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Abstract—Clinical visual field testing is performed with6
commercial perimetric devices and employs psychophys-7
ical techniques to obtain thresholds of the differential8
light sensitivity (DLS) at multiple retinal locations. Current9
thresholding algorithms are relatively inefficient and tough10
to get satisfied test accuracy, stability concurrently. Thus,11
we propose a novel Bayesian perimetric threshold method12
called the Trail-Traced Threshold Test (T4), which can better13
address the dependence of the initial threshold estimation14
and achieve significant improvement in the test accuracy15
and variability while also decreasing the number of pre-16
sentations compared with Zippy Estimation by Sequential17
Testing (ZEST) and FT. This study compares T4 with ZEST18
and FT regarding presentation number, mean absolute dif-19
ference (MAD between the real Visual field result and the20
simulate result), and measurement variability. T4 uses the21
complete response sequence with the spatially weighted22
neighbor responses to achieve better accuracy and pre-23
cision than ZEST, FT, SWeLZ, and with significantly fewer24
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stimulus presentations. T4 is also more robust to inaccu- 25
rate initial threshold estimation than other methods, which 26
is an advantage in subjective methods, such as in clinical 27
perimetry. This method also has the potential for using in 28
other psychophysical tests. 29

Index Terms—Bayesian, perimetric threshold test, spatial 30
weight, standard automated perimetry, visual field. 31

I. INTRODUCTION 32

P SYCHOPHYSICS is the scientific study of the relationship 33

between the physical properties of sensory stimuli and 34

the behavioral sensations and perceptions that are elicited by 35

these stimuli. Psychophysical tests are widely used in many 36

fields, such as audiology [1], vision [2], [3], taste and smell 37

[4], and pain [5], by designing methods to obtain estimates 38

of psychophysical functions describing processes of underlying 39

sensory mechanisms [6]. The psychophysical function depicts 40

the probability of a stimulus being detected. It’s S-shape [7], [8] 41

can be described by parameters such as the threshold and slope, 42

which can serve as disease and variability quantifiers. 43

In vision and hearing studies, it is practical to measure the 44

sensitivity with many trials using computer-generated stimuli. 45

In contrast, for the chemical-based senses, the physical presen- 46

tation of the stimulus is not easily accomplished without human 47

intervention, and the longer recovery time of the chemical senses 48

prevents the rapid successive presentation of stimuli [4]. These 49

factors limit the number of psychophysical trials in a testing 50

session before fatigue and boredom set in [9]. 51

Many eye diseases, such as glaucoma, show evidence of their 52

initial deficits in the periphery. Moreover, the pattern, shape 53

and location of visual field deficits can indicate the most likely 54

location of damage to the visual pathways, and the effectiveness 55

of a treatment can be monitored by testing the visual field. 56

Standard automated perimetry (SAP) is used in the diagnosis 57

and monitoring of glaucoma and other diseases affecting vision. 58

It can measure the differential light sensitivity (DLS) across a 59

person’s retina and the corresponding visual pathway [10]; an 60

illustration is shown in Fig. 1. 61

Visual field testing is performed with commercial perimetric 62

devices and employs psychophysical techniques to obtain DLS 63

thresholds at multiple retinal locations [11], which is a subjective 64

test that aims to measure a sensitivity threshold in a living 65
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Fig. 1. (a) SAP measuring the differential light sensitivity (DLS) of the retina and corresponding visual pathway. (b) Contrast stimulus from SAP is
projected on different locations of the retina. The response from a subject is captured when the stimulus is perceived. (c) The DLSs are measured
at various locations (dots) on the retina. The eye ball using24-2 to divide into 54 viewpoints, which interval between horizontal and vertical is 6
degrees and only 52 points get analyzed. The point (0◦, 0◦) indicates central vision that corresponds to the fovea on the retina. The optic nerve
head is the anatomical blind spot. The test locations are correlated with not only their neighbors but also the optic nerve fibers (some of which
are represented by blue curves) passing through them. (d) The DLS threshold at a location on the retina is derived at the 50% probability of the
visual system responding to a contrast stimulus. (e) The DLS ranges between 0 dB (high contrast stimulus, damage) and approximately 35 dB (low
contrast stimulus, healthy) and it can be displayed as a grayscale, where the darker shading represents a lower DLS.

organism and is prone to variability. Besides, it is also easily66

affected by many factors, such as patient motivation, fatigue and67

attention and technician performance. Thus, an ideal perimetric68

threshold algorithm in visual field testing should reduce the test-69

ing time without losing the testing accuracy, and it should also70

be robust to mistakes made while testing. Patient’s erroneous71

answers increase test times and may result in fatigue artifacts72

that decrease in the quality of the threshold estimates [12].73

Unfortunately, the development of computational and statistical74

methods for analyzing data from SAP has not kept pace with75

advances in other aspects of eye-related research [10]. Early76

versions of algorithms for perimetric threshold tests are based77

on a computationally simple staircase strategy, such as The full78

threshold (FT) strategy [13] and FASTPAC algorithms [14],79

and have been studied in detail using both computer simulation80

and clinical studies [15]–[18]. However, these methods have81

the drawback that the improvement in the accuracy is at the82

expense of an increase in the examination duration (test presen-83

tation), which can lead to unstable results from incorrect patient84

responses [19]. Besides, it uses fixed steps to achieve threshold85

estimation, which is time consuming and inefficient to recover86

from errors caused by incorrect patient responses. To decrease87

the test presentation and improving the test accuracy, Watson88

and Pelli [20] developed a new perimetric algorithm based on89

Bayesian adaptive threshold procedures. The Bayesian method90

combines prior knowledge about the expected distribution of91

the thresholds. The initial or prior probability density function92

(PDF) and each response made by the patient (in the case of93

perimetry, these are “seen” or “not seen”) are used to alter94

the expected distribution of the final thresholds (subsequent or95

posterior PDF) [21]. The family of Swedish interactive threshold96

algorithms (SITAs)and ZEST are three popular methods from97

which SITA use both a staircase and maximum likelihood98

methods [22]–[24], the ZEST algorithm is merely based on99

maximum likelihood procedures and is computationally simpler100

than that of SITA [25]–[28]. Although SITA and ZEST could101

reduce the test time and improve the test accuracy compared with 102

the traditional FT algorithms, the ideal balance between both 103

parameters is still difficult to achieve. Noted that the SITA-faster 104

is much shorter with about the same precision that SITA, it can 105

better get the balance between test accuracy and test time than 106

SITA-fast and SITA-standard, but its variability remains high in 107

the threshold methods. 108

The Bayesian methods, such as ZEST, have several drawbacks 109

that limit their capability to achieve satisfactory test perfor- 110

mance. First, The ZEST doesn’t notice the spatial information 111

in the perimetric testing, which describe as an algorithm to 112

threshold a single location in the visual field, not be used at 113

multiple locations. Besides, the fixed shape of the likelihood 114

is another drawback for ZEST, means that the amount of in- 115

formation obtained in each measurement round is completely 116

equivalent, which is not reasonable. In fact, the likelihood 117

function is related to the previous threshold measurement result 118

(patient’s threshold estimates and variance), should be nonsta- 119

tionary (heteroscedastic) since we want to modify the optimal 120

threshold estimate with a substantial correction when we have 121

large confidence, and vice versa. Thus, it is necessary to optimize 122

the likelihood function by correcting its distribution using each 123

feedback message from the patient. This can reduce test duration 124

and improve test error performance significantly. To solve these 125

problem, Nikki J. Rubinstein propose SWELZ [29] to reduce 126

test presentation without affecting test accuracy and stability by 127

incorporating spatial information to ZEST. SWeLZ extends the 128

ZEST procedure to update visual sensitivity estimates across 129

multiple locations after each test presentation, and using the 130

spatial weight between current and its neighbor test points to 131

scale the likelihood function of the neighbor test points to update 132

current and its neighbor test points concurrently. 133

However, this method still dependent on the accurate initial 134

threshold estimate, which is difficult to satisfy in visual field 135

testing; Here, the initial threshold estimation means using pre- 136

vious measurement data to get PDF firstly, and then get an 137
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average value for the PDF regarded as the initial threshold. The138

underestimation or overestimation of the initial threshold may139

reduce the accuracy and increase the duration of the test [25].140

When the initial threshold is inaccurate, the spatial weight will141

scale the shape of likelihood function for the neighbor test points142

at the wrong direction, increasing the measurement error of143

adjacent points. Besides, this method only decrease the test pre-144

sentation without improving the test accuracy. Kucur proposes145

a meta-strategy, SORS, capable of using traditional staircase146

methods or ZEST-like Bayesian strategies at individual locations147

but in a more efficient and faster manner. In essence, determines148

which locations should be chosen and in what order they should149

be evaluated in order to maximally improve the visual field150

estimate in the least amount of time [30]. Montesano also151

proposes MacS-ZEST that it uses the detailed two-dimensional152

structural information provided by macular SD-OCT scans to153

build a structure-function model for the macula that could be154

easily employed to inform perimetric testing [31]. In brief, it is155

a novel approach for structure-function modeling in glaucoma156

to improve visual field testing in the macula.157

Although, such development for ZEST get the improvement in158

test presentation and accuracy. However, ZEST-related methods159

still depend on the accurate initial threshold estimate. Theoret-160

ically, an ideal visual field testing algorithm does not require161

an accurate extensive priors derive from big dataset and could162

be easily adapted to quickly and accurately measure a variety163

of psychometric functions would provide an enormous benefit164

to the psychometrics community [32]. Thus, we propose a new165

perimetric threshold method, called T4, which uses the spatial166

filter for the spatial connections, combining retinotopic and optic167

nerve head topic spatial relationships in one metric, and in-168

corporating the spatial weight combine with varying likelihood169

function based on 6 and binomial probabilities to update multiple170

location concurrently. Different from scaled-likelihood function171

of SWeLZ, when a spatial weight decreases, the likelihood func-172

tion used by SWeLZ become flat (scale compressed in y-axis) but173

the shape (in x-axis) don’t change. In comparison, the proposed174

likelihood function keeps scale the same (always between 0175

and 1) but varies in shape (stretched in x-axis, see Fig. 6).176

This is useful to improve test accuracy and stability further.177

Besides, T4 also proposed a new update rule (maximization178

of 7), which is different with SWELZ. Because SWELZ uses179

the spatial weight to update neighbor test points not using the180

spatial weight to help updating current test points. This make T4181

can decrease test presentations without decreasing test accuracy182

and stability compared with ZEST. The most contribution for183

clinical application is that the initial distribution of T4 is similar184

with uniform distribution, which make it does not need accurate185

prior.186

This study also compares T4 with ZEST and FT, by eval-187

uating the test presentations, the accuracy, and the test-retest188

variability between two test results. Meanwhile, we do several189

verification experiments to explore which part i.e., the pro-190

posed varying likelihood function, spatial filter or update rule,191

is the biggest effect on improving test performance compare192

with Scale-likelihood function and spatial weight introduced by193

SWeLZ and the ZEST update rule. The experiments show that T4194

significantly outperforms other popular algorithms in terms of 195

test presentation, test accuracy, and test variability. Moreover, T4 196

showed robust performance when the initial threshold estimate 197

is uniform distribution. Noted that the robust means T4 can get 198

better test error and test stability robustly compared with other 199

two methods not the tolerance when FP increasing. 200

II. EXPERIMENT SETUP 201

A. Overall Description of the Computer Simulation 202

In the real world, it is difficult to assess the precise error in 203

test results acquired from an algorithm since the exact visual 204

field sensitivity of any patient is unknown. Thus, to verify the 205

three algorithms precisely, computer simulations were used to 206

simulate all the subjects by considering the true distribution 207

of patients’ sensitivity and the measurement error caused by 208

individual mistakes, which can be described by the FP and FN, 209

respectively. The patient response to a stimulus at level s was 210

simulated using a frequency-of-seen (FOS) curve defined by: 211

FOS (s, v, δ) = 1− FN

− (1− FN − FP )φ (s |v, δ )φ (s |v, δ )
(1)

Where FN is the false negative response rate while FP is 212

the false positive response rate so as to measure the variability 213

of the patient’s response. φ(s|v, δ) is the cumulative Gaussian 214

distribution with mean ν and standard deviation (SD) δ, where 215

the mean ν is the level of the true threshold and δ was set 216

to min(e−0.081v+3.27, 6) according to an empirical test [33] 217

because the variance is 6 for locations with a low DLS threshold 218

and gradually decreases with increasing DLS threshold. 219

φ (s |v, δ )=min
(
e−0.081v+3.27, 6

)
(2)

This simulates the known change in variance at different levels 220

of DLS, hence simulating patient’s visual function variance, 221

which is higher for low DLS threshold and lower for high DLS 222

threshold. Moreover, it can also avoid the patient’s visual func- 223

tion variance being too high for low DLS. Then, we simulated 224

three types of patient variability by modifying the FP to 5%, 10% 225

and 15%, which represent patients with low, medium and high 226

variability, respectively. The FN was fixed at 5%. By inputting 227

all the initial parameters, we acquired the FOS curve at each 228

DLS level, which represents the patient’s response at a certain 229

level according to the FOS rate. 230

B. Dataset 231

In this paper, a test-retest dataset, named RAPID dataset, is 232

used which consisting of 218 eyes from 109 glaucoma patients, 233

each of which underwent 10 Humphrey Field Analyzer (HFA) 234

24-2 visual field tests within 8 weeks. It is assumed that there 235

is no measurable change during the 8 weeks and that the visual 236

ability of any patient is stable, which ensures that the difference 237

among the measurements for the same eye is due to the mea- 238

surement variability without other effect disturbances. Thus, the 239

average value for the 8 visual fields result can be regarded as 240

the underlying true visual field. To verify that T4 outperforms 241
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TABLE I
THE RAPID DATASET INFORMATION

Fig. 2. Illustrative examples of scaled likelihood function negative re-
sponses r = 0, where 5 is the current test point, and 3,7 is its neighbor
test points, then the varying likelihood function of neighbor test points
are scaled according different spatial weight with current test points 5.

ZEST and FT, all algorithms were configured to the 24-2 HFA242

visual field test grid, and for each patient on each algorithm243

ten visual field tests were simulated. The dataset was acquired244

from patients attending the glaucoma clinics at Moorfields Eye245

Hospital NHS Foundation Trust, which functions as a district246

general and teaching hospital and a tertiary referral centre; VF247

testing and imaging was undertaken in the National Institute248

for Health Research (NIHR) Clinical Research Facility. Collec-249

tion was undertaken in accordance with Good Clinical Practice250

guidelines and adhered to the Declaration of Helsinki. The251

trial was approved by the North of Scotland National Research252

Ethics Service committee on September 27, 2013 and NHS253

Permissions for Research was granted by the Joint Research254

Office at University College Hospitals NHS Foundation Trust255

on December 3, 2013. All patients provided written informed256

consent before screening investigations. More detail information257

about RAPID can be seen in Table I.258

III. METHOD259

A. Zippy Estimation of Sequential Testing260

The ZEST algorithm utilizes the maximum likelihood princi-261

ple and has been widely used in recent years. At the beginning262

of each test, an initial PDF is defined to describe the initial263

distribution of each location [15]. For each location, every264

possible threshold between 0 dB to 40 dB is quantified by this265

PDF. Before each stimulus is presented, a mean threshold is266

estimated for the current PDF and the stimulus intensity equal267

to the current mean threshold is presented, i.e., initial threshold268

estimation. Then, the PDF is adjusted according to the subject’s269

response. Here, we use the same initial PDF as Turpin and270

colleagues did [27]: the initial PDF of each location should be271

a weighted combination of the normal and abnormal PDF of272

the patient at a ratio of 1:4. The normal and abnormal PDFs273

reveal the probability of each possible threshold for a healthy274

and a glaucomatous visual field, respectively (See Fig. 3). One275

of the initial PDFs is shown in Fig. 4a. It is evidently that 32 dB276

Fig. 3. Example of the initial probability density function (PDF) used in
the ZEST algorithm. The left panel is the abnormal PDF, and the right
panel is the normal PDF.

has the highest probability of illustrating the initial threshold for 277

this location, then the initial stimulus of 24 dB will be presented 278

according to the mean of the PDF. If the patient responds “yes”, 279

then the threshold will have more weight at higher decibel 280

levels, and we multiply the current PDF by the “yes” likelihood 281

function shown in Fig. 4b. If the patient responds “no”, then the 282

threshold will have more probability at lower decibel levels, and 283

we multiply the current PDF by the “no” likelihood function 284

shown in Fig. 4c. A normalization step will be carried out after 285

each multiplication to make the sum of the probabilities equal 286

to 1. After the normalization step, a new PDF will be obtained. 287

The new mean is calculated, and a new stimulus contrast equal 288

to that new mean is presented. In ZEST, there are two kinds of 289

likelihood functions that will be used for the different responses. 290

The likelihood used for the “yes” response assumes that the 291

chance of seeing the stimulus at the equal level is 50%, and at 292

much higher levels of DLS, the chance will increase to 99%, 293

while at much lower levels of DLS, the chance will decrease 294

to 1%. A stimulus that is 1 dB higher than the threshold will 295

have a 75% chance of being seen, and a stimulus that is 1 dB 296

lower than the threshold will have a 25% chance of being seen. 297

The “yes” likelihood and “no” likelihood are symmetric. This 298

procedure will be repeated until a certain number of rounds or the 299

variance of the PDF becomes less than a fixed number. The final 300

threshold is the mean of the last PDF. The test termination rule 301

for the number of rounds was set to 10, which is the maximum 302

measurement times for each location, or the terminating variance 303

should be less than 1 dB [15]. 304

B. C-ZEST Model 305

C-ZEST Model, a modified version of SWELZ without using 306

growth pattern, which uses the same method with SWeLZ by 307

incorporating spatial weight to update current and its neighbor 308

test points concurrently while other steps are the same with 309

ZEST, because it is easily used to discuss about the impact for 310

different spatial filter methods and varying likelihood functions. 311

Noted that the prior of each locations is assigned a uniform 312

distribution so that it can avoid the influence of prior distribution, 313

and the neighbor test points are selected according to spatial 314

weight range from [0.1,1] that is the same with T4 method. 315

Firstly, C-ZEST Model tests the locations in order while using 316

the spatial weight between current and neighbor test points 317

to scale the likelihood function of neighbor test points, and 318

using them to update neighbor test points concurrently for each 319
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Fig. 4. (a) Combined initial PDF used for the ZEST algorithm; there is one mode in the PDF, 32 dB, which means that this value represents a
good chance of being the threshold of this test location. This PDF is derived from a weighted combination of normal and abnormal thresholds. (b)
The likelihood of a “yes” response, which suggests that the patient is more likely to have a higher threshold. (c) The likelihood of a “no” response,
which suggests that the patient is more likely to have a lower threshold.

presentation. After that, the new PDFs of current test point and320

its neighbor test points are generated for the test location by321

multiplying the current PDF with scaled likelihood function. The322

likelihood function represents the probability that the observer323

with see the stimulus and the test terminates when the standard324

deviation of PDF at each location is less than 1 dB or 10 test325

presentation, the final threshold estimation at each location is326

the mean of the final PDF for that location. Here, the principle327

of the scaled likelihood function can be seen in Fig. 2. Suppose328

that 5 is the current test point of negative response, and 3,7 is329

its neighbor test points, then the varying likelihood function of330

neighbor test points are changed with different spatial weight331

for current test points 5. The lower spatial weight, the likelihood332

function become more flat (scale compressed in y-axis) but the333

shape (in x-axis) don’t change.334

IV. T4 PROBLEM FORMALIZATION335

ZEST can converge quickly and achieve better measurement336

accuracy if the patient’s true visual function distribution is337

similar with the assumed initial distribution. However, it is338

difficult to obtain an initial distribution that approximates the339

true distribution of a patient, which causes a decrease in mea-340

surement accuracy and a significant increase in the number of341

measurements. Thus, T4 aims to construct an initial distribution342

of the patient’s visual function threshold that can exclude as343

much artificial decision information as possible, hence weak-344

ening the dependence on an accurate initial distribution of the345

patient’s visual function. Here, we assume that the patient’s true346

visual function threshold has the same probability within the 0 to347

40 dB interval. To express the belief about the parametersμmand348

σm, prior initial distributions are imposed as two Gaussian349

distributions:350

p (μm) = N (μμ, σμ) andp (σm) = N (μσ, σσ) (3)

where μm is the initial visual function threshold and σm is the351

variance of the visual function threshold. To make the initial352

distribution non-informative, similar to a uniform distribution,353

we usually set μμ= 20 dB and σμ= 103 dB. Moreover, prior354

parameters for σm are set as informative, with μσ= 10 dB and355

σσ= 20 dB. Noted that in our experiment μμ σσ are the same356

value selected from [0,40] randomly. This is aimed to make T4357

have the same prior with C-ZEST and FT in our experiments. 358

Thus, the prior of T4 has high uncertainty about the threshold 359

before observing any response from the subject. The current 360

Bayesian methods, such as ZEST, uses a fixed shape of the 361

likelihood function, which cannot consider heteroscedasticity. 362

This specification can increase the measurement times while 363

decrease accuracy. Thus, SWeLZ uses varying likelihood func- 364

tion to update current and neighbor test points concurrently to 365

decrease test times. However, it can’t achieve improvement for 366

test accuracy and stability. One of the reason is that the scaled 367

likelihood function cannot be utilized to measure the relation 368

between current and its neighbor test points accurately. Thus, 369

we consider the patient’s current visual function threshold and 370

variance as independent variables in the likelihood function to 371

express the information obtained by each measurement round. 372

When given a stimulus of a certain intensity, the likelihood 373

function used to correct the initial distribution is dependent 374

on the mean of the patient’s visual function threshold μm and 375

the varianceσm. Let the visual field be divided into a set of 376

M locations{xm}Mm=1, where xm is a vector containing the 377

coordinates of each location. The stimuli are presented sequen- 378

tially at one individual location each time, and the responses 379

from the subject are recorded. The ith stimulus is presented 380

at location xni
, ni ∈ {1, 2, . . . ,M} with a sensitivity level si, 381

and the response from the subject is ri ∈ {0, 1}, where ri = 1 382

indicates a positive response and ri = 0 indicates no response. 383

The probability of having a positive response ri = 1 to a stimulus 384

at level si at location xm when m = ni is governed by a reverse 385

cumulative Gaussian distribution with mean μm and SD σm: 386

p (ri = 1 |si, μm, σm ) = fm (s) =
1

2

[
1− erf

(
si − μm

σm

√
2

)]

(4)
where erf(y) is the error functio. The center μm represents the 387

current estimate of the threshold, and the SD σm indicates the 388

uncertainty about this threshold. For convenience, this likelihood 389

function is denoted by fm(si) for a location for which the patient 390

has a positive response. The likelihood function of a negative 391

response can be expressed as 1− fm(si). Given N stimuli s = 392

{si}Ni=1 and responses r = {ri}Ni=1 from the patient, the aim is 393

to find the best fit of μm and σm to estimate the threshold and 394

its uncertainty, respectively. μm and σm are then used to plan 395
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the next stimulus, the details of which will be described in the396

subsequent sections.397

A. Incorporating the Spatial Weight and Prior398

Information About the Threshold399

Conventional algorithms, ZEST, treat each location of the400

visual field as an independent unit during testing, with each lo-401

cation being measured independently. This strategy fails to take402

advantage of the spatial relationship between different locations403

of the visual field and its neighbors. SWELZ uses the spatial404

weight to update multiple locations concurrently, and the spatial405

weight derived from spatial filter methods i.e., Correlation model406

and geometric model [29]. Here, T4 uses a more explainable407

spatial filter model, combining retinotopic and optic nerve head408

topic spatial relationships in one metric(RONH model). Firstly,409

T4 assumed that the retina of each subject comprisesM locations410

that can be denoted by {xm},m = 1, 2, . . . ,M . The spatial411

weight between two locationsxm,m ∈ 1, 2, . . . ,M andxn, n ∈412

1, 2, . . . ,M can be expressed bywmn. The closer the correlation413

value is to 1, the larger the relationship between the two points;414

the closer the value is to 0, the smaller the spatial weight between415

the two locations. Visual field locations in the different vertical416

hemifields are not related due to the physiological distribution417

of optic nerve fibers, thus the correlation is automatically set to418

zero [31]. On the other hand, wmn = 1 if and only if m = n,419

i.e., locations xm and xn are the same, otherwise, wmn < 1.420

This relationship can be represented as follows:421

wmn

=

⎧⎨
⎩e

− 1
2

(
dist2mn

σ2
d

+
∠2

mn
σ2
∠

)
, if m and n in the same hemifield

0, otherwise

(5)

where distmn is the Euclidian distance between the points xm422

and xn in the visual field, and ∠mn is the difference between423

the angles at which the optic nerve fibers crossing points p and424

q enter the optic nerve head, which are two factors that can425

better describe the spatial relationship between two locations426

of the visual field [34], [35]. σd and σ∠ are scale parameters.427

For the HFA 24-2 test grid, these parameters are chosen to428

be σd = 6◦ and σ∠= 14◦. Specifically, σd = 6◦ is the angular429

distance between two neighboring locations, xm and xn, in the430

24-2 visual field test pattern, and σ∠= 14◦ is the reported 95%431

confidence interval of the population variability in the nerve432

fiber entrance angle into the optic nerve head [34]. When the433

two points lie on different hemifields of the visual field [35]434

wmn = 0. Once the formula of spatial weight between different435

locations is known, one can compute the spatial weight among436

locations, which can be seen in Fig. 5. Noted that the assumptions437

on the connectivity of the ONH render T4 a testing algorithm438

that is specific for glaucoma, because the spatial relationships439

following optic nerve head bundles are only true in some sense440

for diseases that affect the retinal nerves.441

In Fig. 5 spatial weight is presented in a greyscale where442

black colors depict no relationship with the location in focus, and443

white FT represents the location itself (wpq = 1). The brighter444

Fig. 5. Spatial weight among different locations shown on a 24-2 visual
field. Each location is replaced by a smaller 24-2 visual field, which
indicates the spatial weight between this location and any other location.
The gray bar indicates the level of correlation.

the color, the stronger the relationship with the location in focus. 445

Based on the spatial weight map, one can not only update the 446

current posterior distribution using the proposed likelihood, but 447

also update its neighboring locations according to computed 448

correlation. 4 defines the probability of a positive response when 449

m = ni. However, with the definition of the spatial weight, it 450

is desirable to borrow the stimuli and their responses from the 451

neighboring locations whenm �= ni. 452

For locationxm, the likelihood of the ith responses at location 453

xni
is defined as a binomial distribution weighted by the spatial 454

weight wmni
: 455

p (ri |si, wmni
, μm, σm )

=
fm(si)

wmni
ri(1− fm (si))

wmni
(1−ri)

fm(si)
wmni + (1− fm(si)

wmni )
(6)

If wmni
= 1, i.e., when m = ni, the ith stimulus is presented 456

at xm, the denominator becomes 1 and 6 becomes a binomial 457

distribution defined exactly by 4. When wmni
< 1, i.e., the ith 458

stimulus is not presented atxm but is a neighboring location xni
, 459

the distribution is “stretched” by the spatial weightwmni
and the 460

denominator guarantees that the probability in 6 sums to 1. The 461

impact of the spatial weight wmni
on the binomial distribution 462

is illustrated in Fig. 6. A smaller wmni
indicates weaker spatial 463

weight and therefore stretches the distribution to a flatter shape 464

with larger uncertainty around the center. Therefore, when using 465

the response from xni
at xm, the uncertainty of the distribution 466

increases when xni
is far away from xm. Particularly, when 467

wmni
→ 0, i.e., xni

is far from xm such that their correlation 468

approaches 0, 6 becomes a flat line at 0.5, indicating that the 469

largest uncertainty about the response → �. This result is 470

intuitive because when a stimulus, xni
, is far away from xm, 471

it does not provide any information about the distribution of 472

xm. By using the spatial weight wmni
, the likelihood function 473

of xm is able to “borrow” information from its neighboring 474

locations thus improving the measurement efficiency of T4 when 475

compared with conventional threshold algorithms. 476
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Fig. 6. Illustrative examples of weighted binomial distributions (6) with
negative responses r = 0. The mean and SD of 6 were set to 20 and
2.5, respectively. fm(si) at wmni = 1and the weighted distributions at
wmni = 0.1 and wmni = 0.01 are plotted.

B. Inference About the Threshold and Its Uncertainty477

For μmand σm, the iterative formula of the posterior dis-478

tribution of a patient at a certain location can be derived by479

multiplying 5 and 6 for all N stimuli s = {si}Ni=1, responses480

r = {ri}Ni=1 and their spatial weights w = {wi}Ni=1481

p (μm, σm |r, s, w )

∝ ΠN
i=1p (ri |si, wmni

, μm, σm ) p (μm) p (σm) (7)

As shown in 7, the inference about the threshold μm and its482

uncertaintyσm is carried out by maximizing the log of 7 with the483

constraint that 0 dB ≤ μm ≤ 40 dB for conventional perimetry484

tests. The maximization was carried out using the trust-region485

algorithm, which is a class of iterative schemes for solving486

unconstrained optimization problem and have strong global487

convergence properties [36]. Then, the values of the estimated488

mean μm and variance σm are updated. Note that 7 contains the489

likelihood function of all the historical measurements and is a490

cumulative multiplication process. A likelihood function will be491

added to the right side of 7 after each stimulus, mainly to fully492

consider all the previous measurement information, including493

the likelihood function of the current test location and its related494

locations. Thus, T4 is very different from SWeLZ where only495

uses the spatial weight to update neighbor test points without496

full utilizing neighbor test points to help updating current points,497

that is one reason why the SWeLZ can’t improve test accuracy.498

Here, the update rule of T4 improves more than SWeLZ only499

be effectiveness when using proposed likelihood function. The500

reason is that the Scale-likelihood function cannot be sensitive to501

measure the relation between current and its neighbor test points,502

i.e., the threshold of neighbor and current test points cannot be503

updated accurately by using scaled likelihood function.504

C. Proposing the Next Stimulus505

The T4 algorithm aims to propose the location and level of506

the next stimulus. It maintains a pool of candidate locations507

that requires further testing to confirm the threshold. This pool508

consists of locations where the number of stimuli presented falls509

below a set amount, i.e., the maximum terminate times; and those510

Fig. 7. Summary of the T4 procedure.

with SD σm larger than a set value. The next location is then 511

selected to be the one randomly from the candidate pool. 512

For the simulations in this study, the candidate pool consisted 513

of locations where the minimum amount of presentations per 514

location was below 10 and > = 2 or σm was higher than 1 dB. 515

D. Putting Things Together: The Testing Procedure 516

The test procedure of T4 can be summarized in Fig. 7. The 517

number of iterations of the procedure is equal to the number of 518

stimuli presented to the subject during the test and is used as a 519

surrogate for test duration. 520

Suppose that the candidate location set isCl, we first initialize 521

thefm in Eq. 4 and set the prior distribution parameter in Eq. 3 for 522

all of the location, i.e., 52 points, and adding all of the viewpoints 523

to the candidate location set Cl. Next, randomly selecting a test 524

location as the current test point, xm, extracted from candidate 525

location set, and getting the μm and σm for the current points 526

for requiring further testing. Then, we present a stimulus at level 527

μm.for the xmand collect the response from the subject. After 528

that, we get the likelihood function at xm by using Eq, 4 after 529

receiving the patient’s response (yes or no). Meanwhile, the 530

likelihood functions of neighbor test points corresponding to 531

xm are calculated by using Eq. 6 and wmni
range from [0.1,1] 532

concurrently. Then, the μm and σm of current test point is 533

inferred by using Eq. 7, that is, using the likelihood function 534

both current and its neighbor test points to update current μm 535

and σm. After that, we collect the points from Cl that locations 536

tested > = 2 and < = 10 times or σm < 1 dB. When the Cl is 537

empty the T4 is terminated and output the threshold estimation 538

for all of 52 points. Or else, we should repeat the second step, 539

that is, random selecting test location, xm fromCl, and continue 540

the next step until the Clis empty. For each location, the level 541

correspondent to the mode at the last update is taken as the 542

threshold estimation. 543
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Fig. 8. Experiment of C-ZEST using different spatial filters. (a) The mean values of median test errors stratified by true sensitivities for C-ZEST
with three spatial filters, RONH, Correlation and Geometric models from 20 repeated tests. (b) The SD of median test error from 20 repeated tests.
(c) The Test-retest result measured by the Euclidean distance between the true and tested VF from 20 repeated tests. The C-ZEST uses the same
scale likelihood and update rules with those of SWeLZ but the spatial filters are different. All the experiments are carried out with FP = 5%, FN =
5%.

V. EXPERIMENTS AND RESULTS544

A. The Verification of T4 Spatial Filter545

In order to investigate the impact of using different spatial546

weight derived from different spatial filter methods. Correlation547

Model, Geometric model are used to make comparison with548

the RONH model used in T4 (Eq. 5). Here, Correlation Model549

was derived from a previously published spatial filter [37], and550

the average of two filter values was used to determine the edge551

weight of the edge shared between each pair of locations. Edge552

weights were rescaled linearly to have maximum weight of 0.55553

and a minimum weight of 0. Geometric model was derived from554

a computational model relating retinal ganglion cells to the angle555

of their insertion at the optic disc [38]. C-ZEST method is used556

as traditional method to investigate whether the RONH model557

has advantage compared with other methods on improving558

test performance and stability. Noted that the test presentation559

set to 150 in verification experiments of spatial filter, varying560

likelihood function as well as update rules, so that making the561

comparison results of test accuracy, stability, as well as test-retest562

are reasonable. Fig. 8(a) is the mean value of median test error563

performance corresponding to each input threshold for the three564

spatial filter methods repeating 20 times. We can see that RONH565

model shows the similar performance with other two models in566

terms of mean value of median test error, and the SD of median567

test error for repeating 20 times (see Fig. 8(b)). However, RONH568

model still have improvement compared with other two model in569

the Test-Rest experiment (see Fig. 8(c)) range from 0-40. Thus,570

using a principle approach to incorporate spatial information571

(RONH model) can improve the test-retest performance without572

enlarging the test error performance evidently compared with573

other spatial filter methods.574

B. The Verification of T4 Varying Likelihood Function575

SWeLZ uses the spatial weight between current and its576

neighbor test points to update their threshold estimation using577

Scale-likelihood function. Here, we regard likelihood function578

of SWeLZ as Scale-likelihood function. The spatial weight can579

make current and its neighbor test point update concurrently580

by using varying likelihood function, we regard this as Borrow581

point. SWeLZ can decrease the test presentation compared with 582

ZEST without decreasing the test accuracy and stability. How- 583

ever, it can’t decrease time presentation while improving test 584

accuracy and stability concurrently, because the scale-likelihood 585

function is not sensitive to measure the difference between 586

current and its neighbor test points by the likelihood function. 587

The T4 proposes new likelihood function (See Eq. 6) that can 588

change both the shape (in x-axis) and scale compressed in 589

y-axis of likelihood function to update neighbor test points 590

not like SWeLZ that just scale compressed in y-axis but the 591

shape (in x-axis) don’t change. Thus, it can better measure 592

the correlation relation between the current and its neighbor 593

test point in term of likelihood function. When updating current 594

point, its neighbor test points can be more accurate updated 595

concurrently. 596

Fig. 9(a) illustrates the mean value of median test error for 597

20 repeated experiments corresponding to each threshold. It is 598

evidently that the test error improve significantly, especially for 599

18 to 34 dB, which prove the proposed likelihood function can 600

be more effectiveness to borrow point’s message to improve test 601

error. 602

Fig. 9(b) illustrates the SD of the median test error for the 603

experiments of repeated 20 times. We can see that the SD of using 604

proposed likelihood function still have evident improvement 605

compared with that of scale-likelihood function. This mainly 606

because the likelihood function of T4 is more sensitive to mea- 607

sure the relation between current and its neighbor test point that 608

can make the test points fit the optimal threshold estimation at 609

the more correct direction compared with SWeLZ. 610

Fig. 9(c) illustrates the test-retest experiment for 20 times. 611

Here, the Euclidean distance of median values are used to mea- 612

sure the degree of deviation between the predicted median values 613

and diagonal line values. The improvement of test stability 614

proves the shape and scale of likelihood function are all effective 615

to improve the performance of borrow point performance, and 616

can improve test error and stability concurrently. 617

C. The Update Rule Verification for T4 618

As discussed above, the varying likelihood function has big 619

effect on improve the test error and stability compared with 620
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Fig. 9 Experiment of C-ZEST using different likelihood function. (a) The mean values of median test error for C-ZEST with different Likelihood
functions, proposed likelihood function and Scale-likelihood function repeating 20 times. (b) The SD of median test error values repeating 20 times
for C-ZEST with the two likelihood functions. (c) The Test-retest result measured by the Euclidean distance between diagonal line values and the
predicted test results for repeating 20 times. Here C-ZEST uses the same spatial filter i.e., RONH mode with T4l, and the update rule is the same
with SWeLZ, but the likelihood functions are different. All the experiments are at FP = 5%, FN = 5%.

Fig. 10 (a) The Test error for T4 and T4 without update rule measured by the average median values repeating 20 times. Fig. 10(b) The SD of
median test errovalues for repeating 20 times Fig. 10(c) is the Test-retest result measured by the Euclidean distance between diagonal values and
the predict test result for repeating 20 times. Here C-ZEST use the same Scale likelihood and update rule with SWeLZ but the Spatial filter are
different, All the experiments are at FP = 5%, FN = 5%.

Spatial filter factor. However, SWeLZ only focus on using621

the spatial weight of current point to update its neighbor test622

point without giving consideration for using the neighbor test623

point’s message to update the current points. Thus, this update624

rule of SWeLZ can’t fully utilize neighbor points that it has625

potential to improve test accuracy and stability further. As for626

T4, when it tests the current point, the likelihood function of627

neighbor test points are used to update the threshold estimate628

of the current point. Thus, if the current point is updated at the629

wrong direction resulted by inaccurate spatial weight or patient’s630

mistake response, the other likelihood functions of its neighbor631

test points help it to fix the threshold estimation of current points.632

This can improve test error and stability performance further,633

prove by Fig. 10(a)–(c).634

In Fig. 10(a), it shows that T4, comprises proposed update rule635

and likelihood function, improve the mean value of median test636

error compared with C-ZEST, using the same proposed likeli-637

hood function and spatial filter without T4 update rule, especially638

for the range from [0,26]. Thus, the proposed update rule can639

fully utilize neighbor test point message and can improve test640

error effectiveness are proved.641

Fig. 10(b) illustrates the SD of median test error values642

repeated for 20 times corresponding to each thresholds. It is643

evidently that the SD of T4 improve more evidently than ZEST644

without proposed update rules. The main reason is that the645

proposed update rule can fix the test error using the likelihood646

function of neighbor test points, and the Posterior probability of 647

μm and σm See Eq,7) by maximum of Eq. 7 can more better fit 648

the optimal threshold estimate and making SD decreased. 649

Fig. 10(c) is the mean value of the Euclidean distance for 650

median values to measure the Test-retest performance. We can 651

see that the proposed update rule improves the test-retest fur- 652

ther compared with T4 without update rules, decreasing from 653

17.5 to 13.5 in term of Euclidean distance. Thus, the proposed 654

update rule can further improve the test error and test stability 655

concurrently. 656

D. The Comparison Experiments 657

The impact of varying likelihood function, and update rule 658

of T4 are proved to have effect on improving the test error 659

and stability. In this section, we aim to use the T4 to compare 660

with other general algorithms i.e., ZEST and FT. Here, ZEST 661

uses the accurate prior that is the same initial PDF as Turpin 662

and colleagues did [27] (see Fig. 3), aiming to get the optimal 663

performance of ZEST. Besides, we do not use the ZEST with 664

uniform distribution prior to make comparison, because ZWeLZ 665

with uniform distribution have already discuss above, and ZEST 666

show the similar performance in test accuracy and stability with 667

SWeLZ except test presentation. Meanwhile the initial threshold 668

of FT, similar with T4 and C-ZEST, random selecting from [0, 669

40] so that making comparison with T4 at the same condition, 670
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Fig. 11. Test efficiency of T4, ZEST and FT. The left panels show the test efficiency of T4, the middle panels show the test efficiency of ZEST
and the right panels show the test efficiency of FT. The top three figures are the performance of the low-variability group, the middle figures are
the performance of the medium-variability group, and the bottom three figures are the performance of the high-variability group. Note that the test
efficiency is evaluated by the average number of presentations at each input threshold.

i.e., all the stimulus range from [0, 40] are equal probability. The671

performance of T4, ZEST, and FT for the low-, medium- and672

high-variability patient groups are illustrated in Figs. 11– 13 so673

that we can make comparison for the three methods at different674

variability measured by FP and FN.675

Fig. 11 shows the number of presentations required in the test-676

ing process for all three algorithms. Fig. 12 illustrates the mean677

absolute difference (MAD) between the estimated threshold and678

the true visual fields for the three algorithms. Fig. 13 shows the679

Test-retest performance of T4, ZEST and FT, which indicates the680

variability of the difference between two repeated measurement681

results when testing the same subject with the same algorithm.682

Noted that the test error is calculated by pointwise firstly and683

then get the test error corresponding to all of True Threshold.684

Then we get SD for the Test error corresponding to each True685

Threshold. All the experiments were repeated 10 times, and then686

get the average values representing each patient’s result used for687

comparison688

1) Test Efficiency: For each algorithm, T4, ZEST and FT,689

we repeat the experiment for 10 times, and getting the average690

test presentation to evaluate test efficiency shown in Fig. 11 for691

each input threshold (dB) on the three variability groups. For the692

low-variability group, T4 has a mean number of presentations of693

3.64, while ZEST and FT have mean number of presentations of 694

3.68 and 5.71, respectively. The medium- and high-variability 695

groups show the same trend: T4 required 3.59, and 3.82, and 696

ZEST requires 3.67 and 3.89 presentations for the two variability 697

groups, while FT requires 5.49 and 6.77 respectively. Thus, T4 698

requires a smaller number of presentations compared with the 699

other two algorithms at three variability level. With an increasing 700

FP rate, T4 needs more presentations before the final threshold 701

emerges to correct the mistake made by the patient during the 702

testing process. While the number of presentations required for 703

ZEST and FT does not increase presentation with FP increased. 704

The reason is that FT uses the staircase method that the level 705

of the next stimulus changes with a fixed and it should takes 706

longer to recover from a patient mistake than it does on the 707

other algorithms, i.e., more presentations. Actually it may never 708

recover, as the 2 reversal criteria may be reached beforehand 709

hence increasing variability. Thus, the wrong response may 710

make the FT terminate early. ZEST only use the maximum 711

likelihood strategy, and the variance of the PDF shrinks even 712

if the patient response is wrong, which makes the test duration 713

stay the same in the different patient groups. Noted that the PDF 714

may converge into the sub-optimal that may result in decrease 715

test accuracy, but the presentation is seldom affected. 716
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Fig. 12. MAD between estimated threshold and the true visual field for T4, ZEST and FT. The left panels show the test error of T4, the middle
panels show the test error of ZEST and the right panels show the test error of FT. The top three figures are the performance in the low-variability
group, the middle figures are the performance in the medium-variability group, and the bottom three figures are the performance in the high-variability
group.

However, T4 updates the current test point by borrowing the717

message from neighboring points to help updating the current718

test points. Thus, with the FP increasing, the correction requires719

an extra number of stimuli to recover from the wrong threshold720

estimate and the spatial weight derived from normal dataset721

cannot have enough ability to update neighbor test points ac-722

curately for all of the glaucoma patients. Sometimes the spatial723

weight are near to the accurate spatial weight for one patient, the724

neighbor test points can converge to the accurate final threshold725

estimate quickly. When the spatial weight at disease area is not726

enough accurate for one patients, the neighbor test points need727

more presentation to fix the error. So, the SD of presentation728

is larger than ZEST and FT caused by the spatial weight and729

more sensitive to patient variability; that is, the number of pre-730

sentations increases by 6–11% each time the patient variability731

rises. However, T4 still shows an advantage as it requires less732

presentations than those of the other two algorithms, i.e., T4733

is faster than ZEST and FT in all the patient variability groups734

because the T4 can update the current and its neighboring points735

concurrently, which makes it has more chance to correct the736

wrong response compared with other methods that is the reason737

why the T4 have lower presentations compared with other two738

methods.739

TABLE II
AVERAGE AND SD OF THE NUMBER OF PRESENTATIONS FOR T4, ZEST, FT

FOR EACH PATIENT GROUP

To more intuitively compare the number of presentation 740

performances, we get the total presentation number of 109 741

subjects (52 points) firstly and then get the average value for 742

the 109-presentation result. Then, repeat it for 10 times and 743

get the average value for the result of 10 times. Meanwhile, 744

the calculation steps of SD are that we first get SD for the 745

total presentation number of 109 subjects (52 points) firstly, 746

and then repeat it for 10 times and get the average SD for 747

the result of 10 times. Table II show that the FT requires an 748

average of approximately 320 presentations for the three pa- 749

tient groups, which is approximately twice the number required 750

by T4 (approximately 160 presentations), and ZEST requires 751
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Fig. 13. Test variability of T4, ZEST and FT. The left panels show the test variability of T4, the middle panels show the test variability of ZEST
and the right panels show the test variability of FT. The top three figures are the performance in the low-variability group, the middle figures are
the performance in the medium-variability group, and the bottom three figures are the performance in the high-variability group. Here, baseline
sensitivity represents the results from the first experiment while Retest sensitivity represent the test results for the second experiment.

approximately 173 presentations for one VF test. Thus, it is752

evidently that T4 can decrease the number of presentations753

significantly, by nearly 13 presentations, compared with ZEST.754

In addition, the number of presentations in T4 are sensitive755

to the changes in the FP, i.e., the FP increases and its SD is756

larger than that of other algorithms. Thus, the T4 algorithm is757

more sensitive for the patient’s false feedback (FP variability).758

This makes T4 have a higher SD of presentation than the other759

two algorithms, but this sensitivity of T4 for incorrect patient760

response is essential for improving the test accuracy. The total761

number of test presentations of FT far exceed those of ZEST,762

which results from the initial threshold estimation being selected763

from 0 dB to 40 dB, and it is more affected by an incorrect764

response, making the test duration fluctuate more evidently than765

in ZEST in the three variability level [13].766

2) Test Accuracy: Fig. 12 shows the test error performance767

for the three algorithms evaluated by the MAD between the768

estimated results and the true visual fields. The boxplots show769

the test error distribution for the three algorithms. Here, the test 770

error is calculated by pointwise for 109 patients, and then it is 771

sorted according to the true visual threshold, i.e., the real clinical 772

visual field testing threshold result. Thus, Fig. 12 shows the test 773

error of every true threshold for 109 patients. Noted that each 774

patient is simulated for 10 times and then, the average threshold 775

result is computed regarded as an average performance of one 776

subject, which can make the result more credible (109×520 to 777

109×52). For the low-variability group, the mean error of T4 778

is 3.18 dB, while the mean error of ZEST and FT are 5.07 dB 779

and 3.03 dB, respectively. Here, the mean error is the average 780

value for the median sensitivity of all the true threshold (0–34 781

dB). With increasing FP, the mean test error for all three algo- 782

rithms moderately increases; that is, the mean error of T4 in the 783

medium-variability group is 4.02 dB while those of ZEST and 784

FT are 5.58 dB and 4.1 dB respectively. In the high-variability 785

group, the mean error of T4 is 4.1 dB while for ZEST and FT 786

it is 5.93 dB and 5.29 dB. Thus, we can see that T4 shows a 787
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TABLE III
AVERAGE DISTANCE VALUE FOR T4, ZEST, FT FOR EACH PATIENT GROUP

significant improvement in the test error compared with ZEST.788

FT outperforms ZEST, but FT require two time as much as789

ZEST in term of test presentation. Besides, T4 show the similar790

test error compared with FT at low and medium variability in791

term of median values but T4 show evident improvement in test792

stability compared with FT, Meanwhile T4 shows significant793

improvement at high variability both median values and stability,794

besides T4 only use half test presentation compared with FT, and795

SD of T4 show stable performance when FP increasing while796

FT increase dramatically when the FP increasing. Thus, the T4797

is proved to have advantage in test error and stability compared798

with FT and ZEST.799

3) Test Variability: Fig. 13 shows the test-retest variability800

performance for T4, ZEST and FT. Here, we simulated two801

visual fields results for 109 subjects corresponding to three802

variability groups in the dataset. Only data within the 95%803

confidence interval is shown. Meanwhile, the degree of deviation804

measured by summation of the Euclidean distance between805

the median points of the box plot and the diagonal points806

corresponding to (the first experiment, which can be used to807

measure the stability of the algorithm. The closer the median808

distribution of the box plot is to the diagonal points (lower809

Euclidean distance), the more consistent the algorithm. Noted810

that Fig. 13 is the example of the experiment result of three811

methods selected from repeated 10 times experiments. Besides,812

choosing different experiment as X axis or Y axis may make the813

median values most above or below the diagonal lines. Thus, we814

select the images that mostly above the diagonal lines so that815

make the comparison more evidently. In fact, in our experiment816

the median values have random above or below the diagonal817

line. The repeated experiment evaluation can be seen in Table III.818

For T4, the interval for the difference between the two tests is819

narrower than ZEST and FT. The variability interval (distance820

between the upper quartile, 75%, and the lower quartile, 25%)821

of ZEST and FT becomes wider than T4 for nearly all the822

sensitivities (dB), which suggests that the difference in the same823

patient between the two tests is relatively larger than that of T4.824

In addition, we can see that T4 has the lowest deviation between825

the median points and the diagonal points: its median distribution826

almost coincides with the diagonal line. The median distribution827

of FT become more offset from the diagonal, especially for lower828

dB.829

ZEST, as a whole, have better stability compared with FT830

that it has better extent of coincides with the diagonal compared831

with FT, although there is more serious deviation at 2 dB and832

10 dB, and FT show better extent of coincides with the diagonal833

at low variability performance. Meanwhile, ZEST show more834

stable with FP increasing while FT have drastic increasing.835

Besides, ZEST needs lower presentation than FT that is another836

advantage. In theory, the variability of ZEST will improve837

further if the number of presentations increase, but that only 838

in simulation this will be the case. In real life fatigue will kick 839

in which will increase test variability. Thus, the comparison of 840

variability for T4, ZEST and FT in clinic evaluation need to 841

be discussed in the future. As mention above, to prove the test 842

stability for the three methods, we further repeat the experiment 843

for 10 times and getting the average distance median values 844

between measurement values and diagonal values to represent 845

each test performance for three variability, which can be shown 846

in Table II. We can see that T4 is closer to the diagonal line 847

that it gets 13.24, 14.58, and 16.68 average distance values 848

for three variability. Surprisingly that the Euclidean distance 849

values of T4 do not increase significantly like ZEST and FT, 850

which proves that the T4 has more stability. As for ZEST and 851

FT. the test variability increase with FP increasing. But the FT 852

illustrates more drastic increasing when FP increasing compared 853

with ZEST. Thus, ZEST have better stability. Noted that Table III 854

only proves ZEST with accurate prior is more stable than FT with 855

uniform distribution prior. However, T4 still show more stable 856

performance than that of other two methods although it uses 857

uniform distribution prior and lower presentation. 858

VI. DISCUSSION 859

In this paper, it is shown that T4 estimates the visual field 860

threshold more rapidly than ZEST and FT algorithms and with 861

lower test error on the three patient groups on the computer 862

simulation. Moreover, T4 shows a reduced heteroscedasticity 863

compared with ZEST and FT and C-ZEST. Compared with the 864

conventional approach ZEST, C-ZEST, and FT, the reason why 865

T4 achieves a better performance can be concluded as follows. 866

Firstly, T4 uses new Likelihood function that is more sensitive 867

with changing the spatial weight and can better measure the 868

different between current and its neighbor test points compared 869

with Scale-likelihood function. Here, we prove that the shape 870

and scale are two factor to improve test accuracy and stability. 871

Only changing the scale compressed in y-axis but the shape 872

(in x-axis) don’t change is not enough to measure the relation 873

between current and its neighbor test points accurately that is 874

the reason why SWeLZ can’t improve test error and stability 875

performance concurrently. 876

Secondly, T4 uses a novel update rule that it uses neighbor 877

test points to help updating current test points and proposed 878

a Bayesian method to get the threshold estimation. This can 879

correct the patients’ mistake by using the test results of its 880

neighboring locations; nearly 20 likelihoods surround one single 881

location (wmni
> 0.1). Thus, T4 is more sensitive for correcting 882

mistake response and easier to approach accurate threshold un- 883

der the helpful of neighboring points compared with the update 884

rule of SWeLZ. Our experiments prove the effective of our 885

proposed update rules can decrease Test error while improving 886

test stability. 887

According to our experiment, varying likelihood function 888

and update rule are the main reasons why T4 can improve test 889

accuracy and stability. Spatial filter of T4 (RONH model) can’t 890

show evident improvement compared with Correlation model 891

and Geometric model in terms of test accuracy and stability, but 892

RONH shows improvement in Test-retest experiment. This is 893
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mainly because spatial filter got from normal dataset is fixed that894

it cannot change with different glaucoma patients. Thus, in the895

C-ZEST, the inaccurate spatial weight derived from spatial filter896

may make neighbor test points are updated at wrong direction897

that probably enlarging the test error and cannot improve test898

stability. So test accuracy and stability are tough to be improved899

when changing the spatial filter methods. However, combining900

retinotopic and optic-nerve-head-topic spatial relationships in901

one metric still have effect on the test-retest performance. Be-902

sides, T4 has advantage that it does not depend on the accurate903

prior. In real, the initial accurate threshold estimation is tough to904

achieve, thus, it is very meaningful to decrease the dependence905

on accurate threshold.906

In conclusion, T4 estimates the true visual fields faster and907

more accurately and stability than ZEST, C-ZEST and FT ro-908

bustly. Meanwhile it has significant clinical values because it is909

less affected by the initial estimate threshold and patient’s wrong910

mistake response than the other current general algorithms.911
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