 

plotted up to 40 CAD units,  b: Results magnified up to  20 CAD units  

 

Comparison of CAD thresholds of Grade 5 with the rest of the grades showed a significant 

difference for RG (p = 0.02), while the comparison of CAD thresholds for YB of Grade 5 

eyes with YB thresholds for the rest of the grades did not show significant p value. This may 

be due to the increased variability in YB thresholds and the upper limit of loss imposed by 

the phosphor limits of the display. 
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 5.5.2 Drusen Number: 

Drusen number was graded from 1-4 and classified according to the International 

classification and grading system for ARM /AMD (Please see Table 2) 

 Grade                              1                             2                           3                        4         

n                                      2                                0                       7                         40                                                     

RG                                  2.29 (0.3)                     0                  5.7(2.2)                8.0(8.1)                          

YB                                    3.06 (0.2)                   0                   6.3(1.7)                8.0(4.5)       

 

Table 9:  Showing the Chromatic sensitivity in grades of drusen number with SD, 

R squared for the mean thresholds showed a linear trend (0.9) and again a large variation in the 

thresholds with large SD noted. The CAD thresholds of Grade 4 eyes was not statistically 

different from the CAD thresholds of all other grades. 

 

  
a)                                                                 b) 

Figure 5.9: Trend of chromatic loss in grades of increasing drusen number. a) Results plotted 

upto 40 CAD units,  b) Results magnified up to 20 CAD units  
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5.5.3 Drusen size: 

Drusen size was graded from 1-5 and was classified according to International classification 

and grading system for AMD (Please see Table 2 ). 

 Grade              1                          2                     3                     4                           5      

n                     1                         6                     13               14                               15 

RG                6.4                    6.3(2.1)            4.4(2)           5.7(3.4)                       13.2(11.2)                          

YB               3                       6.8(2.5)                 5.5(1.8)       8.4(4.1)                        10(5.6)       

 

Table 10: showing the Chromatic sensitivity in Grades of drusen size with SD. R squared for the 

mean thresholds did not show a linear trend, but the CAD thresholds of Grade 5 eyes was 

statistically different from the CAD thresholds of all other grades. 

 

The P value comparing the CAD thresholds of RG and YB of Grade 5 to the rest of the 

grades was statistically very significant with P value <0.0003 for RG and 0.02 for YB. 

 

 

 

 

 

Figure 5.11 : Trend of chromatic loss in grades of increasing drusen size. a) . Results plotted upto 

40 CAD units,  b) Results magnified upto  20 CAD units .The R squared did not show a linear trend 

but the P vaule comparing chromatic sensitivity of grade 5 eyes was statistically different from the 

chromatic sensitivity of eyes with other grades(1 to 4). 
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5.5.4 Main Location of the Drusen(1.4): 

Location of drusen was graded from 1-4 and was classified according to International 

classification and grading system for ARM /AMD (Please see Table 2). 

We examined the eyes with drusen involving the central subfield in comparison to the rest of 

the locations. This was done to test the hypothesis that drusen involvement in the centre 

might be associated with greater severity in terms of AMD grading and chromatic sensitivity. 

 

Grade                                    Druen in  central subfield                          others 

n                                                    14                                                       25 

RG                                               8.8(9.3)                                            6.6(4.6)                                              

YB                                               7.9(5.0)                                           7.6(3.9)      

Table 11: The Chromatic sensitivity of eye with drusen in the centre and other eyes. There was 

no statistical difference between the two groups. 

 

There was no significant difference between the CAD thresholds of the eyes with drusen 

involving the centre of the macula and eyes with drusen in other ETDRS subfields besides 

the center. 

 

5.5.5. Area covered by the Drusen(1.5):  

Soft drusen eyes were further classified into 1-5 grades depending on the percentage of area 

covered and classified according to the International classification and grading system for 
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AMD (Table 2). The p value comparing the CAD thresholds of Grade 5 to the rest of the 

grades was not statistically significant. 

Grade              1                          2                     3                     4                                  5      

n                   3                               4                 9                       28                                 5 

RG                6.1(3.6)                  6.1(3.8)      5.7(2.3)          8.1(9.2)                  10.84(5.8)                                

YB               6.3(2.9)                7.7(4.4)           8.4(4.7)         7.8(4.7)                   8.0(5.8)        

Table12:  showing chromatic sensitivity in increasing grades of drusen area. R squared of the 

means did not show a linear trend and there was no statistical difference between eyes of larger 

area of drusen involvement and other eyes. 

 

 

 

 

 

 

 

Figure 5.12: Trend of chromatic loss in grades of increasing drusen area. a) Results plotted up to 

40 CAD units, b) Results magnified up to 20 CAD units. The R squared did not show a linear 

trend but the p value comparing the grade 5 eyes was statistically different from the chromatic 

sensitivity of eyes with other grades. 

 

 

 5.6  Fundus Autofluroscence(FAF): 

FAF was performed in 76 eyes which underwent the CAD test. We stratified our patients 

depending on the FAF pattern in the study by the FAM study group (Einbock et al., 2005). 

RG; r2=0.61 

YB; r2=0.27 
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The most common pattern was the minimal change pattern (32%, n=25) followed by the 

specked pattern (21%, n=16). 

 

 AF Pattern                                       n                               RG                 YB                

1. Patchy                                         10                                                 20.9(14.4)         14.1(4.9) 

2. Lace -Pattern                                  8                                                 20.1(15.3)        11.17(6.0) 

3. Speckled                                        16                                                 11.3(10.6)         10.2(5.3) 

4. Focal plaque-like                             7                                                10.9(12.7)           8.3(5.6) 

5. Linear                                             3                                                    9.2(2.1)          11.7(2.9) 

6. Reticular                                        7                                                      8.3(9.9)           6.9(1.9) 

7. Minimal change                            25                                                      8.2(6.2)           9.0(5.2) 

8. Focal increase                               1                                                          3.5                  6.9 

Table 13: The FAF pattern of  76 AMD eyes  arranged in decreasing order of chromatic 

sensitivity in CAD units. Patchy pattern had the worse change in sensivity followed by the Lace-

Pattern of FAF. 

 

 Patchy pattern of FAF was evaluated as this was the high risk pattern in the study according 

to the FAM study group criteria. This group had the largest CAD thresholds in accordance 

with the FAM group results. 

50% of patients with a patchy pattern of FAF had very severe loss of RG and YB CAD 

thresholds. Patchy pattern of FAF had the worst CAD thresholds, and the next group to have 

larger CAD thresholds was the Lace-pattern of FAF. 
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 5.7 Central macular thickness: 

We had the central macular thickness (CMT) available for 90 eyes which was correlated to 

their RG/YB thresholds. Three eyes were noted to have early GA on careful examination of 

the fundus and OCT but a CMT more than 200µm (203,205 and 266µm), these eyes showed 

very severe loss of RG / YB thresholds.  

The P value correlating the CAD thresholds of eyes with CMT<200 and the rest was 

statistically significant with P<0.01 for RG and <0.002 for YB. 

 

                 GA                           CMT<200µm                              CMT>200µm 

n                   3                                   11                                                               76 

RG            25.1(10.8)                     18.3(13.0)                                             10.2(10.0)     

YB           17.2(1.1)                          14(4.7)                                                  8.9(5.0) 

Table 14: showing chromatic sensitivity in relation to central macular thickness: Eyes with GA 

and CMT less than 200 microns have significantly worse chromatic sensitivity than the other 

eyes.    

 
 

5.8 Drusen Volume: 

Drusen volume calculation was done in 25 eyes and further calculations were abandoned as 

manual measurements were time consuming and preliminary calculations showed poor 

correlation between chromatic sensitivity and drusen volume. 
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Drusen volume in the central grid was calculated using the image J program (NIH public 

domain software) and classified as grade 1 (no drusen), grade 2 (<0.1mm
3
) grade3 (0.1-

0.5mm
3
), grade 4 (>0.5mm

3
). 

 Eyes (n=9) with grade 1 volume showed chromatic sensitivity ranging from 2-36 CAD units 

for RG and 2-18 CAD units for YB which shows that chromatic sensitivity can range from 

mild to very severe  even when there was no drusen recorded in the centre of the grid. No 

statistical significance could be obtained for other grades of drusen volume and chromatic 

sensitivity. 

 

 Figure 5.13: Manual Drusen volume calculation in 25 eyes using Image J program. A scatter graph 

for correlation between chromatic sensitivity and drusen volume. 

 

 

SD OCT provided for better quantification of drusen and attempts had been made to correlate 

to the fundus photographs which have been the gold standard so far. 

Yehoshua et al (2013) found only fair agreement between drusen area measurements obtained 

from SD OCT and colour fundus photos. Drusen area measurements on colour fundus images 
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were larger than those with SD-OCT scans. They attributed the difference to the fact that 

OCT algorithms define drusen in terms of RPE deformations, above a certain threshold and 

will not include small, flat drusen and subretinal drusenoid deposits. They recommended a 

combined approach using both the OCT and fundus photographs for information on drusen. 

 

5.9 Clinical follow-up at one year: 

It is of great clinical interest to establish whether eyes with severe and very severe CAD 

thresholds do progress to wet AMD. A year after the initial test, follow-up data was available 

for 45 eyes from routine hospital appointments and this information was reviewed. The study 

had ethical approval to review hospital notes and patients were made aware of this 

beforehand, during the consent process. The results showed that 6 eyes had converted to wet 

AMD; the CAD thresholds recorded 12 months ago in these eyes were studied to look for any 

pattern of chromatic loss. No conclusive pattern of loss was seen with the eyes having all 

grades of severity of chromatic loss.  

4 eyes had mild RG loss and the remaining 2 eyes had severe and very severe loss. 3 eyes had 

moderate YB loss and among the remaining eyes, 2 had mild and one had severe chromatic 

loss. 
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5.10 Chromatic sensitivity in Drusen not related to AMD: 

Ten eyes of subjects with drusen not related to ARM/ Early onset drusen (EOD) were 

included in the study.  The p value was not significant in comparison to normative data but 

was statistically significant in comparison to the soft drusen group (p=0.03 RG and p=0.01 

YB) and the reticular drusen (RPD) group (<0.001) for both RG and YB CAD thresholds. 

This implies that CAD in EOD / not AMD eyes was not very different from normative data 

but significantly different from soft drusen and RPD groups. 

 

Diagnosis              Age               RG (RE)          YB (RE)                RG (LE)        YB (LE) 

EOD                  48                        1.14                    0.96                      1.38                1.96 

EOD                 40                         1.91                    2.68                      3.18                3.86 

BLD                  46                        2.73                    2.58                      1.42                1.39 

Sorsby              70                        2.54                    8.49                      3.39                3.09 

AVMD                79                        3.3                   10.69                       5.06                4.12 

 

Table 15 a: Chromatic sensitivity in Early onset Drusen. The CAD thresholds were not 

statistically different from normative data and had statistically lower thresholds than the AMD 

eyes. 
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EOD                       n                               RG(SD)                                           YB(SD) 

                              10                              2.61(1.2)                                       3.98((3.16) 

Table 15 b: Table showing the number of EOD and their mean CAD thresholds with SD. 

 

 

 

 

a)                                                                      b) 

Figure 5.14:  Examples of Drusen not linked to AMD etiology: a) BLD (Basal Laminar drusen) 

b) Adult vitelliform macular degeneration. In spite of significant drusen (a) and macular pathology 

(b) the colour vision remains normal to mild loss unlike in  AMD. 

 

Even though the EOD/not AMD eyes had drusen morphology similar to AMD the colour 

thresholds were not as adversely  affected as in AMD concluding that just the appearance of 

drusen in these eyes does not suggest the same degenerative disease as in AMD. 
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6. Discussion  

6.1 Abnormal chromatic sensitivity in early and intermediate AMD: 

The hypothesis that psychophysical tests like colour vision depend on the functional status of 

the photoreceptors and may detect subtle alterations in the macula before the morphological 

fundus changes and traditional measures of vision, exhibit any deterioration, is well 

illustrated in Figure 6.1 

 

 

 

 

Figure 6.1(a,b): Shows CAD thresholds of a study patient . The Left eye(a) of a subject has no signs 

of AMD and shows only mild loss of colour discrimination; The Right eye(b) of the same subject has 

early stage AMD and shows Moderate loss of colour vision. This is illustrated to demonstrate the 

chromatic change a eye might experience with the onset of Aging. It is of interest to note that 

although the loss of chromatic sensitivity is less in the left eye, the threshold is well above the upper 

normal healthy age limit. This decreased chromatic sensitivity can be demonstrated even in the 

absence of obvious retinal changes linked to AMD .  

 

 

YB, RG or both thresholds were found to be abnormal in every eye with AMD, when the 

thresholds were compared with the upper normal limits for the corresponding age.  Colour 

vision depends on the normal functioning of cone photoreceptors and the normal processing 

6.1a)    RG 2.65/YB 3.86 

  Left Eye Mild chromatic loss 

 

 

 

        

6.1b)       RG 9.59/ YB 7.26 

  Right Eye Moderate Chromatic loss   
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of these signals in the retina. Early changes in the retina that are not detected and labeled as 

structural changes using clinical fundus imaging techniques may cause the loss of chromatic 

sensitivity with high contrast visual acuity that is frequently spared. The latter is therefore a 

poor indicator of the earliest changes in the retina that must precede the loss of colour vision. 

In addition, the foveal cone mosaic and the corresponding visual acuity can remain normal 

even when the cone density decreases well below normal values at or near the fovea (Ratnam 

et al., 2013). 
 

Although both rods and cones degenerate in AMD, rod loss precedes cone loss in 75% of 

early and intermediate AMD eyes (Curcio et al., 2000)
 
as deficits in rod-mediated functions 

occur in AMD and RPD (Sivaprasad et al., 2016). In spite of these observations, changes in 

cone-mediated visual functions such as CV and rapid flicker sensitivity have been reported in 

early stage AMD. Cones may not therefore function normally or cone signals may not be 

processed efficiently in AMD despite unaltered foveal cone numbers, as evident on 

histopathological studies (Neelam et al., 2009).   

The findings from this study demonstrate that YB loss starts earlier and tends to be greater 

than RG loss. This observation  is  consistent with observations made by Verriest and others 

who found YB loss to be the most common acquired CV deficiency in macular pathology 

(Verriest, 1963). It has been proposed that the much smaller number of S cones in the retina 

are more susceptible to damage in diseases of the retina (Boycott and Wassle, 1991). 

Alterations in the metabolic environment of the RPE –photoreceptor complex also appear to 

affect S more than L and M cones (Spraul et al., 1999).  Eisner and her colleagues have 

demonstrated in more than one study that patients who exhibit lower S cone sensitivities were 

associated with higher risk of developing wet AMD (Eisner et al., 1991, Eisner et al., 1992). 
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There is alteration of various cone-mediated visual functions in addition to colour vision 

(temporal function and S-cone sensitivity) in patients with early stage AMD. This suggests 

that dysfunction of cone photoreceptors occurs in combination with rod dysfunction in early 

stages of AMD despite unaltered foveal cone numbers on histopathological studies. The 

widespread dysfunction of the cone photoreceptors in early stage AMD may reflect either the 

barrier effect of Bruch's membrane or dysfunction of the RPE. Although unlikely, the cone 

dysfunction may arise from the lower optical density or reduced quantum catch of the 

photopigment. VA is however preserved in such patients in spite of the colour loss.  

Reliable upper threshold limits for YB and RG colour vision have been established (Barbur, 

2015) as they  are essential to detect the earliest signs of acquired loss of chromatic 

sensitivity, hence the presence of anatomical and physiological changes other than those 

attributable to normal aging. There is a rapid increase in sensitivity of RG/YB CAD 

thresholds during the first year of life and a more gradual increase continues into 

adolescence. The smallest (most sensitive) thresholds correspond to approximately 20 years 

of age followed by a gradual decline of approximately 1% per year for RG and 1.6% per year 

for YB over the remaining life span. Several factors that are not always the same may 

contribute to the normal aging of the RG and YB mechanisms. The almost linear loss of 

retinal ganglion cell (RGC) axons and cell bodies during the life span is arguably the most 

important factor and may account for the increased RG and YB thresholds observed in 

normal aging. The rapid loss of YB chromatic sensitivity involves other factors such as the 

greater reduction the contribution short wavelength light makes to retinal illumination with 

increasing age. 
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Colour thresholds remain relatively unaffected by small changes in refraction, pupil size and 

scattered light (Rodriguez-Carmona et al.,  2012). Under optimum conditions of light 

adaptation colour appearance is also independent of optical density of the ocular  media  and 

surprisingly YB remain relatively independent of both macular pigment optical density and 

absorption of short wavelength by the lens (Rodriguez-Carmona, 2006) provided sufficient 

ambient light is available to avoid larger reductions in retinal illuminance for blue light. 

Significant retinal illumination and stimulus size can however cause large increases in colour 

thresholds (Barbur 2006 and 2015) . 

 A majority of colour vision tests were designed to detect congenital colour deficiency which 

results in RG loss. Many of these tests minimise detection of luminance contrast signals by 

employing spatial features that vary randomly in luminance contrast. Ishihara test plates 

employ YB chromatic noise to provide sensitive detection of RG deficiency (Rodriguez-

Carmona et al., 2012). Lantern tests require the subject to name correctly the small colour 

signals presented against the dark background (Birch, 2008). These conditions do not favour 

chromatic mechanisms and many subjects with normal colour vision also fail, on various 

occasions subjects with mild congenital deficiency pass (Squire and Barbur, 2005). Other 

tests require the subject to differentiate spatially discrete stimuli on the basis of small colour 

differences or to arrange coloured samples according to hue changes. Farnsworth- Munsell 

100 hue employs 85 samples and the smaller D15 uses 15 samples. Performance of the FM-

100 hue may be  affected by the subject's non -verbal IQ (Hurlbert and Leekam, 2011). In the 

Ishihara test the number of errors the subject makes is often taken as a measure of severity of 

loss, the total error scores correlate poorly to the subject's loss of chromatic sensitivity 

(Barbur et al., 2012)  
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An approach to isolate the use of colour signals as employed by the CAD tests has emerged 

from studies on camouflage which employ moving, colour-defined stimuli buried in dynamic 

luminance contract (LC) noise. The results show that when such stimuli are employed, the 

selective loss of colour signals makes the colour defined stimuli invisible for modulations 

along the corresponding colour confusion line, even for chromatic saturations limited only by 

the phosphors of the display (Rodriguez-Carmona, 2005). Exposing the retina to time-varying 

LC noise reveals the loss of chromatic sensitivity since the subjects cannot make use of 

luminance contrast signals to see the moving stimulus (Barbur, 2004). CAD testing also 

provides accurate assessment of the severity of both RG and YB loss. The latter can be used 

to compare and monitor the state of progress of the disease.   

6.2: Chromatic sensitivity in age-related drusen categories: 

Results of the study show an increased loss of chromatic sensitivity in drusen categories of 

reticular drusen and soft drusen when compared to normal healthy aging. The CAD 

thresholds were found to be largest for patients with reticular drusen. 

In this section we have considered each entity in turn and discussed severity of ARM grading 

in relation to colour vision in the soft drusen group. 

6.2.1 Reticular drusen: 

 Due to evolving imaging techniques and recent histological studies reticular drusen (RPD) 

have been identified as an additional phenotypic entity in AMD. In contrast to conventional 

drusen, RPD proved to be located internal to RPE. In a recent study (Pumariega et al., 2011) 

localisation of evolving RPD seems to be related to the presence and site of choroidal 

watershed zones, suggesting that choroidal hypoxia may play a role in RPD pathogenesis . In 
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addition decreased choridal thickness, choroidal volume and narrow sparse choroidal vessels 

have been reported in eyes with evolving RPD (Alten et al., 2013). All these observations 

maybe interpreted as either a cause or consequence of RPD and are presumed to be related to 

other factors (Mrejen and Spaide, 2014) . The major blood supply to the retina is from the 

choroid and the photoreceptors, as they are extremely metabolically active. The changes in 

the choroid in RPD may compromise the photoreceptors function, which in turn can affect 

colour vision. Choroidal hypoxia has been postulated in RPD. Barbur and Connolly (2011) 

showed a uniform loss of chromatic sensitivity for all colours in hypoxia under mesopic 

conditions. 

Spaide (2013) recently presented data on the long term course of RPD with regression of 

lesions leading to outer retinal atrophy and loss of underlying choroidal thickness. A 

reduction of RPE function may lead to dysfunctional transport between RPE and Muller cells 

resulting in the accumulation of material in the outer retina. This material in turn impedes 

normal transport of outer segments towards RPE resulting in thinning of the outer retina and 

the overlying choroid. With attenuation of the photoreceptors metabolic activity, less oxygen 

is needed resulting in choroidal thinning. The term 'Outer Retinal Atrophy' has been 

suggested as a new entity in late stage AMD by Spaide (2013). 

Marsiglia et al ( 2013)  reported GA were areas previously affected by RPD, postulating that 

RPD represents an early manifestation of the process leading to GA. The fast progressing 

'diffuse-trickling' GA subtype shows a striking higher incidence of RPD compared with GA 

subtypes additionally supporting this hypothesis (Fleckenstein, 2014). All studies consistently 

report a high degree of agreement, a preponderance of female sex and occurrence of RPD in 
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all AMD phenotypes such as GA, CNV and drusen maculopathy. The highest prevalence of 

RPD is however linked to multilobular GA (Alten and Eter, 2015). 

Spaide (2013) investigated the long term course of eyes with RPD and evaluated that the 

photoreceptor length reduced to 74.4% and choridal thickness reduced to 81.4% of its initial 

value. This underlines the dynamic nature of RPD over time. 

Using Adaptive Optics (AO) Mrejen et al (2014) investigated the cone photoreceptor mosaic 

in eyes with RPD and compared the cone density in eyes with soft drusen, interestingly they 

reported a dramatic reduction in cone density over the RPD lesions possibly due to change in 

their orientation, alteration in their cellular architecture or even absence of cones themselves. 

This suggests that eyes with RPD may experience decreased retinal function without the 

presence of CNV or GA. 

Multifocal ERG (mfERG) does not show definite interference of electrophysiological activity 

in retinal areas affected exclusively by RPD. Decline in mfERG function over a year in 

subjects with progressive RPD has also been reported (Alten et al., 2013), yet functional 

decline could not be correlated to an individual’s morphological parameters such as RPD 

number or size. Querques (2014) and colleagues reported a greater extent of reduced 

sensitivity on microperimetry in eyes with RPD than eyes with soft drusen. Ooto et al (2013) 

and Forte et al (2014) confirmed results of reduced sensitivity on microperimetry despite 

preserved visual acuity. Microperimetry was carried out after dark adaptation and 

investigated both rod and cone activity. Hogg et al (2006) found a nearly reduced visual 

acuity and impaired spatial vision under conditions of reduced contrast and luminance in 

RPD eyes, supporting the hypothesis by Curcio and co-workers (2013) that RPD is mainly 

derived from rod physiology. 
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The chromatic sensitivity in our study showed that the eyes with reticular drusen had 

abnormal thresholds in comparison to the age matched normative data and in comparison to 

the soft drusen group with differences that were highly statistically significant. 

We identified RPD on OCT scans and IR imaging. We did not grade RPDs according to 

severity as preliminary grading (depending on its location in the fundus) failed to show any 

correlation to severity, also there is no standardised grading systems for RPD based on its 

location in fundus.   However, Figure 6.2 shows an example where chromatic sensitivity 

deteriorates with severity of RPD.  We included RPD eyes with or without soft drusen in our 

RPD group for comparison to eyes with only soft drusen. 

 

 A) 

 

CAD thresholds:  RG: 9.03  
                                YB: 9.46  
Moderate Chromatic loss 
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   B) 

FIGURE 6.2: CAD Thresholds in Reticular drusen of different severity .Though we were unable to 

divide the eye according  to severityof RD accurately and get any significant difference among 

different grades, these particular examples showed the CAD thresholds worsening with severity of 

RD. A) Subject with RD in superior fundus shows moderate chromatic sensitivity loss, B) Subject 

with RD in the inferior fundus shows severe to very severe chromatic sensitivity loss. 

 

6.2.2 Soft Drusen:  

The Age-Related Eye Disease Study (AREDS) is a multicentre prospective cohort study of 

the clinical course, prognosis and risk factors of AMD and cataract. Between 1992 and 1998, 

11 retina clinics enrolled 4757 people aged 55 to 80 years in AREDS. In AREDS report 17 

(Davis et al., 2005) they developed a severity scale for AMD based on fundus photographs  

which were graded for drusen characteristics (size, type and area) pigment abnormalities and 

neovascular AMD. Large drusen size, extensive drusen area, soft indistinct drusen and 

pigmentary abnormalities have all been recognised as risk factors for progression to advanced 

AMD both in people with bilateral AMD and people with one eye advanced AMD. AREDS 

grading was used to identify baseline risk categories, to track disease progression and perhaps 

as a surrogate outcome measure, mainly for research purposes. They developed a simplified 

severity scale to predict a 5 year risk of advanced AMD for clinical use. AREDS report 18 

(Ferris et al., 2005) reported that the two features of AMD which are highly associated with 

  CAD thresholds: RG 21.38,  

                                YB 13.54 

    Severe Chromatic loss 
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the development of advanced AMD are  maximum drusen size and presence or absence of 

pigmentary abnormalities in one or both eyes. They recommended using these two features to 

predict the risk of advanced AMD in the clinical setting. 

We adopted the International classification and grading system for ARM and AMD (Bird et 

al., 1995). This system includes drusen morphology, number, size, the extent of area covered 

by the drusen and main location of the drusen in the ETDRS grid. The grading produced 

enabled us to look for many characteristics of drusen which might affect chromatic 

sensitivity.  

The CAD thresholds increased with the increase in drusen size in the ETDRS grid at the 

macula, the P value was highly statistically significant for RG (p<0.0003) and significant for 

YB (p<0.02). This was in accordance to the findings in the AREDS study. The other risk 

factor (pigmentary changes) found to be significant in AREDS has been assessed by our 

study in the clinical classification section. Subjects with pigmentary changes with or without 

drusen were grouped under intermediate/higher intermediate groups as this group had larger 

CAD thresholds than the early AMD groups, suggesting that pigmentation might be a 

significant risk factor for affecting loss of chromatic sensitivity.  

The p value was highly significant (p=0.02) only for the RG thresholds of drusen morphology 

showing a good correlation of increase in RG CAD thresholds with increase in severity of 

drusen morphology grading. 

Drusen characteristics of morphology (Figure 5.8), number (Figure 5.9) and area covered 

(Figure 5.11) showed an increase in mean CAD thresholds for increase in the severity grade 

for each category. R square of the mean CAD thresholds showed a significant linear trend 
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(0.9) with increase in severity grade for all the drusen characteristics (morphology, number 

and area covered), however the p was not significant because of the large variability in 

individual CAD thresholds.  The significant linear trend of means showed that even with 

wide variation, the CAD values of the majority of the eyes increased with the severity of 

drusen grading of morphology, size, number and area covered. 

  

 

Fig 6.3a) Mid peripheral drusen not involving centre; 6.3 b) Extensive soft/glistening drusen 

 

 

 

6.3c) Drusen involving only the centre             6.3 d) Drusen involving only middle subfield 

6.3a) RG 8.17 

        YB 6.76 

Moderate chromatic loss 

 

 

 

        

6.3b)   RG 31.9   

          YB 18.0                         

Very Severe chromatic loss              

6.3c) RG 6.43 

        YB 8.71 

Moderate chromatic loss 

 

 

 

        

6.3d) RG 3.89 

        YB 4.91 

   Mild chromatic loss 
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6.3e) 

Drusen/pigment in mid periphery sparing fovea      6.3 f) Drusen/pigmentation involving Fovea 

 

  

 

Figure 6.3: Examples of different location and grading of drusen and its effect on chromatic 

sensitivity. Variation of chromatic sensitivity is seen depending on the location of drusen, extend of 

drusen and the presence of pigmentation. 

 

6.2.3 Normal Aging: 

We had 2 eyes classified as normal aging as CAD thresholds were significantly smaller when 

compared to the CAD thresholds of eyes with Soft drusen and Reticular drusen. Study of 

disease showed that less than 50% of the AMD changes can be explained by aging (Bird, 

2003). Various metabolic activities that might influence AMD are speed of outer segment 

renewal, RPE degrading activity, free radical, scavenging activity, RPE recycling ability, the 

efficiency of RPE cytoplasmic renewal, the speed of clearance of Bruch’s membrane, and the 

response to age-change. The microenvironment in the retinal and the choroidal space in AMD 

might be undergoing changes which may not be visible on conventional imaging, whereas 

colour vision might be showing these early changes. 

6.3e) RG 2.47 

        YB 3.14 

Mild chromatic loss 

 

 

 

        

6.3f) RG 14.82 

        YB 14.87 

Severe chromatic loss 
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 6.4 Drusen not related to AMD / Early onset Drusen (EOD): 

The CAD thresholds of the eyes with EOD were significantly different than CAD thresholds 

of eyes with Soft drusen (p=0.03 RG and p=0.01YB) and Reticular drusen (p<0.001 for both 

RG and YB) showing that just the appearance of the drusen might not be the cause of 

chromatic loss, as the change of the microenvironment in AMD could be the cause of 

chromatic loss. This is an important finding since it confirms that the presence of drusen does 

not lead directly to loss of colour vision. The accumulations of drusen deposits in EOD may 

represent native lipoproteins in transit from RPE to choriocapillaries rather than 

accumulations /deposits as originally speculated (Curcio et al., 2013). 

 

1) a                                                                          1)b  CAD thresholds: RG: 36.56 

                              YB: 18.21 

  V. Severe Colour loss 
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     2)a                                                           2)b 

              

                                                                                                                                                                      

Figure 6.4: Comparison of chromatic sensitivity in AMD and EOD. Panel1 a) Fundus photograph of 

a subject with AMD showing extensive drusen b) CAD ellipsoidal graph showing severe colour loss.  

Panel 2 a) Fundus photograph showing EOD with extensive drusen b) CAD ellipsoidal graph 

showing normal colour vision.            

 

 

6.5 Fundus Autofluorescence (FAF): 

The underlying mechanisms of the pathophysiology of AMD are not completely understood 

as RPE is thought to play the key role in the disease process in both early and late forms of 

the disease. A hallmark of aging is the accumulation of lipofuscin (LF) granules in the 

cytoplasm. LF indicates by-products of the constant phagocytosis of shed photoreceptors 

outer segment disks (Weiter et al., 1986, Wing et al., 1978). Apparently once formed the LF 

granules are trapped. It has been suggested that the photo-oxidation of RPE lipofuscin could 

serve as a trigger for the complement system, predisposing the macula to pathological 

alterations, contributing to chronic inflammation over time. 

CAD thresholds: RG: 1.14 

                          YB: 0.96 

Normal colour vision 
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Various alterations of normal FAF can be observed in patients with AMD. Areas of abnormal 

FAF are compared to the normal, homogenous background signal of the same image and are 

defined as either increased or decreased FAF. Assuming that LF encompasses the dominant 

flurophores of the fundus, variations in FAF signal intensities may derive from the actual 

alterations in density of LF granules in the RPE. Localised LF accumulations in RPE results 

in increased fluorescent properties and hence increases FAF signals from the site. In contrast, 

a decrease or absence of RPE LF will cause a decreased FAF signal. RPE atrophy typically 

appears as a dark patch in FAF images and can be clearly delineated. Decreased FAF 

intensities can also occur in association with hyperpigmented spots due to absorption by 

melanin or melanolipofuscin granules. 

Sub-RPE deposits and Bruch's membrane exhibit strong autofluroscence at 488nm excitation 

in AMD eyes (Marmorstein et al., 2002), but the concomitant strong fluorescence of RPE LF  

appears to be roughly the same range or slightly less intense compared to the sub RPE 

deposits in AMD eyes.  This could suggest it is difficult to resolve the issue between RPE LF 

and sub-RPE deposits using in vivo FAF, as opposed to post mortem cross-sectioning.   

However reticular drusen are readily identified on FAF images and more easily detected than 

on fundoscopy or fundus photographs (Jorzik, 2000). These deposits show a unique FAF 

pattern of multiple small uniform areas of decreased FAF surrounded by normal FAF. 

The in vivo FAF in AMD using cSLO has been described by several authors and has been 

reported that alterations of the FAF signals are not necessarily associated with corresponding 

fundoscopically or angiographically visible drusen or irregular pigmentations, which might 

indicate that FAF findings represent an independent measure of disease stage and activity. 
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Von Ruckmann and co-workers (1997) reported that eyes with early stage AMD may show 

focal areas of increased FAF in the neighbourhood of drusen, whereas FAF intensities over 

hard and soft drusen are within or below the range of the normal background signal in the eye 

itself as well as when compared with age-matched controls. Crystalline drusen are 

characterised by decreased FAF signals indicating the onset of atrophy (von Ruckmann et al., 

1997)  Focal areas of increased FAF next to drusen have been assigned to areas of pigment 

clumping adjacent to longstanding and mineralised drusen areas. Areas of confluent drusen 

were associated with focally, mildly increased FAF. Lois et al (2002) confirmed that of all 

drusen types, only the large foveal soft drusen (drusenoid PED detachments) topographically 

corresponds to focal changes of FAF. 

Using image analysis software, which superimposed FAF images, and fundus photographs, 

Smith et al  (2006) confirmed that large, soft drusen and hyperpigmentation with focal 

increased FAF maybe correlated topographically and the correlation was more in eyes with 

AMD (drusen /pigmentary abnormalities) than with GA. 

The International FAF classification introduced 8 different FAF patterns in AMD. In a few 

patients, suffering from an early stage of AMD, a normal homogenous background FAF was 

noted even in the presence of soft or hard drusen. The presence was due to the masking 

effects of yellow macular pigments, if changes were limited to fovea or by image resolution 

and if the individual drusen deposits were < 63 µm. The study confirmed that drusen visible 

on fundus photography are not necessarily correlated with FAF changes. The observations 

suggested that FAF imaging on the RPE cell level may precede the occurrence of visible 

lesions as the disease progresses. A longitudinal analysis within the FAM study suggested 
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that the patchy pattern in early stage of AMD may represent a high risk marker for 

progression to exudative AMD. 

Smith et al (2006) did not find FAF abnormalities in the fellow eyes of patients with 

unilateral CNV, however Spaide (2003) reported that patients with exudative AMD in one 

eye had FAF abnormalities in the other eye in comparison with patients with bilateral dry 

AMD. 

Our study found the patchy pattern group to have the highest CAD thresholds (when 

compared with other FAF patterns). This is in agreement with the FAM study group 

suggesting that patchy FAF pattern is associated with high risk of AMD. 

 6.6 Central Macular thickness (CMT):  

The Central Macular thickness (CMT) /Central subfield (CSF) macular thickness in normal 

eyes is 271.4 ± 19.6 (measured with Spectralis OCT) (Grover et al., 2010). CSF corresponds 

to the central 500 microns and to the central grid of the ETDRS grid. The thinning of CSF 

could indicate early GA and early loss of the photoreceptor function. Our study showed a 

good correlation with increasing CAD thresholds and thinning of CSF <200 microns. 

The study selected patients with AMD and no signs of advanced disease. However 3 eyes had 

early GA on OCT as hyopigmentation on fundus were seen as signs of early GA. These 3 

eyes showed a very severe loss of colour vision. 
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Example: CAD thresholds of a patient with GA  

 

Figure 6.5: Subject with early GA: A study subject showing hypopigmented change with thinning 

on OCT suggesting early GA. Severe to very severe loss of chromatic sensitivity was found. 

 

GA can cause significant compromise of visual functions when there is still good visual 

acuity (VA), because of parafoveal scotomas and foveal function abnormalities preceding 

visible atrophy.  In a study by Sunness et al (1997) worsening of VA in decreased luminance 

and foveal dark adapted sensitivity showed severe abnormalities for the GA group. Contrast 

sensitivity was significantly reduced for the eyes with GA. Half the eyes with GA had 

maximum reading rates below 100 words per minute, which was very unlike the eyes with 

drusen. They concluded that the eyes with GA, even with normal VA, had a profound 

decrease in visual function, particularly when reading in dim lighting. We found in our study 

that chromatic sensitivity was affected in all the 3 eyes with GA. 

CAD thresholds: 

RG 14.63(Severe) 

YB 17.76(V.Severe) 

VA: 6/12 
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6.7Clinical follow up of chromatic sensitivity changes in eyes converted to wet 

AMD: 

Clinical follow up did not show a significant correlation of the CAD thresholds to the risk of 

converting to wet AMD. This suggests that chromatic sensitivity loss may be determined by 

other factors as it preceded the onset of wet AMD. Measuring colour threshold changes may 

not therefore be indicative of conversion to wet AMD especially in subjects who already 

experience a large loss of chromatic sensitivity.  It remains to be established whether 

monitoring progression of colour vision loss is of advantage in predicting the conversion to 

wet AMD in subjects with less severe loss of chromatic sensitivity. Since other aspects of 

visual performance such as functional contrast sensitivity, dark adaptation and rapid flicker 

are also affected in AMD; the possibility remains that the combination of chromatic 

sensitivity with other tests may be more informative to predict the likelihood of conversion to 

wet AMD.  Chromatic sensitivity as indicated by CAD thresholds remains, however, a very 

sensitive way of identifying early changes of GA as these affects directly cone photoreceptor 

functions. 

6.8 Limitations of the study: 

The study was limited in the number of eyes in early AMD and late AMD group while the 

majority of eyes belonged to intermediate AMD   which meant useful comparisons between 

severity groups of AMD could not be made. The CAD test was performed as a one-off test 

and longitudinal analysis which could be predictive for wet AMD could not be achieved. 

Future studies recruiting subjects in all the severity groups of AMD can study the chromatic 

sensitivity in AMD with disease progression and may as well help to identify if disease 
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progression has correlation to the structural changes in AMD. Longitudinal follow up of 

AMD subjects with CAD tests can help identify if chromatic sensitivity can be a biomarker 

for advanced AMD. 
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7. Conclusions: 
 

Patients with AMD can exhibit large losses of both RG and YB chromatic sensitivity. In 

some cases, such losses precede obvious clinical signs and may represent the earliest 

detectable functional changes.  Patients with reticular pseudodrusen exhibited the greatest 

loss of chromatic sensitivity. Such losses may turn out to be sensitive and important 

indicators of early macular atrophy.  In addition to loss of rod function which has been 

demonstrated in early phases of AMD, this study also reveals the significant loss of 

sensitivity to chromatic stimuli which indirectly implicates the normal functioning of cones 

and the subsequent processing of cone signals within the retina, particularly in patients with 

reticular pseudodrusen. 

 

This study shows the loss of chromatic sensitivity in patients of age related macular 

degeneration (AMD) with clinically normal vision. This study addresses the need to 

recognise this functional loss in the elderly group who otherwise seem to have normal high 

contrast Snellen's acuity when measured in clinical settings. Health professionals need to be 

aware of the potential colour loss in these subjects and the impact it can have on the day to 

day life of these patients.  

Curcio et al (2013) noted that the cone mosaic and the total number of cones at the fovea in 

AMD are similar to the age matched normals in contrast rods, as the macula decreases by 

30% and the losses occur at the parafovea (3
o
 -10

o
 of fixation). Large, spatially distorted 

cones and very few rods remain at the parafoveal region. The mean scotopic loss is 

speculated to be in higher magnitude than the mean photopic sensitivity loss in AMD 

patients. 
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Patients with early stage AMD experience difficulty in changing light illumination which 

may be attributable to altered adaptation mechanisms in photoreceptor cells such as DA and 

glare recovery in early AMD, while difficulty in night driving may be related to reduced 

scotopic sensitivity due to dysfunction in the rod photoreceptors (Neelam et al., 2009) 

Furthermore, various cone mediated visual functions such as colour vision, rapid flicker 

sensitivity and S-cone function can be seen in early AMD suggesting cone photoreceptor 

dysfunctions in combination with rod dysfunction in spite of unaltered foveal cone numbers 

in histopathological studies. 

In this study, the YB thresholds are affected earlier than RG thresholds which are in 

agreement with findings from earlier studies (Verriest,1963). In general, RG thresholds are 

also outside the normal range and can vary from almost normal to complete absence of RG 

colour vision.  The S cones mediating YB discrimination are more vulnerable to damage in 

AMD due to their territorial nature and limited response resulting in larger disease related 

changes, their susceptibility to alterations in metabolic environment of the RPE-

photoreceptor complex than the other cone systems and relatively lower levels of MP at the 

parafovea where the S cones are in high density. 

 YB colour vision is mediated through S cone signals which are at a much-reduced density 

than the L and M cones that mediate RG colour vision.  Normal YB thresholds are much 

larger in terms of cone contrast signals than RG thresholds. When expressed in SN CAD 

units the median thresholds correspond to one unit for both RG and YB discrimination. This 

accounts for the early saturation or smaller thresholds of the YB on the CAD test. 
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The risk factors assessed in AREDS’s study for advanced AMD were drusen size and 

pigmentary changes; we also found both of these parameters to be associated with the 

deterioration of chromatic sensitivity. The increased drusen size correlates well with 

significant increase in both RG and YB thresholds. This observation may be taken to imply 

that colour vision might be affected in high risk eyes. 

The other characteristics of drusen grading such as the drusen morphology, number, area 

involved, and location of the drusen did not show significant correlations to the severity of 

grading. The mean values that describe drusen morphology and numbers showed a linear 

trend suggesting that the majority of eyes had a tendency to have increased colour loss with 

increase in severity of the grading.   

Eyes with reticular drusen (RPD) showed much higher loss of chromatic sensitivity than 

normal aging and soft drusen. This can be attributed to the histological changes in 

photoreceptors like OS shortening, inner segment deflection / absence and encroachment of 

SDD over photoreceptors as noted by Curcio et al (2013).   

Some of the eyes examined failed to show noticeable/significant changes in fundus imaging, 

but showed wide variation in colour thresholds ranging from almost normal to complete 

absence of colour vision. This remains an intriguing observation suggesting that structures 

other than those present in conventional imaging such as selective loss of ganglion cells may 

cause the loss of colour vision.   

The eyes which showed changes in fundus photographs, OCT scans and on FAF were 

examined as a separate group.  The parameters describing the amount and size of drusen, the 

presence of reticular drusen, geographic atrophy, reduced CMT and type of FAF showed 
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some correlation with the severity of colour vision loss, but the results were not always 

predictable due to multiple less understood factors.   

In general, the loss of chromatic sensitivity correlates with the severity of the ARM / AMD 

grading. The latter can be attributed to the histopathological changes occurring in aging and 

ARM  such as decreased choroidal blood flow, increase in the oxidative stress, incomplete 

degradation of cells and the material accumulating between the RPE and Bruch’s membrane 

in older adults and in ARM patients. Together, these processes are hypothesized to slow the 

transfer of fluids and essential nutrients across Bruch's membrane.  

As standard VA is a poor indicator of the changes happening in the microenvironment of 

ARM, sensitive tests designed to assess specific aspects of visual processing like chromatic 

sensitivity or / and rapid flicker can be used to describe more accurately the extent of vision 

loss and to provide a clearer picture of the disease process and its overall effect on visual 

performance.  
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