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Abstract

We introduce the novel concept of anti-transfer learning for speech process-
ing with convolutional neural networks. While transfer learning assumes that
the learning process for a target task will benefit from re-using representations
learned for another task, anti-transfer avoids the learning of representations
that have been learned for an orthogonal task, i.e., one that is not relevant and
potentially misleading for the target task, such as speaker identity for speech
recognition or speech content for emotion recognition.

In anti-transfer learning, we penalize similarity between activations of a net-
work being trained and another one previously trained on an orthogonal task,
which yields more suitable representations. This leads to better generaliza-
tion and provides a degree of control over correlations that are spurious or
undesirable, e.g. to avoid social bias. We have implemented anti-transfer for
convolutional neural networks in different configurations with several similarity
metrics and aggregation functions, which we evaluate and analyze with several
speech and audio tasks and settings, using six datasets. We show that anti-
transfer actually leads to the intended invariance to the orthogonal task and to
more appropriate features for the target task at hand. Anti-transfer learning
consistently improves classification accuracy in all test cases.

While anti-transfer creates computation and memory cost at training time,
there is relatively little computation cost when using pre-trained models for or-
thogonal tasks. Anti-transfer is widely applicable and particularly useful where
a specific invariance is desirable or where trained models are available and la-
beled data for orthogonal tasks are difficult to obtain.
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1. Introduction

In recent years, transfer learning has become a popular method in speech
and audio processing to make use of existing deep learning models that have
been trained on large datasets. The assumption underlying transfer learning is
that the internal representations learned to solve one task will be relevant for
another task. This can improve the performance of a model in terms of training
time and overall accuracy even across tasks and domains, and has been proven
to be particularly useful in cases when data availability for the target task is
limited [1, 2, 3, 4].

We introduce here the concept of anti-transfer learning, which is based on
the idea that if a neural network can be used to teach another network what to
do, it may also be used to teach what not to do. Based on the observation that
some tasks may be irrelevant and confounding or undesirable to influence the
target task, we try to avoid representations learned for one task when learning
to solve another. We call the task which should not influence the predictions an
orthogonal task, as our intention is that the predictions of our target should be
independent of it. What constitutes an orthogonal task depends on the nature
of the tasks and the intention of the user. We see two main application scenarios:
first, improving generalization by discouraging reliance on spurious associations,
e.g., word recognition and speaker identity, and second, discouraging undesirable
bias, e.g. that gender or ethnicity should not influence financial decisions.

In this paper we focus on the first scenario, and particularly on audio ap-
plications. Spurious correlations occur frequently in real-world data and are
sometimes unavoidable. E.g., we expect the word ‘joy’ to be associated with a
happy expression in natural speech. This association may be useful to resolve
ambiguities, but a model overly reliant on this may not generalize in cases where
the association does not hold, e.g. the word ’joy’ pronounced with a sad expres-
sion. Similarly, the frequency of word use is not equally distributed between
different speakers, genders or ethnicities, but we would prefer our models not
to depend on these features when they recognize words, both in the interest of
generalization and in avoidance of bias or stereotyping. This problem could be
addressed by creating or collecting more data, that contains all variants of emo-
tional expressions for all words, or all words uttered by all speakers but this not
practical in general. However, with anti-trarnsfer we can discourage the use of
emotional features for word recognition, or speaker identity for emotion recog-
nition, respectively, and thus avoid that dependency and improve generalization
from limited datasets.

Anti-transfer can be used to address open research problems in speech and
audio processing, such as speaker or context invariance in word or emotion recog-
nition [5, 6, 7, 8, 9, 10]. In our experiments, we compare anti-transfer learning
to regular transfer learning and learning from scratch on speech and music au-
dio tasks. A common approach for transfer learning with deep learning models
is to use a pre-trained network as starting point through weight initialization,
i.e. re-training a pre-trained network or part of it [11]. Support for this ap-
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proach is built into popular machine learning libraries, such as Tensorflow2 and
PyTorch3, along with models pre-trained on disparate tasks. In anti-transfer
learning, we penalize instead the use of features that have been learned for the
orthogonal task when training for the target task. Our results show that this
leads to greater invariance to the target predictions from the orthogonal task
and improves the generalization of the models.

The specific contributions of this work are the following:

• For the first time, to the best of our knowledge, we introduce the concept
of anti-transfer learning to achieve task-invariance between a pre-trained
network and a new one.

• We implement anti-transfer learning for convolutional neural networks
(CNNs) with a number of different similarity measures and aggregation
functions. The source code is publicly available4.

• We demonstrate the effectiveness of anti-transfer learning for speech and
audio by evaluating it on two speech-related tasks and one music-audio
task, using six different datasets in several configurations. We achieve
improvements in all tasks over non-transfer and standard transfer learning.

• We provide results of ablation studies and visualizations to analyze the
properties of anti-transfer learning.

The remainder of this paper is organized as follows: Section 2 contains a
review of relevant background literature, Section 3 introduces the concept and
implementation of anti-transfer learning, Section 4 presents a performance eval-
uation of anti-transfer, followed by further analysis and discussion in Section 5
and Section 6 draws the conclusions from this paper.

2. Related Work

Transfer learning has been used with neural networks for a long time and in
many different applications [12, 13, 14, 15, 16]. Pre-training models has become
standard practice in image classification and related tasks [17, 18, 19] and pre-
trained language models have become a common starting point in NLP [20].
The transfer of knowledge from a trained network to a new task by re-using
weights of a layer has been developed early on [21, 22].

Selective representation transfer. The approach presented in this paper is in-
spired by the work of [23] on style transfer on images and re-uses elements of
that work. Based on the assumption that features become increasingly task-
specific towards the last layer of a network[24], a strategy was developed by

2https://www.tensorflow.org/
3https://pytorch.org/
4https://github.com/ericguizzo/anti_transfer
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[23] to separate content and style of an image and to transfer the style alone to
another image. The authors used a CNN that was pre-trained on object recogni-
tion as a feature extractor to estimate the style-related and the content-related
information of an image in a CNN. The style of an image is represented by the
Gram matrix computed on the initial layers, which contains information about
texture, i.e. the co-occurrence of low-level features. The content is represented
by the raw feature maps of the final layers. During the training of the style
transfer network, the feature extractor separately extracts the style and the
content from two different images and compares them to the corresponding fea-
tures extracted from an image that is being generated, creating two deep feature
loss values: style and content loss. The minimization of these losses promotes
the generation of an image with the style of one image and the content of the
other one. This idea received much attention in the computer vision community
and has been further explored and improved [25, 26]. It has also been applied
in the audio domain to audio style transfer with MelGan [27], using both speech
and music sources.

Deep feature losses. Deep feature losses have been used in several computer vi-
sion tasks as texture synthesis [28], image super-resolution [29] and conditional
image synthesis [30, 31]. According to recent studies [32, 33], deep feature losses
are highly correlated to human perceptual judgements and are well suited to
solve tasks related to semantic properties of data. Deep feature losses have
several successful applications also in the audio domain. They have been used
by [34] to enhance the similarity between the deep representations of two net-
works and therefore transferring knowledge from one to the other, enhancing
the networks’ performance in several speech processing tasks. A deep feature
loss was successfully used by [35] to perform audio source separation, obtaining
a superior performance compared to spectrogram-based loss. [36] applied the
same conceptual idea to speech enhancement, language identification, speech,
noise and music classification, and speaker identification.

The majority of studies regarding deep feature losses are based on the idea of
encouraging a network to develop similar deep representations of a pre-trained
network in selected layers, e.g. in line with the work of [23]. However, our main
idea to perform the opposite. That is: discouraging specific deep representations
that have been particularly useful for a task that is irrelevant for a target task
and should thus be avoided when training for the target task, in order to not
develop spurious correlations. We actually address similar problems with a
similar approach as [34] and [36] but while they maximize the similarity with
representation of a pre-trained network, our aim is to minimize it. There are
also substantial differences in the implementation as we use Gram aggregation
and a different similarity measure, as explained in Section 3.

Feature diversity. Minimizing feature similarity has been shown earlier to im-
prove robustness and generalization. In the context of ensemble models, [37]
minimized mutual information between neural networks. More recently, the
minimum hyperspherical energy (MHE) regularization was introduced by [38]
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and applied to audio source separation by [39]. MHE encourages diverse weight
vectors within a network to improve generalization, but it differs from our ap-
proach since we encourage dissimilarity of feature maps and with respect to
another model.

Domain adaptation. A common use case for transfer learning is domain adap-
tation, e.g. to different recording equipment or environments, and a common
approach is to maximize the feature invariance to the domain of the data. Mu-
tual Information Minimization is used in [40] to extract features independent
from the domain of the data points by maximizing the feature invariance to
their domain indicator. This is different from our approach in terms of applica-
tions, as we are training to transfer between tasks, within or between domains.
However, when viewing the domains as orthogonal tasks, we can compare do-
main adaptation to anti-transfer. In Domain Adversarial Training (DAT) [41],
a gradient reversal layer is introduced to maximize the loss on domain identifi-
cation while minimizing the classification loss. A similar approach, but with a
Siamese architecture, is introduced in [42]. In [43], a more general framework
is presented, including generative adversarial approaches, that is also applied in
domain adaptation for acoustic scene classification using unlabeled data for the
target domain [44]. There are two notable differences between these approaches
and ours: first, we directly compare the feature activations in our loss function
as opposed to propagating gradients derived from domain labels, and second,
most of these approaches require labeled data from the source domain (analog
to our orthogonal task), while anti-transfer only requires a pre-trained model,
which does not have to be trained on the same dataset.

Disentanglement. The representation of independent properties of objects or
processes has been recently explored in the literature and usually referred to as
disentanglement [45, 46, 47, 48]. Methods for achieving disentanglement include
adversarial training [49] or specific architectures, such as partitioned or factor-
ized variational autoencoders [50, 51]. Anti-transfer can be considered a special
case of disentanglement, aiming at the invariance to the internal representations
of distinct orthogonal models.

3. Method

The main idea of anti-transfer learning is to encourage dissimilarity of a
model’s deep representations with respect to another model with the same ar-
chitecture but pre-trained on an orthogonal task. We focus here on CNNs which
have been immensely popular in recent years and achieve state of the art results
on many audio tasks, e.g. [52, 53, 54].

3.1. Approach

We achieve anti-transfer learning through the introduction of an anti-transfer
loss term during training, that is a deep feature loss [31]. The anti-transfer loss
measures the similarity between the deep representations that the network is
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Figure 1: Block diagram of a CNN network with anti-transfer learning applied to a clas-
sification task. We use spectrograms of audio signals as the input, but anti-transfer is not
specific to the audio domain or spectrogram representations.

learning and a pre-trained network with the same architecture. By adding this
term as a penalty to the loss function we encourage the trained network to de-
velop deep representations that are different from the pre-trained network. In
other words, we encourage the network being trained to develop feature repre-
sentations that are good for its target task but different from those developed to
solve the orthogonal task in the pre-trained network. This reduces the trained
network’s dependency on the orthogonal task’s classes, e.g. the dependency of
word recognition on speaker identity.

Figure 1 depicts a block diagram of a generic CNN with anti-transfer learning
applied. As the diagram shows, this architecture has two parallel networks: a
pre-trained feature extractor (in the upper part), which is the convolutional part
of the pre-trained network, with non-trainable weights and the CNN classifier
that is currently being trained (in the lower part).

Our implementation is based on the VGG16 Architecture [55], a deep CNN,
with details shown in Table 1. We selected this architecture since it has been
proven to be effective in computing a deep feature loss in the audio domain [34].
Nevertheless, the same concept and implementation can be translated to any
other CNN design.

3.2. Anti-Transfer Loss

The anti-transfer loss is computed in the forward pass. The input data,
a spectrogram in our experiments, is forward propagated in parallel through
both networks. The feature maps of the nth convolution layer in both networks
are extracted and aggregated in the channel-wise Gram matrix G, which is
computed for each network, similarly to the approach used by [23] to compute
the style matrix of an image. The Gram matrix is computed as the inner product
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Table 1: The VGG16 architecture. In this example configuration the network has an input
dimension of 244x244x1 and 1000 output classes.

Layer Channels Size Kernel Stride Activation

Input 1 244x244 - - -
2x Convolution 64 224x224 3x3 1 relu
Max Pooling 64 128x128 3x3 2 relu
2x Convolution 128 224x224 3x3 1 relu
Max Pooling 128 56x56 3x3 2 relu
2x Convolution 256 56x56 3x3 1 relu
Max Pooling 256 28x28 3x3 2 relu
3x Convolution 512 28x28 3x3 1 relu
Max Pooling 512 14x14 3x3 2 relu
3x Convolution 512 14x14 3x3 1 relu
Max Pooling 512 7x7 3x3 2 relu
Fully Connected - 25088 - - relu
Fully Connected - 4096 - - relu
Fully Connected - 4096 - - relu
Output - 1000 - - softmax

between the vectorized feature maps F for each pair of channels:

Gij = Fi · Fj . (1)

where i, j are the channel numbers. The Gram matrix correlates the information
of each channel pair over all points x, y, consequently reducing the dimension-
ality of a feature map from 3 dimensions, (c, x, y), to 2, (c, c), where c, x, y are
the number of channels, rows and columns, respectively. We then calculate the
anti-transfer (AT) loss LAT as a scalar coefficient β multiplied by the squared
cosine similarity of the vectorized Gram matrices Gp (for the pre-trained net)
and Gt (for the net being trained):

LAT = β

(
Gp ·Gt

||Gp|| ||Gt||

)2

. (2)

The aggregation with the Gram matrix serves to compare all possible channel
combinations at once, using a limited amount of memory. This is essential for
consistently measuring the similarity of the feature maps, where permutations
can occur along the channel dimension. We choose the squared cosine similarity
since it is naturally limited in the interval [0,1] and therefore it can have only
a limited impact in the overall loss function. Moreover, we square it to apply a
stronger penalty when the similarity is high and we re-scale by the coefficient β
as an hyperparameter to fine-tune the performance of AT learning.

The diagram in Figure 1 shows the AT loss calculated on the last convolution
layer, but it is possible to apply the the AT loss to any of the convolution layers.
Furthermore, it is possible to combine the AT loss of multiple layers in the same
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training, summing their AT loss values. The total AT loss is added to the
standard loss function during the training of the network (cross entropy in our
case, but AT can be used with any loss function).

The complete objective function we minimize per datapoint is therefore:

LTOT = −
n∑

i=1

ti log(pi) +
∑

s∈SAT

LATs (3)

where n is the number of classes, ti is 1 if i is the true class and 0 otherwise,
px is the predicted probability of class i, SAT is the set of convolution layers
where anti-transfer is computed, and LATs is the anti-transfer loss computed
for convolution layer s.

3.3. Variations

As we present in Section 5, we test several aggregation strategies and simi-
larity measures. The best combination is Gram matrix aggregation and squared
cosine similarity, which is detailed above. Different aggregation and similarity
functions can be used by adapting equations 1 and 2.

Moreover, we combine two orthogonal tasks in dual AT loss. To achieve
this, we first train a model with anti-transfer for one orthogonal task. We use
the result of that training to initialize the weights of a new model, which is then
trained with anti-transfer on the second orthogonal task. It is worth noting
that we apply the weight initialization to all convolution layers at once, while
we apply anti-transfer to only one convolution layer per experiment.

4. Experimental Set-up and Results

We test anti-transfer learning on several audio classification tasks with 20
different combinations of training and pre-training tasks in order to evaluate the
behavior of anti-transfer learning in a variety of set-ups. We have three main
classification tasks: word recognition (WR), speech emotion recognition (SER)
and sound goodness estimation (SGE) (i.e. how well musical notes are played
by musicians [56]).

SER and SGE tasks are evaluated with two types of splitting the dataset
into training, validation and test set: random split and class split by speaker
or instrument. The class split types provide a more challenging task than the
random split. This is because these (orthogonal) classes reflect different data
distributions in the random split the training, validation and test set distri-
butions are the same. On the other hand, splitting by speaker or instrument
presents a more realistic task for many applications. The class-split is based
on labels used in the orthogonal tasks (see Section 4.1). This enables us to
assess more directly the AT trained networks’ invariance to the orthogonal task
classes as discussed in Section 5.8. For WR, we use only random split, but we
added different types of background noise to the audio samples to create more
challenging classification tasks. We test 3 scenarios: noise-free, low noise and
high noise (see below for details)
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Figure 2: Block diagram of our training strategies. The color coding reflects 3 consecutive
temporal stages. Stage 1: pre-training of the orthogonal models (yellow and, only for dual AT,
orange). Stage 2: only for dual AT, training of the intermediate model applying AT (green).
Stage 3: training of the final models (blue) applying different transfer learning strategies: no
transfer (baseline), weigh-initialization of the convolution layers, anti-transfer and dual anti-
transfer. Different information flows are represented with differently colored arrows: the data
flow is shown in black, the weight-initialization flow in red and the AT loss flow in magenta.

Our experiments are set up to test the effectiveness of anti-transfer learning,
comparing it to the most common transfer learning method of weight initializa-
tion (WI) and to a baseline method without any transfer learning. In this way
we can compare anti-transfer to regular transfer learning in the specific case of
pre-training on orthogonal tasks. In addition, we perform two further exper-
iments (presented in Section 5.1). In the first one we freeze the convolution
layers in the WI modality up to the same layer where we apply the AT loss.
This avoid possible dissipation of prior knowledge when training. In the second
experiment we invert β in the AT loss, so that similarity of feature activations
is encouraged instead of dissimilarity, i.e. performing the opposite of regular
AT. Figure 2 shows a diagram of the different training strategies we compared.
We perform 3 consecutive training stages. First, we pre-train the models on the
orthogonal tasks. Then, only for dual AT, we apply AT to train an intermediate

9



model on the final task. The weights of the intermediate model are then used
to initialize the final model. Finally, we train our final models, applying the
different transfer learning strategies.

4.1. Datasets

We use six different datasets overall. For our experiments, we extract subsets
from larger datasets to reduce training times and adjust class imbalances. While
this limits comparability to published results, it enabled us to perform a much
broader range of experiments as reported in this and the following section.

1. Google Speech Commands: A Dataset for Limited-Vocabulary Speech
Recognition V2 (GSC) [57]. Task: Single-word speech recognition. 2.7
hours of audio. 10 different words (digits) recorded by more that 2000
non-professional speakers in various acoustic environments.

2. MS-SNSD : The Microsoft Scalable Noisy Speech Dataset. A dataset and
online subjective test framework [58]. Approximately 20 hours of audio.
Task: background noise type recognition. 11 different types of noise mixed
with speech audio signals at volumes between -20 and -40 dBfs.

3. Librispeech: An ASR corpus based on public domain audio books [59].
Task: Single-word speech recognition. 100 hours of audio, 40 speakers,
1000 single-word labels. One-word excerpts from audio book recordings.

4. IEMOCAP : The Interactive Emotional Dyadic Motion Capture Database
[60]. Tasks: speech emotion recognition, speaker recognition. 7:30 hours
of audio, 5 speakers, 4 emotion labels: neutral, angry, happy, sad. Actors
perform semi-improvised or scripted scenarios on defined topics.

5. Nsynth: A large-scale, high-quality dataset of annotated musical sounds.
[61]. Task: instrument eecognition. 66 hours of audio. 11 different
instrument macro-categories. One-note recordings of musical instruments.

6. Good-Sounds: A dataset to explore the quality of instrumental sounds
(GS) [56]. Tasks: sound goodness estimation, instrument recognition. 14
hours of audio. 12 different instruments, 5 different goodness rates. One-
note recordings of acoustic musical instruments, played by professional
musicians.

The above descriptions refer to the subsets we extracted (or generated, for
MS-SNSD), not to the original size and arrangement of these datasets. Please
refer to the references above for the original specifications.

For each target task, we pre-train on two different tasks for transfer and anti-
transfer learning. For word recognition we train on GSC and we pre-train on
speech emotion recognition (IEMOCAP) and on background noise type recog-
nition (MS-SNSD). For speech emotion recognition we train on IEMOCAP and
we pre-train on speaker recognition with the same training dataset (IEMOCAP)
and on word recognition with a larger dataset (Librispeech). For sound good-
ness estimation we train on Good-Sounds, we pre-train on instrument recogni-
tion with the same training dataset (Good-Sounds) and with a larger dataset
(Nsynth).
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4.2. Processing stages, training parameters and training strategies

We paid particular attention to performimg all experiments (trainings and
pre-trainings) in the same conditions, in order to isolate the influence of anti-
transfer and weight initialization in the results. All experiments are performed
in a Python and PyTorch environment, using the VGG16 network architecture
[55] (in the implementation from the torchvision library5).

We apply two architectural modifications to the standard implementation:
we reduce the channel number of the very first layer to 1 (since we use single-
channel magnitude spectrograms) and we vary the number of output neurons
to match the classes to the task.

We apply the same pre-processing to all datasets:

1. We first down-sample all audio data to 16KHz sampling rate.

2. Then we zero-pad/segment all sounds in order to have data-vectors of the
same length for each task. We segment the audio as follows:

• In the word recognition target task, we use 1-second sound samples as
provided in the GSC. For the orthogonal noise classification task, we
first generate 20 hours of noisy speech from MS-SNSD and then we
extract 1-second fragments with no overlap. For emotion recognition,
we extract 1-seconds fragments from IEMOCAP.

• In the speech emotion recognition target task, we use 4-seconds sound
samples from IEMOCAP. For the orthogonal task of word recogni-
tion, we extract segments containing only one word6 from Librispeech
and then zero-pad them to 4-seconds.

• In the sound goodness recognition target and the orthogonal in-
strument recognition task, we use 6-second sounds, applying zero-
padding to both Nsynth and Good-Sounds sounds.

3. Only for GSC, we add noise to the segmented speech sounds at 3 different
levels: no noise, low noise (-40 to -20 dBfs) and high noise (0 to -10 dBfs).
The noise sounds are from the MS-SNSD datasets. Like for MS-SNSD we
use the MS-SNSD code7 to perform this operation.

4. Next we compute the Short-Time-Fourier-Transform (STFT) using 16 ms
sliding windows with 50% overlap, applying a Hamming window and dis-
carding the phase information.

5. Finally, we normalize the magnitude spectra of each dataset to zero mean
and unit standard deviation, based on the training set’s mean and stan-
dard deviation.

We perform all neural network trainings and pre-trainings with the same
parameters. We use a learning rate of 0.0005, a batch size of 13 and the ADAM
optimizer [62]. We apply dropout at 50% but neither L1 nor L2 regularization.

5https://pytorch.org/docs/stable/torchvision/models.html
6We use https://github.com/bepierre/SpeechVGG for this.
7https://github.com/microsoft/MS-SNSD
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Table 2: Results of the pre-training in terms of classification accuracy. Classes is the number
of different class labels. Hours describes the amount of recorded material in the subset that
we used. The Train and Test columns contain the accuracy on the train and test sets.

Dataset Task (Recognition) Classes Hours Accuracy
Train Test

Librispeech Speech 1000 100 97.6 91.8
IEMOCAP (1 sec) Speech Emotion 4 7.3 85.6 51.9
IEMOCAP (4 sec) Speaker 5 7.3 99.8 96.5
Good-Sounds Instrument 12 14 100.0 100.0
Nsynth Instrument 11 66 98.1 69.9
MS-SNSD Noise Type 11 20 100.0 99.8

We randomly initialize the weights of all networks, except in the case of weight
initialization from a pre-trained network (for WI and dual AT). We train for
a maximum of 50 epochs and apply early stopping by testing at the validation
loss improvement with a patience of 5 epochs. We divide every dataset using
subsets of approximately 70% of the data for training, 20% for validation and
10% for the test set. All of the above settings are kept constant for all datasets
in all configurations: non-transfer, transfer, anti-transfer/dual anti-transfer and
also for all pre-trainings.

These experiments are not designed to produce to state of the art results on
these datasets, because we want to focus on the impact of anti-transfer learning.
Therefore we used specific subsets and we did not optimise network architectures
and hyperparameters to the individual datasets in order to exclude any other
sources of performance variation.

4.3. Classification Results

Table 2 shows the results of the pre-training in terms of classification accu-
racy. There is wide variation in performance on the different tasks, with the
Good-Sounds and MS-SNSD saturating or almost saturating on the train and
test set for instrument and background noise type recognition.

Tables 3, 4 and 5 show the results obtained on the target tasks of word recog-
nition, speech emotion recognition and sound goodness estimation, respectively.
These tables contain the baseline results without transfer learning (None), with
standard transfer learning using weight initialization (WI) and with anti-transfer
learning (AT) on 20 pre-task/actual-task combinations in total. While for SER
and SGE we test only anti-transfer with one orthogonal task at a time, for WR
we additionally test dual anti-transfer (Dual AT), applying two orthogonal tasks
as described in Section 3.

We applied anti-transfer to one layer of the VGG16 network with each of
the 13 convolution layers for each task. The reported anti-transfer test accuracy
results reflect the choice of layer that reached the best validation accuracy. In all
experiments, the coefficient β is fixed to 1 since, as further analyzed in Section
5.6, this provides the best accuracy results.
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Table 3: Accuracy results for the word recognition (WR) target task pm the Google Speech
Commands (GSC) dataset with 3 levels of background noise added: None, Low and High. We
pre-train on noise type recognition (Nse) with MS-SNDS dataset (MSS) and speech emotion
recognition (Emo) with IEMOCAP dataset (IEC). We compare between no transfer learning
(None), regular transfer learning by weight initialization (WI), anti-transfer (AT) and dual
anti-transfer (Dual AT, using two pre-training tasks). The order of the pre-training tasks is
shown in the second column. The best results per column are highlighted in bold font.

Transfer Pre-training
Train accuracy
Noise level

Test accuracy
Noise level

Type Task Data None Low High None Low High

None n/a n/a 98.45 97.94 97.23 95.32 93.67 90.44
WI Noise MSS 98.33 97.85 96.34 94.83 93.97 90.51
WI Emo IEC 98.67 97.69 97.36 95.40 93.51 90.35
AT Noise MSS 99.57 99.11 98.42 95.70 94.81 90.99
AT Emo IEC 99.02 99.09 98.36 95.57 94.91 91.38

Dual AT
Emo +
Nse

IEC +
MSS

99.84 99.49 98.29 96.60 94.91 90.98

Dual AT
Nse +
Emo

MSS +
IEC

99.31 99.17 98.89 95.64 95.20 90.67

The results (Tables 3, 4 and 5) show that anti-transfer improves the test
accuracy in all cases and interestingly improves also the training accuracy in all
cases but one (sound goodness estimation with instrument-wise split dataset,
Table 5), compared to both the baseline and weight initialization. We have a
maximum improvement in the test accuracy of 11.5 percentage points (pp) (for
sound goodness estimation with instrument-wise split dataset, Table 5) and a
maximum improvement in the training accuracy of 6.7 pp (for speech emotion
recognition with speaker-wise split dataset, Table 4). The overall average im-
provement is of 4.11 pp for the test accuracy and of 2.35 pp for the training
accuracy. Figure 3 shows the average gain achieved by anti-transfer learning in
the test accuracy for different tasks and settings. It has practical relevance that
the improvement in the networks’ generalization is higher when anti-transfer is
applied with a feature extractor trained on an orthogonal task with the same
dataset as opposed to a different but larger dataset (we tested this property only
on SER and SGE: IEMOCAP pre-trained on speaker recognition vs IEMOCAP
trained on speech emotion recognition and Good-Sounds pre-trained on instru-
ment recognition vs Good-Sounds trained on sound goodness estimation).

Another interesting aspect is that using dual anti-transfer provides a higher
accuracy boost compared to anti-transfer on a single orthogonal task (we tested
this only on WR: GSG pre-trained on speech emotion recognition and back-
ground noise type recognition). This suggests that the task invariance effect of
anti-transfer learning can be cumulative, opening the possibility of pre-training
on multiple orthogonal tasks.
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Table 4: Accuracy results for the speech emotion recognition (SER) target task on the
IEMOCAP dataset. Comparison between no transfer learning (None), weight initialization
(WI) and anti-transfer (AT) with pre-training on different datasets. In particular, we com-
pared anti-transfer with pre-training on the same dataset (IEMOCAP) but on an orthogonal
task (speaker recognition) and on a bigger dataset (Librispeech) on a different orthogonal
task (word regognition). We test 2 different train/validation/test split: random (Rand) and
speaker-wise (Speaker). The best results per column are highlighted in bold font.

Transfer Pre-training
Train accuracy
Split Type

Test accuracy
Split Type

Type Task Dataset Rand Speaker Rand Speaker

None n/a n/a 69.0 67.8 63.7 57.2
WI Word Librispeech 66.9 66.9 63.4 59.2
WI Speaker IEMOCAP 70.7 66.9 64.8 58.5
AT Word Librispeech 72.0 68.6 66.9 61.1
AT Speaker IEMOCAP 75.5 74.5 66.5 61.3

Table 5: Accuracy results for sound goodness estimation (SGE). For the target task we
use the Good-Sounds dataset. We compare no transfer learning (None), weight initialization
(WI) and anti-transfer (AT). In particular, we compare anti-transfer with pre-training on
the same dataset (Good-Sounds) and on a bigger dataset (Nsynth). We test 2 different
train/validation/test splits: random (Rand) and instrument-wise (Instr). The best results
per column are highlighted in bold font.

Transfer Pre-training
Train accuracy
Split Type

Test accuracy
Split Type

Type Task Dataset Rand Instr Rand Instr

None n/a n/a 91.8 42.2 83.8 22.8
WI Instrument Nsynth 93.4 40.5 84.7 29.6
WI Instrument Good-Sounds 93.3 42.3 84.9 23.9
AT Instrument Nsynth 96.8 41.0 86.3 30.0
AT Instrument Good-Sounds 93.9 36.4 85.7 34.3

5. Analysis and Discussion

The results in the previous section show a robust improvement resulting
from the use of anti-transfer learning. Here we investigate various aspects of
the method for understanding and optimizing its performance.

5.1. Ablation Study: Encouraging Similarity vs. Dissimilarity

As an ablation study, we performed additional experiments where we encour-
age the models to develop representations that are similar instead of dissimilar
to the models pre-trained on orthogonal tasks. The results are shown in Fig-
ure 4. We tested two methods for encouraging feature similarity. The first
consists of inverting the sign of the β parameter to encourage similarity instead
of dissimilarity through the AT loss. This operation can be considered as the
opposite of the regular AT (in line with [34]). The second consists of weight
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Figure 3: Average improvement by applying anti-transfer learning on different applications
and different settings compared to the baseline (no transfer learning). The overall and the task-
specific measures (word recognition, speech emotion recognition, sound goodness estimation,
in green) show the average over the best improvements on each task/split or task/noise level
configuration. The other measures show the average improvement over all experiments of a
modality. The pre-training on bigger/same dataset modality (orange lines) is computed for
Good-Sounds per-trained on NSynth and itself and for IEMOCAP pre-trained on Librispeech
and itself. The single/dual AT modality (blue lines) is computed for the Google Speech
Commands dataset pre-trained on MS-SNSD and IEMOCAP.

initialization and freezing (i.e. setting as not trainable) all convolution layers
from the input layer of the network up to the layer where we apply AT. This test
is complementary to the comparison between AT and WI, since in regular WI
the knowledge transferred from the pre-trained model may completely disappear
during the training because of the catastrophic forgetting phenomenon [63]. This
experiment shows the model’s performance when we avoid this phenomenon
by freezing the initial layers. We performed these two experiments using the
task/orthogonal-task/AT-layer combination that yielded the best performance
in each case, which are:

• Word recognition: GSC with no further noise added, background noise
type recognition pre-training (MS-SNSD), layer 5.

• Speech emotion recognition: IEMOCAP random split, word recognition
pre-training (Librispeech), layer 5.

• Sound goodness estimation: GS random split, instrument recognition pre-
training (NSynth), layer 6.
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Figure 4: Comparison of regular AT (encouraging feature dissimilarity with the orthogonal
task, green columns), inverse-beta AT (encouraging feature similarity, orange columns) and
weight initialization with frozen convolution layers (until the same layer where we apply
AT, blue columns) on all target tasks: word recognition, speech emotion recognition and
sound goodness sstimation. The improvement in the test accuracy is shown, comparing to the
baseline results (no AT nor WI applied, black segmented line: 95.3% for word recognition,
63.7% for speech emotion recognition, 83.8% for sound goodness estimation).

The results show that both inverse-Beta-AT and freeze-WI configurations
lead to a decreased performance compared to regular AT and to the baseline
(no transfer learning). These results support the motivating idea of anti-transfer
learning: given a suitable choice of orthogonal tasks, avoiding similar represen-
tations can improve learning and generalization on the target task. Conversely,
while transfer learning has proven efficient and effective in many settings, for
orthogonal tasks like in our experiments it can actually be detrimental.

5.2. Convolutional Feature Activations

In order to support a visual interpretation of the deep representations gen-
erated with anti-transfer learning, we applied the Grad-CAM technique [64] to
our trained models.8 In a CNN, Grad-CAM produces class-discriminative local-
ization maps of a convolution layer using the gradient of the classification score
with respect to the convolutional features present in that layer. This produces
a heatmap of the same dimension as the input data, showing which parts of the
input matrix are most important for classification. Please refer to the above
mentioned paper [64] for an in-depth description of this technique.

For this visualization we used the GSC dataset with low noise added, where
we apply dual AT. We selected this specific case to better assess the effectiveness

8We used a modified version of https://github.com/jacobgil/pytorch-grad-cam .
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Figure 5: Grad-CAM convolutional feature activations of different models for the same
input data-point from the test set of the GSC with low noise added (word recognition target
task). The activations have been computed in the last (13th) convolution layer, where we
applied anti-transfer for this experiment. In all plots, the magnitude spectra are shown in
black. The top row shows: the activation of the model trained for the first orthogonal task
(noise type recognition, left), the activation of the model trained for the second orthogonal
task (emotion recognition, right). The bottom row shows: the activation of the baseline model
(no transfer or anti-transfer, left), the activation of the dual anti-transfer model (pre-trained
on noise type and emotion recognition, right)

of our approach in moving away from unwanted features, showing the behavior
of AT with 2 simultaneous orthogonal tasks. Figure 5 shows the Grad-CAM
activations obtained for a datapoint of the test set, containing a male voice say-
ing the world “eight” with added “office-like” background noises at low volume.
The voice appears as a in the center of the lower half of the spectrogram (ap-
proximately from 0.4 until 0.7 secs), while the background noise appears mainly
as vertical spikes outside of the center (approximately at 0.12, 0.22, 0.38, 0.8
secs). The activations shown are obtained for the two models trained on the
orthogonal tasks (background noise recognition and emotion recognition), the
baseline model (no transfer learning) and the dual AT model with AT applied
on the last convolution layer (pre-trained first on background noise recognition
and then on emotion recognition). As expected, the background noise type
recognition model focuses mostly on pixels outside the center, in particular on
the spike at 0.8 secs. The emotion recognition model focuses instead mostly
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Figure 6: Mean per-layer improvement on speech emotion recognition (IEMOCAP random
split) with pre-training on word recognition (Librispeech). The improvement refers to the
baseline with no weight initialization.

on the lower frequencies in the spectrum (approximately below 800 Hz), which
is the normal range for the fundamental frequency of the human voice. The
baseline model successfully focused on the speech signal in the center, although
it slightly expands also towards the noise spike at 0.8 secs and it has a high ac-
tivation in the low-frequency region where emotion information is more present
(according both to our orthogonal model and our research experience). Simi-
larly, the dual AT model is focused on the speech signal center, but it adjusted
its attention towards the mid fequencies, where most format and consonant in-
formation is present, decreasing its activation on both the low-frequency area
(emotion) and the spike at 0.8 secs (background noise). This example confirms
that the dual AT model developed a certain degree of invariance to both orthog-
onal tasks (noise type and emotion recognition) when predicting the between
the target task (word recognition), which underpins the observed effectiveness
of anti-transfer learning in our experiments.

5.3. Layer Selection

We tested all layers in all task/orthogonal task combinations and Figure 6
shows the average per-layer improvement in both train and test accuracy that
we obtained in the speech emotion recognition task. In this case, computing the
anti-transfer loss with layer 5 provides the best performance, although layers 7
and 13 yield comparable results. Moreover, in both training and test, layer 9
yields the lowest performance and it is the only one that leads to a slight training
accuracy decrease. However, most other layers also lead to improvements and
the situation may vary when using different architectures or datasets. Also
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Figure 7: Evolution of the train and validation cross-entropy loss and train and validation
anti-transfer loss during the training. This example refers to training on speech emotion
recognition as target task (IEMOCAP random-split) and pre-training on word recognition
(Librispeech) and anti-transfer applied to the 5th convolution layer.

for word recognition layer 5 yields the best results, but for sound goodness
estimation we obtained the best performance with layer 6.

In summary, there is no overall unequivocal best choice for the layer to use
for the anti-transfer loss. Our intuitive expectation was the last layers would
be most effective, as they should be most task-specific according to [24]. It is
interesting to observe that these results of are not reflected in our layer-wise
evaluation, but we don’t currently have an explanation for this.

Based on these results, we experimented with training using the anti-transfer
loss on multiple layers at the same time. We tried to use three layers at once
in three configurations: the first convolution layers, the last ones, the best ones
according to the results above. These configurations yielded worse results than
the baseline setting (non-transfer learning). However, this may be because we
did not perform parameter optimization on this approach, therefore further
exploration could potentially lead to positive results.

5.4. Learning dynamics

Figure 7 shows the development of the classification loss (cross-entropy) and
the anti-transfer loss during training for speech emotion recognition (IEMOCAP
random-split), with pre-training on word recognition (Librispeech) and anti-
transfer applied to the 5th convolution layer. Here it is evident that the network
is actually learning to differentiate its deep representations from the pre-trained
ones, as the anti-transfer loss is substantially reduced. Moreover, as we expected,
the anti-transfer loss is already low from the first epoch because the randomly
initialized feature maps start mostly uncorrelated to the ones of the pre-trained
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Table 6: Accuracy results for different channel aggregation methods and different similar-
ity functions. All results are computed for speech emotion recognition as target task (IEMO-
CAP random-split) with pre-training on word recognition (Librispeech) and anti-transfer on
the 5th convolution layer. The best training, validation and test accuracy results overall are
highlighted in bold font.

Sigmoid MSE Similarity Squared Cos Similarity
Aggregation Train Val Test Train Val Test

Mean 68.2 68.3 63.9 68.7 66.1 60.0
Sum 68.4 68.2 63.8 69.5 66.0 60.0
Comp Mul 71.0 67.5 63.9 70.4 67.0 63.1
Max 68.3 66.3 65.0 76.7 66.2 66.7
Gram Matrix 76.3 65.9 65.8 72.5 68.7 66.9

network. The relatively low magnitude of the anti-transfer loss with respect
to the cross-entropy loss indicates that anti-transfer plays a “preventive” role
during training, keeping the deep representations from becoming correlated.

5.5. Aggregation and Distance Functions

Table 6 shows the results of experiments performed to select the best chan-
nel aggregation and similarity function to compute the anti-transfer loss. All
aggregation types refer to a function applied pixel-by-pixel along the channel
dimension. Comp Mul stands for compressed multiplication (feature activation
values raised to the power of 0.001 and then multiplied along the channel dimen-
sion). The compression is necessary when multiplying pixel-by-pixel to avoid
rounding to 0 during the multiplication of many small numbers.

As an alternative to Squared Cosine Similarity we used Sigmoid MSE Sim-
ilarity, which we define as the negative standard Mean Squared Error with a
sigmoid function applied to avoid excessive loss values. Without the sigmoid, the
training led to very high absolute values in the feature maps, which minimizes
the AT loss, but also drastically decreased the accuracy. We also tried several
approaches to compute the similarity for all possible channel combinations with-
out using any aggregation method, but all of them were too expensive in terms
of computation or memory. We find that to aggregate the channel information
using the Gram matrix and to compute the matrix similarity with squared co-
sine similarity gives the best results, which is why we used this combination in
the experiments in the previous Section 4.

5.6. AT Loss Weight

The β parameter that determines the weight of the anti-transfer loss has a
clear impact on the performance. As shown in Figure 8 for emotion recognition
(IEMOCAP with random splitting) with pre-training on Librispeech and anti-
transfer applied to the 5th convolution layer, we get the best result using the
squared cosine similarity with a β value of 1, obtaining a performance gain of
approximately 3 percentage points. The performance gain is smaller for all other
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Figure 8: Variation of the test accuracy for different β parameters (weight of the AT
loss) using Gram aggregation with the squared cosine similarity (solid line) and the sigmoid
MSE (dash-dotted line). This example refers to training on speech emotion recognition as
target task (IEMOCAP random-split), with pre-training on word recognition (Librispeech)
and anti-transfer applied to the 5th convolution layer (the one yielding the best result).

values and there is no improvement with a very high (20) β. For sigmoid MSE
the performance gain is smaller, but less dependent on the β value. For practical
purposes, β = 1 with cosine similarity seems to be a good default choice.

5.7. Computation and Memory Costs

The improved accuracy comes at a cost of increased computational and
memory demands at training time. The following considerations refer to our
specific implementation and different strategies may different trade-offs. For
instance, it is possible to pre-compute all needed Gram matrices in advance
and avoid loading the pre-trained feature extractor into the GPU RAM. This
would lead to lower memory demand and computation time during training,
but it would be incompatible with in-place data augmentation and other online
approaches.

With reference to our implementation, regarding computational time, train-
ing a network with anti-transfer learning takes on average approximately 2.8
times longer compared to the same network with standard training. This refers
to the only training with anti-transfer applied, without taking into account the
time needed to pre-train the feature extractor on the orthogonal task. Moreover,
learning with AT loss requires more memory than standard training, since it re-
quires to fit into memory the trained network, the pre-trained feature extractor,
the feature maps and the Gram matrices to be compared. The size of these de-
pends on the chosen architecture, the input data dimension and the the number
of channels of the convolution layer(s) used to compute the anti-transfer loss.
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The additional memory Mt required to compute the anti-transfer loss using a
network pre-trained on an orthogonal task t can be calculated as:

Mt = Et +
∑
l∈L

2(#Gl + #Fl)× bytes per number (4)

where Et is the size of convolutional part of the pre-trained network, L is the set
of layers used for anti-transfer, #Gl is the size of the Gram matrix computed
on the layer l , #Fl is the size of the feature map of layer l. The term inside the
summation is multiplied by 2 because we compute the above-described matrices
both for the currently-trained and the pre-trained network. The term #Gl is
determined by batchSize×numChannels2, while #Fl depends on all dimensions
of the input data, on the network’s architecture and on the layer parameters.
The bytes per number is 4 in our case. In our specific test case with the VGG16
network, the whole network occupies ∼1620 MB, while the feature extractor Et

requires additional ∼1150 MB, The dimension of one batch with one single
GSC data point pre-processed as described above is [1, 1, 126, 129]. With this
configuration the term Gl + Fl is ∼62 MB when anti-transfer is computed only
on the first layer (shape [1,64,126,129]) and is ∼714 MB when computed on the
last layer (shape [1,512,7,8]).

5.8. Discussion

Results. Anti-transfer leads to a robust improvement in test results in all our
experiments. The learning dynamics, data splits and the visualization show that
the similarity between the pre-trained and the new network’s representations is
effectively reduced. It seems that avoiding features from orthogonal tasks is
generally helpful. The improvement with anti-transfer is generally greater when
the baseline accuracy is lower.

Training results are also improved in most cases. This is unexpected, as we
assumed that learning from scratch would find a good fit for the training set
and that anti-transfer would only benefit generalization, as in regularization.
However, it seems that for suitably chosen orthogonal tasks avoiding the rep-
resentation of the pre-trained network not only avoids fitting to confounding
aspects of the data, but even leads to a better fit to the target task during
training. This contravenes the common assumption that end-to-end learning
with deep learning leads to a near-optimal fit to the training data. Instead it
shows that the use of prior knowledge, here in the form of an orthogonal task,
can help not just to improve generalization.

In some cases, the train/test split was separating classes that the network
was aiming to recognise in the orthogonal pre-training task (speaker-wise split
for emotion recognition vs speaker recognition, Table 4, and instrument-wise
split for sound goodness estimation vs instrument recognition, Table 5). When
the orthogonal task was speaker or instrument recognition, we observed a sig-
nificantly improved generalization to unseen speakers in the speaker-wise split
and to new musical instruments in the instrument-wise split, respectively. This
indicates that the models are actually developing a degree of invariance to the
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orthogonal tasks, which is also illustrated in the visualization example (Fig-
ure 5).

The results show that pre-training on the same dataset provides higher im-
provement on average, compared to pre-training on a different dataset, even a
much bigger one (Figure 3). It is surprising that the larger dataset does not
have a more positive effect. We hypothesize that a more specific separation of
representations can be developed for the specific dataset with orthogonal task
labels on the same dataset by more directly modelling the interactions between
different tasks. Thus, anti-transfer is a well-suited approach to exploit datasets
provided with multiple labels, but the use of models pre-trained on different
data is still effective and both can also be combined.

Related Work. As mentioned in Section 2, when pre-training with an orthogonal
label of the same dataset, AT is similar to Domain Adversarial Training (DAT)
[41] if we consider an orthogonal task class as a domain. As mentioned, AT
has the practical advantage of only needing a pre-trained model rather than
requiring labeled data from the source domain. This makes it possible to use
models pre-trained by third parties, which can be beneficial in the case of models
pre-trained on very large or private datasets. Even though in our test cases AT
with models pre-trained on the same dataset provided the best improvement,
models pre-trained on bigger and different datasets (which is not possible with
DAT) still provided a good improvement over the baseline.

As mentioned in Section 2, the idea of anti-transfer is related to Speech-
VGG [34], which applies a deep feature loss to encourage similarity of deep
representations, instead of dissimilarity as in anti-transfer. The experiments by
[34] are comparable with our inverse-Beta experiment in Section 5.1, where we
show that encouraging similarity causes a drop in performance for orthogonal
tasks. However, [34] obtain a performance improvement with their approach
applied to related target/pre-trained task combinations: word recognition vs.
speech inpainting, language identification and speech/music classification. This
confirms that the selection of orthogonal tasks for anti-transfer is important.

As we introduce in Section 2, anti-transfer falls into the broad category
of disentanglement. Our method does not directly enable pinpointing specific
disentangled components in the data, e.g. as in source separation, but in effect it
leads to separate deep representations for different tasks, as visualized in Figure
5. An advantage of anti-transfer is that it is a supervised training approach,
which tends to be more efficient than adversarial or VAE methods.

Limitations. Limitations of anti-transfer apply to: resources, orthogonal tasks,
models and data availability, pre-trained model accuracy.

Anti-transfer needs additional memory and computation resources at train-
ing time. Invariance to simple transformations can sometimes be achieved with
simpler models, e.g. [65, 66, 67], but complex tasks, like speaker recognition
justifies in our view the increased resources used. Memory demands can have
an impact in practice as GPU memory is often a bottleneck. Since earlier layers
are similarly effective as later layers, but use less memory, using them can offer
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a better ratio of cost to performance gain. To make anti-transfer more practical
on GPUs with limited memory, other ways of reducing memory demand can be
investigated.

A practical limitation when using pre-trained networks, is that the target
task network needs to have the same structure (up to the AT layer) as the
orthogonal task network. This can be a limitation if the network structure is
not well suited for the main task.

Anti-transfer training is sensitive to the weight on the AT loss in our ex-
periments, especially using the cosine similarity, although a value of β = 1
worked well in all our experiments. Still, some effort should be made to tune
this hyper-parameter when using anti-transfer learning.

A more conceptual limitation is the need for an orthogonal task. However,
identifying the orthogonal task is often straightforward, as the elements that
cause model performance to decrease are known, e.g. speaker identity, text,
emotion, recording equipment, acoustical conditions. Finding or creating or-
thogonal task labels on the same or a similar dataset, or a model pre-trained on
an orthogonal task, can be a limitation, depending on the application.

In addition to this, benefits of AT can only be expected if the pre-trained
model is effective and even then there may be relevant representations that the
pre-trained model has not learned. However, perfect avoidance of the represen-
tation learnt for the orthogonal task or perfect invariance to the orthogonal task
is not required to improve performance and generalization, as our experiments
have shown. The situation would be different for undesirable labels, where
invariance to the orthogonal task in itself is an important target. Our mea-
surement of this invariance has mainly been indirect through performance. Our
visualization example was encouraging but to guarantee algorithmic fairness,
more stringent measurements would be required.

Applications. Anti-transfer is in principle applicable in all situations where suit-
able datasets are available, in particular when invariance to a specific task is
desired. Even though we implemented AT for VGG16, it can be applied to other
CNN designs. Also, it is directly applicable to feed-forward and to recurrent
networks and it can be adapted to attention-based models. We have only tested
classification tasks, but there is nothing in general to prevent the application
of this method to regression, or more complex tasks (e.g. automatic speech
recognition) or other domains (e.g. computer vision).

As mentioned, AT can have applications in areas such as algorithmic fair-
ness, where model outputs should be independent of sensitive variables, e.g.
financial decisions should not depend on gender or ethnicity. The variable is
not necessarily explicit in the input data, e.g. the gender of a person could
be not mentioned in their financial data, but models could estimate it and use
that estimate as the basis for a decision. With more direct measurements of the
degree of invariance to the sensitive variable, AT could be suitable to improve
algorithmic fairness.

There are many pre-trained models available for many tasks, particularly in
computer vision and natural language processing. These models can be used for
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anti-transfer in many tasks, with the limitation that the orthogonal task must
be known to be independent of the target and the the network architecture must
have sufficient overlap, i.e. the structure of the networks must be the same from
the input up to the the layer(s) used in anti-transfer.

6. Conclusions

In this study, we introduced anti-transfer learning for speech processing with
neural networks, a novel method improving generalization by instilling invari-
ance to an orthogonal task when training a network on a target task. When
applying anti-transfer, we use a pre-trained network with the same structure as
the target network. In training the target network we apply a deep feature loss
that discourages similarity between convolutional layers in the pre-trained and
target network to encourage the development of an internal representation that
is independent of the orthogonal task. Our experiments with several classifica-
tion tasks on speech and music audio in different configurations show improved
results for all tasks. We observe a robust improvement over the learning form
scratch and over transfer learning by weight initialization.

Our analysis provides evidence that anti-transfer achieves a degree of invari-
ance to the orthogonal tasks, e.g. speaker identity, when the network is applied
to the target task, e.g. speech emotion recognition. While there is a cost of
pre-training and of the anti-transfer learning itself, the improved generalization
may often be worth it. Readily available trained models remove the cost of pre-
training and there may be further optimizations possible to address memory
and computation costs.

With the increasing availability of public datasets and pre-trained models
chances grow that a suitable dataset or model can be found, but the selection
of the orthogonal task needs careful consideration. Transfer learning is gener-
ally seen as a straightforward way to improve the performance of deep neural
networks by using additional data. Our results show that taking into account
the nature of the pre-training tasks is important and that treating related and
orthogonal tasks differently can boost generalization significantly.

Applications can benefit from improved generalization in many domains
where there are natural changes to a signal that are independent of the target
task, such as room acoustics, ambient noise, degradation through transmission,
etc., as in the tasks we addressed in our experiments. A potential application
of anti-transfer is to avoid the use of specific signal properties in areas such as
algorithmic fairness, where being invariant to gender or ethnicity is a socially
important goal. This will need further work on measuring and controlling the
level of invariance as well as a discussion of the specific goals.

The positive results justify further investigation of this approach. An imme-
diate research objective is to reduce the memory requirements of anti-transfer
learning. Identifying more application areas and studying larger datasets in
different domains will enable a better understanding of the performance an
comparison to standard benchmarks. Further general goals for longer term re-
search are a deeper understanding of how to measure invariance or achieve it
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across multiple tasks beyond dual anti-transfer and it will be interesting to ap-
ply anti-transfer learning to different Neural Network architectures, including
non-convolutional ones.
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