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Effects of Steel Braces on Robustness of Steel Frames against Progressive 1 

Collapse 2 

Kai Qian1, M. ASCE, Xi Lan2, Zhi Li3, Feng Fu4, C.Eng, F. ASCE 3 

ABSTRACT 4 

External installation of steel braces is one of the effective approaches to increase the lateral load 5 

resistance of the steel moment-resisting frames. However, the effects of existence of steel braces on 6 

the robustness of steel moment-resisting frames to resist progressive collapse is still not clear as little 7 

study has been carried out. To fill this gap, in this paper, six multi-story steel moment-resisting sub-8 

frames (three bare frames and three braced frames) were fabricated and tested. Test results indicated 9 

that the specimen with reduced beam section in the connection zone performed best among three types 10 

of connections, due to the guaranteed formation of plastic hinges at the location of reduced section and 11 

avoiding brittle fracture of weld at the connection. Experimental results proved that steel braces could 12 

increase the load resisting capacity by 45.1% and 83.9% of the frame with weld connection and end 13 

plate connection, respectively. As the gusset plate restricted the rotation of the plastic hinges in the 14 

second story of the braced frames with V-shaped bracing, which decreased its deformation capacity 15 

and degraded its catenary action capacity. Actually, the ultimate load of the braced frames with V-16 

shaped bracing is only 87.5% of that of the counterpart without any braces. As the compressive braces 17 

were severe buckled before the displacement reached 0.4% of the beam span, it has little effects on 18 

yield load but increases the initial stiffness of the bare frames. Thus, majority of the benefits of the 19 

bracing system were attributed into the tensile braces. Moreover, the analytical results evaluated the 20 

differences in load resistance and development of load resisting mechanisms in different stories. 21 

Furthermore, the contribution of compressive and tensile braces was de-composed individually by 22 

analytical analysis.  23 

CE Database subject heading: progressive collapse; steel moment-resisting frame; braces; 24 

experimental, robustness 25 
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INTRODUCTION 36 

Progressive collapse of steel frame structures may be triggered by the failure of one or couple 37 

vertical load bearing members in unintentional or intentional events. Majority of building codes only 38 

provide general recommendations, rather than detailed design provisions for progressive collapse. 39 

Recently, step by step design provisions were addressed by DoD (2010) and GSA (2013). Two major 40 

design methods are recommended: direct or indirect design methods. Among them, the alternate load 41 

path (ALP) method is commonly recommended as it is independent on the initial damage. ALP method 42 

focused on the ability of structures to bridge the lost column. Based on ALP method, extensive tests 43 

on steel beam-column connections or sub-assemblages were carried out by using column removal 44 

assessment method (Li et al. 2007; Sadek et al. 2011; Alashker et al. 2011; Dinu et al. 2016; Dinu et 45 

al. 2017; Liu et al. 2015; Tang et al. 2019; Dimopoulos et al. 2020; Qian et al. 2020; Wang et al. 2020). 46 

As the damage was concentrated in the beams or beam-column connections, rather than at the columns, 47 

it was recognized that the connections play a critical role in mitigating progressive collapse potential 48 

of the steel frames (Lew. et al. 2013, Yang and Tan 2013a, Yang and Tan 2013b). Lee et al. (2010) 49 

investigated the moment-axial force interaction of the double-span beams in steel frames under a 50 

column-missing scenario. It was found that the flexural action was the dominant mechanism at 51 

beginning. Due to buckling of the compressive flange and yielding of the tensile one, flexural action 52 

was slowly vanished with further increase of the displacement. When the displacement exceeded 10% 53 

of the beam span, the catenary action kicked-in and became the dominant mechanism in large 54 

displacement stage. To investigate the key design variables that influence the formation of catenary 55 

action, Khandelwal and El-Tawil (2007) carried out the numerical study of two steel joints subjected 56 

to the loss of a center column. Similar to the ones investigated by Khandelwal and El-Tawil (2007), 57 

Sadek et al. (2011, 2013) conducted the experimental study to provide insight into the behavior and 58 
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failure modes of steel beam-column connections, including the development of catenary action. Yang 59 

and Tan (2013a) tested seven beam-column sub-assemblages with different semi-rigid connections. It 60 

was concluded that the rotational capacity of the beam-to-column connections controlled the catenary 61 

action capacity. In summary, the connections in steel moment frames can be either rigid or semi-rigid 62 

connections. The use of rigid connections is the primary option for frames with medium or high 63 

ductility demands in earthquake design. However, semi-rigid connections are also allowed (AISC 64 

2005a). Therefore, it is of interest to evaluate whether rigid or semi-rigid connections can provide 65 

sufficient strength and ductility to resist progressive collapse. 66 

Catenary action, as the second defense line, is possible to increase the load resisting capacity of 67 

moment resisting frames significantly (Deng et al. 2020; Qian et al. 2021a). However, for steel 68 

moment-resisting frames configurated under non-seismic design principles, irregular layout or long 69 

span may prone to progressive collapse. Pantidis and Gerasimidis (2017, 2018) pointed out that two 70 

possible collapse mechanisms caused by the loss of a column scenario, the yielding type (beam 71 

plasticization) or the stability (column buckling) failure mode. Other modes of collapse could be the 72 

shear failure of the beam-to-column connections (Khandelwal and El-Tawil 2011). In recent years, 73 

progressive collapse events were occurred continuously, such as the collapse of twin towers in World 74 

Trade Center in New York, collapse of steel frame at Argyle High School in Texas, or the collapse of 75 

steel frame at Jiaxin Hotel in Quanzhou, China. Thus, it was necessary to look for additional load 76 

resistance to upgrade the ability of steel frames to mitigate progressive collapse. Galal and El-Sawy 77 

(2010) discussed the enhancement of three retrofit strategies on mitigating progressive collapse risks. 78 

The post-tensioned (PT) steel frames, are evidenced well robustness under strong earthquakes (Ricles 79 

et al. 2001; Christopoulos et al. 2002; Garlock et al. 2005; Pirmoz and Liu 2016; Moradi and Alam 80 

2017). Although steel bracing system was able to provide satisfactory seismic resistance of steel frames 81 

(AISC 2005a; AISC 2005b), the effects of steel bracing to resist progressive collapse are still unclear. 82 

The numerical analyses by Khandelwal et al. (2009) showed that seismically designed steel braced 83 

frames could sustain the sudden loss of a column without collapse as steel braces improved the 84 

robustness significantly. However, little tests had done in this area.  Chen et al. (2012) found that the 85 
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horizontal braces could upgrade the load resistance of steel frames to mitigate progressive collapse. It 86 

was indicated that the horizontal braces formed additional ALP and transferred partial of the vertical 87 

loads to adjacent columns directly, which could enhance the vertical load resistance significantly.    88 

Additionally, previous tests were mainly based on specimens of single-story beam-column sub-89 

assemblages or connections. It is simply assumed that each story has identical geometric and material 90 

properties and thus, assuming each story performed identically. However, as pointed out by Qian et al. 91 

(2020), Qian et al. (2021b), and Weng et al. (2020), the load resistance of the beams in the first story 92 

is quite different to the second and upper stories. It could be explained that the interaction among 93 

different stories, which leads to different mobilization of load resisting mechanisms (flexural and 94 

catenary action). Thus, to deep understand the behavior of steel frames subjected to column loss 95 

scenarios, six two-story steel sub-frames using either rigid or semi-rigid connections are tested by push-96 

down loading regime in the present study. Based on experimental and analytical results, the effects of 97 

steel braces with various configurations are quantified. The contribution of compressive and tensile 98 

braces is de-composed individually. Furthermore, as mentioned above, the different behavior of the 99 

structural members in different stories is also quantified.   100 

EXPERIMENTAL PROGRAM 101 

Test specimens 102 

As shown in Fig. 1, a six-story, 6×6 bay prototype steel frame was seismically configurated and 103 

fabricated in accordance with AISC-341 (2005a). This prototype frame was presumed to be located on 104 

a D class site (stiff soil profile), with correspondent acceleration parameters SDS and SD1 of the design 105 

response spectrums are 0.20 and 0.14, respectively. The story height of the prototype frame is 3.0 m 106 

with span length of the frame in longitudinal and transverse direction was 8.4 m by 6.0 m, respectively. 107 

The designed dead and live loads are 5.1 kN/m2 and 3.0 kN/m2, respectively. Given the capacity 108 

limitation of test facilities, only 1/2-scaled models were fabricated. To well simulate horizontal 109 

restraints from the surrounding bays, beams were extended with length of 655 mm beyond the side 110 

column, as shown in Fig. 2a. As described below, a horizontal chain-pole would be installed to connect 111 

the overhanging beam and A-frame.   112 
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As listed in Table 1, the six specimens included three steel moment-resisting frames without any 113 

braces (WB, EB, and RB) and three counterparts with extra bracing system (WX, EX, and RV). 114 

Different connections were employed, the numeric alphabetics W, E, and R represent welded 115 

connection, end plate connection, and reduced beam section connection, respectively. Additionally, the 116 

numeric alphabetic X and V represent X-shaped bracing and V-shaped bracing, respectively. As shown 117 

in Fig. 3, for welded connection, the flange and web of beam were welded to column flange using 118 

complete joint penetration welds. For end plate connection, the beam flanges and web were connected 119 

to a 10 mm thick end plate by same type of welds, while the end plates were fixed to the column flange 120 

by six rows of Grade 8.8 M18 bolts. Bolts were preload of 345 N·m, which was applied by a torque 121 

wrench. For reduced beam section connection, similar to welded connection, except, the beam flanges, 122 

at a distance of 70 mm from the column flange, was cut in a circular manner, as shown in Fig. 3c. 123 

Section HN 200×100×5.5×8 was used for beams whereas HW 150×150×7×10 was for columns. 124 

Continuity plates in the column joint was designed with thickness of 10 mm. 125 

The braced frames have identical dimension and detail as corresponding bare frames, except extra 126 

bracing system with different configurations were installed at the second story. The braces and their 127 

connections were also designed according to AISC (2005a). The braces are welded and connected to 128 

the beam flanges through a gusset plate. The gusset plate was designed to be stronger than the braces 129 

to avoid yielding or fracture occurring at the gusset plate (Khandelwal et al. 2009; AISC (2005a)). The 130 

force acting on the weld was determined by the uniform force method (Richard 1986). Taking WX and 131 

RV as an example, as shown in Fig. 2a, the brace was an angle steel with dimensions of 36 ×36 × 4 132 

mm. X braces were eccentrically installed at WX and EX, the gusset plate was a steel plate with the 133 

size of 330×125×12 mm. Moreover, V braces were installed at RV, the gusset plates with the size of 134 

160×155×12 mm were fixed at the beams in the second story while the bottom one with size of 135 

510×155×12 mm was installed at the middle span of the beams in the first story.  136 

Material properties 137 

Grade Q235 steel is used for column, beam, and angle. The measured yield strength, ultimate 138 

strength, and elongation of the angle and structural components are tabulated in Table 2. As no 139 
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independent coupon test was conducted for bolts (Grade 8.8 M18), the yield strength and ultimate 140 

strength of the bolts are provided by the supplier. 141 

Test setup 142 

As illustrated in Fig. 4, the bottom of each side column was pin supported. Each overhanging 143 

beam beyond the side column was connected to the A-frame via a horizontal chain-pole (Item 6 in Fig. 144 

4). The middle column in ground story was removed prior to applying concentrated load to replicate 145 

the scenario of missing a middle column. The load was applied by a hydraulic jack (Item 1 in Fig. 4) 146 

at the top of middle column by a displacement-controlled method. To avoid undesired out-of-plane 147 

failure, a steel assembly (Item 3 in Fig. 4) was installed beneath the hydraulic jack (Item 1 in Fig. 4). 148 

Moreover, hydraulic jack (Item 4 in Fig. 4) together with self-balance loading system was used to 149 

simulate axial force of side column with the ratio of axial compressive force of 0.3. 150 

Instrumentations 151 

The layout of instrumentations is shown in Fig. 4. A load cell (Item 2 in Fig. 4) was installed 152 

below the hydraulic jack (Item 1 in Fig. 4) to measure the applied concentrated load. 153 

Tension/compression load cell (Item 7 in Fig. 4) was installed at each horizontal chain-pole (Item 6 in 154 

Fig. 4) to measure its horizontal reaction force. A load pin (Item 8 in Fig. 4) was installed at each pin 155 

support to measure the reaction force of the bottom pin support. In addition, a series of linear variable 156 

differential transformers (LVDTs) (Item 5 in Fig. 4) were installed along the beam span or column 157 

height to measure the beam deformation shape and column lateral drift, as shown in Fig. 4. 158 

As shown in Fig. 2, the strain at critical sections was monitored by a series of strain gauges or 159 

strain gauge rosettes. Thus, the internal force of the beam and brace could be determined by simplified 160 

section analysis. 161 

EXPERIMENTAL RESULTS  162 

Six two-story sub-frames were tested to quantify the effects of steel braces to enhance robustness 163 

of steel frames. The key results are listed in Table 3. As the results of WB and RB had been introduced 164 

in Qian et al. (2020) in detail, only the main characteristics of these two specimens were addressed 165 
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herein. The different behavior of bare frames and counterpart braced frames was the main concern in 166 

the present study.  167 

Global behavior 168 

WB: As shown in Fig. 5a, its yield load of 147.8 kN was measured when the middle column 169 

displacement (MCD) reached 45 mm. Therefore, the initial stiffness, which is defined as the ratio of 170 

yield load to corresponding yield displacement, was 3.3 kN/mm. At the MCD of 200 mm, WB reached 171 

its ultimate load of 197.5 kN, which is defined as the peak load resistance. Afterwards, the load 172 

resistance of WB began to drop slowly due to weld fracture occurred at the connections in the first 173 

story. However, when MCD reached 281 mm, the load resisting capacity began to re-ascend due to the 174 

catenary action developed in the second story. With the increase of the vertical displacement to 377 175 

mm, the weld fracture occurred at the beam web near the middle column in the ground story. Further 176 

increasing the MCD to 410 mm, the welding at the beam end near middle column in the second story 177 

fractured completely. Its failure mode is shown in Fig. 6.  178 

WX: The compressive braces of the X bracing system began to buckle at the beginning of the test, 179 

which means the compressive braces may not be so effective to provide additional alternate load path 180 

of the specimen, which will be further confirmed in the section of analytical analysis. However, when 181 

the MCD reached 11.2 mm (0.4% of the beam span), the buckling of compressive braces become 182 

severe. Thus, they have little contribution for yield load enhancement as the yield load of 233.9 kN 183 

was measured at a MCD of 31 mm. This will be further confirmed by following analytical results. The 184 

initial stiffness was 7.5 kN/mm, which is 227.3% of that of WB. At a MCD of 137 mm, the tensile 185 

brace in the left bay fractured. When the displacement increased to 221 mm, weld fracture both 186 

occurred at the connections near the side column in the ground story and the middle column in the 187 

second story. Actually, the weld fracture accompanied by considerable decrease of the load resistance. 188 

The load-displacement curve kept increasing until weld fracture occurred at the connection near side 189 

column in the ground story at a MCD of 311 mm. WX reached its ultimate load of 286.5 kN, which 190 

was 145.1% of WB, at the MCD of 382 mm as complete weld fracture occurred at the connection near 191 

left side column in the ground story. However, the load resistance did not lose completely owing to the 192 



8 

catenary action developed in the second story, regardless the loss of load resistance of the entire first 193 

story. Further increasing the MCD, the complete fracture occurred at the connection near the middle 194 

column in the second story. The failure mode of WX is shown in Fig. 7. Fracture occurred in the tensile 195 

brace. Severe out-of-plane buckling was observed in compressive braces. No yielding was observed in 196 

the gusset plates. However, although the failure mode of the connections in WX is generally similar to 197 

that of WB, the fracture of the connections near the side column was more severe than that near the 198 

middle column. 199 

EB: As shown in Fig. 5b, the yield load of 94.4 kN was measured at a MCD of 42 mm. Thus, the 200 

initial stiffness was 2.2 kN/mm, which was only 66.7% of that of WB. However, EB exhibited more 201 

flexibly than that of WB. Thus, the load resistance kept increasing until weld fracture occurred at the 202 

connection in the second story at a MCD of 452 mm. EB reached its ultimate load of 255.4 kN at a 203 

MCD of 515 mm. The failure mode of EB is shown in Fig. 8. Similar to WB, the weld fracture occurred 204 

at Joint A. 205 

EX: The yield load of 148.5 kN was observed at a MCD of 30 mm, which is about 157.3% of that 206 

of EB. Thus, the initial stiffness was 5.0 kN/mm. The tensile braces in the right bay fractured at a MCD 207 

of 320 mm. Further increasing MCD to 407 mm, the bolts in the connection near the side column 208 

fractured. However, the load resistance rapidly recovered after shortly decrease. The weld fracture 209 

occurred near the middle connection in the second story at a MCD of 450 mm. Subsequently, bolts in 210 

the top row of this connection fractured at the MCD of 467 mm. However, the load resistance was able 211 

to increase sustainably until the test was stopped due to reaching stroke capacity of the jack. The 212 

ultimate load of 469.8 kN was measured at a MCD of 526 mm. The failure mode of EX is shown in 213 

Fig. 9. Similar to WX, fracture occurred in the tensile brace and severe buckling was observed in the 214 

compressive braces. The connections failed either in bolt fracture or weld fracture. The 45 degrees full-215 

slant fracture surface of the bolts indicated that the bolts were suffered both tension and shear. Different 216 

to EB, although weld fracture was also observed in EX, it did not propagate into the web. Thus, the 217 

braces increased the deformation capacity of EX significantly. 218 
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RB: As shown in Fig. 5c, for RB, the yield load of 106.8 kN was measured at a MCD of 37 mm. 219 

Thus, the initial stiffness was 2.9 kN/mm, which was only 87.9% of that of WB. For RB, the plastic 220 

hinges were formed at the center of reduced beam section, which prevented the early fractures at the 221 

welded connection. RB reached its ultimate load of 407.0 kN, which was 206.1% of WB, at the MCD 222 

of 468 mm. Its failure mode is shown in Fig. 10. 223 

RV: The yield load of 165.2 kN, which is about 154.7% of that of RB, was measured at a MCD 224 

of 30 mm. Thus, the initial stiffness was 5.5 kN/mm. Before the tensile braces fractured, the weld 225 

fracture already occurred at the connection near the middle column in the second story. Different to 226 

RB, the fracture occurred near the weld connection rather than the reduced beam section due to the 227 

gusset plates strengthened the reduced section of the beam in the second story. At the MCD of 253 mm, 228 

the tensile brace in the left bay was fractured. At the MCD of 421 mm, RV reached its ultimate load of 229 

356.3 kN before the weld fractured completely. The deformation capacity was only 90.0% of RB, as 230 

the V braces strengthened the zone of plastic hinges in the beam of second story, which restricted the 231 

rotation of the plastic hinge. The failure mode of RV is shown in Fig. 11. Similarly, fracture occurred 232 

in the tensile brace while severe buckling occurred in the compressive braces. The weld fracture 233 

occurred in Joint A. The V braces are welded on one side of the gusset plate and the brace forces were 234 

not along the center axis of the beam, which resulted in torsional failure of the beams. The buckling 235 

occurred at point D. The torsion mainly concentrated between beam segment CD leading to the tear 236 

failure occurred at Joint B. 237 

Horizontal reaction force 238 

Fig. 12 decomposes the contribution of horizontal reaction force at the right side. Negative values 239 

represent compressive force whereas positive values mean tensile force. As shown in Fig. 12, at small 240 

deformation stage, the compressive reaction force of total reaction force was mainly provided by the 241 

bottom pin support. The maximum compressive reaction force in WB, WX, EB, EX, RB, and RV was 242 

-24.7, -7.8, -35.8, -23.5, -31.9, and -22.1 kN, respectively. With further increasing the displacement, 243 

the compressive force began to decline and transferred into tension. However, the tensile force from 244 

the bottom pin support kept marginal in catenary action stage and majority of tensile reaction force was 245 
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provided by the horizontal chain-poles connected to the overhanging beams. As shown in Figs. 12a, c, 246 

and e, for bare frames, the tensile force was equally from the ground story and second story, although 247 

the pre-mature failure occurred at the ground story of WB. Conversely, as shown in Figs. 12b, d, and 248 

f, for braced frames, the tensile force from the second story was larger than that from the ground one. 249 

The maximum tensile reaction force of WB, WX, EB, and EX was 363.5 kN, 406.8 kN, 551.5 kN, and 250 

835.8 kN, respectively. Thus, contrary to compressive forces, with the help of braces, greater tensile 251 

reaction force and catenary action was developed in braced frames. However, the maximum tensile 252 

reaction force of RB and RV was 875.9 kN and 462.8 kN, respectively. This could be explained at the 253 

gusset plate restricted the rotation of plastic hinges of the beams in the second story of RV, which 254 

prevented the development of catenary action.  255 

Deformation measurements 256 

The deformation shape of edge column was shown in Fig. 13. It should be noted that the positive 257 

value and negative value represents inward and outward movement, respectively. As shown in Fig. 13a, 258 

for WB, initially, the horizontal inward movement was observed at the beam-column joints. However, 259 

the horizontal inward movement at the joint in the second story was much larger than that in the ground 260 

story. The maximum horizontal inward movement of the joint in the first and second story was only 261 

3.2 mm and 9.1mm, respectively.  As shown in Fig. 13b, for WX, outward movement was initially 262 

measured in the ground story. The outward movement began to decrease when the vertical 263 

displacement exceeded 60 mm. This is because the compressive brace generated additional outward 264 

movement in the ground floor. However, the tensile braces are prone to pull the joint in the second 265 

floor inward. The maximum inward movement of joint in the first and second stories was 4.3 mm and 266 

15.2 mm, respectively. Similar results were observed for other specimens. 267 

Internal force measurements 268 

To further understand the load resisting mechanism of frames and de-composite the load 269 

contribution of braces, the internal forces in beams and braces were quantified individually. The 270 

reliability of strain gauge results to determine the load resistance of the specimens was evaluated first. 271 

The vertical force and horizontal reaction force of braced specimens were determined by Eqs.1 and 2: 272 
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V V Frame V BraceF F F                                                                 (1) 273 

H H Frame H BraceF F F                                                                (2) 274 

where 
VF  and 

HF  are the vertical force and horizontal reaction force of braced frame; 
V FrameF   and 275 

H FrameF 
 are the vertical force and horizontal reaction force of the bare frame, which has been 276 

described in detail in authors’ previous work (Qian et al. 2020); 
V BraceF 

and 
H BraceF 

 are the vertical 277 

force and horizontal reaction force provided by braces. 278 

For X bracing configuration, the vertical and horizontal component force from braces could be 279 

calculated by Eqs. 3 and 4, respectively. However, for V bracing configuration, the force of braces 280 

could not be equivalent into the load resistance at the middle column directly. A schematic diagram 281 

was presented to illustrate the relationship, as shown in Fig. 14 and Eq. 5.  282 

 =2 sin sinV Brace T CF N N                                                      (3) 283 

 =2 cos cosH Brace T CF N N                                                   (4) 284 

= cosT TN N                                                                     (5) 285 

where 
TN  and 

CN  are the axial force of the tensile and compressive brace, respectively;   is the 286 

angle between tensile brace and horizontal axis;   is the angle between compressive brace and 287 

horizontal axis; 
TN   is the adopted axial force of tensile brace for RV;   is the angle between tensile 288 

brace and diagonal line.  289 

The axial force of braces can be calculated according to Eq. 5.  290 

1

n

i

i

N EA n


 
  

 
                                                                        (6) 291 

where E  is the elastic modulus; A  is the section area of the brace; 
1

n

i

i

n


 
 
 
  is the average axial strain 292 

of the cross-section. 293 

Fig. 15 compares the vertical load-displacement curve and horizontal reaction force-displacement 294 

curve based on load cell results and strain gauge results. From the figures, it can be seen that the 295 

analytical results based on strain gauge generally agree with the load cell results well. Thus, the 296 
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analytical results based on strain gauge results were used in following analysis and discussion. Fig. 16 297 

illustrates the de-composition of the load resistance from the frame and steel braces. As shown in the 298 

figures, the load resistance from steel braces was higher than that from frame initially. However, the 299 

load resistance of the frame kept increasing due to the development of flexural action. Conversely, the 300 

load resistance from braces began to reduce soon due to compressive braces buckled. When partial of 301 

the tensile brace fractured, the contributions of steel braces are reduced to 37.7%, 38.5%, and 29.5 % 302 

for WX, EX, and RV, respectively. 303 

DISCUSSION OF TEST RESULTS 304 

Effects of connection types 305 

Fig. 17 compares the behavior of different connections. As shown in Fig. 17a, for bare frames, 306 

the greatest load resisting capacity was measured in RB due to the reduced section prevents the pre-307 

mature fracture of the welds. Thus, it can be concluded that, when properly designed and fabricated, 308 

reduced beam section connections can be a cost-effective solution to enhance the robustness of steel 309 

frames with rigid connections. The second largest capacity was observed in EB. Among these three 310 

tests, EB achieved the greatest deformation capacity. Although the failure modes of EB are also 311 

controlled by weld fracture, it has a more ductile process. Before weld failure, the end plate yielded 312 

and experienced considerable local plastic deformation, which brought in greater catenary action 313 

capacity. The load resistance from flexural action and catenary action are compared in Figs. 17b and c, 314 

respectively. As shown in Fig. 17b, WB has the greatest flexural action capacity. At flexural action 315 

stage, WB reached the largest initial stiffness and load resistance. As shown in Fig. 17c, when catenary 316 

action is included in the load resistance, the load resisting capacity could increase significantly 317 

especially for RB and EB.  318 

Effects of braces 319 

As shown in Fig. 5 and Table 3, the measured yield load of WB, WX, EB, EX, RB, and RV were 320 

147.8, 233.9, 94.4, 148.5, 106.8, and 165.2 kN, respectively. Thus, the X bracing system increased the 321 

yield load of WB and EB by 58.3% and 57.3%, respectively. Similarly, the V bracing system increased 322 

the yield load of RB by 54.7%. Regarding the initial stiffness, WB, WX, EB, EX, RB and RV were 323 
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3.3, 7.5, 2.2, 5.0, 2.9, and 5.5 kN/mm, respectively. Thus, the X bracing system increased the initial 324 

stiffness of WB and EB by 127.3% and 120.2%, as the X bracing system in WB and EB could transfer 325 

partial of the vertical load to the side column directly. Similarly, the V bracing system increased the 326 

initial stiffness of RB by 89.7%. The ultimate load capacities of WB, WX, EB, EX, RB, and RV in the 327 

large deformation stage were 197.5, 286.5, 255.4, 469.8, 407.0, and 356.3 kN, respectively. WX and 328 

EX could increase the ultimate load capacity of the counterpart bare frames by 45.1% and 83.9%. This 329 

could be explained as one of tensile braces in WX and EX were not fractured until test stopped, which 330 

increased the load resistance in catenary action stage. Conversely, RV only achieve 87.5% of the 331 

ultimate load capacity of RB. This is because the gusset plate of RV bracing system in the second story 332 

restricted the rotation of plastic hinges, which was designated to form at the reduced section. Thus, the 333 

catenary action capacity and deformation capacity of RV was even less than RB.  Moreover, it should 334 

be noted that for a steel frame, only partial of peripheral structural bays have bracings. Thus, the effects 335 

of bracings mentioned above are only suit for these braced bays. 336 

Contribution of load resisting mechanisms 337 

Fig. 18 gives the de-composition of load resistance of frame from catenary action and flexural 338 

action. As shown in Fig. 18a, before MCD reached 128 mm, significant bending moment was 339 

developed and thus, flexural action dominated the load resistance of WB at the beginning of the test. 340 

In large deflection stage, axial tensile force and catenary action was mobilized. Flexural action and 341 

catenary action worked together to redistribute the applied load. The maximum flexural action and 342 

catenary action were 175.5 kN and 78.7 kN, respectively. For WX, flexural action was higher than that 343 

of WB before weld fracture occurred. Different to WB, the vertical load of frame could keep increasing 344 

until reached its maximum load resistance due to the significant catenary action. Due to X braces, the 345 

flexural action and catenary action were increased by 17.8% and 61.3%, respectively. As shown in Fig. 346 

18c, although the maximum flexural action was only 74.1% of that of WB, the catenary action was 347 

207.1% of that of WB. Thus, the ultimate load of EB is 129.3% of that of WB.  For EX, it is worth 348 

noting that significant tensile force was developed in the beams. Due to X braces, the flexural action 349 

and catenary action was increased by 25.7% and 137.9%, respectively. As shown in Fig. 18e, although 350 
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both WB and RB were welded connection, greater catenary action was developed in RB. This is 351 

because the failure of WB was controlled by weld fracture, which was brittle and pre-mature. The 352 

reduced beam section would avoid this brittle failure and increase the ductility and deformation 353 

capacity. Although the maximum flexural action was only 82.1% of that of WB, the catenary action of 354 

RB was 380.8% of that of WB and thus, the ultimate load of RB is 203.9% of that of WB. As shown 355 

in Fig. 18f, RV sustained substantial bending moment before the connection fractured. However, with 356 

further increasing the displacement, the increase of catenary action was limited, which was unlike RB. 357 

This is mainly due to gusset plates at the second story prevents the development of catenary action. 358 

Comparing with RB, the flexural action and catenary action was 115.6% and 55.8% of its counterpart.  359 

Fig. 19 decomposes the load resistance from the first and second stories. It can be seen that the 360 

trend of load resistance from the first and second story is similar before failure first occurred at the 361 

connection. However, the load resistance from the ground story was slightly larger than that from the 362 

second story due to different horizontal constraints. To further study on the difference, as labeled in 363 

Fig. 20, the flexural and catenary action of each story were extracted. Due to higher rotational restraints 364 

from the side column, the flexural action from the first story may be larger than that of second story. 365 

In the first story, the catenary action developing in the beams is always in tension. However, the 366 

catenary action of the second story is in compression (negative) firstly, and then transfers into tension 367 

at the large deformation stage. Therefore, both flexural and catenary action could develop in the first 368 

story effectively, leading to larger resistance. 369 

De-composition of the load resistance from braces 370 

Fig. 21 gives the de-composition of contribution of braces from tensile and compressive braces. 371 

For WX, EX, and RV, the maximum load resistance of steel bracing was 111.9, 120.3, and 87.1 kN, 372 

respectively. As shown in the figures, WX and EX could keep increasing after buckling of compressive 373 

brace. These two specimens reached their maximum value when the one of the tensile braces fractured. 374 

Before buckling of the compressive brace, the maximum load resistance from compressive brace of 375 

WX and EX were 19.2 kN and 19.1 kN, respectively. Different to WX and EX, after buckling of the 376 

compressive braces, RV reached its maximum value as large part of the load resistance provided by 377 
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the compressive braces. For RV, the maximum load resistance from compressive brace was 51.7 kN, 378 

which was 269.2% and 270.7% of that of WX and EX, respectively.  However, as shown in in Fig. 21, 379 

due to the buckling of the compressive braces at very early stage, they only affect the initial stiffness 380 

significant. To further understand the contribution of steel braces, the axial force of tensile and 381 

compressive braces was determined and presented in Fig. 22. From basic analysis, the yield load and 382 

ultimate load of the tensile braces were determined as 85.6 kN and 115.9 kN, respectively. Tensile 383 

braces in X configuration could achieve their yield load and even achieved their ultimate load before 384 

fracture. However, the tensile braces in V configuration only achieved their yield load. From basic 385 

analysis, the buckling load of compressive brace were 23.0 kN and 57.6 kN for X and V configuration, 386 

respectively. As shown in the figures, the compressive braces in X configurations could achieve their 387 

buckling load. Different to X configuration, the compressive braces in V configuration could not 388 

achieve their buckling load.  389 

CONCLUSIONS 390 

To evaluate the effects of steel braces on the behavior of steel frames to mitigate progressive 391 

collapse, six two-story steel sub-frames (three bare frames and three braced frames) with different 392 

connections were tested under a middle column missing scenario. Based on experimental results, 393 

following conclusions are drawn: 394 

1. The results from bare frames revealed that various of failure mode, ductility, and load resisting 395 

mechanisms were developed in the steel frames with different types of connections. Different to 396 

weld fractures in WB and EB, RB failed by fracture at the reduced beam section. Thus, the greatest 397 

deformation capacity and catenary action capacity were achieved in RB. The ultimate load 398 

capacity of RB was 206.1% and 159.4% of that of WB and EB, respectively.   399 

2. The test results demonstrated that for WB, the main load resistance was from the flexural action, 400 

rather than catenary action, which is mainly due to pre-mature weld fracture at the connections. 401 

Conversely, for EB and RB, relatively less flexural action was developed, catenary action 402 

increased the load resisting capacity of EB and RB by 81.6% and 125.8%, respectively. Thus, the 403 

load resistance of these two connections were dominated by catenary action, rather than flexural 404 
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action.  405 

3. The test results indicated that steel braces could provide considerable additional load resistance 406 

for steel frames to resist progressive collapse effectively. The steel braces in WX, EX, and RV 407 

increased their initial stiffness by 127.3%, 120.2%, and 89.7%, respectively. For RV, the 408 

effectiveness of the steel braces is relatively milder because their braces could not transfer the 409 

vertical load to side columns directly. The X brace in WX and EX increased the ultimate load 410 

capacity of the bare frames by 45.1% and 83.9%. However, the V braces in RV even decreased 411 

the ultimate load capacity of RB by 12.5% as the gusset plates restricted the formation of plastic 412 

hinges in reduced beam section. Thus, the gusset plate should not be installed in the reduced beam 413 

section to avoid negative effects on braced specimens, as the gusset plate may restrict the rotation 414 

capacity of the reduced beam section.   415 

4. The out-of-plane buckling of compressive braces occurred from the beginning of the test, which 416 

could not provide sufficient load resistance after buckling, especially for X bracing system. 417 

However, due to the difficulties in predicting the location of column missing accurately, a 418 

symmetric bracing configuration is still recommended. As the additional load resistance mainly 419 

attributed into the tensile braces, the fracture of tensile braces normally accompanied by the drop 420 

of load resistance significantly. From the failure modes, it was found that the braces may change 421 

the failure mode of the beams as the beam ends may suffer greater shear force, which may lead to 422 

pre-mature weld fracture or bolt fracture. It should be noted that above conclusions regarding steel 423 

braces are only suit for the structural bays with steel bracings. For the structural bays without any 424 

bracings, the benefits of bracings could not be incorporated in design or analysis.  425 
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 513 

 514 

FIGURE CAPTIONS 515 

Fig. 1. Location of the extracted frame in the prototype building (unit in mm): (a) plan view; (b) 516 

elevation view 517 

Fig. 2. Dimensions of the specimen and locations of strain gauge and displacement transducers (unit 518 

in mm): (a) arrangements of strain gauges/rosettes and displacement transducers; (b) strain gauges 519 

positions on sections 520 

Fig. 3. Geometric details of connections (unit in mm): (a) welded connection; (b) end plate connection; 521 

(c) reduced beam section connection 522 

Fig. 4. Test setups of EX: (a) schematic view; (b) photograph 523 

Fig. 5. Vertical force-middle column displacement curves: (a) comparison of WX and WB; (b) 524 

comparison of EX and EB; (c) comparison of RV and RB 525 

Fig. 6. Failure mode of WB 526 

Fig. 7. Failure mode of WX 527 

Fig. 8. Failure mode of EB 528 

Fig. 9. Failure mode of EX 529 

Fig. 10. Failure mode of RB 530 

Fig. 11. Failure mode of RV 531 

Fig. 12. Horizontal reaction force-middle column displacement curves: (a) WB; (b) WX; (c) EB; (d) 532 

EX; (e) RB; (f) RV 533 

Fig. 13. Horizontal movement of exterior joints: (a) WB; (b) WX 534 
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Fig. 14. Schematic diagram of internal force calculation of RV: (a) idealized model; (b) internal forces 535 

transformation 536 

Fig. 15. Comparisons of vertical load resistance and horizontal reaction force from strain gauge and 537 

load cells: (a) WB; (b) WX 538 

Fig. 16. De-composition of the load resistance from bareframe and steel brace: (a) WX; (b) EX; (c) 539 

RV 540 

Fig. 17. Comparison of the behaviour of different connections: (a) vertical force; (b) flexural action; 541 

(c) catenary action 542 

Fig. 18. De-composition of the load resistance of bareframe from different actions (Note: FA and CA 543 

represent flexural action and catenary action, respectively) : (a) WB; (b) WX; (c) EB; (d) EX; (e) RB; 544 

(f) RV 545 

Fig. 19. De-composition of load resistance from 1st story and 2nd story: (a) WB; (b) WX; (c) EB; (d) 546 

EX; (e) RB; (f) RV 547 

Fig. 20. Comparisons of the flexural and catenary action variation in 1st story and 2nd stories (Note: FA 548 

and CA represent flexural action and catenary action, respectively) : (a) WB; (b) WX; (c) EB; (d) EX; 549 

(e) RB; (f) RV 550 

Fig. 21. De-composition of the load resistance of brace from different braces (Note: TB and CB 551 

represent tensile brace and compressive brace, respectively) : (a) WX; (b) EX; (c) RV 552 

Fig. 22. Axial force of braces (Note: TB and CB represent tensile brace and compressive brace, 553 

respectively) : (a) WX; (b) EX; (c) RV 554 

 555 
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Table 1-Specimen properties 570 

Test ID Connection type Steel brace 

WB Welded connection 

Welded connection 

Bare frame without braces 

WX Braced frame with X braces 

RB Reduced beam section connection Bare frame without braces 

RV Reduced beam section connection Braced frame with V braces 

EB End plate connection Bare frame without braces 

EX End plate connection Braced frame with X braces 

 571 

 572 

 573 

Table 2-Material properties 574 

Items 

Plate 

thickness 

(mm) 

Yield 

strength 

(MPa) 

Yield 

strain 

Ultimate 

strength 

(MPa) 

Ultimate 

strain 

Elongation 

(%) 

Beam flange 8.0 310 0.0019 420 0.0240 12.0 

Beam web 5.5 320 0.0021 430 0.0249 13.5 

Column flange 10.0 300 0.0019 410 0.0267 14.0 

Column web 7.0 295 0.0023 375 0.0242 13.0 

Steel brace 4.0 310 0.0021 420 0.0256 12.5 

 575 

 576 

 577 

Table 3-Test results 578 

Test ID 
UYL 

(mm) 

FYL 

(kN) 

KYL 

(kN/mm) 

UUL 

(mm) 

FUL 

(kN) 

WB 45 147.8 3.3 200 197.5 

WX 31 233.9 7.5 382 286.5 

EB 42 94.4 2.2 515 255.4 

EX 30 148.5 5.0 526 469.8 

RB 37 106.8 2.9 468 407.0 

RV 30 165.2 5.5 421 356.3 
Note: FYL and FUL represent yield load and ultimate load, respectively; UYL and UUL represent displacements corresponding the yield load and ultimate 579 
load, respectively; KYL represents initial stiffness corresponding the yield load. 580 
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