IT City Research Online
UNIVEREIST;]OggLfNDON

City, University of London Institutional Repository

Citation: Marques, P., Rhode, M. & Gashi, |. (2021). Waste not: using diverse neural

networks from hyperparameter search for improved malware detection. Computers &
Security, 108, 102339. doi: 10.1016/j.cose.2021.102339

This is the accepted version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/26278/

Link to published version: https://doi.org/10.1016/j.cose.2021.102339

Copyright: City Research Online aims to make research outputs of City,
University of London available to a wider audience. Copyright and Moral Rights
remain with the author(s) and/or copyright holders. URLs from City Research
Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,
educational, or not-for-profit purposes without prior permission or charge.
Provided that the authors, title and full bibliographic details are credited, a
hyperlink and/or URL is given for the original metadata page and the content is
not changed in any way.

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

Waste not: using diverse neural networks from
hyperparameter search for improved malware
detection

Pedro Marques
Centre for Software Reliability
City, University of London
London, United Kingdom
pedro.magalhaes-marques @city.ac.uk

Abstract—Many commercial anti-virus software already use
some form of machine learning to help with detection. How-
ever, there has been little research on ways in which multiple
algorithms can be combined to improve malware detection. This
paper presents an analysis of a dataset of malware and benign
software, analysed by diverse recurrent neural networks (RNNs).
Our focus is on analysing the possible benefits and/or drawbacks
in malware detection from using multiple algorithms in diverse
configurations. We have analysed the sensitivity, specificity and
accuracy of RNN combinations with up to 10 models per
combination, using prediction results from a previous research.
Our results show significant gains in malware detection when
using combinations with 1-out-of-N adjudication schemes (an
increase of 0.28), and likewise gains for specificity in N-out-of-
N schemes (an increase of 0.14). We also look at the interplay
between sensitivity and specificity when putting together systems
that use a simple majority adjudication scheme (e.g. 3-out-of-5).
Additionally, we highlight the major sources of diversity between
the various RNN models used, and speculate on the benefits
towards specific types of malware. To the best of our knowledge,
similar results on the use of diverse machine learning algorithms
for malware detection have not been presented in the past.

Index Terms—malware detection; design diversity; diverse
machine learning; model diversity; cybersecurity

I. INTRODUCTION

The use of design diversity, especially using available off-
the-shelf components, for improving security is well known
in the security community [1]. The expanding availability of
off-the-shelf software has allowed security administrators to
develop complex and highly reliable defence mechanisms at
a fraction of the cost of developing purposefully built tools'.
This is especially true for network defence systems, where a
large number of Intrusion Detection Systems (IDSs), anti-virus
and malware detection software, etc., exist [2], [3].

For malware detection, static data analysis is a promi-
nent technique, sometimes in the form of signature-based
approaches which is incorporated in all modern anti-virus
software solutions. However, these approaches can be easily

le.g. Security Information and Event Management tools such as Splunk,
ELK, Security Onion etc.

Matilda Rhode
Airbus
Newport, United Kingdom
matilda.rhode @airbus.com

llir Gashi
Centre for Software Reliability
City, University of London
London, United Kingdom
ilir.gashi.1 @city.ac.uk

circumvented through code obfuscation [4], and are addition-
ally of limited use when attempting to detect new malware.
A possible solution is a dynamic data analysis approach, in
which the activity generated by a potentially malicious sample
is analysed in real-time by a defence system, and malicious
actions are detected from this analysis. Many solutions claim
to do this through the use of machine learning (ML) algorithms
(e.g. Lastline’s Defender?).

The use of multiple ML models may further increase the
security guarantees, although little research has been carried
out in this field (recent examples include [5], [6]). Ensem-
ble learning algorithms, such as Adaboost [7] and Random
Forests [8], make use of multiple models but these algorithms
prioritise efficiency and/or accuracy rather than diversity. The
benefits gained from the use of diverse models can vary
significantly based on the problems to which they are applied,
and the diversity of the models themselves. For ML models,
this diversity would come from the parameters used to build
the models, as well as the way in which the models are trained.

In this research, we have analysed the potential diversity
benefits of using multiple recurrent neural network (RNNs)
models for the classification of malware and benign samples.
We used a dataset from a previously published research by
one of the authors of this paper [9], which contains predictions
from a set of 37 RNN models, trained and tested on a dataset of
over 4000 software samples. The models operate as a dynamic
data analysis mechanism, analysing the activity generated by
samples as they are run on a virtualised system. The authors
of [9] analysed the performance of each model individually. In
this paper we present analysis of combining the various models
in combinations of up to 10 elements, in 1-out-of-N, N-out-of-
N and simple majority schemes. A 1-out-of-N voting scheme,
classifies a sample as malicious if any 1 out of N models in
the combination classifies it as such. Conversely, a N-out-of-N
voting scheme, classifies a sample as malicious only if all N
out of N models in the combination classifies it as such. In
a simple majority scheme, a sample is classified as malicious

Zhttps://www.lastline.com/solutions/network-defender/

if the majority (N/2+1) out of N models in the combination
classify it as such. We have also analysed the main sources of
diversity between the various models, and how additional RNN
models could be built in the future to leverage the most gains
in terms of both sensitivity (correct detection of malware),
specificity (correct classification of benignware) and overall
accuracy (optimising for a balanced improvement in correct
classification of malware and benignware). Additionally, we
explore the benefits of this diversity when used to detect
specific types of malware.
The main findings are as follows:

o An average increase in sensitivity from 0.55 (single
models) to 0.83 (1-out-of-10 adjudication schemes), with
a maximum sensitivity observed of 0.94 in 1-out-of-10
schemes compared to 0.90 in single models.

o An average increase in specificity from 0.82 (single
models) to 0.96 (10-out-10 adjudication schemes), with
a maximum specificity observed of 0.99 in 10-out-of-10
schemes compared to 0.93 in single models.

e Two characteristics have the biggest impact in creating
diverse models: i) the choice of optimiser used for the
models; and ii) how long each model is given to observe
the sample execution before it generates a prediction on
whether the sample is malicious or benign.

e We observe similar benefits from the use of diverse
RNN models when analysing different malware types,
with only small differences in the detection capabilities
between malware types.

To the best of our knowledge similar analysis of diversity of
ML algorithms for malware detection has not been published
before.

The rest of this paper is organised as follows: in Section II
we discuss related work in the fields of design diversity and
malware detection with the use of machine learning models; in
Section III we detail the manner in which the ML models in
our research were built, trained and tested, as well as how
the samples used were collected; Section IV gives a brief
description of the dataset we have analysed; Section V contains
the main body of our analysis results, pertaining to the use of
diversity analysis of the dataset; and finally in Section VI we
provide a discussion of our results.

II. RELATED WORK

The security community is well aware of diversity as
potentially valuable [10], [11]. Discussion papers argue the
general desirability of diversity among network elements, like
communication media, network protocols, operating systems,
etc., but only sparse research exists on how to choose diverse
defences (some examples in [3], [11]-[13]). Potential benefits
from design diversity for safety and reliability have been stud-
ied for many years. See for example work on a probabilistic
model of diversity outlined in [14], [15], which were motivated
by the work on N-version programming [16]. It has been
discussed as a risk reduction strategy, particularly at the start
of a project [17]. The authors of [17] also warn that different
application areas require different measures to calculate the

effectiveness of design diversity, and as such the publishing
of results from one area might not be directly applicable in
other areas. Littlewood et al. [10] further compound this point
by discussing how measuring the performance of IDS’s should
be done based on categories of attacks, rather than using an
average mixture of attack classes.

Design diversity with machine learning, also known as
machine learning ensembles, have been researched for a while
(e.g. [7], [8]), though the goals differ somewhat from the
more traditional use of design diversity, by being focused on
improving the final model accuracy rather than attempting
to create systems which are as diverse from one another
as possible. Two popular techniques are often mentioned,
bagging and boosting [18]. With bagging techniques (e.g.
random forests), different machine learning models are trained
with different subsets of the same dataset, essentially creating
data diversity. Models are given N-sized subsets of the data
to train on, where N is the size of the original dataset. This
means that samples can (and often will) be repeated for the
same model, and virtually guarantees that different models
will have a different data distribution to learn from. Boosting
techniques expand on those found in bagging approaches by
turning it into an iterative approach. In boosting techniques
(e.g. AdaBoost), models are given a random subset of training
data, and subsequently tested. After this, new models are
created with another random subset of training data, although
this time samples that were previously poorly classified are
given extra weight, meaning that they should be further repre-
sented in the new set of models. This process continues until
the models achieve a desired performance metric. Bagging
and boosting methods are predicated on the assumption that
many poorly performing models, known as weak learners, can
create a strong learner when their predictions are combined.
Ensembles of ML models can be made from any combination
provided there is a rule for determining a final classification
(such as majority voting). The diversity in predictions of the
components of the ensemble enable the ensemble to achieve
better accuracy than using a single constituent part.

Recent work with design diversity of machine learning
models includes work done by Machida [6], where the au-
thors propose an N-version architecture for machine learning
models, and point out the usefulness of model diversity and
input diversity in creating models that would be expected to
exhibit failure diversity. Goodfellow et al. [19] have noted that
variance in neural network (NN) predictions can be promoted
by altering the hyperparamters of the model and/or the data
used for training. The average prediction of these models can
then be used as the final prediction. NN models have provided
state of the art results in a number of domains including com-
puter vision and natural language processing [20]. NNs have
many hyperparamaters to tune prior to training and the best set
of hyperparameters is found through experimentation (random,
Bayseian or other method). As Hansen and Salamon pointed
out in 1990 [21], hyperparameter tuning is computationally
expensive and discarding all configurations but the single best-
performer may be considered a waste of using that energy

if other models can be used to improve model performance.
Recently, Xu et al. [5] emphasised that diversity in the training
data has the most significant effect in the diversity in failure
behaviour of NN models.

When making predictions on malicious versus benign soft-
ware samples, the features used by machine learning models
are typically derived from either the code or the behaviour
exhibited by these samples. Static data, derived directly from
code is easily collected and analysed, though signature-based
methods fail to detect obfuscated or entirely new malicious
code. This is demonstrated by Saxe and Berlin [22] where
their solution falls from a 95.2% true-positive rate to 67.7%
when tested only on new samples not seen during training.

Methods that use dynamic data assume that malware must
enact the behaviours necessary to achieve their aims. Typically,
these approaches capture behaviours such as API calls to the
operating kernel. Firdausi et al. [23] compare machine learning
algorithms trained on API calls and achieve an accuracy of
96.8% using correlation-based feature selection and a J48
decision tree. Other examples ([24]-[26]) report similar levels
of success when using dynamic data methods.

III. METHODOLOGY

As this analysis makes use of the hyperparameter tuning
conducted for [9], we will first describe the methodology in
which that work was carried out. The original work focused on
the creation of a set of recurrent neural network (RNN) models
for the classification of malware and benignware samples,
through the use of dynamic data analysis. As opposed to static
data analysis, models using dynamic approaches look at the
activity generated by a sample as it runs in a system. One
of the key insights needed for this is the ability for models
to process time-series data (the data generated by a sample
during the time it is ran), and two major machine learning
models are useful for this, RNN and Hidden Markov Models
(HMM). The justification in [9] for using RNN is that these
are capable of processing continuous time series data, unlike
HMM.

A total of 37 RNN models were created. Each model works
by analysing the activity generated by a sample when run in a
virtualised environment, using 10 different metrics as feature
inputs: system CPU usage, user CPU usage, packets sent,
packets received, bytes sent, bytes received, memory use, swap
use, the total number of processes currently running and the
maximum process ID assigned. A snapshot of the metrics is
taken every second for 20 seconds whilst the sample executes,
starting at O seconds, such that at 1 second, there will be two
feature sets or a sequence length of 2. Whilst API calls to
the operating system are the most popular behavioural features
used in dynamic malware detection, they were not used for this
study, as recent work has shown that they achieve comparable
performance to the machine metrics used in this paper but are
a less robust data source when tested on data from a different
underlying distribution [27].

Previous work [9] has looked at the contribution of these
features to malware classification by excluding each one from

high-performance models and noting the accuracy deprecia-
tion. Each feature had an impact on the models tested and no
two features are perfectly correlated. It may seem odd that
CPU usage can distinguish malicious and benign behaviour
given the amount of work done by background system pro-
cesses which will also consume computational resources but
since each sample has been executed in a virtual machine reset
to the same snapshot between each sample. Furthermore it is
not the CPU usage alone which enables distinction between
malware and benignware but the combination of this data with
other features.

In order to create RNN models that are different from
one another, each model was built with a different set of
hyperparameters. Table I describes these hyperparameters in
more detail. When creating the models, a random search of the
hyperparameter space was used as this allowed for easier par-
allelisation and implementation. Additionally, random space
search has been found to be more efficient at finding good
configurations when compared to grid search [28], which uses
a discrete search space for hyperparameter values rather than
a continuous one.

To be able to generate predictions for the entirety of the
sample dataset, while still making use of this same dataset
for training purposes, a 10-fold cross validation technique
was used. The sample dataset was split into 10 equally sized
partitions. Models were trained with 9 of these and tested
on the remaining partition, a process which was repeated
10 times, each time changing which partition was tested.
The predictions generated for the 10 testing partitions were
then combined, for ease of performance comparison between
different models. It is crucial to note that when generating a
prediction for a sample, a model was never trained using that
same sample. The predictions generated by the RNN models
are expressed in values between 0 and 1, where a prediction
of 0.5 or higher is interpreted as a malware classification,
with anything under this value being considered a benignware
classification.

The sample dataset contains equal parts benign and mali-
cious samples. The malware and benignware were collected
from a variety of different online sources, including VirusTo-
tal, Softonic, PortableApps, SourceForce® and Windows OS.
These were subsequently labelled as malicious or benign and
with a malware type, if applicable, using the VirusTotal API.
Each sample was run in a virtualised environment, using
Cuckoo Sandbox, and machine activity metrics extracted using
a custom auxiliary module reliant on the Python Psutil library.
This is illustrated in Fig. 1.

The predictions generated by the models individually for
each of the samples was published in [9]. For this work,
we have expanded the analysis by looking at the possible
gains and drawbacks of using multiple RNN models in more
traditional adjudication schemes. A basic example of this
would be to use two different models rather than one, in

3

www.virustotal.com; www.softonic.com;

www.sourceforge.net

www.portableapps.com;

i CuckooSandbox |

Machine

Extracted

tensor of
size (time, 10)

Hidden layers
of GRU cells

Fig. 1. High-level model overview

TABLE I
MODEL HYPERPARAMETERS

Attribute Description

Model architecture

Depth Number of hidden layers in GRU-

RNN

Hidden neurons Number of neurons (GRU-cells) in

each hidden layer

Bidirectional Time series processed forwards as
well as backwards

Model training

Batch size Number of training samples seen
by the network between each
weight update

Epochs Number of times model is exposed
to full dataset

Optimiser Weight update rule

Learning rate Multiplier on weight changes dur-
ing training for SGD (0.001 learn-
ing rate used for Adam)
Proportion of randomly zero-ed
neurons during training to help
with overfitting

L1 recurrent weight regulariser L1 normalisation on
weights

L2 normalisation on
weights

R1 recurrent weight regulariser R1 normalisation on
weights

R2 normalisation on
weights

Dataset

Amount of data seen by each
model for each behavioural trace

Dropout rate

recurrent

L2 recurrent weight regulariser recurrent

recurrent

R2 recurrent weight regulariser recurrent

Sequence length

a l-out-of-2 (loo2) adjudication scheme. In this scenario,
our overall system would generate a malware classification
if either of our two internal models generated a malware
classification. This configuration would generally lead to an
increased sensitivity metric (the number of correct malware
classifications), while decreasing the specificity (the number
of correct benignware classifications) by potentially generating
more false positives. In a similar manner, a 2-out-of-2 (2002)
adjudication scheme would lead to an increased specificity and
decreased sensitivity.

By looking at the raw predictions generated by the models
for each individual sample, we are able to extrapolate what
each possible adjudication scheme would predict as a whole,
allowing us to calculate various performance metrics (such as
accuracy, sensitivity, and specificity) for each possible com-

bination of models, with each possible adjudication scheme.
We have done this for combinations of up to 10 models*
in three different types of adjudication schemes: i) 1ooN
schemes, which improve sensitivity; ii) NooN schemes, which
improve specificity; and iii) simple majority schemes (i.e.
2003, 3005, 4007, 5009) which represent a middle ground
between sensitivity and specificity.

Additionally we have done this analysis based on the various
hyperparameter values of each model, allowing us to better
understand which parameters lead to an increased diversity
between models, as well as based on malware type, making
it possible to determine whether design diversity techniques
have different effects for different type of malware.

I'V. DESCRIPTION OF THE DATASETS

We have analysed a dataset from [9], containing the predic-
tions generated by 37 RNN models against a sample dataset
of 4,066 malware (1,925) and benign (2,141) samples, this is
consistent with previous work in dynamic executable malware
detection (e.g. [29]: 4,700; [30]: 1211, [31]: 2,200, [32]: 500)
with notable outliers from large enterprises using millions of
samples [24], [33]. The predictions generated range from 0
(benign) to 1 (malicious), where a value of 0.5 or above is
considered a prediction of malware, as explained previously.
The 1,925 malware used in training and testing of the RNN
models are split into multiple types, based on the outputs
given by the anti-virus tools available from VirusTotal, and are
described in Table II. Trojans - malware disguising itself as
benignware - were the most common type seen in the dataset.
Ransomware - malware which destroys, encrypts or somehow
makes user data inaccessible - are divided into “trojanran-
somware”’, “virusransomware” and “adwarerandomware”, the
”adware” “’virus” and “trojan” descriptors refer to the injection
mechanism, whereas “ransomware” indicates the malicious
behaviour. The reason for these divisions, rather than clas-
sifying them as trojans, viruses or adware is that ransomware
is easily identifiable, due to the nature of its acts. Similarly,
“aptvirus” and “aptbackdoor” are subtypes of viruses and
backdoors which represent parts of advanced persistent threat
(APT) campaigns. These malware typically gain access to a
network and remain dormant until an opportune moment to
enact malicious behaviour arises.

V. RESULTS
A. Individual models

We first look at how all of the models in our dataset
performed on their own. In Fig. 2 we show the accuracy,
sensitivity and specificity that all 37 models achieved during
their testing, ordered by their overall accuracy. Most of the
models achieve close to 0.7 accuracy, with a few outliers on

4We ran the analysis in a distributed computational environment at City,
University of London, which utilised three VMs, each with 20 CPU cores, and
with 64GB RAM in each VM. It took approximately 10 days to run the 10010
experiment, and, due to the combinatorial explosion, we estimated it would
take more than a month to do lool1, and even longer for higher combination
sizes. For this reason we did not continue with higher combinations.

TABLE II
MALWARE TYPE COUNTS

Type Count
trojan 1056
virus 309
backdoor 114
adware 86
trojanransomware 72
bot 71
virusransomware 52
adwareransomware 50
application 36
worm 24
aptvirus 20
infostealertrojan 16
rootkit 11
aptbackdoor 7
unknown 1

either side of the graph. However, the same cannot be said for
sensitivity and specificity, as these vary significantly between
the models, with some being better at detecting malware, while
others better at not raising false alarms for benignware. The
three worst models (models 29, 24 and 6) all vary significantly
from the rest of the models, by having their sensitivity close
to 0.2, while model 1 (being the best in overall accuracy) is
the only model to achieve a higher value for sensitivity then
specificity.

When looking at these graphs it is important to keep in mind
the various parameters with which the models were built. The
three worst models from the previous figure (models 29, 24
and 6) are the only models in our dataset that have a value
of 20 for sequence length (the amount of time models look at
a sample’s activity before generating a prediction), which is
also the highest value of sequence length in the dataset. On
the other hand, the best performing model (model 1) is the
only model in the dataset with a sequence length of 2, which
also happens to be the lowest value of sequence length in the
dataset. If we order the information we have by the value of
each model’s sequence length, as we have done in Fig. 3, we
can see that as the value of sequence length increases, there
is a consistent decrease in that model’s sensitivity, with an
opposite but subtle increase in specificity.

Of all the hyperparameters used when building the mod-
els, sequence length is the only one that seems to have a
demonstrable impact on the various metrics achieved by the
individual models. For the reader’s insight, we show in Table
IIT all of the models in the dataset alongside their achieved
accuracy, sensitivity and specificity.

It is also important to understand the difficulties that each
sample in our dataset poses to the models. Fig. 4 represents
the “difficulty” of each sample, by identifying the total number
of models that failed to correctly identify the various malware
and benignware samples (i.e. they labelled malware as benign
and benign as malware). An important aspect to highlight in
each of the lines is that, at times, they reach a total of 37
models, meaning that there are both malware and benignware
samples that are always incorrectly classified by all of the

TABLE III
ACCURACY, SENSITIVITY AND SPECIFICITY VALUES FOR SINGLE MODELS
Model | Accuracy | Sensitivity | Specificity
1 0.80792 0.89922 0.72583
8 0.79415 0.79481 0.79355
30 0.79292 0.76312 0.81971
32 0.75848 0.65403 0.85241
7 0.75283 0.72675 0.77627
33 0.72873 0.6426 0.80617
13 0.71323 0.54026 0.86875
27 0.712 0.55792 0.85054
20 0.70782 0.55065 0.84914
18 0.70659 0.54857 0.84867
34 0.70659 0.53455 0.86128
4 0.70512 0.51688 0.87436
22 0.70192 0.62182 0.77394
36 0.69651 0.53039 0.84587
28 0.69651 0.49818 0.87482
9 0.69577 0.51169 0.86128
35 0.69356 0.59377 0.78328
14 0.69356 0.53922 0.83232
11 0.69306 0.53714 0.83326
26 0.69306 0.4987 0.86782
23 0.69208 0.51636 0.85007
12 0.69011 0.48 0.87903
31 0.68962 0.46909 0.8879
2 0.68888 0.65714 0.71742
15 0.68839 0.5974 0.7702
25 0.68839 0.60052 0.7674
21 0.68519 0.53091 0.82391
16 0.68028 0.49351 0.8482
3 0.67831 0.53818 0.8043
19 0.67511 0.53403 0.80196
10 0.67216 0.5174 0.8113
0 0.66773 0.64104 0.69173
5 0.63207 0.49247 0.75759
17 0.62863 0.52 0.7263
6 0.59272 0.21558 0.93181
24 0.58534 0.21714 0.91639
29 0.58436 0.20831 0.92247

models in our dataset. This effectively imposes certain upper
bounds on the maximum amount of sensitivity and specificity
we can ever achieve with just combinations of these same
models, something we will touch on in the next section. For
malware, there are a total of 101 samples that are never
correctly identified as malware, which means that the upper
bounds for sensitivity with other adjudication schemes is (1925
- 101) / 1925 = 0.94753. For benign samples, there are a total
of 18 samples that are never correctly identified as benign,
which means that the upper bound for specificity with other
adjudication schemes is (2141 - 18) / 2141 = 0.99159.

Of the 101 malware samples that were always misclassified,
there doesn’t appear to be a clear reason, other than their
intrinsic difficulty. In Table IV we break down these 101
samples based on their malware type, in which trojan and
virus are the most numerous. However, this is likely due to
the distribution of overall malware types in the sample dataset,
as this same order is found when looking at all of the malware
samples in the dataset (as we previously demonstrated in Table
1D).

0.9
0.8
0.7

0.6
0.5
0.4
0.3

0.2
29 24 6 17 5

— Accuracy — Sensitivity — Specificity

Metric value

0 10 19 3 16 21 25 15 2 31 12 23 26 11 35 14 9 28 36 22 4 34 18 20 27 13 33 7 32 30 8 1
Classifiers

Fig. 2. Single model metrics, ordered by accuracy

0.9
0.8
0.7
0.6
0.5
0.4
0.3

0.2
1 8 30 7 0

— Sensitivity — Specificity

Metric value

Sequence length

—20

15

10

Sequence length

2 32 33 25223515 4 27 20 19 18 3 17 9 21 36 13 11 23 5 34 10 14 26 28 12 16 31 24 29 6
Classifiers

Fig. 3. Single model metrics, ordered by sequence length

Number of misclassifications
o= NN WW
/

Fig. 4. Sample difficulty for malware and benign samples

B. Overview of diversity

Now that we have analysed the individual models, we can
start to combine them in different adjudication schemes to try
to understand what sort of benefits and drawbacks we can
get, in terms of overall accuracy, as well as sensitivity and
specificity. We have looked at 1-out-of-N schemes which excel
at improving the sensitivity of the system (correctly identifying
malware), N-out-of-N schemes which excel at improving the
specificity of the system (correctly identifying benignware)
and simple majority schemes, which are often a mix of the
best of both worlds.

In Figs. 5 and 6 we show the sensitivity and specificity
improvements with 10oN and NooN adjudication schemes, re-
spectively, up to and including combinations of 10 models. As
expected, each adjudication strategy improves the respective
metric of the overall system, with 100N improving sensitivity
and NooN improving specificity. For 1ooN (Fig. 5), there is
a gradual increase in sensitivity up until 1004 schemes, with
two more noticeable jumps after this point, going from 1oo5
to 1006, and from 1007 to 1008, as noted by the jump in the
median.

For NooN (Fig. 6) we see a similar picture for specificity,

TABLE IV
DESCRIPTION OF MALWARE NEVER IDENTIFIED

Type Count
trojan 56
virus 19
backdoor 9
adwareransomware 4
bot 3
trojanransomware 3
adware 2
infostealertrojan 2
aptvirus 1
virusransomware 1
worm 1

TABLE V

MIN, MEAN AND MAX SENSITIVITY FOR 100N ADJUDICATION SCHEMES

Adjudication Min Mean Max Upper bound
lool 0.20831 | 0.54836 | 0.89922 0.94753
loo2 0.21922 | 0.64942 | 0.92364 0.94753
1003 0.25143 | 0.69698 0.9361 0.94753
loo4 0.50442 | 0.72969 | 0.94078 0.94753
1005 0.54026 | 0.75519 0.9439 0.94753
1006 0.55117 0.7761 | 0.94597 0.94753
1007 0.56312 | 0.79373 | 0.94701 0.94753
1008 0.57299 0.8089 | 0.94753 0.94753
1009 0.5761 | 0.82213 | 0.94753 0.94753

10010 0.57922 | 0.83381 | 0.94753 0.94753

with more significant improvements to the metric going up to
4004 schemes, and subtly continuing thereafter.

In Tables V and VI we show the minimum, mean and
maximum values for sensitivity and specificity for 1ooN and
NooN adjudication schemes, respectively, along with the upper
bounds for these metrics, as we calculated previously when
looking at the sample difficulty. In accordance with the data in
the previous boxplots, these metrics have a consistent growth
as the number of models in each combination increases. For
sensitivity, the maximum theoretical value is achieved with
a combination of 1008. The maximum sensitivity is thus not
increased for 1009 and 10010 combinations, but the minimum
and mean sensitivity values continue to grow.

For specificity however, it’s theoretical maximum value
is not observed in the current analysis we have performed,
with 100010 schemes only reaching a maximum of 0.98926
(differing from the upper bound by only 0.00233). The upper
bound of specificity concerning this dataset, would only be
achieved with a minimum adjudication of 150015.

We have also taken a look at majority voting schemes. As a
mix between 100N and NooN schemes, majority voting tends
to strike a balance between sensitivity and specificity, leading
to an increase in accuracy. In Figs. 7 and 8, we show the
improvements for all three of these metrics when looking at
majority voting schemes. For all three metrics, the effects of
majority voting seem to be restricted to narrowing the range
of possible values to the original median found in lool. This
significantly reduces the lowest minimums found in some
combinations, but at the same time it also limits the outliers
that overachieve.

TABLE VI
MIN, MEAN AND MAX SPECIFICITY FOR NOON ADJUDICATION SCHEMES

Adjudication Min Mean Max Upper bound
lool 0.69173 | 0.82452 | 0.93181 0.99159
2002 0.72957 | 0.88045 | 0.96217 0.99159
3003 0.76833 | 0.90511 | 0.97431 0.99159
4004 0.79169 | 0.92058 | 0.97992 0.99159
5005 0.79682 | 0.93176 | 0.98319 0.99159
6006 0.81037 | 0.94041 | 0.98505 0.99159
7007 0.81831 | 0.94737 | 0.98645 0.99159
8008 0.83372 | 0.95312 | 0.98739 0.99159
9009 0.8412 | 0.95794 | 0.98832 0.99159

100010 0.8496 | 0.96203 | 0.98926 0.99159

C. Sources of diversity

In the previous section we showed the analysis of the
observed diversity when building combinations of N models.
The question then arises as to what is the source of the
diversity between the various models. We analysed all of the
hyperparameters (cf. Table I) to check for the effects they
have on the observed diversity. Two of these hyperparameters
appear to have the largest effect on the diversity between
the models, namely the model’s sequence length parameter,
and the model’s optimiser, both of which we will present in
this section. For all other hyperparameters the differences they
produce in the performance of combinations of different sizes
are negligible or at best, random.

We start by looking at the effects of sequence length, which
is the amount of time a model looks at a sample’s activity
before it generates a prediction. As we previously pointed
out, when looking at individual models, an increase in the
model’s sequence length clearly accompanied a decrease in
sensitivity for that model. In Figs. 9 and 10, we show the
mean sensitivity and specificity for combinations in 1ooN and
NooN schemes, respectively, based on the mean distance in
sequence length of all the constituent models. The various
model combinations are grouped together by looking at the
individual sequence length value of the individual models in
that combination, and calculating the mean difference between
all of them. In essence, this means that combinations with a
higher mean distance in sequence length have their constituent
models more evenly spaced out in the range of all possible
values of sequence length.

One thing that is clear from looking at Figs. 9 and 10 is that
both sensitivity for 100N schemes, and specificity for NooN
schemes increases as the mean distance of sequence length
increases as well. This indicates that combinations with a
wider range of sequence lengths are more “diverse”. For 100N
schemes, a more diverse combination leads to a higher number
of positive (malware) samples being correctly identified, due
to individual models alerting distinctly on different samples.
For NooN schemes this same logic applies, but because all
of the models need to generate an alert for one to be raised
overall, this “diversity” between the individual models means
that fewer false positives are generated.

One of the reasons that could explain these diversity gains

Metric values

Metric values

Metric values

Metric values

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2

lool

lool

loo2 loo3 loo4 loo5 loo6 loo7 loo8
Adjudication schemes

Fig. 5. Sensitivity and Specificity for 1ooN adjudication schemes

2002 3003 4004 5005 6006 7007 8008
Adjudication schemes

Fig. 6. Sensitivity and Specificity for NooN adjudication schemes

loo9

9009

1lo010

100010

lool 2003 3005 4007 5009
Adjudication schemes
Fig. 7. Accuracy for majority voting adjudication schemes
3
¥
1 1 '
lool 2003 3005 4007 5009

Adjudication schemes

Fig. 8. Sensitivity and Specificity for majority voting adjudication schemes

B Sensitivity
B Specificity

B Sensitivity
B Specificity

B Accuracy

B Sensitivity
B Specificity

0.9

0.8

Sensitivity
o
~
[9;]

e
~

0.6

0.96

°©
(o)
~

Specificity
o
0
N

0.9

5 10 15
Sequence length mean distance

Fig. 9. Mean sensitivity based on the mean distance between sequence length values of models in a particular combination

0 5 10 15

Sequence length mean distance

Fig. 10. Mean specificity based on the mean distance between sequence length values of models in a particular combination

——1o02
—— 1003
— loo4d
loo5
— loob
— loo7
loo8
loo9
lool0

—— 2002

—— 3003

— 4004
5005

— 6006

— 7007
8008
9009
100010

coming from different sequence length values is the methods
of attack of different malware samples. The patterns of attack
of each sample will have a great effect on the activity observed
by each model. For example, a malware might start generating
suspicious activity as soon as it is run, such as creating a
backdoor, but fall-off in activity afterwards, performing actions
that may look more normal. In these cases, a model with
a lower sequence length would have an advantage in its
prediction, as it may only have seen the abnormal activity
generated by the malware. The same logic could apply for
slower acting malware, which could start off benign in order to
mask its activity, and only generate more abnormal behaviour
later on, meaning that a model with a higher sequence length
would generally perform better. In situations where both types
of malwares are to be expected, the use of different types
of machine learning models would thus be a worthwhile
advantage.

We now move on to the effects of the optimiser used for
each model. Each model operates using one of two optimisers,
either Adaptive Moment Estimation (Adam) [34] or Stochastic
Gradient Descent (SGD) [35]. SGD uses gradient descent to
minimise error in machine learning, computing using just a
subset of the data, but requires the model builder to choose a
learning rate: the rate at which model parameters are updated.
Adam has risen to popularity as it adapts the learning rate and
typically performs well using an initial default learning rate.
However there is debate as to which yields are more accurate
model [36]. In Fig. 11 we compare the mean sensitivity and
specificity values for 1ooN and NooN schemes based on the
various possible configurations of Adam and SGD models. We
display this by plotting on the X-axis the number of Adam
models present in the combinations, such that on the left most
point of the graphs, where X = 0, there are only SGD models
in the combination, and as we move right, we replace one of
the SGD models with an Adam one.

The analysis shows that, for this dataset, the higher the
number of Adam models in a combination, the better the per-
formance of that combination. This is true for both sensitivity
and specificity, in both 100N and NooN schemes, with the only
exception being sensitivity in NooN schemes, where this only
is true towards higher proportion of Adam vs. SGD model
combinations, and subtly so. This aspect mostly highlights
how Adam seems to be a better option when compared to SGD
when it comes to applications of malware detection. This may
be explained by the learning rates used by these algorithms.
The learning rate determines the amount by which to update
the parameters of the NN and may benefit from being large
at the start of training, to allow big changes to the model
parameters, and smaller later on, to make smaller adjustments
once the model is performing reasonably well. Adam adapts
the learning rate during training whilst SGD does not.

D. Effects of diversity on malware types

An interesting aspect to take a look at is the impacts of
diversity on different types of malware samples. In Fig. 12,
we show the improvements to sensitivity when going from

lool to 1002 and 1003 schemes, broken down by malware
sample types. Note that the data is ordered on the graph based
on the improvement achieved when going from lool to 1003
schemes. For most malware types, going from lool to 1003
leads to close to 0.15 improvement in sensitivity. However, for
some, like “application”, this improvement can go as high as
0.22.

Additionally, we can further break down the mean sensitiv-
ity by the distance in sequence length properties of models,
like we did previously in Fig. 9. In Fig. 13 we show the
mean sensitivity achieved by combinations of models in 1003
schemes, based on the mean distance in sequence length for
each of the malware types present in our dataset. As was
the case when looking at the mean sensitivity of all possible
combinations, a higher distance between the sequence length
property of models in the same combination leads to an
increase in sensitivity. Note that, for two types of malware,
namely “aptbackdoor” and rootkit”, higher distances of se-
quence length actually achieve a sensitivity of 1, meaning that
all samples of these types are correctly detected. Keep in mind
however, that his might just be due to the small number of
samples of these two types (11 and 7 samples respectively).

VI. DISCcUSSION, CONCLUSIONS AND FURTHER WORK

In this research, we presented the analysis of the potential
benefits of diversity from using multiple recurrent neural
networks (RNNs) models for the classification of malware and
benign samples. We used data from the authors of [9], which
contained predictions generated by a set of models trained
and tested against a dataset of over 4000 different samples,
containing a mixture of both malware and benignware. The
authors of [9] analysed the performance of each model indi-
vidually. In this paper we presented the analysis of diverse
adjudication schemes for these models.

We have analysed possible configurations of schemes of up
to 10 models, in 100N, NooN and simple majority adjudication
schemes and found significant improvements to both sensitiv-
ity (correct classification of malware) and specificity (correct
classification of benignware). In terms of sensitivity, 10010
schemes achieved a mean sensitivity of 0.83381, compared
to the mean sensitivity achieved by single models of 0.54836
(an increase of 0.28545). The theoretical maximum value of
0.94753 was achieved in combinations as early as 1008 (the
theoretical maximum value is not 1 for our dataset because
there are a number of malware samples that are never correctly
classified as such). For specificity, 100010 schemes improved
the mean value, going from 0.82452 from individual models
to 0.96203 (an increase of 0.13751). As we saw from the
results present in section V.(b) improvements in sensitivity in
looN schemes do come with a high penalty to specificity,
and vice-versa for NooN schemes, where improvements to
specificity comes with a penalty for sensitivity. This prompted
us to looked at the interplay between sensitivity and specificity
in simple majority schemes (e.g. 3-out-of-5). For these cases,
higher combinations of models do not strictly increase of
decrease either performance metric. Instead the performances

0.9 ——1lool
0.85 —loo2
—— 1003
0.8
_-a? —— 1004
Z 0.75 loo5
-t
g 0.7 / 1006
(] loo7
¢ 065 o
0.6 1lo09
0.55 —° 10010

01 2 3 45 6 7 8 910
Number of adam models in combination

0.85 — 1001
/ —— 1002
0.8 —— 1003
_.é" / — loo4
= 0.75 // 1oo5
EJ_ / ioog
fole]
0
0.7 lo08
1009
0.65 10010
0 1 2 3 45 6 7 8 910

Number of adam models in combination

(a) Mean sensitivity based on optimiser combinations for 100N schemes (b) Mean specificity based on optimiser combinations for 100N schemes

0.55 _— ——1oo1l
0.5 —— 2002
. —— 3003
045 —\— —~ 4004
>
:"E 0.4 —., _ . 5005
2 6006
w
% 0.35 7007
0.3 8008
9009
0.25
100010
0.2

01 2 3 45 6 7 8 910
Number of adam models in combination

0.98 ool
——1o0
0.96 —— 2002
0.94 —— 3003
:'? 0.92 / —— 4004
E 0.9 5005
3 0.88 6006
a
) 0.86 7007
0.84 8008
0.82 S009
100010

0.8
01 2 3 45 6 7 8 910

Number of adam models in combination

(c) Mean sensitivity based on optimiser combinations for NooN schemes (d) Mean specificity based on optimiser combinations for NooN schemes

Fig. 11.
combination using an Adam optimiser)

of the various model combinations are brought closer together,
eliminating the more extreme outliers in either direction, and in
essence generating more predictable systems. This is the case
for both sensitivity and specificity. We are currently looking
into the use of other adjudication schemes that allow for more
optimal interplay between sensitivity and specificity (see the
last paragraph of this section).

Further to this, we have attempted to determine what
causes diversity to emerge between different models and found
that two hyperparameters lead to most of this diversity, the
sequence length and optimiser properties of the models. For
sequence length, the more varied the value the more diverse
the models become, such that for combinations of N models, a
wider range of sequence length values leads to an increase in
sensitivity for 1ooN schemes, and an increase in specificity for
NooN schemes. A similar situation happens with the optimiser
used for each model, with models built with the “adam”

Mean sensitivity and specificity for looN and NooN schemes based on optimiser combination (x-axis indicates the number of models in that

optimiser having a higher diversity amongst themselves.

Finally, we have taken a look at the benefits of the diversity
between models to detect specific types of malware. We found
that detecting most types of malware is improved with the
use of multiple RNN models, with an average increase in
sensitivity of 0.15 when going from single models to 1003
adjudication schemes, with the notable outliers of detecting
“rootkit” malware and “application” malware, which were im-
proved further, at 0.2 and 0.22 respectively. The diversity gains
from sequence length and optimiser seem to have roughly the
same impact across all types of malware.

An area in which we have ongoing work is in the use of a
mechanism called ”optimal adjudication” ([37], [38]), which
can produce optimal adjudication results for a given configura-
tion, conditional on a loss value associated with the two types
of failures possible (wrong classification of both malware and
benignware). The use of optimal adjudication can potentially

0.8 ——1lool

; 0.7 ——1002
> ~-1loo3
S 06
2
B 0.5
N 0.4
0.3
3, Wy lry o, “or, lre, . 7 Sof, 7 90, 3, b4 00 9,
. . Io 'y
M/Sr@ . l’//z, %37 n St N j$/7f S (/Sre " éec 3 « W, kdo %, e & Cog;
S /e Ns, S, %, O o
So, o, o, m o n
s, 3 e, N
©
Malware family
Fig. 12. Mean sensitivity by malware type (ordered by largest improvement from lool to 1003)
——adware
1 —— adwareransomware
——application
——aptbackdoor
= aptvirus

0.9 / v/ backdoor
p — ——bot
/\ A ' infostealertrojan
rootkit

0.8 /\—/ / / trojan
/‘,/\ \ ——trojanransomware
== / —=Virus

—=virusransomware

Sensitivity

0.7 B ——worm
0.6
0.5
0.4
0 2 4 6 8 10 12
Sequence length mean distance
Fig. 13. Mean sensitivity by malware type based on sequence length mean distance (1003)
enhance our research in two major ways. Firstly, it is possible A. Skavhaug, and F. Bitsch, Eds. ~ Cham: Springer International
that the upper bounds for sensitivity and specificity may be Publishing, 2018, pp. 267-281. o
hi di 11 ized RNN binati dt [3] P. Bishop, R. Bloomfield, I. Gashi, and V. Stankovic, “Diversity for
achieved 1n smaller S1Ze& COI‘[.l 1nations, as F)ppose 0 security: A study with off-the-shelf antivirus engines,” in 2011 IEEE
our current 1oo8 and 150015 requirements. Additionally, it 22nd International Symposium on Software Reliability Engineering, Nov
may even be possible to reach perfect sensitivity or specificity 2011, pp. 11-19. _ o o
. timal adiudicati th h th 1 d [4] C. Collberg, “Code obfuscation: Why is this still a thing?” in Proceed-
USIIl.g optimal adjudication, even thoug ere.are rpa ware an ings of the Eighth ACM Conference on Data and Application Security
benignware samples that are never correctly identified by any and Privacy, 2018, pp. 173-174.

single model. We plan to investigate this for different malware [5]1 H. Xu, Z. Chen, W. Wu, Z. Jin, S. Kuo, and M. Lyu, “Nv-dnn: Towards
fault-tolerant dnn systems with n-version programming,” in 2019 49th

types, as well as in new datasets. Annual IEEE/IFIP International Conference on Dependable Systems and
Networks Workshops (DSN-W), June 2019, pp. 44-47.

REFERENCES [6] F. Machida, “N-version machine learning models for safety critical

systems,” in 2019 49th Annual IEEE/IFIP International Conference on

[11 S. O. Solutions, “Security onion,” December, 2019. [Online]. Available: Dependable Systems and Networks Workshops (DSN-W), June 2019, pp.
https://securityonion.net/ 48-51.

[2] H. Asad and I. Gashi, “Diversity in open source intrusion detection [71 Y. Freund, R. E. Schapire et al., “Experiments with a new boosting

systems,” in Computer Safety, Reliability, and Security, B. Gallina, algorithm,” in icml, vol. 96. Citeseer, 1996, pp. 148-156.

[8]
[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

L. Breiman, “Random forests,” Machine learning, vol. 45, no. 1, pp.
5-32, 2001.

M. Rhode, P. Burnap, and K. Jones, “Early-stage malware prediction
using recurrent neural networks,” Computers Security, vol. 77, pp. 578
— 594, 2018.

B. Littlewood and L. Strigini, “Redundancy and diversity in security,”
09 2004, pp. 423-438.

M. Garcia, A. Bessani, I. Gashi, N. Neves, and R. Obelheiro, “Analysis
of operating system diversity for intrusion tolerance,” Softw. Pract.
Exper., vol. 44, no. 6, pp. 735-770, Jun. 2014.

S. Singh, M. Cukier, and W. H. Sanders, “Probabilistic validation of an
intrusion-tolerant replication system,” in 2003 International Conference
on Dependable Systems and Networks, 2003. Proceedings., June 2003,
pp. 615-624.

V. Gupta, V. Lam, H. V. Ramasamy, W. Sanders, and S. Singh,
“Dependability and performance evaluation of intrusion-tolerant server
architectures,” vol. 2847, 09 2003, pp. 81-101.

B. Littlewood and D. R. Miller, “Conceptual modeling of coincident
failures in multiversion software,” IEEE Transactions on Software En-
gineering, vol. 15, no. 12, pp. 1596-1614, Dec 1989.

D. E. Eckhardt and L. D. Lee, “A theoretical basis for the analysis of
multiversion software subject to coincident errors,” IEEE Transactions
on Software Engineering, vol. SE-11, no. 12, pp. 1511-1517, Dec 1985.
A. Avizienis and L. Chen, “On the implementation of n-version pro-
gramming for software fault tolerance during program execution,” 01
1997.

P. Popov, A. Povyakalo, V. Stankovic, and L. Strigini, “Software
diversity as a measure for reducing development risk,” in 2014 Tenth
European Dependable Computing Conference, May 2014, pp. 106—117.
R. Maclin and D. Opitz, “An empirical evaluation of bagging and
boosting,” in Proceedings of the Fourteenth National Conference on
Artificial Intelligence and Ninth Conference on Innovative Applications
of Artificial Intelligence, ser. AAAI'97/IAAI'97. AAAI Press, 1997,
p. 546-551.

1. Goodfellow, Y. Bengio, and A. Courville, Deep learning. MIT press,
2016.

M. Z. Alom, T. M. Taha, C. Yakopcic, S. Westberg, P. Sidike, M. S.
Nasrin, B. C. V. Esesn, A. A. S. Awwal, and V. K. Asari, “The
history began from alexnet: A comprehensive survey on deep learning
approaches,” 2018.

L. K. Hansen and P. Salamon, “Neural network ensembles,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 12,
no. 10, pp. 993-1001, 1990.

J. Saxe and K. Berlin, “Deep neural network based malware detection
using two dimensional binary program features,” in 2015 10th Interna-
tional Conference on Malicious and Unwanted Software (MALWARE),
Oct 2015, pp. 11-20.

I. Firdausi, C. lim, A. Erwin, and A. S. Nugroho, “Analysis of machine
learning techniques used in behavior-based malware detection,” in 2070
Second International Conference on Advances in Computing, Control,
and Telecommunication Technologies, Dec 2010, pp. 201-203.

W. Huang and J. Stokes, “Mtnet: A multi-task neural network for
dynamic malware classification,” 07 2016, pp. 399-418.

F. Ahmed, H. Hameed, M. Z. Shafiq, and M. Farooq, “Using spatio-
temporal information in api calls with machine learning algorithms
for malware detection,” in Proceedings of the 2Nd ACM Workshop on
Security and Artificial Intelligence, ser. AlSec ’09. New York, NY,
USA: ACM, 2009, pp. 55-62.

R. Tian, R. Islam, L. Batten, and S. Versteeg, “Differentiating malware
from cleanware using behavioural analysis,” in 2010 5th International
Conference on Malicious and Unwanted Software, Oct 2010, pp. 23-30.
M. Rhode, L. Tuson, P. Burnap, and K. Jones, “Lab to soc: Ro-
bust features for dynamic malware detection,” in 2019 49th An-
nual IEEE/IFIP International Conference on Dependable Systems and
Networks—Industry Track. 1EEE, 2019, pp. 13-16.

J. Bergstra and Y. Bengio, “Random search for hyper-parameter opti-
mization,” J. Mach. Learn. Res., vol. 13, pp. 281-305, Feb. 2012.

B. Kolosnjaji, A. Zarras, T. Lengyel, G. Webster, and C. Eckert, “Adap-
tive semantics-aware malware classification,” in Detection of Intrusions
and Malware, and Vulnerability Assessment. Springer, 2016, pp. 419—
439.

Z. Salehi, A. Sami, and M. Ghiasi, “Using feature generation from api
calls for malware detection,” Computer Fraud & Security, vol. 2014,
no. 9, pp. 9-18, 2014.

(31]

(32]

(33]

[34]

(35]

[36]

[37]

[38]

T. Kim, B. Kang, and E. G. Im, “Runtime detection framework for
android malware,” Mobile Information Systems, vol. 2018, 2018.

R. Mosli, R. Li, B. Yuan, and Y. Pan, “Automated malware detection
using artifacts in forensic memory images,” in 2016 IEEE Symposium
on Technologies for Homeland Security (HST). 1EEE, 2016, pp. 1-6.
G. E. Dahl, J. W. Stokes, L. Deng, and D. Yu, “Large-scale malware
classification using random projections and neural networks,” in 2013
IEEE International Conference on Acoustics, Speech and Signal Pro-
cessing. 1EEE, 2013, pp. 3422-3426.

D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
2017.

H. Robbins and S. Monro, “A stochastic approximation method,” The
annals of mathematical statistics, pp. 400407, 1951.

N. S. Keskar and R. Socher, “Improving generalization performance by
switching from adam to sgd,” 2017.

F. Di Giandomenico and L. Strigini, “Adjudicators for diverse-redundant
components,” in Proceedings Ninth Symposium on Reliable Distributed
Systems, Oct 1990, pp. 114-123.

D. M. Blough and G. F. Sullivan, “A comparison of voting strategies
for fault-tolerant distributed systems,” in Proceedings Ninth Symposium
on Reliable Distributed Systems, Oct 1990, pp. 136-145.

