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Abstract

We examine optimal auction design when buyers may receive future outside offers. The

winning bidder may choose to default upon observing her outside offer. Under the optimal

mechanism, the bidder with the highest value wins if and only if her value is above a cutoff,

and the winner never defaults. The optimal auction takes the form of a second-price auction

with a reserve price and a deposit by the winning bidder. Under regularity conditions, both the

optimal reserve price and the deposit increase when the distribution of outside offers worsens.
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1 Introduction

It often takes time for the winning buyer and the seller to complete the transaction with high-

value auction items after the auction concludes. During this time, the winner may receive an

alternative outside offer and renege on the original transaction if the outside offer is better.1 In

such a situation, it is a common practice for the seller to demand a non-refundable deposit from

the winning bidder before settling the final transaction. If the winner defaults on the transaction,

the deposit is forfeited. Deposit requirements (normally capped at a certain amount) have been

widely adopted by sellers in practice. For instance, sellers in eBay auto auctions are allowed to set

a deposit that is no more than 2, 000 US dollars. After paying the deposit, the winners can make

final payments within a week or ten days. In UK real estate auctions, a buyer is required to pay

a deposit of 6, 000 UK pounds immediately after winning; the buyer then has to make the final

payment within twenty eight days.

It is, therefore, worthwhile to examine the impact of a deposit requirement on bidding strategy

and the seller’s revenue in the auction. A deposit has a direct effect that compensates the seller

by making post-auction default costly. However, there is an indirect effect, as bidders who account

for a possible future default will adjust their bids in response to the deposit requirement. It is not

clear whether the seller benefits from requiring a deposit, and if so, at what level the deposit should

be set. In addition, a large body of literature following Myerson (1981) has shown that a reserve

price helps screen out low-value bidders and improve seller revenue. We explore the different roles

of, and the links between the reserve price and the deposit requirement.

Our investigation starts by examining a class of truthful direct mechanisms, which can be

described as follows: A seller would like to maximize revenue by allocating a single object among

some bidders. Each bidder’s private value is independently drawn from a common distribution.

In the first stage, bidders report their values, and at most, one winner is selected to enter the

second stage. All bidders discover their random outside offers in the second stage. In the second

stage, the chosen winner reports her outside price, and the mechanism decides whether the winner

completes the transaction or takes the outside offer. Relying on the necessary condition for first-

stage incentive compatibility, we establish an upper bound for seller revenue under this class of

mechanisms. Moreover, the upper bound of revenue entails the following allocation rules: In the

1A typical example is online auction marketplaces, i.e., eBay, where auctions are listed regularly and sequentially,
and it is easy for buyers to conduct post-auction searches for better outside offers before the final transaction. In
this case, sellers are faced with buyers’ commitment issues. Resnick and Zeckhauser (2002) observe that the most
common complaint by sellers in online auctions is that winning bidders do not follow through with the transactions.
Dellarocas and Wood (2008) find that 81 percent of the negative feedback given to buyers in eBay auctions results
from “bidders who backed out of their commitment to buy the items they won.”
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first stage, a bidder with the highest value is selected as the winner if and only if her private value

is no less than a cutoff value, and in the second stage, the winner never defaults.

We next examine whether and how the upper bound of the seller’s revenue can be achieved

through a second-price auction with a winner-pay deposit and a reserve price. A winner-pay

deposit increases default cost and therefore lowers the winner’s incentive to exercise the outside

offer. In the auction, the seller first announces the deposit and the reserve price. All bidders place

their bids simultaneously, and the bidder with the highest bid wins (given that her bid is no less

than the reserve price). The winning bidder then decides whether to pay the deposit before the

random price of the outside offer is realized.2 After the deposit is paid, the winning bidder can

either complete the original transaction or take the outside offer and forfeit the deposit.3 If the

deposit is not paid, the winner only decides whether to take the outside offer. When the winner

defaults on the original transaction after paying the deposit, she loses the deposit, and the seller

keeps the object.

To better understand the impact of the deposit and the reserve price on equilibrium bidding

strategies and seller revenue, we first study the optimal reserve price for each level of deposit

and then examine the overall effect of a change in the deposit (with the optimal reserve price as

a function of the deposit). We find that seller revenue strictly increases with the deposit until

a specific cutoff value and then becomes flat. Maximal seller revenue, which equals the upper

bound of revenue identified above, is achieved when the deposit is set sufficiently high such that

the winner is deterred from defaulting. This result, in turn, indicates that a second-price auction

with the identified deposit and reserve price is essentially the optimal design among the class of

mechanisms considered.

The intuition of our result is as follows: bidders lower their bids when facing a higher deposit

requirement in the auction. But setting a reserve price as the minimum bid excludes low-value

bidders, which helps offset the negative effect of the deposit on seller revenue. Thus, it turns out

that an auction with relatively low bids and full compliance is more profitable than one with high

bids but partial compliance. Consequently, the seller raises the required deposit until the possibility

of ex-post default decreases to zero.

To the best of our knowledge, our study is the first to examine the impact of deposit requirements

on bidding strategies and seller revenue. Our paper is related to the literatures on auctions without

buyer commitment and auctions with outside options, which we now review.

Auctions without buyer commitment. First, our paper is related to the growing literature on

2In the auction, the price of the outside offer can be private information for the winning bidder.
3In our model, we assume that if the final price is less than the deposit, the seller commits to pay back the

difference when the winner chooses to complete the transaction.

2



auctions without buyer commitment. Asker (2000) studies an auction model in which bidders face

uncertainty regarding their final valuations of the object, and this uncertainty can only be resolved

after bidding has taken place. He shows that the inclusion of a withdrawal right (allowing the winner

to default) raises the seller’s expected revenue. Zheng (2001, 2009) considers the situation where

bidders facing budget constraints can default on their bids. He shows that the default risk induced

by financial constraints affects both equilibrium bidding strategies and seller revenues in auctions.

Engelmann, Frank, Koch, and Valente (2015) study an auction model in which the seller can

make a second-chance offer to the second-highest bidder if the auction winner fails to complete the

transaction. Their analysis shows that the availability of such an offer reduces bidders’ willingness

to bid in the auction, thus lowering the seller’s revenue, even when no default takes place.

Krähmer and Strausz (2015) investigate the effects of the withdrawal right on optimal sales

contracts that involve only one buyer and one seller. In their contracting environment, the buyer,

after having observed her private valuation, has the choice of either exercising her option as specified

in the contract or withdrawing from it and choosing her outside option. Their findings show

that the inclusion of default rights is equivalent to introducing ex-post participation constraints

in the sequential screening model; even though sequential screening is still feasible with ex-post

participation constraints, the seller no longer benefits from it. Instead, the optimal selling contract

is static and coincides with the optimal posted price contract in the static screening model.4

Our study is closely related to that of Armstrong and Zhou (2016), who study optimal search

deterrence in a one-seller-and-one-buyer setting. In their model, the buyer incurs a cost to search

for an outside option. They primarily focus on the seller’s choice between a buy-it-now discount

offer and an exploding offer and study the optimal selling mechanism. Their analysis reveals that,

at the optimum, the seller might charge a non-refundable deposit. Our paper is also linked to the

literature on auction design with an optimal search.5 One of the most important findings is from

Crémer, Spiegel, and Zheng (2007, 2009), who consider the optimal auction design when the seller

controls the set of participating bidders. They show that the optimal selling mechanism would

feature fewer participants and more extended searches. Moreover, their papers assume the winner

cannot recall the original transaction. On the contrary, our paper considers the case in which the

winner can hold the object by paying the deposit and then compare it with the outside offer.

Although our study and the literature on auctions without buyer commitment share a common

feature that the auction winner may renege on the original transaction, the focus of our paper

differs. We provide a rationale for the seller’s adoption of a deposit, which is commonly observed

4For example, see related studies by Ben-Shahar and Posner (2011) and Eidenmüller (2011).
5For example, see related studies from McAfee and McMillan (1988); Burguet (1996); Lee and Li (2020).
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in real-world auctions, and characterize how the seller should set both the deposit and the reserve

price in the auction.

Auctions with outside options. Our paper is also part of the literature on auctions with outside

options. Cherry, Frykblom, Shogren, List, and Sullivan (2004) conduct a lab experiment to examine

whether bidders consider the existence of outside options when formulating their bidding strategies

in second-price auctions. Their results show that bidders reduce their bids whenever their resale

values exceed the price of the outside option. Kirchkamp, Poen, and Reiss (2009) study the equi-

librium bidding behavior of bidders in first-price and second-price auctions with outside options.

They show that first-price auctions yield more revenue to sellers than second-price auctions, which

may explain why first-price auctions are more common in practice.

Lauermann and Virág (2012) study how the presence of outside options influences whether an

auctioneer prefers “opaque” or “transparent” auctions, which differ based on the information that

bidders receive. They show that an auctioneer might choose opaque auctions to reduce the values

of the bidders’ outside options. Figueroa and Skreta (2007, 2009) examine revenue-maximizing

auctions for multiple objects, where bidders’ outside options depend on their private information

and are endogenously chosen by the seller. They show that an optimal mechanism may or may not

allocate the objects efficiently.

The existing models consider either only losing bidders having ex-post outside options or all

bidders knowing their outside options before bidding. We instead consider a scenario where outside

offers arrive after all bidders have submitted their bids, and they are available to all bidders,

including the auction winner (i.e., the winner can choose to either complete the original transaction

or default and take the outside offer). In addition, our analysis focuses on the role of a deposit

requirement in such an environment.

The rest of the paper is organized as follows. In Section 2, we present the model setup and

analyze the upper bound on seller revenue. Section 3 examines how a second-price auction with a

deposit and a reserve price can achieve the revenue upper bound. Section 4 discusses distributions

of the outside offers and the robustness of our results when relaxing some assumptions. Section

5 concludes the paper. The proofs of our main results are in the Appendix, and all the other

non-essential proofs and computational details are included in Appendices S1 and S2, which are

for online publication.
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2 The Model and Analysis of General Mechanism

There are N potential risk-neutral bidders, where 1 < N <∞, who compete for an indivisible

object. The seller’s reservation value of the object is normalized to be zero. Bidders’ private values,

denoted by vi, i = 1, 2, ..., N , are independent draws from a common atomless distribution F (·)
with density f(·) > 0 over the support of [0, v̄], where v > 0. After the competition, each bidder

i receives her own outside offer, which gives the same object (thus the same value vi) but with a

random price, denoted by pi. Prices pi, i = 1, 2, ..., N , are random draws from a common atomless

distribution Φ(·) with density ϕ(·) > 0 over [0, v̄]. Bidder i’s vi and pi are independent and private

information. We assume that F and Φ are common knowledge among the seller and bidders, and

they are regular in the sense that the hazard rates f(·)
1−F (·) and ϕ(·)

1−Φ(·) are increasing.

Instead of studying a specific auction format, we start by examining a class of direct mechanisms

with two stages of bidder value reporting and arrival of future outside offers. As mentioned above,

the purpose of doing this is to understand how to design the winner selection and the default

deterrence, and more importantly, it allows us to explore the upper bound of seller revenue. In

Section 3, we will show that the upper bound is indeed achievable by a second-price auction with

properly set reserve price and winner-pay deposit. In this sense, focusing on the second-price

auction has no loss of generality.

The class of direct mechanisms we consider can be described as follows: In the first stage,

all bidders are asked to report their values. We use v′ = (v′1, v
′
2, ..., v

′
N ) to denote the bidders’

reports. Among those bidders, at most one winner is selected to participate in the second stage.

The probability that bidder i is selected is denoted by q1
i (v′) ∈ [0, 1] with

∑
i q

1
i (v′) ≤ 1 and bidder

i’s payment to the seller in the first stage is denoted by m1
i (v
′) ∈ [0,+∞).

In the second stage, the selected bidder observes the price pi of her outside offer and makes a

report, denoted by p′i ∈ [0, v̄]. The object is sold to the selected bidder if and only if p′i ≥ p̂i(v
′) ∈

[0, v̄], and the associated payment to the seller in the second stage is denoted by m2
i (v
′, p′i) ∈

[0,+∞). If p′i < p̂i(v
′), the current transaction is not completed and the selected bidder takes the

outside offer by paying pi. The probability of completing the transaction, denoted by qi2(v′i, p
′
i; p̂i),

corresponding to p̂i(v
′
i), can therefore be written as follows:6

q2
i (v′i, p

′
i; p̂i) =

 1 if p′i ≥ p̂i(v
′);

0 if p′i < p̂i(v
′).

(1)

6In fact, whether the object will be allocated to the selected bidder i in the second stage does not depend on other
losing bidders’ reports in the first stage, thereby implying that making the deposit a function of all the losing bids in
the auction is unlikely to improve the seller’s revenue.
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We here look for the optimal truthful direct mechanism that maximizes the seller’s expected rev-

enue. In this design problem, the seller’s choice variables are {q1
i (v′),m1

i (v
′); p̂i(v

′),m2
i (v
′, p′i); i =

1, 2, ...N}. Since we aim to establish an upper bound on seller revenue, in the following analysis,

we relax the design problem by assuming that pi in the second stage is public information. This

relaxation would weakly increase the seller’s revenue and moreover, by doing so, we can ignore

the individual rationality (IR) and incentive compatibility (IC) constraints in the second stage but

focus on the design problem in the first stage.

2.1 Implication of incentive compatibility in the first stage

Assuming that all other bidders tell the truth, let us now consider bidder i with value vi and

reporting v′i in the first stage. In this case, the interim expected payoff of bidder i, denoted by πi,

is given by

πi(v
′
i, vi) =

Ev−i, pi

 q1
i (v′i,v−i)

[
q2
i (v′i, pi; p̂i)vi + (1− q2

i (v′i, pi; p̂i)) max{vi − pi, 0} − m2
i (v
′
i,v−i, pi)

]
+ (1− q1

i (v′i,v−i)) max{vi − pi, 0} −m1
i (v
′
i,v−i)

 .

(2)

where the first term in the curly brackets is the expected payoff from being selected to enter the

second stage (with probability of q1
i (v′i,v−i)) and the second term in the curly brackets is the

expected payoff from not being selected to enter but facing the outside offer (with probability of

1− q1
i (v′i,v−i)).

To guarantee that no one has any incentive to lie about her value, incentive compatibility (IC)

requires that, for all i, for all vi and v′i,

πi(vi, vi) ≥ πi(v′i, vi),

indicating that any untruthful reporting cannot be beneficial for the bidder in the mechanism.

When bidder i with private value vi chooses not to make a report (or always report zero) in the

first stage but faces the outside offer directly, her expected payoff from the outside offer is given

by
∫ vi

0 (vi−pi)ϕ(pi)dpi, which can be simplified as
∫ vi

0 Φ(pi)dpi. Individual rationality (IR) requires

that a bidder should not be better off by not participating, that is, for all i and vi,

πi(vi, vi) ≥
∫ vi

0
Φ(pi)dpi.
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In particular, a bidder with value 0 will get zero payoff from her outside offer, i.e., we must have

π(0, 0) ≥ 0 from IR.

We then have the following lemma (See Appendix for the proof).

Lemma 1. If the mechanism is incentive compatible, then bidder i’s expected payoff can be expressed

as follows:7

πi(vi, vi) = πi(0, 0) +

∫ vi

0
Ev−i, pi

 q1
i (t,v−i)

[
q2
i (t, pi; p̂i) + (1− q2

i (t, pi; p̂i))1{t− pi ≥ 0}
]

+ (1− q1
i (t,v−i))1{t− pi ≥ 0}

 dt.

(3)

2.2 An upper bound on seller revenue and full deterrence

Define virtual value as follows:

λ(vi, pi) =

 pi if pi ≤ vi;

J(vi) if pi > vi.
(4)

where J(vi) ≡ vi − 1−F (vi)
f(vi)

. Let us denote the seller’s revenue function by R and given Lemma 1,

we can then establish the following lemma (See Appendix for the proof).

Lemma 2. The seller’s revenue function R is given by

R = Ev

∑
i

Epi≤vi

{[
vi −

1− F (vi)

f(vi)

]
− pi

}
+ Ev

∑
i

q1
i (vi,v−i)Epi

{
q2
i (vi, pi; p̂i)λ(vi, pi)

}
. (5)

Now we are ready to establish an upper bound for seller revenue and characterize features of

the associated allocation rules. Let v̌so and rso be uniquely determined by

1− F (v̌so)

f(v̌so)
(1− Φ(v̌so)) =

∫ v̌so

0
[1− Φ(pi)]dpi, and

rso =

∫ v̌so

0
[1− Φ(pi)]dpi.

(6)

Let us further use v(1) ≡ max{vi, i = 1, 2, ..., N} to denote the highest value among bidders and set

7This lemma can also be obtained by appealing to the version of the envelope theorem in Milgrom and Segal
(2002).
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the following allocation rules:

p̂soi (vi,v−i) =

 0 if vi ≥ v̌so;

v̄ if vi < v̌so,
and qsoi (vi,v−i) =

 1 if vi = v(1) and vi ≥ v̌so;

0 otherwise.
(7)

In our analysis, v̌so is called the winning threshold, indicating that in the first stage, a bidder with

the highest value is selected as the winner if and only if her value is no less than the threshold v̌so.8

We therefore have q1
i (v′) = 0 and m1

i (v
′) = 0 if v′i < v̌so. We then have the following result (See

Appendix for the proof).

Proposition 1. An upper bound of seller revenue under the class of the mechanisms is given by

R∗ = N
(
1− F (v̌so)

)
Q(v̌so)rso + N

∫ v̄

v̌so
(1− F (t))

(
t−

∫ t

0
Φ(x)dx

)
dQ(t), (8)

where Q(·) ≡ FN−1(·).

Our characterization above shows that to achieve the upper bound of revenue R∗, the seller

needs to screen out bidders using threshold v̌so in the first stage and then induce full compliance,

i.e., p̂so = 0, in the second stage. The winning bidder i’s virtual value is pi if pi is lower than value

vi, and the virtual value is J(vi) = vi − 1−F (vi)
f(vi)

when pi ≥ vi. The seller sets a cutoff price p̂i to

maximize the expected virtual values, subject to the constraint that the winning bidder defaults

if and only if the outside price is lower than threshold p̂i. Note that the virtual value function

as a function of pi starts from 0 and increases until pi = vi, and then it drops to a flat level of

J(vi). Therefore, the seller must set p̂i to either 0 or v depending on the level of J(vi). Since J(vi)

increases with vi, for vi ≥ v̌so, the seller finds it optimal to set p̂i to 0; and, for vi < v̌so, it is

optimal to set p̂i to v. Note that, given that pi is assumed to be known publicly, the identified

maximum of seller revenue gives the upper bound the seller can achieve. In the next section, we

will show that a second-price auction with properly designed deposits and reserve prices can still

achieve the upper bound, even when pi is private information.

3 Implementation by SPA with Deposit and Reserve Price

In this section, we consider a second-price auction game with deposit D and reserve price r.9

Note that charging a deposit increases the default cost of the winning bidder and therefore, it affects

8In Proof of Proposition 1, we will provide the derivation of the threshold v̌so.
9See the formal setup and timing of the auction game and characterizations of bidder strategies in online Appendix

S1.

8



the cutoff p̂i of whether to take the outside offer or complete the original transaction. Specifically,

the auction game includes three stages: In stage t = 0, the seller sets up the deposit and reserve

price. In stage t = 1, all the bidders submit simultaneous bids. Only those bids which are no less

than the reserve price r are valid. In stage t = 2, the winning bidder decides whether to pay the

deposit. In stage t = 3, an outside offer with price pi arrives (which is the winning bidder’s private

information) and then the winner decides whether to default and take the outside offer or complete

the current transaction, conditional on paying the deposit D.

Given the auction setup, the characterizations of bidder i’s decisions on paying the deposit at

t = 2 and taking the outside offer at t = 3 are straightforward. If the bidder does not win the

auction, whether to pay the deposit becomes irrelevant and the only option she faces is the outside

offer: taking the offer if vi ≥ pi; otherwise, not to make the purchase. Conditional on winning,

bidder i along the equilibrium path pays the deposit and faces two options between the original

transaction and the outside offer:10 the bidder completes the original transaction if the price for the

outside offer is no less than the rest of the final payment; otherwise, the bidder takes the outside

offer. Based on the strategies at t = 2 and t = 3, we employ backward induction to derive a bidder’s

equilibrium bidding strategy b(vi). Given D and r from the seller, define two cutoff values v̌ ∈ [0, v̄]

and v̂ ∈ [0, v̄] satisfying the following conditions:

r =

∫ v̌

0
[1− Φ(pi)]dpi, and D =

∫ v̂

0
[1− Φ(pi)]dpi.

Note that if b(v̄) ≤ r, we then have v̌ ≥ v̄, and no bidder participates. If b(v̄) ≤ D, we have v̂ ≥ v̄,

and no bidder will bid more than the deposit D.

In Case (I) where r ≤ D, we have v̂ ≥ v̌. Bidder i’s bidding strategy can be characterized as

follows:

b(vi) =



vi −
∫ vi

b(vi)−D
Φ(pi)dpi if vi > v̂;

vi −
∫ vi

0
Φ(pi)dpi if vi ∈ [v̌, v̂];

∅ if vi < v̌.

(9)

In Case (II) where r ≥ D, we have v̂ ≤ v̌; only the bidder with vi ∈ [v̌, v̄] will submit a valid

10If the winning bidder chooses not to pay the deposit, this is an off-equilibrium behavior, and the seller will
interpret the behavior as a default. Strategically, this off-equilibrium behavior is equivalent to the case where the
bidder chooses not to bid in the auction but waits for the outside offer directly.
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bid. The bidding strategy can be summarized as follows:

b(vi) =


vi −

∫ vi

b(vi)−D
Φ(pi)dpi if vi ≥ v̌;

∅ if vi < v̌.

(10)

Now let us examine the seller’s optimal choices of reserve price r and deposit D at t = 0. We

denote the seller’s expected revenue by R(r,D), and the expected revenue-maximizing problem

with both instruments r and D can be written as follows:

max
(r,D)∈[0,v̄]×[0,v̄]

R(r,D). (11)

Depending on r and D, the bidders’ equilibrium biding strategies are as characterized above. We

thus rewrite (11) as follows:

max
D∈[0,v̄]

max

{
max
r: r≤D

R(r,D); max
r: r≥D

R(r,D)

}
,

where the sub-problem maxr: r≤D R(r,D) corresponds to Case (I) where r ≤ D and the other sub-

problem maxr: r≥D R(r,D) corresponds to Case (II) where r ≥ D. In each case, the seller’s revenue

equals the auction price if the winner does not default, the deposit if the winner does, and zero in

the absence of any valid bids. For notation simplification, we write the seller’s expected revenue in

the former sub-problem as EI
S [R(r,D)] and the latter as EII

S [R(r,D)] in the following analysis.

In Case (I) where r ≤ D, we write the bidding strategy in (9) as b(vi) and b̃(vi) for vi ∈ [v̌, v̂] and

vi ∈ (v̂, v̄], respectively. Then, the seller’s expected revenue EI
S [R(r,D)] is given by the following

equation. According to Lemma 4 in online Appendix S1, v̌ is increasing in r but independent of D

and v̂ is increasing in D but independent of r in Case (I).

EI
S [R(r,D)] = N

(
1− F (v̌)

)
Q(v̌)r + N

∫ v̂

v̌

∫ vi

v̌
b(x)dQ(x)dF (vi) + N

∫ v̄

v̂

∫ v̂

v̌
b(x)dQ(x)dF (vi)

+ N

∫ v̄

v̂

∫ vi

v̂

[(
1− Φ(b̃(x)−D)

)
b̃(x) + Φ(b̃(x)−D)D

]
dQ(x)dF (vi),

(12)

where Q(·) ≡ FN−1(·). The first term occurs when only the highest value of all bidders is above

v̌. The second term occurs when the highest and the second-highest values are between v̌ and v̂.

The third term occurs when the highest value is higher than v̂ while the second-highest value is

between v̌ and v̂. The last term occurs when both the highest and the second-highest values are

10



above v̂.

In Case (II) where r ≥ D, the bidding strategy b(vi) is given by (10), and the seller’s expected

revenue EII
S [R(r,D)] is given by the following equation. According to Lemma 4 in online Appendix

S1, v̌ is increasing in both r and D in Case (II).

EII
S [R(r,D)] = N

(
1− F (v̌)

)
Q(v̌)

[(
1− Φ(r −D)

)
r + Φ(r −D)D

]
+ N

∫ v̄

v̌

∫ vi

v̌

[(
1− Φ(b(x)−D)

)
b(x) + Φ(b(x)−D)D

]
dQ(x)dF (vi),

(13)

where the first term occurs when only the highest value of all bidders is above v̌, while the second

term occurs when both the highest and the second-highest values are above v̌.

Our analysis will be carried out using the following two steps to examine the seller’s problem

with the instruments (r,D). Step one: for each given deposit level, we pin down the optimal

reserve price. For this purpose, we analyze the seller’s revenue maximization problems separately

in Case (I) where r ≤ D and Case (II) where r ≥ D. Let us denote the overall maximized expected

seller revenue by R∗(D) and the seller’s optimal choice regarding the reserve price by r∗(D). Then,

combining the solutions of the two sub-problems gives R∗(D) and r∗(D), that is,

R∗(D) := max

{
max
r: r≤D

R(r,D); max
r: r≥D

R(r,D)

}
, and

r∗(D) := arg max

{
arg max

r: r≤D
R(r,D); arg max

r: r≥D
R(r,D)

}
.

The characterization of r∗(D) helps us identify the connection between the deposit and the optimal

reserve price, which shows us how to set the reserve price optimally for any given deposit. Step two:

we relax the condition so the seller is free to choose any level of deposit and examine the optimal

deposit that maximizes R∗(D) with the optimal reserve price r∗(D), that is, maxD∈[0,v̄]R
∗(D). By

doing so, we obtain the optimal deposit and the associated reserve price.

Following the steps mentioned above, we first separately characterize the seller’s optimal choice

of the reserve price for a given deposit under Case (I) and Case (II). Before proceeding further, we

introduce notation of Dso as follows:

Dso =

∫ v̂so

0
[1− Φ(pi)]dpi, (14)

where v̂so = v. Recall that v̌so and rso are defined in (6). We then have b(v̂so) = Dso and

11



b(v̌so) = rso. Clearly, Dso is strictly greater than rso.

We then establish Lemmas 5 – 8 to help us characterize the seller’s optimal choice of the reserve

price r, given that D is set in the intervals of [0, rso), [rso, Dso], and (Dso, v̄], respectively. Since

these lemmas are rather technical, we instead put all the technical proofs for the seller’s choice on

reserve price for any given deposit in online Appendix S1. Let rI(D) and rII(D) denote the optimal

reserve price maximizing EI
S [R(r,D)] under Case (I) where r ≤ D and maximizing EII

S [R(r,D)] in

Case II where r ≥ D, respectively. After obtaining the solutions for the sub-problems separately, we

then compare the maximized seller revenues EI
S [R(rI(D), D)] and EII

S [R(rII(D), D)] across Cases

(I) and (II) for a given D ∈ [0, Dso]. Note that with D = r at the 45-degree line, v̌ = v̂, and revenue

functions in both cases are the same, i.e., EI
S [R(rI(D), D)] = EII

S [R(rII(D), D)]. By doing so, we

can establish the following result (See Appendix for the proof).

Proposition 2. The optimal reserve price r∗(D) can be characterized as follows:

r∗(D) =

 rI(D) if D ∈ [rso, Dso];

rII(D) if D ∈ [0, rso).
(15)

From Proposition 2, it is easy to see that r∗(D) = rso ≤ D when D ∈ [rso, Dso] and r∗(D) ≥ D
when D ∈ [0, rso).11 In practice, due to (a) the time and/or budget constraints faced by the

buyers (bidders), especially for the items with high values, and/or (b) regulations from the market

regulators, like those real examples mentioned in the introduction, often an upper limit on the

deposit that the seller can charge in the auction is imposed. Our result demonstrates how to set

the corresponding optimal reserve price for a given deposit level. Let D̄ ∈ [0, Dso) denote the upper

limit on the deposit, and then the reserve price is given by r∗(D̄), as shown in Proposition 2. In

this case, the cutoff v̂ is lower than v̄, and the possibility of default from the winner is not fully

deterred.

Proposition 2 further allows us to define the optimal revenue function R∗(D) as follows:

R∗(D) =

 EI
S [R(r∗(D), D)] if D ∈ [rso, Dso];

EII
S [R(r∗(D), D)] if D ∈ [0, rso).

(16)

11To provide some insights on the seller’s choices of reserve price r and deposit D, we present numerical example 1
in online Appendix S2. Assume for simplicity that there are only two bidders (N = 2) and that both bidder valuations
and outside offers are uniformly distributed on the unit interval (vi ∼ U [0, 1] and pi ∼ U [0, 1]). Our computations
show rso = 0.33333 and Dso = 0.5. Note that if no post-auction outside offer exists, i.e., Φ(·) = 0, the optimal reserve
price is 0.5. Moreover, when the seller sets r ≥ 0.5, no valid bids will be submitted, and the seller’s revenue decreases
to zero. All details regarding the computations are in online Appendix S2.
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Using (16), we move to step two to examine the optimal deposit and the associated reserve price.

Suppose that the seller is free to set the level of the deposit in the auction; the following result can

then be established (see Appendix for the proof).

Proposition 3. dR∗(D)
dD ≥ 0 for any D ∈ [0, Dso]. In particular, dR∗(D)

dD = 0 when D = Dso. As

a result, the combination of Dso and rso defined in ( 14) and ( 6) maximizes the seller’s overall

expected revenue.

Proposition 3 describes how the overall seller revenue changes with the deposit requirement. A

higher deposit requirement induces a higher overall expected revenue to the seller. The maximum

is achieved at D = Dso, and the associated optimal reserve price is given by rso. Then, R∗(Dso) is

given by the following equation:

R∗(Dso) = EI
S [R(rso, Dso)]

= N
(
1− F (v̌so)

)
Q(v̌so)rso + N

∫ v̂so

v̌so

∫ vi

v̌so
b(x)dQ(x)dF (vi) + N

∫ v̄

v̂so

∫ v̂

v̌so
b(x)dQ(x)dF (vi)

+ N

∫ v̄

v̂so

∫ vi

v̂so

[(
1− Φ(b̃(x)−D)

)
b̃(x) + Φ(b̃(x)−D)D

]
dQ(x)dF (vi).

Given that v̂so = v̄ and b(x) =
∫ x

0 (1 − Φ(pi))dpi, the third and fourth terms become zero and the

second term can be re-written as
∫ v̄
v̌so(1 − F (x))b(x)dQ(x) by changing order of the integration.

The equation above can then be simplified as follows

R∗(Dso) = N
(
1− F (v̌so)

)
Q(v̌so)rso + N

∫ v̄

v̌so
(1− F (x))b(x)dQ(x),

= N
(
1− F (v̌so)

)
Q(v̌so)rso + N

∫ v̄

v̌so
(1− F (t))

(
t−

∫ t

0
Φ(x)dx

)
dQ(t),

showing that R∗(Dso) is identical to R∗ in Proposition 1. Note that charging any deposit D > Dso

generates the same expected overall revenue as D = Dso to the seller. It is clear by (14) that,

at the optimum, D = Dso implies that the cutoff v̂so is equal to v̄; the default possibility for the

winning bidder is fully prevented, thereby resulting in full compliance in the auction, i.e., p̂so = 0.

The analysis here suggests that

Theorem 1. The second-price auction with Dso and rso generates the upper bound of seller revenue

R∗.

Setting a high deposit, on the one hand, makes winning become less attractive and in turn gives

bidders incentives to lower their bids in the auction; on the other hand, the deposit requirement
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increases the winner’s default cost, which reduces the likelihood that she will withdraw from the

original transaction. Our analysis indicates that the latter positive effect always dominates the

former negative effect; the seller’s revenue is maximized by setting a sufficiently high deposit to

fully deter the possibility of default. In this case, the reserve price also plays an important role

in excluding the possibility of selling the item to bidders with very low bids, thereby helping the

seller offset the negative effect of the deposit requirement and increase revenue. Figure 4 in online

Appendix S1 confirms that it is not optimal to use the deposit requirement alone; given any deposit

requirement D ∈ [0, Dso] in the auction, the overall seller revenue with a zero reserve price is strictly

less than that of r∗(D). However, if the reserve price is too high, it would (a) screen out bidders

with reasonably high values and (b) induce a high ending price, which gives a higher incentive to

the auction winner to default; both effects hurt the seller’s expected revenue and thus limit the

level of the reserve price the seller can set. As shown in Proposition 3, the optimal reserve price is

set at rso.

It is also of interest to compare the optimal reserve price rso to that of Myerson (1981). We

denote Myerson’s optimal reserve price by rm, which is given by 1−F (rm)
f(rm) = rm. From the charac-

terization of rso in (6), we have the following equation:

1− F (v̌so)

f(v̌so)
=

∫ v̌so

0 [1− Φ(pi)]dpi

1− Φ(v̌so)

≥ v̌so(1− Φ(v̌so))

1− Φ(v̌so)

= v̌so.

This implies that rm ≥ v̌so, as 1−F (v)
f(v) is decreasing in v. Furthermore, given that rso =

∫ v̌so

0 [1 −
Φ(pi)]dpi ≤ v̌so, we have rm ≥ v̌so ≥ rso. Clearly, rm = v̌so = rso if and only if there exists no

outside offer, i.e., Φ(·) = 0. Summarizing the comparison yields the following result.

Remark 1. rm ≥ v̌so ≥ rso. In particular, rm = v̌so = rso only when no outside offer exists, i.e.,

Φ(·) = 0.

4 Discussion

We now discuss different distributions of the distribution of the outside offers and the robustness

of our results when relaxing some important assumptions.12

12We also analyze the cases of percentage deposit and deposit proportionally deducted from full payment. See the
related discussion in online Appendix S1.

14



4.1 Distribution of the outside offer

In this section, we study the impact of the outside offer in the auction. When the price of the

outside offer is equal to 0 with probability 1, bidders will not enter the auction but choose to wait

for the outside offer, regardless of r and D set by the seller. In this case, (14) implies that the

optimal deposit Dso is 0. Another extreme case is when no outside offer exists for bidders after

the auction, i.e., Φ(·) = 0. In this case, the bidding strategy and the seller revenue are the same

as those in the standard second-price auction (with Myerson’s reserve price). (14) states that the

optimal deposit Dso in this case is equal to v. It is clear in both cases that charging any deposit D

will not affect the seller’s revenue.

Next, we examine how different distributions of the outside offers affect the auction design.

Given r and D, let b(vi,Φ1) and b(vi,Φ2) denote the equilibrium bidding functions corresponding

to the distributions of the outside offer Φ1(·) and Φ2(·), respectively; and further denote the optimal

reserve price, the optimal deposit, and the overall seller revenue by rsok , Dso
k , and R∗(rsok , D

so
k ,Φk),

respectively, corresponding to Φk(·), k = 1, 2. Our results are stated as follows (see Appendix for

the proof).13

Proposition 4. If the distribution of the outside offer worsens (in the sense of first-order stochastic

dominance) from the bidders’ perspective, i.e., Φ1(·) < Φ2(·),

(i) the equilibrium bid submitted by a bidder is higher for any given reserve price r and deposit

D, that is, v̌1 < v̌2, v̂1 < v̂2, and b(vi,Φ1) > b(vi,Φ2);

(ii) the seller sets a higher optimal deposit, that is, Dso
1 > Dso

2 ;

(iii) the optimal seller revenue is higher, that is, R∗(rso1 , D
so
1 ,Φ1) > R∗(rso2 , D

so
2 ,Φ2).

Part (i) of Proposition 4 is intuitive; when the possibility for an attractive outside offer is

smaller, the original auction becomes more attractive, which induces the bidders to submit higher

bids. Interestingly, part (ii) shows that a worse distribution for the outside offer allows the seller

to charge a higher deposit. This result can be explained as follows: A worse distribution induces

bidders to bid more aggressively, thereby increasing the probability of post-auction default by the

winner. As shown above, it is preferable for the seller to have full compliance in the auction,

although it would lower bids from the bidders. Therefore, to deter the winner from defaulting, a

13To further illustrate the impacts of the distribution of an outside offer, we present numerical example 2, assuming
that bidder i’s valuation still follows a uniform distribution, but the distribution of the outside offer takes the form
of Φ(pi) = pαi over [0, 1], where α ≥ 0. We then compute how a change in α affects the sellers’ choices regarding the
optimal reserve price rso, the optimal deposit Dso, and the optimal expected revenue R∗. The computational results
are consistent with the predictions in Proposition 4, and all the details are presented in online Appendix S2.
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higher deposit, combined with a higher reserve price (see Proposition 5), must be demanded in the

auction. As a result, a worse distribution leads to a higher revenue to the seller, which gives part

(iii).

We then turn to the comparisons of the threshold v̌so and the optimal reserve price rso. Define

function τ(vi) as τ(vi) ≡
∫ vi
0 [1−Φ(pi)]dpi

1−Φ(vi)
. Differentiating τ(vi) with respect to vi yields

τ ′(vi) = 1 +

∫ vi
0 (1− Φ(pi))dpi

1− Φ(vi)
· ϕ(vi)

1− Φ(vi)

= 1 + τ(vi) ·
ϕ(vi)

1− Φ(vi)

> 0.

τ(vi) is thus increasing in vi, and τ(0) = 0. If Φ1(·) dominates Φ2(·) in terms of the hazard rate, i.e.,
ϕ1(·)

1−Φ1(·) <
ϕ2(·)

1−Φ2(·) , then τ1(·) < τ2(·).14 This indicates that, in order to satisfy
1−F (v̌so1 )
f(v̌so1 ) = τ1(v̌so1 ) and

1−F (v̌so2 )
f(v̌so2 ) = τ2(v̌so2 ), we must have v̌so1 > v̌so2 and rso1 =

∫ v̌so1
0 [1−Φ1(pi)]dpi >

∫ v̌so2
0 [1−Φ2(pi)]dpi = rso2 .

This gives us the following result.

Proposition 5. v̌so1 > v̌so2 and rso1 > rso2 , if ϕ1(·)
1−Φ1(·) < ϕ2(·)

1−Φ2(·) . The seller sets a higher opti-

mal reserve price when the distribution of the outside offer worsens (in the sense of hazard rate

dominance) from the bidders’ perspective.

4.2 Stochastic number of bidders

Rather than being fixed, the number of bidders may be stochastic. E.g., in internet auctions,

an entering bidder does not know the number of rival bidders, but only the distribution of the

number of potential bidders. One may then question whether the characterization of the optimal

auction design with r and D still holds. First, regardless of whether the participation process is

stochastic, conditional on winning, it is still optimal for bidder i to adopt the deposit strategy

and the outside offer strategy characterized in (A4) and (A1) in online Appendix S1. Second, the

equilibrium bidding strategy still follows the property of the second-price auction mechanism itself,

that is, a bidder’s bidding strategy does not depend on the number of entering bidders. Thus, if

bidders’ participation is stochastic, the combination of rso and Dso is still optimal. Note that the

optimal reserve price rso and deposit Dso do not depend on the number of bidders.

14This also implies that Φ1(·) first-order stochastically dominates Φ2(·), that is, Φ1(·) ≤ Φ2(·); see more details in
online Appendix B of Krishna (2002).
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4.3 English ascending auction format

It is natural to examine whether our result still holds in the English ascending auction format

instead of the simultaneous bidding format. We still solve the game by backward induction. Clearly,

the optimality of the deposit strategy and the outside offer strategy in (A4) and (A1), respectively,

will not change. The equilibrium bidding strategy we constructed is a weakly dominant strategy for

bidders (see details in online Appendix S1); in the bidding stage of the English ascending auction,

it cannot be optimal for the bidder to stay in after the current price exceeds the equilibrium bid

or drop out before the current price reaches the equilibrium bid. Thus, the combination of rso and

Dso is still optimal if the auction takes the English ascending format.

4.4 Deposit requirement before bidding

Our analysis in the main text focused on the winner-pay deposit. In practice, another type of

deposit exists where the seller requires all potential bidders to pay a certain amount as a deposit

before submitting bids. After the auction ends, the seller refunds the deposits to all the bidders,

except the winner. Then, the winner can choose to either default and lose the deposit or complete

the current transaction by paying the final auction price minus the deposit. Such a deposit require-

ment is commonly used in art or antiques auctions. For instance, Sotheby’s requires such a deposit

for items. We call it the all-pay deposit.

It is then interesting to examine whether these two types of deposit requirements would result

in different equilibrium strategies and seller revenues. Across the two deposit requirements, a

bidder’s strategy regarding the outside offer is the same conditional on winning, and the only

difference is the timing of paying the deposit. Although a bidder needs to pay the deposit before

bidding with the all-pay deposit requirement, this does not affect the expected surplus of the

bidder and the construction of the equilibrium bid since the deposit will be refunded conditional

on losing the auction. Thus, we can conclude that, in the auction game, the winner-pay deposit

is strategically equivalent to the all-pay deposit requirement. However, this equivalence relies on

the seller’s commitment to refund the deposits to the losing bidders being credible. This may not

always be true in reality; the seller’s historical reputation and commitment issue may break down

the equivalence.15

15In short, the ascending bidding procedure in Section 4.3 and the deposit requirement before bidding in Section
4.4 do not affect threshold v̌so and full compliance p̂so = 0 in the truthful direct mechanism. Therefore, it explains
why they render the same optimal auction design.
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5 Conclusion

In this paper, we study the role of a deposit requirement in auctions with future outside offers for

all bidders and possibly defaulting from the winner. To examine the design problem and identify

the upper bound on seller revenue, we start by examining a truthful direct mechanism, which

includes two stages of bidder value reporting and arrival of outside offers (public information).

Our characterization shows that it is optimal to set up threshold v̌so in the first stage and full

compliance p̂so = 0 in the second stage. We next examine a second-price auction with a deposit

and a reserve price, showing that the upper bound of revenue can be achieved when a sufficiently

high deposit is charged to deter the winner from default fully. At the same time, a lower optimal

reserve price (which is uniquely determined by v̌so) than that of Myerson (1981) is required. Our

study provides a rationale for the widely adopted deposit requirements in auctions where winner

default is a recognized concern.

The environment we consider in the current study rules out some possible situations.16 One

relevant situation is that a bidder’s private valuation may be positively or negatively correlated

with the price of her outside offer. A positive correlation means that a higher outside price is more

likely for a higher value. In this case, the auction winner who tends to value the object higher

than the losers is less likely to default, and one can expect that a deposit requirement would play

a less significant role helping the seller. When the correlation is negative, the winner tends to have

a better outside offer, which means that the deposit requirement can play a more effective role

in enhancing the seller’s expected revenue. It would also be interesting to consider and examine

the role of a deposit requirement in a common value or an affiliated private value setting. The

mechanism design literature typically assumes independent private information across players due

to the full surplus extraction result of Crémer and McLean (1988). With affiliated private values,

their insight still applies in principle. As a result, the seller’s revenue under the optimal mechanism

is unlikely to be achievable by a second-price auction with deposit and reserve price. Another

possible extension is to allow correlation in bidders’ outside offers, which could arise since some

common outside offers might be accessible to all of them. Our analysis should still apply, as bidders’

payoffs only depend on their own outside offers. Moreover, the bidders’ outside offers might also be

correlated to the sellers’ reservation values since the same market conditions can affect all of them.

Our insight should also be able to accommodate this feature. These extensions are left for future

research.

16We thank Robert Porter for raising this point.
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Appendix: Proofs

In the Appendix, we provide proofs of Lemmas 1 and 2, and Propositions 1, 2, 3, and 4.

Proof of Lemma 1

Given (2), we can construct the following equation

πi(v
′
i, v
′
i) = πi(v

′
i, vi) + Ev−i, pi


q1
i (v′i,v−i)

[
q2
i (v′i, pi; p̂i)(v

′
i − vi)

+ (1− q2
i (v′i, pi; p̂i))(max{v′i − pi, 0} −max{vi − pi, 0})

]
+ (1− q1

i (v′i,v−i))(max{v′i − pi, 0} −max{vi − pi, 0})

 .

Therefore, for v′i < vi, πi(v
′
i, vi) ≤ πi(vi, vi) and that yields

πi(v
′
i, v
′
i) ≤ πi(vi, vi) + Ev−i, pi


q1
i (v′i,v−i)

[
q2
i (v′i, pi; p̂i)(v

′
i − vi)

+ (1− q2
i (v′i, pi; p̂i))(max{v′i − pi, 0} −max{vi − pi, 0})

]
+ (1− q1

i (v′i,v−i))(max{v′i − pi, 0} −max{vi − pi, 0})

 ,

which we can re-write as follows

πi(vi, vi) − πi(v
′
i, v
′
i)

vi − v′i

≥ Ev−i, pi

 q1
i (v′i,v−i)

[
q2
i (v′i, pi; p̂i) + (1− q2

i (v′i, pi; p̂i))(max{vi − pi, 0} −max{v′i − pi, 0})/(vi − v′i)
]

+ (1− q1
i (v′i,v−i))(max{vi − pi, 0} −max{v′i − pi, 0})/(vi − v′i)

 .

(17)

Again, given (2), we can construct the following equation

πi(vi, vi) = πi(vi, v
′
i) + Ev−i, pi


q1
i (vi,v−i)

[
q2
i (vi, pi; p̂i)(vi − v′i)

+ (1− q2
i (vi, pi; p̂i))(max{vi − pi, 0} −max{v′i − pi, 0})

]
+ (1− q1

i (vi,v−i))(max{vi − pi, 0} −max{v′i − pi, 0})

 .

Therefore, for v′i < vi, πi(vi, v
′
i) ≤ πi(v′i, v′i) and that yields

πi(vi, vi) ≤ πi(v
′
i, v
′
i) + Ev−i, pi


q1
i (vi,v−i)

[
q2
i (vi, pi; p̂i)(vi − v′i)

+ (1− q2
i (vi, pi; p̂i))(max{vi − pi, 0} −max{v′i − pi, 0})

]
+ (1− q1

i (vi,v−i))(max{vi − pi, 0} −max{v′i − pi, 0})

 ,
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which we can re-write as follows

πi(vi, vi) − πi(v
′
i, v
′
i)

vi − v′i

≤ Ev−i, pi

 q1
i (vi,v−i)

[
q2
i (vi, pi; p̂i) + (1− q2

i (vi, pi; p̂i))(max{vi − pi, 0} −max{v′i − pi, 0})/(vi − v′i)
]

+ (1− q1
i (vi,v−i))(max{vi − pi, 0} −max{v′i − pi, 0})/(vi − v′i)

 .

(18)

Combining (17) and (18) gives the left derivative of πi(vi, vi):

dπ−i (vi, vi)

dvi
= Ev−i, pi

{
q1
i (vi,v−i)

[
q2
i (vi, pi; p̂i) + (1− q2

i (vi, pi; p̂i))1{vi − pi ≥ 0}
]

+ (1− q1
i (vi,v−i))1{vi − pi ≥ 0}

}
.

Then, let us consider the case where v′i > vi, we can construct the similar inequalities and obtain the right

derivative of πi(vi, vi):

dπ+
i (vi, vi)

dvi
= Ev−i, pi

{
q1
i (vi,v−i)

[
q2
i (vi, pi; p̂i) + (1− q2

i (vi, pi; p̂i))1{vi − pi ≥ 0}
]

+ (1− q1
i (vi,v−i))1{vi − pi ≥ 0}

}
.

We can hence conclude that πi(vi) = πi(vi, vi) is differentiable everywhere and

dπi(vi, vi)

dvi
= Ev−i, pi

{
q1
i (vi,v−i)

[
q2
i (vi, pi; p̂i) + (1− q2

i (vi, pi; p̂i))1{vi − pi ≥ 0}
]

+ (1− q1
i (vi,v−i))1{vi − pi ≥ 0}

}
.

Taking the integral of its derivative, we then have

πi(vi, vi) = πi(0, 0) +

∫ vi

0

Ev−i, pi

{
q1
i (t,v−i)

[
q2
i (t, pi; p̂i) + (1− q2

i (t, pi; p̂i))1{t− pi ≥ 0}
]

+ (1− q1
i (t,v−i))1{t− pi ≥ 0}

}
dt.

We complete the proof. �

Proof of Lemma 2

Given Lemma 1 and πi(0, 0) = 0, we can write the bidder i’s expected payoff before learning type vi as

follows: ∫ v̄

0

πi(vi, vi)f(vi)dvi

=

∫ v̄

0

∫ vi

0

Ev−i, pi

{
q1
i (t,v−i)

[
q2
i (t, pi; p̂i) + (1− q2

i (t, pi; p̂i))1{t− pi ≥ 0}
]

+ (1− q1
i (t,v−i))1{t− pi ≥ 0}

}
f(vi)dtdvi

= Ev, p

({
q1
i (vi,v−i)

[
q2
1i(vi, pi; p̂i) + (1− q2

i (vi, pi; p̂i))1{vi − pi ≥ 0}
]

+ (1− q1
i (vi,v−i))1{vi − pi ≥ 0}

}
· [ 1− F (vi)

f(vi)
]

)
.
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Now let us look at the total expected surplus of the seller and buyers, denoted by TE, which is given by

TE = Ev, p

∑
i

[
q1
i (vi,v−i)

[
q2
i (vi, pi; p̂i)vi + (1− q2

i (vi, pi; p̂i)) max{vi − pi, 0}
]

+ (1− q1
i (vi,v−i)) max{vi − pi, 0}.

]

Note that the total surplus means the sum of payoffs of the seller and the bidders in our paper. Therefore,

the expected surplus for the “third party” who offers the outside offer is not counted in. The seller’s revenue

R is the difference between the total expected surplus and the buyers’ expected payoffs, that is,

R = TE −
∑
i

∫ v̄

0

πi(vi, vi)f(vi)dvi

= Ev

∑
i

Epi

[
q1
i (vi,v−i)

[
q2
i (vi, pi; p̂i)vi + (1− q2

i (vi, pi; p̂i)) max{vi − pi, 0}
]

+ (1− q1
i (vi,v−i)) max{vi − pi, 0}

]

− Ev

∑
i

Epi

({
q1
i (vi,v−i)

[
q2
i (vi, pi; p̂i) + (1− q2

i (vi, pi; p̂i))1{vi − pi ≥ 0}
]

+ (1− q1
i (vi,v−i))1{vi − pi ≥ 0}

}
· [ 1− F (vi)

f(vi)
]

)

= Ev

∑
i

Epi≤vi

{
q1
i (vi,v−i)q

2
i (vi, pi; p̂i)pi + [vi −

1− F (vi)

f(vi)
]− pi

}
+ Ev

∑
i

Epi>vi

{
q1
i (vi,v−i)q

2
i (vi, pi; p̂i)[vi −

1− F (vi)

f(vi)
]

}
.

Let us further define virtual value as follows:

λ(vi, pi) =

 pi if pi ≤ vi;

J(vi) if pi > vi.

where J(vi) ≡ vi − 1−F (vi)
f(vi)

. The seller’s revenue function R can be re-written as follows:

R = Ev

∑
i

Epi≤vi

{[
vi −

1− F (vi)

f(vi)

]
− pi

}
+ Ev

∑
i

q1
i (vi,v−i)Epi

{
q2
i (vi, pi; p̂i)λ(vi, pi)

}
.

We complete the proof. �
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Proof of Proposition 1

From (5), we can now identify the cutoff p̂soi (vi,v−i) such that the corresponding q2
i (vi, pi; p̂i) maximizes

Epi
{
q2
i (vi, pi; p̂i)λ(vi, pi)

}
= Epi≥p̂i {λ(vi, pi)}, that is,

Epi≥p̂i {λ(vi, pi)} =


∫ v̄

p̂i

J(vi)dΦ(pi) if p̂i ≥ vi;∫ vi

p̂i

pidΦ(pi) +

∫ v̄

vi

J(vi)dΦ(pi) if p̂i < vi.

Differentiating Epi≥p̂i {λ(vi, pi)} with respect to p̂i yields

∂Epi≥p̂i {λ(vi, pi)}
∂p̂i

=

 −J(vi)ϕ(p̂i) if p̂i ≥ vi;

−p̂iϕ(p̂i) if p̂i < vi.

Clearly, if J(vi) ≥ 0, then
∂Epi≥p̂i{λ(vi,pi)}

∂p̂i
≤ 0,∀p̂i. Therefore, for vi < vMi where J(vM ) = 0, we should

have

p̂soi (vi,v−i) = 0, if vi ≥ vM .

If J(vi) < 0, then
∂Epi≥p̂i{λ(vi,pi)}

∂p̂i
≤ 0,∀p̂i < vi; and

∂Epi≥p̂i{λ(vi,pi)}
∂p̂i

> 0,∀p̂i > vi. Therefore, p̂soi (vi,v−i)

is either 0 or v̄. We thus compare ς(vi) =
∫ vi

0
pidΦ(pi) +

∫ v̄
vi
J(vi)dΦ(pi) and 0 to pin down the optimal

p̂soi (vi,v−i) :

p̂soi (vi,v−i) =

 0 if ς(vi) ≥ 0;

v̄ if ς(vi) < 0.

To this end, we study the property of ς(vi) for vi < vM :

ς ′(vi) =
1− F (vi)

f(vi)
Φ′(vi) > 0.

Furthermore, ς(0) =
∫ v̄

0
J(0)dΦ(pi) < 0, and ς(vM ) =

∫ vM
0

pidΦ(pi) > 0. Thus, there must exist a unique

cutoff v̌so such that ς(v̌so) = 0, i.e., ς(v̌so) =
∫ v̌so

0
pidΦ(pi) +

∫ v̄
v̌so

J(v̌so)dΦ(pi) = 0. This indicates that

p̂soi (vi,v−i) = 0 if vi ∈ [v̌so, vM ) and p̂soi (vi,v−i) = v̄ if vi < v̌so. Furthermore, simplifying
∫ v̌so

0
pidΦ(pi) =

−
∫ v̄
v̌so

J(v̌so)dΦ(pi) gives ∫ v̌so
0

[1− Φ(pi)]dpi

1− Φ(v̌so)
=

1− F (v̌so)

f(v̌so)
. (19)

Summarizing the discussion above yields

p̂soi (vi,v−i) =

 0 if vi ≥ v̌so;

v̄ if vi < v̌so.
(20)
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Under (20), the selected bidder i with vi ≥ v̌so will not choose to take the outside offer. We further have

R = Ev

∑
i

Epi≤vi

{[
vi −

1− F (vi)

f(vi)

]
− pi

}
+ Ev

∑
i

q1
i (vi,v−i)Epi

{
q2
i (vi, pi; p̂

so
i (vi,v−i))λ(vi, pi)

}
.

It is clear that Epi
{
q2
i (vi, pi; p̂

so
i (vi,v−i))λ(vi, pi)

}
= 0 for vi ≤ v̌so, since q2

i (vi, pi; p̂
so
i (vi,v−i)) = 0 for vi ≤

v̌so. When vi > v̌so, q2
i (vi, pi; p̂

so
i (vi,v−i)) = 1 and thus Epi

{
q2
i (vi, pi; p̂

so
i (vi,v−i))λ(vi, pi)

}
= Epiλ(vi, pi).

Note that λ(vi, pi) strictly increases with vi. To maximize R, it is clear to set

qsoi (vi,v−i) =

 1 if vi = v(1) and vi ≥ v̌so;

0 otherwise,
(21)

where v(1) = max{vi, i = 1, 2, ..., N}. In other words, only the bidder with the highest value is invited to

enter the second stage, provided the bidder’s value is no less than v̌so. This is equivalent to setting the

threshold at v̌so in the first stage.

In the mechanism, the total expected payment (the seller’s revenue) R can be written as follows:

R = Ev

∑
i

Epi≤vi

{[
vi −

1− F (vi)

f(vi)

]
− pi

}
+ Ev

∑
i

q1
i (vi,v−i)Epi

{
q2
i (vi, pi; p̂

so
i (vi))λ(vi, pi)

}

= N

∫ v̄

0

([
vi −

1− F (vi)

f(vi)

]
Φ(vi)−

∫ vi

0

piϕ(pi)dpi

)
dF (vi)

+ N

∫ v̄

0

(∫ vi

0

piϕ(pi)dpi +

∫ v̄

vi

[
vi −

1− F (vi)

f(vi)

]
ϕ(pi)dpi

)
Q(vi)f(vi)dvi

= N

∫ v̄

0

(
viQ(vi) + (1−Q(vi))

∫ vi

0

Φ(pi)dpi −
1− F (vi)

f(vi)

(
Q(vi) + (1−Q(vi))Φ(vi)

)
f(vi)dvi

= N

∫ v̄

0

(1− F (t))
(
t−
∫ t

0

Φ(x)dx
)
dQ(t).

where Q(vi) = FN−1(vi). When bidder i is selected, vi should be no less than v̌so. Let us further define

rso =
∫ v̌so

0
[1 − Φ(pi)]dpi, which gives the payment bidder i with value v̌so will pay conditional on being

selected. Then, the expected payment from bidder i can be written as follows:∫ v̄

v̌so

(
Q(v̌so)rso +

∫ vi

v̌so

(
t−
∫ t

0

Φ(x)dx
)
Q′(t)dt

)
f(vi)dvi

=
(
1− F (v̌so)

)
Q(v̌so)rso +

∫ v̄

v̌so
(1− F (t))

(
t−
∫ t

0

Φ(x)dx
)
dQ(t).

With N bidders in the mechanism, we then have

R∗ = N
(
1− F (v̌so)

)
Q(v̌so)rso +N

∫ v̄

v̌so
(1− F (t))

(
t−
∫ t

0

Φ(x)dx
)
dQ(t). (22)
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We complete the proof. �

Proof of Proposition 2

Given the fact that EIS [R(r,D)] = EIIS [R(r,D)] when r = D (implying that v̌ = v̂), Lemma 7 indicates

that for any D ∈ [rso, Dso], EIS [R(rI(D) = rso, D)] > EIS [R(rI(D) = D,D)] = EIIS [R(rII(D) = D,D)].

Therefore, r∗(D) = rso for any D ∈ [rso, Dso]; this proves part (i). Regarding part (ii), Lemma 8 states that

for any D ∈ [0, rso), EIS [R(rI(D) = D,D)] = EIIS [R(rII(D) = D,D)] < EIIS [R(rII(D) = r̃II(D), D)]. Hence,

r∗(D) = r̃II(D) for any D ∈ [0, rso). Note that in this case, r∗(D) is not necessary to be monotone in D

when D ∈ [0, rso). �

Proof of Proposition 3

For D ∈ [rso, Dso], we have R∗(D) = EIS [R(r∗(D), D)] where r∗(D) = rso. We have the following two steps

to establish the result:

Step (i). Differentiating EIS [R(r∗(D), D)] with respect to v̂, and evaluating it at v̂ = v̂(D) give the

following equation:

∂

∂v̂

EIS [R(r∗(D), D)]

N
|v̂=v̂(D)

=

[(
1− F (v̂(D))

)
b(v̂(D)) −

(
1− F (v̂(D))

)[(
1− Φ(b̃(v̂(D))−D)

)
b̃(v̂(D)) + Φ(b̃(v̂(D))−D)D

]]
q(v̂(D)),

(23)

where q(·) = Q′(·). Since b̃(v̂(D))−D = b(v̂(D))−D = 0, (23) can be re-written as follows:

∂

∂v̂

EIS [R(r∗(D), D)]

N
|v̂=v̂(D) =

[(
1− F (v̂(D))

)
D −

(
1− F (v̂(D))

)
D

]
q(v̂(D)) = 0. (24)

This indicates that v̂(D) has no impact on EIS [R(r∗(D), D)].

Step (ii). Step (i) indicates that ∂
∂v̂

EIS [R(r∗(D),D)]
N |v̂=v̂(D) = 0, and we then have that the impact of D

through r∗(D) is zero by envelope theorem, as r∗(D) = rso is an interior optimum for the given D. We thus
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have the following equation

d

dD

EIS [R(r∗(D), D)]

N
=

∂

∂D

EIS [R(r,D)]

N
|r=r∗(D),v̂=v̂(D)

=

∫ v̄

v̂(D)

(
1− F (x)

)[
− ϕ(b̃(x)−D)

(
Φ(b̃(x)−D)(

∂b̃(x)

∂D
− 1)− 1

)
b̃(x)

+
(
1− Φ(b̃(x)−D)

)
Φ(b̃(x)−D)(

∂b̃(x)

∂D
− 1)

+ ϕ(b̃(x)−D)
(
Φ(b̃(x)−D)(

∂b̃(x)

∂D
− 1)− 1

)
D + Φ(b̃(x)−D)

]
dQ(x),

(25)

Note that ∂
∂D

EIS [R(r,D)]
N denotes the partial derivative of

EIS [R(r,D)]
N with respect to D while fixing r and v̂.

Since ∂b̃(x)
∂D = −Φ(b̃(x)−D)

1−Φ(b̃(x)−D)
, we have

∂b̃(x)

∂D
− 1 =

−Φ(b̃(x)−D)

1− Φ(b̃(x)−D)
− 1− Φ(b̃(x)−D)

1− Φ(b̃(x)−D)
=

−1

1− Φ(b̃(x)−D)
. (26)

Plugging (26) into (25) shows

d

dD

EIS [R(r∗(D), D)]

N

=

∫ v̄

v̂(D)

(1− F (x))

[
− ϕ(b̃(x)−D)

(
Φ(b̃(x)−D)(

∂b̃(x)

∂D
− 1)− 1

)
b̃(x)

+ ϕ(b̃(x)−D)
(
Φ(b̃(x)−D)(

∂b̃(x)

∂D
− 1)− 1

)
D

]
dQ(x)

=

∫ v̄

v̂(D)

(1− F (x))

[
− ϕ(b̃(x)−D)

( −1

1− Φ(b̃(x)−D)

)
b̃(x) + ϕ(b̃(x)−D)

( −1

1− Φ(b̃(x)−D)

)
D

]
dQ(x)

=

∫ v̄

v̂(D)

(1− F (x))
(ϕ(b̃(x)−D)(b̃(x)−D)

1− Φ(b̃(x)−D)

)
dQ(x),

(27)

Clearly, d
dD

EIS [R(r∗(D),D)]
N ≥ 0 when D is in the interval of [rso, Dso]. The equality holds if and only if

v̂(D) = v̄, which implies that the seller charges D = Dso.

For any D ∈ [0, rso), we have R∗(D) = EIIS [R(r∗(D), D)] where r∗(D) = r̃II(D) > D. The impact of r

on seller revenue is solely through its impact on v̌(r,D). At optimal r∗(D), the marginal effect is zero, which
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means ∂
∂v̌

EIIS [R(r∗(D),D)]
N |v̌=v̌(r∗(D),D) = 0. This result, together with envelop theorem, gives

d

dD

EIIS [R(r∗(D), D)]

N
=

∂

∂D

EIIS [R(r,D)]

N
|r=r∗(D),v̌=v̌(r∗(D),D)

=
(
1− F (v̌(r∗(D), D))

)
Q(v̌(r∗(D), D))

(ϕ(b(v̌(r∗(D), D))−D)(b(v̌(r∗(D), D))−D)

1− Φ(b(v̌(r∗(D), D))−D)

)
+

∫ v̄

v̌(r∗(D),D)

(1− F (x))
(ϕ(b(x)−D)(b(x)−D)

1− Φ(b(x)−D)

)
dQ(x),

(28)

Note that ∂
∂D

EIIS [R(r,D)]
N denotes the partial derivative of

EIIS [R(r,D)]
N with respect to D while fixing r and

v̌. When the seller charges any D in the interval of [0, rso), we have v̌(r∗(D), D) < v̄ which indicates that

d
dD

EIIS [R(r∗(D),D)]
N > 0.

Summarizing the discussion above, we can conclude that charging D = Dso is optimal. Any (D, rso)

with D > Dso also maximizes seller’s revenue, since seller revenue does not change in D by Lemma 5.�

Proof of Proposition 4

We separately prove parts (i), (ii), and (iii) as follow:

Part (i). Case (I) where r−D ≤ 0. First, given that Φ1(·) first-order stochastically dominates Φ2(·), i.e.

Φ1(·) < Φ2(·), which means that Φ1(·) gives a worse outside offer to the buyers, we can easily establish the

following facts: (a)
∫ v̌2

0
[1 − Φ2(pi)]dpi = r =

∫ v̌1
0

[1 − Φ1(pi)]dpi implies v̌1 < v̌2; (b)
∫ v̂2

0
[1 − Φ2(pi)]dpi =

D =
∫ v̂1

0
[1− Φ1(pi)]dpi gives v̂1 < v̂2.

Second, we compare equilibrium bidding strategies across Φ1(·) and Φ2(·), given Φ1(·) < Φ2(·). For

convenience, we write b(vi,Φk) and b̃(vi,Φk), k = 1, 2 for vi ∈ [v̌k, v̂k] and vi > v̂k, respectively. We then

have the following:

1. For vi ∈ [v̌1, v̌2), b(vi,Φ1) =
∫ vi

0
[1 − Φ1(pi)]dpi ≥ r under Φ1(.), but the bidder under Φ2(.) does not

submit a valid bid, equivalently, b(vi,Φ2) = 0. Thus, b(vi,Φ1) > b(vi,Φ2).

2. For vi = v̌2, given that the equilibrium bidding strategy is monotone and increasing, the following

inequality must be true: b(vi,Φ1) > b(v̌1,Φ1) = b(vi,Φ2) = r. Thus, b(vi,Φ1) > b(vi,Φ2).

3. For vi ∈ (v̌2, v̂1], we have b(vi,Φ1) =
∫ vi

0
[1 − Φ1(pi)]dpi >

∫ vi
0

[1 − Φ2(pi)]dpi = b(vi,Φ2). Thus,

b(vi,Φ1) > b(vi,Φ2).

4. For vi ∈ (v̂1, v̂2), given that the equilibrium bidding strategy is monotone and increasing, we have

b̃(vi,Φ1) > b(vi,Φ1) =
∫ vi

0
[1−Φ1(pi)]dpi >

∫ vi
0

[1−Φ2(pi)]dpi = b(vi,Φ2). Thus, b̃(vi,Φ1) > b(vi,Φ2).
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5. For vi = v̂2, given that the equilibrium bidding strategy is monotone and increasing, the following

inequality must be true: b̃(vi,Φ1) > b(v̂1,Φ1) = b(vi,Φ2) = D. Thus, b̃(vi,Φ1) > b(vi,Φ2).

6. For vi ∈ (v̂2, v̄], recall that we can re-write b̃(vi,Φ) as
∫ vi
b̃(vi,Φ)−D[1−Φ(pi)]dpi = D, therefore, we have∫ vi

b̃(vi,Φ1)−D[1 − Φ1(pi)]dpi = D =
∫ vi
b̃(vi,Φ2)−D[1 − Φ2(pi)]dpi, which immediately indicates b̃(vi,Φ1) >

b̃(vi,Φ2).

Case (II) where r − D ≥ 0. Recall that
∫ v̌
r−D[1 − Φ(pi)]dpi = D. First, given that Φ1(·) first-order

stochastically dominates Φ2(·), i.e. Φ1(·) < Φ2(·), we can easily establish the following fact:
∫ v̌1
r−D[1 −

Φ1(pi)]dpi = D =
∫ v̌2
r−D[1− Φ2(pi)]dpi implies v̌1 < v̌2.

Second, we compare equilibrium bidding strategies across Φ1(·) and Φ2(·), given Φ1(·) < Φ2(·).

• For vi ∈ [v̌1, v̌2), b(vi,Φ1) ≥ r under Φ1(.), but the bidder under Φ2(.) does not submit a valid bid,

equivalently, b(vi,Φ2) = 0. Thus, b(vi,Φ1) > b(vi,Φ2).

• For vi = v̌2, given that the equilibrium bidding strategy is monotone and increasing, the following

inequality must be true: b(vi,Φ1) > b(v̌1,Φ1) = b(vi,Φ2) = r. Thus, b(vi,Φ1) > b(vi,Φ2).

• For vi ∈ (v̌2, v̄], recall that we can re-write b(vi,Φ) as
∫ vi
b(vi,Φ)−D[1−Φ(pi)]dpi = D, therefore, we have∫ vi

b(vi,Φ1)−D[1 − Φ1(pi)]dpi = D =
∫ vi
b(vi,Φ2)−D[1 − Φ2(pi)]dpi, which immediately indicates b(vi,Φ1) >

b(vi,Φ2).

Therefore, we can conclude that given reserve price r and deposit D, the equilibrium bid submitted by a

bidder is higher when the distribution of the outside offer becomes worse in the sense of first-order stochastic

dominance.

Part (ii). We examine how the optimal deposit Dso changes across different distributions of the outside

offers. Recall that v̂1 = v̂2 = v corresponds to bids Dso
1 and Dso

2 . It is obvious that if Φ1(·) < Φ2(·), then

Dso
1 =

∫ v̄
0

[1− Φ1(pi)]dpi >
∫ v̄

0
[1− Φ2(pi)]dpi = Dso

2 .

Part (iii). Given that Φ1(·) first-order stochastically dominates Φ2(·), i.e., Φ1(·) < Φ2(·), let us denote

the optimal reserve price under Φi(·) by rsoi , i = 1, 2. Note that any sufficiently high D is optimal and fully

deters the winner’s default, and the optimal revenues under Φi(·), i = 1, 2 do not depend on D when it is

optimally set. Taking such a D, under (rso2 , D) the winner’s default is fully deterred even with Φ1(·). Since

Φ1(·) < Φ2(·), under (rso2 , D), we then have v̌1 < v̌2 and b(vi,Φ1) > b(vi,Φ2) by Proposition 4 and its proof.

Under (rso2 , D), seller revenue with Φ1(·) is given by

R(rso2 , D,Φ1) = N
(
1− F (v̌1)

)
Q(v̌1)rso2 +N

∫ v̄

v̌1

(
1− F (x)

)
b(x,Φ1)dQ(x),
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and the optimal seller revenue under Φ2(·) is given by

R∗(rso2 , D,Φ2) = N
(
1− F (v̌2)

)
Q(v̌2)rso2 +N

∫ v̄

v̌2

(
1− F (x)

)
b(x,Φ2)dQ(x).

Define R(v1) = N(1−F (v1))Q(v1)rso2 +N
∫ v̄
v1

(
1−F (x)

)
b(x,Φ1)dQ(x). Differentiating R(v1) with respect

to v1 yields

dR(v1)

dv1
= −Nf(v1)Q(v1)rso2 +N

(
1− F (v1)

)
Q′(v1)

(
rso2 − b(v1,Φ1)

)
< 0, ∀v1 > v̌1.

Let R∗(rso1 , D,Φ1) denote the optimal seller revenue under Φ1. Thus, it is clear that R∗(rso1 , D,Φ1) ≥

R(rso2 , D,Φ1) = R(v̌1) > R(v̌2) ≥ R∗(rso2 , D,Φ2). �
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Online Appendices for “Deposit Requirement in Auctions” by X.

Che, T. Li, J. Lu, and X. Zheng

1 Appendix S1

This online appendix covers the analyses of a second-price auction with deposit and reserve price (Section

1.1), percentage deposit (Section 1.2), and deposit proportionally deducted from full payment (Section 1.3).

1.1 Second-price auction format

Given the specific auction format (second-price auction) with deposit D and reserve price r, we modify

the game in Section 2 as follows: A seller sells an indivisible object to N risk-neutral bidders through a sealed-

bid, second-price auction, where 1 < N < ∞. The seller’s reservation value of the object is normalized to

zero. Bidders’ private values, denoted by vi, i = 1, 2, ..., N , are independent draws from a common atomless

distribution F (·) with density f(·) > 0 over the support [0, v̄], where v > 0. After the auction, each bidder

i will receive an outside offer, which gives the same object (the same value vi) but with a random price,

denoted by pi. Prices pi, i = 1, 2, ..., N , are random draws from a common atomless distribution Φ(·) with

density ϕ(·) > 0 over [0, v̄]. F and Φ are common knowledge among the seller and bidders, and they are

regular in the sense that the hazard rates f(·)
1−F (·) and ϕ(·)

1−Φ(·) are increasing. Figure 1 depicts the timing of

the game, which is comprised of four stages.

The seller

at t = 0

sets r and D

Bidder i at

t = 1

bids and wins

Winning

bidder i at

t = 2

pays D

Winning bidder i at

t = 3: The original

transaction or the

outside offer with price

pi
does not bid,

or bids but

loses

The outside offer

with price pi at

t = 3

does not

pay D

The outside offer

with price pi at

t = 3

Figure 1: Timing

At stage t = 0, the seller announces a reserve price r ∈ [0, v̄] and a winner-pay deposit D ∈ [0,+∞).

The seller commits to both the reserve price and the deposit requirement.

At t = 1, all N bidders observing r and D decide whether to enter and submit bids in the auction. If
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a bidder chooses not to enter, the bidder then simply waits for the outside offer with a random price at

t = 3. For convenience, a nonparticipant’s bid is denoted by “∅.” If bidder i enters the auction, we denote

her bid by bi ∈ [r,+∞). All the entering bidders simultaneously submit their bids. The highest-bid bidder

wins the auction. If there is a tie, the object goes to each winning bidder with equal probability. The full

payment (the auction price) is denoted by κ, which equals r if there is only one valid bid and equals the

second-highest bid otherwise. Slightly abusing the notations, we have κ ≡ max{r, b(1)
−i }, where b

(1)
−i stands

for the losing bidders’ highest bid. All the losing bidders will face their outside offers at t = 3. If there is no

valid bid, the auction game ends, and the seller keeps the object.

At t = 2, the winning bidder i decides whether to pay D. Let us denote the winner’s decision by

ei ∈ {0, 1}, with ei = 1 for “paying D” and ei = 0 for “not paying D.” If the winning bidder i does not pay

D, i.e., ei = 0, the seller keeps the object, and the winning bidder is to face the outside offer or not make the

purchase at t = 3. If ei = 1, the winning bidder i has three options at t = 3: either completing the current

transaction, or adopting the outside offer, or not purchasing at all. Note that we assume if κ < D the seller,

conditional on D being paid, pays D− κ back to the winner when the final transaction goes through. Thus,

the total payment to the seller is still the auction price κ.

At t = 3, the random price pi for the outside offer is realized. Conditional on ei = 1, the winning bidder

i decides whether to complete the current transaction by paying the remaining payment κ−D, or to take the

outside offer by paying price pi, or to not make the purchase at all. If the winning bidder i does not complete

the transaction, the deposit D is forfeited, and the seller keeps the object. We denote the winner’s decision

by oi, where oi = 1 for “taking the outside offer” and oi = 0 for “completing the original transaction.” For

completeness, we write oi = NP for “no purchase.”

For all other cases (a losing bidder or a winning bidder who does not pay the deposit D), we denote a

bidder j’s decision on whether to take the outside offer at t = 3 by ŏj , where ŏj = 1 for “taking the outside

offer with price pj” and ŏj = NP for “no purchase.”

The strategies of the seller and a bidder as well as the equilibrium concept are defined as follows: Before

the bidding stage starts, the seller sets reserve price r and deposit D at t = 0. Given r and D, a bidder

makes four decisions: first, how much to bid at the bidding stage at t = 1; second, conditional on winning

the auction, whether to pay the deposit at t = 2; third, conditional on winning the auction and paying the

deposit at t = 2, whether to take the outside offer with price pi, or complete the original transaction by

paying κ−D, or not make the purchase at all at t = 3; and fourth, conditional on not winning the auction

at t = 1 or winning at t = 1 but not paying the deposit at t = 2, whether to take the outside offer with price

pi at t = 3.

The bidding strategy for bidder i at t = 1 is a mapping from private value vi to bid bi; that is, bi(vi) :

2



[0,∞) → [r,+∞) ∪ {∅}. Note that bi is valid if and only if bi ≥ r. Conditional on winning at the bidding

stage, the strategy of the winning bidder i regarding whether to pay the deposit is a mapping from private

value vi and full payment κ to deposit payment decision ei at t = 2: ei(vi, κ) : [0, v] × [r,∞) → {0, 1}.

Contingent on paying the deposit at t = 2, the strategy of the winning bidder i regarding whether to

complete the original transaction or opt for the outside offer or not make the purchase is a mapping from

private value vi, full payment κ, and price pi of the outside offer to decision oi at t = 3: oi(vi, κ, pi) :

[0, v] × [r,∞) × [0, v] → {0, 1} ∪ {NP}. Conditional on not winning the auction or winning but not

paying the deposit, the strategy of bidder i regarding whether to purchase from the outside offer is a mapping

from private value vi and price pi of the outside offer to decision ŏi at t = 3: ŏi(vi, pi) : [0, v] × [0, v] →

{0, 1} ∪ {NP}.

The equilibrium concept in this paper is perfect Bayesian equilibrium (PBE). Given r and D, we first

characterize bidder i’s strategies concerning the outside offer at t = 3, i.e., oi(vi, κ, pi) and ŏi(vi, pi), examine

the winning bidder i’s decision on paying the deposit at t = 2, i.e., ei(vi, κ), and derive the equilibrium

bidding strategy bi(vi) at t = 1. Finally, we characterize the seller’s optimal choices on r and D at t = 0.1

1.1.1 Decision on taking the outside offer at t = 3

If bidder i does not submit a valid bid, or submits a valid bid but does not win the auction, or does not

pay D conditional on winning, the only choice left at t = 3 is the outside offer with random price pi. The

characterization of the bidder i’s strategy ŏi(·, ·) is clear: takes the offer if vi ≥ pi; otherwise, chooses not to

make the purchase.

Next, we consider the bidder i’s strategy oi(·, ·, ·) conditional on winning and paying the deposit. The

winning bidder i has three choices at t = 3: takes the outside offer with price pi, or completes the original

transaction with payment κ − D, or not make the purchase at all. The following is the optimal decision

oi(vi, κ, pi) for the winning bidder i:

oi(vi, κ, pi) =



0 if
[
ei = 1 and vi ≥ κ−D and pi ≥ κ−D

]
;

1 if
[
ei = 1 and vi ≥ κ−D and pi < κ−D

]
,

or
[
ei = 1 and vi < κ−D and pi ≤ vi

]
;

NP if
[
ei = 1 and vi < κ−D and pi > vi

]
.

(A1)

When vi ≥ κ − D, the winning bidder i completes the original transaction if pi ≥ κ − D and takes the

1In the following analysis, we restrict our attention to (weakly) undominated strategies. This helps rule out many
uninteresting equilibria that generally arise in second-price auctions. For example, there may exist an equilibrium
that a bidder submits v̄ regardless of her true value and other bidders bid zero. Then, the winning bidder makes
decisions on paying the deposit and taking the outside offer. However, this equilibrium is not admissible as bidding
v̄ is weakly dominated by submitting bi ≤ vi, given bidding zero from other bidders. See discussion on all Nash
equilibria of second-price auction by Blume and Heidhues (2004).
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outside offer if pi < κ−D. However, when vi < κ−D,2 the winning bidder takes the outside offer if pi ≤ vi;

otherwise, he chooses not to make the purchase.

1.1.2 Decision on paying the deposit at t = 2

Here we examine the winning bidder i’s decision on paying deposit D at t = 2. If the winner pays the

deposit D, i.e., ei = 1, there are two possibilities: κ −D ≥ 0 or κ −D < 0. In the case where κ −D ≥ 0,

depending on pi Q κ−D, the winning bidder can choose to either complete the original transaction or take

the outside offer t = 3, as described in (A1). However, if κ − D < 0, the price pi of the outside offer will

certainly be greater than κ−D, which implies that the winner will always complete the original transaction.

Given the two cases above, we can construct the winning bidder i’s payoff from paying D at t = 2, denoted

by πD(vi, κ), as follows:

πD(vi, κ) =


∫ κ−D

0
(vi − pi)ϕ(pi)dpi +

∫ v
κ−D[vi − (κ−D)]ϕ(pi)dpi −D if κ−D ≥ 0;∫ v

0
[vi − (κ−D)]ϕ(pi)dpi −D if κ−D < 0.

(A2)

If the winning bidder i does not pay the deposit D, i.e., ei = 0, her only choice at t = 3 is to face the

outside offer with random price pi. In this case, the expected payoff at t = 2, denoted by πND(vi), is given

by

πND(vi) =

∫ vi

0

(vi − pi)ϕ(pi)dpi. (A3)

It is clear that the winning bidder i is willing to pay the deposit D if and only if πD(vi, κ) ≥ πND(vi).

Defining L = πD(vi, κ)−πND(vi), our analysis includes the following two cases. In the case where κ−D ≥ 0,

L(vi, κ) = vi−κ−
∫ vi
κ−D Φ(pi)dpi, which indicates that given κ and D, there should exist a unique threshold

for bidder i’s private value, denoted by v′i(κ) ∈ [0, v], such that L(vi, κ) > 0 if and only if vi > v′i(κ). In the

case where κ−D < 0, L(vi, κ) = vi − κ−
∫ vi

0
Φ(pi)dpi, implying that there should exist a unique threshold

v′′i (κ) ∈ [0, v], such that L(vi, κ) > 0 if and only if vi > v′′i (κ). Summarizing the discussion above gives the

winning bidder’s deposit strategy at t = 2:

ei(vi, κ) =


1 if

[
κ−D ≥ 0 and vi > v′i(κ)

]
,

or
[
κ−D < 0 and vi > v′′i (κ)

]
;

0 otherwise.

(A4)

1.1.3 Bidders’ Equilibrium Strategies

Let us now examine the equilibrium bidding strategy at t = 1. We first present the following useful

2This is an out-of-equilibrium event, as it implies that the bidder submitted a bid greater than vi.
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lemma.

Lemma 3. It is a dominated strategy for a bidder to submit any bid greater than her private value, i.e.,

bi > vi.

The proof of Lemma 3 is straightforward. Submitting bi > vi makes the bidder win additionally when

b
(1)
−i is between vi and bi. Obviously, winning with such a price is weakly dominated by waiting for the

outside offer with random price pi. Lemma 3 allows us to focus on bi ≤ vi (which implies κ ≤ vi and

further κ−D ≤ vi, conditional on bidder i winning the auction) for the equilibrium characterization in the

subsequent subgames.

Each bidder at t = 1 faces two choices: either bidding in the auction or waiting for the outside offer

directly. In the equilibrium, the bid submitted by the bidder should make her indifferent between these two

choices, specifically between “winning at her own bid and then paying the deposit” and “not submitting a

bid but waiting for the outside offer directly.” We call this insight the “payoff-indifference condition,” which

leads to a symmetric increasing bidding strategy, denoted by b(vi).
3 Furthermore, whether a bidder after

winning has a chance to default and take the outside offer depends on both the deposit and the reserve

price. Given the same r and D, a bidder with a relatively low private value would not choose to default

after paying the deposit; however, this may not be true if the bidder is with a sufficiently high private value.

Therefore, when we utilize the “payoff-indifference condition” to construct the equilibrium bidding strategy

for bidders in the following, we need to separately consider two cases in which, after winning and paying,

the bidder still has a chance to default. More specifically, we pin down the details of the equilibrium bidding

strategy by considering Case (I) where r ≤ D and Case (II) where r ≥ D.

Let us define two cutoff values v̌ ∈ [0, v̄] and v̂ ∈ [0, v̄] satisfying the following conditions:

r =

∫ v̌

0

[1− Φ(pi)]dpi, and D =

∫ v̂

0

[1− Φ(pi)]dpi.

Note that if b(v̄) ≤ r, we then have v̌ ≥ v̄, and there is no participation from bidders. If b(v̄) ≤ D, we have

v̂ ≥ v̄, and no bidder will bid more than the deposit D.

In Case (I) where r ≤ D, we have v̂ ≥ v̌. Let us consider bidding strategies for the bidders separately in

the valuation intervals of vi ∈ [v̌, v̂] and vi ∈ (v̂, v].

When vi ∈ [v̌, v̂], the bidder, after winning, always chooses to complete the original transaction. The

3The bidding strategy b(vi) is a weakly dominant strategy. In the proof of Proposition B0, we will show that
submitting a bid lower than b(vi) cannot be beneficial to the bidder. Bidding higher than b(vi) would increase the
probability of winning but lower the bidder’s expected payoff, which encourages the bidder to wait for the outside
offer instead.
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“payoff-indifference condition” gives∫ v

0

[
vi − (b−D)

]
ϕ(pi)dpi − D =

∫ vi

0

(vi − pi)ϕ(pi)dpi,

where the first term on the left hand side is the expected payoff from bidding and paying the deposit D

(conditional on winning) in the auction, and the right hand side is the expected payoff from waiting for the

outside offer directly. Rearranging the equation gives

b = vi −
∫ vi

0

Φ(pi)dpi ⇐⇒ b =

∫ vi

0

[1− Φ(pi)]dpi. (A5)

When vi ∈ (v̂, v], the bidder, after winning, has two options of either completing the original transaction

or taking the outside offer, depending on pi Q b−D. The “payoff-indifference condition” gives

∫ b−D

0

(vi − pi)ϕ(pi)dp +

∫ v

b−D

[
vi − (b−D)

]
ϕ(pi)dpi − D =

∫ vi

0

(vi − pi)ϕ(pi)dpi,

where the first term and the second term on the left hand side present the expected payoffs from taking the

outside offer if pi ≤ b−D and completing the original transaction if pi > b−D, respectively; the term on the

right hand side is the expected payoff from waiting for the outside offer directly. Re-arranging the equation

yields

b = vi −
∫ vi

b−D
Φ(pi)dpi ⇐⇒ D =

∫ vi

b−D
[1− Φ(pi)]dpi. (A6)

We can then summarize bidder i’s bidding strategy at t = 1 in Case (I) as follows:

b(vi) =



vi −
∫ vi

b(vi)−D
Φ(pi)dpi if vi > v̂;

vi −
∫ vi

0

Φ(pi)dpi if vi ∈ [v̌, v̂];

∅ if vi < v̌.

(A7)

It is easy to check that in (A5), db
dvi

= 1−Φ(vi) > 0, and in (A6), db
dvi

= 1−Φ(vi)
1−Φ(b−D) > 0 and db

dD = −Φ(b−D)
1−Φ(b−D) <

0; b(vi) is increasing in vi and decreasing in D. Clearly, (A6) coincides with (A5) when vi = v̂.

In Case (II) where r ≥ D, we have v̂ ≤ v̌; only the bidder with vi ∈ [v̌, v̄] can submit a valid bid, and

after winning, the bidder has two options of either completing the original transaction or taking the outside

offer, depending on pi Q b−D. The construction of the equilibrium bidding strategy is similar to (A6) but
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with the cutoff value v̌, which can be summarized as follows:

b(vi) =


vi −

∫ vi

b(vi)−D
Φ(pi)dpi if vi ≥ v̌;

∅ if vi < v̌.

(A8)

Again, it is easy to check that b(vi) is increasing in vi and decreasing in D.

Based on the discussion above, we have the following result.

Proposition B0. In the auction, bidder i adopts the weakly dominant bidding strategies (A7) or (A8),

depending on r Q D.

Proof. Most of the result was already shown in the text in Section 1.1.3. The only task left is to establish

the dominance of the equilibrium bidding strategy, in other words, check whether a bidder has an incentive

to deviate from the bidding strategy characterized in (A7) and (A8). Given that bidder i submits b(vi) in

the auction, and the payoffs are:

Πi =

 πD(vi, κ) if winning ;

πND(vi) if not winning ,

where πD(vi, κ) and πND(vi) are given by (A2) and (A3), respectively, in Section 1.1.2 above. Since b(vi) ≥ κ,

we have πD(vi, κ) ≥ πND(vi) and the equality holds when b(vi) = κ. Suppose now that bidder i does not

follow the equilibrium bidding strategy b(vi) (in short, b) but submits z in the auction, then we consider the

following two cases:

Case (a) where z < b. If b > z > κ, then bidder i still wins and that the surplus πD(vi, κ) is not affected.

If κ > b > z, bidder i still loses in the auction and the surplus πND(vi) is from facing the outside offer. If

b > κ > z, the bidder will lose and obtain πND(vi), where, however, he would have won and got πD(vi, κ) if

he had bid b. Thus, there is no incentive to bid lower than b.

Case (b) where z > b. If z > b > κ, then bidder i still wins and that the surplus πD(vi, κ) is not affected.

If κ > z > b, bidder i still loses in the auction and obtains πND(vi) is from facing the outside offer. If

z > κ > b, by doing so it increases the probability of winning, but it is more profitable for the bidder to

simply wait for the outside offer directly, as πD(vi, κ) is now strictly less than πND(vi). Thus, there is no

incentive to bid higher than b.

Therefore, we can conclude that b is a weakly dominate strategy for bidder i in the auction game.

Proposition B0 characterizes how bidders respond in their bids when facing a deposit requirement in the

auction; a higher deposit requirement induces a higher v̂ which lowers the possibility of ex-post default (or
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the chance to take the outside offer). As a consequence, bidders submit lower bids in the auction as their best

responses. If the seller chooses not to demand any deposit from the winner, i.e., D = 0, the only solution is

b(vi) = vi.
4 We therefore have the following remark.

Remark 2. In the auction, bidders bid truthfully when the seller does not require a deposit.

This interesting observation indicates that the bidders submitting lower bids, i.e., lower than their private

values, is not due to the existence of the post-auction outside offer but rather to the deposit requirement of

the seller.

Furthermore, given the characterizations of the bidding strategies in Cases (I) and (II), the following

lemma demonstrates how thresholds v̌ and v̂ change with r and D.

Lemma 4. (i) In Case (I) where r ≤ D, v̌ is increasing in r but independent of D and v̂ is increasing in

D but independent of r. (ii) In Case (II) where r ≥ D, v̌ is increasing in both r and D.

Proof. Case (I) where r −D ≤ 0. Given r = v̌ −
∫ v̌

0
Φ(pi)dpi, differentiating v̌ with respect to r yields

1 =
∂v̌

∂r
− Φ(v̌)

∂v̌

∂r
⇔ ∂v̌

∂r
=

1

1− Φ(v̌)
> 0. (A9)

Thus, v̌ is increasing in r. Clearly, it is independent ofD. v̂ is given byD = v̂−
∫ v̂

0
Φ(pi)dpi =

∫ v̂
0

[1−Φ(pi)]dpi.

Clearly, v̂ increases with D but is independent of r(≤ D).

Case (II) where r −D ≥ 0. Given r = v̌ −
∫ v̌
r−D Φ(pi)dpi, differentiating v̌ with respect to r yields

1 =
∂v̌

∂r
−
(

Φ(v̌)
∂v̌

∂r
− Φ(r −D)

)
⇔ ∂v̌

∂r
=

1− Φ(r −D)

1− Φ(v̌)
> 0. (A10)

Further, differentiating v̌ with respect to D shows

0 =
∂v̌

∂D
−
(

Φ(v̌)
∂v̌

∂d
+ Φ(r −D)

)
⇔ ∂v̌

∂D
=

Φ(r −D)

1− Φ(v̌)
> 0. (A11)

We then have that v̌ is increasing in both r and D.

From Lemma 4, we derive the following corollary on how the equilibrium bidding strategy depends on the

reserve price, which will be useful for the analysis of the optimal reserve price in the next section.

Corollary B0. Reserve price r affects equilibrium bidding strategy b(vi) through v̌.

4Given r ≥ 0, if D = 0, then b(v̌) ≥ 0, and the bidding strategy in (A8) can be written as
∫ vi
b

[1 − Φ(pi)]dpi = 0,
which implies truthful bidding from bidders.
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Proofs of Lemmas 5 - 8

The following four lemmas help us characterize the optimal reserve price maximizing the seller’s revenue

for a given deposit.

Lemma 5. EIS [R(r,D)] is independent of D for any D ≥ Dso.

Proof. If the seller chooses any D > Dso, v̂ takes the corner solution v̄, i.e., v̂ = v̄, and the seller’s expected

revenue can be re-written as follows:

EIS [R(r,D)] = N
(
1− F (v̌)

)
Q(v̌)r + N

∫ v̄

v̌

(1− F (x))b(x)dQ(x),

which does not change with D. Note that b(x) does not depend on D when D ≥ Dso. �

Lemma 6. (i) In Case (I) where r ≤ D, given any D > Dso, EIS [R(r,D)] = 0 for all r ∈ [Dso, D]. (ii) In

Case (II) where r ≥ D, EIIS [R(r,D)] = 0 for all r ≥ Dso.

Proof. Given the restrictions of r ≤ D in Case (I) and r ≥ D in Case (II), we show that the seller obtains

zero revenue when r ≥ Dso.

Case (I) where r −D ≤ 0, seller revenue with any D > Dso is given by

EIS [R(r,D)] = N
(
1− F (v̌)

)
Q(v̌)r + N

∫ v̄

v̌

(1− F (x))b(x)dQ(x).

Further, if the seller sets r ≥ Dso (but still less than D), then v̌ takes the corner solution v̄, i.e., v̌ = v̄. As

a result, no one can submit a valid bid and the seller’s revenue decreases to zero.

Case (II) where r −D ≥ 0. With r ≥ Dso, v̌ takes the corner solution v̄, i.e., v̌ = v̄. As a result, no one

can submit a valid bid and the seller’s revenue decreases to zero. �

Lemmas 5 and 6 help us restrict our analysis to the area of (r,D) ∈ [0, Dso] × [0, Dso]. Given any

D ∈ [0, Dso], let us use rI(D) to denote the optimal reserve price in Case (I) where r ≤ D. We first

maximize (12) without taking into account the restriction of r ≤ D; in this case, we denote the unrestricted

optimal reserve price by r̃I(D). We next check whether or not rI(D) = r̃I(D), i.e., r̃I(D) can be implemented

in Case (I). We follow the same procedure to examine (13) and denote the optimal reserve price in Case

(II) by rII(D) and the unrestricted optimal reserve price without the constraint of r ≥ D by r̃II(D). The

following lemmas present the optimal choices on the reserve price in Cases (I) and (II), given D ∈ [0, Dso].

Lemma 7. For any D ∈ [rso, Dso], (i) in Case (I) where r ≤ D, rI(D) = r̃I(D) = rso, and (ii) in Case

(II) where r ≥ D, rII(D) = D ≥ r̃II(D).
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Proof. Let us separately consider the following two cases. Part (i). We re-write EIS [R(r,D)] as follows:

EIS [R(r,D)] = N
(
1− F (v̌)

)
Q(v̌)b(v̌) + N

∫ v̂

v̌

(
1− F (x)

)
b(x)dQ(x)

+ N

∫ v̄

v̂

(1− F (x))

[(
1− Φ(b̃(x)−D)

)
b̃(x) + Φ(b̃(x)−D)D

]
dQ(x).

(A12)

Fix D, differentiating EIS [R(r,D)] with respect to r and plugging ∂b
∂vi

= 1−Φ(vi) into the equation yield

∂

∂r

EIS [R(r,D)]

N
=

∂

∂v̌

EIS [R(r,D)]

N
· ∂v̌
∂r

=

[
− f(v̌)Q(v̌)b(v̌) +

(
1− F (v̌)

)
q(v̌)b(v̌) +

(
1− F (v̌)

)
Q(v̌)

∂b(v̌)

∂v̌
− (1− F (v̌))q(v̌)b(v̌)

]
∂v̌

∂r

= Q(v̌)

[
− f(v̌)b(v̌) +

(
1− F (v̌)

)∂b(v̌)

∂v̌

]
∂v̌

∂r

= Q(v̌)

[
1− Φ(v̌) − f(v̌)

(1− F (v̌))

(
v̌ −

∫ v̌

0

Φ(pi)dpi
)]∂v̌
∂r
,

(A13)

where q(·) = Q′(·). Recall that ∂v̌
∂r = 1

1−Φ(v̌) > 0 from (A9). When v̌ = 0, the derivative ∂
∂r

EIS [R(r,D)]
N is 0.

But clearly, v̌ = 0 cannot be optimal, because ∂
∂r

EIS [R(r,D)]
N > 0 when v̌ is slightly above zero. As long as

F is regular (increasing hazard rate), the optimum must occur when the term in the square brackets equals

zero. We thus have at optimum[
1 − Φ(v̌) − f(v̌)

(1− F (v̌))

(
v̌ −

∫ v̌

0

Φ(pi)dpi
)]

= 0

⇔
(
1− F (v̌)

)(
1− Φ(v̌)

)
f(v̌)

=

∫ v̌

0

[1− Φ(pi)]dpi.

(A14)

This gives v̌ = v̌so and further, since b(v̌) = r, we have r = rso = v̌so−
∫ v̌so

0
Φ(pi)dpi =

∫ v̌so
0

[1−Φ(pi)]dpi.

The analysis above indicates that the unrestricted optimal reserve price r̃I(D) is exactly equal to rso for

any D ≥ 0. Moreover, for any D ∈ [rso, Dso], we have r ≤ D and the unrestricted optimal reserve price is

feasible; therefore, rI(D) = r̃I(D) = rso.

Part (ii). We re-write EIIS [R(r,D)] as follows:

EIIS [R(r,D)] = N
(
1− F (v̌)

)
Q(v̌)

[(
1− Φ(b(v̌)−D)

)
b(v̌) + Φ(b(v̌)−D)D

]
+ N

∫ v̄

v̌

(1− F (x))

[(
1− Φ(b(x)−D)

)
b(x) + Φ(b(x)−D)D

]
dQ(x).

(A15)
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Fix D, differentiating EIIS [R(r,D)] with respect to r yields

∂

∂r

EIIS [R(r,D)]

N
=

∂

∂v̌

EIIS [R(r,D)]

N
· ∂v̌
∂r

=

[
− f(v̌)Q(v̌)

[(
1− Φ(b(v̌)−D)

)
b(v̌) + Φ(b(v̌)−D)D

]

+
(
1− F (v̌)

)
Q(v̌)

∂b(v̌)

∂v̌

[(
1− Φ(b(v̌)−D)

)
− ϕ(b(v̌)−D)(b(v̌)−D)

]]
∂v̌

∂r

= Q(v̌)

[
− f(v̌)

[(
1− Φ(b(v̌)−D)

)
(b(v̌)−D) +D

]

+
(
1− F (v̌)

)∂b(v̌)

∂v̌

[(
1− Φ(b(v̌)−D)

)
− ϕ(b(v̌)−D)(b(v̌)−D)

]]
∂v̌

∂r
.

(A16)

Recall that ∂v̌
∂r = 1−Φ(r−D)

1−Φ(v̌) > 0 from (A10). When v̌ = 0, the derivative ∂
∂r

EIIS [R(r,D)]
N is 0. But as long

as F is regular (increasing hazard rates), ∂
∂r

EIIS [R(r,D)]
N = 0 should occur when the term in the big square

bracket is zero. Now let us establish the following property: For any D ∈ [rso, Dso] and r ≥ D, we have

∂
∂r

EIIS [R(r,D)]
N ≤ 0, specially ∂

∂r
EIIS [R(r,D)]

N = 0 if and only if D = rso and r = D. This property helps us to

see under conditions which the term in the big square bracket is zero.

Given b(v̌) = r, we re-write the term in the large square bracket of last line in (A16) and show that it

has the same sign with the following Λ:

Λ ≡ −
[(

1− Φ(r −D)
)
(r −D) +D

]
+

(1− F (v̌))

f(v̌)

∂r

∂v̌

[
1− Φ(r −D) − ϕ(r −D)(r −D)

]
. (A17)

Plugging ∂r
∂v̌ = 1−Φ(v̌)

1−Φ(r−D) into Λ, and simplifying it shows

Λ = −
[(

1− Φ(r −D)
)
(r −D) +D

]
+

(
1− F (v̌)

)(
1− Φ(v̌)

)
f(v̌)

[
1− ϕ(r −D)

1− Φ(r −D)
(r −D)

]
. (A18)

Step (1). When D = rso and r = D, i.e., v̌ = v̌so, we have

Λ = −rso +

(
1− F (v̌so)

)(
1− Φ(v̌so)

)
f(v̌so)

= 0. (A19)

Step (2). When D = rso and r − rso > 0, we can then write Λ as follows:

Λ = −
[(

1− Φ(r − rso)
)
(r − rso) + rso

]
+

(
1− F (v̌)

)(
1− Φ(v̌)

)
f(v̌)

[
1− ϕ(r − rso)

1− Φ(r − rso)
(r − rso)

]
. (A20)
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Note that −[(1 − Φ(r − rso))(r − rso) + rso] < −rso, and further, since v̌ > v̌so and the hazard rates of F

and Φ are increasing, we have (1−F (v̌))(1−Φ(v̌))
f(v̌) decreases with v̌ and 1−Φ(r−rso)

ϕ(r−rso) decreases with r, implying

that the following inequality should hold(
1− F (v̌)

)(
1− Φ(v̌)

)
f(v̌)

[
1− ϕ(r − rso)

1− Φ(r − rso)
(r − rso)

]
<

(
1− F (v̌)

)(
1− Φ(v̌)

)
f(v̌)

<

(
1− F (v̌so)

)(
1− Φ(v̌so)

)
f(v̌so)

.

Therefore, we have Λ < −rso + (1−F (v̌so))(1−Φ(v̌so))
f(v̌so) = 0.

Step (3). Let us consider any D ∈ (rso, Dso]. Define ω = r − D ≥ 0 and denote the inverse bidding

function by b−1(v,D). (A18) can be re-written as follows:

Λ = −
[(

1− Φ(ω)
)
ω + rso + (D − rso)

]
+

[
1− F (b−1(ω + rso + (D − rso), D))

f(b−1(ω + rso + (D − rso), D))

(
1− Φ(b−1(ω + rso + (D − rso), D))

)][
1− ϕ(ω)

1− Φ(ω)
ω

]
.

(A21)

We now use D′ to denote the deposit when D > rso and D′′ to denote the deposit when D = rso. Given

the same v and D′ > D′′, we have b(v,D′) < b(v,D′′), as b(v,D) is decreasing in D. Further, b(v,D) is

increasing in v, indicating that given the same b, we should have v′ > v′′ for b(v′, D′) = b(v′′, D′′). This

property implies that with the same bid ω+ rso, we should have b−1(ω+ rso, D′) > b−1(ω+ rso, D′′). Thus,

from equation (A21), we have[
1− F (b−1(ω + rso + (D′ − rso), D′))
f(b−1(ω + rso + (D′ − rso), D′))

(
1− Φ(b−1(ω + rso + (D′ − rso), D′))

)]

<

[
1− F (b−1(ω + rso, D′))

f(b−1(ω + rso, D′))

(
1− Φ(b−1(ω + rso, D′))

)]

<

[
1− F (b−1(ω + rso, D′′))

f(b−1(ω + rso, D′′))

(
1− Φ(b−1(ω + rso, D′′))

)]

<

[
1− F (b−1(rso, D′′))

f(b−1(rso, D′′))

(
1− Φ(b−1(rso, D′′))

)]

=
(1− F (v̌so))(1− Φ(v̌so))

f(v̌so)
.

(A22)

Since r ≥ D > rso, we have Λ < −rso+ (1−F (v̌so))(1−Φ(v̌so))
f(v̌so) = 0. We can conclude that for any D ∈ [rso, Dso]

and r ≥ D, ∂
∂r

EIIS [R(r,D)]
N ≤ 0, in particular, ∂

∂r
EIIS [R(r,D)]

N = 0 when D = rso and r = D. This established

property indicates that the unrestricted optimal reserve price r̃II(D) must be smaller than or equal to D,

i.e., r̃II(D) ≤ D for any D ∈ [rso, Dso] (the equality holds if and only if D = rso and r = D), and therefore,
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in Case (II) where r ≥ D, r̃II(D) is not implementable and EIIS [R(r,D)] is maximized at the boundary

condition of rII(D) = D.

Finally, Λ in (A18) is decreasing in r (≤ D), as v̌ increases with r. This indicates that the term in the

big square bracket in (A16) single crosses zero when r ≤ D. We thus have unconstrained optimum r̃II(D)

is uniquely defined by Λ = 0. �

Lemma 8. For any D ∈ [0, rso), (i) in Case (I) where r ≤ D, rI(D) = D ≤ r̃I(D) = rso, and (ii) in Case

(II) where r ≥ D, rII(D) = r̃II(D).

Proof. We examine rI(D) and rII(D) for any D ∈ [0, rso).

Part (i). From Lemma 7(i), we have shown that the unrestricted optimal reserve price r̃I(D) is equal to

rso for any D ≥ 0. From (A14), since (1−F (v̌))(1−Φ(v̌))
f(v̌) decreases with v̌ and

∫ v̌
0

[1− Φ(pi)]dpi increases with

v̌, we have the following inequality for D ∈ [0, rso) and r ≤ D:(
1− F (v̌)

)(
1− Φ(v̌)

)
f(v̌)

−
∫ v̌

0

[1− Φ(pi)]dpi >

(
1− F (v̌so)

)(
1− Φ(v̌so)

)
f(v̌so)

− rso

= 0.

(A23)

The inequality above implies that ∂
∂r

EIS [R(r,D)]
N > 0 for any D ∈ [0, rso) and r ≤ D. Therefore, under case

(I) where r ≤ D, r̃I(D) is not feasible for any D ∈ [0, rso) and EIS [R(r,D)] is maximized at the boundary

condition of rI(D) = D.

Part (ii). Given the fact that (1−F (v̌))(1−Φ(v̌))
f(v̌) decreases with v̌, (A18) gives the following inequality for

any D ∈ [0, rso) and D = r, that is,

Λ =

(
1− F (v̌)

)(
1− Φ(v̌)

)
f(v̌)

−D >

(
1− F (v̌so)

)(
1− Φ(v̌so)

)
f(v̌so)

− rso

= 0.

(A24)

The inequality above implies that ∂
∂r

EIIS [R(r,D)]
N > 0 for any D ∈ [0, rso) and r = D. Similar to proof of

Lemma 7(ii), we can establish that Λ in (A18) is decreasing in r (≤ D). Therefore, we have that for any

D ∈ [0, rso) the unrestricted optimal reserve price r̃II(D) is greater than D and feasible in Case (II) where

r ≥ D, i.e., rII(D) = r̃II(D). �

1.1.4 Figures to illustrate the optimal D and r

We here use the following figures to illustrate the seller’s choice on reserve price for any given deposit.

Figure 2 presents a graphic illustration of how rI(D) varies when D changes in [0, Dso]. The X-axis is

the reserve price, and the Y-axis is the deposit. The seller’s choice of rI(D) is marked by bold red. For
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D ∈ [0, rso), rI(D) is equal to D, which is located on the 45-degree line, for D ∈ [rso, Dso], rI(D) is equal to

rso, and the seller’s revenue becomes independent of D when D > Dso. Figure 3 graphically illustrates how

rII(D) varies when D changes in [0, Dso], which is marked by bold red. For D ∈ [0, rso), rII(D) is greater

than the deposit D (below the 45-degree line), for D ∈ [rso, Dso], rII(D) is equal to D (which is located

along the 45-degree line), and for any D > Dso, the seller’s revenue becomes independent of D. Figure

4 graphically depicts the optimal reserve price r∗(D), which achieves the overall maximized seller revenue

across Cases (I) and (II). In the figure, r∗(D) is marked by bold blue. For D ∈ [rso, Dso], r∗(D) is equal to

rso from Case (I), and for D ∈ [0, rso), r∗(D) is equal to rII(D) from Case (II).

0
r

D

rI(D)

rso

D = r
v̄

v̄

Dso

Dso

rso

Figure 2: Case (I) where r ≤ D
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0
r

D

rso

D = r

rII(D)

Dso

Dso

rso

v̄

v̄

Figure 3: Case (II) where r ≥ D

0
r

D

r∗(D)

rso

D = r
v̄

v̄

Dso

Dso

rso

Figure 4: r∗(D) for D ∈ [0, Dso]

1.2 Percentage deposit

Let γ ∈ [0, 1] denote the percentage of the final price the seller requires as the deposit. Then, conditional

on winning, the deposit amount bidder i as the winner needs to pay can be written as D = γκ. Clearly, the

analyses we have constructed for the outside option strategy in (A1) is not affected. We then look at the

deposit strategy. Since the percentage deposit cannot be greater than the final price, the deposit strategy is

the same as the case where κ − D ≥ 0 in Section 1.1.2. Next let us examine the bidding strategy. Again,

15



the construction of the equilibrium bid should make a bidder indifferent between “winning at her own bid

and then paying the deposit” and “not submitting a bid but waiting for the outside offer directly,” that is,

∫ (1−γ)b

0

(vi − pi)ϕ(p)dpi +

∫ v̄

(1−γ)b

[vi − (1− γ)b]ϕ(pi)dpi − γb =

∫ vi

0

(vi − pi)ϕ(pi)dpi

⇔ b = vi −
∫ vi

(1−γ)b

Φ(pi)dpi.

Given r and γ, we write the bidding strategy as b(vi). It is easy to show that b(vi) is increasing in vi

and decreasing in γ, as ∂b(vi)
∂vi

= 1−Φ(vi)
1−Φ(b(vi)(1−γ))(1−γ) > 0 and ∂b(vi)

∂γ = −b(vi)Φ(b(vi)(1−γ))
1−Φ(b(vi)(1−γ))(1−γ) < 0. Given that

b(v̌) = r, the seller’s expected revenue denoted by ES [R(r, γ)] is given by

ES [R(r, γ)] = N
(
1− F (v̌)

)
Q(v̌)

[(
1− Φ(b(v̌)(1− γ))

)
b(v̌) + Φ(b(v̌)(1− γ))γb(v̌)

]
+ N

∫ v̄

v̌

∫ vi

v̌

[(
1− Φ(b(x)(1− γ))

)
b(x) + Φ(b(x)(1− γ))γb(x)

]
dQ(x)dF (vi)

= N
(
1− F (v̌)

)
Q(v̌)

[(
1− Φ(b(v̌)(1− γ))

)
b(v̌) + Φ(b(v̌)(1− γ))γb(v̌)

]
+ N

∫ v̄

v̌

(1− F (x))

[(
1− Φ(b(x)(1− γ))

)
b(x) + Φ(b(x)(1− γ))γb(x)

]
dQ(x).

The seller chooses r and γ to maximize ES [R(r, γ)]. We introduce notations γso and rso as follows:

γso = 1 and rso =

∫ v̌so

0

[1− Φ(pi)]dpi,

where v̌so is determined by (1−F (v̌so))(1−Φ(v̌so))
f(v̌so) =

∫ v̌so
0

[1−Φ(pi)]dpi. Let us write r∗(γ) to denote the optimal

reserve price, given any γ. We can then establish the following result.

Proposition B1. dES [R(r∗(γ),γ)]
dγ ≥ 0 for any γ ∈ [0, 1]. In particular, dES [R(r∗(γ),γ)]

dγ = 0 when γ = γso. As a

result, the combination of γso and rso maximizes the seller’s revenue. Moreover, ES [R(rso, γso)] = R∗(Dso).

Proof. Our proof includes the following two steps:

Step (i). Differentiating ES [R(r, γ)] with respect to r yields

∂

∂r

ES [R(r, γ)]

N
=

∂

∂v̌

ES [R(r, γ)]

N
· ∂v̌
∂r

= Q(v̌)

[
− f(v̌)

[(
1− Φ(b(v̌)(1− γ))

)
b(v̌) + Φ(b(v̌)(1− γ))γb(v̌)

]
+ (1− F (v̌))

∂b(v̌)

∂v̌

[(
1− Φ(b(v̌)(1− γ))

)
− ϕ(b(v̌)(1− γ))(1− γ)2b(v̌) + Φ(b(v̌)(1− γ))γ

]]
· ∂v̌
∂r
.

(A25)
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When v̌ = 0, the derivative is 0. But as long as F is regular (increasing hazard rate), then ∂
∂v̌

ES [R(r,γ)]
N = 0

should occur when the term in the large square bracket is zero. This gives the unrestricted v̌(r∗(γ), γ) and

further, the optimal reserve price r∗(γ) is given by b(v̌(r∗(γ), γ)).

Step (ii). We then know that the impact of γ through r∗(γ) is zero by envelope theorem. We thus have

the following equation

d

dγ

ES [R(r∗(γ), γ)]

N
=

∂

∂γ

ES [R(r, γ)]

N
|r=r∗(γ),v̌=v̌(r∗(γ),γ). (A26)

which is given by

∂

∂γ

ES [R(r, γ)]

N
|r=r∗(γ),v̌=v̌(r∗(γ),γ)

=
(
1− F (v̌(r∗(γ), γ))

)
Q(v̌(r∗(γ), γ))

(−ϕ(b(v̌(r∗(γ), γ))(1− γ))(1− γ)

Φ(b(v̌(r∗(γ), γ))(1− γ))
· ∂b(v̌(r∗(γ), γ))

∂γ

)
+

∫ v̄

v̌(r∗(γ),γ)

(1− F (x))
(−ϕ(b(x)(1− γ))(1− γ)

Φ(b(x)(1− γ))
· ∂b(x)

∂γ

)
dQ(x).

(A27)

Clearly, v̌(r∗(γ), γ) < v̄ for any γ ∈ [0, 1). Further, given ∂b(vi)
∂γ < 0, we therefore have d

dγ
ES [R(r∗(γ),γ)]

N > 0, in-

dicating that it is optimal for the seller to choose γso = 1. Plugging γso = 1 and ∂b(vi)
∂vi

= 1−Φ(vi)
1−Φ(b(vi)(1−γ))(1−γ)

into the term in large square bracket of the last line of (A25) gives v̌so and rso:

− f(v̌so)b(v̌so) + (1− F (v̌so))
∂b(v̌so)

∂v̌so
= 0

⇔ (1− F (v̌so))(1− Φ(v̌so))

f(v̌so)
=

∫ v̌so

0

[1− Φ(pi)]dpi,

and rso is determined by

rso =

∫ v̌so

0

[1− Φ(pi)]dpi. (A28)

Note that the optimal reserve and bidding cutoff are exactly the same as in our main analysis.

Step (iii). Finally, plugging γso = 1 and rso into ES [R(r, γ)] yields

ES [R(rso, γso)] = N
(
1− F (v̌so)

)
Q(v̌so)b(v̌so) + N

∫ v̄

v̌so
(1− F (x))b(x)dQ(x)

= EIS [R(rso, Dso)]

= R∗(Dso).

(A29)

The intuition of the result above is consistent with what we had before. The seller’s expected revenue
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is maximized when the default possibility from the winner is zero. To do this, the seller should set the

percentage sufficiently high (equal to 100 percent) so that the winner’s default possibility is fully deterred.

Moreover, at the optimal level, the percentage deposit requirement is equivalent to the fixed amount deposit

requirement, generating the same maximized seller revenue. �

1.3 Deposit proportionally deducted from full payment

So far, we have analyzed the deposit requirement in which the amount the winner paid will be completely

deducted from the full payment. However, in practice sellers also commonly implement another type of de-

posit requirement where the amount paid by the winners is in addition to the full payment. For convenience,

we call the former the inclusive deposit requirement, and the latter the exclusive deposit requirement. It is

of interest to compare the two types of the deposit requirements, in particular, which one would benefit the

seller more in terms of the expected revenue, or whether they would yield the same expected revenue to the

seller. It seems that the exclusive deposit requirement is more profitable, as it is an additional fee, besides

the final price, charged by the seller. However, because of this additional “cost” after winning, the bidders

would strategically adjust their bids (intuitively, to submit lower bids) in the auction. Thus, the comparison

is not trivial and obvious.

Instead of focusing only on these two particular deposit rules, we here provide a more general analysis.

Denote the deduction proportion of the deposit D from the full payment by α ∈ [0, 1]. Given α, the winner

needs to pay κ−αD to complete the transaction. In other words, the winner’s total payment is κ+(1−α)D

for the object. Here, the inclusive and exclusive deposit requirements correspond to the two special cases

with α = 1 and α = 0, respectively. In the second-price auction with b(v̌) = r and b(v̂) = αD, bidders’

bidding strategies at t = 1 can be re-written as follows:

In Case (I) where r ≤ αD, b(vi) is given by

b(vi) =


vi −

∫ vi
b(vi)−αD Φ(pi)dpi − (1− α)D if vi > v̂;

vi −
∫ vi

0
Φ(pi)dpi − (1− α)D if vi ∈ [v̌, v̂];

∅ if vi < v̌,

and the associated seller revenue EIS [R(r,D, α)] is given by

EIS [R(r,D, α)]

N
=
(
1− F (v̌)

)
Q(v̌)

(
r + (1− α)D

)
+

∫ v̂

v̌

(1− F (x))
(
b(x) + (1− α)D

)
dQ(x)

+

∫ v̄

v̂

(1− F (x))

[(
1− Φ(b̃(x)− αD)

)(
b̃(x) + (1− α)D

)
+ Φ(b̃(x)− αD)D

]
dQ(x),

where the bidding strategies are denoted by b(vi) and b̃(vi) for vi ∈ [v̌, v̂] and vi ∈ (v̂, v̄], respectively.
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In Case (II) where r ≥ αD, b(vi) is given by

b(vi) =

 vi −
∫ vi
b(vi)−αD Φ(pi)dpi − (1− α)D if vi ≥ v̌;

∅ if vi < v̌,

and the associated seller revenue EIIS [R(r,D, α)] is given by

EIIS [R(r,D, α)]

N
=
(
1− F (v̌)

)
Q(v̌)

[(
1− Φ(r − αD)

)(
r − αD

)
+D

]
+

∫ v̄

v̌

(1− F (x))

[(
1− Φ(b(x)− αD)

)(
b(x)− αD

)
+D

]
dQ(x).

Define Dso and rso as follows

Dso =

∫ v̂so

0

[1− Φ(pi)]dpi and rso =

∫ v̌so

0

[1− Φ(pi)]dpi − (1− α)Dso,

where v̂so = v̄ and v̌so is given by (1−F (v̌so))(1−Φ(v̌so))
f(v̌so) =

∫ v̌so
0

[1 − Φ(pi)]dpi. Interestingly, we see that

although the thresholds of v̂so and v̌so and the optimal deposit Dso are the same as before, the optimal

reserve price rso depends on the deduction proportion rule. Furthermore, rso increases in α and therefore

there must exist a threshold, called α̃ > 0, such that rso = 0. This fact indicates that if the seller wants to

implement deduction proportion rule α < α̃, the optimal reserve price should be a negative value, implying

that submitting negative-valued bids from bidders should be allowed.

We next examine the impacts of the deduction proportion rule on seller’s revenue. In particular, we are

interested in comparing seller revenues across different proportion rules, answering the question of whether

there exists an optimal proportion α to the seller. Let us denote the expected seller revenues and bidding

strategies associated with two proportion rules α and α′ by EIS [R(r,D, α)] and EIS [R(r,D, α′)], and b(vi, α)

and b(vi, α
′), respectively, where α, α′ ∈ [0, 1] and α 6= α′. We can then establish the following result.

Proposition B2. If submitting negative-valued bids is allowed, the seller’s expected revenue with the optimal

rso and Dso is independent of the deduction proportion rule α.

Proof. Our proof can be split into the following three steps: Step (i). We first assume that v̌, v̂, and D

are exactly the same across both deduction proportion rules α and α′, then the equilibrium bidding strategies

show:

If vi ∈ [v̌, v̂], the equilibrium bidding strategy implies the following fact that

b(vi, α) + (1− α)D = vi −
∫ vi

0

Φ(pi)dpi = b(vi, α
′) + (1− α′)D. (A30)
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If vi ∈ (v̂, v], from the equilibrium bidding strategy, we have the fact that∫ vi

b̃(vi,α)−αD
[1− Φ(pi)]dpi = D =

∫ vi

b̃(vi,α′)−α′D
[1− Φ(pi)]dpi. (A31)

which implies

b̃(vi, α)− αD = b̃(vi, α
′)− α′D. (A32)

Step (ii). Given what we have in step (i.), we can establish the equivalence between EIS [R(r,D, α)] and

EIS [R(r,D, α′)] as follows

EIS [R(r,D, α)]

N

=
(
1− F (v̌(α))

)
Q(v̌(α))

(
r + (1− α)D

)
+

∫ v̂(α)

v̌(α)

(
1− F (x)

)(
b(x, α) + (1− α)D

)
dQ(x)

+

∫ v̄

v̂(α)

(1− F (x))

[(
1− Φ(b̃(x, α)− αD)

)(
b̃(x, α)− αD

)
+D

]
dQ(x)

=
(
1− F (v̌(α′))

)
Q(v̌(α′))

(
r + (1− α′)D

)
+

∫ v̂(α′)

v̌(α′)

(
1− F (x)

)(
b(x, α′) + (1− α′)D

)
dQ(x)

+

∫ v̄

v̂(α′)

(
1− F (x)

)[(
1− Φ(b̃(x, α′)− α′D)

)(
b̃(x, α′)− α′D

)
+D

]
dQ(x)

=
EIS [R(r,D, α′)]

N
.

(A33)

This implies that E[R(r,D, α)] exactly equals E[R(r,D, α′)]; both settings generate the same revenue to the

seller.

Step (iii). The optimal v̌so, v̂so, and Dso do not depend on the deduction proportion rule α. Therefore,

if submitting negative-value bids from bidders is allowed, the maximized revenue of the seller is independent

of the deduction proportion rule α. �

A bidder will strategically adjust her bid as the best response to the deduction proportion rule imple-

mented by the seller; a higher deduction proportion induces a higher bid from the bidder, that is, b > b′ if

α > α′. Interestingly, we show that if negative-valued bids are allowed, the seller obtains exactly the same

expected revenue for all α. We call this property the “deduction proportion independence.” However, in

practice, it is unlikely (if not impossible) to allow negative-valued bids. Obviously if the seller imposes a

further constraint r ≥ 0, implementing a lower α should generate a lower revenue to the seller.

Corollary B1. If bidders can only submit non-negative bids, the maximized seller revenue is increasing in

α.
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This result above indicates that the “deduction proportion independence” breaks down if a “non-negative-

bid” restriction is imposed in the auction, and this implies that the exclusive deposit requirement is worse

than the inclusive deposit requirement in terms of seller revenue. This provides an explanation of why the

latter is relatively more popular in practice.
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2 Appendix S2

This online appendix covers all the computation details in numerical examples 1 and 2.

2.1 Numerical example 1

Taking N = 2 and vi ∼ U [0, 1], pi ∼ U [0, 1], we have the following two parts for the computations.

Case (I) where r ≤ D. In the second-price auction, v̌ and v̂ for any given r and D can be computed by

the following two equations:

r = v̌ − 1

2
v̌2, and D = v̂ − 1

2
v̂2.

Note that the optimal rso and Dso can be computed by v̂so = 1 and (1− v̌so)(1− v̌so) =
∫ v̌so

0
[1− pi]dpi.

Bidder i’s bidding strategy can be simplified as follows:

b(vi, r,D) =


(D + 1)−

[
− 2vi + v2

i + (D + 1)2 −D2

] 1
2

if vi > v̂;

vi − 1
2v

2
i if vi ∈ [v̌, v̂];

No if vi < v̌.

The associated seller’s revenue function is given by

EIS [R(r,D)]

= 2(1− v̌)v̌r + 2

∫ v̂

v̌

(1− vi)b(vi, r,D)dvi

+ 2

∫ v̄

v̂

(1− vi)
[(

1− (b̃(vi, r,D)−D)

)
b̃(vi, r,D) + (b̃(vi, r,D)−D)D

]
dvi

= 2(1− v̌)v̌r + v̂2 − v̌2 − v̂3 + v̌3 +
v̂4

4
− v̌4

4

+ 2

∫ 1

v̂

(1− vi)
[√

v2
i − 2vi + 2D + 1− v2

i + 2vi −D − 1

]
dvi,

where v̌ = 1−
√

1− 2r and v̂ = 1−
√

1− 2D.

Case (II) where r ≥ D. In a second-price auction, we can compute v̌ for any given r and D by the

following equation:

r = v̌ −
[

1

2
v̌2 − 1

2
(r −D)2

]
.
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The equilibrium bidding strategy can be simplified as follows:

b(vi, r,D) =


(D + 1)−

[
(vi − 1)2 + 2D

] 1
2

if vi ≥ v̌;

No if vi < v̌.

The associated seller’s revenue function is given by

EIIS [R(r,D)]

= 2(1− v̌)v̌

[(
1− (r −D)

)
r + (r −D)D

]
+ 2

∫ v̄

v̌

(1− vi)
[(

1− (b(vi, r,D)−D)

)
b(vi, r,D) + (b(vi, r,D)−D)D

]
dvi

= 2(1− v̌)v̌

[(
1− (r −D)

)
r + (r −D)D

]
+ 2

∫ 1

v̌

(1− vi)
[√

2D + 1− 2vi + v2
i −D − 1 + 2vi − v2

i

]
dvi,

where v̌ = 1−
√

1− 4r + 2D − (r −D)2.

Our computations show rso = 0.33333 and Dso = 0.5.5 Moreover, when the seller sets r ≥ 0.5, no valid

bids can be submitted, and the seller’s revenue decreases to zero. Given the deposit D(= 0.2, 0.33333, 0.4),

Figures 5 depicts how seller revenue functions in Cases (I) and (II) change in r. In each figure, the horizontal

axes is reserve price r and the vertical axes is seller revenue Es(R). EIs (R) is depicted by the blue curve and

EIIs (R) by the red curve. Consistent with these properties established in Lemmas 7 and 8 and Proposition

2, our simulation results show that in Figures 5(a), given D > rso, the maximized seller revenue is given by

EIs (R) with reserve price rso. With D = 0.33333, both Cases (I) and (II) give the same maximized seller

revenue with reserve price rso in Figure 5(b). When D = 0.2, the maximized seller revenue is achieved under

Case (II) with some reserve price less than rso.

Figure 6 depicts the property characterized in Proposition 3; the seller’s optimal revenue function R∗(D)

in (16) is increasing in D for D ∈ [0, Dso] and becomes flat for any D > Dso. The global maximum seller

revenue (= 0.30157) is achieved at r = 0.33333 and Dso = 0.5.

2.2 Numerical example 2

Taking N = 2 and vi ∼ U [0, 1], and Φ(pi) = pαi over [0, 1], we have the following two parts for the

computations. First, the optimal Dso and rso are given by

Dso = v̂so − (v̂so)
α+1

α+ 1
and rso = v̌so − (v̌so)

α+1

α+ 1
,

5Note that if no post-auction outside offer exists, i.e., Φ(·) = 0, the optimal reserve price is 0.5.
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(a) D = 0.4 (b) D = 0.33333

(c) D = 0.2

Figure 5: EI
s (R) and EII

s (R) change in r

Figure 6: R∗(D) changes in D

where v̂so = v = 1 and (1 − v̌so)(1 − (v̌so)
α

) = v̌so − (v̌so)α+1

α+1 . Then, we can compute the seller’s optimal

revenue with Dso and rso, which is given by

R∗ = 2(1− v̌so)v̌sorso + 2

∫ 1

v̌so
(1− vi)b(vi, rso, Dso)dvi.

= 2(1− v̌so)v̌sorso + 2

∫ 1

v̌so
(1− vi)

(
vi −

v
(α+1)
i

α+ 1

)
dvi.
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When D = 0, it is easy to check that the equilibrium bidding is b(vi) = vi, and the optimal r∗(D = 0)

is given by

(1− r∗)
(

1− (1 + α)(r∗)α
)
−
(

1− (r∗)α
)
r∗ = 0.

The seller’s revenue with D = 0 and r∗(D = 0), which corresponds to the case of r ≥ D, can be then written

as follows:

EIIS [R(r∗)] = 2(1− r∗)r∗
[
r∗ − (r∗)(α+1)

]
+ 2

∫ 1

r∗
(1− vi)

(
vi − v(α+1)

i

)
dvi.

We then compute how a change in α affects the sellers’ choices regarding the optimal reserve price rso, the

optimal deposit Dso, and the optimal expected revenue R∗. Figure 7 illustrates how rso and Dso change with

α. Consistent with our theoretical predictions, the figures show that when α increases, which corresponds

to a worse chance for the outside option, both rso and Dso increase.

(a) rso and α (b) Dso and α

Figure 7: The impact of α on rso and Dso

Figure 8 depicts how R∗ changes with α. Again, consistent with the theoretical prediction, an increase

in α generates a higher R∗, which is captured by the black curve. To illustrate the role of a deposit in

the auction with a post-auction outside offer, we compute and plot how seller revenue with D = 0 and the

associated optimal reserve price, denoted by r∗(D = 0), changes with α. As depicted by the red dotted curve,

seller revenue increases in α as well. Interestingly, the difference between the two revenues is not monotonic.

The improvement in seller revenue after charging a deposit is small when the likelihood of having an outside

option, captured by α, is either too small or too large, but a relatively large improvement is achieved when

the likelihood is in the medium range.
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Figure 8: The relationship between R∗ and α
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