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1. INTRODUCTION 1
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Abstract: We consider zero-sum and a non zero-sum games of two players with gener-
alized, not necessarily linear, utility functions and infinite, compact pure strategy spaces.
Emphasis is given to comparisons with results obtained in mathematical theorems. The
games chosen make specific points in relation to the conditions of the theorems. The idea
of δ functions is exploited to construct mixed strategies. We interpret their significance
in joining pure strategies and show the application in confirming NE. Uniqueness of NE
is looked at. An issue is also how far an analogy can be drawn from the case of the finite
matrix games. The usually discussed game theory problems are easy to analyze but they
do not cover the whole range of possibilities.
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gies, Reaction functions, Dirac δ function, Mixed strategies, Quasi-concave utility function,
Nash-von Neumman-Debreu-Fan-Glisberg theorems, multiple Nash equilibria, minimax
theorem, saddle point, games with perfect recall, behavioural strategies.

JEL Classification Numbers: C61, C72

1 Introduction

The common theme of these notes is the application of fundamental results and ideas to
types of games which are not commonly discussed. Mathematical results and developments
have existed for a long time for infinite strategy games and games with imperfect recall.
We analyze games in these areas. The complications in relation to finite matrix games
and those with prefect recall are not insurmountable, at least as we move to a higher level.

We consider finite extensive, tree formulation games, both zero-sum and non zero-sum
rather than in matrix form. The utility functions are always taken to be continuous and
the two players have choices, each, [0, 1].

In non-cooperative normal games, simple examples usually described by finite matrices
are used for both zero and non-zero games. They are in general easy to analyze the NE
(Nash, 1950), using the intersection of reaction functions. What we have is the Nash result
that equilibrium in mixed strategies exists. Of course NE exists in extensive form games.
These are also in general straightforward to analyze.

For zero-sum matrix games we have a NE which is also a saddle point (Binmore p.228).
Starting with zero-sum game in matrix form we can obtain a pair of ordinary dual linear
programming problems. In effect, we can obtain also another pair where probabilities
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appear as an equality constraint. From this pair we can go to the ordinary pair through a
change of variables (Morris, 1994). In the zero-sum games, there is a NE and the minimax
property is confirmed.

However there exists also results for obtaining NE solutions in games with non linear
payoff functions and generalized strategy spaces. They are in remarkable contributions
(1952), by Debreu, Fan, and Glicksberg employ advanced topological and generalize the
Kakutani fixed point theorem. The basic idea of the Brouwer-Kakutani theorem, that a
continuous function from-to [0, 1] has to cross the 45o line, is well known. This is really
what we mean by self-fulfilling prophesies.

We analyse more general than the usually looked at problems. Through rather involved
but basic calculus calculation we see how the NE results of the theoretical contribution
emerge. It is more or less common place that simple finite game models can be used
to understand the basic Nash theory. There is also a case for more advanced examples
supporting the further theoretical development.

The utility functions of the two players are continuous (that is nice, measurable), on the
product space of pure strategies. Our strategy sets are the infinite, and compact sets of
[0, 1]. In the finite matrix games mixed strategies are ease to visualize. Infinite strategy
games discussions involve more complicated generalized (Borel) probability sets.

In our case it is still easy to comprehend what is happening through δ functions, introduced
by the mathematicians. These functions select a particular point in [0, 1] and attach to
it probability 1. Mixed strategies are formed through convex combinations of such pure
strategies. Finally, the games discussed are of perfect recall where a player does not forget
what he once knew.

Game theory is a very active area with important developments. Among others, there are
extensions of the Nash model to games with discontinuous utility functions, (Reny (2016)),
and to “large games” with infinite players (a short introduction is in Glycopantis (2014)),
but we are not concerned with these. We are concerned with explaining the application
of fundamental results and ideas to types of games which are not widely discussed.

2 Results in the literature

A quick reminder of the idea of NE and a summary of results1, simplifided for our puposes:
A pair of strategies (p∗1, p

∗
2) is NE if u1(p

∗
1, p
∗
2) ≥ u1(p1, p∗2) and u2(p

∗
1, p
∗
2) ≥ u2(p∗1, p2). That

is the NE is a fixed point and can be thought of as a self-fulfilling property.

(i) T1: (The Nash theorem) Games with a finite number of players and finite sets of pure
strategies have a NE in mixed strategies.

Also, statement by Nash: “In the two-person zero-sum case two equilibrium points lead
to the same expectations for the players, but this need not occur in general.” (1950).

(ii) T2: Consider a two-person, non-cooperative game with pure strategies p1 ∈ [0, 1]
and p2 ∈ [0, 1]. The utility functions are u1 = u1(p1, p2), u2 = u2(p1, p2) and they are
continuous. If also ui is quasi-concave in pi, i = 1, 2, then the game has a pure strategy
NE.

This is a simplified version of the Debreu, (1952), Fan (1952), Glicksberg (1952) theo-

1‘′ετερos εξ ‘ετ έρoυ σoφóς τ ó τε πάλαι τ ó τε νυν, Bacchylides, 518-452 BC
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rems, (see Fernando Vega-Redondo, 2003 pp. 52-53). The specification [0, 1] satisfies the
technical conditions on the of pure strategies these theorems.

Of course these are sufficient conditions for the existence of a pure strategy NE, (PSNE).
The question is what happens when in an explicit model the conditions of T1 are not
satisfied and the reaction functions do not cross. The answer is in following,

(iii) T3: Consider a two-person, non-cooperative game with pure strategies p1 ∈ [0, 1]
and p2 ∈ [0, 1] and utility functions u1 = u1(p1, p2), u2 = u2(p1, p2) assumed to be
continuous. Then there exists a NE in mixed strategies, (MSNE). This is a simplified
version of the Glicksberg (1952) theorem. The mixed strategies can go up to complicated
Borel (probability) sets

(iv) T4: In a zero-sum game a strategy profile (p∗1, p
∗
2) is a NE iff

(i) p∗1 is a maximin strategy for P1
(ii) p∗2 is a maximin strategy for P2
(iii) max

p1
min
p2

u1(p1, p2) =min
p2

max
p1

u1(p1, p2)

Also u1(p
∗
1, p

∗
2) =max

p1
min
p2

u1(p1, p2).

In addition all NE give the same utility to P1 and to P2.

(v) Corollary 1: If for a zero-sum game max
p1

min
p2

u1(p1, p2)<min
p2

max
p1

u1(p1, p2)

then the game has no NE.

Theorem T4 and the Corollary are from Aliprantis - Chakrabarti, 2011, p. 436, p. 438.

(vi) (T5): Let a two-person, zero-sum game with utility functions u1(p1, p2), u2(p1, p2).
The pair (p∗1, p

∗
2) is NE if and only if it is saddle point, that is

u1(p1, p
∗
2) ≤ u1(p∗1, p∗2) ≤ u1(p∗1, p2).

See Aliprantis - Chakrabarti, 2011, p. 436, Binmore p.228.

The examples which follow confirm the statements in the theorem above. They are cases
of zero-sum and non-zero-sum games, of imperfect information o looking for a NE. For
every example a number of calculations are on the figures. We believe this is easier for
the readers.

The relation between the various types of strategies is briefly discussed in the prosthema.
The issues involved are straightforward.

2.1 A Technical note.

We know how to analyze a simple two person, finite matrix game. For example, consider
the following, game of “Chicken”, payoff matrix:

P2:
t1 t2

P1: s1 (3, 3) (1, 4)
s2 (4, 1) (0, 0)

Player P1 has a finite set of pure strategies s1 and s2 and P2 has t1 and t2. P1 can play
his strategies with probabilities (s1, 1− p) and (s2, p) and P2 can choose independently
(t1, 1 − q) and (t2, q). For each player we have a finite set of pure strategies and it is
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perfectly acceptable and easy to comprehend that a player can choose a strategies with
probability one.

It is straightforward to calculate three NE, (p∗, q∗), derived from the intersection of the

reaction functions R1 and R2. They are (1, 0), (0, 1), and (
1

2
,
1

2
) with corresponding

payoff pairs (E1, E2) equal to (4, 1), (1, 4) and (2, 2). By the way, we note that in this
non zero-sum example two equilibrium points lead to different expectations for the players
(Nash, 1950).

For the discussion of NE in the case of compact strategy spaces, as [0, 1], we have distri-
butions of strategies. The idea of a (Dirac) δ function has a prominent role. These are
(genelalized) distributions which pick out only one point in the space of strategies and
they are used to specify a player’s unique choice.2

That is from all distributions on [0, 1] we choose the one with support 1 on (p). I.e. all
the weight is attached on this point, giving it an atomic probability measure of 1. We can
do this through what is known in probability theory as a “Dirac delta function”. This
attains the value 0 at all points except at a specific one where it is infinity, and integrates
around it to the value 1.

A δt−T ∗ function gives 0 for t 6= T ∗ and∞ for t = T ∗. The infinity is of a special nature in
that δt−T ∗ times a function all under an integral sign will select the value of the function
at T ∗. These are ‘linear functionals’ on the underlying function space and examples of
what are called generalized functions. A δ function is a generalized distribution referring
to a point mass.

So δt gives 0 for t 6= 0 and ∞ for t = 0. The infinity is of a special nature in that δt times
a function all under an integral sign will select the value of the function at 0.

We assume here that [0, 1] gives that set of choices (actions), pi, of a player. A distribution
(a density) function describes the probability of choosing actions by the player. For a
density function f(pi) the probability that the choice pi belongs to [a, b] is giving by∫ b
a f(pi)dp1. Through the distributions we obtain mixed strategies on [0, 1]. We can also

attach [0, 1] itself to its distributions by considering the mapping of pi to δpi .

A δ function can be understood that it elevates an element of [0, 1] to a distribution,
(mixed) strategy, concentrating completely on this particular action. It acts on a utility
function through the process described above. For example δp1(12) on u1(p1, p2) will result
to u1(

1
2 , p2). The recognition of this is simple to remember and executing a substitution

step allows to proceed in the analysis.

Of course convex combination of δ functions (of integrals) can also be formed and applied
to ui(p1, p2). We denote mixed δ strategies for Player i by πi. In Example 1 we work
initially using explicitly δ functions and then we resort to the appropriate substitution
explained above.

We also recall that a function u(x), defined on convex set X, is quasi-concave if the
set x ∈ X : u(x) ≥ r is convex for every real number r. This is a important property of
functions for results, for example, in utility theory. Quasi-concavity will be looked at
below in the context of the specific functions used.

2The author D.G. has profited from discussions with A. Muir.
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2.2 A comparison with the usual matrix model.

We compare results here with those of the usual matrix games.

In the finite matrix game we form expected payoffs through mixed strategies, i.e. convex
combinations of pure strategies. Each player chooses independently the probability of
playing his pure strategies. In the case of the two-person game we determine easily the
NE through the intersections of the two reaction functions R1 and R2. In a number of
cases R1 and R2 contain flats parallel to an axis. They correspond to mix strategies.
The linearity of expected payoff functions guarantees that choices of a player on a flat are
optimal, given the (mixed) choice of the opponent.

The issues is the following. Also in compact sets of infinite strategies, as [0, 1], there are
mixed strategies. As we have just seen, we can form mixed strategies, πi by taking the
convex combinations of δ functions of a finite number of pure strategies. The mixed πi’s
will be applied to the corresponding utility function ui.

The objective is again to consider the NE. Of course we can appeal to existence theorem,
given above. But attempting to construct the NE can we mimic the idea employed in the
finite matrix games? This an important point.

If we have a game and manage to find the NE, this a sense could be the end. The
graphs with reaction functions might help us to find the NE. Of course one thing is the
mathematical solution and the graphical representation is something else. However if we
attach probabilities to δ functions and then the mixed strategies form a NE, it would still
be interesting to obtain a graphical representation and understanding of the equilibrium.

In the graphs there are substantial differences between finite matrix problems and those
with [0, 1] strategies. Consider two player models. In the case of a finite game the flat
in the reaction functions combines with probabilities the payoffs of two pure strategies.
We have probabilities on the axes and the intersection of two reaction functions solves the
problem. There is nothing else to consider.

In the case of [0, 1] though things are different. We suppose that the conditions of T3 are
satisfied. We have strategies on the axes and this is a completely different world. Using δ
functions, we can still go to “reaction functions” find their intersection but then we have
to go from strategies to probabilities which are needed for an MSNE.

If for example R1 and R2 both break up at pi = 0 and pi = 1, i = 1, 2, then πi =
(k)δpi(0) + (1− k)δpi(1) gives the same constant value,for a fixed pj . We have formed two
“reaction functions” and suppose they intersect at p1 = p2 = 1

5 .

We now have to attach probabilities, that is significance, weight, to pi = 0 and pi = 1 in
forming pi = 1

5 . For this we calculate 0k + (1− k)1 = 1
5 and get probability (significance,

weight) 4
5 for 0 and probability (significance, weight) 1

5 for 1. Now there is a possibility
that the mixed strategies π1 and π2 form a MSNE. Thus we check the requirements for a
MSNE.

However there is no guarantee that these will be automatically satisfied. For example in
Figure 6(ii), where only R1 breaks up at p1 = 0 and p1 = 1 , the strategies π2 = δp2(12)
and π1 = (k)δp1(0) + (1− k)δp1(1) are self fulfilling only for k = 1

2 .

If we have a MSNE then π1 = (k)δp1(0) + (1 − k)δp1(1) on u1 gives the same constant
value, for a fixed p2 = 1

2 . The value of u1 at p1 = k(0) + (1 − k)(1) for a MSNE will lie
below the value at the mixed strategy. Graphs this relation are shown in Figures 4 and 5.
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To sum up, suppose we know from the theory that for a case with [0, 1] a NE exists. Let
the reaction function in pure strategies break at a particular pi as it does in examples
below.

A rule of thumb for proceeding might be to believe that what happens in the finite case
can, only in sense, be mimicked. So we connect the edges where pure strategies break
with straight lines, using δ functions. This process creates mixed strategies by going to
probabilities. Then we consider the intersection of such “reaction functions” calculate and
hope that we have a MSNE. This is not the always the case. Going through the rigorous
mathematical calculations of a NE has surprises.

Infinite strategies, as [0, 1], can lead to different equilibrium resolutions. A variety of cases
can be identified, as we shall see in the examples below:

(i) The intersection of the “reaction functions” obtained through δ functions can determine
MSNE. This is shown in Figure 1(ii,a), Figure 4(ii) and Figure 7(i). Characteristic of
Figure 4 is that the breaking point of R1 has to be argued.

(ii) As we explain below cases (a) and (b) in Figure 1 have in effect two different graphs
looking identical to the one in Figure 1(ii).

In part (a) the interpretation of the flat section of R1 refers to the choices of ku1(0,
1
2)+(1-

k)u1(1,
1
2), where 0 ≤ k ≤ 1. In part (b) the flat part of R1 is now made up of pure

strategies p1. The two cases give different utility payoff pairs.

(iii) In Figure 5(i) the non-linearity of the utility functions allows for pure strategies
reactions parallel to the axis. This gives a NE with 0 < pi < 0. In Figure 5(ii) the game is
again of non-zero-sum. There are pure and masses of mixed strategies NE, giving varying
pairs if utility values. In Figure 5(iii) all NE give the same pair of utility values.

(iv) Figure (6)(ii) and (iii), Example 4, make the significant point that, in contrast to
Figure 6(i), the intersection of the solid R2 with the “reaction function” of P1 does not
imply a NE. We return to the significance of u1 for this. Figure 6(iv) gives a NE away
from intersection of “reaction functions”.

In the finite matrix case this would not be possible. The resolution through mixed strate-
gies is the only one available.

To capture the fact that we give weight to u1 at only p1 = 0 or p1 = 1 we borrow from
the mathematics δ functions and form linear combinations. This captures the significance
of pi’s in terms of probabilities on the end points.

Intuitively, if we want to use (0, 1/3) in u1 then we give it weight 1 to (0, 1/3) and 0 to
(1, 1/3). If we want to use only (1, 1/3) we give it weight 1 to (1, 1/3) and 0 to (0, 1/3).
If we want to implement the point which closer to 0 than to 1 then we must attach more
weight to δ of 0. The significance of the δ functions must be reflected on the significance
of a point. It is like forming convex combinations of 0 and 1, that is for the point (29 , 0)
k0 + (1− k)1 = 2

9 which implies k = 7
9 .

3 The various games

Example 1. A non zero-sum game

Let u1 = (p2− 1
2)p1 and u2 = (p1− p2)2; P1 and P2 chooses their strategies in [0, 1]. The

reaction functions R1 and R2 of the two players are shown in Figure 1. There is no NE
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in pure strategies.

If the utility functions were quasi-concave in a player’s own strategy, then a PSNE would
exist, applying T2. However u2 = (p2 − 1

2)2 is not quasi-concave. It attains its minimum,
0, at p2 = 1

2 and for u2 > ε, positive small, the quasi-concavity conditions is not satisfied.
The set of p2’s with u2 ≥ u′2 is not convex. This can easily be seen on a graph.

However from Glicksberg theorem, here T3, we know that there is a mixed strategy equi-
librium, as the utility functions are continuous on [0, 1]. We show here the possibility of
more than one NE in mixed strategies.

As we have said above δ distributions applied to an integral of a function allocates a
specific value to a variable. Of course convex combination of δ distribution can also be
formed.

The recognition of these facts allows to proceed in the analysis. In this example we work
initially using explicitly δ functions and then we resort to the appropriate substitution of
variables by the δ functions. We check that a pair satisfies the usual condition that given
the specified strategy of one player the other one maximizes his utility at his strategy in
the pair.

We show that the NE is not unique. Suppose we take (π∗1, π
∗
2) = (

1

2
(δp1(0)+δp1(1)),

1

2
(δp2(0)+

δp2(1)). Putting π∗2 into u1 we can choose π∗1 =
1

2
(δp1(0) + δp1(1). Inserting this π∗1 into u2

we obtain the normalized z = p22 + (1 − p2)2. This is a maximum for the mixed strategy
0 and 1, with any convex combination of these values. Therefore we can choose π∗2.

Next we want to prove (π∗1, π
∗
2) = (δp1(12),

1

2
(δp2(0) + δp2(1)) is also a mixed strategies

NE.

Inserting π∗1 into u2 we obtain
∫ 1
0 (p2 − p1)2π∗1 = (p2 − 1

2)2. This is a maximum for the
mixed strategy 0 and 1, with any convex combination of the δ functions. Therefore we
can choose π∗2.

Inserting now π∗2 into u1 we obtain∫ 1
0 (p2 − 1

2)p1π
∗
2 = (12)(−1

2)p1 + (12)(1 − 1
2)p1 =

1

4
(−p1 + p1) = 0. Therefore any pure

strategy will do and we can choose p1 =
1

2
with probability 1.

Next we note whether we could mimic the case of the finite number of pure strategies.

This works here, in the sense discussed above, when we considered (π∗1, π
∗
2) = (

1

2
(δp1(0) +

δp1(1)),
1

2
δp2(0) + δp2(1)). This works because of the special function u2 = (12 − p2)2, It

attains its minimum at p2 = 1
2 and its maximum at 0, 1 and any convex combination.

Also this works for (π∗1, π
∗
2) = (δp1(12),

1

2
(δp2(0) + δp2(1)), but as we see below, the

interpretation of the graph is different.

Next we look again briefly at the two MSNE, and compare the implied payoff pairs. We
use directly the replacement of variables by exact values implied by the δ functions. We
have u1 = (p2− 1

2)p1 and u2 = (p1− p2)2 and we indicate now through the π∗’s the values
that the variables will take and with what probability.

(a) π∗1 : (12(0), 1
2(1)) and π∗2 : (12(0), 1

2(1))
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π∗2 into u1 gives, as above, u1 = ((12)(−1
2)p1 + (12)(12))p1 = 0 so any p1 will do.

π∗1 into u2 gives u2 = (12)p21 + (12)(p1 − 1)2 = p21 + 1
2 − p1, given π∗2, max u2 at p1 = 0, 1

which confirms π∗1.

(b) π∗1 : (1)(12) and π∗2 : (12)(0), (12)(1)

π∗2 into u1 gives u1 = ((12)(−1
2)p1 + (12)(12))p1 = 0 so any p1 will do.

π∗1 into u2 gives u2 = (12 − p2)2 implies π∗2.

In order to calculate the values of u1 and u2 at the NE then we insert in the utility
functions the NE strategies. In (a) we have u1 = 0, u2 = 1

2 and in (b) u1 = 0, u2 = (12)2.
Therefore the utility payoffs are not the same under (a) and (b). If P1 and P2 could get
together they could achieve a Pareto improvement.

This is also an example of two-person, non zero-sum game in which two equilibrium points
lead to different expectations for the players, Nash (1950).

The two MSNE can be obtained purely mathematically without the aid of graphs. However
an explanation of the two different MSNE can given by carefully appealing to their help.

In Figure 1(ii) for cases (a) and (b) we have two different graphs. They look identical to
the one in Figure 1(ii) but they have completely different interpretations. In part (a) the
interpretation of the flat section of R1 refers to choices of mixed strategies on the basis
of u1 calculated at p1 = 0 and p1 = 1 while P2 plays 1

2 . The choices of ku1(0,
1
2)+(1-

k)u1(0,
1
2), where 0 ≤ k ≤ 1, cover the whole flat section and u1 = 0, u2 = 1

2 . Using
mixed strategies P1 makes no distinction between utility and expected utility. Then we
solve the problem and get u1 = 0 and u2 = 1

2 .

In part (b) the flat part of R1 is now made up of pure strategies p1. Given that P2 plays
1
2 then P1 can play a pure strategy p1 to secure the maximum u1 which is zero. Any pure
strategy will do and the whole flat is covered. Then we have an intersection of R1 and
R2, right in the middle, which gives u1 = 0 and u2 = 1

4 . In solution (a) player P1 gains
nothing in relation to (b) but P2 has an advantage. He has more flexibility in the new
circumstances. This is due to the strict convexity of u2 = (p1 − p2)2 with min u2 = 1

4 for
p1 = 1

2 .

The discussion extends into extensive form game trees. We keep the infinite choices of the
players. A quick summary of the relevant concepts is in a short appendix (prosthema).
The definitions and ideas have a wide circulation. They are needed in the tree formulation,
where players take turns in choosing their strategies.

The games are of perfect recall, where the players never forget what they once knew, with
perfect or imperfect information. In the case of imperfect information the players are
constrained to make the same move from every node in an information set.

In Figure 2 we consider strategy profiles for the results under perfect information. All the
NE can again be obtained. The novel result is that a NE might not be Pareto optimal
which is harder to examine in a simultaneous move game.

In Figure 3 we consider the games under imperfect information and the previous MSNE
are re-established. Behavioural strategies and Bayesian equilibria cast the discussion in
current language. As explained in the prosthema, players act on the basis of beliefs
attached to the nodes of an information set. For one of the MSNE calculations are on the
graph.
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0 1

1

1/2

1/2 1/2

1/2

u1 = (p1 − 1/2)p2 and u2 = (p2 − p1)
2

p1

p2

R1

R1

R2

p1

p2

Masses of pure strategies NE:

Changing the utility functions

p1

p1 p1

p2

1/2 ≤ p1 ≤ 1; p2 = 0

On the flat of R1 u1 = 0.(i)

u1 = (p2 − 1/2)p1 and u2 = (p1 − p2)
2

There is no NE in pure strategies.
For p2 = 1/2 max u1 at any p1.

(a) A NE in mixed strat. at the intersection:

(b) Also a NE in mixed strategies:

For p1 = 1/2, at all convex com. u2 = (1/2)2.

(iii)

For p1 = 1/2, at all convex com. u2 = (1/2)2

R1

u2 = 1/2
u1 = 0

> u2(1/2, 1/2) = 0

(ii)

u1 = (1/2)((1/2)(−1/2) + (1/2)(1/2)) = 0

R1 R1

R1

R1

R2

R2R2

R2

R2

R1

R1

R1

The reaction functions for

π∗
1 : (1/2)(0), (1/2)(1); π∗

2 : (1/2)(0), (1/2)(1),

π∗
1 : (1)(1/2) and π∗

2 : (1/2)(0), (1/2)(1)),

Setting π∗
1 into u2 confirms π∗

2,

setting π∗
2 into u1 confirms π∗

1; (u1 = 0p)

π∗
2 into u1 confirms π∗

1;
π∗
1 gives u2 = ((1/2)− p2)

2 max at π2.

Convex combinations of (1/2, 0) and (1/2, 1)

Figure 1
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1/2 1/2

P1

10

P2

P2
1/2

1/21/2

P1

P2

1

1/2 1/2

1/2
1/21/2

0 1 0

(0, p22) (-1/2, 1)(0, 0)

(1/4, 1/4)

p2p2

Both players gain:

The NE was not Pareto optimal.The NE was not Pareto optimal.

(iii)

p1p1

Payoffs

(-1/4, 1/4)

(1/4, 1/4)(-1/4, 1/4)

that the idividual branches are Nash.

Note. NE in mixed strategies does not mean

For example in (ii) P1 plays p1 = 1/2 and P2 plays p2 = 0 with u1 = −1/4.

However if P1 switches to p1 = 0 then he becomes better off with u1 = 0 > −1/4.

For u1 = (p2 − 1/2)p1 and u2 = (p1 − p2)
2

-There is no NE in pure strategies.
- Also two mixed strategy NE (a) and (b).

We saw in Figure 1:

A two step problem looks
at Pareto optimality.

In (b): u1 = 0 and u2 = (1/2)2 shown above.

If P2 plays 1 then P1 can play 1/2− ǫ; prob.= 1.

0

(0, 1)

P2

1/2

(i)

1

(p2 − 1/2), (1− p2)
2

the order of play between P1 and P2.
Of course the same values obtain if we reverse
for the strat. above with prob. 1/2.

with expected valuesu1 = 0, u2 = 2/4.

(iv)

1

1/21/2

1

p2 p2

u1 = (1/2)2 − (1/2)ǫ > 0 and u2 = (1/2 + ǫ)2 > 1/4

In this Figure we look in terms of game trees

10

In (b): u1 = 0 and u2 = (1/2)2

Now P1 plays 1/2.

If P2 plays (1/2)(0) and (1/2)(1).
Now if P1 plays (1/2)− ǫ with prob. 1 then
P2 can play 1. (Ass. ǫ small.) Both players gain:

The NE was not Pareto optimal.

Perfect recall

(1/2, 0)

(ii)

1
P1P1

u1 = (1/2)2 − (1/2)ǫ > 0, u2 = (1/2 + ǫ)2 > 1/4

at (b), in (ii) and (iii), and at (a) in (iv).

0

Figure 2
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U2 1/2U1 1/2

RW W R

A = Pr{W/U1}Pr{U1} = (3/8)(1/2)
Pr{U1/W} = A/B = 3/16

(3/16)+(6/18)

Example of Bayesian calculation
W; white balls

B = Pr{W/U1}Pr{U1} + Pr{W/U2}Pr{U2}
= (3/8)(1/2) + (6/9)(1/2)

R; black balls

P1

Imperfect Information, Perfect Recall

(0, p22)(0, 0) (0, 1)
0 1

RL

(1/2, 0)(p2 − 1/2), (1− p2)
2(-1/2, 1)

l
r

R
L

p1

p2p2 p2p2

0
1

RL

(p2 − 1/2)p1, (p1 − p2)
2)

(−(1/2)p1, (p1)
2) ((1/2)p1, (p1 − 1)2)

u1 = (p2 − 1/2)p1
u2 = (p1 − p2)

2

(perfect inform. in Fig. 2(iv))

(l, L) then P2 can move ∨
(l, p2) P2 can move ∨

(r, L) then P2 can move ∨

(r. R) then P1 can move ∨
(r, p2) P2 can move ∨

(l, R) P1 can move ∨

10

MSNE: (as for perfect infor.)

II
P2 P2

Case (i)

Case (ii)

Possible strategies from I

(ii)

η1 η2ηi

The Bayesian calculations here for MSNE Case (ii)The Bayesian calculations here for MSNE Case (ii)

A = Pr{η1} = Pr{l/η1}Pr{η1} = 1× 1/2)
B = Pr{l/η1}Pr{η1} + ΣiPr{i/ηi}Pr{i} + Pr{l/η2}Pr{η2} = 1/2
Pr{η1/l} = A/B = A

B = 1

Similarly Pr{η2} = 1/2.
So beliefs of P2 to support Case ii:

We have a perfect Bayesian equilibrium (PBE).

π∗
1: (1)(1/2), π

∗
2 : (1/2)(0), (1/2)(1)

π∗
1: (1/2)(0), (1/2)(1), π

∗
2 : (1/2)(0), (1/2)(1)

Some not NE strategies: (0 < p2 < 1)

Pr(η1) = 1/2 and Pr(η2 = 1/2).

(Pure strategies are also behavioural strategies)

(i)

Given that P1 plays 0 and 1 with prob 1/2, (Case (ii)),
For a PBE we need to attach beliefs to nodes η1 and η2

for consistency P2 must attach beliefs 1/2 to each of the nodes.

Figure 3
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Example 2. A zero-sum game.

The utility functions of the players are u1 = p21 + p22 − 3p1p2 and u2 = −p21 − p22 + 3p1p2.
Player Pi chooses strategies pi ∈ [0, 1].

First, it is seen that there are no PSNE. Then we obtain a mixed strategies NE, and
confirm the minimax property, that is theorems T4 and T5.

The function u1 is not quasi-concave because if we insert p2 = 1/3 we get u1 = p21+1/9−p1
which is strictly convex with a minimum at p1 = 1

2 less than zero. On a simple graph we
see clearly that u1 is not quasi-concave.

So in this example the quasi-concavity condition is not satisfied. Theorem T2 gives suffi-
cient condition for the existence of a PSNE. Since this is not a necessary requirement it is
still useful to investigate the possibility of a PSNE.

The relevant graphs are in Figure 4. We now determine the reaction function R2, p2 =
(32)p1, of P1, which goes up to its limit p2 = 1. The flat part of R2 is justifies by the fact
u2 increases in p2 for p1 ≥ 2

3 .

The intersection of R1, including the interrupted line segment, with R2 will define a
MSNE. Let us see what is happening. The intersection is at the point (2/9, 1/3). In
terms of p1 the distance of the pure strategy 2

9 to 0 is 2
9 and from 1 is 7

9 . These are
distances in the pure strategy space of P1. However the very idea of mixed strategy is to
attach probabilities to p1 = 0 and p1 = 1 to capture the significance of p1 = 2/9 in u1.
This is achieved by reversing the distances to get the probabilities. They correspond to
the coefficients of the linear combinations of 0 and 1 which give 2

9 .

For R1 we have that du1/dp1 = 2p2 − 3p2 = 0, which means that u1 is at such a point a
minimum. So we must go away towards the two vertical lines p1 = 0 and p1 = 1. Here
one has to be careful. We have to compare the values u1(0, x) and u1(1, x).

For p2 = x = 1/3 we have u1(0, 1/3)=u1(1, 1/3). This is a good starting point. We now
have to compare the values 0 + p22 and 1 + p22− 3p2. So p22 > 1 + p22− 3p2 for p2 > 1/3 and
p22 < 1 + p22 − 3p2 for p2 < 1/3. This justifies completly the shape of R1.

R1 and R2 in Figure 4(ii) do not intersect and there is no PSNE.

We can also show through a direct argument that there is no PSNE. We examine the graph
in Figure 4(i). The straight lines in the box, p2 = (2/3)p1 and p2 = (3/2)p1 correspond
to du1/dp1 = 0 and du2/dp2 = 0 respectively. The areas corresponding to inequalities are
then easy to establish.

No allocation, away from p1 = 1, in the area du1/dp1 < 0 can be a NE because P1 can
increase p1, with p2 fixed, and become better off. Also, no allocation away from p2 = 1, in
the area du2/p2 > 0 can be a NE because P2 can increase p2, with p1 fixed, and become
better off.

This argument leaves out the allocations (0, 0) and (1, 1). Then for the first P1 can choose
along the horizontal axis and become better off and for (1, 1) P1 can switch to p1 = 0.
Hence, the non-linear infinite mode has no PSNE.

This lack of PSNE can also be confirmed by Corollary 1:

max
p1

min
p2

u1(p1, p2) = 0 <min
p2

max
p1

u1(p1, p2) = 1.

Next, we recall T2 above and calculate a mixed strategy equilibrium, shown in Figure
4(ii) which, is really one of the issues in this note. Then we shall prove the saddle point
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2/3

p1

R1

R1du1/dp1 ≥ 0

du2/dp2 ≤ 0

du1/dp1 ≤ 0
du2/dp2 ≥ 0

2/3

p2

R1

R2

R2
The reaction functions R1 and R2

u1 = p21 + p22 − 3p1p2
du1/dp1 ≥ 0 for 2p1 − 3p2 ≥ 0
du1/dp1 ≤ 0 for 2p1 − 3p2 ≤ 0

1/3

1/2

u1 = (1/3)2 at p1 = 0, 1 for p2 = 1/3

u2 = −p21 − p22 + 3p1p2
du2/dp2 ≥ 0 for 3p1 − 2p2 ≥ 0
du2/dp2 ≤ 0 for 3p1 − 2p2 ≤ 0

R2
p2

R2

1/3

R1

For p2 = 1/3, u1 = p21 + (1/3)2 − p1:

Mixed strat. do better.

R1

p1

u2 = −p22 − (2/9) + (2/3)p2 max: p2 = 1/3.

u1 = p21 + (1/3)2 − p1
max at p1 = 0, 1 and conv. com.
(2/9 from du2/dp2 = 0 at p2 = 1/3).

Mixed strat.

u1 < (1/3)2 for p1 ∈ (0, 1)

p11
Pure strat.

0

u1 − (1/3)2

(iii)

Figure 4

A MSNE: π∗
2 : (1)(1/3),

π∗
1 : (7/9)(0), (2/9)(1)

π∗
1 into u2 gives:

π∗
2 into u1:

(i)

(ii)

u1 = 1/9 and u2 = −1/9.

Figure 4
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property. In Figure 4(iii) we mimic the finite matrix form ideas of finite game;

We claim that π∗1 : (7/9)(0), (2/9)(1) and π∗2 : (1)(1/3) is a MSNE. This is( at the
intersection of R2 with the δ functions convex combinations of points p1 at which R1
breaks.

We put π∗2 into u1. We get u1 = p21 + (1/3)2 − p1 = (1/3)2 + p(p− 1) which is maximized
both at p1 = 0 and p1 = 1; of course π∗1 : (7/9)(0), (1, 2/9) is a convex combination of 0
and 1 and u1 = 1

9 .

Now we put π∗1 : (7/9)(0), (2/9)(1) into u2 = −p21 − p22 + 3p1p2.
We get u2 = −(7/9)p22 + (2/9)(−p22 − 1 + 3p2 = −p22 − (2/9) + 2/3p2 which is maximized
at p2 = 1/3 with u2 = −1

9 . Hence π∗1 : (7/9)(0), (2/9)(1) and π∗2 : (1)(1/3) is a MSNE.

The graph in the right-hand-side corner explains that the δ functions convex combina-
tions, (expected choice), of 0 and 1 give for u1 better values than the corresponding
p1 = (7/9)(0) + (2/9)(1). Hence we can mimic the finite matrix approach.

Now imagine, Player 2 plays p2 = 1
3 , Player 1 plays the linear combination of two strategies

p1 = (79)(0) + (29)(1) = 2
9 , instead of the linear combination of utilities.

u1((
7
9)(0) + (29)(1), 13) = (29)2 − 2

9 + 1
9 < u1(π

∗
1,

1
3) = 1

9 .

Hence mixing utilities is more advantageous to P1 than mixing strategies.

Now we want to check the saddle point property, (T4 and T5), on u1, i.e.

u1(π1, π
∗
2) ≤ u1(π∗1, π∗2) ≤ u1(π∗1, π2) (∗∗)

Now u1(π
∗
1, π

∗
2) = (1/3)2 + (2/9) − 2/9 = 1/9 and u1(p1, π

∗
2) = (1/3)2 + p1(p1 − 1) is

maximiz ed at p1 = 0 and p1 = 1, and hence at π∗1, to u1 = 1
9 . For all other combinations

which involve different p1 pure strategies u1(π1, π
∗
2) < 1

9 . This is used to explain the
left-hand-side inequality of (**).

We also have u1(π
∗
1, p2) = (7/9)p22 + 2/9(p22 + 1 − 3p2) = 2/9 + p22 − (2/3)p2 which is

minimized at p2 = 1/3 to u1 = 1
9 . For all other combinations which involve different p2

pure strategies u1(π
∗
1, π2) >

1
9 . This is used to explain the right-hand-side inequality of

(**).

We have used pure strategies to show that the saddle property (**) holds for all further
such choices. Our space is that of mixed strategies. However there is no problem because
mixed strategies are convex combinations of pure strategies. For the left-hand-side we
take the pure strategy in the mixture with the greatest value and for the right-hand-side
the pure strategy with the lowest value. The same argument should hold even if we are
in the space of complicated mixtures.

Example 3. Two non-zero and one zero-sum games.

(a) In part (i) of Figure 5 we consider the non-zero sum game with u1 = −p21 + p1 + p2
and u2 = −p22 + p2 + p1 where pi ∈ [0, 1].

It is straightforward, and it can be read in Figure 5, that there is only one PSNE, p1 =
p2 = 1

2 , with u1 = u2 = 3/4. The explanation is shown clearly. The two reaction functions,
R1 and R2, are simple straight lines in [0, 1]2. R1 is vertical at p1 = 1

2 and R2 horizontal
at p2 = 1

2 .

(b) In part (ii) We consider the non-zero sum game with u1 = −p21 + p1 + p2 and u2 =
p22−p2−p1 where pi ∈ [0, 1]. Things are more complicated now and there is a multiplicity
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0 1

1

1/2

1/2

1/2
p1

p2 p2

p2

1/2 Convex combination

p1
1

1

P1 plays p1 = 1/2

1

(ii)

R2 R2

R1

R1
R1

R1

R2 R2

R2R2

If also P2 plays convex comb. of 0 and 1, then u2 = −1/2.

and u2 < −1/2 < 0. No NE.
P2 has better switch to a convex comb.

non-zero-sum

u1 = p21 − p1 − p2 max at p1 = 0, 1
zero-sum

u2 = −p21 + p1 + p2 max at p2 = 1

u2+1/2
(ii) continued

p1

0

If instead P2 plays pure strat. p2 ∈ (0, 1) then

Two pure strat. NE: (0, 1) and (1, 1)
Mixed strategies NE: π∗

2 : (1)(1)
π∗
1 : (1/2)(0), (1/2) (1)

u1 = −p21 + p1 + p2 max at p1 = 1/2

MSNE: π∗
1 : (1)(1/2)

u2 = p22 − p1 − p2 max p2 = 0, 1
PSNE: (1/2, 0) and (1/2, 1), respectively
u1, u2: (1/4, -1/2) and (5/4, -1/2).

π∗
2 : (k)(0), (1-k)(1)

with 0 < k < 1; u1 = (5/4)− k and u2 = −1/2.

u1 = −1 and u2 = 1 at all NE.

(i)

non-zero-sum
u1 = −p21 + p1 + p2 max p1 = 1/2
u2 = −p22 + p2 + p1 max p2 = 1/2
Intersection NE in pure strategies.
Only one optimal strategy, which is pure.
u1 = u2 = 3/4

(iii)

u2 = −3/4

Figure 5
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of equilibria.

As above R1 is vertical at p1 = 1
2 . On the other hand R2 consists of the horizontal lines

p1 = 0 and p1 = 1 in the box. This follows from the fact the irrespective of p1 the function
u2 attains its maximum at p2 = [0, 1]. Hence up to this point we have obtained two PSNE:
that is (p1, p2) = (12 , 0) and (p1, p2) = (12 , 1), shown in the two ends of the interrupted
black line. The implied utility functions are (u1, u2)=(1/4,−1

2) and (u1, u2) = (5/4,−1
2)

respectively.

The mixed strategies π∗1 : (1)(12) and the convex combination π∗2 : (k)(0), (1 − k)(1) are
MSNE. This is also also easily seen. Inserting π∗i into uj and maximizing with respect to
pj we get π∗j as an implication. The utility levels are u1 = (5/4)− k and u2 = −1

2 .

The continuation of part (ii) explains that in the MSNE the convex combination in p2
does better than the corresponding pure strategy. If P1 plays p1 = 1

2 then it is better
for P2 to play his mixed strategy which brings in u1 = −1

2 rather the corresponding
pure strategy p2 = (k)(0) + (1 − k)(1) = 1 − k which was available but brings in u1 =
(1− k)2 − 1

2 − (1− k) < −1
2 for k ∈ (0, 1).

(c) In part (iii) the utility functions are u1 = p21 − p1 − p2 and u2 = −p21 + p1 + p2 where
pi ∈ [0, 1]. The strategies π∗1 : (12)(0), (12)(1) and π∗2 : (1)(12) form a MSNE. There are also
two PSNE, (0, 1) and (1, 1).

The proof that (0, 1) and (1, 1) are NE is straightforward. With respect to the MSNE It
is also easy to inserting π∗i into uj and maximizing with respect to pj confirms p∗j , where
i 6= j. It is also routine to show that in all NE we have u1 = −1 and u2 = 1.

Finally, if P2 plays p2 = 1 then it is better for P1 to play his mixed strategy which brings
in u1 = −1 rather the corresponding pure strategy p1 = (12)(0) + (12)(1) = 1

2 which was
available but brings in only u1 = (12)2 − 1

2 − 1 < −1.

Examples 4.

We consider various cases in Figure 6.

(i) we have u1 = (p1 − p2)2 and u2 = −(p1 − p2)2 with p1, p2 ∈ [0, 1].

It is easy to see that the reaction functions, R1 and R2, shown in Figure 6(i), do not
intersect and there is no PSNE. For example, when P1 chooses p1 = 0, it is best response
for P2 to choose p2 = p1 = 0. However, then P1 deviates to p1 = 1.

We can also show here that Corollary 1 is confirmed:

max
p1

min
p2

u1(p1, p2) = 0 <min
p2

max
p1

u1(p1, p2) = 1
4 .

The interrupted line combining the branches of R1 gives the convex combinations of the
strategies (0, 1

2) and (1, 1
2). Hence we have the intersection of two “reaction functions”.

We now show that π∗1 : (12)(0); (12)(1) and π∗2 : (1)(12) is a MSNE.

Inserting π∗1 into u2 player P2 chooses p2 to maximize u2(π
∗
1, p2) = −1

2(0 − p2)2 − 1
2(1 −

p2)
2 = −1

2 + p2 − p22. The function u2 is a is maximized at p2 = 1
2 . Thus, π∗2 is a best

response to π∗1 and maximum u2 = −1
4 .

Inserting π∗2 into u1 player P1 chooses π1 to maximize u1(p1, π
∗
2) = (p1− 1

2)2 = p21−p1 + 1
4 .

The maximization is at the pure strategies p1 =0, 1, and their convex combinations, with
(expected value) u1 = 1

4 .
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Hence we have confirmed that π∗1 : (12)(0); (12)(1) and π∗2 : (1)(12) is a MSNE which is at
the intersection of the two “reaction functions”.

We consider the behaviour of u1 = (p1− 1
2)2. It is strictly convex and attains its minimum

at p1 = 1
2 and the expected value of the mixed strategy is u1 = 1/4. On the other hand

if P2 plays p2 = 1
2 the value at the pure strategy p1 = (12)(0) + (12)(1), which was always

available, is to bring in only u1 = 0. Hence the advantage in mixing is distinct.

(ii) We have the non-zero-sum game u1 = (p1 − p2)
2 and u2 = −(12)p22 + p31p2 with

p1, p2 ∈ [0, 1].

R1 is the same as in Figure 6(i) and R2 is now p2 = p31 represented by the black convex
curve in Figure 6(ii). R1 and R2 do not intersect and there is no PSNE. For example, if
P2 chose p2 = p31 = 1 player P1 would choose p1 = 0 and not p1 = 1

We now show that π∗1 : (12)(0); (12)(1) and π∗2 : (1)(12) is a MSNE.

Inserting π∗1 : (12)(0); (12)(1) into u2 player P2 will choose π2 to maximize u2(π
∗
1, p2) =

1
2(−1

2p
2
2 + 0) + 1

2(−1
2p

2
2 + p2) = −1

2p
2
2 + 1

2p2. The maximum is at p2 = 1
2 . Thus, π∗2 : (1)(12)

is confirmed and u2 = 1
8 .

When P2 plays π∗2 : (1)(12), P1 chooses π1 to maximize u1(p1, π
∗
2) = (p1− 1

2)2 = p21−p1+ 1
4 .

The maximum is at the pure strategies p1 =0, 1, and their convex combinations and π∗1 is
confirmed and the (expected value) is u1 = 1

4 .

This proves3 that π1 : (12)(0); (12)(1) and π2 : (1)(12) is a MSNE, with u1 = 1
4 and u2 = 1

8 .

Now assume P2 plays p2 = 1
2 but instead of the linear combination of utilities, π1, player

P1 plays the corresponding linear combination of strategies p1 = 1
2(0) + 1

2(1) = 1
2 which

is itself a pure strategy. In this case,

u1(
1
2(0) + 1

2(1), π2) = (12 − 1
2)2 = 0 < u1(π1, π2) = 1

2(0− 1
2)2 + 1

2(1− 1
2)2 = 1

4 .

Thus, the available linear combination of strategies is not as good for P1 in terms of utility.

(iii) We now have u1 = (p1− p2)2 and u2 = −(12)p22 + pv1p2 with p1, p2 ∈ [0, 1] with v < 1.
R1 is known and the reaction function R2 has equation p2 = pv1 represented by the strictly
concave curve corresponding to Figure (iii). The two reaction functions do not intersect
and there is no PSNE.

We can consider (iii) as we did for (ii). Again as in (i) the mixed strategies π∗1 :
(12)(0), (1/2)(1) and π∗2 : (1)(12) is a MSNE, in spite of the substantial change in R2.
Inserting π∗i into uj we get its maximum at π∗j . The initial thought might have been that
the NE, guaranteed by the continuity theorem, will be at the intersection of the reaction
function of P2 and the interrupted extension of R1.

Of course the issue of existence of NE is settled by the conditions of theorems, presented
here adjusted to the case the compact sets of pure strategy [0, 1]. Characteristic of
investigating the type of NE is the existence of a utility function (p1 − p2)2 for one of the
players.

Figure (6)(ii) and (iii) make the significant point that, in contrast to Figure 6(i), intersec-
tion of R2 with the “reaction function” of P1 does not imply a NE. Player P2 will play

3One can also argue as follows. Consider π1 : (x)(0), (1 − x)(1). Inserting this into u2 we get u2 =
− 1

2
p22 + (1−x)p2 which implies p2 = 1−x. If x = 1

2
then we check as self-fulfilling pair π1 : ( 1

2
)(0), ( 1

2
)(1)

and π2 : (1)( 1
2
) which is confirmed. On the other hand x < 1

2
will imply p2 >

1
2

which on R1 gives p1 = 0;
this gives on R2 p2 = 0 different than p2 > 0. — Analogously x > 1

2
will imply p2 <

1
2

which on R1 gives
p1 = 1; this gives on R2 p2 = 1 different than p2 < 0. —
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u1 = (p1 − p2)
2

R2
R1

u1 = (p1 − p2)
2

u2 = −(p1 − p2)
2

R1

R1

R1R1

R2

Zero Sum Game

Non-Zero Sunm Game

Alternative case:

u1 = (p1 − p2)
2

0 < v < 1

u2 = −(1/2)p22 + p31p2

u2 = −(1/2)p22 + pv1p2,

(ii)

p1

p1

p2

p2

Consider the mixed strategy NE:

π∗
1 in u2 gives

u2 = (1/2)(−(1/2)p22) + 1/2(−(1/2)p22 + p2), i.e.

Hence a NE in mixed strategies.

Away from

p1

p2
R2 R2

NE

(iv)

Figure 6hatzi1

u2 = −(1/2)p22 − p2(p
2
1 − p1) + (1/2)p2

Suppose u1 = (p1 − p2)
2,

from du2/dp2: p2 = −p21 + p1 + (1/2)

(i)

Hence a NE in mixed strategies.

Considering only pure strategies:

Confirming Corollary 1.

max u2 = −(1/2)(2p22 + 1− 2p2) at p2 = 1/2

maxp1minp2u1 = 0 <minp2 maxp1u1 = 1/4.

π∗
2 = (1)(1/2).

π∗
1 : (1/2)(0), (1/2)(1)

(a) π∗
1 : (1)(1)

π∗
2 : (1)(1/2)

(b) π∗
1 : (1)(0)

π∗
2 : (1)(1/2)

(c) π∗
1 : (1/2)(0); (1/2)(1)
π∗
2 : (1)(1/2).

π∗
1 : (1/2)(0); (1/2)(1)

π∗
2 : (1)(1/2).

π∗
2 gives max u1 at conv. com. p1 = 0, 1

π∗
2 gives max u1 at conv. com. p1 = 0, 1

π∗
1 in u2 gives

u1 = 1/4, u2 = −1/4.

MSNE:

Max u2 = −(1/2)p22 + (1/2)p2, i.e. p2 = 1/2

u1 = 1/4, u2 = 1/8.

(iii)

π∗
1 : (1/2)(0), (1/2)(1)

π∗
2 = (1)(1/2) in u1 as above.

π∗
1 in u2 gives

Max u2 = −(1/2)p22 + (1/2)p2, i.e. p2 = 1/2
Hence a NE in mixed strategies.

Away from

u1 = 1/4, u2 = 1/8.

u1 = 1/4, u2 = 1/8.

Figure 6
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p2 = 1/2. So in general even if there is no intersection of the “reaction functions” at a
particular point a NE might still exist there.

In the finite matrix games the resolution would be at the intersection of the reactions
functions. The flat section gives the only values to be considered. The issue in the infinite
case is more involved. The expected value of u1 at the intersection should also be compared
with the value at the corresponding pure strategy. The function u1 = (p1−1/2)2 is strictly
convex with a minimum value at p1 = 1/2. This means that the “corresponding” pure
strategy gives a higher value to u1 than the constant convex values.

Now as in (ii) P2 plays p2 = 1
2 but instead of the linear combination of utilities, π1, player

P1 plays the corresponding linear combination of strategies p1 = 1
2(0) + 1

2(1) = 1
2 , itself a

pure strategy. In this case,

u1(
1
2(0) + 1

2(1), 1/2) = (12 − 1
2)2 = 0 < u1(π1, π2) = 1

2(0− 1
2)2 + 1

2(1− 1
2)2 = 1

4

Thus, the available linear combination of strategies is not as good for P1 in terms of utility.

More than that, in this particular game P1 has u1 = (p1 − p2)2, player P2 plays p2 = 1
2

and max u1 = 1
4 . For all pure strategies, p1 ∈ (0, 1), u1 = (p1 − (1/2))2 is below 1

4 , the
constant value of convex combinations of utilities. There is no danger that the utility of
a corresponding pure strategy could do better.

Figure 6(iv) presents a model with multiple NE. It gives a game with two pure strategies
NE, and also a mixed NE, again, away from intersection of “reaction functions”. The
calculations are straightforward.

Let u1 = (p1 − p2)2, u2 = −1
2p

2
2 − p2(p21 − p1) + 1

2p2 where p1 ∈ [0, 1] and p2 ∈ [0, 1].

R1 has been established and from du2/dp2 = 0 the reaction function R2 with equation
p2 = −p21 + p1 + 1

2 follows. It is a concave function with p2 = 1/2 at p1 = 0, 1 and a
maximum value 3

4 at p2 = 1
2 .

There are two PSNE: (0, 12) and (1, 12). When P1 chooses p1 = 0 player P2 will play p2 to
maximize p2 = −p21 + p1 + 1

2 = 1
2 which as a constant allows p2 = 1

2 can be chosen. When
P2 chooses p2 = 1

2 then in order to maximize u1 player P1 will choose p1 = 0. Hence,
(0, 12) is a PSNE, with u1 = 1/4 and u2 = 1

8 . Analogously (1, 12) is a PSNE with u1 = 1
4

and u2 = 1
8 , as above.

There is also a MSNE, where π∗1 : (12)(0); (12)(1) and π∗2 : (1)(12). When player P1 plays
π∗1 : (12)(0); (12)(1), player P2 chooses p2 to maximize
u2(π1, p2) = 1

2(−1
2p

2
2 − p2(02 − 0) + 1

2p2) + 1
2(−1

2p
2
2 − p2(12 − 1) + 1

2p2) = −1
2p

2
2 + 1

2p2
Thus, π∗2 : (1)(12) is a best response to π∗1 : (12)(0); (12)(1).

When P2 plays π∗2 : (1)(12), player P1 chooses p1 to maximize u1(p1, π
∗
2) = (p1 − 1

2)2 =
p21 − p1 + 1

4 . The function u1 is maximized at p1 = 0 and p2 = 1 and takes the values
u1 = 1

4 at both points. The linear combination of u1(0,
1
2) and u1(1,

1
2) are also equal to 1

4 .
Thus, π∗1 : (12)(0); (12)(1) is a best response to π∗2 : (1)(12). It follows that π∗1 : (12)(0); (12)(1)
and π∗2 : (1)(12) form a MSNE with u1 = 1

4 and u2 = 1
8 .

Now, assume instead of the linear combination of utilities we consider the effect of P1
playing p1 = 1

2(0) + (1 − 1
2)(1), i.e. the corresponding convex combination of strategies,

while p2 = (12). Then, u1(
1
2(0) + (1− 1

2)(1), 12) = (12 − 1
2)2 = 0 < u1(π1,

1
2) = 1

4 .

This is as it should be, because we are in a model with an infinite set of pure strategies and
p1 = 1

2(0)+(1− 1
2)(1) was also available as such but it was not chosen in the maximization

of u1, which selected instead π1 : (12)(0); (12)(1).
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Examples 5.

Reny (2005) discusses the zero-sum game: u1 = |p1+p2|, u2 = −|p1+p2| where P1 and P2
choose their strategies in [−1, 1], (which does not affect the theorems), and explains that
there is no PSNE. Here we use graphs and show also that a MSNE exists. The structure
of the model is given in Figure 7. The discussion is interesting because of the absolute
value functions involved.

We look at the reaction function R1 and R2. Player 2 chooses p2 to maximize u2 =
−|p1 + p2| for p1 given. Hence he chooses p2 = −p1 and we obtains R2 in the graph.
Player P1 chooses p1 to maximize u1 = |p1 + p2| for given p2. For all p2 ∈ [−1; 0], u1 is
maximized at p1 = −1, and for all p2 ∈ [0; 1], u1 is maximized at p1 = 1. Hence for p2 = 0
the function u1 is maximized at both p1 = −1 and p1 = 1. Hence we obtain R1, in two
vertical pieces in the graph of Figure 7(i). R1 and R2 do not intersect and there is no
PSNE.

An explanation can be like this. For all p2 ∈ [−1; 0), the reaction for P1 is to choose
p1 = −1. However, P2’s best response is p2 = 1. Analogously for all p2 ∈ [0; 1), the
reaction for P1 is to choose p1 = 1. However, P2’s best response is p2 = −1. Also for
p2 = 0 there is no coincidence of optimal strategies. Hence, there is no PSNE.

Also, from Corollary 1, there is no PSNE, as max
p1

min
p2

u1 = 0 <min
p2

max
p1

u1 = 1.

P1 argues: no matter what p1 that I play, P2 will minimize my utility by playing p2 = −p1.
Hence the left-hand-side is zero. For the right-hand-side, P2 argues: no matter what p2
that I play, P1 can secure u1 ≥ 1. In particular, I can play p2 = 0 and P1 will play either
-1 or 1.

Finally, Figure 7(ii) explain that the set of p1’s with u1 = |p1 + 0| ≥ u1 = |a+ 0|
is not convex. Hence, u1 = |p1 + p2| is not quasi-concave. Hence the conditions of T2 are
not satisfied.

On the other hand the continuity of the absolute vale functions implies by T3 that a
MSNE exists.

Now, R1 is extended through δ functions and the two branches are united through the
interrupted line. We show that an MSNE consists of: π∗1 : (12)(−1), (12)(1) and π∗2 : (1)(0).
π∗1 in u2 confirms π∗2 and π∗2 in u1 confirms π∗1.

When P1 plays π∗1 : (12)(−1), (12)(1) , player P2 chooses p2 to maximize
u2(π1, p2) = −(12)|−1+p2|−(12)|1+p2| = −1

2(|p2−1|+|p2+1|) = −1
2(1−p2+1+p2) = −1.

Hence u2 = −1 irrespective of p2 and we choose p2 = 0 with probability 1.

Next, we check whether π∗1 : (12)(−1), (12)(1) is a best response to π∗2 : (1)(0). When P2
plays π2 : (1)(0), P1 chooses π1 to maximize u1(p1, π2) = |p1 + 0|. This function takes the
maximum value u1(−1, 0) = u1(1, 0) = 1 and π∗1 : (12)(−1), (12)(1) is also a best response
to π∗2 : (1)(0). Hence π1 : (12)(−1), (12)(1) and π2 : (1)(0) is a MSNE.

Now, suppose that P2 plays π2 : (1)(0), and P1 chooses the pure strategy p1 = 1
2(−1) +

1
2(1) = 0, instead of using on u1 the mixed strategy π1 : (12)(−1), (12)(1). In this case,

u1(
1
2(−1) + 1

2(1), 0) = |0 + 0| = 0 < u1(π1, 0) = 1
2 | − 1 + 0|+ 1

2 |1 + 0| = 1.

Thus, the linear combination of utilities guarantees higher payoff for P1, than the corre-
sponding linear combination of strategies.
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p10-1 1

a

u1 = |p1 + 0|

The set of p1’s with u1 = |p1 + 0| ≥ u1 = |a + 0|

(i)

Then R1 is extended through δ functions.

is not convex. Hence u1 = |p1 + p2| is not quasi-conc.

p2

-1

0

p10 1

R1

R1

p1, p2 ∈ [−1, 1]
u1 = |p1 + p2|
u2 = −|p1 + p2|

(ii)

Hence theorem T2 does not apply.

No NE in pure strategies:
the black reaction functions do not intersect.

R2

R2

An MSNE: π∗
1 : (1/2)(-1), (1/2)(1) and π∗

2 : (1)(0)
π∗
1 in u2 confirms π∗

2 and
π∗
2 in u1 confirms π∗

1 and

u1 = 1, u2 = −1

Figure 7

4 Concluding comments.

We have attempted to discuss MSNE in two-person games with an infinite compact sets
of pure strategy [0, 1] and nonlinear utility functions. The use of such games is not very
familiar and the examples chosen clarify the significance of the utility functions.

The issue is whether attempting to construct the NE we could use, (mimic), and in what
sense, the idea employed in the finite matrix games of crossing reaction functions. This
is an important point to consider. Another point is that there might be NE away from
crossing points.

If the reaction function in pure strategies break up at a particular choice of the opponent
a rule of thumb would be to connect the pure strategies with straight lines through δ
functions and form mixed strategy “reaction functions”.

Then we consider the intersection of the “reaction functions”. And on the basis of a
rigorous mathematical calculation proceed to see whether this is a MSNE. However for
the mixed strategies we need to calculate the probabilities of the intersection point. In the
finite model the intersection point is itself in probabilities. So when we are attempting to
“mimic” the finite pure strategies model we mean in the limited sense that the intersection
could again be an equilibrium point. We bear in mind that this in now in terms of strategies
and we ask whether the implied probabilities lead to MSNE.

We look at the significance of the strictly convex utility function u1 = (p1 − 1
2)2 in Figure

6(ii). It attains its minimum at p1 = 1
2 .

It implies that reaction function of P1 beaks up at p2 = 1
2 and it is clear that there is

no PSNE. On the other hand from the continuity of the utility functions we know that a
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MSNE exists. The mixed strategy of P1 must now be of the form π1 : (k)(0), (1 − k)(1)
and this determines what happens next. We introduce this into the given u2 and maximize
with respect to p2. This gives p2 = 1

2 and we have obtained a MSNE. One might have
thought originally that the intersection point (45 ,

1
2) was a candidate for an equilibrium.

We also provider further justification for the existence of NE. In the case of Examples 2
and 5, the relevant utility functions are such that the value along the “reaction function”
is above the value at the expected pure strategy. So there is no problem in believing that
we can ‘mimic’ what is happening in the finite matrix games. There is a richness of cases.

Short Posthema.

In game theory, the extensive form is a way of describing a game using the idea of a tree.
A finite tree is a directed graph whose nodes are positions in a game and whose edges are
moves. A path can cross each information set at most once. A (directed) path connects
in a unique manner the initial node of the tree with the terminal node. The payoffs are
shown at the end of each branch.

The nodes form information sets which are assigned to the players. In a perfect information
set the player know exactly his position. In the case of imperfect information the player
does not know at which individual node he finds himself.

A pure strategy, (PS), of a player maps each of his information sets into the actions
available at that set. Mixed strategies, (MS), )are defined to be probability distributions
over pure strategies. Behavioural strategies, (BS), attach a probability distribution to the
moves from each information set; these probabilities are attached independently. A pure
strategy is also a behavioural strategy.

A behavioural strategy means that when a player is an information set he spins a wheel
to decide which move he will make. The wheel is the same for all nodes in this set.

A Perfect Bayesian Equilibrium, PBE, consists of a set of players’ optimal behavioural
strategies, and consistent with these, a set of beliefs which attach a probability distribution
to the nodes of each information set. Consistency requires that the decision from an
information set is optimal given the particular player’s beliefs about the nodes of this
set and the strategies from all other sets, and that beliefs are formed from updating,
using the available information. If the optimal play of the game enters an information
set then updating of beliefs must be Bayesian. Otherwise appropriate beliefs are assigned
arbitrarily to the nodes of the set.

Definitions. A player P is said to have perfect recall if he never forgets what he once
knew. A game is said to be of perfect recall if every player has perfect recall.

If a player can recall all of his previous actions, he might still not be able to distinguish
between the nodes of an information set by recalling how exactly he got to that set. All
he will recall from any node of that set is the same sequence of previous information sets
and the moves he made from them.

It may be that a player has an infinite number of possible actions to choose from at a
particular decision node. The device used to represent this is an arc joining two edges
protruding from the decision node in question. If the action space is a continuum between
two numbers, the lower and upper delimiting numbers are placed at the bottom and top
of the arc respectively, usually with a variable that is used to express the payoffs. The
infinite number of decision nodes that could result are represented by a single node placed
in the centre of the arc.
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The strategic form (or normal form) is a way of describing a two-player game using a
matrix. Different players are exhibited on a side of the matrix with their strategies or
choices. The entries give corresponding payoffs. For the matrix game we know that a NE
equilibrium exists and the reaction functions must intersect.
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