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Abstract 

The representation of numbers is commonly viewed as an ordered continuum of magnitudes, 

referred to as the mental number line. Previous work has repeatedly shown that number 

representations evoked by a given task can be easily altered, yielding an ongoing discussion 

about the basic properties of the mental number line and how malleable they are. Here we 

studied whether the resolution of the mental number line is fixed or depends on the relative 

magnitudes that are being processed. In two experiments, participants compared the same 

number pairs under two conditions that differed in terms of the overall range of numbers 

present. We report a novel number range effect, such that comparisons of the same number 

pairs were responded to faster under the smaller vs. larger number range. This finding is 

consistent with the idea that the resolution of the mental number line can be adjusted, as if a 

unit difference is perceived as larger in smaller ranges.  

 

Key words: mental number line, context effects, mental resolution, size effect, distance 

effect. 
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  Numbers are abstract entities, representing numerical magnitudes, which we can 

combine using specific rules. Regardless of the physical way in which these mental symbols 

are presented (Arabic numerals, number words, dot arrays, etc.) or processed (e.g., in a visual 

or auditory modality), their semantic meaning is thought to be captured by an analogue 

magnitude representation associated with the intraparietal sulcus (for a review see Feigenson, 

Dehaene, & Spelke, 2004), commonly referred to as the mental number line (Restle, 1970). 

Extensive evidence shows how number representations can be changed by certain contexts or 

task requirements. It is worth noting that the insight of a malleable mental number line 

sharply contrasts with a prior intuition that numbers would be represented in a purely 

propositional way.  

Researchers have identified some key characteristics for the mental representation of 

numbers, such as condensed scaling and left-to-right spatial orientation. The relevant 

empirical evidence concerns three effects: the distance effect (i.e., better discrimination of 

numbers that are further apart than when they are close), the size effect (i.e., better 

performance for small than large numbers; Moyer & Landauer, 1967) and the SNARC 

(Spatial-Numerical Association of Response Codes) effect (i.e., faster responding to 

large/small numbers with the right/left hand, respectively; Dehaene, Bossini, & Giraux, 

1993). Both the distance and size effects are generally robust and rarely affected by training 

(e.g., Dehaene, 1997; Zbrodoff & Logan, 2005; but see Verguts & Van Opstal, 2005).  

In contrast, the flexibility of the SNARC effect has been repeatedly observed. This 

effect seems to depend on relative, and not absolute, numerical magnitude, such that the same 

numbers (e.g., 4 and 5) can be associated with left-hand responses, when used as the smallest 

numbers in the presented range (e.g., 4-9), and with the right-hand responses, when used as 

the largest numbers in the presented range (e.g., 0-5; Dehaene et al., 1993; Fias, Brysbaert, 

Geypens, & d’Ydewalle, 1996). Moreover, the SNARC effect can be easily reversed (or 
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diluted) by manipulating the task instructions (e.g., Bächtold, Baumüller, & Brugger, 1998), 

incompatible spatial mapping/positioning (e.g., Fischer, Mills, & Shaki, 2010; Fischer, Shaki, 

& Cruise, 2009; Notebaert, Gevers, Verguts, & Fias, 2006; Shaki & Fischer, 2008) and 

memory requirements or load (e.g., Lindemann, Abolafia, Pratt, & Bekkering, 2008; van 

Dijck & Fias; 2011; van Dijck, Gevers, & Fias, 2009). 

In line with these findings, it seems that short-term numerical representations are 

constructed online, during task execution, in accordance with the specific characteristics of 

the task at hand. Therefore, the same numbers can be considered small or large and evoke 

contrasting directions in space, depending on the putative mental number line, which is 

generated by the task. Such “working representations” appear to be particularly affected by 

task demands when people are intentionally asked to process numerical magnitudes, 

compared to situations in which the numerical magnitudes are processed automatically (i.e., 

not as part of the task requirements, e.g., Tzelgov, 1997; Tzelgov & Ganor-Stern, 2005). 

However, even in the latter case, there seems to be a context-dependent ranking of numerical 

magnitudes, at least in the sense of which number is automatically perceived to be the 

smallest (Pinhas & Tzelgov, 2012). Consistently with these ideas, a recent model by Cohen 

Kadosh and Walsh (2009) proposed that numerical processing starts with non-abstract 

numerical representations in the parietal cortex. These representations are assumed to be 

automatic in the sense that they are not affected by task demands. At a later stage, abstract 

representations may emerge in accordance with the task requirements in the prefrontal cortex, 

which is associated with training effects, working memory and strategy application (see also 

Gilbert & Burgess 2008; Tudusciuc & Nieder, 2007).  

The objective of the present study was to explore whether the granularity or resolution 

of the evoked mental number line can also be changed by context. Consider a numerical 

comparison task, in which participants are presented with pairs of numbers (one pair at a 
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time) and are asked to select the larger number in each pair. In one condition participants see 

the pairs 10-11, 11-12 ... 18-19, while in the second condition, they see the pairs 10-11, 11-12 

... 38-39. The two conditions can be called ‘small number range’ and ‘large number range’, to 

reflect the corresponding differences in the number range in the two conditions. The numbers 

in all pairs differ by 1 unit. However, in the small number range, for example, 11 and 12 

differ by 1 unit in a range of 10 units, while in the large number range the difference is 1 unit 

in a range of 40 units. According to the well-known ‘distance effect’, there is faster 

responding for pairs of numbers which are further apart. What is not known is whether 

differences in perceived distance are fixed (i.e., depend on absolute numerical magnitude) or 

variable, depending on which other numbers are present. If the latter hypothesis is true, we 

expect faster reaction times (RTs) when comparing the numbers 11 vs. 12 in the small than in 

the large number range. Accordingly, a ‘range effect’ (to mean: a difference in RT for 

responding to the same pair of stimuli, depending on whether the pair appears in the small or 

large number range condition), would be consistent with an interpretation that the evoked 

mental number line keeps getting adjusted, as additional number pairs are observed, and its 

resolution depends on the overall range of the processed numbers.  

Experiment 1 

Method 

Participants and Design  

Participants were 62 mostly undergraduate students (mean age 23 years, 33 female, 54 right-

handed), who were compensated with course credit. The experiment was designed to 

manipulate two within-participant factors: range (small vs. large range) and pair (the 

particular pairs of numbers which were common in the small and large ranges; these were 11-

12, 12-13, 13-14, 14-15, 15-16, 16-17, 17-18, 18-19).  

Procedure and Materials 
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The task was computer-based. E-Prime software controlled the presentation of the 

stimuli (Schneider, Eschman, & Zuccolotto, 2002). Participants were asked to perform a 

numerical comparison task, identifying the larger number, between two numbers concurrently 

presented on a screen. When the number presented on the left/right of the screen was larger, 

they were asked to press the left (A)/right (L) response key, respectively. The trial structure 

involved the presentation of a fixation cross for 500 ms, followed by a pair of numbers, 

which remained visible until a response was made. Subsequently, a blank screen was shown 

for 500 ms. Numbers appeared in 40 point size Arial font, in white, against a black 

background. Each number within each pair was presented equally often on the left and right 

side of the screen.  

 All number pairs consisted of adjacent numbers. Each participant was presented with 

two blocks of trials (block order was counterbalanced across participants), corresponding to 

the two range conditions. In the small number range block, there were 80 trials in total (each 

pair between 11-19 was presented 10 times) and in the large number range block 176 trials 

(each pair between 11-19 was presented 10 times and pairs between 21 and 39 were 

presented 6 times each; pairs involving the numbers 20 and 30 were excluded). Order of trials 

in each block was randomized. There was a self-paced break between the two blocks and 

halfway the large range block.  

Analysis 

In this and the following experiment significance level was defined as p < .05. We 

report partial eta squared (2
p) values calculated as SSeffect / (SSeffect + SSerror). RTs 

shorter than 200 ms or longer than 2,000 ms were excluded from all analyses (less than 1% of 

the data). Error rates were low (average = 4%, SD = 3%) and, after checking that there were 

no speed-accuracy trade-offs, were not analyzed further. Finally, one participant was 

excluded from the analysis due to a high error rate (24%). 
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Results and Discussion 

 We focus on the number pairs common to the small and large number range 

conditions. Figure 1 shows that RTs for correct responses were faster in the small range (651 

ms), as opposed to the large range (679 ms), for exactly the same pairs of numbers. We 

explored this difference with a 2 × 2 × 8 mixed-design ANOVA, with order of blocks (small 

first, large first) as a between-participant variable and number range (small, large) and pair 

(11-12, 12-13, 13-14, 14-15, 15-16, 16-17, 17-18, 18-19) as within-participant variables. 

There were significant main effects for both number range [F(1,59) = 18.11,MSE = 11,024, 2
p 

= .23] and pair [F(7,413) = 14.09, MSE = 4,452, 2
p = .19], but no interaction between the two 

factors [F(7,413) = 1.84, MSE = 2,593, n.s., 2
p = .03,]. Next, we evaluated the presence of the 

size effect, according to which pairs of smaller numbers are responded faster than those of 

larger ones. As expected, the linear component of the pair effect was significant [F(1,59) = 

17.16, MSE = 5,225, 2
p = .23]. Finally, we examined the size effect for all the pairs in the 

large number range condition [F(1,60) = 154.14, MSE = 3,983, 2
p = .72].

1
 Note that the size 

effect was more pronounced when considering the greater set of numbers in the large number 

range condition, probably due to the bigger change in the overall magnitude of the pairs 

(which included a change in decades). Last, there was no reliable main effect for the order of 

blocks or interactions involving this factor (all ps > .12, all 2
p < .04).  

 The results of this experiment indicate that the same pair of numbers will be 

responded to differently, depending on whether they appeared together with numbers across a 

smaller or larger number range. We predicted that the same number difference would be 

psychologically less salient when the overall range was greater. This prediction, labeled the 

number range effect, was confirmed. Note that the information about number range was 

entirely driven by the trials participants went through: there was no other aspect of the 
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procedure which informed participants regarding range differences. Moreover, we tested and 

broadly confirmed the presence of the standard size effect.  

Even though the frequency of the critical pairs in Experiment 1 was matched across 

the two number ranges, the large range condition included several filler trials (to indicate the 

greater range) and there were no comparable filler trials in the small range condition. Thus, 

the total number of trials in the large range was about twice as large, and so there is a 

possibility that the number range effect was due to the lower probability of a critical trial in 

the large range condition. This possibility was tested (and ruled out) in Experiment 2, in 

which we matched the number of trials across each range condition. Accordingly, each 

condition had an equal number of critical (i.e., common) pairs and an equal number of fillers. 

Furthermore, the intra-pair distance was manipulated in Experiment 2, which allowed a test 

of the distance effect.  

Experiment 2 

Method 

Participants and Design 

Participants were 70 undergraduate students (mean age 21 years, 50 female, 66 right-

handed), who were compensated with course credit. This experiment was designed to test the 

number range effect as well as the distance and size effects. As in Experiment 1, there were 

two within-participant factors: number range (small vs. large) and a pair (the common pairs 

for both the range conditions were 12-13, 17-18, 13-17, 12-17 and 13-18).  

Procedure and Materials 

The trial structure and task administration were identical to those in Experiment 

1.While in Experiment 1, number pairs consisted of adjacent numbers, in this experiment the 

numerical distance between numbers varied to match the intra-pair distances of 1, 4 and 5. 

Moreover, there was the same number of critical number pairs in the small and large number 
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range conditions, as well as the same number of filler number pairs. Specifically, the critical 

pairs were 12-13, 17-18 (distance 1), 13-17 (distance 4), and 12-17, 13-18 (distance 5); each 

critical pair had a frequency of 10. In the small range condition, there were 6 filler number 

pairs (numbers between 11 and 19), each with a frequency of 6. In the large range condition, 

there were 18 filler number pairs (numbers between 11 and 39), each with a frequency of 2. 

Thus, in both conditions, there were overall 86 trials. 

Analysis 

We excluded RTs shorter than 200 ms or longer than 2,000 ms (less than 1% of the 

data). Error rates were low (average = 3%, SD = 2%). They were only analyzed to rule out 

speed-accuracy trade-offs and will not be discussed further. 

Results and Discussion 

As before, we examined the mean RTs of correct responses for the number pairs 

which were common between the small and large number range conditions (Figure 2). We 

conducted a 2 × 2 × 5 mixed-design ANOVA, with order of blocks (small first, large first) as 

a between-participant variable and number range (small, large) and pair (12-13, 17-18, 13-17, 

12-17, 13-18) as within-participant variables. As before, we observed significant main effects 

of both number range [F(1,68) = 17.44, MSE = 6,802, 2
p = .20] and pair [F(4,272) = 48.93,MSE 

= 2,644, 2
p = .42], but no interaction between the two [F(4,272) = 1.45, MSE = 1,876, 2

p = 

.02]. Next, we computed the linear trend for the effect of pair. This was significant and 

indicates the presence of a distance effect [F(1,68) = 157.11, MSE = 3,135, 2
p = .70].

1
 As can 

be seen in Figure 2, responses were faster for pairs 12-13 and 17-18 (distance 1) than for pair 

13-17 (distance 4), than for pairs 12-17 and 13-18 (distance 5). No other effects in the 

analysis were significant (all ps > .12, all 2
p < .03). Last, we evaluated the size effect, which 

was less straightforward to explore in the current design, given the use of variable intra-pair 

distances. Therefore, we simply averaged the RTs for all adjacent pairs of numbers in the 
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large number block within the first (11-19), second (21-29), and third (31-39) decades and 

compared the means differences, with a repeated measures ANOVA. Mean RTs for the first, 

second and third decades were 638 ms, 684 ms and 700 ms, respectively. There was a main 

effect for decade [F(2,138) = 19.02, MSE = 3,790, 2
p = .22], as well as a significant linear 

component [F(1,69) = 45.87, MSE = 2,911, 2
p = .40], providing evidence for a reliable size 

effect.  

General Discussion 

The mental number line metaphor is extensively used to describe the representation of 

numbers (e.g. Dehaene, 1997; Restle, 0791), despite an ongoing challenge of fully 

characterizing its properties. The current study tested whether the mental number line 

induced by a given task has a fixed resolution or whether the resolution depends on the 

overall set of numbers which are being processed. Our results clearly showed that the same 

two numbers are responded to faster when presented in a smaller vs. larger number range. We 

suggest that such a finding can be interpreted in terms of the perception of the distance 

between two numbers being affected by the overall range of the other numbers present in the 

task. Our reasoning for favoring such an interpretation is simple: we know from the distance 

effect that more distant number pairs are responded to faster. In our task, the same pair of 

numbers was responded to faster in the smaller vs. the larger range condition. Since these two 

conditions were matched in other relevant respects, the decrease in response time can be 

plausibly interpreted as an increase in perceived distance. Given the above, our findings are 

consistent with the hypothesis that the resolution of the mental number line changes, in a 

manner that is similar to zooming in and out from the relevant numbers which are being 

processed. That is, the subjective impression of number differences seems to be a function 

not of absolute numeric magnitudes, but rather of numeric magnitudes adjusted by the overall 

range.  



11  NUMBER RANGE EFFECT 
 

The current results extend previous findings showing that the association between 

numbers and space can change depending on the task at hand. For example, the same 

numbers were found to be associated with a right or left spatial direction, and accordingly 

perceived as large or small, depending on their rank against the other numbers employed in 

the task (Dehaene et al., 1993; Fias et al., 1996). In another recent study, participants were 

asked to compare the physical size of single-digit numbers while ignoring their numerical 

magnitudes. It was concluded that number range can be processed automatically, at least in 

the sense of which number was perceived as the smallest (Pinhas & Tzelgov, 2012). Here, we 

provide evidence that the used number range, which varied between blocks, presumably 

affects the discriminability between numbers. Future studies can test whether such effects can 

be found at the level of a single trial (cf. Fischer et al., 2009) or whether they are constrained 

to manipulations made at the block level. Additional work can focus on the question of 

exactly how malleable the properties of the mental number line can be, depending on the 

distributional properties of the numbers processed for a particular task. 

It should be noted that the number range effect reported here was found for within-

decade comparisons of two-digit numbers. Such comparisons can be resolved based on the 

unit digits alone, since the decade digits are always identical in a comparison pair. Yet it was 

evident from the findings for the number range effect and the size effect that the decade digits 

were not ignored, even though their processing was not relevant for the task. Processing of 

both the unit and the decade digits of two-digit numbers usually takes place under conditions 

of simultaneous presentation, irrespective of task requirements (e.g., Ganor-Stern, Pinhas, & 

Tzelgov, 2009; Nuerk, Weger, & Willmes, 2001). 

Finally, the present research regarding flexibility in the resolution of the mental 

number line was partly motivated by findings in similarity and categorization that indicate 

possibly analogous effects of learning on the resolution of psychological space (e.g., 
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Nosofsky, 1988; Tversky, 1977). Thus, the tantalizing possibility presents itself, that perhaps 

such similarities might point to the existence of shared principles guiding working memory, 

when generating context-dependent representations (regardless of whether these 

representations are for numbers, or perceptual stimuli in a categorization task, or more 

abstract conceptual stimuli). While it is currently, premature to speculate about the nature of 

such shared principles, this is an exciting direction for future work.  
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Footnotes 

1
 Given the unequal spacing between the independent variable levels, compatible 

linear trend coefficients were computed according to Robson (1959). 
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Figure Captions 

Figure 1. Mean RT as a function of number range and pair in Experiment 1. Common pairs 

for both range conditions are framed. Vertical bars denote 0.95 confidence intervals.  

Figure 2. Mean RT as a function of number range and pair in Experiment 2. The intra-pair 

distances of the pairs 12-13, 17-18, 13-17, 12-17 and 13-18 are 1, 1, 4, 5, and 5, respectively. 

Vertical bars denote 0.95 confidence intervals.  
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Figure 1 
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Figure 2 

 

 

 

 

 

 

 

 

 

 

  


